NASA Astrophysics Data System (ADS)
Suzuki, Yohichi; Seki, Kazuhiko
2018-03-01
We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.
Transport of light, trace impurities in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.
2012-10-01
Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.
Angland, P.; Haberberger, D.; Ivancic, S. T.; ...
2017-10-30
Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angland, P.; Haberberger, D.; Ivancic, S. T.
Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less
NASA Astrophysics Data System (ADS)
Boella, E.; Fiúza, F.; Stockem Novo, A.; Fonseca, R.; Silva, L. O.
2018-03-01
A numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ions by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; ...
2018-02-01
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changesmore » in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. Finally, for a range of E×B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.« less
NASA Astrophysics Data System (ADS)
Grierson, B. A.; Staebler, G. M.; Solomon, W. M.; McKee, G. R.; Holland, C.; Austin, M.; Marinoni, A.; Schmitz, L.; Pinsker, R. I.; DIII-D Team
2018-02-01
Multi-scale fluctuations measured by turbulence diagnostics spanning long and short wavelength spatial scales impact energy confinement and the scale-lengths of plasma kinetic profiles in the DIII-D ITER baseline scenario with direct electron heating. Contrasting discharge phases with ECH + neutral beam injection (NBI) and NBI only at similar rotation reveal higher energy confinement and lower fluctuations when only NBI heating is used. Modeling of the core transport with TGYRO using the TGLF turbulent transport model and NEO neoclassical transport reproduces the experimental profile changes upon application of direct electron heating and indicates that multi-scale transport mechanisms are responsible for changes in the temperature and density profiles. Intermediate and high-k fluctuations appear responsible for the enhanced electron thermal flux, and intermediate-k electron modes produce an inward particle pinch that increases the inverse density scale length. Projection to ITER is performed with TGLF and indicates a density profile that has a finite scale length due to intermediate-k electron modes at low collisionality and increases the fusion gain. For a range of E × B shear, the dominant mechanism that increases fusion performance is suppression of outward low-k particle flux and increased density peaking.
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boella, E.; Fiúza, F.; Novo, A. Stockem
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
Boella, E.; Fiúza, F.; Novo, A. Stockem; ...
2018-02-01
Here, a numerical study on ion acceleration in electrostatic shock waves is presented, with the aim of determining the best plasma configuration to achieve quasi-monoenergetic ion beams in laser-driven systems. It was recently shown that tailored near-critical density plasmas characterized by a long-scale decreasing rear density profile lead to beams with low energy spread (Fiúza et al 2012 Phys. Rev. Lett. 109 215001). In this work, a detailed parameter scan investigating different plasma scale lengths is carried out. As result, the optimal plasma spatial scale length that allows for minimizing the energy spread while ensuring a significant reflection of ionsmore » by the shock is identified. Furthermore, a new configuration where the required profile has been obtained by coupling micro layers of different densities is proposed. Lastly, results show that this new engineered approach is a valid alternative, guaranteeing a low energy spread with a higher level of controllability.« less
Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 to 2 GHz
NASA Technical Reports Server (NTRS)
Tan, Shurun; Aksoy, Mustafa; Brogioni, Marco; Macelloni, Giovanni; Durand, Michael; Jezek, Kenneth C.; Wang, Tian-Lin; Tsang, Leung; Johnson, Joel T.; Drinkwater, Mark R.;
2015-01-01
We investigate physical effects influencing 0.5-2 GHz brightness temperatures of layered polar firn to support the Ultra Wide Band Software Defined Radiometer (UWBRAD) experiment to be conducted in Greenland and in Antarctica. We find that because ice particle grain sizes are very small compared to the 0.5-2 GHz wavelengths, volume scattering effects are small. Variations in firn density over cm- to m-length scales, however, cause significant effects. Both incoherent and coherent models are used to examine these effects. Incoherent models include a 'cloud model' that neglects any reflections internal to the ice sheet, and the DMRT-ML and MEMLS radiative transfer codes that are publicly available. The coherent model is based on the layered medium implementation of the fluctuation dissipation theorem for thermal microwave radiation from a medium having a nonuniform temperature. Density profiles are modeled using a stochastic approach, and model predictions are averaged over a large number of realizations to take into account an averaging over the radiometer footprint. Density profiles are described by combining a smooth average density profile with a spatially correlated random process to model density fluctuations. It is shown that coherent model results after ensemble averaging depend on the correlation lengths of the vertical density fluctuations. If the correlation length is moderate or long compared with the wavelength (approximately 0.6x longer or greater for Gaussian correlation function without regard for layer thinning due to compaction), coherent and incoherent model results are similar (within approximately 1 K). However, when the correlation length is short compared to the wavelength, coherent model results are significantly different from the incoherent model by several tens of kelvins. For a 10-cm correlation length, the differences are significant between 0.5 and 1.1 GHz, and less for 1.1-2 GHz. Model results are shown to be able to match the v-pol SMOS data closely and predict the h-pol data for small observation angles.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
A Theoretical Study of Flow Structure and Radiation for Multiphase Turbulent Diffusion Flames
1990-03-01
density function. According to the axial void fraction profile in Fig. 24, the flame length (the total penetration length) extends to x/d=150. By referring...temperature because of subcooling effect. Decreasing liquid temperature will increase condensation which in turn reduces the flame length as defined by
James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo
2002-03-01
Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.
Instability of a shear layer between multicomponent fluids at supercritical pressure
NASA Astrophysics Data System (ADS)
Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun
2018-04-01
The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.
Measurement of Two-Plasmon-Decay Dependence on Plasma Density Scale Length
NASA Astrophysics Data System (ADS)
Haberberger, D.
2013-10-01
An accurate understanding of the plasma scale-length (Lq) conditions near quarter-critical density is important in quantifying the hot electrons generated by the two-plasmon-decay (TPD) instability in long-scale-length plasmas. A novel target platform was developed to vary the density scale length and an innovative diagnostic was implemented to measure the density profiles above 1021 cm-3 where TPD is expected to have the largest growth. A series of experiments was performed using the four UV (351-nm) beams on OMEGA EP that varied the Lq by changing the radius of curvature of the target while maintaining a constant Iq/Tq. The fraction of laser energy converted to hot electrons (fhot) was observed to increase rapidly from 0.005% to 1% by increasing the plasma scale length from 130 μm to 300 μm, corresponding to target diameters of 0.4 mm to 8 mm. A new diagnostic was developed based on refractometry using angular spectral filters to overcome the large phase accumulation in standard interferometric techniques. The angular filter refractometer measures the refraction angles of a 10-ps, 263-nm probe laser after propagating through the plasma. An angular spectral filter is used in the Fourier plane of the probe beam, where the refractive angles of the rays are mapped to space. The edges of the filter are present in the image plane and represent contours of constant refraction angle. These contours are used to infer the phase of the probe beam, which are used to calculate the plasma density profile. In long-scale-length plasmas, the diagnostic currently measures plasma densities from ~1019 cm-3 to ~2 × 1021 cm-3. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with D. H. Edgell, S. X. Hu, S. Ivancic, R. Boni, C. Dorrer, and D. H. Froula (Laboratory for Laser Energetics, U. of Rochester).
Trunk density profile estimates from dual X-ray absorptiometry.
Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A
2008-01-01
Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.
Angular filter refractometry analysis using simulated annealing.
Angland, P; Haberberger, D; Ivancic, S T; Froula, D H
2017-10-01
Angular filter refractometry (AFR) is a novel technique used to characterize the density profiles of laser-produced, long-scale-length plasmas [Haberberger et al., Phys. Plasmas 21, 056304 (2014)]. A new method of analysis for AFR images was developed using an annealing algorithm to iteratively converge upon a solution. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on the minimization of the χ 2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in an average uncertainty in the density profile of 5%-20% in the region of interest.
Confinement effects on liquid oxygen flows in carbon nanotubes: A MD simulation study
NASA Astrophysics Data System (ADS)
Suga, Kazuhiko; Moritani, Rintaro; Mori, Yuki; Kaneda, Masayuki
2017-11-01
Molecular dynamics simulations are performed to investigate the liquid flow mechanism of diatomic molecules in armchair carbon nanotubes (CNTs). Oxygen molecules are considered as the fluid inside armchair (n,n) (n=6-20) CNTs at a temperature of 133[K] and a bulk density of 1680[kg /m3] for the liquid state. The velocity profiles and slip lengths are discussed considering the radial distributions of the fluid density by the finite difference-based velocity fitting method. It is shown that as the diameter of the CNT increases, the slip length and the flow rate enhancement generally become smaller while irregular tendencies (discontinuity points) are observed in the distribution profiles. Between the (7,7) and (8,8) CNTs, a steep drop can be seen in the profiles. Between the (9,9) and (11,11) CNTs, and between the (12,12) and (14,14) CNTs transitional profiles are observed. It is confirmed that those phenomena are caused by an instability of the fluid molecule cluster due to the discontinuous confinement of the CNTs. Professor.
Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies
NASA Astrophysics Data System (ADS)
Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.
2017-09-01
Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.
Density profiles of the exclusive queuing process
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Schadschneider, Andreas
2012-12-01
The exclusive queuing process (EQP) incorporates the exclusion principle into classic queuing models. It is characterized by, in addition to the entrance probability α and exit probability β, a third parameter: the hopping probability p. The EQP can be interpreted as an exclusion process of variable system length. Its phase diagram in the parameter space (α,β) is divided into a convergent phase and a divergent phase by a critical line which consists of a curved part and a straight part. Here we extend previous studies of this phase diagram. We identify subphases in the divergent phase, which can be distinguished by means of the shape of the density profile, and determine the velocity of the system length growth. This is done for EQPs with different update rules (parallel, backward sequential and continuous time). We also investigate the dynamics of the system length and the number of customers on the critical line. They are diffusive or subdiffusive with non-universal exponents that also depend on the update rules.
Detecting many-body-localization lengths with cold atoms
NASA Astrophysics Data System (ADS)
Guo, Xuefei; Li, Xiaopeng
2018-03-01
Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.
Electron temperature response to ECRH on FTU tokamak in transient conditions.
NASA Astrophysics Data System (ADS)
Jacchia, A.; Bruschi, A.; Cirant, S.; Granucci, G.; Sozzi, C.; de Luca, F.; Amadeo, P.; Bracco, G.; Tudisco, O.
2001-10-01
Steady-state electron heat transport analysis of FTU high density plasmas under Electron Cyclotron Heating (ECRH) shows "stiff" electron temperature profiles [1,2,3]. Plasma response to off-axis EC heating, in fact, exibits a lower limit to electron temperature gradient length, Lc , below which electron thermal conductivity switches to higher values. Stiffness, however, is attenuated in the plasma core of saw-tooth free discharges with flat-hollow temperature profile and during current ramp-up [3,4,5], in which cases the temperature gradient length can be brought to very low values by means of on-axis ECH. Steady and current ramp-up discharges probed by steady and modulated ECH are analyzed in terms of stiffnes. Critical gradient length dependence on local features of computed current density profile is discussed. [1] Sozzi, C. et al., Paper EXP5/13, Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000. [2] Jacchia, A. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [3] Cirant, S. et al. Topical Conference on Radio Frequency Power in Plasmas, Oxnard, USA, (2001). [4] Sozzi, C. et al., EPS, Madeira 2001. [5] Bracco, G. et al.,Plasma Phys. Contr. Fus. Res., Proc.18th IAEA Conf., Sorrento, 2000.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.
2015-08-01
A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
Cusped magnetic field mercury ion thruster. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Beattie, J. R.
1976-01-01
The importance of a uniform current density profile in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator system lifetime. A residence time approach is used to explain the nonuniform beam current density profile of the divergent magnetic field thruster. Mathematical expressions are derived which relate the thruster discharge power loss, propellant utilization, and double to single ion density ratio to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the thruster. Experimental results are presented for a wide range of the discharge chamber length. The thruster designed for this investigation was operated with a cusped magnetic field as well as a divergent field geometry, and the cusped field geometry is shown to be superior from the standpoint of beam profile uniformity, performance, and double ion population.
NASA Astrophysics Data System (ADS)
Patra, Swayamshree; Chowdhury, Debashish
2018-01-01
We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the hard rods are allowed. Although all rods enter the system with the same initial length ℓ =1 , their length can keep changing, because of fusion and fission, as they move in a step-by-step manner towards the exit. Two neighboring hard rods of lengths ℓ1 and ℓ2 can fuse into a single rod of longer length ℓ =ℓ1+ℓ2 provided ℓ ≤N . Similarly, length-conserving fission of a rod of length ℓ'≤N results in two shorter daughter rods. Based on the extremum current hypothesis, we plot the phase diagram of the model under open boundary conditions utilizing the results derived for the same model under periodic boundary condition using mean-field approximation. The density profile and the flux profile of rods are in excellent agreement with computer simulations. Although the fusion and fission of the rods are motivated by similar phenomena observed in intraflagellar transport (IFT) in eukaryotic flagella, this exclusion model is too simple to account for the quantitative experimental data for any specific organism. Nevertheless, the concepts of "flux profile" and "transition zone" that emerge from the interplay of fusion and fission in this model are likely to have important implications for IFT and for other similar transport phenomena in long cell protrusions.
Fluids density functional theory and initializing molecular dynamics simulations of block copolymers
NASA Astrophysics Data System (ADS)
Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.
2016-03-01
Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.
Holland, Joseph G; Geiger, Franz M
2012-06-07
The binding of magnesium ions to surface-bound single-stranded oligonucleotides was studied under aqueous conditions using second harmonic generation (SHG) and atomic force microscopy (AFM). The effect of strand length on the number of Mg(II) ions bound and their free binding energy was examined for 5-, 10-, 15-, and 20-mers of adenine and guanine at pH 7, 298 K, and 10 mM NaCl. The binding free energies for adenine and guanine sequences were calculated to be -32.1(4) and -35.6(2) kJ/mol, respectively, and invariant with strand length. Furthermore, the ion density for adenine oligonucleotides did not change as strand length increased, with an average value of 2(1) ions/strand. In sharp contrast, guanine oligonucleotides displayed a linear relationship between strand length and ion density, suggesting that cooperativity is important. This data gives predictive capabilities for mixed strands of various lengths, which we exploit for 20-mers of adenines and guanines. In addition, the role sequence order plays in strands of hetero-oligonucleotides was examined for 5'-A(10)G(10)-3', 5'-(AG)(10)-3', and 5'-G(10)A(10)-3' (here the -3' end is chemically modified to bind to the surface). Although the free energy of binding is the same for these three strands (averaged to be -33.3(4) kJ/mol), the total ion density increases when several guanine residues are close to the 3' end (and thus close to the solid support substrate). To further understand these results, we analyzed the height profiles of the functionalized surfaces with tapping-mode atomic force microscopy (AFM). When comparing the average surface height profiles of the oligonucleotide surfaces pre- and post- Mg(II) binding, a positive correlation was found between ion density and the subsequent height decrease following Mg(II) binding, which we attribute to reductions in Coulomb repulsion and strand collapse once a critical number of Mg(II) ions are bound to the strand.
KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hui; Li, Bo; Chen, Shao-Xia
2015-11-20
We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less
NASA Astrophysics Data System (ADS)
Shi, Bingren
2010-10-01
The tokamak pedestal density structure is generally studied using a diffusion-dominant model. Recent investigations (Stacey and Groebner 2009 Phys. Plasmas 16 102504) from first principle based physics have shown a plausible existence of large inward convection in the pedestal region. The diffusion-convection equation with rapidly varying convection and diffusion coefficients in the near edge region and model puffing-recycling neutral particles is studied in this paper. A peculiar property of its solution for the existence of the large convection case is that the pedestal width of the density profile, qualitatively different from the diffusion-dominant case, depends mainly on the width of the inward convection and only weakly on the neutral penetration length and its injection position.
Lateral carrier diffusion in InGaAs/GaAs coupled quantum dot-quantum well system
NASA Astrophysics Data System (ADS)
Pieczarka, M.; Syperek, M.; Biegańska, D.; Gilfert, C.; Pavelescu, E. M.; Reithmaier, J. P.; Misiewicz, J.; Sek, G.
2017-05-01
The lateral carrier diffusion process is investigated in coupled InGaAs/GaAs quantum dot-quantum well (QD-QW) structures by means of spatially resolved photoluminescence spectroscopy at low temperature. Under non-resonant photo-excitation above the GaAs bandgap, the lateral carrier transport reflected in the distorted electron-hole pair emission profiles is found to be mainly governed by high energy carriers created within the 3D density of states of GaAs. In contrast, for the case of resonant excitation tuned to the QW-like ground state of the QD-QW system, the emission profiles remain unaffected by the excess kinetic energy of carriers and local phonon heating within the pump spot. The lateral diffusion lengths are determined and present certain dependency on the coupling strength between QW and QDs. While for a strongly coupled structure the diffusion length is found to be around 0.8 μm and monotonically increases up to 1.4 μm with the excitation power density, in weakly coupled structures, it is determined to ca. 1.6 μm and remained virtually independent of the pumping power density.
Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.
2017-02-28
Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effortmore » but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e.above the melting transition temperature of the two lipids.« less
Oh, Jaechul; Weaver, J L; Karasik, M; Chan, L Y
2015-08-01
A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10(15) W/cm(2). The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10(21) cm(-3) with the density scale length of 120 μm along the plasma symmetry axis. The resulting n(e) and T(e) profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
The KTB apatite fission-track profiles: Building on a firm foundation?
NASA Astrophysics Data System (ADS)
Wauschkuhn, B.; Jonckheere, R.; Ratschbacher, L.
2015-10-01
Deep boreholes serve as natural laboratories for testing thermochronometers under geological conditions. The Kontinentale Tiefbohrung (KTB) is an interesting candidate because the geological evidence suggests that approximate isothermal holding since the last documented exhumation in the Late Cretaceous to Palaeocene is a reasonable assumption for the thermal histories of the KTB samples. We report 30 new apatite fission-track ages and 50 new mean confined track lengths determined on cores from the 4 km deep pilot hole. The ϕ- and ζ-external detector ages are consistent with the population ages from earlier studies and together define a clear age profile. The mean track lengths from this and earlier studies reveal the effects of experimental factors. The measured age and length profiles are compared with the predictions of 24 annealing models for isothermal holding. There are clear discrepancies between the measured and calculated profiles. Down to 1.5 km depth, the measured mean track lengths are shorter than the predicted. The balance of methodological evidence indicates that this is due to seasoning, i.e., a shortening of the fossil confined tracks without attendant age reduction. From 2.5 to 4.0 km depth, the mean track lengths are longer than the predictions. This suggests that the bias model that weights the probabilities of observing tracks of different length and which is based on experiments relating surface track densities to mean track lengths is not appropriate for confined tracks. Experimental and methodological factors are sometimes difficult to disentangle, but present a sufficient margin for there to be no need to go against the independent geological evidence. Unknown geological events cannot be ruled out but their existence cannot be inferred from the fission-track data alone, much less can the nature or magnitude of such events be specified.
NASA Technical Reports Server (NTRS)
Massman, William
1987-01-01
A semianalytical method for describing the mean wind profile and shear stress within plant canopies and for estimating the roughness length and the displacement height is presented. This method incorporates density and vertical structure of the canopy and includes simple parameterizations of the roughness sublayer and shelter factor. Some of the wind profiles examined are consistent with first-order closure techniques while others are consistent with second-order closure techniques. Some profiles show a shearless region near the base of the canopy; however, none displays a secondary maximum there. Comparing several different analytical expressions for the canopy wind profile against observations suggests that one particular type of profile (an Airy function which is associated with the triangular foliage surface area density distribution) is superior to the others. Because of the numerical simplicity of the methods outlined, it is suggested that they may be profitably used in large-scale models of plant-atmosphere exchanges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
Oakdale, James S.; Smith, Raymond F.; Forien, Jean -Baptiste; ...
2017-09-27
Monolithic porous bulk materials have many promising applications ranging from energy storage and catalysis to high energy density physics. High resolution additive manufacturing techniques, such as direct laser writing via two photon polymerization (DLW-TPP), now enable the fabrication of highly porous microlattices with deterministic morphology control. In this work, DLW-TPP is used to print millimeter-sized foam reservoirs (down to 0.06 g cm –3) with tailored density-gradient profiles, where density is varied by over an order of magnitude (for instance from 0.6 to 0.06 g cm –3) along a length of <100 µm. Taking full advantage of this technology, however, ismore » a multiscale materials design problem that requires detailed understanding of how the different length scales, from the molecular level to the macroscopic dimensions, affect each other. The design of these 3D-printed foams is based on the brickwork arrangement of 100 × 100 × 16 µm 3 log-pile blocks constructed from sub-micrometer scale features. A block-to-block interdigitated stitching strategy is introduced for obtaining high density uniformity at all length scales. Lastly, these materials are used to shape plasma-piston drives during ramp-compression of targets under high energy density conditions created at the OMEGA Laser Facility.« less
The preplasma effect on the properties of the shock wave driven by a fast electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.
2016-08-15
Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.
The confining baryonic Y-strings on the lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, Ahmed S.; Chen, Xurong; Zhang, Peng-Ming
2016-01-22
In a string picture, the nucleon is conjectured as consisting of a Y-shaped gluonic string ended by constituent quarks. In this proceeding, we summarize our results on revealing the signature of the confining Y-bosonic string in the gluonic profile due to a system of three static quarks on the lattice at finite temperature. The analysis of the action density unveils a background of a filled-Δ distribution. However, we found that these Δ-shaped profiles are comprised of three Y-shaped Gaussian-like flux tubes. The length of the revealed Y-string-like distribution is maximum near the deconfinement point and approaches the geometrical minimal nearmore » the end of the QCD plateau. The action density width profile returns good fits to a baryonic string model for the junction fluctuations at large quark source separation.« less
NASA Astrophysics Data System (ADS)
Smith, J. E., IV; Bentley, S. J.; Courtois, A. J.; Obelcz, J.; Chaytor, J. D.; Maloney, J. M.; Georgiou, I. Y.; Xu, K.; Miner, M. D.
2017-12-01
Recent studies on Mississippi River Delta have documented sub-aerial land loss, driven in part by declining sediment load over the past century. Impacts of changing sediment load on the subaqueous delta are less well known. The subaqueous Mississippi River Delta Front is known to be shaped by extensive submarine mudflows operating at a range of temporal and spatial scales, however impacts of changing sediment delivery on mudflow deposits have not been investigated. To better understand seabed morphology and stratigraphy as impacted by plume sedimentation and mudflows, an integrated geological/geophysical study was undertaken in delta front regions offshore the three main passes of the Mississippi River Delta. This study focuses on stratigraphy and physical properties of 30 piston cores (5-9 m length) collected in June 2017. Coring locations were selected in gully, lobe and prodelta settings based on multibeam bathymetry and seismic profiles collected in mid-May 2017. Cores were analyzed for density, magnetic susceptibility, P-wave speed, and resistivity using a Geotek multi sensor core logger; here, we focus on density data. Core density profiles generally vary systematically across facies. Density profiles of gully cores are nearly invariant with some downward stepwise increases delineating units meters thick, and abundant gaps likely caused by gas expansion. Lobe cores generally have subtle downward increases in density, some stepwise density increases, and fewer gaps. Prodelta cores show more pronounced downward density increases, decimeter-scale peaks and valleys in density profiles, but stepwise increases are less evident. We hypothesize that density profiles in gully and lobe settings (uniform profiles except for stepwise increases) reflect remolding by mudflows, whereas density variations in prodelta settings instead reflect grain size variations (decimeter-scale) and more advanced consolidation (overall downward density increase) consistent with slower sediment deposition. These hypotheses will be evaluated by a more detailed study of seismic stratigraphy and core properties, including geochronology, grain size distribution and X-radiographic imaging, to further relate important sedimentary processes with resulting deposits.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2017-10-01
We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.
Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers
NASA Astrophysics Data System (ADS)
Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane
2018-02-01
High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
Raman Scattering from Atmospheric Nitrogen in the Stratosphere
NASA Technical Reports Server (NTRS)
Garvey, M. J.; Kent, G. S.
1973-01-01
The Mark II laser radar system at Kingston, Jamaica, has been used to make observations on the Raman shifted line from atmospheric nitrogen at 828.5 nm. The size of the system makes it possible to detect signals from heights of up to 40 kilometres. The effects of aerosol scattering observed using a single wavelength are almost eliminated, and a profile of nitrogen density may be obtained. Assuming a constant mixing ratio, this may be interpreted as a profile of atmospheric density whose accuracy is comparable to that obtained from routine meteorological soundings. In order to obtain an accurate profile several interfering effects have had to be examined and, where necessary, eliminated. These include: 1) Fluorescence in optical components 2) Leakage of signal at 694.3 nm. 3) Overload effects and non-linearities in the receiving and counting electronics. Most of these effects have been carefully examined and comparisons are being made between the observed atmospheric density profiles and local meteorological radio-sonde measurements. Good agreement has been obtained over the region of overlap (15 - 30 KID), discrepancies being of the same order as the experimental accuracy (1-10%), depending on height and length of period of observation.
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-07-01
In order to evaluate various buffer layers for metamorphic devices, threading dislocation densities have been calculated for uniform composition In x Ga1- x As device layers deposited on GaAs (001) substrates with an intermediate graded buffer layer using the L MD model, where L MD is the average length of misfit dislocations. On this basis, we compare the relative effectiveness of buffer layers with linear, exponential, and S-graded compositional profiles. In the case of a 2 μm thick buffer layer linear grading results in higher threading dislocation densities in the device layer compared to either exponential or S-grading. When exponential grading is used, lower threading dislocation densities are obtained with a smaller length constant. In the S-graded case, lower threading dislocation densities result when a smaller standard deviation parameter is used. As the buffer layer thickness is decreased from 2 μm to 0.1 μm all of the above effects are diminished, and the absolute threading dislocation densities increase.
Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...
2014-10-29
We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.
Density fingering in spatially modulated Hele-Shaw cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Tamara; Horvath, Dezso; Toth, Agota
Density fingering of the chlorite-tetrathionate reaction has been studied experimentally in a periodically heterogeneous Hele-Shaw cell where the heterogeneity is introduced in the form of spatial modulation of gap width along the front. Depending on the spatial wavelength, gap width, and chemical composition, three types of cellular structures have been observed. The initial evolution is characterized by dispersion curves, while the long time behavior is described by the change in the autocorrelation function of the front profile and in the mixing length of the patterns.
Kinetic model for the collisionless sheath of a collisional plasma
Tang, Xian-Zhu; Guo, Zehua
2016-08-04
Collisional plasmas typically have mean-free-path still much greater than the Debye length, so the sheath is mostly collisionless. Once the plasma density, temperature, and flow are specified at the sheath entrance, the profile variation of electron and ion density, temperature, flow speed, and conductive heat fluxes inside the sheath is set by collisionless dynamics, and can be predicted by an analytical kinetic model distribution. Finally, these predictions are contrasted in this paper with direct kinetic simulations, showing good agreement.
2014-06-01
Distribution A: Approved for public release; distribution unlimited. • Near-injector EPL profiles have elliptical shape expected from a solid liquid jet ...the shear between an outer lower-density high-velocity annulus and a higher-density low-velocity inner jet to atomize and mix a liquid and a gas...Used to study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors • Use a monochromatic beam of X-rays
Effects of nonequilibrium ablation chemistry on Viking radio blackout.
NASA Technical Reports Server (NTRS)
Evans, J. S.; Schexnayder, C. J., Jr.; Grose, W. L.
1973-01-01
The length of the entry blackout period during descent of the Viking Lander into the Mars atmosphere is predicted from calculated profiles of electron density in the shock layer over the aeroshell. Nonequilibrium chemistry plays a key role in the calculation, both in the inviscid flow and in the boundary layer. This is especially true in the boundary layer contaminated with ablation material, for which nonequilibrium chemistry predicts electron densities two decades lower than the same case calculated with equilibrium chemistry.
Lee, Patrick; Maynard, G.; Audet, T. L.; ...
2016-11-16
The dynamics of electron acceleration driven by laser wakefield is studied in detail using the particle-in-cell code WARP with the objective to generate high-quality electron bunches with narrow energy spread and small emittance, relevant for the electron injector of a multistage accelerator. Simulation results, using experimentally achievable parameters, show that electron bunches with an energy spread of ~11% can be obtained by using an ionization-induced injection mechanism in a mm-scale length plasma. By controlling the focusing of a moderate laser power and tailoring the longitudinal plasma density profile, the electron injection beginning and end positions can be adjusted, while themore » electron energy can be finely tuned in the last acceleration section.« less
Coupling of RF antennas to large volume helicon plasma
NASA Astrophysics Data System (ADS)
Chang, Lei; Hu, Xinyue; Gao, Lei; Chen, Wei; Wu, Xianming; Sun, Xinfeng; Hu, Ning; Huang, Chongxiang
2018-04-01
Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.
On the synthesis of resonance lines in dynamical models of structured hot-star winds
NASA Technical Reports Server (NTRS)
Puls, J.; Owocki, S. P.; Fullerton, A. W.
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles are then derived from formal solution integration using this source function. Two more approximate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10% or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
Fluctuations at the blue edge of saturated wind lines in IUE spectra of O-type stars
NASA Technical Reports Server (NTRS)
Owocki, Stanley P.; Fullerton, Alex
1993-01-01
We examine basic issues involved in synthesizing resonance-line profiles from 1-D, dynamical models of highly structured hot-star winds. Although these models exhibit extensive variations in density as well as velocity, the density scale length is still typically much greater than the Sobolev length. The line transfer is thus treated using a Sobolev approach, as generalized by Rybicki & Hummer (1978) to take proper account of the multiple Sobolev resonances arising from the nonmonotonic velocity field. The resulting reduced-Lambda-matrix equation describing nonlocal coupling of the source function is solved by iteration, and line profiles and then derived from formal solution integration using this source function. The more appropriate methods that instead use either a stationary or a structured, local source function yield qualitatively similar line-profiles, but are found to violate photon conservation by 10 percent or more. The full results suggest that such models may indeed be able to reproduce naturally some of the qualitative properties long noted in observed UV line profiles, such as discrete absorption components in unsaturated lines, or the blue-edge variability in saturated lines. However, these particular models do not yet produce the black absorption troughs commonly observed in saturated lines, and it seems that this and other important discrepancies (e.g., in acceleration time scale of absorption components) may require development of more complete models that include rotation and other 2-D and/or 3-D effects.
NASA Astrophysics Data System (ADS)
Theiler, C.; Diallo, A.; Fasoli, A.; Furno, I.; Labit, B.; Podestà, M.; Poli, F. M.; Ricci, P.
2008-04-01
Intermittent cross-field particle transport events (ITEs) are studied in the basic toroidal device TORPEX [TORoidal Plasma EXperiment, A. Fasoli et al., Phys. Plasmas 13, 055902 (2006)], with focus on the role of the density gradient. ITEs are due to the intermittent radial elongation of an interchange mode. The elongating positive wave crests can break apart and form blobs. This is not necessary, however, for plasma particles to be convected a considerable distance across the magnetic field lines. Conditionally sampled data reveal two different scenarios leading to ITEs. In the first case, the interchange mode grows radially from a slab-like density profile and leads to the ITE. A novel analysis technique reveals a monotonic dependence between the vertically averaged inverse radial density scale length and the probability for a subsequent ITE. In the second case, the mode is already observed before the start of the ITE. It does not elongate radially in a first stage, but at a later time. It is shown that this elongation is preceded by a steepening of the density profile as well.
NASA Astrophysics Data System (ADS)
Tooley, M. P.; Ersfeld, B.; Yoffe, S. R.; Noble, A.; Brunetti, E.; Sheng, Z. M.; Islam, M. R.; Jaroszynski, D. A.
2017-07-01
Self-injection in a laser-plasma wakefield accelerator is usually achieved by increasing the laser intensity until the threshold for injection is exceeded. Alternatively, the velocity of the bubble accelerating structure can be controlled using plasma density ramps, reducing the electron velocity required for injection. We present a model describing self-injection in the short-bunch regime for arbitrary changes in the plasma density. We derive the threshold condition for injection due to a plasma density gradient, which is confirmed using particle-in-cell simulations that demonstrate injection of subfemtosecond bunches. It is shown that the bunch charge, bunch length, and separation of bunches in a bunch train can be controlled by tailoring the plasma density profile.
Non-Axisymmetric Line Driven Disc Winds II - Full Velocity Gradient
NASA Astrophysics Data System (ADS)
Dyda, Sergei; Proga, Daniel
2018-05-01
We study non-axisymetric features of 3D line driven winds in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind on super-Sobolev length scales. The density of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column density. Clumps may be observable because differences in density produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.
Electronic transport properties of nano-scale Si films: an ab initio study
NASA Astrophysics Data System (ADS)
Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong
2010-03-01
Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.
NASA Astrophysics Data System (ADS)
Okumura, Hisashi; Heyes, David M.
2006-12-01
We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from ∞ (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.
Okumura, Hisashi; Heyes, David M
2006-12-01
We compare the results of three-dimensional molecular-dynamics (MD) simulations of a Lennard-Jones (LJ) liquid with a hydrostatic (HS) solution of a high temperature liquid channel which is surrounded by a fluid at lower temperature. The maximum temperature gradient, dT/dx , between the two temperature regions ranged from infinity (step function) to dT/dx=0.1 (in the usual LJ units). Because the systems were in stationary-nonequilibrium states with no fluid flow, both MD simulation and the HS solution gave flat profiles for the normal pressure in all temperature-gradient cases. However, the other quantities showed differences between the two methods. The MD-derived density was found to oscillate over the length of ca. 8 LJ particle diameters from the boundary plane in the system with the infinite temperature gradient, while the HS-derived density showed simply a stepwise profile. The MD simulation also showed another anomaly near the boundary in potential energy. We have found systems in which the HS treatment works well and those where the HS approach breaks down, and therefore established the minimum length scale for the HS treatment to be valid. We also compare the kinetic temperature and the configurational temperature in these systems, and show that these can differ in the transition zone between the two temperatures.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Gas-filled capillaries for plasma-based accelerators
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.
2017-07-01
Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
Flux tubes and coherence length in the SU(3) vacuum
NASA Astrophysics Data System (ADS)
Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A.
An estimate of the London penetration and coherence lengths in the vacuum of the SU(3) pure gauge theory is given downstream an analysis of the transverse profile of the chromoelectric flux tubes. Within ordinary superconductivity, a simple variational model for the magnitude of the normalized order parameter of an isolated vortex produces an analytic expression for magnetic field and supercurrent density. In the picture of SU(3) vacuum as dual superconductor, this expression provides us with the function that fits the chromoelectric field data. The smearing procedure is used in order to reduce noise.
Coupling of laser energy into plasma channels
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.
2007-04-01
Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length, allowing for efficient use of channels with long ramps.
NASA Astrophysics Data System (ADS)
Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.
2018-01-01
Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.
A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field
NASA Astrophysics Data System (ADS)
Patel, A. D.; Sharma, M.; Ramasubramanian, N.; Ganesh, R.; Chattopadhyay, P. K.
2018-04-01
A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10-5 -1 × 10-3 mbar, achieving plasma densities ranging from 109 to 1011 cm-3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δIisat/Iisat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.
Efficient pre-ionization by direct X-B mode conversion in VEST
NASA Astrophysics Data System (ADS)
Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.
2017-01-01
Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.
An EQT-cDFT approach to determine thermodynamic properties of confined fluids.
Mashayak, S Y; Motevaselian, M H; Aluru, N R
2015-06-28
We present a continuum-based approach to predict the structure and thermodynamic properties of confined fluids at multiple length-scales, ranging from a few angstroms to macro-meters. The continuum approach is based on the empirical potential-based quasi-continuum theory (EQT) and classical density functional theory (cDFT). EQT is a simple and fast approach to predict inhomogeneous density and potential profiles of confined fluids. We use EQT potentials to construct a grand potential functional for cDFT. The EQT-cDFT-based grand potential can be used to predict various thermodynamic properties of confined fluids. In this work, we demonstrate the EQT-cDFT approach by simulating Lennard-Jones fluids, namely, methane and argon, confined inside slit-like channels of graphene. We show that the EQT-cDFT can accurately predict the structure and thermodynamic properties, such as density profiles, adsorption, local pressure tensor, surface tension, and solvation force, of confined fluids as compared to the molecular dynamics simulation results.
3D free-air gravity anomaly modeling for the Southeast Indian Ridge
NASA Astrophysics Data System (ADS)
Girolami, Chiara; Heyde, Ingo; Rinaldo Barchi, Massimiliano; Pauselli, Cristina
2016-04-01
In this study we analyzed the free-air gravity anomalies measured on the northwestern part of the Southeast Indian Ridge (hereafter SEIR) during the BGR cruise INDEX2012 with RV FUGRO GAUSS. The survey area covered the ridge from the Rodriguez Triple Junction along about 500 km towards the SSE direction. Gravity and magnetic data were measured along 65 profiles with a mean length of 60 km running approximately perpendicular to the ridge axis. The final gravity data were evaluated every 20 seconds along each profile. This results in a sampling interval of about 100 m. The mean spacing of the profiles is about 7 km. Together with the geophysical data also the bathymetry was measured along all profiles with a Kongsberg Simrad EM122 multibeam echosounder system. Previous studies reveal that the part of the ridge covered by the high resolution profiles is characterized by young geologic events (the oldest one dates back to 1 Ma) and that the SEIR is an intermediate spreading ridge. We extended the length of each profile to the area outside the ridge, integrating INDEX2012 high resolution gravity and bathymetric data with low resolution data derived from satellite radar altimeter measurements. The 3D forward gravity modeling made it possible to reconstruct a rough crustal density model for an extended area (about 250000 km2) of the SEIR. We analyzed the gravity signal along those 2D sections which cross particular geological features (uplifted areas, accommodation zones, hydrothermal fields and areas with hints for extensional processes e.g. OCCs) in order to establish a correlation between the gravity anomaly signal and the surface geology. We started with a simple "layer-cake" geologic model consisting of four density bodies which represent the sea, upper oceanic crust, lower oceanic crust and the upper mantle. Considering that in the study area the oceanic crust is young, we did not include the sediment layer. We assumed the density values of these bodies considering the relation between the density and the seismic P-wave velocity VP. We choose the velocity data from the scientific literature. We found that the "layer-cake" model does not explain the measured anomalies satisfyingly and lateral density changes have to be considered for the area beneath the ridge axis. Accordingly we reduced the density values of the lower crust and the upper mantle beneath the axial ridge introducing in the model two additional bodies called partial melted crust and anomalous mantle. Finally we present isobaths maps of the anomalous mantle which highlight the lateral heterogeneity of the oceanic crust beneath the ridge axis. In particular there are areas characterized by crustal thickening related to magmatic accretion and areas of crustal thinning related to depleted accretion of the mantle which can lead to the exposure of OCCs.
Microwave transmission efficiency and simulations of electron plasma in ELTRAP device
NASA Astrophysics Data System (ADS)
Ikram, M.; Mushtaq, A.; Ali, S.
2017-11-01
A Thomson backscattering experiment has been performed in a Penning-Malmberg device ELTRAP. To estimate the minimum sensitivity of diagnostics, we have computed the signal to noise ratio and found that the present bunch has a number density of 4.3 × 108 cm-3, which is three orders of magnitude less than the desired density of 1011 cm-3. To increase the signal level from the RF studies to the GHz range, the transmission efficiency from the rectangular waveguide orthogonally coupled to a prototype circular waveguide was experimentally analyzed on a test-bench. It is observed that the lengths of waveguides play an important role in the transmission efficiency and return loss. When the length of the optimum rectangular waveguide (>2 λg = 31 cm) is reduced to 7 cm, due to geometrical constraints of the ELTRAP device, consequently, the transmission efficiency is also reduced and shifts away from the maximum 3 GHz operating frequency. The useful frequency band is then reduced with the increasing length of the prototype circular waveguide (102 cm). Using the electromagnetic Particle-In-Cell simulations involving the electron cyclotron resonance heating (ECRH), we have utilized a magnetic field of 0.1 T resonating with 2.8 GHz RF drive during each time step (1 ps) having the power level of 0.04 V to the middle and to the end of the trap. A more efficient increase in the radial and azimuthal temperature profiles is observed as compared to the axial temperature profile. The reason is the use of ECRH to heat electrons in cyclotron motion, which is completely kinetic and magnetron motion which is almost entirely potential based. The axial motion interchanges in between the kinetic and potential with a slight enhancement in axial motion to maintain the total canonical angular momentum conserved. The temperature profile of the confined electron plasma increases with the variation of densities from 5 × 107 m-3 to 1012 m-3. The major heating effect occurs when the RF power is injected from the position close to one end with respect to the middle position of the trap.
Measurement of Initial Conditions at Nozzle Exit of High Speed Jets
NASA Technical Reports Server (NTRS)
Panda, J.; Zaman, K. B. M. Q.; Seasholtz, R. G.
2004-01-01
The time averaged and unsteady density fields close to the nozzle exit (0.1 less than or = x/D less than or = 2, x: downstream distance, D: jet diameter) of unheated free jets at Mach numbers of 0.95, 1.4, and 1.8 were measured using a molecular Rayleigh scattering based technique. The initial thickness of shear layer and its linear growth rate were determined from time-averaged density survey and a modeling process, which utilized the Crocco-Busemann equation to relate density profiles to velocity profiles. The model also corrected for the smearing effect caused by a relatively long probe length in the measured density data. The calculated shear layer thickness was further verified from a limited hot-wire measurement. Density fluctuations spectra, measured using a two-Photomultiplier-tube technique, were used to determine evolution of turbulent fluctuations in various Strouhal frequency bands. For this purpose spectra were obtained from a large number of points inside the flow; and at every axial station spectral data from all radial positions were integrated. The radially-integrated fluctuation data show an exponential growth with downstream distance and an eventual saturation in all Strouhal frequency bands. The initial level of density fluctuations was calculated by extrapolation to nozzle exit.
Parsakho, Aidin; Hosseini, Seyed Ataollah; Jalilvand, Hamid; Lotfalian, Majid
2008-06-01
Effects of moisture, porosity and soil bulk density properties, grubbing time and terrain side slopes on pc 220 komatsu hydraulic excavator productivity were investigated in Miana forests road construction project which located in the northern forest of Iran. Soil moisture and porosity determined by samples were taken from undisturbed soil. The elements of daily works were measured with a digital stop watch and video camera in 14 observations (days). The road length and cross section profiles after each 20 m were selected to estimate earthworks volume. Results showed that the mean production rates for the pc 220 komatsu excavators were 60.13 m3 h(-1) and earthwork 14.76 m h(-1) when the mean depth of excavation or cutting was 4.27 m3 m(-1), respectively. There was no significant effects (p = 0.5288) from the slope classes' treatments on productivity, whereas grubbing time, soil moisture, bulk density and porosity had significantly affected on excavator earthworks volume (p < 0.0001). Clear difference was showed between the earthwork length by slope classes (p = 0.0060). Grubbing time (p = 0.2180), soil moisture (p = 0.1622), bulk density (p = 0.2490) and porosity (p = 0.2159) had no significant effect on the excavator earthworks length.
On the emergence of macroscopic transport barriers from staircase structures
NASA Astrophysics Data System (ADS)
Ashourvan, Arash; Diamond, P. H.
2017-01-01
This paper presents a theory for the formation and evolution of coupled density staircases and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity, and fluctuation potential enstrophy are the fields evolved in this system. Formation of staircase structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions, and weakening them in others. When the PV gradients steepen, the density staircase structure develops into a lattice of mesoscale "jumps," and "steps," which are, respectively, the regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. The positive feedback process, which drives the staircase formation occurs via a Rhines scale dependent mixing length. We present extensive studies of bifurcation physics of the global state, including results on the global flux-gradient relations (flux landscapes) predicted by the model. Furthermore, we demonstrate that, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. This suggests that the profile self-organization is a global process, though one which can be described by a local, but nonlinear model. This model is the first to demonstrate how the mesoscale condensation of staircases leads to global states of enhanced confinement.
Fluid simulations of nonlocal dissipative drift-wave turbulence
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Cohen, R. H.; Crotinger, J. A.; Shestakov, A. I.
1995-03-01
A two-dimensional [2d(x,y)] fluid code has been developed to explore nonlocal dissipative drift-wave turbulence and anomalous transport. In order to obtain steady-state turbulence, the y-averaged fluctuating density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...
2018-04-13
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less
NASA Astrophysics Data System (ADS)
Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim
2018-04-01
The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.
CFD analyses of coolant channel flowfields
NASA Technical Reports Server (NTRS)
Yagley, J. A.; Feng, J.; Merkle, Charles L.
1993-01-01
The flowfield characteristics in a rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so fully developed conditions are reached. The supercritical hydrogen coolant introduces strong property variations that have a major influence on the developing flow and the resulting heat transfer. Comparisons of constant and variable property solutions show substantial differences. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel.
A new multi-line cusp magnetic field plasma device (MPD) with variable magnetic field.
Patel, A D; Sharma, M; Ramasubramanian, N; Ganesh, R; Chattopadhyay, P K
2018-04-01
A new multi-line cusp magnetic field plasma device consisting of electromagnets with core material has been constructed with a capability to experimentally control the relative volume fractions of magnetized to unmagnetized plasma volume as well as accurate control on the gradient length scales of mean density and temperature profiles. Argon plasma has been produced using a hot tungsten cathode over a wide range of pressures 5 × 10 -5 -1 × 10 -3 mbar, achieving plasma densities ranging from 10 9 to 10 11 cm -3 and the electron temperature in the range 1-8 eV. The radial profiles of plasma parameters measured along the non-cusp region (in between two consecutive magnets) show a finite region with uniform and quiescent plasma, where the magnetic field is very low such that the ions are unmagnetized. Beyond that region, both plasma species are magnetized and the profiles show gradients both in temperature and density. The electrostatic fluctuation measured using a Langmuir probe radially along the non-cusp region shows less than 1% (δI isat /I isat < 1%). The plasma thus produced will be used to study new and hitherto unexplored physics parameter space relevant to both laboratory multi-scale plasmas and astrophysical plasmas.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, Ron; Cotton, Matthew; Harris, Ernest; Eakins, Daniel; Chapman, David
2013-06-01
Ramp loading using graded-density-impactors as flyers in plate impact experiments can yield useful information about the dynamic properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to fabricate a graded-density flyer, termed the ``bed of nails'' (BON). A 2 mm thick x 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. Two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at The Institute of Shock Physics, Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in free surface velocity over a period of about 2.5 microseconds. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum.
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Chrystal, C.; Stagner, L.; Burrell, K.; Groebner, R. J.; Kaplan, D. H.; Nazikian, R.
2016-10-01
The recently commissioned edge deuterium charge exchange recombination (CER) spectroscopy diagnostic on DIII-D is providing direct measurements of the deuterium rotation, temperature, and density in H-mode pedestals. The deuterium temperature and temperature scale length can be 50 % lower than the carbon measurement in the gradient region of the pedestal, indicating that the ion pedestal pressure can deviate significantly from that inferred from carbon CER. In addition, deuterium exhibits a larger toroidal rotation in the co-Ip direction near the separatrix compared with the carbon. These differences are qualitatively consistent with theory-based models that identify thermal ion orbit loss across the separatrix as a source of intrinsic angular momentum. The first direct measurements of the deuterium density pedestal profile show an inward shift of the impurity pedestal compared with the main ions, validating neoclassical predictions from the XGC0 code. Work supported by the U.S. DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.
General kinetic solution for the Biermann battery with an associated pressure anisotropy generation
NASA Astrophysics Data System (ADS)
Schoeffler, K. M.; Silva, L. O.
2018-01-01
Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.
No association of apolipoprotein B gene polymorphism and blood lipids in obese Egyptian subjects.
Bogari, Neda M; Abdel-Latif, Azza M; Hassan, Maha A; Ramadan, Abeer; Fawzy, Ahmed
2015-03-18
Several environmental and genetic factors are associated with high levels of lipids in obese patients. Apolipoprotein B (ApoB) is the major protein component of low-density lipoproteins (LDL), very-low density lipoproteins (VLDL) and chylomicrons and plays a central role in lipid metabolism. Several apoB restriction fragment length polymorphisms (XbaI, EcoRI, MspI) have been reported to be associated with variation in lipid levels and obesity. To date, no data are available on the relationship between XbaI polymorphism and lipid levels in Egyptian populations. Following clinical profiling, 178 obese (body mass index [BMI] >25 kg/m(2)) and 178 age-matched non-obese (BMI ≤ 25 kg/m(2)) subjects were included in this case-control study. All samples were analysed for total cholesterol, triglycerides and HDL-cholesterol. Genetic analysis of apoB XbaI (X) was performed using Polymerase Chain Reaction-Restriction Fragment Length polymorphism (PCR-RFLP). The aim of this study was to assess the association of apoB XbaI gene polymorphism (X) and lipid profiles in obese and non-obese Egyptian populations. Obese subjects demonstrated significantly higher values of waist-to-hip ratio, blood pressure, and total lipid. However, in our sample we did not find significant differences in apoB XbaI gene polymorphism (X) genotype or allele frequencies. Moreover, none of the studied lipid parameters showed any association with the gene polymorphism. This study reveals no significant association of apoB XbaI gene polymorphism (X) with obesity or lipid profiles in an Egyptian population.
The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve
NASA Astrophysics Data System (ADS)
McGaugh, Stacy S.
2016-01-01
The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.
Wave Propagation inside Random Media
NASA Astrophysics Data System (ADS)
Cheng, Xiaojun
This thesis presents results of studies of wave scattering within and transmission through random and periodic systems. The main focus is on energy profiles inside quasi-1D and 1D random media. The connection between transport and the states of the medium is manifested in the equivalence of the dimensionless conductance, g, and the Thouless number which is the ratio of the average linewidth and spacing of energy levels. This equivalence and theories regarding the energy profiles inside random media are based on the assumption that LDOS is uniform throughout the samples. We have conducted microwave measurements of the longitudinal energy profiles within disordered samples contained in a copper tube supporting multiple waveguide channels with an antenna moving along a slit on the tube. These measurements allow us to determine the local density of states (LDOS) at a location which is the sum of energy from all incoming channels on both sides. For diffusive samples, the LDOS is uniform and the energy profile decays linearly as expected. However, for localized samples, we find that the LDOS drops sharply towards the middle of the sample and the energy profile does not follow the result of the local diffusion theory where the LDOS is assumed to be uniform. We analyze the field spectra into quasi-normal modes and found that the mode linewidth and the number of modes saturates as the sample length increases. Thus the Thouless number saturates while the dimensionless conductance g continues to fall with increasing length, indicating that the modes are localized near the boundaries. This is in contrast to the general believing that g and Thouless number follow the same scaling behavior. Previous measurements show that single parameter scaling (SPS) still holds in the same sample where the LDOS is suppressed te{shi2014microwave}. We explore the extension of SPS to the interior of the sample by analyzing statistics of the logrithm of the energy density ln W(x) and found that =-x/l where l is the transport mean free path. The result does not depend on the sample length, which is counterintuitive yet remarkably simple. More supprisingly, the linear fall-off of energy profile holds for totally disordered random 1D layered samples in simulations where the LDOS is uniform as well as for single mode random waveguide experiments and 1D nearly periodic samples where the LDOS is suppressed in the middle of the sample. The generalization of the transmission matrix to the interior of quasi-1D random samples, which is defined as the field matrix, and its eigenvalues statistics are also discussed. The maximum energy deposition at a location is not the intensity of the first transmission eigenchannel but the eigenvalue of the first energy density eigenchannels at that cross section, which can be much greater than the average value. The contrast, which is the ratio of the intensity at the focused point to the background intensity, in optimal focusing is determined by the participation number of the energy density eigenvalues and its inverse gives the variance of the energy density at that cross section in a single configuration. We have also studied topological states in photonic structures. We have demonstrated robust propagation of electromagnetic waves along reconfigurable pathways within a topological photonic metacrystal. Since the wave is confined within the domain wall, which is the boundary between two distinct topological insulating systems, we can freely steer the wave by reconstructing the photonic structure. Other topics, such as speckle pattern evolutions and the effects of boundary conditions on the statistics of transmission eigenvalues and energy profiles are also discussed.
NASA Astrophysics Data System (ADS)
Simón-Moral, Andres; Santiago, Jose Luis; Krayenhoff, E. Scott; Martilli, Alberto
2014-06-01
A Reynolds-averaged Navier-Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, M.; Fantoni, A.; Martins, R.
1994-12-31
Using the Flying Spot Technique (FST) the authors have studied minority carrier transport parallel and perpendicular to the surface of amorphous silicon films (a-Si:H). To reduce slow transients due to charge redistribution in low resistivity regions during the measurement they have applied a strong homogeneously absorbed bias light. The defect density was estimated from Constant Photocurrent Method (CPM) measurements. The steady-state photocarrier grating technique (SSPG) is a 1-dimensional approach. However, the modulation depth of the carrier profile is also dependent on film surface properties, like surface recombination velocity. Both methods yield comparable diffusion lengths when applied to a-Si:H.
High-power terahertz quantum cascade lasers with ∼0.23 W in continuous wave mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xuemin; Shen, Changle; Jiang, Tao
2016-07-15
Terahertz quantum cascade lasers with a record output power up to ∼0.23 W in continuous wave mode were obtained. We show that the optimal 2.9-mm-long device operating at 3.11 THz has a low threshold current density of 270 A/cm{sup 2} at ∼15 K. The maximum operating temperature arrived at ∼65 K in continuous wave mode and the internal quantum efficiencies decreased from 0.53 to 0.19 for the devices with different cavity lengths. By using one convex lens with the effective focal length of 13 mm, the beam profile was collimated to be a quasi Gaussian distribution.
On feathers, bifurcations and shells: the dynamics of tidal streams across the mass scale
NASA Astrophysics Data System (ADS)
Amorisco, N. C.
2015-06-01
I present an organic description of the spectrum of regimes of collisionless tidal streams and define the orderings between the relevant physical quantities that shape their morphology. Three fundamental dichotomies are identified and described in the form of dimensionless inequalities. These govern (i) the speed of the stream's growth, (ii) the internal coherence of the stream and (iii) its thickness or opening angle, within and outside the orbital plane. The mechanisms through which such main qualitative properties are regulated and the relevant limiting cases are analysed. For example, the slope of the host's density profile strongly influences the speed of the stream's growth, in both length and width, as steeper density profiles enhance differential streaming. Internal coherence is the natural requirement for the appearance of substructure and overdensities in tidal debris, and I concentrate on the characteristic `feathering' typical of streams of star clusters. Overdensities and substructures are associated with minima in the relative streaming velocity of the stream members. For streams with high circularity, these are caused by the epicyclic oscillations of stars; however, for highly non-circular progenitor's orbits, internal substructure is caused by the oscillating differences in energy and actions with which material is shed at different orbital phases of the progenitor. This modulation results in different streaming speeds along the tidal arm: the streakline of material shed between two successive apocentric passages is folded along its length, pulled at its centre by the faster differential streaming of particles released near pericentre, which are therefore more widely scattered. When the stream is coherent enough, the same mechanism is potentially capable of generating a bimodal profile in the density distributions of the longer wraps of more massive progenitors, which I dub `bifurcations'. The conditions that allow streams to be internally coherent are explored and I comment on the cases of Palomar 5, Willman 1, the Anticenter and Sagittarius' streams. Analytical methods are accompanied by numerical experiments, performed using a purposely built generative model, also presented here.
Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod
NASA Astrophysics Data System (ADS)
Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin
2016-10-01
It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.
Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Sodemann, Inti; Sheng, D. N.; Fu, Liang
2017-05-01
We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n =1 ) as a function of band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods. We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger liquids residing at the stripe edges.
Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity.
Kreuzer, Martin; Kaltofen, Thomas; Steitz, Roland; Zehnder, Beat H; Dahint, Reiner
2011-02-01
We describe an apparatus for measuring scattering length density and structure of molecular layers at planar solid-liquid interfaces under high hydrostatic pressure conditions. The device is designed for in situ characterizations utilizing neutron reflectometry in the pressure range 0.1-100 MPa at temperatures between 5 and 60 °C. The pressure cell is constructed such that stratified molecular layers on crystalline substrates of silicon, quartz, or sapphire with a surface area of 28 cm(2) can be investigated against noncorrosive liquid phases. The large substrate surface area enables reflectivity to be measured down to 10(-5) (without background correction) and thus facilitates determination of the scattering length density profile across the interface as a function of applied load. Our current interest is on the stability of oligolamellar lipid coatings on silicon surfaces against aqueous phases as a function of applied hydrostatic pressure and temperature but the device can also be employed to probe the structure of any other solid-liquid interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.
2015-11-15
A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less
Profile modification computations for LHCD experiments on PBX-M using the TSC/LSC model
NASA Astrophysics Data System (ADS)
Kaita, R.; Ignat, D. W.; Jardin, S. C.; Okabayashi, M.; Sun, Y. C.
1996-02-01
The TSC-LSC computational model of the dynamics of lower hybrid current drive has been exercised extensively in comparison with data from a Princeton Beta Experiment-Modification (PBX-M) discharge where the measured q(0) attained values slightly above unity. Several significant, but plausible, assumptions had to be introduced to keep the computation from behaving pathologically over time, producing singular profiles of plasma current density and q. Addition of a heuristic current diffusion estimate, or more exactly, a smoothing of the rf-driven current with a diffusion-like equation, greatly improved the behavior of the computation, and brought theory and measurement into reasonable agreement. The model was then extended to longer pulse lengths and higher powers to investigate performance to be expected in future PBX-M current profile modification experiments.
Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons
NASA Astrophysics Data System (ADS)
Woessner, Achim; Gao, Yuanda; Torre, Iacopo; Lundeberg, Mark B.; Tan, Cheng; Watanabe, Kenji; Taniguchi, Takashi; Hillenbrand, Rainer; Hone, James; Polini, Marco; Koppens, Frank H. L.
2017-07-01
Modulating the amplitude and phase of light is at the heart of many applications such as wavefront shaping, transformation optics, phased arrays, modulators and sensors. Performing this task with high efficiency and small footprint is a formidable challenge. Metasurfaces and plasmonics are promising, but metals exhibit weak electro-optic effects. Two-dimensional materials, such as graphene, have shown great performance as modulators with small drive voltages. Here, we show a graphene plasmonic phase modulator that is capable of tuning the phase between 0 and 2π in situ. The device length of 350 nm is more than 30 times shorter than the 10.6 μm free-space wavelength. The modulation is achieved by spatially controlling the plasmon phase velocity in a device where the spatial carrier density profile is tunable. We provide a scattering theory for plasmons propagating through spatial density profiles. This work constitutes a first step towards two-dimensional transformation optics for ultracompact modulators and biosensing.
Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1984-01-01
The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv
2014-07-15
The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combinedmore » ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.« less
Modification of turbulence and turbulent transport associated with a confinement transition in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy
2009-11-01
Azimuthal flow is driven in the edge of the Large Plasma Device (LAPD) through biasing a section of the vacuum vessel relative to the plasma source cathode. As the applied bias exceeds a threshold, a transition in radial particle confinement is observed, evidenced by a dramatic steepening in the density profile, similar to the L- to H-mode transition in toroidal confinement devices. The threshold behavior and dynamic behavior of radial transport is related to flow penetration and the degree of spatial overlap between the flow shear and density gradient profiles. An investigation of the changes in turbulence and turbulent particle transport associated with the confinement transition is presented. Two-dimensional cross-correlation measurements show that the spatial coherence of edge turbulence in LAPD changes significantly with biasing. The azimuthal correlation in the turbulence increases dramatically, while the radial correlation length is little altered. Turbulent amplitude is reduced at the transition, particularly in electric field fluctuations, but the dominant change observed is in the cross-phase between density and electric field fluctuations. The changes in cross-phase lead to a suppression and then apparent reversal of turbulent particle flux as the threshold is exceeded.
NASA Astrophysics Data System (ADS)
Shin, Junghun; Kim, Hyung Taek; Pathak, V. B.; Hojbota, Calin; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Yoon, Jin Woo; Jeon, Cheonha; Nakajima, Kazuhisa; Sylla, F.; Lifschitz, A.; Guillaume, E.; Thaury, C.; Malka, V.; Nam, Chang Hee
2018-06-01
Generation of high-quality electron beams from laser wakefield acceleration requires optimization of initial experimental parameters. We present here the dependence of accelerated electron beams on the temporal profile of a driving PW laser, the density, and length of an interacting medium. We have optimized the initial parameters to obtain 2.8 GeV quasi-monoenergetic electrons which can be applied further to the development of compact electron accelerators and radiations sources.
Guiding of High Laser Intensities in Long Plasma Channels
NASA Astrophysics Data System (ADS)
Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.
Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.
NASA Astrophysics Data System (ADS)
Akawwi, Emad; Alzoubi, Abdallah; Ben Abraham, Zvi; Rahamn Abo Alades, Abdel; Alrzouq, Rami; Tiber, Gidon; Neimi, Tina
2010-05-01
The study area is the Aqaba region (Southern wadi Araba basin). Aqaba region area located at 87900 and 89000 North and 147000 and 158000 East (Palestine grid). Tectonically Aqaba area lies within the tectonic plate boundary along the Arabian and African plate slide. This plate boundary comprises numerous and shot fault segments. The main aims of this study are to assessing the groundwater potential and its quality, to explain the subsurface geological conditions and support the ongoing geological, environmental and hydrogeological studies. Therefore, it was anticipated that the results of the geophysical surveying will give many different important parameters as The subsurface geological features, thicknesses of the different lithological units, depth to the bed rocks and depth to the water table. The groundwater can apply an important role in ensuring sustainable water supply in the area. This study was carried out in order to assess groundwater condition, geological layers thicknesses and structural features in Aqaba area by using vertical electrical sounding (VES) surveys and refraction seismic techniques. There are three geoelectrical cross section were carried out at different sites by using the Schlumberger array. The first cross section indicated three layers of different resistivity. The second cross section indicated four layers of different resistivity. The third geoelectrical cross sections indicated three layers. The refraction seismic method also has been conducted in the same area as VES. About 12 refraction seismic profiles have been carried out in the study area. The length of the first profile was 745 m at the direction N-S. This profile indicated two different layers with a different velocities. The length of the second profile was 1320 m with E-W direction. This profile indicated two different layers. The length of the third profile was about 515 m with a direction SE-NW. It recognized two different layers with a different velocities. The fourth profile was N-S direction and the length of this profile was 950 m. Two different layers were recognized along this profile. The fifth profile was located N-S with length about 340 m. Two layers were recognized from this profile. The sixth profile was located N-S direction and the length about 575 m. Three layers were recognized from this profile. The direction of the seventh profile was N-S with a length of about 235 m. two different layers were recognized the top layer was unconsolidated alluvium. The profile number 8 was located N-S with length about 232 m. two layers were conducted from this profile. The direction of ninth profile was NW-SE with length about 565 m. two layers were conducted along this profile. The length of the tenth profile was 235 m and the direction was N-S. Two layers with a different velocities were detected along this profile. Profile number eleven was located SW-NE with length about 475 m. two layers were recognized from this profile. The length of the last profile was 375 m with direction SE-NW. Two layers were conducted from this profile. It was found that the shallow aquifers exist at a depths ranging from 4 to 19 m and the relatively deep aquifers from 24 to 60 m below the ground surface. Keywords: Vertical electrical sounding, Aqaba, Resistivity, Groundwater, Layer depth, Geoelectrical.
NASA Astrophysics Data System (ADS)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.
2018-01-01
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...
2018-01-22
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.
The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less
Unit and internal chain profiles of maca amylopectin.
Zhang, Ling; Li, Guantian; Yao, Weirong; Zhu, Fan
2018-03-01
Unit chain length distributions of amylopectin and its φ, β-limit dextrins, which reflect amylopectin internal structure from three maca starches, were determined by high-performance anion-exchange chromatography with pulsed amperometric detection after debranching, and the samples were compared with maize starch. The amylopectins exhibited average chain lengths ranging from 16.72 to 17.16, with ranges of total internal chain length, external chain length, and internal chain length of the maca amylopectins at 12.49 to 13.68, 11.24 to 11.89, and 4.27 to 4.48. The average chain length, external chain length, internal chain length, and total internal chain length were comparable in three maca amylopectins. Amylopectins of the three maca genotypes studied here presented no significant differences in their unit chain length profiles, but did show significant differences in their internal chain profiles. Additional genetic variations between different maca genotypes need to be studied to provide unit- and internal chain profiles of maca amylopectin. Copyright © 2017. Published by Elsevier Ltd.
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain.
Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming
2015-01-01
The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An optimal combination of deeper deployment of roots and resource (water and N) availability was realized where the soil was prone to leaching. The correlation between the depletion of resources and distribution of patchy roots endorsed the SS tillage practice. It resulted in significantly greater post-silking biomass and grain yield compared to the RT and NT treatments, for summer maize on the Huang-Huai-Hai plain. PMID:26098548
Stochastic analysis of particle movement over a dune bed
Lee, Baum K.; Jobson, Harvey E.
1977-01-01
Stochastic models are available that can be used to predict the transport and dispersion of bed-material sediment particles in an alluvial channel. These models are based on the proposition that the movement of a single bed-material sediment particle consists of a series of steps of random length separated by rest periods of random duration and, therefore, application of the models requires a knowledge of the probability distributions of the step lengths, the rest periods, the elevation of particle deposition, and the elevation of particle erosion. The procedure was tested by determining distributions from bed profiles formed in a large laboratory flume with a coarse sand as the bed material. The elevation of particle deposition and the elevation of particle erosion can be considered to be identically distributed, and their distribution can be described by either a ' truncated Gaussian ' or a ' triangular ' density function. The conditional probability distribution of the rest period given the elevation of particle deposition closely followed the two-parameter gamma distribution. The conditional probability distribution of the step length given the elevation of particle erosion and the elevation of particle deposition also closely followed the two-parameter gamma density function. For a given flow, the scale and shape parameters describing the gamma probability distributions can be expressed as functions of bed-elevation. (Woodard-USGS)
2015-01-01
The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na+, K+) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD’s profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD’s atomic-level 3-D structure. PMID:24697545
Step Density Profiles in Localized Chains
NASA Astrophysics Data System (ADS)
De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius
2017-06-01
We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than √{L}, and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Martínez-Ruiz, Francisco José; Blas, Felipe J; Moreno-Ventas Bravo, A Ignacio; Míguez, José Manuel; MacDowell, Luis G
2017-05-17
The statistical associating fluid theory for attractive potentials of variable range (SAFT-VR) density functional theory (DFT) developed by [Gloor et al., J. Chem. Phys., 2004, 121, 12740-12759] is used to predict the interfacial behaviour of molecules modelled as fully-flexible square-well chains formed from tangentially-bonded monomers of diameter σ and potential range λ = 1.5σ. Four different model systems, comprising 4, 8, 12, and 16 monomers per molecule, are considered. In addition to that, we also compute a number of interfacial properties of molecular chains from direct simulation of the vapour-liquid interface. The simulations are performed in the canonical ensemble, and the vapour-liquid interfacial tension is evaluated using the wandering interface (WIM) method, a technique based on the thermodynamic definition of surface tension. Apart from surface tension, we also obtain density profiles, coexistence densities, vapour pressures, and critical temperature and density, paying particular attention to the effect of the chain length on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapour-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The interfacial thickness and surface tension appear to exhibit an asymptotic limiting behaviour for long chains. A similar behaviour is also observed for the coexistence densities and critical properties. Agreement between theory and simulation results indicates that SAFT-VR DFT is only able to predict qualitatively the interfacial properties of the model. Our results are also compared with simulation data taken from the literature, including the vapour-liquid coexistence densities, vapour pressures, and surface tension.
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Frequency Upconversion and Parametric Surface Instabilities in Microwave Plasma Interactions.
NASA Astrophysics Data System (ADS)
Rappaport, Harold Lee
In this thesis the interaction of radiation with plasmas whose density profiles are nearly step functions of space and/or time are studied. The wavelengths of radiation discussed are large compared with plasma density gradient scale lengths. The frequency spectra are evaluated and the energy balance investigated for the transmitted and reflected transient electromagnetic waves that are generated when a monochromatic source drives a finite width plasma in which a temporal step increase in density occurs. Transmission resonances associated with the abrupt boundaries manifest themselves as previously unreported multiple frequency peaks in the transmitted electromagnetic spectrum. A tunneling effect is described in which a burst of energy is transmitted from the plasma immediately following a temporal density transition. Stability of an abruptly bounded plasma, one for which the incident radiation wavelength is large compared with the plasma density gradient scale length, is investigated for both s and p polarized radiation types. For s-polarized radiation a new formalism is introduced in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. Results for a particular regime and a summary of relevant literature is presented. We conclude that when s-polarized radiation acts alone on an abrupt diffusely bounded underdense plasma stimulated excitation of electron surface modes is suppressed. For p-polarized radiation the recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) ^dag is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case, spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields are reported. The regime is of interest because we have found that when the perturbation wavenumber parallel to the boundary is less than the pump frequency divided by twice the speed of light, energy radiates from the boundary region and these emissions can serve as an experimental signature for this mode. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system. ftn^ dagYu. M. Aliev and G. Brodin, Phys. Rev. A 42, 2374 (1990).
Somatic Profile of the Elite Boulderers in Poland.
Ozimek, Mariusz; Krawczyk, Marcin; Zadarko, Emilian; Barabasz, Zbigniew; Ambroży, Tadeusz; Stanula, Arkadiusz; Mucha, Dawid K; Jurczak, Adam; Mucha, Dariusz
2017-04-01
Ozimek, M, Krawczyk, M, Zadarko, E, Barabasz, Z, Ambroży, T, Stanula, A, Mucha, DK, Jurczak, A, and Mucha, D. Somatic profile of the elite boulderers in Poland. J Strength Cond Res 31(4): 963-970, 2017-The study was designed to determine the values of selected somatic characteristics, body proportions, and the somatotype of elite bouldering climbers in Poland and to establish the relationships between the values of the somatic characteristics and climber's performance in bouldering. The study was conducted in a group of elite sport climbers (n = 10) who were ranked by the Polish Mountaineering Association in 2011, 2012, and 2013. The anthropometric measurements were made according to the relevant rules and standards. The results were used to calculate the values of somatic variables and body proportion indices for the climbers and to establish their somatotype. The results were compared with the data on untrained students (n = 165). The boulderers were found to differ significantly from the controls regarding body height (p < 0.01), body mass (p ≤ 0.05), body density (p < 0.01), fat mass percentage (FM%) (p < 0.01), fat mass (FMkg) (p < 0.01), lean body mass (p ≤ 0.05), arm span (p ≤ 0.05), and leg length (p < 0.01). Body proportions in the groups significantly differed in the arm length index (p < 0.01), arm-to-leg length ratio (p < 0.01), and in the indices of the forearm (p < 0.01), thigh (p < 0.01), and lower leg (p ≤ 0.05) muscles. With regard to the somatotypes of the analyzed groups, the biggest differences were observed for the levels of mesomorphy (NS) and endomorphy, the latter being statistically significant (p < 0.01). The strongest and significant correlations between the competitive level of the climbers and the values of their somatic characteristics were established for FM% (r = -0.81), fat mass (in kilograms) (r = -0.82), body density (r = 0.81), endomorphy (r = -0.74), arm length (r = 0.77), and the arm length index (r = 0.80). The results of linear regression showed that the competitive level of a bouldering climber was significantly explained (p < 0.01) by fat mass (in kilograms) and the value of the arm length index. A high level of performance in bouldering is related to small stature (an ecto-mesomorph somatotype) and a low body fat percentage (low endomorphy). Regarding body proportions, greater than average arm length to body height ratio and well-developed musculature of the limbs are required for a boulderer to perform on a competitive level. High arm length index and low body fat percentage represent the strongest determinants of performance in bouldering. It can be assumed that arm length index has a high diagnostic value for recruitment and selection of climbers.
NASA Astrophysics Data System (ADS)
Singamaneni, S. R.; Prater, J. T.; Glavic, A.; Lauter, V.; Narayan, J.
2018-05-01
This work reports polarized neutron reflectivity (PNR) measurements performed using the Magnetism Reflectometer at Oak Ridge National Laboratory on epitaxial BiFeO3(BFO)/La0.7Sr0.3MnO3(LSMO)/SrTiO3(STO)/MgO/TiN heterostructure deposited on Si (100) substrates. By measuring the angular dependence of neutrons reflected from the sample, PNR can provide insights on interface magnetic spin structure, chemical composition and magnetic depth profiles with a nanometer resolution. Our first analysis of nuclear scattering length density (NSLD) and magnetic scattering length density (MSLD) depth profiles measured at 4 K have successfully reproduced most of the expected features of this heterostructure, such as the NSLD for the Si, TiN, MgO, STO, LSMO layers and remanent magnetization (2.28μB/Mn) of bulk LSMO. However, the SLD of the BFO is decreased by about 30% from the expected value. When 5 V was applied across the BFO/LSMO interface, we found that the magnetic moment of the LSMO layer could be varied by about 15-20% at 6 K. Several mechanisms such as redistribution of oxygen vacancies, interface strain, charge screening and valence state change at the interface could be at play. Work is in progress to gain an improved in-depth understanding of these effects using MOKE and STEM-Z interface specific measurements.
A novel graded density impactor
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2014-05-01
Ramp loading using graded-density-impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacture technique, was used to manufacture a graded density flyer, termed the "bed of nails" (BON). A 2 mm thick × 100 mm diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 6 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 m/s and 1100 m/s using the 100 mm gas gun at the Institute of Shock Physics at Imperial College, London. In each experiment a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ~2.5 us, with no indication of a shock jump. The measured profiles have been analysed to generate a stress strain curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
Lattice cluster theory for dense, thin polymer films.
Freed, Karl F
2015-04-07
While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.
X-Ray Synchrotron and Neutron Reflectivity Studies of = Polymer-Modified Lipid Monolayers on Water
NASA Astrophysics Data System (ADS)
Smith, G. S.; Majewski, J.; Kuhl, T.; Israelachvili, J.; Kjaer, K.; Gerstenberg, M. C.; Als-Nielsen, J.
1997-03-01
We studied monolayers (at air-water interface) composed of mixtures of distearoyl phosphatidyl ethanolamine (DSPE) mixed with 1.3, 4.5 and 9% of the same lipid but modified by polyethylene glycol chains (PEG) covalently linked to its head group. The GID data yielded three reflections leading to a hexagonal unit cell a_H=4.7Åarea per lipid molecule = 38.3Åindependent of PEG concentration. The in-plane coherence lengths decreased from 360Åfor the pure lipid to 230Åfor 9.0% DSPE-PEG. The FWHM(q_z) of each of the Bragg rods increased with PEG-lipid concentration suggesting decreasing of the lengths of the coherently diffracting part of the hydrocarbon chains. Reflectivities show that both the density and the extension of the polymer segments increase with DSPE-PEG concentration and can be well modeled with a parabolic density profile. Our data indicates that the bulky hydrophilic polymer disrupts the lipid monolayer. This is attributed to an increase in lipid protrusions and a relaxation of the lateral force between PEG portions by staggering of the lipid headgroups.
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
NASA Astrophysics Data System (ADS)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; Keiter, P. A.; Edgell, D. H.; Froula, D. H.; Haberberger, D.; Frank, Y.; Fraenkel, M.; Raicher, E.; Shvarts, D.; Drake, R. P.
2017-03-01
Hard x-ray measurements are used to infer production of hot electrons in laser-irradiated planar foils of materials ranging from low- to high-Z. The fraction of laser energy converted to hot electrons, fhot , was reduced by a factor of 103 going from low-Z CH to high-Z Au, and hot electron temperatures were reduced from 40 to ˜20 keV. The reduction in fhot correlates with steepening electron density gradient length-scales inferred from plasma refraction measurements. Radiation hydrodynamic simulations predicted electron density profiles in reasonable agreement with those from measurements. Both multi-beam two-plasmon decay (TPD) and multi-beam stimulated Raman scattering (SRS) were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased electron plasma wave collisional and Landau damping. The results add to the evidence that SRS may play a comparable or a greater role relative to TPD in generating hot electrons in multi-beam experiments.
Plasma interface of the EC waves to the LHD peripheral region
NASA Astrophysics Data System (ADS)
Kubo, S.; Igami, H.; Tsujimura, T. I.; Shimozuma, T.; Takahashi, H.; Yoshimura, Y.; Nishiura, M.; Makino, R.; Mutoh, T.
2015-12-01
In order to realize an efficient ECRH and also to reduce stray radiation due to non-absorbed power during ECRH, it is necessary to excite a wave that is absorbed well near the electron cyclotron resonance. In the normal fusion magnetic field confinement machine and in the electron cyclotron frequency range, WKB approximation is valid almost all the way from antenna to the absorption region due to the large scale-length of the plasma density λn and the magnetic shear τs as compared with the local wavelength λ0. In these situation, it is well known that the O/X mode propagates as O/X mode if τs ≫ λ0. Even in these situation, if τs and λn are comparable and |1/λO-1/λX|τs ≪ 1, there still remains the question from where "X" - or "O" - mode become "X" - or "O" mode at the peripheral region. In order to simulate this situation, one dimensional full wave calculation code which solve electromagnetic wave equation under arbitrary magnetic field configuration and arbitrary density profile for a given polarization state are developed and incorporated in the upgraded ray tracing code LHDGauss. It is tried to find the density and shear scale lengths region where the mode mixing effect is not negligible.
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
Fein, J. R.; Holloway, J. P.; Trantham, M. R.; ...
2017-03-20
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fein, J. R.; Holloway, J. P.; Trantham, M. R.
Intense lasers interacting with under-dense plasma can drive laser-plasma instabilities (LPIs) that generate largeamplitude electron plasma waves (EPWs). Suprathermal or “hot” electrons produced in the EPWs are detrimental to inertial confinement fusion (ICF), by reducing capsule implosion efficiency through preheat, and also present an unwanted source of background on x-ray diagnostics. Mitigation of hot electrons was demonstrated in the past by altering plasma conditions near the quarter-critical density, n c/4, with the interpretation of reduced growth of the twoplasmon decay (TPD) instability. Here, we present measurements of hot electrons generated in laser-irradiated planar foils of material ranging from low- tomore » high-Z, where the fraction of laser energy converted to hot electrons, fhot was reduced by a factor of 10 3 going from CH to Au. This correlates with steepening density gradient length-scales that were also measured. Radiation hydrodynamic simulations produced electron density profiles in reasonable agreement with our measurements. According to the simulations, both multi-beam TPD and stimulated Raman scattering were predicted to be above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased EPW collisional and Landau damping.« less
Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Umetsu, Keiichi; Diemer, Benedikt
2017-02-01
The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wide range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected, high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by a Navarro-Frenk-White (NFW) or Einasto profile out to R˜ 2.5 {h}-1 {Mpc}, beyond which the profiles flatten. We constrain the NFW concentration to {c}200{{c}}=3.66+/- 0.11 at {M}200{{c}}≃ 1.0× {10}15 {h}-1 {M}⊙ , consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of {R}{sp}3{{D}}/{r}200{{m}}> 0.89 ({R}{sp}3{{D}}> 1.83 {h}-1 {Mpc}) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by {r}200{{m}}, and smeared out when scaled to higher overdensities. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical Society of Japan.
Energy boost in laser wakefield accelerators using sharp density transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Döpp, A.; Guillaume, E.; Thaury, C.
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficultmore » to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.« less
Propagation of mechanical waves through a stochastic medium with spherical symmetry
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, J. Adrián
2018-01-01
We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
NASA Astrophysics Data System (ADS)
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.
NASA Astrophysics Data System (ADS)
Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin
2017-10-01
The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.
Effect of secondary electron emission on the plasma sheath
NASA Astrophysics Data System (ADS)
Langendorf, S.; Walker, M.
2015-03-01
In this experiment, plasma sheath potential profiles are measured over boron nitride walls in argon plasma and the effect of secondary electron emission is observed. Results are compared to a kinetic model. Plasmas are generated with a number density of 3 × 1012 m-3 at a pressure of 10-4 Torr-Ar, with a 1%-16% fraction of energetic primary electrons. The sheath potential profile at the surface of each sample is measured with emissive probes. The electron number densities and temperatures are measured in the bulk plasma with a planar Langmuir probe. The plasma is non-Maxwellian, with isotropic and directed energetic electron populations from 50 to 200 eV and hot and cold Maxwellian populations from 3.6 to 6.4 eV and 0.3 to 1.3 eV, respectively. Plasma Debye lengths range from 4 to 7 mm and the ion-neutral mean free path is 0.8 m. Sheath thicknesses range from 20 to 50 mm, with the smaller thickness occurring near the critical secondary electron emission yield of the wall material. Measured floating potentials are within 16% of model predictions. Measured sheath potential profiles agree with model predictions within 5 V (˜1 Te), and in four out of six cases deviate less than the measurement uncertainty of 1 V.
Shock-Wave Acceleration of Protons on OMEGA EP
NASA Astrophysics Data System (ADS)
Haberberger, D.; Froula, D. H.; Pak, A.; Link, A.; Patel, P.; Fiuza, F.; Tochitsky, S.; Joshi, C.
2015-11-01
Recent experimental results using shock-wave acceleration (SWA) driven by a CO2 laser in a H2 gas-jet plasma have shown the possibility of producing proton beams with energy spreads <10% and with energies of up to 20 MeV using a modest peak laser power of 4 TW. Here we propose the investigation of the scaling of the SWA mechanism to higher laser powers using the 1- μm OMEGA EP Laser System at the Laboratory for Laser Energetics. The required tailored plasma profile is created by expanding a CH target using the thermal x-ray emission from a UV ablated material. The desired characteristics optimal for SWA are met: (a) peak plasma density is overcritical for the 1- μm main pulse and (b) the plasma profile exponentially decays over a long scale length on the rear side. Results will be shown using a 4 ω probe to experimentally characterize the plasma density profile. Scaling from simulations of the SWA mechanism shows that ion energies in the range of 100 MeV/amu are achievable with a focused a0 of 5 from the OMEGA EP Laser System. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Anomalous transport in turbulent plasmas and continuous time random walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1995-05-01
The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochastic process is investigated. The theory of continuous time random walks (CTRW`s) is briefly reviewed. It is shown that a particular class, called the standard long tail CTRW`s is of special interest for the description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation that is constructed in such a way as to yield exact values for all the moments of the density profile. The concept of a CTRW model is compared to an exact solution of a simple test problem:more » transport of charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length. Although the well-known behavior of the mean square displacement proportional to {ital t}{sup 1/2} is easily recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approximation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be generated by a CTRW.« less
Varela, P; Silva, A; da Silva, F; da Graça, S; Manso, M E; Conway, G D
2010-10-01
The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, Bradley B.
The appendices include: (1) stream habitat inventory procedures; (2) lengths and volumes across hydroacoustic transects in Libby Reservoir; (3) temperature, pH, dissolved oxygen, and conductivity profiles in Libby Reservoir; (4) habitat survey information by reach; (5) gill net catches by species; (6) annual catches of fish in floating gill nets; (7) vertical distributions of fish and zooplankton; (8) timing of juvenile and adult movement through traps; (9) food habits information for collected fish; (10) estimated densities and composition of zooplankton by genera; (11) seasonal catch of macroinvertebrates; and (12) initial modeling effort on the Libby Reservoir fishery. (ACR)
Self assembly of magnetic nanoparticles at silicon surfaces.
Theis-Bröhl, Katharina; Gutfreund, Philipp; Vorobiev, Alexei; Wolff, Max; Toperverg, Boris P; Dura, Joseph A; Borchers, Julie A
2015-06-21
Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.
Hafezi, Mohammad-Javad; Sharif, Farhad
2015-11-01
Study on the effect of amphiphilic copolymers structure on their self assembly is an interesting subject, with important applications in the area of drug delivery and biological system treatments. Brownian dynamics simulations were performed to study self-assembly of the linear amphiphilic block copolymers with the same hydrophilic head, but hydrophobic tails of different lengths. Critical micelle concentration (CMC), gyration radius distribution, micelle size distribution, density profiles of micelles, shape anisotropy, and dynamics of micellization were investigated as a function of tail length. Simulation results were compared with predictions from theory and simulation for mixed systems of block copolymers with long and short hydrophobic tail, reported in our previous work. Interestingly, the equilibrium structural and dynamic parameters of pure and mixed block copolymers were similarly dependant on the intrinsic/apparent hydrophobic block length. Log (CMC) was, however; proportional to the tail length and had a different behavior compared to the mixed system. The power law scaling relation of equilibrium structural parameters for amphiphilic block copolymers predicts the same dependence for similar hydrophobic tail lengths, but the power law prediction of CMC is different, which is due to its simplifying assumptions as discussed here. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zordan, Jessica; Schleiss, Anton J.; Franca, Mário J.
2016-04-01
Density or gravity currents are geophysical flows driven by density gradients between two contacting fluids. The physical trigger mechanism of these phenomena lays in the density differences which may be caused by differences in the temperature, dissolved substances or concentration of suspended sediments. Saline density currents are capable to entrain bed sediments inducing signatures in the bottom of sedimentary basins. Herein, saline density currents are reproduced in laboratory over a movable bed. The experimental channel is of the lock-exchange type, it is 7.5 m long and 0.3 m wide, divided into two sections of comparable volumes by a sliding gate. An upstream reach serves as a head tank for the dense mixture; the current propagates through a downstream reach where the main measurements are made. Downstream of the channel a tank exist to absorb the reflection of the current and thus artifacts due to the limited length of the channel. High performance thermoplastic polyurethane simulating fine sediments forms the movable bed. Measures of 3D instantaneous velocities will be made with the use of the non-intrusive technique of the ADV (Acoustic Doppler Current Profiler). With the velocity measurements, the evolution in time of the channel-bed shear stress due the passage of gravity currents is estimated. This is in turn related to the observed erosion and to such parameters determinant for the dynamics of the current as initial density difference, lock length and channel slope. This work was funded by the ITN-Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7-PEOPLE-2013-ITN under REA grant agreement n_607394-SEDITRANS.
Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian
2015-01-01
Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.
Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian
2015-01-01
Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, L.; Nazikian, Raffi; Grierson, B. A.
Here, Resonant Magnetic Perturbations (RMPs) are a leading method for edge localized modes (ELMs) Control in fusion plasmas. However they can also cause a rapid degradation in energy confinement. In this paper we show that the energy confinement in low collisionality (v* e < 0.3) DIII-D ITER Similar Shape (ISS) plasmas often recovers after several energy confinement times for RMP amplitudes up to the threshold for ELM suppression. Immediately following the application of the RMP, the plasma stored energy decreases in proportion to the decrease in the line-averaged density during density "pump-out". Later in the discharge confinement recovery is observedmore » in the thermal ion channel and is correlated with the increase in the ion temperature at the top of the H-mode pedestal. A correlation between the inverse scale length of the ion temperature (α/L Ti) and the E x B shearing rate at the top of the pedestal is seen during the confinement recovery phase. Transport analysis reveals that the confinement improvement in the ion channel results from the self-similarity in the ion temperature profiles in the plasma core combined with the observed increase in α/L Ti in the plasma edge following density pump-out. In contrast the electron temperature scale length (α/L Ti) remains essentially unchanged in response to the application of the RMP. At significantly higher RMP levels the edge EXB shearing rate and α/L Ti does not increase and the confinement does not recover following density pump-out.« less
Watershed Profiles and Stream-net Structure of Vesuvio Volcano, Italy
NASA Astrophysics Data System (ADS)
Lin, Z.; Oguchi, T.; Komatsu, G.
2006-12-01
Watershed topography including stream-net structure in 32 watersheds of Vesuvio Volcano was analyzed using a DEM with a 20-m resolution, with special attention to geomorphological differences between the northern ?0-8 area and the other areas. The longitudinal and transverse profiles and stream-nets of the watersheds were extracted from the DEM. Drainage density and statistical morphometric parameters representing the shape of the profiles were investigated, and their relations with other basic morphometric parameters such as slope angle were examined. The relationships between drainage density and slope angle for each watershed can be divided into two types: Type 1 - negative correlation and Type 2 - convex-form correlation. The Type 2 watersheds have smaller bifurcation ratios and larger low-order stream lengths than the Type 1 watersheds, indicating that low-order streams in the Type 2 watersheds are more integrated. The results of longitudinal and transverse profile analyses also show that the topography of the Type 2 watersheds is simpler and more organized than that of the Type 1 watersheds, suggesting that the Type 2 watersheds are closer to equilibrium conditions. The Type 2 watersheds are located in the steepest and highest part of the somma area, where only limited eruption products have been deposited during the Holocene, due to the existence of the high and steep outer rim of the caldera at the top of the volcano. The results including the existence of the two types are similar to those from non-volcanic watersheds in Japan, indicating that stream-net studies combined with profile analysis using DEMs are effective in discussing the erosional stages of watersheds.
Lacy, Jessica R.; Wyllie-Echeverria, Sandy
2011-01-01
The influence of eelgrass (Zostera marina) on near-bed currents, turbulence, and drag was investigated at three sites in two eelgrass canopies of differing density and at one unvegetated site in the San Juan archipelago of Puget Sound, Washington, USA. Eelgrass blade length exceeded 1 m. Velocity profiles up to 1.5 m above the sea floor were collected over a spring-neap tidal cycle with a downward-looking pulse-coherent acoustic Doppler profiler above the canopies and two acoustic Doppler velocimeters within the canopies. The eelgrass attenuated currents by a minimum of 40%, and by more than 70% at the most densely vegetated site. Attenuation decreased with increasing current speed. The data were compared to the shear-layer model of vegetated flows and the displaced logarithmic model. Velocity profiles outside the meadows were logarithmic. Within the canopies, most profiles were consistent with the shear-layer model, with a logarithmic layer above the canopy. However, at the less-dense sites, when currents were strong, shear at the sea floor and above the canopy was significant relative to shear at the top of the canopy, and the velocity profiles more closely resembled those in a rough-wall boundary layer. Turbulence was strong at the canopy top and decreased with height. Friction velocity at the canopy top was 1.5–2 times greater than at the unvegetated, sandy site. The coefficient of drag CD on the overlying flow derived from the logarithmic velocity profile above the canopy, was 3–8 times greater than at the unvegetated site (0.01–0.023 vs. 2.9 × 10−3).
Estimating Volume, Biomass, and Carbon in Hedmark County, Norway Using a Profiling LiDAR
NASA Technical Reports Server (NTRS)
Nelson, Ross; Naesset, Erik; Gobakken, T.; Gregoire, T.; Stahl, G.
2009-01-01
A profiling airborne LiDAR is used to estimate the forest resources of Hedmark County, Norway, a 27390 square kilometer area in southeastern Norway on the Swedish border. One hundred five profiling flight lines totaling 9166 km were flown over the entire county; east-west. The lines, spaced 3 km apart north-south, duplicate the systematic pattern of the Norwegian Forest Inventory (NFI) ground plot arrangement, enabling the profiler to transit 1290 circular, 250 square meter fixed-area NFI ground plots while collecting the systematic LiDAR sample. Seven hundred sixty-three plots of the 1290 plots were overflown within 17.8 m of plot center. Laser measurements of canopy height and crown density are extracted along fixed-length, 17.8 m segments closest to the center of the ground plot and related to basal area, timber volume and above- and belowground dry biomass. Linear, nonstratified equations that estimate ground-measured total aboveground dry biomass report an R(sup 2) = 0.63, with an regression RMSE = 35.2 t/ha. Nonstratified model results for the other biomass components, volume, and basal area are similar, with R(sup 2) values for all models ranging from 0.58 (belowground biomass, RMSE = 8.6 t/ha) to 0.63. Consistently, the most useful single profiling LiDAR variable is quadratic mean canopy height, h (sup bar)(sub qa). Two-variable models typically include h (sup bar)(sub qa) or mean canopy height, h(sup bar)(sub a), with a canopy density or a canopy height standard deviation measure. Stratification by productivity class did not improve the nonstratified models, nor did stratification by pine/spruce/hardwood. County-wide profiling LiDAR estimates are reported, by land cover type, and compared to NFI estimates.
Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.
2011-01-01
One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407
Suppression of the n=2 rotational instability in field-reversed configurations
NASA Astrophysics Data System (ADS)
Hoffman, Alan L.; Slough, J.; Harding, Dennis G.
1983-06-01
Compact toroid plasmas formed in field-reversed theta pinches are generally destroyed after 30-50 μsec by a rotating n=2 instability. In the reported experiment, instability is controlled, and the plasma destruction is avoided in the TRX-1 theta pinch through the application of octopole magnetic fields. The decay times for loss of poloidal flux and particles are unaffected by the octopole fields. These decay times are about 100 μsec based on inferences from interferometry and excluded flux measurements. The weak, rotating elliptical disturbance (controlled n=2 mode) also made possible a novel determination of the density profile near the separatrix using single-chord interferometry. The local density gradient scale length in this region is found to be about one ion gyrodiameter.
Wang, Xiang; Lee, Jae-Hyeok; Li, Ruibin; Liao, Yu-Pei; Kang, Joohoon; Chang, Chong Hyun; Guiney, Linda M; Mirshafiee, Vahid; Li, Linjiang; Lu, Jianqin; Xia, Tian; Hersam, Mark C; Nel, André E
2018-06-01
Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1β (IL-1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor-β1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Circulation in the eastern North Pacific: results from a current meter array along 152°W
NASA Astrophysics Data System (ADS)
Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.
1997-07-01
Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period (< 200 days) and long period ( > 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.
Kong, Hailong; Lv, Min; Mao, Nian; Wang, Cheng; Cheng, Yunxia; Zhang, Lei; Jiang, Xingfu; Luo, Lizhi
2016-01-01
There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the molecular mechanism remains unclear. Our previous study demonstrated that the antibacterial activity of lysozyme is important for this process in the beet webworm Loxostege sticticalis. In this study, a lysozyme cDNA from L. sticticalis was cloned and characterized. The full-length cDNA is 1078 bp long and contains an open reading frame of 426 bp that encodes 142 amino acids. The deduced protein possesses structural characteristics of a typical c-type lysozyme and clusters with c-type lysozymes from other Lepidoptera. LsLysozyme was found to be expressed throughout all developmental stages, showing the highest level in pupae. LsLysozyme was also highly expressed in the midgut and fat body. Elevated LsLysozyme expression was observed in L. sticticalis larvae infected by Beauveria bassiana and in larvae reared under crowding conditions. In addition, the expression level of LsLysozyme in infected larvae reared at a density of 10 larvae per jar was significantly higher compared to those reared at a density of l or 30 larvae per jar. These results suggest that larval crowding affects the gene expression profile of this lysozyme. This study provides additional insight into the expression of an immune-associated lysozyme gene and helps us to better understand the immune response of L. sticticalis under crowding conditions. PMID:27575006
Generation of ramp waves using variable areal density flyers
NASA Astrophysics Data System (ADS)
Winter, R. E.; Cotton, M.; Harris, E. J.; Chapman, D. J.; Eakins, D.
2016-07-01
Ramp loading using graded density impactors as flyers in gas-gun-driven plate impact experiments can yield new and useful information about the equation of state and the strength properties of the loaded material. Selective Laser Melting, an additive manufacturing technique, was used to manufacture a graded density flyer, termed the "bed-of-nails" (BON). A 2.5-mm-thick × 99.4-mm-diameter solid disc of stainless steel formed a base for an array of tapered spikes of length 5.5 mm and spaced 1 mm apart. The two experiments to test the concept were performed at impact velocities of 900 and 1100 m/s using the 100-mm gas gun at the Institute of Shock Physics at Imperial College London. In each experiment, a BON flyer was impacted onto a copper buffer plate which helped to smooth out perturbations in the wave profile. The ramp delivered to the copper buffer was in turn transmitted to three tantalum targets of thicknesses 3, 5 and 7 mm, which were mounted in contact with the back face of the copper. Heterodyne velocimetry (Het-V) was used to measure the velocity-time history, at the back faces of the tantalum discs. The wave profiles display a smooth increase in velocity over a period of ˜ 2.5 μs, with no indication of a shock jump. The measured profiles have been analysed to generate a stress vs. volume curve for tantalum. The results have been compared with the predictions of the Sandia National Laboratories hydrocode, CTH.
NASA Technical Reports Server (NTRS)
Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.
2001-01-01
We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Simpson, Matthew J
2015-01-01
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0
NASA Astrophysics Data System (ADS)
Gyergyek, T.; Kovačič, J.
2016-06-01
Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .
NASA Astrophysics Data System (ADS)
Herrero, Horacio S.; Díaz Lozada, José M.; García, Carlos M.; Szupiany, Ricardo N.; Best, Jim; Pagot, Mariana
2018-03-01
The goal of this study is to evaluate the influence of tributary flow density differences on hydrodynamics and mixing at a confluent meander bend. A detailed field characterization is performed using an Acoustic Doppler Current Profiler (ADCP) for quantification of the 3D flow field, flow discharge and bathymetry, as well as CTD measurements (conductivity, temperature, depth) to characterize the patterns of mixing. Satellite images of the confluence taken at complementary times to the field surveys were analyzed to evaluate the confluence hydrodynamics at different flow conditions. The results illustrate the differences in hydrodynamics and mixing length in relation to confluences with equal density tributaries. At low-density differences, and higher discharge ratio (Qr) between the two rivers, the flow is similar to equi-density confluent meander bends. In contrast, at high-density differences (low Qr), the tributary flow is confined to near the confluence but the density difference causes the flow to move across channel. In this case, the density difference causes the lateral spread of the tributary flow to be greater than at a greater Qr when the density difference is less. These results illustrate the potential importance of density differences between tributaries in determining the rate and spatial extent of mixing and sediment dispersal at confluent meander bends.
Optimizing X-ray mirror thermal performance using matched profile cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin; Cocco, Daniele; Kelez, Nicholas
2015-08-07
To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick–Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle ismore » presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ~11belowthe requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.« less
Real-time feedback control of the plasma density profile on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team
2011-04-01
The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.
Isotope Mass Scaling of Turbulence and Transport
NASA Astrophysics Data System (ADS)
McKee, George; Yan, Zheng; Gohil, Punit; Luce, Tim; Rhodes, Terry
2017-10-01
The dependence of turbulence characteristics and transport scaling on the fuel ion mass has been investigated in a set of hydrogen (A = 1) and deuterium (A = 2) plasmas on DIII-D. Normalized energy confinement time (B *τE) is two times lower in hydrogen (H) plasmas compare to similar deuterium (D) plasmas. Dimensionless parameters other than ion mass (A) , including ρ*, q95, Te /Ti , βN, ν*, and Mach number were maintained nearly fixed. Matched profiles of electron density, electron and ion temperature, and toroidal rotation were well matched. The normalized turbulence amplitude (ñ / n) is approximately twice as large in H as in D, which may partially explain the increased transport and reduced energy confinement time. Radial correlation lengths of low-wavenumber density turbulence in hydrogen are similar to or slightly larger than correlation lengths in the deuterium plasmas and generally scale with the ion gyroradius, which were maintained nearly fixed in this dimensionless scan. Predicting energy confinement in D-T burning plasmas requires an understanding of the large and beneficial isotope scaling of transport. Supported by USDOE under DE-FG02-08ER54999 and DE-FC02-04ER54698.
Inherent length-scales of periodic solar wind number density structures
NASA Astrophysics Data System (ADS)
Viall, N. M.; Kepko, L.; Spence, H. E.
2008-07-01
We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.
Overview of ASDEX Upgrade results
NASA Astrophysics Data System (ADS)
Stroth, U.; Adamek, J.; Aho-Mantila, L.; Äkäslompolo, S.; Amdor, C.; Angioni, C.; Balden, M.; Bardin, S.; Barrera Orte, L.; Behler, K.; Belonohy, E.; Bergmann, A.; Bernert, M.; Bilato, R.; Birkenmeier, G.; Bobkov, V.; Boom, J.; Bottereau, C.; Bottino, A.; Braun, F.; Brezinsek, S.; Brochard, T.; Brüdgam, M.; Buhler, A.; Burckhart, A.; Casson, F. J.; Chankin, A.; Chapman, I.; Clairet, F.; Classen, I. G. J.; Coenen, J. W.; Conway, G. D.; Coster, D. P.; Curran, D.; da Silva, F.; de Marné, P.; D'Inca, R.; Douai, D.; Drube, R.; Dunne, M.; Dux, R.; Eich, T.; Eixenberger, H.; Endstrasser, N.; Engelhardt, K.; Esposito, B.; Fable, E.; Fischer, R.; Fünfgelder, H.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Geiger, B.; Giannone, L.; Görler, T.; da Graca, S.; Greuner, H.; Gruber, O.; Gude, A.; Guimarais, L.; Günter, S.; Haas, G.; Hakola, A. H.; Hangan, D.; Happel, T.; Härtl, T.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hobirk, J.; Höhnle, H.; Hölzl, M.; Hopf, C.; Houben, A.; Igochine, V.; Ionita, C.; Janzer, A.; Jenko, F.; Kantor, M.; Käsemann, C.-P.; Kallenbach, A.; Kálvin, S.; Kantor, M.; Kappatou, A.; Kardaun, O.; Kasparek, W.; Kaufmann, M.; Kirk, A.; Klingshirn, H.-J.; Kocan, M.; Kocsis, G.; Konz, C.; Koslowski, R.; Krieger, K.; Kubic, M.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Lauber, P.; Laux, M.; Lazaros, A.; Leipold, F.; Leuterer, F.; Lindig, S.; Lisgo, S.; Lohs, A.; Lunt, T.; Maier, H.; Makkonen, T.; Mank, K.; Manso, M.-E.; Maraschek, M.; Mayer, M.; McCarthy, P. J.; McDermott, R.; Mehlmann, F.; Meister, H.; Menchero, L.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Mlynek, A.; Monaco, F.; Müller, S.; Müller, H. W.; Münich, M.; Neu, G.; Neu, R.; Neuwirth, D.; Nocente, M.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Plöckl, B.; Podoba, Y.; Pompon, F.; Poli, E.; Polozhiy, K.; Potzel, S.; Püschel, M. J.; Pütterich, T.; Rathgeber, S. K.; Raupp, G.; Reich, M.; Reimold, F.; Ribeiro, T.; Riedl, R.; Rohde, V.; Rooij, G. v.; Roth, J.; Rott, M.; Ryter, F.; Salewski, M.; Santos, J.; Sauter, P.; Scarabosio, A.; Schall, G.; Schmid, K.; Schneider, P. A.; Schneider, W.; Schrittwieser, R.; Schubert, M.; Schweinzer, J.; Scott, B.; Sempf, M.; Sertoli, M.; Siccinio, M.; Sieglin, B.; Sigalov, A.; Silva, A.; Sommer, F.; Stäbler, A.; Stober, J.; Streibl, B.; Strumberger, E.; Sugiyama, K.; Suttrop, W.; Tala, T.; Tardini, G.; Teschke, M.; Tichmann, C.; Told, D.; Treutterer, W.; Tsalas, M.; Van Zeeland, M. A.; Varela, P.; Veres, G.; Vicente, J.; Vianello, N.; Vierle, T.; Viezzer, E.; Viola, B.; Vorpahl, C.; Wachowski, M.; Wagner, D.; Wauters, T.; Weller, A.; Wenninger, R.; Wieland, B.; Willensdorfer, M.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yu, Q.; Zammuto, I.; Zasche, D.; Zehetbauer, T.; Zhang, Y.; Zilker, M.; Zohm, H.
2013-10-01
The medium size divertor tokamak ASDEX Upgrade (major and minor radii 1.65 m and 0.5 m, respectively, magnetic-field strength 2.5 T) possesses flexible shaping and versatile heating and current drive systems. Recently the technical capabilities were extended by increasing the electron cyclotron resonance heating (ECRH) power, by installing 2 × 8 internal magnetic perturbation coils, and by improving the ion cyclotron range of frequency compatibility with the tungsten wall. With the perturbation coils, reliable suppression of large type-I edge localized modes (ELMs) could be demonstrated in a wide operational window, which opens up above a critical plasma pedestal density. The pellet fuelling efficiency was observed to increase which gives access to H-mode discharges with peaked density profiles at line densities clearly exceeding the empirical Greenwald limit. Owing to the increased ECRH power of 4 MW, H-mode discharges could be studied in regimes with dominant electron heating and low plasma rotation velocities, i.e. under conditions particularly relevant for ITER. The ion-pressure gradient and the neoclassical radial electric field emerge as key parameters for the transition. Using the total simultaneously available heating power of 23 MW, high performance discharges have been carried out where feed-back controlled radiative cooling in the core and the divertor allowed the divertor peak power loads to be maintained below 5 MW m-2. Under attached divertor conditions, a multi-device scaling expression for the power-decay length was obtained which is independent of major radius and decreases with magnetic field resulting in a decay length of 1 mm for ITER. At higher densities and under partially detached conditions, however, a broadening of the decay length is observed. In discharges with density ramps up to the density limit, the divertor plasma shows a complex behaviour with a localized high-density region in the inner divertor before the outer divertor detaches. Turbulent transport is studied in the core and the scrape-off layer (SOL). Discharges over a wide parameter range exhibit a close link between core momentum and density transport. Consistent with gyro-kinetic calculations, the density gradient at half plasma radius determines the momentum transport through residual stress and thus the central toroidal rotation. In the SOL a close comparison of probe data with a gyro-fluid code showed excellent agreement and points to the dominance of drift waves. Intermittent structures from ELMs and from turbulence are shown to have high ion temperatures even at large distances outside the separatrix.
Stellar mass distribution of S4G disk galaxies and signatures of bar-induced secular evolution
NASA Astrophysics Data System (ADS)
Díaz-García, S.; Salo, H.; Laurikainen, E.
2016-12-01
Context. Models of galaxy formation in a cosmological framework need to be tested against observational constraints, such as the average stellar density profiles (and their dispersion) as a function of fundamental galaxy properties (e.g. the total stellar mass). Simulation models predict that the torques produced by stellar bars efficiently redistribute the stellar and gaseous material inside the disk, pushing it outwards or inwards depending on whether it is beyond or inside the bar corotation resonance radius. Bars themselves are expected to evolve, getting longer and narrower as they trap particles from the disk and slow down their rotation speed. Aims: We use 3.6 μm photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G) to trace the stellar distribution in nearby disk galaxies (z ≈ 0) with total stellar masses 108.5 ≲ M∗/M⊙ ≲ 1011 and mid-IR Hubble types - 3 ≤ T ≤ 10. We characterize the stellar density profiles (Σ∗), the stellar contribution to the rotation curves (V3.6 μm), and the m = 2 Fourier amplitudes (A2) as a function of M∗ and T. We also describe the typical shapes and strengths of stellar bars in the S4G sample and link their properties to the total stellar mass and morphology of their host galaxy. Methods: For 1154 S4G galaxies with disk inclinations lower than 65°, we perform a Fourier decomposition and rescale their images to a common frame determined by the size in physical units, by their disk scalelength, and for 748 barred galaxies by both the length and orientation of their bars. We stack the resized density profiles and images to obtain statistically representative average stellar disks and bars in bins of M∗ and T. Based on the radial force profiles of individual galaxies we calculate the mean stellar contribution to the circular velocity. We also calculate average A2 profiles, where the radius is normalized to R25.5. Furthermore, we infer the gravitational potentials from the synthetic bars to obtain the tangential-to-radial force ratio (QT) and A2 profiles in the different bins. We also apply ellipse fitting to quantitatively characterize the shape of the bar stacks. Results: For M∗ ≥ 109M⊙, we find a significant difference in the stellar density profiles of barred and non-barred systems: (I) disks in barred galaxies show larger scalelengths (hR) and fainter extrapolated central surface brightnesses (Σ°); (II) the mean surface brightness profiles (Σ∗) of barred and non-barred galaxies intersect each other slightly beyond the mean bar length, most likely at the bar corotation; and (III) the central mass concentration of barred galaxies is higher (by almost a factor 2 when T ≤ 5) than in their non-barred counterparts. The averaged Σ∗ profiles follow an exponential slope down to at least 10 M⊙ pc-2, which is the typical depth beyond which the sample coverage in the radial direction starts to drop. Central mass concentrations in massive systems (≥1010M⊙) are substantially larger than in fainter galaxies, and their prominence scales with T. This segregation also manifests in the inner slope of the mean stellar component of the circular velocity: lenticular (S0) galaxies present the most sharply rising V3.6 μm. Based on the analysis of bar stacks, we show that early- and intermediate-type spirals (0 ≤ T< 5) have intrinsically narrower bars than later types and S0s, whose bars are oval-shaped. We show a clear agreement between galaxy family and quantitative estimates of bar strength. In early- and intermediate-type spirals, A2 is larger within and beyond the typical bar region among barred galaxies than in the non-barred subsample. Strongly barred systems also tend to have larger A2 amplitudes at all radii than their weakly barred counterparts. Conclusions: Using near-IR wavelengths (S4G 3.6 μm), we provide observational constraints that galaxy formation models can be checked against. In particular, we calculate the mean stellar density profiles, and the disk(+bulge) component of the rotation curve (and their dispersion) in bins of M∗ and T. We find evidence for bar-induced secular evolution of disk galaxies in terms of disk spreading and enhanced central mass concentration. We also obtain average bars (2D), and we show that bars hosted by early-type galaxies are more centrally concentrated and have larger density amplitudes than their late-type counterparts. The FITS files of the synthetic images and the tabulated radial profiles of the mean (and dispersion of) stellar mass density, 3.6 μm surface brightness, Fourier amplitudes, gravitational force, and the stellar contribution to the circular velocity are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A84
NASA Astrophysics Data System (ADS)
Liu, Xu; Chen, Lunjin; Yang, Lixia; Xia, Zhiyang; Malaspina, David M.
2018-01-01
The effect of the plasmapause on equatorially radially propagating fast magnetosonic (MS) waves in the Earth's dipole magnetic field is studied by using finite difference time domain method. We run 1-D simulation for three different density profiles: (1) no plasmapause, (2) with a plasmapause, and (3) with a plasmapause accompanied with fine-scale density irregularity. We find that (1) without plasmapause the radially inward propagating MS wave can reach ionosphere and continuously propagate to lower altitude if no damping mechanism is considered. The wave properties follow the cold plasma dispersion relation locally along its trajectory. (2) For simulation with a plasmapause with a scale length of 0.006 RE compared to wavelength, only a small fraction of the MS wave power is reflected by the plasmapause. WKB approximation is generally valid for such plasmapause. (3) The multiple fine-scale density irregularities near the outer edge of plasmapause can effectively block the MS wave propagation, resulting in a terminating boundary for MS waves near the plasmapause.
Excitation of a global plasma mode by an intense electron beam in a dc discharge
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.; ...
2018-01-01
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
Excitation of a global plasma mode by an intense electron beam in a dc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
The energy confinement response of DIII-D plasmas to Resonant Magnetic Perturbations
Cui, L.; Nazikian, Raffi; Grierson, B. A.; ...
2017-07-11
Here, Resonant Magnetic Perturbations (RMPs) are a leading method for edge localized modes (ELMs) Control in fusion plasmas. However they can also cause a rapid degradation in energy confinement. In this paper we show that the energy confinement in low collisionality (v* e < 0.3) DIII-D ITER Similar Shape (ISS) plasmas often recovers after several energy confinement times for RMP amplitudes up to the threshold for ELM suppression. Immediately following the application of the RMP, the plasma stored energy decreases in proportion to the decrease in the line-averaged density during density "pump-out". Later in the discharge confinement recovery is observedmore » in the thermal ion channel and is correlated with the increase in the ion temperature at the top of the H-mode pedestal. A correlation between the inverse scale length of the ion temperature (α/L Ti) and the E x B shearing rate at the top of the pedestal is seen during the confinement recovery phase. Transport analysis reveals that the confinement improvement in the ion channel results from the self-similarity in the ion temperature profiles in the plasma core combined with the observed increase in α/L Ti in the plasma edge following density pump-out. In contrast the electron temperature scale length (α/L Ti) remains essentially unchanged in response to the application of the RMP. At significantly higher RMP levels the edge EXB shearing rate and α/L Ti does not increase and the confinement does not recover following density pump-out.« less
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo
2013-06-01
Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging
NASA Astrophysics Data System (ADS)
Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David
2017-06-01
A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.
Proton transfer along water bridges in biological systems with density-functional tight-binding
NASA Astrophysics Data System (ADS)
Reiss, Krystle; Wise, Abigail; Mazzuca, James
2015-03-01
When examining the dynamics of charge transfer in high dimensional enzymatic systems, the cost of quantum mechanical treatment of electrons increases exponentially with the size of the system. As a semi-empirical method, density-functional tight-binding aids in shortening these calculation times, but can be inaccurate in the regime where bonds are being formed and broken. To address these inaccuracies with respect to proton transfer in an enzymatic system, DFTB is being used to calculate small model systems containing only a single amino acid residue donor, represented by an imidazole molecule, and a water acceptor. When DFTB calculations are compared to B3LYP geometry calculations of the donor molecule, we observe a bond angle error on the order of 1.2 degrees and a bond length error on the order of 0.011 Å. As we move forward with small donor-acceptor systems, comparisons between DFTB and B3LYP energy profiles will provide a better clue as to what extent improvements need to be made. To improve the accuracy of the DFTB calculations, the internuclear repulsion term may be altered. This would result in energy profiles that closely resemble those produced by higher-level theory. Alma College Provost's Office.
Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment
NASA Astrophysics Data System (ADS)
Weed, Jonathan Robert
The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.
Geometric scalings for the electrostatically driven helical plasma state
NASA Astrophysics Data System (ADS)
Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.
2017-12-01
A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .
Correlation of ion and beam current densities in Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1973-01-01
In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-10-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes.
Liu, Bo; Liu, Pei; Xu, Zhenli; Zhou, Shenggao
2013-01-01
Near a charged surface, counterions of different valences and sizes cluster; and their concentration profiles stratify. At a distance from such a surface larger than the Debye length, the electric field is screened by counterions. Recent studies by a variational mean-field approach that includes ionic size effects and by Monte Carlo simulations both suggest that the counterion stratification is determined by the ionic valence-to-volume ratios. Central in the mean-field approach is a free-energy functional of ionic concentrations in which the ionic size effects are included through the entropic effect of solvent molecules. The corresponding equilibrium conditions define the generalized Boltzmann distributions relating the ionic concentrations to the electrostatic potential. This paper presents a detailed analysis and numerical calculations of such a free-energy functional to understand the dependence of the ionic charge density on the electrostatic potential through the generalized Boltzmann distributions, the role of ionic valence-to-volume ratios in the counterion stratification, and the modification of Debye length due to the effect of ionic sizes. PMID:24465094
CFD analyses of coolant channel flowfields
NASA Technical Reports Server (NTRS)
Yagley, Jennifer A.; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
The flowfield characteristics in rocket engine coolant channels are analyzed by means of a numerical model. The channels are characterized by large length to diameter ratios, high Reynolds numbers, and asymmetrical heating. At representative flow conditions, the channel length is approximately twice the hydraulic entrance length so that fully developed conditions would be reached for a constant property fluid. For the supercritical hydrogen that is used as the coolant, the strong property variations create significant secondary flows in the cross-plane which have a major influence on the flow and the resulting heat transfer. Comparison of constant and variable property solutions show substantial differences. In addition, the property variations prevent fully developed flow. The density variation accelerates the fluid in the channels increasing the pressure drop without an accompanying increase in heat flux. Analyses of the inlet configuration suggest that side entry from a manifold can affect the development of the velocity profile because of vortices generated as the flow enters the channel. Current work is focused on studying the effects of channel bifurcation on the flow field and the heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Obrochta, S. P.; Andrén, T.; Fazekas, S. Z.; Lougheed, B. C.; Snowball, I.; Yokoyama, Y.; Miyairi, Y.; Kondo, R.; Kotilainen, A. T.; Hyttinen, O.; Fehr, A.
2017-03-01
Laminated, organic-rich silts and clays with high dissolved gas content characterize sediments at IODP Site M0063 in the Landsort Deep, which at 459 m is the deepest basin in the Baltic Sea. Cores recovered from Hole M0063A experienced significant expansion as gas was released during the recovery process, resulting in high sediment loss. Therefore, during operations at subsequent holes, penetration was reduced to 2 m per 3.3 m core, permitting expansion into 1.3 m of initially empty liner. Fully filled liners were recovered from Holes B through E, indicating that the length of recovered intervals exceeded the penetrated distance by a factor of >1.5. A typical down-core logarithmic trend in gamma density profiles, with anomalously low-density values within the upper ˜1 m of each core, suggests that expansion primarily occurred in this upper interval. Thus, we suggest that a simple linear correction is inappropriate. This interpretation is supported by anisotropy of magnetic susceptibility data that indicate vertical stretching in the upper ˜1.5 m of expanded cores. Based on the mean gamma density profiles of cores from Holes M0063C and D, we obtain an expansion function that is used to adjust the depth of each core to conform to its known penetration. The variance in these profiles allows for quantification of uncertainty in the adjusted depth scale. Using a number of bulk 14C dates, we explore how the presence of multiple carbon source pathways leads to poorly constrained radiocarbon reservoir age variability that significantly affects age and sedimentation rate calculations.
Linking pedestrian flow characteristics with stepping locomotion
NASA Astrophysics Data System (ADS)
Wang, Jiayue; Boltes, Maik; Seyfried, Armin; Zhang, Jun; Ziemer, Verena; Weng, Wenguo
2018-06-01
While properties of human traffic flow are described by speed, density and flow, the locomotion of pedestrian is based on steps. To relate characteristics of human locomotor system with properties of human traffic flow, this paper aims to connect gait characteristics like step length, step frequency, swaying amplitude and synchronization with speed and density and thus to build a ground for advanced pedestrian models. For this aim, observational and experimental study on the single-file movement of pedestrians at different densities is conducted. Methods to measure step length, step frequency, swaying amplitude and step synchronization are proposed by means of trajectories of the head. Mathematical models for the relations of step length or frequency and speed are evaluated. The problem how step length and step duration are influenced by factors like body height and density is investigated. It is shown that the effect of body height on step length and step duration changes with density. Furthermore, two different types of step in-phase synchronization between two successive pedestrians are observed and the influence of step synchronization on step length is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loarte, A.; Polevoi, A. R.; Hosokawa, M.
2015-05-15
Experiments in Alcator C-Mod tokamak plasmas in the Enhanced D-alpha H-mode regime with ITER-like mid-radius plasma density peaking and Ion Cyclotron Resonant heating, in which tungsten is introduced by the laser blow-off technique, have demonstrated that accumulation of tungsten in the central region of the plasma does not take place in these conditions. The measurements obtained are consistent with anomalous transport dominating tungsten transport except in the central region of the plasma where tungsten transport is neoclassical, as previously observed in other devices with dominant neutral beam injection heating, such as JET and ASDEX Upgrade. In contrast to such results,more » however, the measured scale lengths for plasma temperature and density in the central region of these Alcator C-Mod plasmas, with density profiles relatively flat in the core region due to the lack of core fuelling, are favourable to prevent inter and intra sawtooth tungsten accumulation in this region under dominance of neoclassical transport. Simulations of ITER H-mode plasmas, including both anomalous (modelled by the Gyro-Landau-Fluid code GLF23) and neoclassical transport for main ions and tungsten and with density profiles of similar peaking to those obtained in Alcator C-Mod show that accumulation of tungsten in the central plasma region is also unlikely to occur in stationary ITER H-mode plasmas due to the low fuelling source by the neutral beam injection (injection energy ∼ 1 MeV), which is in good agreement with findings in the Alcator C-Mod experiments.« less
The virialization density of peaks with general density profiles under spherical collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2013-12-01
We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less
NASA Technical Reports Server (NTRS)
Vedantam, NandaKishore; Parthasarathy, Ramkumar N.
2004-01-01
The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.
Calculation of the non-inductive current profile in high-performance NSTX plasmas
NASA Astrophysics Data System (ADS)
Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.
2011-03-01
The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.
Characterization of rarefaction waves in van der Waals fluids
NASA Astrophysics Data System (ADS)
Yuen, Albert; Barnard, John J.
2015-12-01
We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.
Effects of electromagnetic radiation on spatial memory and synapses in rat hippocampal CA1☆
Li, Yuhong; Shi, Changhua; Lu, Guobing; Xu, Qian; Liu, Shaochen
2012-01-01
In this study, we investigated the effects of mobile phone radiation on spatial learning, reference memory, and morphology in related brain regions. After the near-field radiation (0.52–1.08 W/kg) was delivered to 8-week-old Wistar rats 2 hours per day for 1 month, behavioral changes were examined using the Morris water maze. Compared with the sham-irradiated rats, the irradiated rats exhibited impaired performance. Morphological changes were investigated by examining synaptic ultrastructural changes in the hippocampus. Using the physical dissector technique, the number of pyramidal neurons, the synaptic profiles, and the length of postsynaptic densities in the CA1 region were quantified stereologically. The morphological changes included mitochondrial degenerations, fewer synapses, and shorter postsynaptic densities in the radiated rats. These findings indicate that mobile phone radiation can significantly impair spatial learning and reference memory and induce morphological changes in the hippocampal CA1 region. PMID:25709623
Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn
2012-01-01
This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.
Trolle, Thomas; McMurtrey, Curtis P; Sidney, John; Bardet, Wilfried; Osborn, Sean C; Kaever, Thomas; Sette, Alessandro; Hildebrand, William H; Nielsen, Morten; Peters, Bjoern
2016-02-15
HLA class I-binding predictions are widely used to identify candidate peptide targets of human CD8(+) T cell responses. Many such approaches focus exclusively on a limited range of peptide lengths, typically 9 aa and sometimes 9-10 aa, despite multiple examples of dominant epitopes of other lengths. In this study, we examined whether epitope predictions can be improved by incorporating the natural length distribution of HLA class I ligands. We found that, although different HLA alleles have diverse length-binding preferences, the length profiles of ligands that are naturally presented by these alleles are much more homogeneous. We hypothesized that this is due to a defined length profile of peptides available for HLA binding in the endoplasmic reticulum. Based on this, we created a model of HLA allele-specific ligand length profiles and demonstrate how this model, in combination with HLA-binding predictions, greatly improves comprehensive identification of CD8(+) T cell epitopes. Copyright © 2016 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Finkelshtein, D.; Kondratiev, Yu.; Kutoviy, O.; Molchanov, S.; Zhizhina, E.
2014-10-01
We consider birth-and-death stochastic evolution of genotypes with different lengths. The genotypes might mutate, which provides a stochastic changing of lengths by a free diffusion law. The birth and death rates are length dependent, which corresponds to a selection effect. We study an asymptotic behavior of a density for an infinite collection of genotypes. The cases of space homogeneous and space heterogeneous densities are considered.
Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures
Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval
2013-01-01
Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein–chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/. PMID:23873955
Arpeggio: harmonic compression of ChIP-seq data reveals protein-chromatin interaction signatures.
Stanton, Kelly Patrick; Parisi, Fabio; Strino, Francesco; Rabin, Neta; Asp, Patrik; Kluger, Yuval
2013-09-01
Researchers generating new genome-wide data in an exploratory sequencing study can gain biological insights by comparing their data with well-annotated data sets possessing similar genomic patterns. Data compression techniques are needed for efficient comparisons of a new genomic experiment with large repositories of publicly available profiles. Furthermore, data representations that allow comparisons of genomic signals from different platforms and across species enhance our ability to leverage these large repositories. Here, we present a signal processing approach that characterizes protein-chromatin interaction patterns at length scales of several kilobases. This allows us to efficiently compare numerous chromatin-immunoprecipitation sequencing (ChIP-seq) data sets consisting of many types of DNA-binding proteins collected from a variety of cells, conditions and organisms. Importantly, these interaction patterns broadly reflect the biological properties of the binding events. To generate these profiles, termed Arpeggio profiles, we applied harmonic deconvolution techniques to the autocorrelation profiles of the ChIP-seq signals. We used 806 publicly available ChIP-seq experiments and showed that Arpeggio profiles with similar spectral densities shared biological properties. Arpeggio profiles of ChIP-seq data sets revealed characteristics that are not easily detected by standard peak finders. They also allowed us to relate sequencing data sets from different genomes, experimental platforms and protocols. Arpeggio is freely available at http://sourceforge.net/p/arpeggio/wiki/Home/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br
We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.
Assessment of effects of neutrals on the power threshold for L to H transitions in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, L.W.; Carreras, B.A.; Maingi, R.
1997-09-01
To assess the effect of edge neutrals on the low to high confinement transition threshold, a broad range of plasma discharges has been analyzed. From this analysis, the transition power divided by the density, at constant magnetic field, appears to be a function of a single parameter measuring the neutrals` effect, This parameter cannot be uniquely identified. For instance, it may be the radial decay length of the neutral profile or the charge exchange damping rate at about r/a {approx} 0.95. This results suggest that there is a missing parameter linked to the neutrals in the power threshold scaling laws.
An investigation of the unsteady flow associated with plume induced flow separation
NASA Technical Reports Server (NTRS)
Boggess, A. L., Jr.
1972-01-01
A wind tunnel study of the basic nature of plume induced flow separation is reported with emphasis on the unsteady aspects of the flow. Testing was conducted in a 6 inch by 6 inch blow-down supersonic wind tunnel. A cone-cylinder model with a pluming jet was used as the test model. Tests were conducted with a systematic variation in Mach number and plume pressure. Results of the tests are presented in the form of root-mean-squared surface pressure levels, power spectral densities, photographs of the flow field from which shock angles and separation lengths were taken, and time-averaged surface pressure profiles.
Critical behavior in trapped strongly interacting Fermi gases
NASA Astrophysics Data System (ADS)
Taylor, E.
2009-08-01
We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.
Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A
2016-10-01
Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.
NASA Technical Reports Server (NTRS)
Olson, D. W.; Silk, J.
1979-01-01
This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2015-09-01
We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.
A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.
1986-01-01
Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.
Prakash, Celine; Haeseler, Arndt Von
2017-03-01
RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment.
Haeseler, Arndt Von
2017-01-01
Abstract RNA sequencing (RNA-seq) has emerged as the method of choice for measuring the expression of RNAs in a given cell population. In most RNA-seq technologies, sequencing the full length of RNA molecules requires fragmentation into smaller pieces. Unfortunately, the issue of nonuniform sequencing coverage across a genomic feature has been a concern in RNA-seq and is attributed to biases for certain fragments in RNA-seq library preparation and sequencing. To investigate the expected coverage obtained from fragmentation, we develop a simple fragmentation model that is independent of bias from the experimental method and is not specific to the transcript sequence. Essentially, we enumerate all configurations for maximal placement of a given fragment length, F, on transcript length, T, to represent every possible fragmentation pattern, from which we compute the expected coverage profile across a transcript. We extend this model to incorporate general empirical attributes such as read length, fragment length distribution, and number of molecules of the transcript. We further introduce the fragment starting-point, fragment coverage, and read coverage profiles. We find that the expected profiles are not uniform and that factors such as fragment length to transcript length ratio, read length to fragment length ratio, fragment length distribution, and number of molecules influence the variability of coverage across a transcript. Finally, we explore a potential application of the model where, with simulations, we show that it is possible to correctly estimate the transcript copy number for any transcript in the RNA-seq experiment. PMID:27661099
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
This paper presents measurements of roughness length performed in a wind tunnel for low roughness density. The experiments were performed with both compact and porous obstacles (clusters), in order to simulate the behavior of sparsely vegetated surfaces.
Density profile and fiber alignment in fiberboard from three southern hardwoods
George E. Woodson
1977-01-01
Density profile and fiber orientation were evaluated for their effects on selected mechanical properties of medium density fiberboard. Bending MOE and modulus of rigidity were predicted from density profiles established by x-ray radiography. Orthotropic ratios ranged from 1.19 to 2.32 for electrically aligned fiberboards from three southern hardwoods. Off-axis tensile...
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soler, R.; Oliver, R.; Ballester, J. L., E-mail: roberto.soler@wis.kuleuven.be
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations.more » For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.« less
NASA Astrophysics Data System (ADS)
Subramanian, Balaji; Carminati, Marco; Luzzatto-Fegiz, Paolo
2017-11-01
In stratified flows, conductivity (combined with temperature) is often used to measure density. The conductivity probes typically used can resolve very fine spatial scales, but on the downside they are fragile, expensive, sensitive to environmental noise and have only single channel capability. Recently a low-cost, robust, arduino-based probe called Conduino was developed, which can be valuable in a wide range of applications where resolving extremely small spatial scales is not needed. This probe uses micro-USB connectors as actual conductivity sensors with a custom designed electronic board for simultaneous acquisition from multiple probes, with conductivity resolution comparable to commercially available PME conductivity probe. A detailed assessment of performance of this Conduino probe is described here. To establish time response and sensitivity as a function of electrode geometry, we build a variety of shapes for different kinds of applications, with tip spacing ranging from 0.5-2.5 mm, and with electrode length ranging from 2.3-6 mm. We set up a two-layer density profile and traverse it rapidly, yielding a time response comparable to PME. The Conduino's multi-channel capability is used to operate probe arrays, which helps to construct density fields in stratified flows.
2012-01-01
Comparisons are made among Molecular Dynamics (MD), Classical Density Functional Theory (c-DFT), and Poisson–Boltzmann (PB) modeling of the electric double layer (EDL) for the nonprimitive three component model (3CM) in which the two ion species and solvent molecules are all of finite size. Unlike previous comparisons between c-DFT and Monte Carlo (MC), the present 3CM incorporates Lennard-Jones interactions rather than hard-sphere and hard-wall repulsions. c-DFT and MD results are compared over normalized surface charges ranging from 0.2 to 1.75 and bulk ion concentrations from 10 mM to 1 M. Agreement between the two, assessed by electric surface potential and ion density profiles, is found to be quite good. Wall potentials predicted by PB begin to depart significantly from c-DFT and MD for charge densities exceeding 0.3. Successive layers are observed to charge in a sequential manner such that the solvent becomes fully excluded from each layer before the onset of the next layer. Ultimately, this layer filling phenomenon results in fluid structures, Debye lengths, and electric surface potentials vastly different from the classical PB predictions. PMID:23316120
Frictional Heating of Ions In The F2-region of The Ionosphere
NASA Astrophysics Data System (ADS)
Zhizhko, G. O.; Vlasov, V. G.
Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.
Collective cell migration without proliferation: density determines cell velocity and wave velocity
NASA Astrophysics Data System (ADS)
Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François
2018-05-01
Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.
Depth profile of halide anions under highly charged biological membrane
NASA Astrophysics Data System (ADS)
Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok
2015-03-01
Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.
Liquid Jet Cavitation via Molecular Dynamics
NASA Astrophysics Data System (ADS)
Ashurst, W. T.
1997-11-01
A two-dimensional molecular dynamics simulation of a liquid jet is used to investigate cavitation in a diesel-like fuel injector. A channel with a length four times its width has been examined at various system sizes (widths of 20 to 160 σ, where σ is the zero energy location in the Lennard-Jones potential). The wall boundary condition is Maxwell's diffuse reflection, similar to the work by Sun & Ebner (Phys. Rev A 46, 4813, 1992). Currently, the jet exhausts into a vacuum, but a second, low density gas will be incorporated to represent the compressed air in a diesel chamber. Four different flow rates are examined. With ρ U equal to √mɛ/σ^2 (the largest flow rate) the static pressure decreases by a factor of twenty between the channel entrance and exit. The largest flow rate has a parabolic velocity profile with almost constant density across the channel. The smallest flow rate has the same velocity profile but the density exhibits a large variation, with the minimum value in the channel center. Thus, the product ρ U is nearly constant across the channel at this flow rate. The discharge coefficient CD has a small variation with flow rate, but the velocity coefficient CV varies with the amount of two-phase fluid within the channel. The ratio of CV to CD varies from 1.3 (largest flow rate) to 2.0 (the smallest flow rate, which is one-eighth of the largest).
NASA Astrophysics Data System (ADS)
Mulder, Watson
Heterojunction with Intrinsic Thin-layer (HIT) solar cells are an important photovoltaic technology, recently reaching record power conversion efficiencies. HIT cells hold advantages over the conventional crystalline Si solar cells, such as their fabrication at lower temperatures and their shorter fabrication time. It is important to understand the electronic characteristics and transport properties of HIT cells to continue to improve their efficiencies. The fundamental measurements of a HIT solar cell with an innovative n+/p/p+ structure are presented. We also report on a series of these HIT cells fabricated on wafers with different doping concentrations, observing the relationship between doping concentration and characteristics such as open-circuit voltage and diffusion length. Nanocrystalline Silicon-Germanium (nc-SiGe) is a useful material for photovoltaic devices and photodetectors. The material features good absorption extending to the infrared region even in thin layers. Its bandgap can be adjusted between that of Si (˜1.1 eV) and Ge (˜0.7 eV) by varying the alloy composition ratio during deposition. However, there has been very little previous work to measure and understand the defect density spectrum of nc-SiGe. Defects are responsible for controlling the recombination and thus the performance of solar cell devices. Capacitance-Frequency measurements at various temperatures are used in order to estimate the trap density profile within the bandgap of nc-SiGe.
Suppression of turbulent particle flux during biased rotation in LAPD
NASA Astrophysics Data System (ADS)
Carter, T. A.
2005-10-01
The edge plasma in LAPD is rotated through the application of a bias voltage (typically 100V-200V) between the plasma source cathode and the vacuum vessel wall. Without bias, cross-field turbulent particle transport causes the density profile to extend well past the cathode edge, with a fairly gentle gradient (Ln˜10 cm). As the bias voltage is applied and increased past a threshold value, the measured density profile steepens dramatically (Ln˜2 cm) at a radius near the peak of the flow shear. Turbulent transport flux measurements in this region show that the flux is reduced and then suppressed completely as the threshold is approached. As the bias voltage is increased further, the measured turbulent transport flux reverses direction. The amplitude of the density and azimuthal electric field fluctuations is observed to decrease during biased rotation, the product of the amplitudes decreasing by a factor of 5. However the dominant change appears in the cross-phase, which is altered dramatically, leading to the observed suppression and reversal of the turbulent flux. Detailed two-dimensional turbulent correlation measurements have been performed using the high repetition rate (1 Hz) and high reproducibility of LAPD plasmas. In unbiased plasmas, the correlation is localized to around 5 cm radially and a slightly smaller distance azimuthally (ρs˜0.5-1 cm). During biased rotation, a dramatic increase in the azimuthal correlation is observed, however there is little change in the radial correlation length.
Chen, S. N.; Iwawaki, T.; Morita, K.; Antici, P.; Baton, S. D.; Filippi, F.; Habara, H.; Nakatsutsumi, M.; Nicolaï , P.; Nazarov, W.; Rousseaux, C.; Starodubstev, M.; Tanaka, K. A.; Fuchs, J.
2016-01-01
The ability to produce long-scale length (i.e. millimeter scale-length), homogeneous plasmas is of interest in studying a wide range of fundamental plasma processes. We present here a validated experimental platform to create and diagnose uniform plasmas with a density close or above the critical density. The target consists of a polyimide tube filled with an ultra low-density plastic foam where it was heated by x-rays, produced by a long pulse laser irradiating a copper foil placed at one end of the tube. The density and temperature of the ionized foam was retrieved by using x-ray radiography and proton radiography was used to verify the uniformity of the plasma. Plasma temperatures of 5–10 eV and densities around 1021 cm−3 are measured. This well-characterized platform of uniform density and temperature plasma is of interest for experiments using large-scale laser platforms conducting High Energy Density Physics investigations. PMID:26923471
Shinohara, S; Tanikawa, T; Motomura, T
2014-09-01
A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density ne were investigated with a radio frequency (rf) power less than 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n(e) up to ~5 × 10(12) cm(-3) was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.
Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow
NASA Astrophysics Data System (ADS)
Gupta, Ronak; Alam, Meheboob
2017-02-01
Hydrodynamic fields, macroscopic boundary conditions, and non-Newtonian rheology of the acceleration-driven Poiseuille flow of a dilute granular gas are probed using "direct simulation Monte Carlo" method for a range of Knudsen numbers (Kn, the ratio between the mean free path and the macroscopic length), spanning the rarefied regime of slip and transitional flows. It is shown that the "dissipation-induced clustering" (for 1 -en>0 , where en is the restitution coefficient), leading to inhomogeneous density profiles along the transverse direction, competes with "rarefaction-induced declustering" (for Kn>0 ) phenomenon, leaving seemingly "anomalous" footprints on several hydrodynamic and rheological quantities; one example is the well-known rarefaction-induced temperature bimodality, which could also result from inelastic dissipation that dominates in the continuum limit (Kn→0 ) as found recently [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523]. The simulation data on the slip velocity and the temperature slip are contrasted with well-established boundary conditions for molecular gases. A modified Maxwell-Navier-type boundary condition is found to hold in granular Poiseuille flow, with the velocity slip length following a power-law relation with Knudsen number Knδ, with δ ≈0.95 , for Kn≤0.1 . Transverse profiles of both first [N1(y ) ] and second [N2(y ) ] normal stress differences seem to correlate well with respective density profiles at small Kn; their centerline values [N1(0 ) and N2(0 ) ] can be of "odd" sign with respect to their counterparts in molecular gases. The phase diagrams are constructed in the (Kn,1 -en ) plane that demarcates the regions of influence of inelasticity and rarefaction, which compete with each other resulting in the sign change of both N1(0 ) and N2(0 ) . The results on normal stress differences are rationalized via a comparison with a Burnett-order theory [Sela and Goldhirsch, J. Fluid Mech. 361, 41 (1998), 10.1017/S0022112098008660], which is able to predict their correct behavior at small values of the Knudsen number. Lastly, the Knudsen paradox and its dependence on inelasticity are analyzed and contrasted with related recent works.
Ali, Taha A; Shehata, Mohamed I; Mohamed, Nazmi A
2015-06-01
In this work, fiber Bragg grating (FBG) strain sensors in single and quasi-distributed systems are investigated, seeking high-accuracy measurement. Since FBG-based strain sensors of small lengths are preferred in medical applications, and that causes the full width at half-maximum (FWHM) to be larger, a new apodization profile is introduced for the first time, to the best of our knowledge, with a remarkable FWHM at small sensor lengths compared to the Gaussian and Nuttall profiles, in addition to a higher mainlobe slope at these lengths. A careful selection of apodization profiles with detailed investigation is performed-using sidelobe analysis and the FWHM, which are primary judgment factors especially in a quasi-distributed configuration. A comparison between the elite selection of apodization profiles (extracted from related literature) and the proposed new profile is carried out covering the reflectivity peak, FWHM, and sidelobe analysis. The optimization process concludes that the proposed new profile with a chosen small length (L) of 10 mm and Δnac of 1.4×10-4 is the optimum choice for single stage and quasi-distributed strain-sensor networks, even better than the Gaussian profile at small sensor lengths. The proposed profile achieves the smallest FWHM of 15 GHz (suitable for UDWDM), and the highest mainlobe slope of 130 dB/nm. For the quasi-distributed scenario, a noteworthy high isolation of 6.953 dB is achieved while applying a high strain value of 1500 μstrain (με) for a five-stage strain-sensing network. Further investigation was undertaken, proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. A test was made of the inclusion of a uniform apodized sensor among other apodized sensors with the proposed profile in an FBG strain-sensor network.
Electron heating enhancement by frequency-chirped laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdani, E.; Afarideh, H., E-mail: hafarideh@aut.ac.ir; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir
2014-09-14
Propagation of a chirped laser pulse with a circular polarization through an uprising plasma density profile is studied by using 1D-3V particle-in-cell simulation. The laser penetration depth is increased in an overdense plasma compared to an unchirped pulse. The induced transparency due to the laser frequency chirp results in an enhanced heating of hot electrons as well as increased maximum longitudinal electrostatic field at the back side of the solid target, which is very essential in target normal sheath acceleration regime of proton acceleration. For an applied chirp parameter between 0.008 and 0.01, the maximum amount of the electrostatic fieldmore » is improved by a factor of 2. Furthermore, it is noticed that for a chirped laser pulse with a₀=5, because of increasing the plasma transparency length, the laser pulse can penetrate up to about n{sub e}≈6n{sub c}, where n{sub c} is plasma critical density. It shows 63% increase in the effective critical density compared to the relativistic induced transparency regime for an unchirped condition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhang; Chen, Wei
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Jiang, Zhang; Chen, Wei
2017-11-03
Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.
Electron heating by intense short-pulse lasers propagating through near-critical plasmas
NASA Astrophysics Data System (ADS)
Debayle, A.; Mollica, F.; Vauzour, B.; Wan, Y.; Flacco, A.; Malka, V.; Davoine, X.; Gremillet, L.
2017-12-01
We investigate the electron heating induced by a relativistic-intensity laser pulse propagating through a near-critical plasma. Using particle-in-cell simulations, we show that a specific interaction regime sets in when, due to the energy depletion caused by the plasma wakefield, the laser front profile has steepened to the point of having a length scale close to the laser wavelength. Wave breaking and phase mixing have then occurred, giving rise to a relativistically hot electron population following the laser pulse. This hot electron flow is dense enough to neutralize the cold bulk electrons during their backward acceleration by the wakefield. This neutralization mechanism delays, but does not prevent the breaking of the wakefield: the resulting phase mixing converts the large kinetic energy of the backward-flowing electrons into thermal energy greatly exceeding the conventional ponderomotive scaling at laser intensities > {10}21 {{{W}}{cm}}-2 and gas densities around 10% of the critical density. We develop a semi-numerical model, based on the Akhiezer-Polovin equations, which correctly reproduces the particle-in-cell-predicted electron thermal energies over a broad parameter range. Given this good agreement, we propose a criterion for full laser absorption that includes field-induced ionization. Finally, we show that our predictions still hold in a two-dimensional geometry using a realistic gas profile.
Effect of plantation density on kraft pulp production from red pine (Pinus resinosa Ait.)
J.Y. Zhu; G.C. Myers
2006-01-01
Red pine (Pinus resinosa Ait.) butt logs from 38 year old research plots were used to study the effect of plantation stand density on kraft pulp production. Results indicate that plantation stand density can affect pulp yield, unrefined pulp mean fibre length, and the response of pulp fibre length to pulp refining. However, the effect of plantation stand density on...
Fast Ion and Thermal Plasma Transport in Turbulent Waves in the Large Plasma Device (LAPD)
NASA Astrophysics Data System (ADS)
Zhou, Shu
2011-10-01
The transport of fast ions and thermal plasmas in electrostatic microturbulence is studied. Strong density and potential fluctuations (δn / n ~ δϕ / kTe ~ 0 . 5 , f ~5-50 kHz) are observed in the LAPD in density gradient regions produced by obstacles with slab or cylindrical geometry. Wave characteristics and the associated plasma transport are modified by driving sheared E ×B drift through biasing the obstacle, and by modification of the axial magnetic fields (Bz) and the plasma species. Cross-field plasma transport is suppressed with small bias and large Bz, and is enhanced with large bias and small Bz. Suppressed cross-field thermal transport coincides with a 180° phase shift between the density and potential fluctuations in the radial direction, while the enhanced thermal transport is associated with modes having low mode number (m = 1) and long radial correlation length. Large gyroradius lithium ions (ρfast /ρs ~ 10) orbit through the turbulent region. Scans with a collimated analyzer and with Langmuir probes give detailed profiles of the fast ion spatial-temporal distribution and of the fluctuating fields. Fast-ion transport decreases rapidly with increasing fast-ion gyroradius. Background waves with different scale lengths also alter the fast ion transport: Beam diffusion is smaller in waves with smaller structures (higher mode number); also, coherent waves with long correlation length cause less beam diffusion than turbulent waves. Experimental results agree well with gyro-averaging theory. When the fast ion interacts with the wave for most of a wave period, a transition from super-diffusive to sub-diffusive transport is observed, as predicted by diffusion theory. A Monte Carlo trajectory-following code simulates the interaction of the fast ions with the measured turbulent fields. Good agreement between observation and modeling is observed. Work funded by DOE and NSF and performed at the Basic Plasma Science Facility.
Non-stationary self-focusing of intense laser beam in plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2011-10-15
The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less
NASA Astrophysics Data System (ADS)
Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang
2008-04-01
The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.
Impact of sequencing depth and read length on single cell RNA sequencing data of T cells.
Rizzetto, Simone; Eltahla, Auda A; Lin, Peijie; Bull, Rowena; Lloyd, Andrew R; Ho, Joshua W K; Venturi, Vanessa; Luciani, Fabio
2017-10-06
Single cell RNA sequencing (scRNA-seq) provides great potential in measuring the gene expression profiles of heterogeneous cell populations. In immunology, scRNA-seq allowed the characterisation of transcript sequence diversity of functionally relevant T cell subsets, and the identification of the full length T cell receptor (TCRαβ), which defines the specificity against cognate antigens. Several factors, e.g. RNA library capture, cell quality, and sequencing output affect the quality of scRNA-seq data. We studied the effects of read length and sequencing depth on the quality of gene expression profiles, cell type identification, and TCRαβ reconstruction, utilising 1,305 single cells from 8 publically available scRNA-seq datasets, and simulation-based analyses. Gene expression was characterised by an increased number of unique genes identified with short read lengths (<50 bp), but these featured higher technical variability compared to profiles from longer reads. Successful TCRαβ reconstruction was achieved for 6 datasets (81% - 100%) with at least 0.25 millions (PE) reads of length >50 bp, while it failed for datasets with <30 bp reads. Sufficient read length and sequencing depth can control technical noise to enable accurate identification of TCRαβ and gene expression profiles from scRNA-seq data of T cells.
The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy.
Provitera, V; Gibbons, C H; Wendelschafer-Crabb, G; Donadio, V; Vitale, D F; Loavenbruck, A; Stancanelli, A; Caporaso, G; Liguori, R; Wang, N; Santoro, L; Kennedy, W R; Nolano, M
2018-06-01
We aimed to test the clinical utility of the leg:thigh intraepidermal nerve-fiber (IENF) density ratio as a parameter to discriminate between length-dependent small-fiber neuropathy (SFN) and small-fiber sensory ganglionopathy (SFSG) in subjects with signs and symptoms of small-fiber pathology. We retrospectively evaluated thigh and leg IENF density in 314 subjects with small-fiber pathology (173 with distal symmetrical length-dependent SFN and 141 with non-length-dependent SFSG). A group of 288 healthy subjects was included as a control group. The leg:thigh IENF density ratio was calculated for all subjects. We used receiver operating characteristic curve analyses to assess the ability of this parameter to discriminate between length-dependent SFN and SFSG, and the decision curve analysis to estimate its net clinical benefit. In patients with neuropathy, the mean IENF density was 14.8 ± 6.8/mm at the thigh (14.0 ± 6.9/mm in length-dependent SFN and 15.9 ± 6.7/mm in patients with SFSG) and 7.5 ± 4.5/mm at the distal leg (5.4 ± 3.2/mm in patients with length-dependent SFN and 10.1 ± 4.6/mm in patients with SFSG). The leg:thigh IENF density ratio was significantly (P < 0.01) lower in patients with length-dependent SFN (0.44 ± 0.23) compared with patients with SFSG (0.68 ± 0.28). The area under the curve of the receiver operating characteristic analysis to discriminate between patients with length-dependent SFN and SFSG was 0.79. The decision curve analysis demonstrated the clinical utility of this parameter. The leg:thigh IENF ratio represents a valuable tool in the differential diagnosis between SFSG and length-dependent SFN. © 2018 EAN.
NASA Astrophysics Data System (ADS)
Staller, Corey M.; Robinson, Zachary L.; Agrawal, Ankit; Gibbs, Stephen L.; Greenberg, Benjamin L.; Lounis, Sebastien D.; Kortshagen, Uwe R.; Milliron, Delia J.
2018-05-01
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data shows electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and, in agreement with variable temperature conductivity fits, find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Staller, Corey M; Robinson, Zachary L; Agrawal, Ankit; Gibbs, Stephen L; Greenberg, Benjamin L; Lounis, Sebastien D; Kortshagen, Uwe R; Milliron, Delia J
2018-05-09
Electron conduction through bare metal oxide nanocrystal (NC) films is hindered by surface depletion regions resulting from the presence of surface states. We control the radial dopant distribution in tin-doped indium oxide (ITO) NCs as a means to manipulate the NC depletion width. We find in films of ITO NCs of equal overall dopant concentration that those with dopant-enriched surfaces show decreased depletion width and increased conductivity. Variable temperature conductivity data show electron localization length increases and associated depletion width decreases monotonically with increased density of dopants near the NC surface. We calculate band profiles for NCs of differing radial dopant distributions and in agreement with variable temperature conductivity fits find NCs with dopant-enriched surfaces have narrower depletion widths and longer localization lengths than those with dopant-enriched cores. Following amelioration of NC surface depletion by atomic layer deposition of alumina, all films of equal overall dopant concentration have similar conductivity. Variable temperature conductivity measurements on alumina-capped films indicate all films behave as granular metals. Herein, we conclude that dopant-enriched surfaces decrease the near-surface depletion region, which directly increases the electron localization length and conductivity of NC films.
Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.
Tornow, R P; Stilling, R
1998-01-01
To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.
Stress and efficiency studies in EFG
NASA Technical Reports Server (NTRS)
1986-01-01
The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.
Instability of the m=1 self-shielded mode in finite-length nonneutral plasmas
NASA Astrophysics Data System (ADS)
Spencer, R. L.; Mason, G. W.; Powell, M.
2006-10-01
The m=1 self-shielded mode in a Malmberg-Penning trap is stable for a hollowed density profile in the infinite-length theory, but has been observed to be unstable in experiments. Earlier work by us and others showed theory and simulations to be a persistent factor of about 2 or more lower than experiment for the growth rate when applied to a single experimental point from measurements of Kabantsev and Driscoll (UCSD). Recently Shi, Chang, and Mitchell (University of Delaware) have measured the growth rates of the mode for a series of hollowed plasmas. We have done drift-kinetic particle-in- cell simulations of several of these experimental equilibria and have found the simulated growth rates also to be lower than experiment. We describe numerical experiments to vary the shape of the plasma ends, to vary the velocity distribution as it might result from the hollowing procedure, and to introduce resistive energy losses from the sectored confining ring to explain the discrepancy.
Spectral effects in the propagation of chirped laser pulses in uniform underdense plasma
NASA Astrophysics Data System (ADS)
Pathak, Naveen; Zhidkov, Alexei; Hosokai, Tomonao; Kodama, Ryosuke
2018-01-01
Propagation of linearly chirped and linearly polarized, powerful laser pulses in uniform underdense plasma with their duration exceeding the plasma wave wavelength is examined via 3D fully relativistic particle-in-cell simulations. Spectral evolution of chirped laser pulses, determined by Raman scattering, essentially depends on the nonlinear electron evacuation from the first wake bucket via modulation of the known parameter /n e ( r ) ω0 2 γ . Conversely, the relative motion of different spectral components inside a pulse changes the evolution of the pulse length and, therefore, the ponderomotive forces at the pulse rear. Such longitudinal dynamics of the pulse length provoke a parametric resonance in the laser wake with continuous electron self-injection for any chirped pulses. However, the total charge of accelerated electrons and their energy distribution essentially depends on the chirp. Besides, negatively chirped laser pulses are shown to be useful for spatially resolved measurements of the plasma density profiles and for rough estimations of the laser pulse intensity evolution in underdense plasma.
Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun
2016-10-01
Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.
NASA Technical Reports Server (NTRS)
Generazio, E. R.
1986-01-01
Microstructural images may be tone pulse encoded and subsequently Fourier transformed to determine the two-dimensional density of frequency components. A theory is developed relating the density of frequency components to the density of length components. The density of length components corresponds directly to the actual grain size distribution function from which the mean grain shape, size, and orientation can be obtained.
NASA Astrophysics Data System (ADS)
Karlsen, P.; Shuba, M. V.; Beckerleg, C.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V.; Viet, Ho; Nasibulin, A. G.; Tenne, R.; Hendry, E.
2018-01-01
We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μm length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.
Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data
NASA Astrophysics Data System (ADS)
Cherniak, Iurii; Zakharenkova, Irina
The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.
The cosmological dependence of cluster density profiles
NASA Technical Reports Server (NTRS)
Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.
1994-01-01
We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.
Step styles of pedestrians at different densities
NASA Astrophysics Data System (ADS)
Wang, Jiayue; Weng, Wenguo; Boltes, Maik; Zhang, Jun; Tordeux, Antoine; Ziemer, Verena
2018-02-01
Stepping locomotion is the basis of human movement. The investigation of stepping locomotion and its affecting factors is necessary for a more realistic knowledge of human movement, which is usually referred to as walking with equal step lengths for the right and left leg. To study pedestrians’ stepping locomotion, a set of single-file movement experiments involving 39 participants of the same age walking on a highly curved oval course is conducted. The microscopic characteristics of the pedestrians including 1D Voronoi density, speed, and step length are calculated based on a projected coordinate. The influence of the projection lines with different radii on the measurement of these quantities is investigated. The step lengths from the straight and curved parts are compared using the Kolmogorov-Smirnov test. During the experiments, six different step styles are observed and the proportions of different step styles change with the density. At low density, the main step style is the stable-large step style and the step lengths of one pedestrian are almost constant. At high density, some pedestrians adjust and decrease their step lengths. Some pedestrians take relatively smaller and larger steps alternately to adapt to limited space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraga, H.; Mahigashi, N.; Yamada, T.
2008-10-15
Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.
Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles
NASA Astrophysics Data System (ADS)
Motapon, O.
1998-01-01
The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.
Extended length microchannels for high density high throughput electrophoresis systems
Davidson, James C.; Balch, Joseph W.
2000-01-01
High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.
Giustino, Feliciano; Umari, Paolo; Pasquarello, Alfredo
2003-12-31
Using a density-functional approach, we study the dielectric permittivity across interfaces at the atomic scale. Focusing on the static and high-frequency permittivities of SiO2 films on silicon, for oxide thicknesses from 12 A down to the atomic scale, we find a departure from bulk values in accord with experiment. A classical three-layer model accounts for the calculated permittivities and is supported by the microscopic polarization profile across the interface. The local screening varies on length scales corresponding to first-neighbor distances, indicating that the dielectric transition is governed by the chemical grading. Silicon-induced gap states are shown to play a minor role.
Far-infrared laser diagnostics on the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Gao, X.; Lu, H. J.; Guo, Q. L.; Wan, Y. X.; Tong, X. D.
1995-01-01
A multichannel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer was developed to measure plasma electron density profile on the HT-6M tokamak. The structure of the seven-channel FIR laser interferometer is described. The laser source used in the interferometer was a continuous-wave glow discharge HCN laser with a cavity length of 3.4 m and power output of about 100 mW at 337 μm. The detection sensitivity was 1/15 fringe with a temporal resolution of 0.1 ms. Experimental results were measured by the seven-channel FIR HCN laser interferometer with edge Ohmic heating, a pumping limiter, and ion cyclotron resonant heating on the HT-6M tokamak are reported.
A variable mixing-length ratio for convection theory
NASA Technical Reports Server (NTRS)
Chan, K. L.; Wolff, C. L.; Sofia, S.
1981-01-01
It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.
X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.
NASA Astrophysics Data System (ADS)
Kawamoto, Eric Hitoshi
A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent measurements roughly tripled the range of Q, but an oxidized surface led to poor data and hindered interpretation. The analysis presented is speculative at best, but within the context of the thermally excited capillary wave model of simple liquid surfaces, there seems to be no serious deviation from the simple Gaussian interfacial profile with the aforementioned roughness.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
Neural network evaluation of reflectometry density profiles for control purposes
NASA Astrophysics Data System (ADS)
Santos, J.; Nunes, F.; Manso, M.; Nunes, I.
1999-01-01
Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.
NASA Astrophysics Data System (ADS)
Xu, Huifang; Dai, Yuehua
2017-02-01
A two-dimensional analytical model of double-gate (DG) tunneling field-effect transistors (TFETs) with interface trapped charges is proposed in this paper. The influence of the channel mobile charges on the potential profile is also taken into account in order to improve the accuracy of the models. On the basis of potential profile, the electric field is derived and the expression for the drain current is obtained by integrating the BTBT generation rate. The model can be used to study the impact of interface trapped charges on the surface potential, the shortest tunneling length, the drain current and the threshold voltage for varying interface trapped charge densities, length of damaged region as well as the structural parameters of the DG TFET and can also be utilized to design the charge trapped memory devices based on TFET. The biggest advantage of this model is that it is more accurate, and in its expression there are no fitting parameters with small calculating amount. Very good agreements for both the potential, drain current and threshold voltage are observed between the model calculations and the simulated results. Project supported by the National Natural Science Foundation of China (No. 61376106), the University Natural Science Research Key Project of Anhui Province (No. KJ2016A169), and the Introduced Talents Project of Anhui Science and Technology University.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
He, Nianpeng; Wu, Ling; Zhou, Daowei
2004-12-01
This paper studied the clonal architecture of two divergent Leymus chinensis types (grey-green type and yellow-green type) in Songnen grassland, and compared their internode length, spacer length, interbranching length, interbranching angle, and ramet population density and height under the same habitat. The results showed that there was no significant difference in these clonal characteristics except spacer length and ramet population density between the two types of L. chinensis, and yellow-green type, with less spacer length and more ramet density than grey-green type, should be more adaptable to the resourceful habitat. Moreover, the V-indices of the clonal architecture of two divergent L. chinensis types were all close to 1, and the difference was not significant. Therefore, both of the two types belonged to typical guerilla clonal plant.
Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.
Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R
2013-07-01
The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.
A Low-cost Beam Profiler Based On Cerium-doped Silica Fibers
NASA Astrophysics Data System (ADS)
Potkins, David Edward; Braccini, Saverio; Nesteruk, Konrad Pawel; Carzaniga, Tommaso Stefano; Vedda, Anna; Chiodini, Norberto; Timmermans, Jacob; Melanson, Stephane; Dehnel, Morgan Patrick
A beam profiler called the Universal Beam Monitor (UniBEaM) has been developed by D-Pace Inc. (Canada) and the Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of Bern (Switzerland). The device is based on passing 100 to 600 micron cerium-doped optical fibers through a particle beam. Visible scintillation light from the sensor fibers is transmitted over distances of tens of meters to the light sensors with minimal signal loss and no susceptibility to electromagnetic fields. The probe has an insertion length of only 70 mm. The software plots the beam intensity distribution in the horizontal and vertical planes, and calculates the beam location and integrated profile area, which correlates well with total beam current. UniBEaM has a large dynamic range, operating with beam currents of ∼pA to mA, and a large range of particle kinetic energies of ∼keV to GeV, depending on the absorbed power density. Test data are presented for H- beams at 25keV for 500 μA, and H+ beams at 18MeV for 50pA to 10 μA. Maximum absorbed power density of the optical fiber before thermal damage is discussed in relation to dE/dx energy deposition as a function of particle type and kinetic energy. UniBEaM is well suited for a wide variety of beamlines including discovery science applications, radio-pharmaceutical production, hadron therapy, industrial ion beam applications including ion implantation, industrial electron beams, and ion source testing.
Effect of α-damage on fission-track annealing in zircon
Kasuya, Masao; Naeser, Charles W.
1988-01-01
The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e., different amounts of ??-damage) has been studied by one-hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon.
Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, M.; Ghamari, F.
2012-10-15
By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less
Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong
The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is describedmore » by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10{sup −7} fm.« less
Head-on collision of multistate ultralight BEC dark matter configurations
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; Avilez, Ana A.
2018-06-01
Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.
First results of the SOL reflectometer on Alcator C-Mod.
Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G
2012-10-01
A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.; Wise, J.; Ellis, R. J.
1977-01-01
The Ribbon-to-Ribbon (RTR) approach to silicon ribbon growth was investigated. An existing RTR apparatus, RTR#1, was upgraded to allow for 5 cm wide ribbon growth with a finite stroke length of at least 15 cm. A second RTR apparatus, RTR#2, was designed, built, and operated which utilizes continuous feed mechanisms and allows continuous growth of 7.5 cm wide ribbons. RTR#2 includes development and utilization of advanced beam scanning (or shaping), high power lasers, and thermal profile modification elements to attain maximum growth velocities (with a design goal of 18 cm/min). Materials studies, process development, and thermal analyses are also described. Residual stresses and dislocation densities were minimized through theoretical and experimental efforts towards optimization of thermal profiles. Growth runs were performed on RTR#2 and solar cells were fabricated which demonstrated efficiencies greater than 10%.
Turbulence experiments on the PKU Plasma Test (PPT) device
NASA Astrophysics Data System (ADS)
Xu, Tianchao; Xiao, Chijie; Yang, Xiaoyi; Chen, Yihang; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The PKU Plasma Test (PPT) device is a linear plasma device in Peking University, China. It has a vacuum chamber with 1000mm length and 500mm diameter. A pair of Helmholtz coils can generate toroidal magnetic field up to 2000 Gauss, and plasma was generated by a helicon source. Probes and fast camera were used to diagnose the parameters and got the turbulence spectrums, coherent structure, etc. The dynamics of turbulence, coherent structure and parameter profiles have been analyzed, and it has been found that the turbulence states are related to the equilibrium profiles; Some coherent structures exist and show strongly interactions with the background turbulences; The spatial and temporal evolutions of these coherent structures are related to the amplitude of the density gradient and electric field. These results will help on further studies of plasma transport. This work was supported by the National Natural Science Foundation of China under 11575014 and 11375053, CHINA MOST under 2012YQ030142 and ITER-CHINA program 2015GB120001.
NASA Astrophysics Data System (ADS)
Miskowiec, A.; Schnase, P.; Bai, M.; Taub, H.; Hansen, F. Y.; Dubey, M.; Singh, S.; Majewski, J.
2012-02-01
We have recently been investigating the diffusion of water on single-supported DMPC lipid bilayer membranes at different levels of hydration, using high-resolution quasielastic neutron scattering (QNS). To aid in the interpretation of these QNS studies, we have conducted neutron reflectivity (NR) measurements on SPEAR at LANSCE to characterize the structure of similarly prepared samples. Protonated DMPC membranes were deposited onto SiO2-coated Si(100) substrates and characterized by Atomic Force Microscopy (AFM) at different levels of hydration. We find reasonable agreement between the membrane thickness determined by NR and AFM at room temperature. We also find consistency between the scattering length density (SLD) profile in the vicinity of the upper leaflet of the supported DMPC membrane and that found in a molecular dynamics simulation of a freestanding membrane at 303 K. However, the fit to the reflectivity curve can be improved by modifying the SLD profile near the leaflet closest to the SiO2 surface.
MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu
2016-01-01
Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431
NASA Astrophysics Data System (ADS)
Sold, L.; Huss, M.; Eichler, A.; Schwikowski, M.; Hoelzle, M.
2015-05-01
The spatial representation of accumulation measurements is a major limitation for current glacier mass balance monitoring approaches. Here, we present a method for estimating annual accumulation rates on a temperate Alpine glacier based on the interpretation of internal reflection horizons (IRHs) in helicopter-borne ground-penetrating radar (GPR) data. For each individual GPR measurement, the signal travel time is combined with a simple model for firn densification and refreezing of meltwater. The model is calibrated at locations where GPR repeat measurements are available in two subsequent years and the densification can be tracked over time. Two 10.5 m long firn cores provide a reference for the density and chronology of firn layers. Thereby, IRHs correspond to density maxima, but not exclusively to former summer glacier surfaces. Along GPR profile sections from across the accumulation area we obtain the water equivalent (w.e.) of several annual firn layers. Because deeper IRHs could be tracked over shorter distances, the total length of analysed profile sections varies from 7.3 km for the uppermost accumulation layer (2011) to 0.1 km for the deepest (i.e. oldest) layer (2006). According to model results, refreezing accounts for 10% of the density increase over time and depth, and for 2% of the water equivalent. The strongest limitation to our method is the dependence on layer chronology assumptions. We show that GPR can be used not only to complement existing mass balance monitoring programmes on temperate glaciers but also to retrospectively extend newly initiated time series.
Souza, D R S; Nakazone, M A; Pinhel, M A S; Alvares, R M; Monaco, A C; Pinheiro, A; Barros, C F D C; Cury, P M; Cunrath, G S; Netinho, J G
2009-05-01
We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the epsilon4/epsilon4 genotype (6%) was present only in controls. The patients had reduced levels (mean +/- SD) of total cholesterol and low-density lipoprotein cholesterol fraction (180.4 +/- 49.5 and 116.1 +/- 43.1 mg/dL, respectively) compared to controls (204.2 +/- 55.6, P = 0.135 and 134.7 +/- 50.8 mg/dL; P = 0.330, respectively) indicating that they were not statistically significant after the Bonferroni correction. The APOE*4 allele was associated with lower levels of total cholesterol, low- and high-density lipoprotein cholesterol fraction and increased levels of very low-density lipoprotein cholesterol fraction and triglycerides only among patients (P = 0.014). There was a positive correlation between the altered lipid profile and increased body mass indexes in both groups (P < 0.010). Moreover, a higher rate of hypertension and overweight was observed in controls (P < 0.002). In conclusion, the presence of the epsilon4/epsilon4 genotype only in controls may be due to a protective effect against CRC. Lower lipid profile values among patients, even those on lipid-rich diets associated with the APOE*4 allele, suggest alterations in the lipid synthesis and metabolism pathways in CRC.
NASA Astrophysics Data System (ADS)
Poudjom Djomani, Y. H.; Diament, M.; Albouy, Y.
1992-07-01
The Adamawa massif in Central Cameroon is one of the African domal uplifts of volcanic origin. It is an elongated feature, 200 km wide. The gravity anomalies over the Adamawa uplift were studied to determine the mechanical behaviour of the lithosphere. Two approaches were used to analyse six gravity profiles that are 600 km long and that run perpendicular to the Adamawa trend. Firstly, the coherence function between topography and gravity was interpreted; secondly, source depth estimations by spectral analysis of the gravity data was performed. To get significant information for the interpretation of the experimental coherence function, the length of the profiles was varied from 320 km to 600 km. This treatment allows one to obtain numerical estimates of the coherence function. The coherence function analysis points out that the lithosphere is deflected and thin beneath the Adamawa uplift, and the Effective Elastic Thickness is of about 20 km. To fit the coherence, a load from below needs to be taken into account. This result on the Adamawa massif is of the same order of magnitude as those obtained on other African uplifts such as Hoggar, Darfur and Kenya domes. For the depth estimation, three major density contrasts were found: the shallowest depth (4-15 km) can be correlated to shear zone structures and the associated sedimentary basins beneath the uplift; the second density contrast (18-38 km) corresponds to the Moho; and finally, the last depth (70-90 km) would be the top of the upper mantle and demotes the low density zone beneath the Adamawa uplift.
Broeckhoven, Ken; Desmet, Gert
2012-10-05
The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shinohara, S., E-mail: sshinoha@cc.tuat.ac.jp; Tanikawa, T.; Motomura, T.
2014-09-15
A flat type, segmented multi-loop antenna was developed in the Tokai Helicon Device, built for producing high-density helicon plasma, with a diameter of 20 cm and an axial length of 100 cm. This antenna, composed of azimuthally splitting segments located on four different radial positions, i.e., r = 2.8, 4.8, 6.8, and 8.8 cm, can excite the azimuthal mode number m of 0, ±1, and ±2 by a proper choice of antenna feeder parts just on the rear side of the antenna. Power dependencies of the electron density n{sub e} were investigated with a radio frequency (rf) power less thanmore » 3 kW (excitation frequency ranged from 8 to 20 MHz) by the use of various types of antenna segments, and n{sub e} up to ∼5 × 10{sup 12} cm{sup −3} was obtained after the density jump from inductively coupled plasma to helicon discharges. Radial density profiles of m = 0 and ±1 modes with low and high rf powers were measured. For the cases of these modes after the density jump, the excited mode structures derived from the magnetic probe measurements were consistent with those expected from theory on helicon waves excited in the plasma.« less
Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P
2013-03-11
The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.
2004-07-01
The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the
NASA Technical Reports Server (NTRS)
Judge, P. G.; Cuntz, M.
1993-01-01
We compare ab initio calculations of semiforbidden C II line profiles near 2325 A with recently published observations of the inactive red giant Alpha Tau (K5 III) obtained using the GHRS on board the Hubble Space Telescope. Our one-dimensional, time-dependent calculations assume that the chromosphere is heated by stochastic acoustic shocks generated by photospheric convection. We calculate various models using results from traditional (mixing length) convection zone calculations as input to hydrodynamical models. The semiforbidden C II line profiles and ratios provide sensitive diagnostics of chromospheric velocity fields, electron densities, and temperatures. We identify major differences between observed and computed line profiles which are related to basic gas dynamics and which are probably not due to technical modeling restrictions. If the GHRS observations are representative of chromospheric conditions at all epochs, then one (or more) of our model assumptions must be incorrect. Several possibilities are examined. We predict time variability of semiforbidden C II lines for comparison with observations. Based upon data from the IUE archives, we argue that photospheric motions associated with supergranulation or global pulsation modes are unimportant in heating the chromosphere of Alpha Tau.
The flat density profiles of massive, and relaxed galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popolo, A. Del, E-mail: adelpopolo@oact.inaf.it
2014-07-01
The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction.more » Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total mass density profile which is NFW-like, clusters having more massive BCGs at their centers must contain less DM in their center. Consequently the inner profile has a flatter slope.« less
Potential for on-orbit manufacture of large space structures using the pultrusion process
NASA Technical Reports Server (NTRS)
Wilson, Maywood L.; Macconochie, Ian O.; Johnson, Gary S.
1987-01-01
On-orbit manufacture of lightweight, high-strength, advanced-composite structures using the pultrusion process is proposed. This process is adaptable to a zero-gravity environment by using preimpregnated graphite-fiber reinforcement systems. The reinforcement material is preimpregnated with a high-performance thermoplastic resin at a ground station, is coiled on spools for compact storage, and is transported into Earth orbit. A pultrusion machine is installed in the Shuttle cargo bay from which very long lengths of the desired structure is fabricated on-orbit. Potential structural profiles include rods, angles, channels, hat sections, tubes, honeycomb-cored panels, and T, H, and I beams. A potential pultrudable thermoplastic/graphite composite material is presented as a model for determining the effect on Earth-to-orbit package density of an on-orbit manufacture, the package density is increased by 132 percent, and payload volume requirement is decreased by 56.3 percent. The fabrication method has the potential for on-orbit manufacture of structural members for space platforms, large space antennas, and long tethers.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
The Cascadia Subduction Zone: two contrasting models of lithospheric structure
Romanyuk, T.V.; Blakely, R.; Mooney, W.D.
1998-01-01
The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
Measurement of operator workload in an information processing task
NASA Technical Reports Server (NTRS)
Jenney, L. L.; Older, H. J.; Cameron, B. J.
1972-01-01
This was an experimental study to develop an improved methodology for measuring workload in an information processing task and to assess the effects of shift length and communication density (rate of information flow) on the ability to process and classify verbal messages. Each of twelve subjects was exposed to combinations of three shift lengths and two communication densities in a counterbalanced, repeated measurements experimental design. Results indicated no systematic variation in task performance measures or in other dependent measures as a function of shift length or communication density. This is attributed to the absence of a secondary loading task, an insufficiently taxing work schedule, and the lack of psychological stress. Subjective magnitude estimates of workload showed fatigue (and to a lesser degree, tension) to be a power function of shift length. Estimates of task difficulty and fatigue were initially lower but increased more sharply over time under low density than under high density conditions. An interpretation of findings and recommedations for furture research are included. This research has major implications to human workload problems in information processing of air traffic control verbal data.
Is the von Kármán constant affected by sediment suspension?
NASA Astrophysics Data System (ADS)
Castro-Orgaz, Oscar; GiráLdez, Juan V.; Mateos, Luciano; Dey, Subhasish
2012-12-01
Is the von Kármán constant affected by sediment suspension? The presence of suspended sediment in channels and fluvial streams has been known for decades to affect turbulence transfer mechanism in sediment-laden flows, and, therefore, the transport and fate of sediments that determine the bathymetry of natural water courses. This study explores the density stratification effects on the turbulent velocity profile and its impact on the transport of sediment. There is as yet no consensus in the scientific community on the effect of sediment suspension on the von Kármán parameter,κ. Two different theories based on the empirical log-wake velocity profile are currently under debate: One supports a universal value ofκ = 0.41 and a strength of the wake, Π, that is affected by suspended sediment. The other suggests that both κ and Π could vary with suspended sediment. These different theories result in a conceptual problem regarding the effect of suspended sediment on κ, which has divided the research area. In this study, a new mixing length theory is proposed to describe theoretically the turbulent velocity profile. The analytical approach provides added insight defining κas a turbulent parameter which varies with the distance to the bed in sediment-laden flows. The theory is compared with previous experimental data and simulations using ak-ɛturbulence closure to the Reynolds averaged Navier Stokes equations model. The mixing length model indicates that the two contradictory theories incorporate the stratified flow effect into a different component of the log-wake law. The results of this work show that the log-wake fit with a reducedκ is the physically coherent approximation.
Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids.
Nichols, S N; Hofmann, R W; Williams, W M; van Koten, C
2016-05-20
Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC 1 ) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Two white clover cultivars, two T. uniflorum accessions and two BC 1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100-200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC 1 than 'Crusader'. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50-100 mm deep than the other entries, and more of its fine root mass at 400-500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400-500 mm than most entries, and a smaller decrease in root length density with depth. These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rooting depth and root depth distribution of Trifolium repens × T. uniflorum interspecific hybrids
Nichols, S. N.; Hofmann, R. W.; Williams, W. M.; van Koten, C.
2016-01-01
Background and aims Traits related to root depth distribution were examined in Trifolium repens × T. uniflorum backcross 1 (BC1) hybrids to determine whether root characteristics of white clover could be improved by interspecific hybridization. Methods Two white clover cultivars, two T. uniflorum accessions and two BC1 populations were grown in 1 -m deep tubes of sand culture. Maximum rooting depth and root mass distribution were measured at four harvests over time, and root distribution data were fitted with a regression model to provide measures of root system shape. Morphological traits were measured at two depths at harvest 3. Key Results Root system shape of the hybrids was more similar to T. uniflorum than to white clover. The hybrids and T. uniflorum had a higher rate of decrease in root mass with depth than white clover, which would result in higher proportions of root mass in the upper profile. Percentage total root mass at 100–200 mm depth was higher for T. uniflorum than white clover, and for Crusader BC1 than ‘Crusader’. Roots of the hybrids and T. uniflorum also penetrated deeper than those of white clover. T. uniflorum had thicker roots at 50–100 mm deep than the other entries, and more of its fine root mass at 400–500 mm. The hybrids and white clover had more of their fine root mass higher in the profile. Consequently, T. uniflorum had a higher root length density at 400–500 mm than most entries, and a smaller decrease in root length density with depth. Conclusions These results demonstrate that rooting characteristics of white clover can be altered by hybridization with T. uniflorum, potentially improving water and nutrient acquisition and drought resistance. Root traits of T. uniflorum are likely to be adaptations to soil moisture and fertility in its natural environment. PMID:27208735
River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front
NASA Astrophysics Data System (ADS)
Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui
2017-06-01
To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and <3 m length respectively) were collected seaward of the Mississippi River Southwest Pass in 25-75 m water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (<40 years, <3 m length). This may be explained by rapid proximal sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.
NASA Astrophysics Data System (ADS)
Driessen, F. A. J. M.; Bauhuis, G. J.; Hageman, P. R.; van Geelen, A.; Giling, L. J.
1994-12-01
The modulation-doped ordered-GaInP2/disordered-GaInP2 homojunction is presented. Capacitance-voltage (CV) profiling techniques, temperature-dependent Hall and resistivity measurements, cross-sectional transverse electron micrographs (TEM), and high-field magnetotransport have been used to characterize this structure grown by metal-organic vapor-phase epitaxy. The CV measurements showed a narrow profile at the homointerface with an order of magnitude reduction in carrier density within 3 nm. Typical two-dimensional behavior was observed from Hall data showing sheet carrier densities as high as 3.6×1013 cm-2 without carrier freeze-out, and constant mobilities around 900 cm2 V-1 s-1 below T=100 K. The 300-K channel conductivity of this junction is 3.2×10-3 Ω-1, which is higher than reported for other two-dimensional electron gases. By proper choice of the substrate orientation, domains of only the (111¯) ordering variant were present. TEM showed elongated shapes of average thickness 3.5-6 nm and length 75 nm in the (011) plane. By using Hall bars with different current directions, an asymmetry is observed for the contributions to the scattering mechanisms which determine the mobility: ``mesoscopic'' interface-roughness scattering for T<100 K and cluster scattering for 100
Experimental and Computational Study fo CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame
NASA Technical Reports Server (NTRS)
Walsh, K. T.
1998-01-01
In this study, we extend the results of previous combined numerical and experimental investigations of an axisymmetric laminar diffusion flame in which difference Raman spectroscopy, laser-induced fluorescence (LIF), and a multidimensional flame model were used to generate profiles of the temperature and major and minor species. A procedure is outlined by which the number densities of ground-state CH (X(sup 2)II) excited-state CH (A(sup 2)Delta, denoted CH*), and excited-state OH (A(sup 2)Sigma, denoted OH*) are measured and modeled. CH* and OH* number densities are deconvoluted from line-of-sight flame-emission measurements. Ground-state CH is measured using linear LIF. The computations are done with GRI Mech 2.11 as well as an alternate hydrocarbon mechanism. In both cases, additional reactions for the production and consumption of CH* and OH* are added from recent kinetic studies. Collisional quenching and spontaneous emission are responsible for the de-excitation of the excited-state radicals. As with our previous investigations, GRI Mech 2.11 continues to produce very good agreement with the overall flame length observed in the experiments, while significantly under predicting the flame lift-off height. The alternate kinetic scheme is much more accurate in predicting lift-off height but overpredicts the over-all flame length. Ground-state CH profiles predicted with GRI Mech 2.11 are in excellent agreement with the corresponding measurements, regarding both spatial distribution and absolute concentration (measured at 4 ppm) of the CH radical. Calculations of the excited-state species show reasonable agreement with the measurements as far as spatial distribution and overall characteristics are concerned. For OH*, the measured peak mole fraction, 1.3 x 10(exp -8), compared well with computed peaks, while the measured peak level for CH*, 2 x 10(exp -9), was severely underpredicted by both kinetic schemes, indicating that the formation and destruction kinetics associated with excited-state species in flames require further research.
NASA Astrophysics Data System (ADS)
Fisher, A. W.; Sanford, L. P.; Scully, M. E.
2016-12-01
Coherent wave-driven turbulence generated through wave breaking or nonlinear wave-current interactions, e.g. Langmuir turbulence (LT), can significantly enhance the downward transfer of momentum, kinetic energy, and dissolved gases in the oceanic surface layer. There are few observations of these processes in the estuarine or coastal environments, where wind-driven mixing may co-occur with energetic tidal mixing and strong density stratification. This presents a major challenge for evaluating vertical mixing parameterizations used in modeling estuarine and coastal dynamics. We carried out a large, multi-investigator study of wind-driven estuarine dynamics in the middle reaches of Chesapeake Bay, USA, during 2012-2013. The center of the observational array was an instrumented turbulence tower with both atmospheric and marine turbulence sensors as well as rapidly sampled temperature and conductivity sensors. For this paper, we examined the impacts of surface gravity waves on vertical profiles of turbulent mixing and compared our results to second-moment turbulence closure predictions. Wave and turbulence measurements collected from the vertical array of Acoustic Doppler Velocimeters (ADVs) provided direct estimates of the dominant terms in the TKE budget and the surface wave field. Observed dissipation rates, TKE levels, and turbulent length scales are compared to published scaling relations and used in the calculation of second-moment nonequilibrium stability functions. Results indicate that in the surface layer of the estuary, where elevated dissipation is balanced by vertical divergence in TKE flux, existing nonequilibrium stability functions underpredict observed eddy viscosities. The influences of wave breaking and coherent wave-driven turbulence on modeled and observed stability functions will be discussed further in the context of turbulent length scales, TKE and dissipation profiles, and the depth at which the wave-dominated turbulent transport layer transitions to a turbulent log layer. The influences of fetch-limited wind waves, density stratification, and surface buoyancy fluxes will also be discussed.
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
Light impurity transport in JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET
2018-03-01
A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less
Surface currents associated with external kink modes in tokamak plasmas during a major disruption
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2017-10-01
The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.
The effect of α-damage on fission-track annealing in zircon
Kasuya, M.; Naeser, C.W.
1988-01-01
The thermal stability of confined fission-track lengths in four zircon samples having different spontaneous track densities (i.e. different amounts of ??-damage) has been studied by one hour isochronal annealing experiments. The thermal stability of spontaneous track lengths is independent of initial spontaneous track density. The thermal stability of induced track lengths in pre-annealed zircon, however, is significantly higher than that of spontaneous track lengths. The results indicate that the presence of ??-damage lowers the thermal stability of fission-tracks in zircon. ?? 1988.
Three statistical models for estimating length of stay.
Selvin, S
1977-01-01
The probability density functions implied by three methods of collecting data on the length of stay in an institution are derived. The expected values associated with these density functions are used to calculate unbiased estimates of the expected length of stay. Two of the methods require an assumption about the form of the underlying distribution of length of stay; the third method does not. The three methods are illustrated with hypothetical data exhibiting the Poisson distribution, and the third (distribution-independent) method is used to estimate the length of stay in a skilled nursing facility and in an intermediate care facility for patients enrolled in California's MediCal program. PMID:914532
Three statistical models for estimating length of stay.
Selvin, S
1977-01-01
The probability density functions implied by three methods of collecting data on the length of stay in an institution are derived. The expected values associated with these density functions are used to calculate unbiased estimates of the expected length of stay. Two of the methods require an assumption about the form of the underlying distribution of length of stay; the third method does not. The three methods are illustrated with hypothetical data exhibiting the Poisson distribution, and the third (distribution-independent) method is used to estimate the length of stay in a skilled nursing facility and in an intermediate care facility for patients enrolled in California's MediCal program.
An ALMA study of the Orion Integral Filament. I. Evidence for narrow fibers in a massive cloud
NASA Astrophysics Data System (ADS)
Hacar, A.; Tafalla, M.; Forbrich, J.; Alves, J.; Meingast, S.; Grossschedl, J.; Teixeira, P. S.
2018-03-01
Aim. We have investigated the gas organization within the paradigmatic Integral Shape Filament (ISF) in Orion in order to decipher whether or not all filaments are bundles of fibers. Methods: We combined two new ALMA Cycle 3 mosaics with previous IRAM 30m observations to produce a high-dynamic range N2H+ (1-0) emission map of the ISF tracing its high-density material and velocity structure down to scales of 0.009 pc (or 2000 AU). Results: From the analysis of the gas kinematics, we identify a total of 55 dense fibers in the central region of the ISF. Independently of their location in the cloud, these fibers are characterized by transonic internal motions, lengths of 0.15 pc, and masses per unit length close to those expected in hydrostatic equilibrium. The ISF fibers are spatially organized forming a dense bundle with multiple hub-like associations likely shaped by the local gravitational potential. Within this complex network, the ISF fibers show a compact radial emission profile with a median FWHM of 0.035 pc systematically narrower than the previously proposed universal 0.1 pc filament width. Conclusions: Our ALMA observations reveal complex bundles of fibers in the ISF, suggesting strong similarities between the internal substructure of this massive filament and previously studied lower-mass objects. The fibers show identical dynamic properties in both low- and high-mass regions, and their widespread detection in nearby clouds suggests a preferred organizational mechanism of gas in which the physical fiber dimensions (width and length) are self-regulated depending on their intrinsic gas density. Combining these results with previous works in Musca, Taurus, and Perseus, we identify a systematic increase of the surface density of fibers as a function of the total mass per-unit-length in filamentary clouds. Based on this empirical correlation, we propose a unified star-formation scenario where the observed differences between low- and high-mass clouds, and the origin of clusters, emerge naturally from the initial concentration of fibers. The movie associated to Fig. 2 is available at http://https://www.aanda.orgThe data products of this work are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A77
NASA Astrophysics Data System (ADS)
Herbrich, Marcus; Gerke, Horst H.; Sommer, Michael
2017-04-01
The soil water uptake by crops is a key process in the hydrological cycle of agricultural ecosystems. In the arable hummocky ground moraines soil landscapes, an erosion-induced spatial differentiation of soil types has been established due to water and tillage erosion. Crop development may reflect soil landscape patterns and erosion-induced soil profile modifications, respectively, by increased or reduced plant and root growth. The objective was analyze field data of the root density and the root lengths of winter wheat for a non-eroded reference soil at the plateau (Albic Luvisol), an extremely eroded soil at steep midslope (Calcaric Regosol), and depositional soil at the footslope (Colluvic Regosol) using the minirhizotron technique. From 9/14 to 8/15 results indicate that root density values were highest for the Colluvic Regosol, followed by the Albic Luvisol and lowest for the Calcaric Regosol. In turn, the lowest maximum root penetration depth was found in the Colluvic Regosol because of the relatively high and fluctuating water table at this landscape position. The analyzed field root data revealed positive relations to above-ground plant parameters and corroborated the hypothesis that the crop root system was reflecting erosion-induced soil profile modifications. When accounting for the position-specific root development, the simulation of water and solute movement suggested differences in the balances as compared to assuming a spatially uniform development.
Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks
NASA Astrophysics Data System (ADS)
Hu, Youjun; Chen, Yang; Parker, Scott
2017-10-01
A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.
Effects of pressing schedule on formation of vertical density profile for MDF panels
Zhiyong Cai; James H. Muehl; Jerrold E. Winandy
2006-01-01
A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...
Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study
NASA Astrophysics Data System (ADS)
Borówko, M.; Sokołowski, S.; Staszewski, T.; Pizio, O.
2018-01-01
We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical core with a number of ligands attached to it and each ligand is composed of several spherical, tangentially jointed segments. The number of segments is the same for all ligands. Particular models differ by the numbers of ligands and of segments per ligand, but the total number of segments is constant. Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can "slide" over the core surface. Using molecular dynamics simulations we investigate the differences in the structure of a system close to the wall. In order to characterize the distribution of the ligands around the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of the mass dipoles. Additionally, we also employed a density functional approach to obtain the density profiles. We have found that if the number of ligands is not too high, the proposed version of the theory is capable to predict the structure of the system with a reasonable accuracy.
NASA Astrophysics Data System (ADS)
Hokamoto, Shinji
This study deals with orbital transfer of a satellite using a tether extension / retrieval mechanism. Instead of using propellant for the orbital transfer, the present concept uses electrical energy. By controlling the pitch motion of the tether system, we can achieve a prescribed velocity of the satellite at a prescribed position. By cutting the tether at that instant, we can inject the satellite into a designed new orbit. This paper considers co-planar motion and proposes a technique to achieve the desired tether length, pitch angle, and pitch angular rate at a designated position in orbit by using only tether length control. These three state variables are adjusted to their target values in three consecutive sections in the orbit; 1) control for the angular momentum of the pitching motion, which implies to adjust the tether length, 2) control for the pitch angle, and 3) control for the pitch angular rate. In each section, a pitch acceleration profile can be formed by using Fourier series as an alternative input for tether length profile. Their coefficients can be obtained without numerical iterations by using the simple initial / final relationships for the pitch angle and pitch angular rate. Therefore, this proposed procedure requires less computational cost than a numerical search, is easily applicable for different models and orbits, and can cope with physical restrictions of the system, such as tether tension or maximum tether length. Furthermore, the resulting final states precisely coincide with the target values. To demonstrate that the proposed procedure can successfully generate proper input profiles, this paper presents an orbital transfer problem as an example, and verifies its effectiveness. The simulation results show that the maximum tether length is less than 5km, and that the tether tension is kept positive during the mission.
NASA Astrophysics Data System (ADS)
Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno
2013-09-01
Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiam, D. E., E-mail: daguiam@ipfn.tecnico.ulisboa.pt; Silva, A.; Carvalho, P. J.
A new multichannel frequency modulated continuous-wave reflectometry diagnostic has been successfully installed and commissioned on ASDEX Upgrade to measure the plasma edge electron density profile evolution in front of the Ion Cyclotron Range of Frequencies (ICRF) antenna. The design of the new three-strap ICRF antenna integrates ten pairs (sending and receiving) of microwave reflectometry antennas. The multichannel reflectometer can use three of these to measure the edge electron density profiles up to 2 × 10{sup 19} m{sup −3}, at different poloidal locations, allowing the direct study of the local plasma layers in front of the ICRF antenna. ICRF power coupling,more » operational effects, and poloidal variations of the plasma density profile can be consistently studied for the first time. In this work the diagnostic hardware architecture is described and the obtained density profile measurements were used to track outer radial plasma position and plasma shape.« less
NASA Astrophysics Data System (ADS)
McElroy, Kenneth L., Jr.
1992-12-01
A method is presented for the determination of neutral gas densities in the ionosphere from rocket-borne measurements of UV atmospheric emissions. Computer models were used to calculate an initial guess for the neutral atmosphere. Using this neutral atmosphere, intensity profiles for the N2 (0,5) Vegard-Kaplan band, the N2 Lyman-Birge-Hopfield band system, and the OI2972 A line were calculated and compared with the March 1990 NPS MUSTANG data. The neutral atmospheric model was modified and the intensity profiles recalculated until a fit with the data was obtained. The neutral atmosphere corresponding to the intensity profile that fit the data was assumed to be the atmospheric composition prevailing at the time of the observation. The ion densities were then calculated from the neutral atmosphere using a photochemical model. The electron density profile calculated by this model was compared with the electron density profile measured by the U.S. Air Force Geophysics Laboratory at a nearby site.
The DiskMass Survey. II. Error Budget
NASA Astrophysics Data System (ADS)
Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas
2010-06-01
We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
NASA Astrophysics Data System (ADS)
Goldring, Nicholas
The impending Advanced Photon Source Upgrade (APS-U) will introduce a hard x-ray source that is set to surpass the current APS in brightness and coherence by two to three orders of magnitude. To achieve this, the storage ring light source will be equipped with a multi-bend achromat (MBA) lattice. In order to fully exploit and preserve the integrity of new beams actualized by upgraded storage ring components, improved beamline optics must also be introduced. The design process of new optics for the APS-U and other fourth generation synchrotrons involves the challenge of accommodating unprecedented heat loads. This dissertation presents an ex-situ analysis of heat load deformation and the subsequent mechanical bending correction of a 400 mm long, grazing-incidence, H2O side-cooled, reflecting mirror subjected to x-ray beams produced by the APS-U undulator source. Bending correction is measured as the smallest rms slope error, sigmarms, that can be resolved over a given length of the heat deformed geometry due to mechanical bending. Values of sigmarms in the <0.1 microrad regime represent a given mirror length over which incident x-ray beams from modern sources can be reflected without significant loss of quality. This study assumes a perfectly flat mirror surface and does not account for finish errors or other contributions to sigmarms beyond the scope of thermal deformation and elastic bending. The methodology of this research includes finite element analysis (FEA) employed conjointly with an analytical solution for mechanical bending deflection by means of an end couple. Additionally, the study will focus on two beam power density profiles predicted by the APS-U which were created using the software SRCalc. The profiles account for a 6 GeV electron beam with second moment widths of 0.058 and 0.011 mm in the x- and y- directions respectively; the electron beam is passed through a 4.8 m long, 28 mm period APS-U undulator which produces the x-ray beam incident at a 3 mrad grazing angle on the flat mirror surface for both cases. The first power density profile is the most extreme case created by the undulator at it's closest gap with a critical energy of 3 keV (k y=2.459); the second profile is generated for the case in which the undulator is tuned to emit at 8 keV (ky=1.026). The 3 keV case is of particular interest as it represents one of the most intense peak heat loads predicted to be incident on first optics at the APS-U. The FEA results revealed that the deflection due to the 3 keV heat load yields a 10.9 microrad rms slope error over the full mirror length. The projected correction via the elastic bending of the substrate yields a 0.10 microrad sigma rms within the center longitudinal 300 mm. The FEA also predicts that the 8 keV heat load deflection can be corrected to a sigma rms of 0.11 microrad within the center 300 mm from 1.50 microrad over the entire length. Attempts to optimize the end couple to correct over the entire 400 mm mirror length were unable to resolve the heat load deflection rms slope error to within a <0.1 microrad value for either case. However, if a larger corrected surface is required, a longer mirror can be implemented so as to absorb the heat load of a larger beam than necessary which can then be cut by an aperture to the desired size and energy range.
LINDENS: A program for lineament length and density analysis*1
NASA Astrophysics Data System (ADS)
Casas, Antonio M.; Cortés, Angel L.; Maestro, Adolfo; Soriano, M. Asunción; Riaguas, Andres; Bernal, Javier
2000-11-01
Analysis of lineaments from satellite images normally includes the determination of their orientation and density. The spatial variation in the orientation and/or number of lineaments must be obtained by means of a network of cells, the lineaments included in each cell being analysed separately. The program presented in this work, LINDENS, allows the density of lineaments (number of lineaments per km 2 and length of lineaments per km 2) to be estimated. It also provides a tool for classifying the lineaments contained in different cells, so that their orientation can be represented in frequency histograms and/or rose diagrams. The input file must contain the planar coordinates of the beginning and end of each lineament. The density analysis is done by creating a network of square cells, and counting the number of lineaments that are contained within each cell, that have one of their ends within the cell or that cross-cut the cell boundary. The lengths of lineaments are then calculated. To obtain a representative density map the cell size must be fixed according to: (1) the average lineament length; (2) the distance between the lineaments; and (3) the boundaries of zones with low densities due to lithology or outcrop features. An example from the Neogene Duero Basin (Northern Spain) is provided to test the reliability of the density maps obtained with different cell sizes.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, William BJ J
2016-01-01
A technical basis for peak reactivity boiling water reactor (BWR) burnup credit (BUC) methods was recently generated, and the technical basis for extended BWR BUC is now being developed. In this paper, a number of effects related to extended BWR BUC are analyzed, including three major operational effects in BWRs: the coolant density axial distribution, the use of control blades during operation, and the axial burnup profile. Specifically, uniform axial moderator density profiles are analyzed and compared to previous results and an additional temporal fidelity study combing moderator density profiles for three different fuel assemblies is presented. Realistic control blademore » histories and cask criticality results are compared to previously generated constructed control blade histories. Finally, a preliminary study of the axial burnup profile is provided.« less
Kinetic simulations of the stability of a plasma confined by the magnetic field of a current rod
NASA Astrophysics Data System (ADS)
Tonge, J.; Leboeuf, J. N.; Huang, C.; Dawson, J. M.
2003-09-01
The kinetic stability of a plasma in the magnetic field of a current rod is investigated for various temperature and density profiles using three-dimensional particle-in-cell simulations. Such a plasma obeys similar physics to a plasma in a dipole magnetic field, while it is easier to perform computer simulations, and do theoretical analysis, of a plasma in the field of a current rod. Simple energy principle calculations and simulations with a variety of temperature and density profiles show that the plasma is stable to interchange for pressure profiles proportional to r-10/3. As predicted by theory the simulations also show that the density profile will be stationary as long as density is proportional to r-2 even though the temperature profile may not be stable.
Better Than Counting: Density Profiles from Force Sampling
NASA Astrophysics Data System (ADS)
de las Heras, Daniel; Schmidt, Matthias
2018-05-01
Calculating one-body density profiles in equilibrium via particle-based simulation methods involves counting of events of particle occurrences at (histogram-resolved) space points. Here, we investigate an alternative method based on a histogram of the local force density. Via an exact sum rule, the density profile is obtained with a simple spatial integration. The method circumvents the inherent ideal gas fluctuations. We have tested the method in Monte Carlo, Brownian dynamics, and molecular dynamics simulations. The results carry a statistical uncertainty smaller than that of the standard counting method, reducing therefore the computation time.
NASA Astrophysics Data System (ADS)
Jee, G.; Kim, E.; Kwak, Y. S.; Kim, Y.; Kil, H.
2017-12-01
We investigate the climatological characteristics of the ionospheric electron density profiles in the auroral and polar cap regions in comparison with the mid-latitude ionosphere using incoherent scatter radars (ISR) observations from Svalbard (78.15N, 16.05E), Tromso (69.59N, 19.23E), and Millstone Hill (42.6N, 288.5E) during a period of 1995 - 2015. Diurnal variations of electron density profiles from 100 to 500 km are compared among the three radar observations during equinox, summer and winter solstice for different solar and geomagnetic activities. Also investigated are the physical characteristics of E-region and F-region peak parameters of electron density profiles in the auroral and polar cap regions, which are significantly different from the mid-latitude ionosphere. In the polar ionosphere, the diurnal variations of density profiles are extremely small in summer hemisphere. Semiannual anomaly hardly appears for all latitudes, but winter anomaly occurs at mid-latitude and auroral ionospheres for high solar activity. Nighttime density becomes larger than daytime density in the winter polar cap ionosphere for high solar activity. The E-region peak is very distinctive in the nighttime auroral region and the peak height is nearly constant at about 110 km for all conditions. Compared with the F-region peak density, the E-region peak density does not change much with solar activity. Furthermore, the E-region peak density can be even larger than F-region density for low solar activity in the auroral region, particularly during disturbed condition.
Nazikian, R; Shinohara, K; Kramer, G J; Valeo, E; Hill, K; Hahm, T S; Rewoldt, G; Ide, S; Koide, Y; Oyama, Y; Shirai, H; Tang, W
2005-04-08
A low power polychromatic beam of microwaves is used to diagnose the behavior of turbulent fluctuations in the core of the JT-60U tokamak during the evolution of the internal transport barrier. A continuous reduction in the size of turbulent structures is observed concomitant with the reduction of the density scale length during the evolution of the internal transport barrier. The density correlation length decreases to the order of the ion gyroradius, in contrast with the much longer scale lengths observed earlier in the discharge, while the density fluctuation level remain similar to the level before transport barrier formation.
Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.
Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F
1996-01-01
Systematic low-angle and wide-angle x-ray scattering studies have been performed on fully hydrated unoriented multilamamellar vesicles of saturated lecithins with even chain lengths N = 16, 18, 20, 22, and 24 as a function of temperature T in the normal gel (L beta') phase. For all N, the area per chain Ac increases linearly with T with an average slope dAc/dT = 0.027 A2/degree C, and the lamellar D-spacings also increase linearly with an average slope dD/dT = 0.040 A/degree C. At the same T, longer chain length lecithins have more densely packed chains, i.e., smaller Ac's, than shorter chain lengths. The chain packing of longer chain lengths is found to be more distorted from hexagonal packing than that of smaller N, and the distortion epsilon of all N approaches the same value at the respective transition temperatures. The thermal volume expansion of these lipids is accounted for by the expansion in the hydrocarbon chain region. Electron density profiles are constructed using four orders of low-angle lamellar peaks. These show that most of the increase in D with increasing T is due to thickening of the bilayers that is consistent with a decrease in tilt angle theta and with little change in water spacing with either T or N. Because of the opposing effects of temperature on area per chain Ac and tilt angle 0, the area expansivity alpha A is quite small. A qualitative theoretical model based on competing head and chain interactions accounts for our results. PMID:8842227
Self-similar mixing in stratified plane Couette flow for varying Prandtl number
NASA Astrophysics Data System (ADS)
Caulfield, C. P.; Zhou, Qi; Taylor, John
2017-11-01
We investigate fully developed turbulence in statically stable stratified plane Couette flows (the flow between two horizontal plates a distance 2 h apart moving at velocities +/-U0 and held at densities ρa -/+ρ0) using direct numerical simulations at a range of Prandtl numbers Pr ≡ ν / κ ∈ { 0.7 , 7 , 70 } and Reynolds numbers Re ≡U0 h / ν ∈ [ 865 , 280000 ] . We observe significant effects of Pr on the heat and momentum fluxes across the channel gap and on the mean temperature and velocity profile, which can be described through a mixing length model using Monin-Obukhov (M-O) similarity theory. We employ M-O theory to formulate similarity scalings for various flow diagnostics in the gap interior. The mid-channel-gap gradient Richardson number Rig is determined by the length scale ratio h / L , where L is the Obukhov length scale. When h / L >> 1 , Rig asymptotes to a maximum characteristic value of approximately 0.2, for very high Re and for a range of Pr and bulk Richardson number Ri = gρ0 h /(ρaU02) . The flux Richardson number Rif = Rig , implying that such turbulent flows do not access the (strongly) `layered anisotropic stratified turbulence' regime, and that the turbulent Prandtl number is approximately one.
Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric
2017-09-01
The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
Time-resolved measurements of the angular distribution of lasing at 23.6 nm in Ne-like germanium
NASA Astrophysics Data System (ADS)
Kodama, R.; Neely, D.; Dwivedi, L.; Key, M. H.; Krishnan, J.; Lewis, C. L. S.; O'Neill, D.; Norreys, P.; Pert, G. J.; Ramsden, S. A.; Tallents, G. J.; Uhomoibhi, J.; Zhang, J.
1992-06-01
The time dependence of the angular distribution of soft X-ray lasing at 23.6 nm in Ne-like germanium has been measured using a streak camera. Slabs of germanium have been irradiated over ≈ 22 mm length × 100 μm width with three line focussed beams of the SERC Rutherford Appleton Laboratory VULCAN laser at 1.06 μm wavelength. The laser beam sweeps in time towards the target surface plane and the divergence broadens with time. The change of the peak intensity pointing and the broadening of the profile with time are consistent with expectations of the time dependence of refraction and divergence due to density gradients in the plasma.
Retrieval of phase information in neutron reflectometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Haan, V.; van Well, A.A.; Adenwalla, S.
Neutron reflectometry can determine unambiguously the chemical depth profile of a thin film if both phase and amplitude of the reflectance are known. The recovery of the phase information is achieved by adding to the unknown layered structure a known ferromagnetic layer. The ferromagnetic layer is magnetized by an external magnetic field in a direction lying in the plane of the layer and subsequently perpendicular to it. The neutrons are polarized either parallel or opposite to the magnetic field. In this way three measurements can be made, with different (and known) scattering-length densities of the ferromagnetic layer. The reflectivity obtainedmore » from each measurement can be represented by a circle in the (complex) reflectance plane. The intersections of these circles provide the reflectance.« less
The evolution history of the extended solar neighbourhood
NASA Astrophysics Data System (ADS)
Just, Andreas; Sysoliatina, Kseniia; Koutsouridou, Ioanna
2018-04-01
Our detailed analytic local disc model (JJ-model) quantifies the interrelation between kinematic properties (e.g. velocity dispersions and asymmetric drift), spatial parameters (scale-lengths and vertical density profiles), and properties of stellar sub-populations (age and abundance distributions). We discuss a radial extension of the disc evolution model representing an inside-out growth of the thin disc with constant thickness. Based on metallicity distributions of APOGEE red clump stars we derive the AMR as function of galactrocentric distance and show that mono-abundance as well as mono-age populations are flaring. The predictions of the JJ-model are consistent with the TGAS-RAVE data, which provide a significant improvement of the kinematic data and unbiased distances for more than 250,000 stars.
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2007-09-30
whitecap crest length spectral density (Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (Jessup and Phadnis ...open sea, Journal of Physical Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis , 2005...Oceanography, 16, 290-297. Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from
Ocean Surface Wave Optical Roughness - Innovative Measurement and Modeling
2006-09-30
crest length spectral density (eg. Phillips et al, 2001, Gemmrich, 2005) and microscale breaker crest length spectral density (eg. Jessup and Phadnis ...Jessup, A.T. & Phadnis , K.R. 2005 Measurement of the geometric and kinematic properties of microsacle breaking waves from infrared imagery using a
The influence of landscape features on road development in a loess region, China.
Bi, Xiaoli; Wang, Hui; Zhou, Rui
2011-10-01
Many ecologists focus on the effects of roads on landscapes, yet few consider how landscapes affect road systems. In this study, therefore, we quantitatively evaluated how land cover, topography, and building density affected the length density, node density, spatial pattern, and location of roads in Dongzhi Yuan, a typical loess region in China. Landscape factors and roads were mapped using images from SPOT satellite (Système Probatoire d'Observation de la Terre), initiated by the French space agency and a digital elevation model (DEM). Detrended canonical correspondence analysis (DCCA), a useful ordination technique to explain species-environment relations in community ecology, was applied to evaluate the ways in which landscapes may influence roads. The results showed that both farmland area and building density were positively correlated with road variables, whereas gully density and the coefficient of variation (CV of DEM) showed negative correlations. The CV of DEM, farmland area, grassland area, and building density explained variation in node density, length density, and the spatial pattern of roads, whereas gully density and building density explained variation in variables representing road location. In addition, node density, rather than length density, was the primary road variable affected by landscape variables. The results showed that the DCCA was effective in explaining road-landscape relations. Understanding these relations can provide information for landscape managers and transportation planners.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
Recovering galaxy cluster gas density profiles with XMM-Newton and Chandra
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Vikhlinin, A.; Pointecouteau, E.; Forman, W. R.; Jones, C.; Mazzotta, P.; Andrade-Santos, F.
2017-12-01
We examined the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM-Newton X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examined the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapted the photon weighting vignetting correction method developed for XMM-Newton for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than 6″, the agreement between Chandra and XMM-Newton is better than 1%, confirming an excellent understanding of the XMM-Newton PSF. Furthermore, we find no significant energy dependence. The impact of the well-known offset between Chandra and XMM-Newton gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of 2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM-Newton gas masses computed at R2500 and R500 are r = 1.03 ± 0.01 and r = 1.03 ± 0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM-Newton can be constrained to the 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM-Newton.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soltanmoradi, Elmira; Shokri, Babak, E-mail: b-shokri@sbu.ac.ir; Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran 19839-63113
Gigahertz electromagnetic wave scattering from an inhomogeneous collisional plasma layer with bell-like and Epstein electron density distributions is studied by the Green's function volume integral equation method to find the reflectance, transmittance, and absorbance coefficients of this inhomogeneous plasma. Also, the effects of the frequency of the electromagnetic wave, plasma parameters, such as collision frequency, electron density, and plasma thickness, and the effects of the profile of the electron density on the electromagnetic wave scattering from this plasma slab are investigated. According to the results, when the electron density, collision frequency, and plasma thickness are increased, collisional absorbance is enhanced,more » and as a result, the absorbance bandwidth of plasma is broadened. Moreover, this broadening is more evident for plasma with bell-like electron density profile. Also, the bandwidth of the frequency and the range of pressure in which plasma behaves as a good reflector are determined in this article. According to the results, the bandwidth of the frequency is decreased for thicker plasma with bell-like profile, while it does not vary for a different plasma thickness with Epstein profile. Moreover, the range of the pressure is decreased for bell-like profile in comparison with Epstein profile. Furthermore, due to the sharp inhomogeneity of the Epstein profile, the coefficients of plasma that are uniform for plasma with bell-like profile are changed for plasma with Epstein profile, and some perturbations are seen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.
2013-07-01
Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.
Atmospheric constituent density profiles from full disk solar occultation experiments
NASA Technical Reports Server (NTRS)
Lumpe, J. D.; Chang, C. S.; Strickland, D. J.
1991-01-01
Mathematical methods are described which permit the derivation of the number of density profiles of atmospheric constituents from solar occultation measurements. The algorithm is first applied to measurements corresponding to an arbitrary solar-intensity distribution to calculate the normalized absorption profile. The application of Fourier transform to the integral equation yields a precise expression for the corresponding number density, and the solution is employed with the data given in the form of Laguerre polynomials. The algorithm is employed to calculate the results for the case of uniform distribution of solar intensity, and the results demonstrate the convergence properties of the method. The algorithm can be used to effectively model representative model-density profiles with constant and altitude-dependent scale heights.
Electronic properties of Laves phase ZrFe{sub 2} using Compton spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatto11@gmail.com; Kumar, Kishor; Ahuja, B. L.
First-ever experimental Compton profile of Laves phase ZrFe{sub 2}, using indigenous 20 Ci {sup 137}Cs Compton spectrometer, is presented. To analyze the experimental electron momentum density, we have deduced the theoretical Compton profiles using density functional theory (DFT) and hybridization of DFT and Hartree-Fock scheme within linear combination of atomic orbitals (LCAO) method. The energy bands and density of states are also calculated using LCAO prescription. The theoretical profile based on local density approximation gives a better agreement with the experimental profile than other reported schemes. The present investigations validate the inclusion of correlation potential of Perdew-Zunger in predicting themore » electronic properties of ZrFe{sub 2}.« less
Lin, Jiaqi; Zhang, Heng; Morovati, Vahid; Dargazany, Roozbeh
2017-10-15
PEGylation on nanoparticles (NPs) is widely used to prevent aggregation and to mask NPs from the fast clearance system in the body. Understanding the molecular details of the PEG layer could facilitate rational design of PEGylated NPs that maximize their solubility and stealth ability without significantly compromising the targeting efficiency and cellular uptake. Here, we use molecular dynamics (MD) simulation to understand the structural and dynamic the PEG coating of mixed monolayer gold NPs. Specifically, we modeled gold NPs with PEG grafting densities ranging from 0-2.76chain/nm 2 , chain length with 0-10 PEG monomers, NP core diameter from 5nm to 500nm. It is found that the area accessed by individual PEG chains gradually transits from a "mushroom" to a "brush" conformation as NP surface curvature become flatter, whereas such a transition is not evident on small NPs when grafting density increases. It is shown that moderate grafting density (∼1.0chain/nm 2 ) and short chain length are sufficient enough to prevent NPs from aggregating in an aqueous medium. The effect of grafting density on solubility is also validated by dynamic light scattering measurements of PEGylated 5nm gold NPs. With respect to the shielding ability, simulations predict that increase either grafting density, chain length, or NP diameter will reduce the accessibility of the protected content to a certain size molecule. Interestingly, reducing NP surface curvature is estimated to be most effective in promoting shielding ability. For shielding against small molecules, increasing PEG grafting density is more effective than increasing chain length. A simple model that includes these three investigated parameters is developed based on the simulations to roughly estimate the shielding ability of the PEG layer with respect to molecules of different sizes. The findings can help expand our current understanding of the PEG layer and guide rational design of PEGylated gold NPs for a particular application by tuning the PEG grafting density, chain length, and particle size. Copyright © 2017 Elsevier Inc. All rights reserved.
Inflation of the screening length induced by Bjerrum pairs.
Zwanikken, Jos; van Roij, René
2009-10-21
Within a modified Poisson-Boltzmann theory we study the effect of Bjerrum pairs on the typical length scale [Formula: see text] over which electric fields are screened in electrolyte solutions, taking into account a simple association-dissociation equilibrium between free ions and Bjerrum pairs. At low densities of Bjerrum pairs, this length scale is well approximated by the Debye length [Formula: see text], with ρ(s) the free-ion density. At high densities of Bjerrum pairs, however, we find [Formula: see text], which is significantly larger than 1/κ due to the enhanced effective permittivity of the electrolyte, caused by the polarization of Bjerrum pairs. We argue that this mechanism may explain the recently observed anomalously large colloid-free zones between an oil-dispersed colloidal crystal and a colloidal monolayer at the oil-water interface.
A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes
NASA Astrophysics Data System (ADS)
Caimmi, R.; Marmo, C.; Valentinuzzi, T.
2005-06-01
Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different definition of scaled radius, or concentration; and gamma approx 1.2-1.3 deduced from more recent high-resolution simulations (Diemand et al. 2004, Reed et al. 2005). No evident correlation is found between SDH dynamical state (relaxed or merging) and asymptotic inner slope of the fitting logarithmic density profile or (for SDH comparable virial masses) scaled radius. Mean values and standard deviations of some parameters are calculated, and in particular the decimal logarithm of the scaled radius, xivir, reads < log xivir >=0.74 and sigma_s log xivir=0.15-0.17, consistent with previous results related to NFW density profiles. It provides additional support to the idea, that NFW density profiles may be considered as a convenient way to parametrize SDH density profiles, without implying that it necessarily produces the best possible fit (Bullock et al. 2001). A certain degree of degeneracy is found in fitting GPL to SDH density profiles. If it is intrinsic to the RFSM5 method or it could be reduced by the next generation of high-resolution simulations, still remains an open question.
Expanding the product profile of a microbial alkane biosynthetic pathway.
Harger, Matthew; Zheng, Lei; Moon, Austin; Ager, Casey; An, Ju Hye; Choe, Chris; Lai, Yi-Ling; Mo, Benjamin; Zong, David; Smith, Matthew D; Egbert, Robert G; Mills, Jeremy H; Baker, David; Pultz, Ingrid Swanson; Siegel, Justin B
2013-01-18
Microbially produced alkanes are a new class of biofuels that closely match the chemical composition of petroleum-based fuels. Alkanes can be generated from the fatty acid biosynthetic pathway by the reduction of acyl-ACPs followed by decarbonylation of the resulting aldehydes. A current limitation of this pathway is the restricted product profile, which consists of n-alkanes of 13, 15, and 17 carbons in length. To expand the product profile, we incorporated a new part, FabH2 from Bacillus subtilis , an enzyme known to have a broader specificity profile for fatty acid initiation than the native FabH of Escherichia coli . When provided with the appropriate substrate, the addition of FabH2 resulted in an altered alkane product profile in which significant levels of n-alkanes of 14 and 16 carbons in length are produced. The production of even chain length alkanes represents initial steps toward the expansion of this recently discovered microbial alkane production pathway to synthesize complex fuels. This work was conceived and performed as part of the 2011 University of Washington international Genetically Engineered Machines (iGEM) project.
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús
2018-02-01
We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.
Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing
NASA Astrophysics Data System (ADS)
Ari, Gizem; Toker, Cenk
2016-07-01
Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
First Ionospheric Results From the MAVEN Radio Occultation Science Experiment (ROSE)
NASA Astrophysics Data System (ADS)
Withers, Paul; Felici, M.; Mendillo, M.; Moore, L.; Narvaez, C.; Vogt, M. F.; Jakosky, B. M.
2018-05-01
Radio occultation observations of the ionosphere of Mars can span the full vertical extent of the ionosphere, in contrast to in situ measurements that rarely sample the main region of the ionosphere. However, most existing radio occultation electron density profiles from Mars were acquired without clear context for the solar forcing or magnetospheric conditions, which presents challenges for the interpretation of these profiles. Here we present 48 ionospheric electron density profiles acquired by the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) Radio Occultation Science Experiment (ROSE) from 5 July 2016 to 27 June 2017 at solar zenith angles of 54° to 101°. Latitude coverage is excellent, and comprehensive context for the interpretation of these profiles is provided by other MAVEN instruments. The profiles show a 9-km increase in ionospheric peak altitude in January 2017 that is associated with a lower atmospheric dust storm, variations in electron densities in the M1 layer that cannot be explained by variations in the solar soft X-ray flux, and topside electron densities that are larger in strongly magnetized regions than in weakly magnetized regions. MAVEN Radio Occultation Science Experiment electron density profiles are publicly available on the NASA Planetary Data System.
Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh
2015-04-01
Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.
Mandato, S; Cuq, B; Ruiz, T
2012-07-01
In a wet agglomeration process inside a low shear mixer, the blade function is to induce i) homogenization of the liquid sprayed on the powder surface and ii) a stress field able to transfer the mechanical energy at the particle scale. In this work we study the mechanical state of a confined powder bed through the analysis of stress distributions (by force measurements) in a rectangular cell in two cases: for a classical model powder (i.e. glass beads) and a complex powder (i.e. wheat semolina). Two types of vertical stress profiles are obtained according to the type of measurements carried out in the powder bed, either locally (at different positions in the cell) or globally (at the entire base). The global vertical stress profile follows Janssen's model and the local vertical stress profile highlights a critical length, identified as the percolation threshold of the force network, and a shielding length near the bottom, which is similar to an influence length of the side walls. In the context of wet agglomeration, the results allow to consider the role of the characteristic lengths in the mixing bowl under vertical mechanical solicitation.
RECOZ data reduction and analysis: Programs and procedures
NASA Technical Reports Server (NTRS)
Reed, E. I.
1984-01-01
The RECOZ data reduction programs transform data from the RECOZ photometer to ozone number density and overburden as a function of altitude. Required auxiliary data are the altitude profile versus time and for appropriate corrections to the ozone cross sections and scattering effects, air pressure and temperature profiles. Air temperature and density profiles may also be used to transform the ozone density versus geometric altitude to other units, such as to ozone partial pressure or mixing ratio versus pressure altitude. There are seven programs used to accomplish this: RADAR, LISTRAD, RAW OZONE, EDIT OZONE, MERGE, SMOOTH, and PROFILE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, M. J.; Boilson, D.; Hemsworth, R. S.
2015-04-08
The heating and current drive beam lines (HNB) at ITER are expected to deliver ∼16.7 MW power per beam line for H beams at 870 keV and D beams at 1 MeV during the H-He and the DD/DT phases of ITER operation respectively. On the other hand the diagnostic neutral beam (DNB) line shall deliver ∼2 MW power for H beams at 100 keV during both the phases. The path lengths over which the beams from the HNB and DNB beam lines need to be transported are 25.6 m and 20.7 m respectively. The transport of the beams over these path lengths resultsmore » in beam losses, mainly by the direct interception of the beam with the beam line components and reionisation. The lost power is deposited on the surfaces of the various components of the beam line. In order to ensure the survival of these components over the operational life time of ITER, it is important to determine to the best possible extent the operational power loads and power densities on the various surfaces which are impacted by the beam in one way or the other during its transport. The main factors contributing to these are the divergence of the beamlets and the halo fraction in the beam, the beam aiming, the horizontal and vertical misalignment of the beam, and the gas profile along the beam path, which determines the re-ionisation loss, and the re-ionisation cross sections. The estimations have been made using a combination of the modified version of the Monte Carlo Gas Flow code (MCGF) and the BTR code. The MCGF is used to determine the gas profile in the beam line and takes into account the active gas feed into the ion source and neutraliser, the HNB-DNB cross over, the gas entering the beamline from the ITER machine, the additional gas atoms generated in the beam line due to impacting ions and the pumping speed of the cryopumps. The BTR code has been used to obtain the power loads and the power densities on the various surfaces of the front end components and the duct modules for different scenarios of ITER operation. The gas profile and the magnetic field distribution for each scenario has been considered in these evaluations. The worst case power loads and power densities for each surface have been used to study their thermo-mechanical behaviour and manufacturing feasibility. The details of these calculations and results obtained are presented and discussed.« less
On the Origin of Water Flow through Carbon Nanotubes.
Su, Jiaye; Yang, Keda
2015-11-16
The transport of water molecules through carbon nanotubes (CNTs) is of primary importance for understanding water-mediated biological activities as well as for the design of novel nanoporous materials. Herein, we analyze the water flow through CNTs by using molecular dynamics simulations with the hope of finding basic parameters determining the flow value. Of particular interest is that a simple equation as a function of water diffusion, occupancy and CNT size, can well describe the water flow through CNTs with different sizes. Specifically, both the simulation and equation flow exhibit power law relations with the CNT diameter and length, where the two exponents are close to each other. The water occupancy and translocation time also demonstrate interesting relations with the CNT size. The water dipole orientations and density profiles are also sensitive to the change of CNT size. These results greatly enhance our knowledge on the nature of water flow through CNTs and are helpful in predicting the water flow of CNTs up to the experimental length scale. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pocock, Ginger M.; Aranibar, Roberto G.; Kemp, Nate J.; Specht, Charles S.; Markey, Mia K.; Rylander, H.G.
2009-01-01
Purpose To determine the degree of correlation between spatial characteristics of the retinal nerve fiber layer (RNFL) birefringence (ΔnRNFL) surrounding the optic nerve head (ONH) with the corresponding anatomy of retinal ganglion cell (RGC) axons and their respective organelles. Methods RNFL phase retardation per unit depth (PR/UD, proportional to ΔnRNFL) was measured in two cynomolgus monkeys using enhanced polarization-sensitive optical coherence tomography (EPS-OCT). The monkeys were perfused with glutaraldehyde and eyes were enucleated and prepared for transmission electron microscopy (TEM) histological analysis. Morphological measurements from TEM images were used to estimate values of neurotubule density (ρRNFL), axoplasmic area (Ax) mode, axon area (Aa) mode, slope (u) of neurotubule number versus axoplasmic area [neurotubule packing density], fractional area of axoplasm in the nerve fiber bundle (f), mitochondrial fractional area in the nerve fiber bundle (xm), mitochondriated axon profile fraction (mp), and length of axonal membrane profiles per unit nerve fiber bundle area (Lam/Ab). Registered PR/UD and morphological parameters from corresponding angular sections were then correlated using Pearson’s correlation and multi-level models. Results In one eye, there was a statistically significant correlation between PR/UD and ρRNFL (r = 0.67, P =0.005) and between PR/UD and neurotubule packing density (r = 0.70, P = 0.002). Correlation coefficients of r = 0.81 (P=0.01) and r = 0.50 (P = 0.05) were observed between PR/UD and (Ax) mode for each respective subject. Conclusion Neurotubules are the primary source of birefringence in the RNFL of the primate retina. PMID:19494208
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.
Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J
2014-11-01
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel
2009-01-01
We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less
Subcritical and supercritical fuel injection and mixing in single and binary species systems
NASA Astrophysics Data System (ADS)
Roy, Arnab
Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and supercritical atmospheres. The subcritical cases showed good correlation with previous and current experimental results. The supercritical solutions, which have not yet been solved earlier by researchers, are found here through an asymptotic solution of the dispersion equation for exceedingly high Weber numbers.
NASA Astrophysics Data System (ADS)
Garanin, Sergey G.; Kir'yanov, Yu F.; Kochemasov, G. G.
1990-06-01
A theoretical investigation is reported of the deformation of the density profile of a plasma by a ponderomotive force under transient conditions. Initially, the structure of the density profile near the critical point coincides exactly with the solution of the steady-state problem. Plasma expansion is accompanied by growth of a spiky instability in the form of stimulated Brillouin scattering.
Impact of Te and ne on edge current density profiles in ELM mitigated regimes on ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Dunne, M. G.; Rathgeber, S.; Burckhart, A.; Fischer, R.; Giannone, L.; McCarthy, P. J.; Schneider, P. A.; Wolfrum, E.; the ASDEX Upgrade Team
2015-01-01
ELM resolved edge current density profiles are reconstructed using the CLISTE equilibrium code. As input, highly spatially and temporally resolved edge electron temperature and density profiles are used in addition to data from the extensive set of external poloidal field measurements available at ASDEX Upgrade, flux loop difference measurements, and current measurements in the scrape-off layer. Both the local and flux surface averaged current density profiles are analysed for several ELM mitigation regimes. The focus throughout is on the impact of altered temperature and density profiles on the current density. In particular, many ELM mitigation regimes rely on operation at high density. Two reference plasmas with type-I ELMs are analysed, one with a deuterium gas puff and one without, in order to provide a reference for the behaviour in type-II ELMy regimes and high density ELM mitigation with external magnetic perturbations at ASDEX Upgrade. For type-II ELMs it is found that while a similar pedestal top pressure is sustained at the higher density, the temperature gradient decreases in the pedestal. This results in lower local and flux surface averaged current densities in these phases, which reduces the drive for the peeling mode. No significant differences between the current density measured in the type-I phase and ELM mitigated phase is seen when external perturbations are applied, though the pedestal top density was increased. Finally, ELMs during the nitrogen seeded phase of a high performance discharge are analysed and compared to ELMs in the reference phase. An increased pedestal pressure gradient, which is the source of confinement improvement in impurity seeded discharges, causes a local current density increase. However, the increased Zeff in the pedestal acts to reduce the flux surface averaged current density. This dichotomy, which is not observed in other mitigation regimes, could act to stabilize both the ballooning mode and the peeling mode at the same time.
Flow and diffusion in channel-guided cell migration.
Marel, Anna-Kristina; Zorn, Matthias; Klingner, Christoph; Wedlich-Söldner, Roland; Frey, Erwin; Rädler, Joachim O
2014-09-02
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Khan, Adnan; Akhtar, Naveed; Kamran, Saadat; Ponirakis, Georgios; Petropoulos, Ioannis N; Tunio, Nahel A; Dargham, Soha R; Imam, Yahia; Sartaj, Faheem; Parray, Aijaz; Bourke, Paula; Khan, Rabia; Santos, Mark; Joseph, Sujatha; Shuaib, Ashfaq; Malik, Rayaz A
2017-11-01
Corneal confocal microscopy can identify corneal nerve damage in patients with peripheral and central neurodegeneration. However, the use of corneal confocal microscopy in patients presenting with acute ischemic stroke is unknown. One hundred thirty patients (57 without diabetes mellitus [normal glucose tolerance], 32 with impaired glucose tolerance, and 41 with type 2 diabetes mellitus) admitted with acute ischemic stroke, and 28 age-matched healthy control participants underwent corneal confocal microscopy to quantify corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length. There was a significant reduction in corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length in stroke patients with normal glucose tolerance ( P <0.001, P <0.001, P <0.001), impaired glucose tolerance ( P =0.004, P <0.001, P =0.002), and type 2 diabetes mellitus ( P <0.001, P <0.001, P <0.001) compared with controls. HbA1c and triglycerides correlated with corneal nerve fiber density ( r =-0.187, P =0.03; r =-0.229 P =0.01), corneal nerve fiber length ( r =-0.228, P =0.009; r =-0.285; P =0.001), and corneal nerve branch density ( r =-0.187, P =0.033; r =-0.229, P =0.01). Multiple linear regression showed no independent associations between corneal nerve fiber density, corneal nerve branch density, and corneal nerve fiber length and relevant risk factors for stroke. Corneal confocal microscopy is a rapid noninvasive ophthalmic imaging technique that identifies corneal nerve fiber loss in patients with acute ischemic stroke. © 2017 American Heart Association, Inc.
Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2011-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the typical behavior of clusters. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Therefore, a detailed treatment of gas cooling, star formation, clumping, and AGN feedback is required to construct realistic models of cluster outer regions.
Testing hydrodynamics schemes in galaxy disc simulations
NASA Astrophysics Data System (ADS)
Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.
2016-08-01
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.
Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data
Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.
2003-01-01
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292
Analysis of Rotation and Transport Data in C-Mod ITB Plasmas
NASA Astrophysics Data System (ADS)
Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.
2009-11-01
Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.
Evaporation of Lennard-Jones fluids.
Cheng, Shengfeng; Lechman, Jeremy B; Plimpton, Steven J; Grest, Gary S
2011-06-14
Evaporation and condensation at a liquid/vapor interface are ubiquitous interphase mass and energy transfer phenomena that are still not well understood. We have carried out large scale molecular dynamics simulations of Lennard-Jones (LJ) fluids composed of monomers, dimers, or trimers to investigate these processes with molecular detail. For LJ monomers in contact with a vacuum, the evaporation rate is found to be very high with significant evaporative cooling and an accompanying density gradient in the liquid domain near the liquid/vapor interface. Increasing the chain length to just dimers significantly reduces the evaporation rate. We confirm that mechanical equilibrium plays a key role in determining the evaporation rate and the density and temperature profiles across the liquid/vapor interface. The velocity distributions of evaporated molecules and the evaporation and condensation coefficients are measured and compared to the predictions of an existing model based on kinetic theory of gases. Our results indicate that for both monatomic and polyatomic molecules, the evaporation and condensation coefficients are equal when systems are not far from equilibrium and smaller than one, and decrease with increasing temperature. For the same reduced temperature T/T(c), where T(c) is the critical temperature, these two coefficients are higher for LJ dimers and trimers than for monomers, in contrast to the traditional viewpoint that they are close to unity for monatomic molecules and decrease for polyatomic molecules. Furthermore, data for the two coefficients collapse onto a master curve when plotted against a translational length ratio between the liquid and vapor phase.
Maternal Flaxseed Oil During Lactation Enhances Bone Development in Male Rat Pups.
Pereira, Aline D'Avila; Ribeiro, Danielle Cavalcante; de Santana, Fernanda Carvalho; de Sousa Dos Santos, Aline; Mancini-Filho, Jorge; do Nascimento-Saba, Celly Cristina Alves; Velarde, Luis Guillermo Coca; da Costa, Carlos Alberto Soares; Boaventura, Gilson Teles
2016-08-01
Flaxseed oil is an alpha linolenic acid source important in the growth and body development stage; furthermore, this acid acts on adipose tissue and bone health. The aim of this study was to evaluate body composition, fatty acid composition, hormone profile, retroperitoneal adipocyte area and femur structure of pups at weaning, whose mothers were fed a diet containing flaxseed oil during lactation. After birth, pups were randomly assigned: control (C, n = 12) and flaxseed oil (FO, n = 12), rats whose mothers were treated with diet containing soybean or flaxseed oil. At 21 days, the pups were weaned and body mass, length, body composition, biochemical parameter, leptin, osteoprotegerin, osteocalcin, fatty acids composition, intra-abdominal fat mass and femur structure were analyzed. FO showed (p < 0.05): higher body mass (+12 %) and length (+9 %); body fat mass (g, +45 %); bone mineral density (+8 %), bone mineral content (+55 %) and bone area (+35 %), osteocalcin (+173 %) and osteoprotegerin (+183 %). Arachidonic acid was lower (p < 0.0001), alpha-linolenic and eicosapentaenoic were higher (p < 0.0001). Intra-abdominal fat mass was higher (+25 %), however, the retroperitoneal adipocytes area was lower (-44 %). Femur mass (+10 %), distance between epiphyses (+4 %) and bone mineral density (+13 %) were higher. The study demonstrates that adequate flaxseed oil content during a lactation diet plays an important role in the development of pups.
A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2017-04-01
Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.
Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With SDSS galaxy data and halo data from up-to-date N-body simulations we construct a semi-empirical catalog (SEC) of early-type systems by making a self-consistent bivariate statistical match of stellar mass (M_star) and velocity dispersion (sigma) with halo virial mass (M_vir). We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M_star and sigma. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. The resulting dark matter density profiles deviate in general from the dissipationless profile of NFW or Einasto and theirmore » mean inner density slope and concentration vary systematically with M_vir. Statistical tests of the distribution of profiles at fixed M_vir rule out the null hypothesis that it follows the distribution predicted by N-body simulations for M_vir ~< 10^{13.5-14.5} M_solar. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M_vir ~< 10^{13.5-14.5} M_solar supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ~ 3-4 at M_vir = 10^{12} M_solar, and (2) the inner density slope has a mean of ~ 1.3 with rho(r) ~ r^{-alpha} and a halo-to-halo rms scatter of rms(alpha) ~ 0.4-0.5 for 10^{12} M_solar ~< M_vir ~< 10^{13-14} M_solar steeper than the NFW profile (alpha=1). Based on our results we predict that halos of nearby elliptical and lenticular galaxies can, in principle, be promising targets for gamma-ray emission from dark matter annihilation.« less
NASA Technical Reports Server (NTRS)
Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.
1987-01-01
Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.
Detection of foreign bodies in foods using continuous wave terahertz imaging.
Lee, Young-Ki; Choi, Sung-Wook; Han, Seong-Tae; Woo, Deog Hyun; Chun, Hyang Sook
2012-01-01
Foreign bodies (FBs) in food are health hazards and quality issues for many food manufacturers and enforcement authorities. In this study, continuous wave (CW) terahertz (THz) imaging at 0.2 THz with an output power of 10 mW was compared with X-ray imaging as techniques for inspection of food for FBs. High-density FBs, i.e., aluminum and granite pieces of various sizes, were embedded in a powdered instant noodle product and detected using THz and X-ray imaging. All aluminum and granite pieces (regular hexahedrons with an edge length of 1 to 5 mm) were visualized by both CW THz and X-ray imaging. THz imaging also detected maggots (length = 8 to 22 mm) and crickets (length = 35 and 50 mm), which were embedded in samples as low density FBs. However, not all sizes of maggot pieces embedded in powdered instant noodle were detected with X-ray imaging, although larger crickets (length = 50 mm and thickness = 10 mm) were detected. These results suggest that CW THz imaging has potential for detecting both high-density and low-density FBs embedded in food.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.
With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less
NASA Astrophysics Data System (ADS)
Foster, Peter J.; Yan, Wen; Fürthauer, Sebastian; Shelley, Michael J.; Needleman, Daniel J.
2017-12-01
The cellular cytoskeleton is an active material, driven out of equilibrium by molecular motor proteins. It is not understood how the collective behaviors of cytoskeletal networks emerge from the properties of the network’s constituent motor proteins and filaments. Here we present experimental results on networks of stabilized microtubules in Xenopus oocyte extracts, which undergo spontaneous bulk contraction driven by the motor protein dynein, and investigate the effects of varying the initial microtubule density and length distribution. We find that networks contract to a similar final density, irrespective of the length of microtubules or their initial density, but that the contraction timescale varies with the average microtubule length. To gain insight into why this microscopic property influences the macroscopic network contraction time, we developed simulations where microtubules and motors are explicitly represented. The simulations qualitatively recapitulate the variation of contraction timescale with microtubule length, and allowed stress contributions from different sources to be estimated and decoupled.
Impurity profiles and radial transport in the EXTRAP-T2 reversed field pinch
NASA Astrophysics Data System (ADS)
Sallander, J.
1999-05-01
Radially resolved spectroscopy has been used to measure the radial distribution of impurity ions (O III-O V and C III-CVI) in the EXTRAP-T2 reversed field pinch (RFP). The radial profile of the emission is reconstructed from line emission measured along five lines of sight. The ion density profile is the fitted quantity in the reconstruction of the brightness profile and is thus obtained directly in this process. These measurements are then used to adjust the parameters in transport calculations in order to obtain consistency with the observed ion density profiles. Comparison between model and measurements show that a radial dependence in the diffusion is needed to explain the measured ion densities.
Albuquerque, F S; Peso-Aguiar, M C; Assunção-Albuquerque, M J T; Gálvez, L
2009-08-01
The length-weight relationship and condition factor have been broadly investigated in snails to obtain the index of physical condition of populations and evaluate habitat quality. Herein, our goal was to describe the best predictors that explain Achatina fulica biometrical parameters and well being in a recently introduced population. From November 2001 to November 2002, monthly snail samples were collected in Lauro de Freitas City, Bahia, Brazil. Shell length and total weight were measured in the laboratory and the potential curve and condition factor were calculated. Five environmental variables were considered: temperature range, mean temperature, humidity, precipitation and human density. Multiple regressions were used to generate models including multiple predictors, via model selection approach, and then ranked with AIC criteria. Partial regressions were used to obtain the separated coefficients of determination of climate and human density models. A total of 1.460 individuals were collected, presenting a shell length range between 4.8 to 102.5 mm (mean: 42.18 mm). The relationship between total length and total weight revealed that Achatina fulica presented a negative allometric growth. Simple regression indicated that humidity has a significant influence on A. fulica total length and weight. Temperature range was the main variable that influenced the condition factor. Multiple regressions showed that climatic and human variables explain a small proportion of the variance in shell length and total weight, but may explain up to 55.7% of the condition factor variance. Consequently, we believe that the well being and biometric parameters of A. fulica can be influenced by climatic and human density factors.
An adaptive technique for estimating the atmospheric density profile during the AE mission
NASA Technical Reports Server (NTRS)
Argentiero, P.
1973-01-01
A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.
NASA Astrophysics Data System (ADS)
Lau, C.; Lin, Y.; Wallace, G.; Wukitch, S. J.; Hanson, G. R.; Labombard, B.; Ochoukov, R.; Shiraiwa, S.; Terry, J.
2013-09-01
A dedicated experiment during simultaneous lower hybrid (LH) and ion cyclotron range-of-frequencies (ICRF) operations is carried out to evaluate and understand the effects of ICRF power on the scrape-off-layer (SOL) density profiles and on the resultant LH coupling for a wide range of plasma parameters on Alcator C-Mod. Operation of the LH launcher with the adjacent ICRF antenna significantly degrades LH coupling while operation with the ICRF antenna that is not magnetically connected to the LH launcher minimally affects LH coupling. An X-mode reflectometer system at three poloidal locations adjacent to the LH launcher and a visible video camera imaging the LH launcher are used to measure local SOL density profile and emissivity modifications with the application of LH and LH + ICRF power. These measurements confirm that the density in front of the LH launcher depends strongly on the magnetic field line mapping of the active ICRF antenna. Reflectometer measurements also observe both ICRF-driven and LH-driven poloidal density profile asymmetries, especially a strong density depletion at certain poloidal locations in front of the LH launcher during operation with a magnetically connected ICRF antenna. The results indicate that understanding both LH-driven flows and ICRF sheath driven flows may be necessary to understand the observed density profile modifications and LH coupling results during simultaneous LH + ICRF operation.
NASA Astrophysics Data System (ADS)
Dupuis, Hélène; Weill, Alain; Katsaros, Kristina; Taylor, Peter K.
1995-10-01
Heat flux estimates obtained using the inertial dissipation method, and the profile method applied to radiosonde soundings, are assessed with emphasis on the parameterization of the roughness lengths for temperature and specific humidity. Results from the inertial dissipation method show a decrease of the temperature and humidity roughness lengths for increasing neutral wind speed, in agreement with previous studies. The sensible heat flux estimates were obtained using the temperature estimated from the speed of sound determined by a sonic anemometer. This method seems very attractive for estimating heat fluxes over the ocean. However allowance must be made in the inertial dissipation method for non-neutral stratification. The SOFIA/ASTEX and SEMAPHORE results show that, in unstable stratification, a term due to the transport terms in the turbulent kinetic energy budget, has to be included in order to determine the friction velocity with better accuracy. Using the profile method with radiosonde data, the roughness length values showed large scatter. A reliable estimate of the temperature roughness length could not be obtained. The humidity roughness length values were compatible with those found using the inertial dissipation method.
NASA Astrophysics Data System (ADS)
Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie
2017-12-01
Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.
Halo density profiles and baryon physics
NASA Astrophysics Data System (ADS)
Del Popolo, A.; Li, Xi-Guo
2017-08-01
The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].
Work-function calculations for a symmetrical total-charge-density profile at the metallic surface
NASA Astrophysics Data System (ADS)
Wojciechowski, K. F.; Sobańska-Nowotnik, M.
1983-07-01
It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.
Lee, J Y; Shank, B; Bonfiglio, P; Reid, A
1984-10-01
Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.
NASA Technical Reports Server (NTRS)
Imel, G.
1977-01-01
The current models of mid-latitude F sub s are studied. The assumptions and derivations of the Reid model, the Scannapieco model, and the Perkins model are presented in detail. Incoherent-scatter data of the density profiles and velocity profiles were obtained in order that the models could be evaluated on the basis of experimental data. Initial studies indicated that the Perkins model was most representative of the data from Arecibo, so a detailed comparison of the predictions of the Perkins model and the data was made. Two of four nights studied are nights with F sub s. The Perkins model is derived in a frame of reference moving with the velocity of the neutral wind; the model is transformed to the rest frame to facilitate comparison with data. Several data handling techniques are introduced. In particular, an integration interval that remains constant in length, but follows the vertical motion of the peak of the F layer is used to obtain the field integrated quantities of the Perkins model.
Structure of n-alkyltrichlorosilane mono layers on Si(100)/SiO 2
H. -G. Steinruck; Ocko, B.; Will, J.; ...
2015-10-05
The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules’ long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 Å. However, Bragg rod analysis shows that ~12 of the CH 2 units are not included in the crystalline-like domains. We assignmore » this, and the limited lateral crystallites’ size, to strain induced by the size mismatch between the optimal chain–chain and headgroup–headgroup spacings. Lastly, analysis of X-ray reflectivity profiles for n = 12, 14, and 22 shows that the density profile used to successfully model n = 18 provides an excellent fit where the analysis-derived parameters provide complementary structural information to the grazing incidence results.« less
Exploitation of high resolution beam spectroscopy diagnostics on MAST
NASA Astrophysics Data System (ADS)
Michael, Clive; Debock, Maarten; Conway, Neil; Akers, Rob; Appel, Lynton; Field, Anthony; Walsh, Mike; Wisse, Marco
2009-11-01
Recent developments in beam spectroscopy on MAST, including CXRS, MSE and a pilot FIDA system have revealed new information about phenomena such as ITBs, MHD instabilities, transport and fast particle physics. For example, ITBs in the ion temperature and toroidal rotation have been observed with the 64ch CXRS system, while reverse-shear q profiles have been observed with the recently commissioned 35ch MSE system. Thus, the synergy of these diagnostics helps us to understand, among other things, the role of magnetic and rotational shear on ITBs. MSE measurements have also helped to understand MHD phenomena such as locked modes (characterized by changes in toroidal momentum, revealed by CXRS), sawteeth, and internal reconnection events. Finally, the temporal/spatial resolution and SNR of the MSE system have been exploited. Interesting results include the detection of low frequency (˜2kHz) magnetic field fluctuations, characterization of the radial structure of higher frequency (<100kHz) broadband and coherent density (BES) fluctuations, and the identification of short scale length features (˜1.8cm) in the current profile near the edge pedestal.
Ground state of a confined Yukawa plasma including correlation effects
NASA Astrophysics Data System (ADS)
Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.
2007-09-01
The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.
Are ultracompact minihalos really ultracompact?
NASA Astrophysics Data System (ADS)
Delos, M. Sten; Erickcek, Adrienne L.; Bailey, Avery P.; Alvarez, Marcelo A.
2018-02-01
Ultracompact minihalos (UCMHs) have emerged as a valuable probe of the primordial power spectrum of density fluctuations at small scales. UCMHs are expected to form at early times in regions with δ ρ /ρ ≳10-3 , and they are theorized to possess an extremely compact ρ ∝r-9 /4 radial density profile, which enhances their observable signatures. Nonobservation of UCMHs can thus constrain the primordial power spectrum. Using N -body simulations to study the collapse of extreme density peaks at z ≃1000 , we show that UCMHs forming under realistic conditions do not develop the ρ ∝r-9 /4 profile and instead develop either ρ ∝r-3 /2 or ρ ∝r-1 inner density profiles depending on the shape of the power spectrum. We also demonstrate via idealized simulations that self-similarity—the absence of a scale length—is necessary to produce a halo with the ρ ∝r-9 /4 profile, and we argue that this implies such halos cannot form from a Gaussian primordial density field. Prior constraints derived from UCMH nonobservation must be reworked in light of this discovery. Although the shallower density profile reduces UCMH visibility, our findings reduce their signal by as little as O (10-2) while allowing later-forming halos to be considered, which suggests that new constraints could be significantly stronger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Vipin K.; Sharma, Anamika
2013-05-15
We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is takenmore » to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.« less
NASA Astrophysics Data System (ADS)
Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Flynn, Casey L.; Andrews, David J.; Duru, Firdevs; Morgan, David D.
2016-10-01
Radio occultation electron densities measurements from the Mariner 9 and Viking spacecraft, which orbited Mars in the 1970s, have recently become available in a digital format. These data are highly complementary to the radio occultation electron density profiles from Mars Global Surveyor, which were restricted in solar zenith angle and altitude. We have compiled data from the Mariner 9, Viking, and Mars Global Surveyor radio occultation experiments for comparison to electron density measurements made by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS), the topside radar sounder on Mars Express, and MARSIS-based empirical density models. We find that the electron densities measured by radio occultation are in generally good agreement with the MARSIS data and model, especially near the altitude of the peak electron density but that the MARSIS data and model display a larger plasma scale height than the radio occultation profiles at altitudes between the peak density and 200 km. Consequently, the MARSIS-measured and model electron densities are consistently larger than radio occultation densities at altitudes 200-300 km. Finally, we have analyzed transitions in the topside ionosphere, at the boundary between the photochemically controlled and transport-controlled regions, and identified the average transition altitude, or altitude at which a change in scale height occurs. The average transition altitude is 200 km in the Mariner 9 and Viking radio occultation profiles and in profiles of the median MARSIS radar sounding electron densities.
Vertical and Lateral Electron Content in the Martian Ionosphere
NASA Astrophysics Data System (ADS)
Paetzold, M. P.; Peter, K.; Bird, M. K.; Häusler, B.; Tellmann, S.
2016-12-01
The radio-science experiment MaRS (Mars Express Radio Science) on the Mars Express spacecraft sounds the neutral atmosphere and ionosphere of Mars since 2004. Approximately 800 vertical profiles of the ionospheric electron density have been acquired until today. The vertical electron content (TEC) is easily computed from the vertical electron density profile by integrating along the altitude. The TEC is typically a fraction of a TEC unit (1E16 m^-2) and depends on the solar zenith angle. The magnitude of the TEC is however fully dominated by the electron density contained in the main layer M2. The contributions by the M1 layer below M2 or the topside is marginal. MaRS is using two radio frequencies for the sounding of the ionosphere. The directly observed differential Doppler from the two received frequencies is a measure of the lateral electron content that means along the ray path and perpendicular to the vertical electron density profile. Combining both the vertical electron density profile, the vertical TEC and the directly observed lateral TEC describes the lateral electron density distribution in the ionosphere.
Plasma influence on the dispersion properties of finite-length, corrugated waveguides
NASA Astrophysics Data System (ADS)
Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T. M., Jr.; Granatstein, V. L.; Destler, W. W.; Ogura, K.; Minami, K.
1996-03-01
We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 cm-3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5×1011 cm-3.
NASA Astrophysics Data System (ADS)
Overly, Thomas B.; Hawley, Robert L.; Helm, Veit; Morris, Elizabeth M.; Chaudhary, Rohan N.
2016-08-01
We report annual snow accumulation rates from 1959 to 2004 along a 250 km segment of the Expéditions Glaciologiques Internationales au Groenland (EGIG) line across central Greenland using Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) radar layers and high resolution neutron-probe (NP) density profiles. ASIRAS-NP-derived accumulation rates are not statistically different (95 % confidence interval) from in situ EGIG accumulation measurements from 1985 to 2004. ASIRAS-NP-derived accumulation increases by 20 % below 3000 m elevation, and increases by 13 % above 3000 m elevation for the period 1995 to 2004 compared to 1985 to 1994. Three Regional Climate Models (PolarMM5, RACMO2.3, MAR) underestimate snow accumulation below 3000 m by 16-20 % compared to ASIRAS-NP from 1985 to 2004. We test radar-derived accumulation rates sensitivity to density using modeled density profiles in place of NP densities. ASIRAS radar layers combined with Herron and Langway (1980) model density profiles (ASIRAS-HL) produce accumulation rates within 3.5 % of ASIRAS-NP estimates in the dry snow region. We suggest using Herron and Langway (1980) density profiles to calibrate radar layers detected in dry snow regions of ice sheets lacking detailed in situ density measurements, such as those observed by the Operation IceBridge campaign.
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.
Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki
2016-02-01
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
Plasma Profile Measurements for Laser Fusion Research with the Nike KrF Laser
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2015-11-01
The grid image refractometer of the Nike laser facility (Nike-GIR) has demonstrated the capability of simultaneously measuring electron density (ne) and temperature (Te) profiles of coronal plasma. For laser plasma instability (LPI) research, the first Nike-GIR experiment successfully measured the plasma profiles in density regions up to ne ~ 4 ×1021 cm-3 (22% of the critical density for 248 nm light of Nike) using an ultraviolet probe laser (λp = 263 nm). The probe laser has been recently replaced with a shorter wavelength laser (λp = 213 nm, a 5th harmonic of the Nd:YAG laser) to diagnose a higher density region. The Nike-GIR system is being further extended to measure plasma profiles in the on-going experiment using 135°-separated Nike beam arrays for the cross-beam energy transfer (CBET) studies. We present an overview of the extended Nike-GIR arrangements and a new numerical algorithm to extract self-consistant plasma profiles with the measured quantities. Work supported by DoE/NNSA.
Estimating the D-Region Ionospheric Electron Density Profile Using VLF Narrowband Transmitters
NASA Astrophysics Data System (ADS)
Gross, N. C.; Cohen, M.
2016-12-01
The D-region ionospheric electron density profile plays an important role in many applications, including long-range and transionospheric communications, and coupling between the lower atmosphere and the upper ionosphere occurs, and estimation of very low frequency (VLF) wave propagation within the earth-ionosphere waveguide. However, measuring the D-region ionospheric density profile has been a challenge. The D-region is about 60 to 90 [km] in altitude, which is higher than planes and balloons can fly but lower than satellites can orbit. Researchers have previously used VLF remote sensing techniques, from either narrowband transmitters or sferics, to estimate the density profile, but these estimations are typically during a short time frame and over a single propagation path.We report on an effort to construct estimates of the D-region ionospheric electron density profile over multiple narrowband transmission paths for long periods of time. Measurements from multiple transmitters at multiple receivers are analyzed concurrently to minimize false solutions and improve accuracy. Likewise, time averaging is used to remove short transient noise at the receivers. The cornerstone of the algorithm is an artificial neural network (ANN), where input values are the received amplitude and phase for the narrowband transmitters and the outputs are the commonly known h' and beta two parameter exponential electron density profile. Training data for the ANN is generated using the Navy's Long-Wavelength Propagation Capability (LWPC) model. Results show the algorithm performs well under smooth ionospheric conditions and when proper geometries for the transmitters and receivers are used.
The effects of intragrain defects on the local photoresponse of polycrystalline silicon solar cells
NASA Astrophysics Data System (ADS)
Inoue, N.; Wilmsen, C. W.; Jones, K. A.
1981-02-01
Intragrain defects in Wacker cast and Monsanto zone-refined polycrystalline silicon materials were investigated using the electron-beam-induced current (EBIC) technique. The EBIC response maps were compared with etch pit, local diffusion length and local photoresponse measurements. It was determined that the Wacker polycrystalline silicon has a much lower density of defects than does the Monsanto polycrystalline silicon and that most of the defects in the Wacker material are not active recombination sites. A correlation was found between the recombination site density, as determined by EBIC, and the local diffusion length. It is shown that a large density of intragrain recombination sites greatly reduces the minority carrier diffusion length and thus can significantly reduce the photoresponse of solar cells.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Status of the Topside Vary-Chap Ionospheric Model
NASA Astrophysics Data System (ADS)
Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter
Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.
Stability and minimum size of colloidal clusters on a liquid-air interface.
Pergamenshchik, V M
2012-02-01
A vertical force applied to each of two colloids, trapped at a liquid-air interface, induces their logarithmic pairwise attraction. I recently showed [Phys. Rev. E 79, 011407 (2009)] that in clusters of size R much larger than the capillary length λ, the attraction changes to that of a power law and is much stronger due to a many-body effect, and I derived two equations that describe the equilibrium coarse-grained meniscus profile and colloid density in such clusters. In this paper, this theory is shown also to describe small clusters with R≪ λ provided the number N of colloids therein is sufficiently large. An analytical solution for a small circular cluster with an arbitrary short-range power-law pairwise repulsion is found. The energy of a cluster is obtained as a function of its radius R and colloid number N. As in large clusters, the attraction force and energy universally scale with the distance L between colloids as L(-3) and L(-2), respectively, for any repulsion forces. The states of an equilibrium cluster, predicted by the theory, are shown to be stable with respect to small perturbations of the meniscus profile and colloid density. The minimum number of colloids in a circular cluster, which sustains the thermal motion, is estimated. For standard parameters, it can be very modest, e.g., in the range 20-200, which is in line with experimental findings on reversible clusterization on a liquid-air interface. © 2012 American Physical Society
Uv Spectroscopy of Low-Redshift Active Galaxies -- Cyc 4
NASA Astrophysics Data System (ADS)
Boggess, Albert
1994-01-01
FOS will be used to measure the ultraviolet spectrum of active galaxies. Complementary and simultaneous visual and infrared data will also be obtained. The profile of the emission lines will provide information on the broadening mechanism and dynamics of the emitting regions. Comparison of the profile and radial velocity of the emission lines produced by species of different ioni- zation potential will allow the study of the thermal and density stratification of the emitting regions. The degree of asymmetry of lines at different wave- lengths will allow the absorbing material be identified and located. The ratio of the UV to visible lines, such as those for O I and He II will be used to estimate the reddening along the line of sight. Ratio of emission line fluxes will be compared with models in order to derive the ionization mechanism, elec- tron temperature and density, and chemical composition of the emitting gas. The emission line properties of low luminosity will be compared with those of high luminosity objects in order to investigate the covering factor and evolutionary effects. The continumm spectrum from the UV to the IR will be used to establish the emission mechanism and the nature and luminosity of the energy source. The weak absorption lines will be used to establish the physical conditions and the chemical composition of the gas in: our Galaxy, intergalactic medium and the parent galaxy. Absorption produced by broad line clouds will give information on cloud motion and covering factor.
Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.
2013-01-01
Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394
Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K
2013-11-01
Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kikuchi, Shoshi
2009-02-01
Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.
NASA Astrophysics Data System (ADS)
White, Justin; Olson, Britton; Morgan, Brandon; McFarland, Jacob; Lawrence Livermore National Laboratory Team; University of Missouri-Columbia Team
2015-11-01
This work presents results from a large eddy simulation of a high Reynolds number Rayleigh-Taylor instability and Richtmyer-Meshkov instability. A tenth-order compact differencing scheme on a fixed Eulerian mesh is utilized within the Ares code developed at Lawrence Livermore National Laboratory. (LLNL) We explore the self-similar limit of the mixing layer growth in order to evaluate the k-L-a Reynolds Averaged Navier Stokes (RANS) model (Morgan and Wickett, Phys. Rev. E, 2015). Furthermore, profiles of turbulent kinetic energy, turbulent length scale, mass flux velocity, and density-specific-volume correlation are extracted in order to aid the creation a high fidelity LES data set for RANS modeling. Prepared by LLNL under Contract DE-AC52-07NA27344.
McCormack, Gavin R
2017-06-01
The aim of this study was to estimate the associations between neighbourhood built environment characteristics and transportation walking (TW), recreational walking (RW), and moderate-intensity (MPA) and vigorous-intensity physical activity (VPA) in adults independent of sociodemographic characteristics and residential self-selection (i.e. the reasons related to physical activity associated with a person's choice of neighbourhood). In 2007 and 2008, 4423 Calgary adults completed land-based telephone interviews capturing physical activity, sociodemographic characteristics and reasons for residential self-selection. Using spatial data, we estimated population density, proportion of green space, path/cycleway length, business density, bus stop density, city-managed tree density, sidewalk length, park type mix and recreational destination mix within a 1.6 km street network distance from the participants' geolocated residential postal code. Generalized linear models estimated the associations between neighbourhood built environment characteristics and weekly neighbourhood-based physical activity participation (≥ 10 minutes/week; odds ratios [ORs]) and, among those who reported participation, duration of activity (unstandardized beta coefficients [B]). The sample included more women (59.7%) than men (40.3%) and the mean (standard deviation) age was 47.1 (15.6) years. TW participation was associated with intersection (OR = 1.11; 95% CI: 1.03 to 1.20) and business (OR = 1.52; 1.29 to 1.78) density, and sidewalk length (OR = 1.19; 1.09 to 1.29), while TW minutes was associated with business (B = 19.24 minutes/week; 11.28 to 27.20) and tree (B = 6.51; 2.29 to 10.72 minutes/week) density, and recreational destination mix (B = -8.88 minutes/ week; -12.49 to -5.28). RW participation was associated with path/cycleway length (OR = 1.17; 1.05 to 1.31). MPA participation was associated with recreational destination mix (OR = 1.09; 1.01 to 1.17) and sidewalk length (OR = 1.10; 1.02 to 1.19); however, MPA minutes was negatively associated with population density (B = -8.65 minutes/ week; -15.32 to -1.98). VPA participation was associated with sidewalk length (OR = 1.11; 1.02 to 1.20), path/cycleway length (OR = 1.12; 1.02 to 1.24) and proportion of neighbourhood green space (OR = 0.89; 0.82 to 0.98). VPA minutes was associated with tree density (B = 7.28 minutes/week; 0.39 to 14.17). Some neighbourhood built environment characteristics appear important for supporting physical activity participation while others may be more supportive of increasing physical activity duration. Modifications that increase the density of utilitarian destinations and the quantity of available sidewalks in established neighbourhoods could increase overall levels of neighbourhood-based physical activity.
Gaseous hydrogen/oxygen injector performance characterization
NASA Technical Reports Server (NTRS)
Degroot, W. A.; Tsuei, H. H.
1994-01-01
Results are presented of spontaneous Raman scattering measurements in the combustion chamber of a 110 N thrust class gaseous hydrogen/oxygen rocket. Temperature, oxygen number density, and water number density profiles at the injector exit plane are presented. These measurements are used as input profiles to a full Navier-Stokes computational fluid dynamics (CFD) code. Predictions of this code while using the measured profiles are compared with predictions while using assumed uniform injector profiles. Axial and radial velocity profiles derived from both sets of predictions are compared with Rayleigh scattering measurements in the exit plane of a 33:1 area ratio nozzle. Temperature and number density Raman scattering measurements at the exit plane of a test rocket with a 1:1.36 area ratio nozzle are also compared with results from both sets of predictions.
Radial dependence of the dark matter distribution in M33
NASA Astrophysics Data System (ADS)
López Fune, E.; Salucci, P.; Corbelli, E.
2017-06-01
The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.
NASA Astrophysics Data System (ADS)
De Ridder, Maaike; De Haulleville, Thalès; Kearsley, Elizabeth; Van den Bulcke, Jan; Van Acker, Joris; Beeckman, Hans
2014-05-01
It is commonly acknowledged that allometric equations for aboveground biomass and carbon stock estimates are improved significantly if density is included as a variable. However, not much attention is given to this variable in terms of exact, measured values and density profiles from pith to bark. Most published case-studies obtain density values from literature sources or databases, this way using large ranges of density values and possible causing significant errors in carbon stock estimates. The use of one single fixed value for density is also not recommended if carbon stock increments are estimated. Therefore, our objective is to measure and analyze a large number of tree species occurring in two Biosphere Reserves (Luki and Yangambi). Nevertheless, the diversity of tree species in these tropical forests is too high to perform this kind of detailed analysis on all tree species (> 200/ha). Therefore, we focus on the most frequently encountered tree species with high abundance (trees/ha) and dominance (basal area/ha) for this study. Increment cores were scanned with a helical X-ray protocol to obtain density profiles from pith to bark. This way, we aim at dividing the tree species with a distinct type of density profile into separate groups. If, e.g., slopes in density values from pith to bark remain stable over larger samples of one tree species, this slope could also be used to correct for errors in carbon (increment) estimates, caused by density values from simplified density measurements or density values from literature. In summary, this is most likely the first study in the Congo Basin that focuses on density patterns in order to check their influence on carbon stocks and differences in carbon stocking based on species composition (density profiles ~ temperament of tree species).
Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foot, R., E-mail: rfoot@unimelb.edu.au
2014-12-01
If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent ofmore » galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.« less
Subsampled Numerical Experiments as a Guide for Field Deployment of Thermistor Chains
NASA Astrophysics Data System (ADS)
Shaw, Justin; Stastna, Marek
2017-11-01
Thermistor chains are a standard tool for recording temperature profiles in geophysical flows. Density values can be inferred from readings and the resulting density field analyzed for the passage of internal waves, Kelvin-Helmholtz billows, and other dynamic events. The number and spacing of the thermistors, both on and between chains, determines which events can be identified in the dataset. We examine the effect of changing these variables by subsampling a set of numerical experiments to simulate thermistor chain locations. A pseudo spectral method was used to solve the incompressible Navier-Stokes equations under the Boussinesq approximation. The resulting flows are a set of high resolution seiches where the depth was held constant across experiments, and the length was varied. Sampling a known, commonly occurring flow with relatively simple geometry allows for a clear analysis of the effects of thermistor placement in the capture of dynamic events. We will discuss three dimensional deployment strategies, as well as EOF and DMD analyses if there is time. Funded by a Grant from the National Sciences and Engineering Research Council of Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqui, M. Umair, E-mail: musiddiqui@mail.wvu.edu; Thompson, Derek S.; McIlvain, Julianne M.
2015-12-15
Direct laser induced fluorescence measurements are shown of cross-field ion flows normal to an absorbing boundary that is aligned parallel to the axial magnetic field in a helicon plasma. We show Langmuir and emissive probe measurements of local density and plasma potential in the same region, as well as floating probe spectra near the boundary. With these measurements, we investigate the influence of ion-neutral collisionality on radial ion transport by varying the ratio of the ion gyro-radius, ρ{sub i}, to the ion-neutral collision length, λ, over the range 0.34 ≤ ρ{sub i}λ{sup −1} ≤ 1.60. Classical drift-diffusion transport along density and potential gradients ismore » sufficient to describe flow profiles for most cases. For two parameter regimes (ρ{sub i}λ{sup −1} = 0.65 and 0.44), low-frequency electrostatic fluctuations (f < 10 kHz) and enhanced cross-field bulk ion flow to the boundary are observed.« less
Design of multichannel laser interferometry for W7-X
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornejew, P.; Hirsch, M.; Bindemann, T.
2006-10-15
An eight channel interferometer is developed for density feedback control and the continuous measurement of electron density profiles in the stellarator W7-X. An additional sightline is launched in the geometry of the Thomson scattering for cross calibration. Due to the W7-X coil geometry access is strongly restricted. This motivates the optimization of the sightline geometry and design studies for supplementary chords. In-vessel retroreflectors will be used and inserted in the first wall elements. To cope with associated mechanical vibrations and thermal drifts during the discharges with envisaged duration of 30 min either two-color or second harmonic interferometry techniques must bemore » applied. Optimum wavelengths are found to be about 10 and 5 {mu}m. A CO{sub 2}/CO interferometer (10 {mu}m/5 {mu}m) will be tested and compared with an existing CO{sub 2}/HeNe test interferometer. A special difficulty of remotely operated diagnostics is the need of long transmission lines with a path length of about 60 m required from the diagnostics location to the torus hall and back. Different arrangements will be compared.« less
Petit, Giai; Pfautsch, Sebastian; Anfodillo, Tommaso; Adams, Mark A
2010-09-01
*Recent research suggests that increasing conduit tapering progressively reduces hydraulic constraints caused by tree height. Here, we tested this hypothesis using the tallest hardwood species, Eucalyptus regnans. *Vertical profiles of conduit dimensions and vessel density were measured for three mature trees of height 47, 51 and 63 m. *Mean hydraulic diameter (Dh) increased rapidly from the tree apex to the point of crown insertion, with the greatest degree of tapering yet reported (b > 0.33). Conduit tapering was such that most of the total resistance was found close to the apex (82-93% within the first 1 m of stem) and the path length effect was reduced by a factor of 2000. Vessel density (VD) declined from the apex to the base of each tree, with scaling parameters being similar for all trees (a = 4.6; b = -0.5). *Eucalyptus regnans has evolved a novel xylem design that ensures a high hydraulic efficiency. This feature enables the species to grow quickly to heights of 50-60 m, beyond the maximum height of most other hardwood trees.
Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2000-10-01
The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-01-01
Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414
Mind the cell: Seasonal variation in telomere length mirrors changes in leucocyte profile.
Beaulieu, Michaël; Benoit, Laure; Abaga, Steven; Kappeler, Peter M; Charpentier, Marie J E
2017-10-01
Leucocytes are typically considered as a whole in studies examining telomere dynamics in mammals. Such an approach may be precarious, as leucocytes represent the only nucleated blood cells in mammals, their composition varies temporally, and telomere length differs between leucocyte types. To highlight this limitation, we examined here whether seasonal variation in leucocyte composition was related to variation in telomere length in free-ranging mandrills (Mandrilllus sphinx). We found that the leucocyte profile of mandrills varied seasonally, with lower lymphocyte proportion being observed during the long dry season presumably because of the combined effects of high nematode infection and stress at that time of the year. Interestingly, this low lymphocyte proportion during the long dry season was associated with shorter telomeres. Accordingly, based on longitudinal data, we found that seasonal changes in lymphocyte proportion were reflected by corresponding seasonal variation in telomere length. Overall, these results suggest that variation in lymphocyte proportion in blood can significantly affect telomere measurements in mammals. However, lymphocyte proportion did not entirely explain variation in telomere length. For instance, a lower lymphocyte proportion with age could not fully explain shorter telomeres in older individuals. Overall, our results show that telomere length and leucocyte profile are strongly although imperfectly intertwined, which may obscure the relationship between telomere dynamics and ageing processes in mammals. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Puiatti, M. E.; Valisa, M.; Angioni, C.; Garzotti, L.; Mantica, P.; Mattioli, M.; Carraro, L.; Coffey, I.; Sozzi, C.
2006-04-01
This paper describes the behavior of nickel in low confinement (L-mode) and high confinement (H-mode) Joint European Torus (JET) discharges [P. J. Lomas, Plasma Phys. Control. Fusion 31, 1481 (1989)] characterized by the application of radio-frequency (rf) power heating and featuring ITER (International Thermonuclear Experimental Reactor) relevant collisionality. The impurity transport is analyzed on the basis of perturbative experiments (laser blow off injection) and is compared with electron heat and deuterium transport. In the JET plasmas analyzed here, ion cyclotron resonance heating (ICRH) is applied either in mode conversion (MC) to heat the electrons or in minority heating (MH) to heat the ions. The two heating schemes have systematically different effects on nickel transport, yielding flat or slightly hollow nickel density profiles in the case of ICRH in MC and peaked nickel density profiles in the case of rf applied in MH. Accordingly, both diffusion coefficients and pinch velocities of nickel are found to be systematically different. Linear gyrokinetic calculations by means of the code GS2 [M. Kotschenreuther, G. Rewoldt, and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995)] provide a possible explanation of such different behavior by exploring the effects produced by the different microinstabilities present in these plasmas. In particular, trapped electron modes driven by the stronger electron temperature gradients measured in the MC cases, although subdominant, produce a contribution to the impurity pinch directed outwards that is qualitatively in agreement with the pinch reversal found in the experiment. Particle and heat diffusivities appear to be decoupled in MH shots, with χe and DD≫DNi, and are instead quite similar in the MC ones. In the latter case, nickel transport appears to be driven by the same turbulence that drives the electron heat transport and is sensitive to the value of the electron temperature gradient length. These findings give ground to the idea that in ITER it should be possible to find conditions in which the risk of accumulation of metals such as nickel can be contained.
Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen
NASA Astrophysics Data System (ADS)
Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.
2018-05-01
We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.
Microbial Diffraction Gratings as Optical Detectors for Heavy Metal Pollutants
NASA Technical Reports Server (NTRS)
Noever, David; Matsos, Helen; Brittain, Andrew; Obenhuber, Don; Cronise, Raymond; Armstrong, Shannon
1996-01-01
As a significant industrial pollutant, cadmium is implicated as the cause of itai-itai disease. For biological detection of cadmium toxicity, an assay device has been developed using the motile response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 microns in diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns at high organism concentrations. The assay demonstrates a Cd(+2) sensitivity better than 1 micro-M and a toxicity threshold to 5 micro-M, thus encouraging the study of these microbial cultures as viable pollution detectors. Using two-dimensional diffraction patterns within a Tetrahymena culture, the scattered light intensity varies with different organism densities (population counts). The resulting density profile correlates strongly with the toxic effects at very low dosages for cadmium (less than 5 ppm) and then for poison protection directly (with nickel and copper antagonists competing with cadmium absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd(+2) and therefore have demonstrated the sensitivity of the optical detection system. In this way, such microbial diffraction patterns give a responsive optical measure of biological culture changes and toxicity determination in aqueous samples of heavy metals and industrial pollutants.
On the similarity and apparent cycles of isotopic variations in East Antarctic snow pits
NASA Astrophysics Data System (ADS)
Laepple, Thomas; Münch, Thomas; Casado, Mathieu; Hoerhold, Maria; Landais, Amaelle; Kipfstuhl, Sepp
2018-01-01
Stable isotope ratios δ18O and δD in polar ice provide a wealth of information about past climate evolution. Snow-pit studies allow us to relate observed weather and climate conditions to the measured isotope variations in the snow. They therefore offer the possibility to test our understanding of how isotope signals are formed and stored in firn and ice. As δ18O and δD in the snowfall are strongly correlated to air temperature, isotopes in the near-surface snow are thought to record the seasonal cycle at a given site. Accordingly, the number of seasonal cycles observed over a given depth should depend on the accumulation rate of snow. However, snow-pit studies from different accumulation conditions in East Antarctica reported similar isotopic variability and comparable apparent cycles in the δ18O and δD profiles with typical wavelengths of ˜ 20 cm. These observations are unexpected as the accumulation rates strongly differ between the sites, ranging from 20 to 80 mm w. e. yr-1 ( ˜ 6-21 cm of snow per year). Various mechanisms have been proposed to explain the isotopic variations individually at each site; however, none of these are consistent with the similarity of the different profiles independent of the local accumulation conditions.Here, we systematically analyse the properties and origins of δ18O and δD variations in high-resolution firn profiles from eight East Antarctic sites. First, we confirm the suggested cycle length (mean distance between peaks) of ˜ 20 cm by counting the isotopic maxima. Spectral analysis further shows a strong similarity between the sites but indicates no dominant periodic features. Furthermore, the apparent cycle length increases with depth for most East Antarctic sites, which is inconsistent with burial and compression of a regular seasonal cycle. We show that these results can be explained by isotopic diffusion acting on a noise-dominated isotope signal. The firn diffusion length is rather stable across the Antarctic Plateau and thus leads to similar power spectral densities of the isotopic variations. This in turn implies a similar distance between isotopic maxima in the firn profiles.Our results explain a large set of observations discussed in the literature, providing a simple explanation for the interpretation of apparent cycles in shallow isotope records, without invoking complex mechanisms. Finally, the results underline previous suggestions that isotope signals in single ice cores from low-accumulation regions have a small signal-to-noise ratio and thus likely do not allow the reconstruction of interannual to decadal climate variations.
Measurement of a density profile of a hot-electron plasma in RT-1 with three-chord interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saitoh, H.; Yano, Y.; Yoshida, Z.
2015-02-15
The electron density profile of a plasma in a magnetospheric dipole field configuration was measured with a multi-chord interferometry including a relativistic correction. In order to improve the accuracy of density reconstruction, a 75 GHz interferometer was installed at a vertical chord of the Ring Trap 1 (RT-1) device in addition to previously installed ones at tangential and another vertical chords. The density profile was calculated by using the data of three-chord interferometry including relativistic effects for a plasma consisting of hot and cold electrons generated by electron cyclotron resonance heating (ECH). The results clearly showed the effects of density peakingmore » and magnetic mirror trapping in a strongly inhomogeneous dipole magnetic field.« less
NASA Technical Reports Server (NTRS)
Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.
2004-01-01
The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.
The Halo Boundary of Galaxy Clusters in the SDSS
NASA Astrophysics Data System (ADS)
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; Adhikari, Susmita; Dalal, Neal; Kravtsov, Andrey; More, Surhud; Rozo, Eduardo; Rykoff, Eli; Sheth, Ravi K.
2017-05-01
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxy colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.
Study on length distribution of ramie fibers
USDA-ARS?s Scientific Manuscript database
The extra-long length of ramie fibers and the high variation in fiber length has a negative impact on the spinning processes. In order to better study the feature of ramie fiber length, in this research, the probability density function of the mixture model applied in the characterization of cotton...
NASA Astrophysics Data System (ADS)
Walkden, N. R.; Wynn, A.; Militello, F.; Lipschultz, B.; Matthews, G.; Guillemaut, C.; Harrison, J.; Moulton, D.; Contributors, JET
2017-08-01
This paper presents the use of a novel modelling technique based around intermittent transport due to filament motion, to interpret experimental profile and fluctuation data in the scrape-off layer (SOL) of JET during the onset and evolution of a density profile shoulder. A baseline case is established, prior to shoulder formation, and the stochastic model is shown to be capable of simultaneously matching the time averaged profile measurement as well as the PDF shape and autocorrelation function from the ion-saturation current time series at the outer wall. Aspects of the stochastic model are then varied with the aim of producing a profile shoulder with statistical measurements consistent with experiment. This is achieved through a strong localised reduction in the density sink acting on the filaments within the model. The required reduction of the density sink occurs over a highly localised region with the timescale of the density sink increased by a factor of 25. This alone is found to be insufficient to model the expansion and flattening of the shoulder region as the density increases, which requires additional changes within the stochastic model. An example is found which includes both a reduction in the density sink and filament acceleration and provides a consistent match to the experimental data as the shoulder expands, though the uniqueness of this solution can not be guaranteed. Within the context of the stochastic model, this implies that the localised reduction in the density sink can trigger shoulder formation, but additional physics is required to explain the subsequent evolution of the profile.
Models for root water uptake under deficit irrigation
NASA Astrophysics Data System (ADS)
Lazarovitch, Naftali; Krounbi, Leilah; Simunek, Jirka
2010-05-01
Modern agriculture, with its dependence on irrigation, fertilizers, and pesticide application, contributes significantly to the water and solute influx through the soil into the groundwater, specifically in arid areas. The quality and quantity of this water as it passes through the vadose zone is influenced primarily by plant roots. Root water uptake is a function of both a physical root parameter, commonly referred to as the root length density, and the soil water status. The location of maximum water uptake in a homogenous soil profile of uniform water content and hydraulic conductivity occurs in the soil layer containing the largest root length density. Under field conditions, in a drying soil, plants are both subject to, and the source of, great spatial variability in the soil water content. The upper soil layers containing the bulk of the root zone are usually the most water depleted, while the deeper regions of the soil profile containing fewer roots are wetter. Changes in the physiological functioning of plants have been shown to result from extended periods of water stress, but the short term effects of water stress on root water uptake are less well understood. While plants can minimize transpiration and the resulting growth rates under limiting conditions to conserve water, many plants maintain a constant potential transpiration rate long after the commencement of the drying process. Compensatory uptake, whereby plants respond to non-uniform, limiting conditions by increasing water uptake from areas in the root zone characterized by more favorable conditions, is one such mechanism by which plants sustain potential transpiration rates in drying soils. The development of models which accurately characterize temporal and spatial root water uptake patterns is important for agricultural resource optimization, upon which subsequent management decisions affecting resource conservation and environmental pollution are based. Numerical simulations of root water uptake in various irrigation and fertilization regimes provide a much-needed alternative to tiring and expensive field work. These simulations can aid in raising agricultural water use efficiency while preserving soil and water resources. In this research, controlled lab experiments were carried out in soil-packed lysimeters designed for plant cultivation. Both the water balance of the growing plants as well as the temporary matric head distribution in the soil profile were calculated and measured. The experiment was conducted with sweet sorghum grown in two different soil profiles with different hydraulic properties. The experiment provided the data necessary to calculate the parameters of various models used to simulate root water uptake, by using an inverse solution method imbedded in the HYDRUS-1D code. The observed increase in uptake from the wetter soil regions under drying conditions, as measured and calculated, sheds light on the dominant role of soil hydraulic properties over the root distribution, and consequently root water uptake.
NASA Astrophysics Data System (ADS)
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
Calculation of nanodrop profile from fluid density distribution.
Berim, Gersh O; Ruckenstein, Eli
2016-05-01
Two approaches are examined, which can be used to determine the drop profile from the fluid density distributions (FDDs) obtained on the basis of microscopic theories. For simplicity, only two-dimensional (cylindrical, or axisymmetrical) distributions are examined and it is assumed that the fluid is either in contact with a smooth solid or separated from the smooth solid by a lubricating liquid film. The first approach is based on the sharp-kink interface approximation in which the density of the liquid inside and the density of the vapor outside the drop are constant with the exception of the surface layer of the drop where the density is different from the above ones. In this case, the drop profile was calculated by minimizing the total potential energy of the system. The second approach is based on a nonuniform FDD obtained either by the density functional theory or molecular dynamics simulations. To determine the drop profile from such an FDD, which does not contain sharp interfaces, three procedures can be used. In the first two procedures, P1 and P2, the one-dimensional FDDs along straight lines which are parallel to the surface of the solid are extracted from the two-dimensional FDD. Each of those one-dimensional FDDs has a vapor-liquid interface at which the fluid density changes from vapor-like to liquid-like values. Procedure P1 uses the locations of the equimolar dividing surfaces for the one-dimensional FDDs as points of the drop profile. Procedure P2 is based on the assumption that the fluid density is constant on the surface of the drop, that density being selected either arbitrarily or as a fluid density at the location of the equimolar dividing surface for one of the one-dimensional FDDs employed in procedure P1. In the third procedure, P3, which is suggested for the first time in this paper, the one-dimensional FDDs are taken along the straight lines passing through a selected point inside the drop (radial line). Then, the drop profile is calculated like in procedure P1. It is shown, that procedure P3 provides a drop profile which is more reasonable than the other ones. Relationship of the discussed procedures to those used in image analysis is briefly discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Cosgrove, Gregory P.; Janssen, William J.; Huie, Tristan J.; Burnham, Ellen L.; Heinz, David E.; Curran-Everett, Douglas; Sahin, Hakan; Schwarz, Marvin I.; Cool, Carlyne D.; Groshong, Steve D.; Geraci, Mark W.; Tuder, Rubin M.; Hyde, Dallas M.; Henson, Peter M.
2012-01-01
Background: Lymphangiogenesis responds to tissue injury as a key component of normal wound healing. The development of fibrosis in the idiopathic interstitial pneumonias may result from abnormal wound healing in response to injury. We hypothesize that increased lymphatic vessel (LV) length, a marker of lymphangiogenesis, is associated with parenchymal components of the fibroblast reticulum (organizing collagen, fibrotic collagen, and fibroblast foci), and its extent correlates with disease severity. Methods: We assessed stereologically the parenchymal structure of fibrotic lungs and its associated lymphatic network, which was highlighted immunohistochemically in age-matched samples of usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia (NSIP) with FVC < 80%, COPD with a Global Initiative for Obstructive Lung Disease stage 0, and normal control lungs. Results: LV length density, as opposed to vessel volume density, was found to be associated with organizing and fibrotic collagen density (P < .0001). Length density of LVs and the volume density of organizing and fibrotic collagen were significantly associated with severity of both % FVC (P < .001) and diffusing capacity of the lung for carbon monoxide (P < .001). Conclusions: Severity of disease in UIP and NSIP is associated with increased LV length and is strongly associated with components of the fibroblast reticulum, namely organizing and fibrotic collagen, which supports a pathogenic role of LVs in these two diseases. Furthermore, the absence of definable differences between UIP and NSIP suggests that LVs are a unifying mechanism for the development of fibrosis in these fibrotic lung diseases. PMID:22797508
Directional power absorption in helicon plasma sources excited by a half-helix antenna
NASA Astrophysics Data System (ADS)
Afsharmanesh, Mohsen; Habibi, Morteza
2017-10-01
This paper deals with the investigation of the power absorption in helicon plasma excited through a half-helix antenna driven at 13.56 {{MHz}}. The simulations were carried out by means of a code, HELIC. They were carried out by taking into account different inhomogeneous radial density profiles and for a wide range of plasma densities, from {10}11 {{{cm}}}-3 to {10}13 {{{cm}}}-3. The magnetic field was 200, 400, 600 and 1000 {{G}}. A three-parameter function was used for generating various density profiles with different volume gradients, edge gradients and density widths. The density profile had a large effect on the efficient Trivelpiece-Gould (TG) and helicon mode excitation and antenna coupling to the plasma. The fraction of power deposition via the TG mode was extremely dependent on the plasma density near the plasma boundary. Interestingly, the obtained efficient parallel helicon wavelength was close to the anticipated value for Gaussian radial density profile. Power deposition was considerably asymmetric when the \\tfrac{n}{{B}0} ratio was more than a specific value for a determined density width. The longitudinal power absorption was symmetric at approximately {n}0={10}11 {{{cm}}}-3, irrespective of the magnetic field supposed. The asymmetry became more pronounced when the plasma density was {10}12 {{{cm}}}-3. The ratio of density width to the magnetic field was an important parameter in the power coupling. At high magnetic fields, the maximum of the power absorption was reached at higher plasma density widths. There was at least one combination of the plasma density, magnetic field and density width for which the RF power deposition at both side of the tube reached its maximum value.
High-throughput full-length single-cell mRNA-seq of rare cells.
Ooi, Chin Chun; Mantalas, Gary L; Koh, Winston; Neff, Norma F; Fuchigami, Teruaki; Wong, Dawson J; Wilson, Robert J; Park, Seung-Min; Gambhir, Sanjiv S; Quake, Stephen R; Wang, Shan X
2017-01-01
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Turbulence Statistics of a Buoyant Jet in a Stratified Environment
NASA Astrophysics Data System (ADS)
McCleney, Amy Brooke
Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one capturing the entire jet at near Taylor microscale resolution, and the other, thanks to the careful refractive index matching of the liquids, resolving the Taylor scale at near Kolmogorov scale resolution. This is accomplished using a combination of TR-PIV and long-distance micro-PIV. The turbulence statistics obtained at various downstream locations and magnifications are obtained for density differences of 0%, 1%, and 3%. To validate the experimental methodology and provide a reference case for validation, the effect of initial velocity profile on the neutrally buoyant jet in the self-preserving regime is studied at two Reynolds numbers of 10,000 and 20,000. For the neutrally buoyant jet, it is found that independent of initial conditions the jet follows a self-similar behavior in the far-field; however, the spreading rate is strongly dependent on initial velocity profile. High magnification analysis at the small turbulent length scales shows a flow field where the mean statistics compare well to the larger field of view case. Investigation of the near-field shows the jet is strongly influenced by buoyancy, where an increase in vortex ring formation frequency and number of pairings occur. The buoyant jet with a 1% density difference shows an alteration of the centerline velocity decay, but the radial distribution of the mean axial velocity collapses well at all measurement locations. Jet formation dramatically changes for a buoyant jet with a 3% density difference, where the jet reaches a terminal height and spreads out horizontally at its neutral buoyancy location. Analysis of both the mean axial velocity and strain rates show the jet is no longer self-similar; for example, the mean centerline velocity does not decay uniformly as the jet develops. The centerline strain rates at this density difference also show trends which are strongly influenced by the altered centerline velocity. The overall centerline analysis shows that turbulence suppression occurs as a result of the stratification for both the 1% and 3% density difference. Analysis on the kinetic energy budget shows that the mean convection, production, transportation, and dissipation of energy is altered from stratification. High resolution data of the jet enable flow structures to be captured in the neutrally buoyant region of the flow. Vortices of different sizes are identified. Longer data sets are necessary to perform a statistical analysis of their distribution and to compare them to homogeneous environment case. This multi-scale analysis shows potential for studying energy transfer between length scales.
Ewing, R.D.; Sheahan, J.E.; Lewis, M.A.; Palmisano, Aldo N.
2000-01-01
Four brood years of juvenile spring chinook salmon Oncorhynchus tshawytscha were reared in conventional and baffled raceways at various rearing densities and loads at Willamette Hatchery, Oregon. A period of rapid linear growth occurred from August to November, but there was little or no growth from November to March when the fish were released. Both fall and winter growth rates were inversely related to rearing density. Final weight and length were also inversely related to rearing density. No significant relationship between load and any growth variable was observed. Fish reared at lower densities in conventional raceways tended to develop bimodal length distributions in winter and early spring. Fish reared in conventional raceways showed significantly larger growth rates and final lengths and weights than those reared in baffled raceways. Food conversions and average delivery times for feed were significantly greater in baffled than in conventional raceways. No significant relationships were observed between either rearing density or load and condition factor, food conversion, or mortality. Mortality was not significantly different between the two raceway types. When fish were transported to seawater for further rearing, there were no significant relationships between mortality in seawater and rearing density or load, but fish reared in baffled raceways had significantly higher mortality than those reared in conventional raceways.
Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy.
Jarvinen, M K; Powley, T L
1999-01-18
The dorsal motor nucleus of the vagus (DMNX) contains neurons with different projections and discrete functions, but little success has been achieved in distinguishing the cells cytoarchitectonically. The present experiment employed multivariate analytical techniques to evaluate DMNX neuronal morphology. Male Sprague-Dawley rats (n = 77) were perfused, and the brainstems were stained en bloc with a Golgi-Cox protocol. DMNX neurons in each of three planes (coronal, sagittal, and horizontal; total sample = 607) were digitized. Three-dimensional features quantified included dendritic length, number of segments, spine density, number of primary dendrites, dendritic orientation, and soma form factor. Cluster analyses of six independent samples of 100+ neurons and of three composite replicate pools of 200+ neurons consistently identified similar sets of four distinct neuronal profiles. One profile (spinous, limited dendrites, small somata) appears to correspond to the interneuron population of the DMNX. In contrast, the other three distinctive profiles (e.g., one is multipolar, with large dendritic fields and large somata) are different types of preganglionic neurons. Each of the four types of neurons is found throughout the DMNX, suggesting that the individual columnar subnuclei and other postulated vagal motorneuron pools are composed of all types of neurons. Within individual motor pools, ensembles of the different neuronal types must cooperatively organize different functions and project to different effectors within a target organ. By extension, specializations of the preganglionic motor pools are more likely to result from their afferent inputs, peripheral target tissues, neurochemistry, or physiological features rather than from any unique morphological profiles.
Density Gradients in Chemistry Teaching
ERIC Educational Resources Information Center
Miller, P. J.
1972-01-01
Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)
NASA Astrophysics Data System (ADS)
Takenaga, H.; Ide, S.; Sakamoto, Y.; Fujita, T.; JT-60 Team
2008-07-01
Effects of low central fuelling on density and ion temperature profiles have been investigated using negative ion based neutral beam injection and electron cyclotron heating (ECH) in reversed shear plasmas on JT-60U. Strong internal transport barrier (ITB) was maintained in density and ion temperature profiles, when central fuelling was decreased by switching positive ion based neutral beam injection to ECH after the strong ITB formation. Similar density and ion temperature ITBs were formed for the low and high central fuelling cases during the plasma current ramp-up phase. Strong correlation between the density gradient and the ion temperature gradient was observed, indicating that particle transport and ion thermal transport are strongly coupled or the density gradient assists the ion temperature ITB formation through suppression of drift wave instabilities such as ion temperature gradient mode. These results support that the density and ion temperature ITBs can be formed under reactor relevant conditions.
Halcomb, Danny L.; Mohler, Jonathan H.
1991-03-05
A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.
The correlation function for density perturbations in an expanding universe. I - Linear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.
Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Moore, David; Cohen, Ross D.
1996-01-01
We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.
Nagle, J F; Wiener, M C
1989-01-01
Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444
NASA Astrophysics Data System (ADS)
Pätzold, M.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Tyler, G. L.
2016-10-01
In their recent paper, Grandin et al. (2014) claim to have developed a novel approach, principally a ray tracing method, to analyze radio sounding data from occulted spacecraft signals by planetary atmospheres without the usual assumptions of the radio occultation inversion method of a stratified, layered, symmetric atmosphere. They apply their "new approach" to observations of the Mars Express Radio Science (MaRS) experiment and compare their resulting temperature, neutral number density, and electron density profiles with those from MaRS, claiming that there is good agreement with the observations. The fact is, however, that there are serious disagreements in the most important altitude ranges. Their temperature profile shows a 30 K shift or a 300σ (1σ standard deviation = 0.1 K for the MaRS profile near the surface) difference toward warmer temperatures at the surface when compared with MaRS, while the MaRS profile is in best agreement with the profile from the Mars Climate Data Base V5.0 (MCD V5.0). Their full temperature profile from the surface to 250 km altitude deviates significantly from the MCD V5.0 profile. Their ionospheric electron density profile is considerably different from that derived from the MaRs observations. Although Grandin et al. (2014) claim to derive the neutral number density and temperature profiles above 200 km, including the asymptotic exosphere temperature, it is simply not possible to derive this information from what is essentially noise.
Deng, Mingge; Li, Xuejin; Liang, Haojun; Caswell, Bruce; Karniadakis, George Em
2013-01-01
Fabrication of functionalized surfaces using polymer brushes is a relatively simple process and parallels the presence of glycocalyx filaments coating the luminal surface of our vasculature. In this paper, we perform atomistic-like simulations based on dissipative particle dynamics (DPD) to study both polymer brushes and glycocalyx filaments subject to shear flow, and we apply mean-field theory to extract useful scaling arguments on their response. For polymer brushes, a weak shear flow has no effect on the brush density profile or its height, while the slip length is independent of the shear rate and is of the order of the brush mesh size as a result of screening by hydrodynamic interactions. However, for strong shear flow, the polymer brush is penetrated deeper and is deformed, with a corresponding decrease of the brush height and an increase of the slip length. The transition from the weak to the strong shear regime can be described by a simple ‘blob’ argument, leading to the scaling γ̇0 ∝ σ3/2, where γ̇0 is the critical transition shear rate and σ is the grafting density. Furthermore, in the strong shear regime, we observe a cyclic dynamic motion of individual polymers, causing a reversal in the direction of surface flow. To study the glycocalyx layer, we first assume a homogeneous flow that ignores the discrete effects of blood cells, and we simulate microchannel flows at different flow rates. Surprisingly, we find that, at low Reynolds number, the slip length decreases with the mean flow velocity, unlike the behaviour of polymer brushes, for which the slip length remains constant under similar conditions. (The slip length and brush height are measured with respect to polymer mesh size and polymer contour length, respectively.) We also performed additional DPD simulations of blood flow in a tube with walls having a glycocalyx layer and with the deformable red blood cells modelled accurately at the spectrin level. In this case, a plasma cell-free layer is formed, with thickness more than three times the glycocalyx layer. We then find our scaling arguments based on the homogeneous flow assumption to be valid for this physiologically correct case as well. Taken together, our findings point to the opposing roles of conformational entropy and bending rigidity – dominant effects for the brush and glycocalyx, respectively – which, in turn, lead to different flow characteristics, despite the apparent similarity of the two systems. PMID:24353347
Bernard R. Parresol; Charles E. Thomas
1996-01-01
In the wood utilization industry, both stem profile and biomass are important quantities. The two have traditionally been estimated separately. The introduction of a density-integral method allows for coincident estimation of stem profile and biomass, based on the calculus of mass theory, and provides an alternative to weight-ratio methodology. In the initial...
Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes
NASA Astrophysics Data System (ADS)
Othman, A.; Ismail, AE
2018-04-01
Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.
Do satellite galaxies trace matter in galaxy clusters?
NASA Astrophysics Data System (ADS)
Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas
2018-04-01
The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 < λ < 100, and Pcen > 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).
NASA Astrophysics Data System (ADS)
Kawakami, Todd Mori
In April of 1995, the launch of the GPS Meteorology Experiment (GPS/MET) onboard the Orbview-1 satellite, formerly known as Microlab-1, provided the first technology demonstration of active limb sounding of the Earth's atmosphere with a low Earth orbiting spacecraft utilizing the signals transmitted by the satellites of the Global Positioning System (GPS). Though the experiment's primary mission was to probe the troposphere and stratosphere, GPS/MET was also capable of making radio occultation observations of the ionosphere. The application of the GPS occultation technique to the upper atmosphere created a unique opportunity to conduct ionospheric research with an unprecedented global distribution of observations. For operational support requirements, the Abel transform could be employed to invert the horizontal TEC profiles computed from the L1 and L2 phase measurements observed by GPS/MET into electron density profiles versus altitude in near real time. The usefulness of the method depends on how effectively the TEC limb profiles can be transformed into vertical electron density profiles. An assessment of GPS/MET's ability to determine electron density profiles needs to be examined to validate the significance of the GPS occultation method as a new and complementary ionospheric research tool to enhance the observational databases and improve space weather modeling and forecasting. To that end, simulations of the occultation observations and their inversions have been conducted to test the Abel transform algorithm and to provide qualitative information about the type and range of errors that might be experienced during the processing of real data. Comparisons of the electron density profiles inferred from real GPS/MET observations are then compared with coincident in situ measurements from the satellites of Defense Meteorological Satellite Program (DMSP) and ground-based remote sensing from digisonde and incoherent scatter radar facilities. The principal focus of this study is the validation of the electron density profiles inferred from GPS occultation observations using the Abel transform.
Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak
NASA Astrophysics Data System (ADS)
Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei
2000-03-01
The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.
Rogers, Lauren A.; Stige, Leif C.; Olsen, Esben M.; Knutsen, Halvor; Chan, Kung-Sik; Stenseth, Nils Chr.
2011-01-01
Understanding how populations respond to changes in climate requires long-term, high-quality datasets, which are rare for marine systems. We estimated the effects of climate warming on cod lengths and length variability using a unique 91-y time series of more than 100,000 individual juvenile cod lengths from surveys that began in 1919 along the Norwegian Skagerrak coast. Using linear mixed-effects models, we accounted for spatial population structure and the nested structure of the survey data to reveal opposite effects of spring and summer warming on juvenile cod lengths. Warm summer temperatures in the coastal Skagerrak have limited juvenile growth. In contrast, warmer springs have resulted in larger juvenile cod, with less variation in lengths within a cohort, possibly because of a temperature-driven contraction in the spring spawning period. A density-dependent reduction in length was evident only at the highest population densities in the time series, which have rarely been observed in the last decade. If temperatures rise because of global warming, nonlinearities in the opposing temperature effects suggest that negative effects of warmer summers will increasingly outweigh positive effects of warmer springs, and the coastal Skagerrak will become ill-suited for Atlantic cod. PMID:21245301
Ultrafast decay of hot phonons in an AlGaN/AlN/AlGaN/GaN camelback channel
NASA Astrophysics Data System (ADS)
Leach, J. H.; Wu, M.; Morkoç, H.; Liberis, J.; Šermukšnis, E.; Ramonas, M.; Matulionis, A.
2011-11-01
A bottleneck for heat dissipation from the channel of a GaN-based heterostructure field-effect transistor is treated in terms of the lifetime of nonequilibrium (hot) longitudinal optical phonons, which are responsible for additional scattering of electrons in the voltage-biased quasi-two-dimensional channel. The hot-phonon lifetime is measured for an Al0.33Ga0.67N/AlN/Al0.1Ga0.9N/GaN heterostructure where the mobile electrons are spread in a composite Al0.1Ga0.9N/GaN channel and form a camelback electron density profile at high electric fields. In accordance with plasmon-assisted hot-phonon decay, the parameter of importance for the lifetime is not the total charge in the channel (the electron sheet density) but rather the electron density profile. This is demonstrated by comparing two structures with equal sheet densities (1 × 1013 cm-2), but with different density profiles. The camelback channel profile exhibits a shorter hot-phonon lifetime of ˜270 fs as compared with ˜500 fs reported for a standard Al0.33Ga0.67N/AlN/GaN channel at low supplied power levels. When supplied power is sufficient to heat the electrons > 600 K, ultrafast decay of hot phonons is observed in the case of the composite channel structure. In this case, the electron density profile spreads to form a camelback profile, and hot-phonon lifetime reduces to ˜50 fs.
Water-mediated interactions between hydrophobic and ionic species in cylindrical nanopores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaitheeswaran, S.; Reddy, G.; Thirumalai, D.
2009-03-07
We use Metropolis Monte Carlo and umbrella sampling to calculate the free energies of interaction of two methane molecules and their charged derivatives in cylindrical water-filled pores. Confinement strongly alters the interactions between the nonpolar solutes and completely eliminates the solvent separated minimum (SSM) that is seen in bulk water. The free energy profiles show that the methane molecules are either in contact or at separations corresponding to the diameter and the length of the cylindrical pore. Analytic calculations that estimate the entropy of the solutes, which are solvated at the pore surface, qualitatively explain the shape of the freemore » energy profiles. Adding charges of opposite sign and magnitude 0.4e or e (where e is the electronic charge) to the methane molecules decreases their tendency for surface solvation and restores the SSM. We show that confinement induced ion-pair formation occurs whenever l{sub B}/D{approx}O(1), where l{sub B} is the Bjerrum length and D is the pore diameter. The extent of stabilization of the SSM increases with ion charge density as long as l{sub B}/D<1. In pores with D{<=}1.2 nm, in which the water is strongly layered, increasing the charge magnitude from 0.4e to e reduces the stability of the SSM. As a result, ion-pair formation that occurs with negligible probability in the bulk is promoted. In larger diameter pores that can accommodate a complete hydration layer around the solutes, the stability of the SSM is enhanced.« less
Estimation of Length-Scales in Soils by MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Altobelli, S.; Alexander, J. I. D.
2004-01-01
Soil can be best described as an unconsolidated granular media that forms porous structure. The present macroscopic theory of water transport in porous media rests upon the continuum hypothesis that the physical properties of porous media can be associated with continuous, twice-differentiable field variables whose spatial domain is a set of centroids of Representative Elementary Volume (REV) elements. MRI is an ideal technique to estimate various length-scales in porous media. A 0.267 T permanent magnet at NASA GRC was used for this study. A 2D or 3D spatially-resolved porosity distribution were obtained from the NMR signal strength from each voxel and the spin-lattice relaxation time. A classical spin-warp imaging with Multiple Spin Echos (MSE) was used to evaluate proton density in each voxel. Initial resolution of 256 x 256 was subsequently reduced by averaging neighboring voxels and the porosity convergence was observed. A number of engineered "space candidate" soils such as Isolite(trademark), Zeoponics(trademark), Turface(trademark), and Profile(trademark) were used. Glass beads in the size range between 50 microns to 2 mm were used as well. Initial results with saturated porous samples have shown a good estimate of the average porosity consistent with the gravimetric porosity measurement results. For Profile(trademark) samples with particle sizes ranging between 0.25 to 1 mm and characteristic interparticle pore size of 100 microns the characteristic Darcy scale was estimated to be about delta(sub REV) = 10 mm. Glass beads porosity show clear convergence toward a definite REV which stays constant throughout homogeneous sample. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar
This article describes the equilibrium structure of the solar interior plasma (SIP) and solar wind plasma (SWP) in detail under the framework of the gravito-electrostatic sheath (GES) model. This model gives a precise definition of the solar surface boundary (SSB), surface origin mechanism of the subsonic SWP, and its supersonic acceleration. Equilibrium parameters like plasma potential, self-gravity, population density, flow, their gradients, and all the relevant inhomogeneity scale lengths are numerically calculated and analyzed as an initial value problem. Physical significance of the structure condition for the SSB is discussed. The plasma oscillation and Jeans time scales are also plotted and compared. In addition, different coupling parameters, and electric current profiles are also numerically studied. The current profiles exhibit an important behavior of directional reversibility, i.e., an electrodynamical transition from negative to positive value. It occurs beyond a few Jeans lengths away from the SSB. The virtual spherical surface lying at the current reversal point, where the net current becomes zero, has the property of a floating surface behavior of the real physical wall. Our investigation indicates that the SWP behaves as an ion current-carrying plasma system. The basic mechanism behind the GES formation and its distinctions from conventional plasma sheath are discussed. The electromagnetic properties of the Sun derived from our model with the most accurate available inputs are compared with those of others. These results are useful as an input element to study the properties of the linear and nonlinear dynamics of various solar plasma waves, oscillations and instabilities.
John F. Hunt; Weiqi Leng; Mehdi Tajvidi
2017-01-01
In this study, the effects of cellulose nanofibrils (CNFs) ratio, press program, particle size, and density on the vertical density profile (VDP) and internal bond (IB) strength of the wet-formed particleboard were investigated. Results revealed that the VDP was significantly influenced by the press program. Pressing using a constant pressure (CP) press program...
Measurement of electron density profiles on HT-6M tokamak by 7-channel FIR HCN laser interferometer
NASA Astrophysics Data System (ADS)
Xiang, Gao; Qiliang, Guo
1990-12-01
Electron density measurements are periormed on HT-6M tokamak using a 7 channel Far-Infrared HCN laser interferometer. From the measured line integrals--7 channel phase shifts the electron density profile is reconstructed by a fit procedure. Results were tested by comparison to Abel inverted. Some recent interesting experimental results were reported.
NASA Astrophysics Data System (ADS)
Gaeris, Andres Claudio
The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
NASA Astrophysics Data System (ADS)
Mukherji, Sutapa
2018-03-01
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
NASA Astrophysics Data System (ADS)
Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.
2018-04-01
A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.
Longitudinal gas-density profilometry for plasma-wakefield acceleration targets
NASA Astrophysics Data System (ADS)
Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2014-03-01
Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less
NASA Astrophysics Data System (ADS)
Morandage, Shehan; Schnepf, Andrea; Vanderborght, Jan; Javaux, Mathieu; Leitner, Daniel; Laloy, Eric; Vereecken, Harry
2017-04-01
Root traits are increasingly important in breading of new crop varieties. E.g., longer and fewer lateral roots are suggested to improve drought resistance of wheat. Thus, detailed root architectural parameters are important. However, classical field sampling of roots only provides more aggregated information such as root length density (coring), root counts per area (trenches) or root arrival curves at certain depths (rhizotubes). We investigate the possibility of obtaining the information about root system architecture of plants using field based classical root sampling schemes, based on sensitivity analysis and inverse parameter estimation. This methodology was developed based on a virtual experiment where a root architectural model was used to simulate root system development in a field, parameterized for winter wheat. This information provided the ground truth which is normally unknown in a real field experiment. The three sampling schemes coring, trenching, and rhizotubes where virtually applied to and aggregated information computed. Morris OAT global sensitivity analysis method was then performed to determine the most sensitive parameters of root architecture model for the three different sampling methods. The estimated means and the standard deviation of elementary effects of a total number of 37 parameters were evaluated. Upper and lower bounds of the parameters were obtained based on literature and published data of winter wheat root architectural parameters. Root length density profiles of coring, arrival curve characteristics observed in rhizotubes, and root counts in grids of trench profile method were evaluated statistically to investigate the influence of each parameter using five different error functions. Number of branches, insertion angle inter-nodal distance, and elongation rates are the most sensitive parameters and the parameter sensitivity varies slightly with the depth. Most parameters and their interaction with the other parameters show highly nonlinear effect to the model output. The most sensitive parameters will be subject to inverse estimation from the virtual field sampling data using DREAMzs algorithm. The estimated parameters can then be compared with the ground truth in order to determine the suitability of the sampling schemes to identify specific traits or parameters of the root growth model.
On the Use of Topside RO-Derived Electron Density for Model Validation
NASA Astrophysics Data System (ADS)
Shaikh, M. M.; Nava, B.; Haralambous, H.
2018-05-01
In this work, the standard Abel inversion has been exploited as a powerful observation tool, which may be helpful to model the topside of the ionosphere and therefore to validate ionospheric models. A thorough investigation on the behavior of radio occultation (RO)-derived topside electron density (Ne(h))-profiles has therefore been performed with the main purpose to understand whether it is possible to predict the accuracy of a single RO-retrieved topside by comparing the peak density and height of the retrieved profile to the true values. As a first step, a simulation study based on the use of the NeQuick2 model has been performed to show that when the RO-derived electron density peak and height match the true peak values, the full topside Ne(h)-profile may be considered accurate. In order to validate this hypothesis with experimental data, electron density profiles obtained from four different incoherent scatter radars have therefore been considered together with co-located RO-derived Ne(h)-profiles. The evidence presented in this paper show that in all cases examined, if the incoherent scatter radar and the corresponding co-located RO profile have matching peak parameter values, their topsides are in very good agreement. The simulation results presented in this work also highlighted the importance of considering the occultation plane azimuth while inverting RO data to obtain Ne(h)-profile. In particular, they have indicated that there is a preferred range of azimuths of the occultation plane (80°-100°) for which the difference between the "true" and the RO-retrieved Ne(h)-profile in the topside is generally minimal.
What sets the central structure of dark matter haloes?
NASA Astrophysics Data System (ADS)
Ogiya, Go; Hahn, Oliver
2018-02-01
Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.
NASA Astrophysics Data System (ADS)
Dnestrovskij, Yu. N.; Vershkov, V. A.; Danilov, A. V.; Dnestrovskij, A. Yu.; Zenin, V. N.; Lysenko, S. E.; Melnikov, A. V.; Shelukhin, D. A.; Subbotin, G. F.; Cherkasov, S. V.
2018-01-01
In ohmically heated (OH) plasma with low recycling, an improved particle confinement (IPC) mode is established during gas puffing. However, after gas puffing is switched off, this mode is retained only for about 100 ms, after which an abrupt phase transition into the low particle confinement (LPC) mode occurs in the entire plasma cross section. During such a transition, energy transport due to heat conduction does not change. The phase transition in OH plasma is similar to the effect of density pump-out from the plasma core, which occurs after electron cyclotron heating (ECH) is switched on. Analysis of the measured plasma pressure profiles in the T-10 tokamak shows that, after gas puffing in the OH mode is switched off, the plasma pressure profile in the IPC stage becomes more peaked and, after the peakedness exceeds a certain critical value, the IPC-LPC transition occurs. Similar processes are also observed during ECH. If the pressure profile is insufficiently peaked during ECH, then the density pump-out effect comes into play only after the critical peakedness of the pressure profile is reached. In the plasma core, the density and pressure profiles are close to the corresponding canonical profiles. This allows one to derive an expression for the particle flux within the canonical profile model and formulate a criterion for the IPC-LPC transition. The time evolution of the plasma density profile during phase transitions was simulated for a number of T-10 shots with ECH and high recycling. The particle transport coefficients in the IPC and LPC phases, as well as the dependences of these coefficients on the ECH power, are determined.
Wave packet analysis and break-up length calculations for an accelerating planar liquid jet
NASA Astrophysics Data System (ADS)
Turner, M. R.; Healey, J. J.; Sazhin, S. S.; Piazzesi, R.
2012-02-01
This paper examines the process of transition to turbulence within an accelerating planar liquid jet. By calculating the propagation and spatial evolution of disturbance wave packets generated at a nozzle where the jet emerges, we are able to estimate break-up lengths and break-up times for different magnitudes of acceleration and different liquid to air density ratios. This study uses a basic jet velocity profile that has shear layers in both air and the liquid either side of the fluid interface. The shear layers are constructed as functions of velocity which behave in line with our CFD simulations of injecting diesel jets. The non-dimensional velocity of the jet along the jet centre-line axis is assumed to take the form V (t) = tanh(at), where the parameter a determines the magnitude of the acceleration. We compare the fully unsteady results obtained by solving the unsteady Rayleigh equation to those of a quasi-steady jet to determine when the unsteady effects are significant and whether the jet can be regarded as quasi-steady in typical operating conditions for diesel engines. For a heavy fluid injecting into a lighter fluid (density ratio ρair/ρjet = q < 1), it is found that unsteady effects are mainly significant at early injection times where the jet velocity profile is changing fastest. When the shear layers in the jet thin with time, the unsteady effects cause the growth rate of the wave packet to be smaller than the corresponding quasi-steady jet, whereas for thickening shear layers the unsteady growth rate is larger than that of the quasi-steady jet. For large accelerations (large a), the unsteady effect remains at later times but its effect on the growth rate of the wave packet decreases as the time after injection increases. As the rate of acceleration is reduced, the range of velocity values for which the jet can be considered as quasi-steady increases until eventually the whole jet can be considered quasi-steady. For a homogeneous jet (q = 1), the range of values of a for which the jet can be considered completely quasi-steady increases to larger values of a. Finally, we investigate approximating the wave packet break-up length calculations with a method that follows the most unstable disturbance wave as the jet accelerates. This approach is similar to that used in CFD simulations as it greatly reduces computational time. We investigate whether or not this is a good approximation for the parameter values typically used in diesel engines.
Rheology of surface granular flows
NASA Astrophysics Data System (ADS)
Orpe, Ashish V.; Khakhar, D. V.
Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameter d and velocity by a characteristic shear rate dot{gamma}_C = [gsin(beta_m-beta_s)/dcosbeta_s](1/2) and the particle diameter, where beta_m is the maximum dynamic angle of repose and beta_s is the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length lambda=1.1d. The r.m.s. velocity shows similar behaviour but with lambda=1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity eta with r.m.s. velocity u shows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity eta˜ u(-1.5) . The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.
Properties of the electrostatically driven helical plasma state
NASA Astrophysics Data System (ADS)
Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal
2018-02-01
A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r
Simulation study of the sub-terawatt laser wakefield acceleration operated in self-modulated regime
NASA Astrophysics Data System (ADS)
Hsieh, C.-Y.; Lin, M.-W.; Chen, S.-H.
2018-02-01
Laser wakefield acceleration (LWFA) can be accomplished by introducing a sub-terawatt (TW) laser pulse into a thin, high-density gas target. In this way, the self-focusing effect and the self-modulation that happened on the laser pulse produce a greatly enhanced laser peak intensity that can drive a nonlinear plasma wave to accelerate electrons. A particle-in-cell model is developed to study sub-TW LWFA when a 0.6-TW laser pulse interacts with a dense hydrogen plasma. Gas targets having a Gaussian density profile or a flat-top distribution are defined for investigating the properties of sub-TW LWFA when conducting with a gas jet or a gas cell. In addition to using 800-nm laser pulses, simulations are performed with 1030-nm laser pulses, as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems. The peak density which allows the laser peak power PL˜2 Pc r of self-focusing critical power is favourable for conducting sub-TW LWFA. Otherwise, an excessively high peak density can induce an undesired filament effect which rapidly disintegrates the laser field envelope and violates the process of plasma wave excitation. The plateau region of a flat-top density distribution allows the self-focusing and the self-modulation of the laser pulse to develop, from which well-established plasma bubbles can be produced to accelerate electrons. The process of electron injection is complicated in such high-density plasma conditions; however, increasing the length of the plateau region represents a straightforward method to realize the injection and acceleration of electrons within the first bubble, such that an improved LWFA performance can be accomplished.
Density profiles of supernova matter and determination of neutrino parameters
NASA Astrophysics Data System (ADS)
Chiu, Shao-Hsuan
2007-08-01
The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.
The Baryonic and Dark Matter Distributions in Abell 401
NASA Astrophysics Data System (ADS)
Nevalainen, J.; Markevitch, M.; Forman, W.
1999-11-01
We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Ωm<0.31, in conflict with an Einstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing turbulence. Alternately, significant mass drop-out from the cooling flow would make the temperature less peaked and the NFW profile acceptable. However, the quality of data is not adequate to test this possibility.
Compton profiles and electronic properties of TiB{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Samir, E-mail: sameerbhatt011@gmail.com; Suthar, K. K.; Ahuja, B. L.
In this paper, we report the experimental Compton profile (CP) of TiB{sub 2} using high energy {sup 137}Cs γ-rays Compton spectrometer. To interpret the experimental momentum density, we have calculated the CPs using Hartree-Fock (HF), density functional theory (DFT) and hybridization of DFT and HF within linear combination of atomic orbitals. The theoretical profile with generalized gradient approximation is found to be relatively in better agreement with the experimental profile. A sharp valley in density of states and hence the pseudogap near the Fermi energy is attributed to hybridization of Ti-3d and B-2p states and almost reverse trend of energymore » bands below and above the Fermi energy.« less
The Relationship between Ionospheric Slab Thickness and the Peak Density Height, hmF2
NASA Astrophysics Data System (ADS)
Meehan, J.; Sojka, J. J.
2017-12-01
The electron density profile is one of the most critical elements in the ionospheric modeling-related applications today. Ionosphere parameters, hmF2, the height of the peak density layer, and slab thickness, the ratio of the total electron content, TEC, to the peak density value, NmF2, are generally obtained from any global sounding observation network and are easily incorporated into models, theoretical or empirical, as numerical representations. Slab thickness is a convenient one-parameter summary of the electron density profile and can relate a variety of elements of interest that effect the overall electron profile shape, such as the neutral and ionospheric temperatures and gradients, the ionospheric composition, and dynamics. Using ISR data from the 2002 Millstone Hill ISR data campaign, we found, for the first time, slab thickness to be correlated to hmF2. For this, we introduce a new ionospheric index, k, which ultimately relates electron density parameters and can be a very useful tool for describing the topside ionosphere shape. Our study is an initial one location, one season, 30-day study, and future work is needed to verify the robustness of our claim. Generally, the ionospheric profile shape, requires knowledge of several ionospheric parameters: electron, ion and neutral temperatures, ion composition, electric fields, and neutral winds, and is dependent upon seasons, local time, location, and the level of solar and geomagnetic activity; however, with this new index, only readily-available, ionospheric density information is needed. Such information, as used in this study, is obtained from a bottomside electron density profile provided by an ionosonde, and TEC data provided by a local, collocated GPS receiver.
The halo boundary of galaxy clusters in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
The Halo Boundary of Galaxy Clusters in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Eric; Jain, Bhuvnesh; Sheth, Ravi K.
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the “infalling” regime outside the halo to the “collapsed” regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a “splashback”-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. With upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
The halo boundary of galaxy clusters in the SDSS
Baxter, Eric; Chang, Chihway; Jain, Bhuvnesh; ...
2017-05-18
Analytical models and simulations predict a rapid decline in the halo density profile associated with the transition from the "infalling" regime outside the halo to the "collapsed" regime within the halo. Using data from SDSS, we explore evidence for such a feature in the density profiles of galaxy clusters using several different approaches. We first estimate the steepening of the outer galaxy density profile around clusters, finding evidence for truncation of the halo profile. Next, we measure the galaxy density profile around clusters using two sets of galaxies selected on color. We find evidence of an abrupt change in galaxymore » colors that coincides with the location of the steepening of the density profile. Since galaxies that have completed orbits within the cluster are more likely to be quenched of star formation and thus appear redder, this abrupt change in galaxy color can be associated with the transition from single-stream to multi-stream regimes. We also use a standard model comparison approach to measure evidence for a "splashback"-like feature, but find that this approach is very sensitive to modeling assumptions. Finally, we perform measurements using an independent cluster catalog to test for potential systematic errors associated with cluster selection. We identify several avenues for future work: improved understanding of the small-scale galaxy profile, lensing measurements, identification of proxies for the halo accretion rate, and other tests. As a result, with upcoming data from the DES, KiDS, and HSC surveys, we can expect significant improvements in the study of halo boundaries.« less
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Critical transition in the constrained traveling salesman problem.
Andrecut, M; Ali, M K
2001-04-01
We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.
Bowers, D T; Chhabra, P; Langman, L; Botchwey, E A; Brayman, K L
2011-11-01
Nanofiber scaffolds could improve islet transplant success by physically mimicking the shape of extracellular matrix and by acting as a drug-delivery vehicle. Scaffolds implanted in alternate transplant sites must be prevascularized or very quickly vascularized following transplantation to prevent hypoxia-induced islet necrosis. The local release of the S1P prodrug FTY720 induces diameter enlargement and increases in length density. The objective of this preliminary study was to evaluate length and diameter differences between diabetic and nondiabetic animals implanted with FTY720-containing electrospun scaffolds using intravital imaging of dorsal skinfold window chambers. Electrospun mats of randomly oriented fibers we created from polymer solutions of PLAGA (50:50 LA:GA) with and without FTY720 loaded at a ratio of 1:200 (FTY720:PLAGA by wt). The implanted fiber mats were 4 mm in diameter and ∼0.2 mm thick. Increases in length density and vessel diameter were assessed by automated analysis of images over 7 days in RAVE, a Matlab program. Image analysis of repeated measures of microvessel metrics demonstrated a significant increase in the length density from day 0 to day 7 in the moderately diabetic animals of this preliminary study (P < .05). Furthermore, significant differences in length density at day 0 and day 3 were found between recently STZ-induced moderately diabetic and nondiabetic animals in response to FTY720 local release (P < .05, Student t test). Driving the islet revascularization process using local release of factors, such as FTY720, from biodegradable polymers makes an attractive system for the improvement of islet transplant success. Preliminary study results suggest that a recently induced moderately diabetic state may potentiate the mechanism by which local release of FTY720 from polymer fibers increases length density of microvessels. Therefore, local release of S1P receptor-targeted drugs is under further investigation for improvement of transplanted islet function. Copyright © 2011. Published by Elsevier Inc.
galstep: Initial conditions for spiral galaxy simulations
NASA Astrophysics Data System (ADS)
Ruggiero, Rafael
2017-11-01
galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halcomb, D.L.; Mohler, J.H.
1991-03-05
This patent describes a thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.
The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons
NASA Astrophysics Data System (ADS)
Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop
2018-05-01
We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guiding
Accurate measurement of the edge electron density profile is essential to optimizing antenna coupling and assessment of impurity contamination in studying long-pulse plasma heating and current drive in fusion devices. Measurement of the edge density profile has been demonstrated on the US fusion devices such as C-Mod, DIII-D, and TFTR amongst many devices, and has been used for RF loading and impurity modeling calculations for many years. University of Science and Technology of China (USTC) has recently installed a density profile reflectometer system on the EAST fusion device at the Institute of Plasma Physics, Chinese Academy of Sciences in Chinamore » based on the University of California Los Angeles (UCLA)-designed reflectometer system on the DIII-D fusion device at General Atomics Company in San Diego, California. UCLA has been working with USTC to optimize the existing microwave antenna, waveguide system, microwave electronics, and data analysis to produce reliable edge density profiles. During the past budget year, progress has been made in all three major areas: effort to achieve reliable system operations under various EAST operational conditions, effort to optimize system performance, and effort to provide quality density profiles into EAST’s database routinely.« less
NASA Astrophysics Data System (ADS)
Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.
2017-07-01
A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.
NASA Astrophysics Data System (ADS)
Yadav, Sonu; Ghosh, Soumen; Bose, Sayak; Barada, Kshitish K.; Pal, Rabindranath; Chattopadhyay, Prabal K.
2018-04-01
Experimentally, the density profile in the magnetic nozzle of a helicon antenna based plasma device is seen to be modified from being centrally peaked to that of hollow nature as the external magnetic field is increased. It occurs above a characteristic field value when the ions become magnetized in the expansion chamber. The density profile in the source chamber behind the nozzle, however, remains peaked on-axis irrespective of the magnetic field. The electron temperature there is observed to be hollow and this nature is carried to the expansion chamber along the field line. In the electron energy distribution near the off axis peak location, a high energy tail exists. Rotation of these tail electrons in the azimuthal direction due to the gradient-B drift in the expansion chamber leads to an additional off-axis ionization and forms the hollow density profile. It seems that if the ions are not magnetized, then the off-axially produced additional plasma is not confined and the density profile retains the on-axis peak nature. The present experiment successfully demonstrates how the knowledge of the ion magnetization together with tail electrons significantly contributes to the design of an efficient helicon plasma based thruster.
A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.
De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan
2016-06-01
Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
Polydisperse particle-driven gravity currents in non-rectangular cross section channels
NASA Astrophysics Data System (ADS)
Zemach, T.
2018-01-01
We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.
Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.
2015-01-01
This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.
Social networking profile correlates of schizotypy.
Martin, Elizabeth A; Bailey, Drew H; Cicero, David C; Kerns, John G
2012-12-30
Social networking sites, such as Facebook, are extremely popular and have become a primary method for socialization and communication. Despite a report of increased use among those on the schizophrenia-spectrum, few details are known about their actual practices. In the current research, undergraduate participants completed measures of schizotypy and personality, and provided access to their Facebook profiles. Information from the profiles were then systematically coded and compared to the questionnaire data. As predicted, social anhedonia (SocAnh) was associated with a decrease in social participation variables, including a decrease in number of friends and number of photos, and an increase in length of time since communication with a friend, but SocAnh was also associated with an increase in profile length. Also, SocAnh was highly correlated with extraversion. Relatedly, extraversion uniquely predicted the number of friends and photos and length of time since communication with a friend. In addition, perceptual aberration/magical ideation (PerMag) was associated with an increased number of "black outs" on Facebook profile print-outs, a measure of paranoia. Overall, results from this naturalistic-like study show that SocAnh and extraversion are associated with decreased social participation and PerMag with increased paranoia related to information on social networking sites. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
Social networking profile correlates of schizotypy
Martin, Elizabeth A.; Bailey, Drew H.; Cicero, David C.; Kerns, John G.
2015-01-01
Social networking sites, such as Facebook, are extremely popular and have become a primary method for socialization and communication. Despite a report of increased use among those on the schizophrenia-spectrum, few details are known about their actual practices. In the current research, undergraduate participants completed measures of schizotypy and personality, and provided access to their Facebook profiles. Information from the profiles were then systematically coded and compared to the questionnaire data. As predicted, social anhedonia (SocAnh) was associated with a decrease in social participation variables, including a decrease in number of friends and number of photos, and an increase in length of time since communication with a friend, but SocAnh was also associated with an increase in profile length. Also, SocAnh was highly correlated with extraversion. Relatedly, extraversion uniquely predicted the number of friends and photos and length of time since communication with a friend. In addition, perceptual aberration/magical ideation (PerMag) was associated with an increased number of “black outs” on Facebook profile print-outs, a measure of paranoia. Overall, results from this naturalistic-like study show that SocAnh and extraversion are associated with decreased social participation and PerMag with increased paranoia related to information on social networking sites. PMID:22796101
Microwave Interferometric Density Measurements of a Pulsed Helicon Source
NASA Astrophysics Data System (ADS)
Scime, Ethan; Scime, Earl; Thompson, Derek
2017-10-01
The intense rf environment of a helicon plasma source is problematic for electrostatic probe measurements of plasma density, particularly at low neutral pressures. Here we present measurements of the line-integrated plasma density in a helicon plasma source using a multi-frequency (20-40 GHz) microwave interferometer. The design of the diagnostic and the data acquisition system are presented, as well as a comparison to density profiles obtained with a moveable electrostatic probe. A parametric fit to the probe profile measurements is used to determine the peak density from the microwave density measurements. This work supported by U.S. National Science Foundation Grant No. PHY-1360278.
NASA Astrophysics Data System (ADS)
Sampson, Danuta M.; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A.; Sampson, David D.; Chen, Fred K.
2017-04-01
We examined the impact of axial length on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurement using optical coherence tomography angiography. The SRVD and FAZA were quantified before and after correction for magnification error associated with axial length variation. Although SRVD did not differ before and after correction for magnification error in the parafoveal region, change in foveal SRVD and FAZA were significant. This has implications for clinical trials outcome in diseased eyes where significant capillary dropout may occur in the parafovea.
Choi, Kai Yip; Yu, Wing Yan; Lam, Christie Hang I; Li, Zhe Chuang; Chin, Man Pan; Lakshmanan, Yamunadevi; Wong, Francisca Siu Yin; Do, Chi Wai; Lee, Paul Hong; Chan, Henry Ho Lung
2017-09-01
People in Hong Kong generally live in a densely populated area and their homes are smaller compared with most other cities worldwide. Interestingly, East Asian cities with high population densities seem to have higher myopia prevalence, but the association between them has not been established. This study investigated whether the crowded habitat in Hong Kong is associated with refractive error among children. In total, 1075 subjects [Mean age (S.D.): 9.95 years (0.97), 586 boys] were recruited. Information such as demographics, living environment, parental education and ocular status were collected using parental questionnaires. The ocular axial length and refractive status of all subjects were measured by qualified personnel. Ocular axial length was found to be significantly longer among those living in districts with a higher population density (F 2,1072 = 6.15, p = 0.002) and those living in a smaller home (F 2,1072 = 3.16, p = 0.04). Axial lengths were the same among different types of housing (F 3,1071 = 1.24, p = 0.29). Non-cycloplegic autorefraction suggested a more negative refractive error in those living in districts with a higher population density (F 2,1072 = 7.88, p < 0.001) and those living in a smaller home (F 2,1072 = 4.25, p = 0.02). After adjustment for other confounding covariates, the population density and home size also significantly predicted axial length and non-cycloplegic refractive error in the multiple linear regression model, while axial length and refractive error had no relationship with types of housing. Axial length in children and childhood refractive error were associated with high population density and small home size. A constricted living space may be an environmental threat for myopia development in children. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Stabilization of the Rayleigh-Taylor instability in quantum magnetized plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L. F.; Ye, W. H.; He, X. T.
2012-07-15
In this research, stabilization of the Rayleigh-Taylor instability (RTI) due to density gradients, magnetic fields, and quantum effects, in an ideal incompressible plasma, is studied analytically and numerically. A second-order ordinary differential equation (ODE) for the RTI including quantum corrections, with a continuous density profile, in a uniform external magnetic field, is obtained. Analytic expressions of the linear growth rate of the RTI, considering modifications of density gradients, magnetic fields, and quantum effects, are presented. Numerical approaches are performed to solve the second-order ODE. The analytical model proposed here agrees with the numerical calculation. It is found that the densitymore » gradients, the magnetic fields, and the quantum effects, respectively, have a stabilizing effect on the RTI (reduce the linear growth of the RTI). The RTI can be completely quenched by the magnetic field stabilization and/or the quantum effect stabilization in proper circumstances leading to a cutoff wavelength. The quantum effect stabilization plays a central role in systems with large Atwood number and small normalized density gradient scale length. The presence of external transverse magnetic fields beside the quantum effects will bring about more stability on the RTI. The stabilization of the linear growth of the RTI, for parameters closely related to inertial confinement fusion and white dwarfs, is discussed. Results could potentially be valuable for the RTI treatment to analyze the mixing in supernovas and other RTI-driven objects.« less
Tan, Chih-Shan; Huang, Michael H
2017-09-04
Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Milky Way Mass Models and MOND
NASA Astrophysics Data System (ADS)
McGaugh, Stacy S.
2008-08-01
Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND (modified Newtonian dynamics). The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 kpc lesssim Rdlesssim 2.5 kpc. The favored value of Rd depends somewhat on the choice of interpolation function. There is some preference for the "simple" interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with "bumps and wiggles" in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.
Yun, Jung-Ho; Ng, Yun Hau; Ye, Changhui; Mozer, Attila J; Wallace, Gordon G; Amal, Rose
2011-05-01
This work reports the use of sodium fluoride (in ethylene glycol electrolyte) as the replacement of hydrofluoric acid and ammonium fluoride to fabricate long and perpendicularly well-aligned TiO₂ nanotube (TNT) (up to 21 μm) using anodization. Anodizing duration, applied voltage and electrolyte composition influenced the geometry and surface morphologies of TNT. The growth mechanism of TNT is interpreted by analyzing the current transient profile and the total charge density generated during anodization. The system with low water content (2 wt %) yielded a membrane-like mesoporous TiO₂ film, whereas high anodizing voltage (70 V) resulted in the unstable film of TNT arrays. An optimized condition using 5 wt % water content and 60 V of anodizing voltage gave a stable array of nanotube with controllable length and pore diameter. Upon photoexcitation, TNTs synthesized under this condition exhibited a slower charge recombination rate as nanotube length increased. When made into cis-diisothiocyanato-bis(2,2̀-bipyridyl-4,4̀-dicarboxylato) ruthenium(II) bis (tetrabutyl-ammonium)(N719) dye-sensitized solar cells, good device efficiency at 3.33 % based on the optimized TNT arrays was achieved with longer electron time compared with most mesoporous TiO₂ films.
Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel
Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence
2016-01-01
The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630
Turbulent statistics in flow field due to interaction of two plane parallel jets
NASA Astrophysics Data System (ADS)
Bisoi, Mukul; Das, Manab Kumar; Roy, Subhransu; Patel, Devendra Kumar
2017-12-01
Turbulent characteristics of flow fields due to the interaction of two plane parallel jets separated by the jet width distance are studied. Numerical simulation is carried out by large eddy simulation with a dynamic Smagorinsky model for the sub-grid scale stresses. The energy spectra are observed to follow the -5/3 power law for the inertial sub-range. A proper orthogonal decomposition study indicates that the energy carrying large coherent structures is present close to the nozzle exit. It is shown that these coherent structures interact with each other and finally disintegrate into smaller vortices further downstream. The turbulent fluctuations in the longitudinal and lateral directions are shown to follow a similarity. The mean flow at the same time also maintains a close similarity. Prandtl's mixing length, the Taylor microscale, and the Kolmogorov length scales are shown along the lateral direction for different downstream locations. The autocorrelation in the longitudinal and transverse directions is seen to follow a similarity profile. By plotting the probability density function, the skewness and the flatness (kurtosis) are analyzed. The Reynolds stress anisotropy tensor is calculated, and the anisotropy invariant map known as Lumley's triangle is presented and analyzed.
PFC knee replacement: osteolytic failures from extreme polyethylene degradation.
Casey, David; Cottrell, Jocelyn; DiCarlo, Edward; Windsor, Russell; Wright, Timothy
2007-11-01
Despite the long-term success of press-fit condylar (PFC) knee prostheses, premature failures caused by aggressive rapid osteolysis have been reported. To investigate why patients experience such failures, we reviewed 48 retrieved implants and surrounding tissues together with demographic and radiographic data. Polyethylene degradation was determined from density profiles taken through the retrieved inserts. We compared the histology of tissues around PFC implants with that from around failed implants of similar designs from patients matched to length of implantation, body mass index, and age. The pathologic response in PFC patients showed more widespread, dense, sheet-like cellular infiltrate, whereas in the matched patients, the infiltrate was generally scattered discontinuously. The dominant wear mode of the PFC inserts was severe delamination on the articular surfaces. Wear damage was worse with increased length of implantation and was correlated with oxidative degradation and osteolysis. Degradation and osteolysis were more severe with inserts stored longer and sterilized by gamma radiation in air. These results underscore that degradation and increased shelf life lead to osteolysis and loosening. However, they raise questions concerning the cellular reaction to the debris from PFC implants that could lead to a better general understanding of osteolysis.
NASA Astrophysics Data System (ADS)
Rost, J. C.; Marinoni, A.; Davis, E. M.; Porkolab, M.; Burrell, K. H.
2017-10-01
Highly sheared turbulence with short radial correlation lengths has been measured near the top of the H-mode pedestal, in addition to the previously measured highly-sheared turbulence measured in the Er well. Turbulence in regions of large velocity shear is characterized by radial correlation lengths shorter than the poloidal wavelength (L < λ 2 cm) and large Doppler-shifted frequencies (f > 200 kHz). The phase contrast imaging (PCI) diagnostic on DIII-D is ideally suited to measuring this density turbulence due to the measurement geometry and high frequency bandwidth. Radial localization is achieved by optical filtering, varying the ExB profile, and shifting the plasma position. Reconfiguration of the Er well, such as at the L-H transition or the transition to wide pedestal QH-mode, shows a near-instantaneous change (t < 1 ms) to the sheared turbulence in the Er well ( 1 cm inside the separatrix). In contrast, the sheared turbulence near the top of the pedestal ( 2 cm inside the separatrix) varies over times scales of tens of ms, consistent with pedestal evolution. Work supported by the US Department of Energy under DE-FG02-94ER54235 and DE-FC02-04ER54698.
da Costa, C A S; da Silva, P C A; Ribeiro, D C; Pereira, A D D; Santos, A D S D; Maia, L D A; Ruffoni, L D G; de Santana, F C; de Abreu, M D C; Boueri, B F D C; Pessanha, C R; Nonaka, K O; Mancini-Filho, J; do Nascimento-Saba, C C A; Boaventura, G T
2015-12-07
Obesity and osteoporosis may have their origins in early postnatal life. This study was designed to evaluate whether flaxseed flour use during lactation period bears effect on body adiposity and skeletal structure of male rat pups at weaning. At birth, male Wistar rats were randomly assigned to control and experimental (FF) groups, whose dams were treated with control or flaxseed flour diet, respectively, during lactation. At 21 days of age, pups were weaned to assess body mass, length and composition by dual-energy X-ray absorptiometry. The animals were then sacrificed to carry out analysis of serum profile, intra-abdominal adipocyte morphology and femur characteristics. Differences were considered significant when P<0.05. The FF group displayed the following characteristics (P<0.05): higher body mass, length, bone mineral content, bone area and concentrations of osteoprotegerin, osteocalcin and high-density lipoprotein cholesterol; higher levels of stearic, α-linolenic, eicosapentaenoic and docosapentaenoic acids and lower levels of arachidonic acid and cholesterol; smaller adipocyte area; and higher mass, epiphysis distance, diaphysis width, maximal load, break load, resilience and stiffness of femur. Flaxseed flour intake during lactation period promoted adipocyte hypertrophy down-regulation and contributed to pup bone quality at weaning.
The Essential Genome of Escherichia coli K-12
2018-01-01
ABSTRACT Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. PMID:29463657
Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity
NASA Technical Reports Server (NTRS)
Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.
2015-01-01
Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.
NASA Astrophysics Data System (ADS)
Hashemi, Seyed Naser; Baizidi, Chavare
2018-04-01
In this paper, 2-D spatial variation of the frequency and length density and frequency-length relation of large-scale faults in the Zagros region (Iran), as a typical fold-and-thrust belt, were examined. Moreover, the directional analysis of these faults as well as the scale dependence of the orientations was studied. For this purpose, a number of about 8000 faults with L ≥ 1.0 km were extracted from the geological maps covering the region, and then, the data sets were analyzed. The overall pattern of the frequency/length distribution of the total faults of the region acceptably fits with a power-law relation with exponent 1.40, with an obvious change in the gradient in L = 12.0 km. In addition, maps showing the spatial variation of fault densities over the region indicate that the maximum values of the frequency and length density of the faults are attributed to the northeastern part of the region and parallel to the suture zone, respectively, and the fault density increases towards the central parts of the belt. Moreover, the directional analysis of the fault trends gives a dominant preferred orientation trend of 300°-330° and the assessment of the scale dependence of the fault directions demonstrates that larger faults show higher degrees of preferred orientations. As a result, it is concluded that the evolutionary path of the faulting process in this region can be explained by increasing the number of faults rather than the growth in the fault lengths and also it seems that the regional-scale faults in this region are generated by a nearly steady-state tectonic stress regime.
NASA Astrophysics Data System (ADS)
Durazo, Juan A.; Kostelich, Eric J.; Mahalov, Alex
2017-09-01
We propose a targeted observation strategy, based on the influence matrix diagnostic, that optimally selects where additional observations may be placed to improve ionospheric forecasts. This strategy is applied in data assimilation observing system experiments, where synthetic electron density vertical profiles, which represent those of Constellation Observing System for Meteorology, Ionosphere, and Climate/Formosa satellite 3, are assimilated into the Thermosphere-Ionosphere-Electrodynamics General Circulation Model using the local ensemble transform Kalman filter during the 26 September 2011 geomagnetic storm. During each analysis step, the observation vector is augmented with five synthetic vertical profiles optimally placed to target electron density errors, using our targeted observation strategy. Forecast improvement due to assimilation of augmented vertical profiles is measured with the root-mean-square error (RMSE) of analyzed electron density, averaged over 600 km regions centered around the augmented vertical profile locations. Assimilating vertical profiles with targeted locations yields about 60%-80% reduction in electron density RMSE, compared to a 15% average reduction when assimilating randomly placed vertical profiles. Assimilating vertical profiles whose locations target the zonal component of neutral winds (Un) yields on average a 25% RMSE reduction in Un estimates, compared to a 2% average improvement obtained with randomly placed vertical profiles. These results demonstrate that our targeted strategy can improve data assimilation efforts during extreme events by detecting regions where additional observations would provide the largest benefit to the forecast.