Sequeira, Vasco; Wijnker, Paul J M; Nijenkamp, Louise L A M; Kuster, Diederik W D; Najafi, Aref; Witjas-Paalberends, E Rosalie; Regan, Jessica A; Boontje, Nicky; Ten Cate, Folkert J; Germans, Tjeerd; Carrier, Lucie; Sadayappan, Sakthivel; van Slegtenhorst, Marjon A; Zaremba, Ruud; Foster, D Brian; Murphy, Anne M; Poggesi, Corrado; Dos Remedios, Cris; Stienen, Ger J M; Ho, Carolyn Y; Michels, Michelle; van der Velden, Jolanda
2013-05-24
High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.
Hanft, Laurin M; McDonald, Kerry S
2010-08-01
According to the Frank-Starling relationship, increased ventricular volume increases cardiac output, which helps match cardiac output to peripheral circulatory demand. The cellular basis for this relationship is in large part the myofilament length-tension relationship. Length-tension relationships in maximally calcium activated preparations are relatively shallow and similar between cardiac myocytes and skeletal muscle fibres. During twitch activations length-tension relationships become steeper in both cardiac and skeletal muscle; however, it remains unclear whether length dependence of tension differs between striated muscle cell types during submaximal activations. The purpose of this study was to compare sarcomere length-tension relationships and the sarcomere length dependence of force development between rat skinned left ventricular cardiac myocytes and fast-twitch and slow-twitch skeletal muscle fibres. Muscle cell preparations were calcium activated to yield 50% maximal force, after which isometric force and rate constants (k(tr)) of force development were measured over a range of sarcomere lengths. Myofilament length-tension relationships were considerably steeper in fast-twitch fibres compared to slow-twitch fibres. Interestingly, cardiac myocyte preparations exhibited two populations of length-tension relationships, one steeper than fast-twitch fibres and the other similar to slow-twitch fibres. Moreover, myocytes with shallow length-tension relationships were converted to steeper length-tension relationships by protein kinase A (PKA)-induced myofilament phosphorylation. Sarcomere length-k(tr) relationships were distinct between all three cell types and exhibited patterns markedly different from Ca(2+) activation-dependent k(tr) relationships. Overall, these findings indicate cardiac myocytes exhibit varied length-tension relationships and sarcomere length appears a dominant modulator of force development rates. Importantly, cardiac myocyte length-tension relationships appear able to switch between slow-twitch-like and fast-twitch-like by PKA-mediated myofibrillar phosphorylation, which implicates a novel means for controlling Frank-Starling relationships.
Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.
Rassier, D E; MacIntosh, B R
2000-04-01
In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Um, Jae Gwang; Mativenga, Mallory; Jang, Jin, E-mail: jjang@khu.ac.kr
2015-06-21
We have investigated the dependence of Negative-Bias-illumination-Stress (NBIS) upon channel length, in amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs). The negative shift of the transfer characteristic associated with NBIS decreases for increasing channel length and is practically suppressed in devices with L = 100-μm. The effect is consistent with creation of donor defects, mainly in the channel regions adjacent to source and drain contacts. Excellent agreement with experiment has been obtained by an analytical treatment, approximating the distribution of donors in the active layer by a double exponential with characteristic length L{sub D} ∼ L{sub n} ∼ 10-μm, the latter being the electron diffusion length. The model alsomore » shows that a device with a non-uniform doping distribution along the active layer is in all equivalent, at low drain voltages, to a device with the same doping averaged over the active layer length. These results highlight a new aspect of the NBIS mechanism, that is, the dependence of the effect upon the relative magnitude of photogenerated holes and electrons, which is controlled by the device potential/band profile. They may also provide the basis for device design solutions to minimize NBIS.« less
Mickelson, Alexis V; Chandra, Murali
2017-12-01
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca 2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnT R94H )-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnT WT ) and the guinea pig analog of the human R94H mutation (TnT R95H ) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnT R95H increased pCa 50 (-log of free Ca 2+ concentration) to a greater extent at short SL; TnT R95H increased pCa 50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa 50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa 50 ) was attenuated nearly twofold in TnT R95H fibers; ΔpCa 50 was 0.09 pCa units for TnT WT fibers but only 0.05 pCa units for TnT R95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnT R95H Collectively, our observations on the SL dependency of pCa 50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnT R95H NEW & NOTEWORTHY Mutant cardiac troponin T (TnT R95H ) differently affects myofilament Ca 2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnT R95H TnT R95H enhances myofilament Ca 2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca 2+ sensitivity. Copyright © 2017 the American Physiological Society.
Biological and surface-active properties of double-chain cationic amino acid-based surfactants.
Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy
2014-08-01
Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.
Makeyev, Eugene V; Bamford, Dennis H
2002-12-01
Recent genetic data suggest that proteins homologous to a plant RNA-dependent RNA polymerase (RdRP) play a central role in posttranscriptional gene silencing (PTGS) in many organisms. We show here that purified recombinant protein QDE-1, a genetic component of PTGS ("quelling") in the fungus Neurospora crassa, possesses RNA polymerase activity in vitro. The full-length enzyme and its enzymatically active C-terminal fragment perform two different reactions on single-stranded RNA templates, synthesizing either extensive RNA chains that form template-length duplexes or approximately 9-21-mer complementary RNA oligonucleotides scattered along the entire template. QDE-1 supports both de novo and primer-dependent initiation mechanisms. These results suggest that several distinct activities of cell-encoded RdRPs can be employed for efficient PTGS in vivo.
Thixotropy and Rheopexy of Muscle Fibers Probed Using Sinusoidal Oscillations
Altman, David; Minozzo, Fabio C.; Rassier, Dilson E.
2015-01-01
Length changes of muscle fibers have previously been shown to result in a temporary reduction in fiber stiffness that is referred to as thixotropy. Understanding the mechanism of this thixotropy is important to our understanding of muscle function since there are many instances in which muscle is subjected to repeated patterns of lengthening and shortening. By applying sinusoidal length changes to one end of single permeabilized muscle fibers and measuring the force response at the opposite end, we studied the history-dependent stiffness of both relaxed and activated muscle fibers. For length change oscillations greater than 1 Hz, we observed thixotropic behavior of activated fibers. Treatment of these fibers with EDTA and blebbistatin, which inhibits myosin-actin interactions, quashed this effect, suggesting that the mechanism of muscle fiber thixotropy is cross-bridge dependent. We modeled a half-sarcomere experiencing sinusoidal length changes, and our simulations suggest that thixotropy could arise from force-dependent cross-bridge kinetics. Surprisingly, we also observed that, for length change oscillations less than 1 Hz, the muscle fiber exhibited rheopexy. In other words, the stiffness of the fiber increased in response to the length changes. Blebbistatin and EDTA did not disrupt the rheopectic behavior, suggesting that a non-cross-bridge mechanism contributes to this phenomenon. PMID:25880774
NASA Astrophysics Data System (ADS)
Malka-Markovitz, Alon; Mordehai, Dan
2018-02-01
Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
Myosin head orientation: a structural determinant for the Frank-Starling relationship
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farman, Gerrie P.; Gore, David; Allen, Edward
The cellular mechanism underlying the Frank-Starling law of the heart is myofilament length-dependent activation. The mechanism(s) whereby sarcomeres detect changes in length and translate this into increased sensitivity to activating calcium has been elusive. Small-angle X-ray diffraction studies have revealed that the intact myofilament lattice undergoes numerous structural changes upon an increase in sarcomere length (SL): lattice spacing and the I{sub 1,1}/I{sub 1,0} intensity ratio decreases, whereas the M3 meridional reflection intensity (I{sub M3}) increases, concomitant with increases in diastolic and systolic force. Using a short ({approx}10 ms) X-ray exposure just before electrical stimulation, we were able to obtain detailedmore » structural information regarding the effects of external osmotic compression (with mannitol) and obtain SL on thin intact electrically stimulated isolated rat right ventricular trabeculae. We show that over the same incremental increases in SL, the relative changes in systolic force track more closely to the relative changes in myosin head orientation (as reported by IM3) than to the relative changes in lattice spacing. We conclude that myosin head orientation before activation determines myocardial sarcomere activation levels and that this may be the dominant mechanism for length-dependent activation.« less
Kim, Hak Rim; Liu, Katrina; Roberts, Thomas J; Hai, Chi-Ming
2011-06-01
Actin cytoskeletal remodeling is an important mechanism of airway smooth muscle (ASM) contraction. We tested the hypothesis that mechanical strain modulates the cholinergic receptor-mediated cytoskeletal recruitment of actin-binding and integrin-binding proteins in intact airway smooth muscle, thereby regulating the mechanical energetics of airway smooth muscle. We found that the carbachol-stimulated cytoskeletal recruitment of actin-related protein-3 (Arp3), metavinculin, and talin were up-regulated at short muscle lengths and down-regulated at long muscle lengths, suggesting that the actin cytoskeleton--integrin complex becomes enriched in cross-linked and branched actin filaments in shortened ASM. The mechanical energy output/input ratio during sinusoidal length oscillation was dependent on muscle length, oscillatory amplitude, and cholinergic activation. The enhancing effect of cholinergic stimulation on mechanical energy output/input ratio at short and long muscle lengths may be explained by the length-dependent modulation of cytoskeletal recruitment and crossbridge cycling, respectively. We postulate that ASM functions as a hybrid biomaterial, capable of switching between operating as a cytoskeleton-based mechanical energy store at short muscle lengths to operating as an actomyosin-powered mechanical energy generator at long muscle lengths. This postulate predicts that targeting the signaling molecules involved in cytoskeletal recruitment may provide a novel approach to dilating collapsed airways in obstructive airway disease.
Underscreening in concentrated electrolytes.
Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan
2017-07-01
Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.
Stimulus-dependent modulation of spike burst length in cat striate cortical cells.
DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B
1997-07-01
Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.
Code of Federal Regulations, 2010 CFR
2010-10-01
... individual; (ii) Sexual abuse; (iii) Sexual activity involving a dependent child; (iv) Being forced as the caretaker relative of a dependent child to engage in nonconsensual sexual acts or activities; (v) Threats of, or attempts at, physical or sexual abuse; (vi) Mental abuse; or (vii) Neglect or deprivation of...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OTHER ACCOUNTABILITY PROVISIONS What Specific Rules Apply for Other... individual; (ii) Sexual abuse; (iii) Sexual activity involving a dependent child; (iv) Being forced as the caretaker relative of a dependent child to engage in nonconsensual sexual acts or activities; (v) Threats of...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OTHER ACCOUNTABILITY PROVISIONS What Specific Rules Apply for Other... individual; (ii) Sexual abuse; (iii) Sexual activity involving a dependent child; (iv) Being forced as the caretaker relative of a dependent child to engage in nonconsensual sexual acts or activities; (v) Threats of...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OTHER ACCOUNTABILITY PROVISIONS What Specific Rules Apply for Other... individual; (ii) Sexual abuse; (iii) Sexual activity involving a dependent child; (iv) Being forced as the caretaker relative of a dependent child to engage in nonconsensual sexual acts or activities; (v) Threats of...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES OTHER ACCOUNTABILITY PROVISIONS What Specific Rules Apply for Other... individual; (ii) Sexual abuse; (iii) Sexual activity involving a dependent child; (iv) Being forced as the caretaker relative of a dependent child to engage in nonconsensual sexual acts or activities; (v) Threats of...
Activity-dependent self-regulation of viscous length scales in biological systems
NASA Astrophysics Data System (ADS)
Nandi, Saroj Kumar
2018-05-01
The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.
Ross, Stephanie A; Ryan, David S; Dominguez, Sebastian; Nigam, Nilima; Wakeling, James M
2018-05-03
Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibres are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modelling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.
Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A
2014-05-07
Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.
Synthesis and antiviral activity of certain second generation methylenecyclopropane nucleosides
Williams, John D.; Khan, Atiyya R.; Harden, Emma A.; Hartline, Caroll B.; Jefferson, Geraldine M.; Keith, Kathy A.; Prichard, Mark N.; Zemlicka, Jiri; Peet, Norton P.; Bowlin, Terry L.
2012-01-01
A second-generation series of substituted methylenecyclopropane nucleosides (MCPNs) has been synthesized and evaluated for antiviral activity against a panel of human herpesviruses, and for cytotoxicity. Although alkylated 2,6-diaminopurine analogs showed little antiviral activity, the compounds containing ether and thioether substituents at the 6-position of the purine did demonstrate potent and selective antiviral activity against several different human herpesviruses. In the 6-alkoxy series, antiviral activity depended on the length of the ether carbon chain, with the optimum chain length being about four carbon units long. For the corresponding thioethers, compounds containing secondary thioethers were more potent than those with primary thioethers. PMID:22607883
Myosin filament activation in the heart is tuned to the mechanical task
Reconditi, Massimo; Caremani, Marco; Pinzauti, Francesca; Powers, Joseph D.; Narayanan, Theyencheri; Stienen, Ger J. M.; Linari, Marco; Lombardi, Vincenzo
2017-01-01
The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank–Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank–Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer–nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole–systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank–Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors. PMID:28265101
Toepfer, Christopher N; West, Timothy G; Ferenczi, Michael A
2016-09-15
Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr ) at submaximal [Ca(2+) ]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca(2+) ]-activated cardiac trabecula accelerates ktr . Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85-1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank-Starling is evident at maximal [Ca(2+) ] activation and therefore does not necessarily require length-dependent change in [Ca(2+) ]-sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank-Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction. Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin-associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr ) in maximally activating [Ca(2+) ]. Activation was achieved by rapidly increasing the temperature (temperature-jump of 0.5-20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85-1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC-exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two-state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross-bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca(2+) ] and are not explained by changes in the Ca(2+) -sensitivity of acto-myosin interactions. The length-dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank-Starling law of the heart. © 2016 Wellcome Trust The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Crossover from weak to strong localization in quasi-1D = conductors.
NASA Astrophysics Data System (ADS)
Gershenson, M. E.; Khavin, Y. B.; Mikhalchuk, A. G.; Bozler, H. M.; Bogdanov, A. L.
1997-03-01
A crossover from weak localization (WL) to strong localization (SL) with decreasing temperature has been observed in the resistance of quasi-1D channels in Si delta-doped GaAs structures. The crossover occurs when the phase-breaking length becomes comparable to the localization length. In the SL regime, an activation temperature dependence R(T) is observed. The activation energy is very close to the spacing between the energy levels of the localized electrons within the localization domain. The activation energy decreases by half in strong magnetic fields, as a result, an exponentially strong negative magnetoresistance is developed. All the features of the magnetoresistance in the SL regime are in good agreement with the theory of doubling of the localization length in quasi-1D conductors in strong fields. The magnetoresistance provides a direct measurement of the localization length. Supported by RNFBR, INTAS 943862, and NSF DRM-9623716 (A.G.M. and H.M.B.)
Experience-Seeking Characteristics of Methadone Clients.
ERIC Educational Resources Information Center
Kohn, Paul M.; And Others
1979-01-01
Methadone clients scored higher than controls on measures reflecting boredom, desire for change and attraction to physically thrilling activities. Correlations of these measures with length of most recent dependency before treatment, time on program, and time since initial dependency suggest peculiarities of methadone clients antedated involvement…
Primary alcohols activate human TRPA1 channel in a carbon chain length-dependent manner.
Komatsu, Tomoko; Uchida, Kunitoshi; Fujita, Fumitaka; Zhou, Yiming; Tominaga, Makoto
2012-04-01
Transient receptor potential ankyrin 1 (TRPA1) is a calcium-permeable non-selective cation channel that is mainly expressed in primary nociceptive neurons. TRPA1 is activated by a variety of noxious stimuli, including cold temperatures, pungent compounds such as mustard oil and cinnamaldehyde, and intracellular alkalization. Here, we show that primary alcohols, which have been reported to cause skin, eye or nasal irritation, activate human TRPA1 (hTRPA1). We measured intracellular Ca(2+) changes in HEK293 cells expressing hTRPA1 induced by 1 mM primary alcohols. Higher alcohols (1-butanol to 1-octanol) showed Ca(2+) increases proportional to the carbon chain length. In whole-cell patch-clamp recordings, higher alcohols (1-hexanol to 1-octanol) activated hTRPA1 and the potency increased with the carbon chain length. Higher alcohols evoked single-channel opening of hTRPA1 in an inside-out configuration. In addition, cysteine at 665 in the N terminus and histidine at 983 in the C terminus were important for hTRPA1 activation by primary alcohols. Furthermore, straight-chain secondary alcohols increased intracellular Ca(2+) concentrations in HEK293 cells expressing hTRPA1, and both primary and secondary alcohols showed hTRPA1 activation activities that correlated highly with their octanol/water partition coefficients. On the other hand, mouse TRPA1 did not show a strong response to 1-hexanol or 1-octanol, nor did these alcohols evoke significant pain in mice. We conclude that primary and secondary alcohols activate hTRPA1 in a carbon chain length-dependent manner. TRPA1 could be a sensor of alcohols inducing skin, eye and nasal irritation in human.
Kim, Hojeong
2017-07-01
Persistent inward current (PIC)-generating Ca v 1.3 channels in spinal motoneuron dendrites are thought to be actively recruited during normal behaviors. However, whether and how the activation of PIC channels influences force output of motor unit remains elusive. Here, building a physiologically realistic model of slow motor unit I demonstrated that force production induced by the PIC activation is much smaller for short than lengthened muscles during the regular firing of the motoneuron that transitions from the quiescent state by either a brief current pulse at the soma or a brief synaptic excitation at the dendrites. By contrast, the PIC-induced force potentiation was maximal for short muscles when the motoneuron switched from a stable low-frequency firing state to a stable high-frequency firing state by the current pulse at the soma. Under the synaptic excitation at the dendrites, however, the force could not be potentiated by the transitioning of the motoneuron from a low- to a high-frequency firing state due to the simultaneous onset of PIC at the dendrites and firing at the soma. The strong dependency of the input-output relationship of the motor unit on the neuromodulation and Ia afferent inputs for the PIC channels was further shown under static variations in muscle length. Taken together, these findings suggest that the PIC activation in the motoneuron dendrites may differentially affect the force production of the motor unit, depending not only on the firing state history of the motoneuron and the variation in muscle length but also on the mode of motor activity. NEW & NOTEWORTHY Ca v 1.3 channels in motoneuron dendrites are actively involved during normal motor activities. To investigate the effects of the activation of motoneuron Ca v 1.3 channels on force production, a model motor unit was built based on best-available data. The simulation results suggest that force potentiation induced by Ca v 1.3 channel activation is strongly modulated not only by firing history of the motoneuron but also by length variation of the muscle as well as neuromodulation inputs from the brainstem. Copyright © 2017 the American Physiological Society.
Relationship between extrinsic factors and the acromio-humeral distance.
Mackenzie, Tanya Anne; Herrington, Lee; Funk, Lenard; Horsley, Ian; Cools, Ann
2016-06-01
Maintenance of the subacromial space is important in impingement syndromes. Research exploring the correlation between biomechanical factors and the subacromial space would be beneficial. To establish if relationship exists between the independent variables of scapular rotation, shoulder internal rotation, shoulder external rotation, total arc of shoulder rotation, pectoralis minor length, thoracic curve, and shoulder activity level with the dependant variables: AHD in neutral, AHD in 60° arm abduction, and percentage reduction in AHD. Controlled laboratory study. Data from 72 male control shoulders (24.28years STD 6.81 years) and 186 elite sportsmen's shoulders (25.19 STD 5.17 years) were included in the analysis. The independent variables were quantified and real time ultrasound was used to measure the dependant variable acromio-humeral distance. Shoulder internal rotation and pectoralis minor length, explained 8% and 6% respectively of variance in acromio-humeral distance in neutral. Pectoralis minor length accounted for 4% of variance in 60° arm abduction. Total arc of rotation, shoulder external rotation range, and shoulder activity levels explained 9%, 15%, and 16%-29% of variance respectively in percentage reduction in acromio-humeral distance during arm abduction to 60°. Pectorals minor length, shoulder rotation ranges, total arc of shoulder rotation, and shoulder activity levels were found to have weak to moderate relationships with acromio-humeral distance. Existence and strength of relationship was population specific and dependent on arm position. Relationships only accounted for small variances in AHD indicating that in addition to these factors there are other factors involved in determining AHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Length-Dependent Formation of Transmembrane Pores by 310-Helical α-Aminoisobutyric Acid Foldamers
2015-01-01
The synthetic biology toolbox lacks extendable and conformationally controllable yet easy-to-synthesize building blocks that are long enough to span membranes. To meet this need, an iterative synthesis of α-aminoisobutyric acid (Aib) oligomers was used to create a library of homologous rigid-rod 310-helical foldamers, which have incrementally increasing lengths and functionalizable N- and C-termini. This library was used to probe the inter-relationship of foldamer length, self-association strength, and ionophoric ability, which is poorly understood. Although foldamer self-association in nonpolar chloroform increased with length, with a ∼14-fold increase in dimerization constant from Aib6 to Aib11, ionophoric activity in bilayers showed a stronger length dependence, with the observed rate constant for Aib11 ∼70-fold greater than that of Aib6. The strongest ionophoric activity was observed for foldamers with >10 Aib residues, which have end-to-end distances greater than the hydrophobic width of the bilayers used (∼2.8 nm); X-ray crystallography showed that Aib11 is 2.93 nm long. These studies suggest that being long enough to span the membrane is more important for good ionophoric activity than strong self-association in the bilayer. Planar bilayer conductance measurements showed that Aib11 and Aib13, but not Aib7, could form pores. This pore-forming behavior is strong evidence that Aibm (m ≥ 10) building blocks can span bilayers. PMID:26699898
STRETCH-DEPENDENT SENSITIZATION OF POST-JUNCTIONAL NEURAL EFFECTORS IN COLONIC MUSCLES
Won, Kyung-Jong; Sanders, Kenton M.; Ward, Sean M.
2012-01-01
Background The colon undergoes distension-induced changes in motor activity as luminal contents or feces increases wall pressure. Input from enteric motor neurons regulates motility. Here we examined stretch-dependent responses in circular muscle strips of murine colon. Methods Length-ramps (6–31μm s−1) were applied in the axis of the circular muscle layer in a controlled manner until 5 mN isometric force was reached. Key Results Length-ramps produced transient membrane potential hyperpolarizations and attenuation of action potential (AP) complexes. Responses were reproducible when ramps were applied every 30s. Stretch-dependent hyperpolarization was blocked by TTX, suggesting AP-dependent release of inhibitory neurotransmitter(s). Atropine did not potentiate stretch-induced hyperpolarizations, but increased compliance of the circular layer. L-NNA inhibited stretch-dependent hyperpolarization and decreased muscle compliance, suggesting release of NO mediates stretch-dependent inhibition. Control membrane potential was restored by the NO donor SNP. Stretch-dependent hyperpolarizations were blocked by L-methionine, an inhibitor of stretch-dependent K+ (SDK) channels in colonic muscles. Loss of ICC, elicited by Kit neutralizing antibody, also inhibited responses to stretch. In presence of L-NNA and apamin, stretch responses became excitatory and were characterized by membrane depolarization and increased AP firing. A neurokinin-1 receptor antagonist inhibited this stretch-dependent increase in excitability. Conclusions & Inferences Our data show that stretch-dependent responses in colonic muscles require tonic firing of enteric inhibitory neurons, but reflex activation of neurons does not appear to be necessary. NO causes activation of SDK channels, and stretch of muscles further activates these channels, explaining the inhibitory response to stretch in colonic muscle strips. PMID:23279087
Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran
2018-03-29
Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.
Load-dependent regulation of neuromuscular system
NASA Technical Reports Server (NTRS)
Ohira, Yoshinobu; Kawano, Fuminori; Stevens, James L.; Wang, Xiao D.; Ishihara, Akihiko
2004-01-01
Roles of gravitational loading, sarcomere length, and/or tension development on the electromyogram (EMG) of soleus and afferent neurogram recorded at the L5 segmental level of spinal cord were investigated during parabolic flight of a jet airplane or hindlimb suspension in conscious rats. Both EMG and neurogram levels were increased when the gravity levels were elevated from 1-G to 2-G during the parabolic flight. They were decreased when the hindlimbs were unloaded by exposure to actual microgravity or by suspension. These phenomena were related to passive shortening of muscle fibers and/or sarcomeres. Unloading-related decrease in sarcomere length was greater at the central rather than the proximal and distal regions of fibers. These activities and tension development were not detected when the mean sarcomere length was less than 2.03 micrometers. It is suggested that load-dependent regulation of neuromuscular system is related to the tension development which is influenced by sarcomere length.
Ren, Xiao-Min; Cao, Lin-Ying; Zhang, Jing; Qin, Wei-Ping; Yang, Yu; Wan, Bin; Guo, Liang-Hong
2016-04-05
Human G protein-coupled receptor 40 (hGPR40), with medium- and long-chain free fatty acids (FFAs) as its natural ligands, plays an important role in the enhancement of glucose-dependent insulin secretion. To date, information about the direct binding of FFAs to hGPR40 is very limited, and how carbon-chain length affects the activities of FFAs on hGPR40 is not yet understood. In this study, a fluorescein-fasiglifam analogue (F-TAK-875A) conjugate was designed and synthesized as a site-specific fluorescence probe to study the interaction of FFAs with hGPR40. hGPR40 was expressed in human embryonic kidney 293 cells and labeled with F-TAK-875A. By using flow cytometry, competitive binding of FFA and F-TAK-875A to hGPR40-expressed cells was measured. Binding affinities of 18 saturated FFAs, with carbon-chain lengths ranging from C6 to C23, were analyzed. The results showed that the binding potencies of FFAs to hGPR40 were dependent on carbon length. There was a positive correlation between length and binding potency for seven FFAs (C9-C15), with myristic acid (C15) showing the highest potency, 0.2% relative to TAK-875. For FFAs with a length of fewer than C9 or more than C15, they had very weak or no binding. Molecular docking results showed that the binding pocket of TAK-875 in hGPR40 could enclose FFAs with lengths of C15 or fewer. However, for FFAs with lengths longer than C15, part of the alkyl chain extended out of the binding pocket. This study provided insights into the structural dependence of FFAs binding to and activation of hGPR40.
Caffeine and length dependence of staircase potentiation in skeletal muscle.
Rassier, D E; Tubman, L A; MacIntosh, B R
1998-01-01
Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.
Reda, Sherif M; Chandra, Murali
2018-05-18
Recent clinical studies have revealed a new hypertrophic cardiomyopathy-associated mutation (F87L) in the central region of human cardiac troponin T (TnT). However, despite its implication in several incidences of sudden cardiac death in young and old adults, whether F87L is associated with cardiac contractile dysfunction is unknown. Because the central region of TnT is important for modulating the muscle length-mediated recruitment of new force-bearing cross-bridges (XBs), we hypothesize that the F87L mutation causes molecular changes that are linked to the length-dependent activation of cardiac myofilaments. Length-dependent activation is important because it contributes significantly to the Frank-Starling mechanism, which enables the heart to vary stroke volume as a function of changes in venous return. We measured steady-state and dynamic contractile parameters in detergent-skinned guinea pig cardiac muscle fibers reconstituted with recombinant guinea pig wild-type TnT (TnT WT ) or the guinea pig analogue (TnT F88L ) of the human mutation at two different sarcomere lengths (SLs): short (1.9 µm) and long (2.3 µm). TnT F88L increases pCa 50 (-log [Ca 2+ ] free required for half-maximal activation) to a greater extent at short SL than at long SL; for example, pCa 50 increases by 0.25 pCa units at short SL and 0.17 pCa units at long SL. The greater increase in pCa 50 at short SL leads to the abolishment of the SL-dependent increase in myofilament Ca 2+ sensitivity (ΔpCa 50 ) in TnT F88L fibers, ΔpCa 50 being 0.10 units in TnT WT fibers but only 0.02 units in TnT F88L fibers. Furthermore, at short SL, TnT F88L attenuates the negative impact of strained XBs on force-bearing XBs and augments the magnitude of muscle length-mediated recruitment of new force-bearing XBs. Our findings suggest that the TnT F88L -mediated effects on cardiac thin filaments may lead to a negative impact on the Frank-Starling mechanism. © 2018 Reda and Chandra.
Electro-chemical coupling in the voltage-dependent phosphatase Ci-VSP
Kohout, Susy C.; Bell, Sarah C.; Liu, Lijun; Xu, Qiang; Minor, Daniel L.; Isacoff, Ehud Y.
2010-01-01
In the voltage sensing phosphatase, Ci-VSP, a voltage sensing domain (VSD) controls a lipid phosphatase domain (PD). The mechanism by which the domains are allosterically coupled is not well understood. Using an in vivo assay, we find that the inter-domain linker that connects the VSD to the PD is essential for coupling the full-length protein. Biochemical assays show that the linker is also needed for activity in the isolated PD. We identify a late step of VSD motion in the full-length protein that depends on the linker. Strikingly, this VSD motion is found to require PI(4,5)P2, a substrate of Ci-VSP. These results suggest that the voltage-driven motion of the VSD turns the enzyme on by rearranging the linker into an activated conformation, and that this activated conformation is stabilized by PI(4,5)P2. We propose that Ci-VSP activity is self-limited because its decrease of PI(4,5)P2 levels decouples the VSD from the enzyme. PMID:20364128
Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii.
Wilson, Nedra F; Lefebvre, Paul A
2004-10-01
Chlamydomonas reinhardtii controls flagellar assembly such that flagella are of an equal and predetermined length. Previous studies demonstrated that lithium, an inhibitor of glycogen synthase kinase 3 (GSK3), induced flagellar elongation, suggesting that a lithium-sensitive signal transduction pathway regulated flagellar length (S. Nakamura, H. Takino, and M. K. Kojima, Cell Struct. Funct. 12:369-374, 1987). Here, we demonstrate that lithium treatment depletes the pool of flagellar proteins from the cell body and that the heterotrimeric kinesin Fla10p accumulates in flagella. We identify GSK3 in Chlamydomonas and demonstrate that its kinase activity is inhibited by lithium in vitro. The tyrosine-phosphorylated, active form of GSK3 was enriched in flagella and GSK3 associated with the axoneme in a phosphorylation-dependent manner. The level of active GSK3 correlated with flagellar length; early during flagellar regeneration, active GSK3 increased over basal levels. This increase in active GSK3 was rapidly lost within 30 min of regeneration as the level of active GSK3 decreased relative to the predeflagellation level. Taken together, these results suggest a possible role for GSK3 in regulating the assembly and length of flagella.
Working memory differences in long-distance dependency resolution
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component. PMID:25852623
Working memory differences in long-distance dependency resolution.
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.
Sarcomere length-dependence of activity-dependent twitch potentiation in mouse skeletal muscle
Rassier, Dilson E; MacIntosh, Brian R
2002-01-01
Background It has been reported that potentiation of a skeletal muscle twitch response is proportional to muscle length with a negative slope during staircase, and a positive slope during posttetanic potentiation. This study was done to directly compare staircase and posttetanic responses with measurement of sarcomere length to compare their length-dependence. Methods Mouse extensor digitorum longus (EDL) muscles were dissected to small bundles of fibers, which permit measurement of sarcomere length (SL), by laser diffraction. In vitro fixed-end contractions of EDL fiber bundles were elicited at 22°C and 35°C at sarcomere lengths ranging from 2.35 μm to 3.85 μm. Twitch contractions were assessed before and after 1.5 s of 75 Hz stimulation at 22°C or during 10 s of 10 Hz stimulation at 22°C or 35°C. Results Staircase potentiation was greater at 35°C than 22°C, and the relative magnitude of the twitch contraction (Pt*/Pt) was proportional to sarcomere length with a negative slope, over the range 2.3 μm – 3.7 μm. Linear regression yielded the following: Pt*/Pt = -0.59·SL+3.27 (r2 = 0.74); Pt*/Pt = -0.39·SL+2.34 (r2 = 0.48); and Pt*/Pt = -0.50·SL+2.45 (r2 = 0.80) for staircase at 35°C, and 22°C and posttetanic response respectively. Posttetanic depression rather than potentiation was present at long SL. This indicates that there may be two processes operating in these muscles to modulate the force: one that enhances and a second that depresses the force. Either or both of these processes may have a length-dependence of its mechanism. Conclusion There is no evidence that posttetanic potentiation is fundamentally different from staircase in these muscles. PMID:12475395
Cutting Edge: Inflammasome Activation in Primary Human Macrophages Is Dependent on Flagellin
Kortmann, Jens; Brubaker, Sky W.
2015-01-01
Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1β secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6. PMID:26109648
Khurana, Simran; Chakraborty, Sharmistha; Zhao, Xuan; Liu, Yu; Guan, Dongyin; Lam, Minh; Huang, Wei; Yang, Sichun; Kao, Hung-Ying
2012-01-01
α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein. PMID:22908231
The impact of length of stay on recovery measures in faith-based addiction treatment.
Lashley, Mary
2018-03-30
To determine the impact of length of stay among homeless men in faith-based residential addictions recovery on physical activity, depression, self-esteem, and nicotine dependence. A time series design was utilized to measure changes in the four quality measures at program entry and at 3, 6, and 9 months following admission. The sample consisted of 175 homeless residents enrolled in a faith-based residential recovery program. Paired t tests were used to determine the change in average instrument response from admission to each follow-up period. Analysis of variance (ANOVA) and Tukey posthoc tests were used to assess for differences in length of stay between demographic variables. Statistically significant improvements were noted in self-esteem and depressive symptomatology at 3 and 6 months following admission and in physical activity levels at 3 months following admission. Nicotine dependence scores declined at 3 and 6 months but were not statistically significant. Time spent in this faith-based spiritual recovery program had a significant impact on depression, self-esteem, and physical activity. Recommendations for future study include conducting research to analyze the relationship between distinct program elements and quality indicators and comparing faith-based programs to other similar programs and to publicly funded secular recovery programs. © 2018 Wiley Periodicals, Inc.
Nonlinear force-length relationship in the ADP-induced contraction of skeletal myofibrils.
Shimamoto, Yuta; Kono, Fumiaki; Suzuki, Madoka; Ishiwata, Shin'ichi
2007-12-15
The regulatory mechanism of sarcomeric activity has not been fully clarified yet because of its complex and cooperative nature, which involves both Ca(2+) and cross-bridge binding to the thin filament. To reveal the mechanism of regulation mediated by the cross-bridges, separately from the effect of Ca(2+), we investigated the force-sarcomere length (SL) relationship in rabbit skeletal myofibrils (a single myofibril or a thin bundle) at SL > 2.2 microm in the absence of Ca(2+) at various levels of activation by exogenous MgADP (4-20 mM) in the presence of 1 mM MgATP. The individual SLs were measured by phase-contrast microscopy to confirm the homogeneity of the striation pattern of sarcomeres during activation. We found that at partial activation with 4-8 mM MgADP, the developed force nonlinearly depended on the length of overlap between the thick and the thin filaments; that is, contrary to the maximal activation, the maximal active force was generated at shorter overlap. Besides, the active force became larger, whereas this nonlinearity tended to weaken, with either an increase in [MgADP] or the lateral osmotic compression of the myofilament lattice induced by the addition of a macromolecular compound, dextran T-500. The model analysis, which takes into account the [MgADP]- and the lattice-spacing-dependent probability of cross-bridge formation, was successfully applied to account for the force-SL relationship observed at partial activation. These results strongly suggest that the cross-bridge works as a cooperative activator, the function of which is highly sensitive to as little as
Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W
2016-01-01
Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive mechanical characteristics of the myocardium influence ensemble cross-bridge behavior and maintenance of tension generation throughout the sarcomere.
Pham, Toan; Tran, Kenneth; Mellor, Kimberley M; Hickey, Anthony; Power, Amelia; Ward, Marie-Louise; Taberner, Andrew; Han, June-Chiew; Loiselle, Denis
2017-07-15
The heat of activation of cardiac muscle reflects the metabolic cost of restoring ionic homeostasis following a contraction. The accuracy of its measurement depends critically on the abolition of crossbridge cycling. We abolished crossbridge activity in isolated rat ventricular trabeculae by use of blebbistatin, an agent that selectively inhibits myosin II ATPase. We found cardiac activation heat to be muscle length independent and to account for 15-20% of total heat production at body temperature. We conclude that it can be accurately estimated at minimal muscle length. Activation heat arises from two sources during the contraction of striated muscle. It reflects the metabolic expenditure associated with Ca 2+ pumping by the sarcoplasmic reticular Ca 2+ -ATPase and Ca 2+ translocation by the Na + /Ca 2+ exchanger coupled to the Na + ,K + -ATPase. In cardiac preparations, investigators are constrained in estimating its magnitude by reducing muscle length to the point where macroscopic twitch force vanishes. But this experimental protocol has been criticised since, at zero force, the observed heat may be contaminated by residual crossbridge cycling activity. To eliminate this concern, the putative thermal contribution from crossbridge cycling activity must be abolished, at least at minimal muscle length. We achieved this using blebbistatin, a selective inhibitor of myosin II ATPase. Using a microcalorimeter, we measured the force production and heat output, as functions of muscle length, of isolated rat trabeculae from both ventricles contracting isometrically at 5 Hz and at 37°C. In the presence of blebbistatin (15 μmol l -1 ), active force was zero but heat output remained constant, at all muscle lengths. Activation heat measured in the presence of blebbistatin was not different from that estimated from the intercept of the heat-stress relation in its absence. We thus reached two conclusions. First, activation heat is independent of muscle length. Second, residual crossbridge heat is negligible at zero active force; hence, the intercept of the cardiac heat-force relation provides an estimate of activation heat uncontaminated by crossbridge cycling. Both results resolve long-standing disputes in the literature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Piano Transcription with Convolutional Sparse Lateral Inhibition
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
2017-02-08
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Piano Transcription with Convolutional Sparse Lateral Inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Oide, Mao; Okajima, Koji; Nakagami, Hirofumi; Kato, Takayuki; Sekiguchi, Yuki; Oroguchi, Tomotaka; Hikima, Takaaki; Yamamoto, Masaki; Nakasako, Masayoshi
2018-01-19
Phototropin2 (phot2) is a blue-light (BL) receptor that regulates BL-dependent activities for efficient photosynthesis in plants. phot2 comprises two BL-receiving light-oxygen-voltage-sensing domains (LOV1 and LOV2) and a kinase domain. BL-excited LOV2 is thought to be primarily responsible for the BL-dependent activation of the kinase. However, the molecular mechanisms by which small BL-induced conformational changes in the LOV2 domain are transmitted to the kinase remain unclear. Here, we used full-length wild-type and mutant phot2 proteins from Arabidopsis to study their molecular properties in the dark and under BL irradiation. Phosphorylation assays and absorption measurements indicated that the LOV1 domain assists the thermal relaxation of BL-excited LOV2 and vice versa. Using small-angle X-ray scattering and electron microscopy, we observed that phot2 forms a dimer and has a rod shape with a maximum length of 188 Å and a radius of gyration of 44 Å. Under BL, phot2 displayed large conformational changes that bent the rod shape. By superimposing the crystal structures of the LOV1 dimer, LOV2, and a homology model of the kinase to the observed changes, we inferred that the BL-dependent change consisted of positional shifts of both LOV2 and the kinase relative to LOV1. Furthermore, phot2 mutants lacking the photocycle in LOV1 or LOV2 still exhibited conformational changes under BL, suggesting that LOV1 and LOV2 cooperatively contribute to the conformational changes that activate the kinase. These results suggest that BL-activated LOV1 contributes to the kinase activity of phot2. We discuss the possible intramolecular interactions and signaling mechanisms in phot2. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Interdependence of the kinetics of NTP hydrolysis and the stability of the RecA-ssDNA complex.
Katz, F S; Bryant, F R
2001-09-18
The ssDNA-dependent NTP hydrolysis activity of the RecA protein was examined using a series of dTn oligomers ranging in size from dT10 to dT2000 as the ssDNA effector. There were three distinct manifestations of the dTn-dependent NTP hydrolysis reaction, depending on the length of the dTn effector that was used. With longer dTn oligomers, NTP hydrolysis occurred with a turnover number of 20-25 min(-1) and the observed S0.5 value for the NTP was independent of the concentration of the dTn oligomer (DNA concentration-independent hydrolysis). With dTn oligomers of intermediate length, NTP hydrolysis still occurred with a turnover number of 20-25 min(-1), but the observed S0.5 for the NTP decreased with increasing dTn concentration until reaching a value similar to that obtained with the longer dTn oligomers (DNA concentration-dependent hydrolysis). With shorter dTn oligomers, the NTP hydrolysis activity was effectively eliminated. Although this general progression of kinetic behavior was observed for the three structurally related NTPs (dATP, ATP, and GTP), the dTn oligomer length at which DNA concentration-independent, DNA concentration-dependent, and no NTP hydrolysis was observed depended on the NTP being considered. For example, dATP (S0.5 = 35 microM) was hydrolyzed in the presence of dT20, whereas ATP (S0.5 = 70 microM) and GTP (S0.5 = 1200 microM) required at least dT50 and dT200 for hydrolysis, respectively. These results are discussed in terms of a kinetic model in which the stability of the RecA-ssDNA-NTP complex is dependent on the intrinsic S0.5 value of the NTP being hydrolyzed.
Ancestral telomere shortening: a countdown that will increase mean life span?
Hertzog, Radu G
2006-01-01
Like cells, all mammals have a limited life span. Among cells there are a few exceptions (e.g., immortal cells), among mammals not, even if some of them live longer. Many in vitro and in vivo studies support the consensus that telomere length is strongly correlated with life span. At the somatic cellular level, long telomeres have been associated with longer life span. A different situation can be seen in immortal cells, such as cancer, germ and stem cells, where telomeres are maintained by telomerase, a specialized reverse transcriptase that is involved in synthesis of telomeres. Irrespective of telomere length, if telomerase is active, telomeres can be maintained at a sufficient length to ensure cell survival. To the contrary, telomeres shorten progressively with each cell division and when a critical telomere length (Hayflick limit) is reached, the cells undergo senescence and subsequently apoptosis. In mammals, those with the longest telomeres (e.g., mice) have the shortest life span. Furthermore, the shorter the mean telomere length, the longer the mean life span, as observed in humans (10-14 kpb) and bowhead-whales (undetermined telomere length), which have the longest mean life span among mammals. Over the past centuries, human average life span has increased. The hypothesis presented here suggests that this continual increase in the mean life span could be due to a decrease of mean telomere length over the last hundreds years. Actually, the life span is not directly influenced by length of telomeres, but rather by telomere length - dependent gene expression pattern. According to Greider, "rather than average telomere length, it is the shortest telomere length that makes the biggest difference to a cell". In the context of fast-growing global elderly population due to increase in life expectancy, it also seem to be an age related increase in cancer incidence. Nevertheless, extending healthy life span could depend on how good cells achieve, during the prenatal period and few years after birth, the equilibrium between telomere length and telomerase activity, as seen in germ cells. After all, I suggest that decrease in mean telomere length might result in, on the one hand, an increased life span and, on the other, a higher risk of tumorigenesis.
Paiva, Anthony M; Sheardy, Richard D
2005-04-20
The formation of unusual structures during DNA replication has been invoked for gene expansion in genomes possessing triplet repeat sequences, CNG, where N = A, C, G, or T. In particular, it has been suggested that the daughter strand of the leading strand partially dissociates from the parent strand and forms a hairpin. The equilibrium between the fully duplexed parent:daugter species and the parent:hairpin species is dependent upon their relative stabilities and the rates of reannealing of the daughter strand back to the parent. These stabilities and rates are ultimately influenced by the sequence context of the DNA and its length. Previous work has demonstrated that longer strands are more stable than shorter strands and that the identity of N also influences the thermal stability [Paiva, A. M.; Sheardy, R. D. Biochemistry 2004, 43, 14218-14227]. Here, we show that the rate of duplex formation from complementary hairpins is also sequence context and length dependent. In particular, longer duplexes have higher activation energies than shorter duplexes of the same sequence context. Further, [(CCG):(GGC)] duplexes have lower activation energies than corresponding [(CAG):(GTC)] duplexes of the same length. Hence, hairpins formed from long CNG sequences are more thermodynamically stable and have slower kinetics for reannealing to their complement than shorter analogues. Gene expansion can now be explained in terms of thermodynamics and kinetics.
Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.
Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E
2015-12-22
The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.
Oyama, Katsunori; Sakatani, Kaoru
2016-01-01
Simultaneous monitoring of brain activity with near-infrared spectroscopy and electroencephalography allows spatiotemporal reconstruction of the hemodynamic response regarding the concentration changes in oxyhemoglobin and deoxyhemoglobin that are associated with recorded brain activity such as cognitive functions. However, the accuracy of state estimation during mental arithmetic tasks is often different depending on the length of the segment for sampling of NIRS and EEG signals. This study compared the results of a self-organizing map and ANOVA, which were both used to assess the accuracy of state estimation. We conducted an experiment with a mental arithmetic task performed by 10 participants. The lengths of the segment in each time frame for observation of NIRS and EEG signals were compared with the 30-s, 1-min, and 2-min segment lengths. The optimal segment lengths were different for NIRS and EEG signals in the case of classification of feature vectors into the states of performing a mental arithmetic task and being at rest.
Deep Recurrent Neural Networks for Human Activity Recognition
Murad, Abdulmajid
2017-01-01
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103
Deep Recurrent Neural Networks for Human Activity Recognition.
Murad, Abdulmajid; Pyun, Jae-Young
2017-11-06
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.
The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9.
Tsui, Tsz Kin Martin; Hand, Travis H; Duboy, Emily C; Li, Hong
2017-06-16
Cas9 is an RNA-guided DNA cleavage enzyme being actively developed for genome editing and gene regulation. To be cleaved by Cas9, a double stranded DNA, or the protospacer, must be complementary to the guide region, typically 20-nucleotides in length, of the Cas9-bound guide RNA, and adjacent to a short Cas9-specific element called Protospacer Adjacent Motif (PAM). Understanding the correct juxtaposition of the protospacer- and PAM-interaction with Cas9 will enable development of versatile and safe Cas9-based technology. We report identification and biochemical characterization of Cas9 from Acidothermus cellulolyticus (AceCas9). AceCas9 depends on a 5'-NNNCC-3' PAM and is more efficient in cleaving negative supercoils than relaxed DNA. Kinetic as well as in vivo activity assays reveal that AceCas9 achieves optimal activity when combined with a guide RNA containing a 24-nucleotide complementarity region. The cytosine-specific, DNA topology-sensitive, and extended guide-dependent properties of AceCas9 may be explored for specific genome editing applications.
Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.
Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk
2016-03-01
Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.
Pinne, Marija; Ponce, Elsa; Raucy, Judy L
2017-01-01
Nuclear Receptors (NRs), including PXR and CAR, are presumed to be ligand-dependent transcription factors, but ligand binding is not an absolute requirement for activation. Indeed, many compounds activate PXR and CAR by indirect mechanisms. Detecting these indirect activators of specific nuclear receptors in vitro has been difficult. As NR activation of either or both PXR and CAR can lead to drug-drug interactions and adverse drug effects, false negatives obtained with screening tools incapable of detecting indirect activators could present liabilities. The aim of this study was to establish assays that identify indirect activators of human PXR and CAR. Commercially available human PXR and CAR transactivation assays were used for analyses. We show that transactivation assays containing full-length nuclear receptors with native promoters can identify indirect activators of human CAR and PXRwhen compared to those of commercially available assays containing only the LBD of PXR and CAR. Of these two assay systems, only human PXR and CAR1 assays with full-length receptors and native promoters are capable of detecting indirect and ligand activators. With this capability, several kinase inhibitors were identified that activate PXR and CAR by indirect mechanisms. Furthermore by using both the LBD and full-length receptors, phenobarbital and midostaurin were found to be direct and indirect activators of PXR while human CAR activation by phenobarbital occurs by indirect mechanisms only. Cell based transactivation assays employing the full-length receptors and native promoters identify both direct and indirect activators of either or both human PXR and CAR. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions
NASA Astrophysics Data System (ADS)
Das, Rabin; Mukhopadhyay, Sagarika; Singh, Ravi Kant; Baidya, Pushap R.
2018-07-01
Attenuation of seismic wave energy of Delhi and its surrounding regions has been estimated using coda of local earthquakes. Estimated quality factor (Qc) values are strongly dependent on frequency and lapse time. Frequency dependence of Qc has been estimated from the relationship Qc(f) = Q0fn for different lapse time window lengths. Q0 and n values vary from 73 to 453 and 0.97 to 0.63 for lapse time window lengths of 15 s to 90 s respectively. Average estimated frequency dependent relation is, Qc(f) = 135 ± 8f0.96±0.02 for the entire region for a window length of 30 s, where the average Qc value varies from 200 at 1.5 Hz to 1962 at 16 Hz. These values show that the region is seismically active and highly heterogeneous. The entire study region is divided into two sub-regions according to the geology of the area to investigate if there is a spatial variation in attenuation characteristics in this region. It is observed that at smaller lapse time both regions have similar Qc values. However, at larger lapse times the rate of increase of Qc with frequency is larger for Region 2 compared to Region 1. This is understandable, as it is closer to the tectonically more active Himalayan ranges and seismically more active compared to Region 1. The difference in variation of Qc with frequencies for the two regions is such that at larger lapse time and higher frequencies Region 2 shows higher Qc compared to Region 1. For lower frequencies the opposite situation is true. This indicates that there is a systematic variation in attenuation characteristics from the south (Region 1) to the north (Region 2) in the deeper part of the study area. This variation can be explained in terms of an increase in heat flow and a decrease in the age of the rocks from south to north.
The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy.
Provitera, V; Gibbons, C H; Wendelschafer-Crabb, G; Donadio, V; Vitale, D F; Loavenbruck, A; Stancanelli, A; Caporaso, G; Liguori, R; Wang, N; Santoro, L; Kennedy, W R; Nolano, M
2018-06-01
We aimed to test the clinical utility of the leg:thigh intraepidermal nerve-fiber (IENF) density ratio as a parameter to discriminate between length-dependent small-fiber neuropathy (SFN) and small-fiber sensory ganglionopathy (SFSG) in subjects with signs and symptoms of small-fiber pathology. We retrospectively evaluated thigh and leg IENF density in 314 subjects with small-fiber pathology (173 with distal symmetrical length-dependent SFN and 141 with non-length-dependent SFSG). A group of 288 healthy subjects was included as a control group. The leg:thigh IENF density ratio was calculated for all subjects. We used receiver operating characteristic curve analyses to assess the ability of this parameter to discriminate between length-dependent SFN and SFSG, and the decision curve analysis to estimate its net clinical benefit. In patients with neuropathy, the mean IENF density was 14.8 ± 6.8/mm at the thigh (14.0 ± 6.9/mm in length-dependent SFN and 15.9 ± 6.7/mm in patients with SFSG) and 7.5 ± 4.5/mm at the distal leg (5.4 ± 3.2/mm in patients with length-dependent SFN and 10.1 ± 4.6/mm in patients with SFSG). The leg:thigh IENF density ratio was significantly (P < 0.01) lower in patients with length-dependent SFN (0.44 ± 0.23) compared with patients with SFSG (0.68 ± 0.28). The area under the curve of the receiver operating characteristic analysis to discriminate between patients with length-dependent SFN and SFSG was 0.79. The decision curve analysis demonstrated the clinical utility of this parameter. The leg:thigh IENF ratio represents a valuable tool in the differential diagnosis between SFSG and length-dependent SFN. © 2018 EAN.
Marlin, Jerry W; Chang, Yu-Wen E; Ober, Margaret; Handy, Amy; Xu, Wenhao; Jakobi, Rolf
2011-06-01
p21-Activated protein kinase 2 (PAK-2) has both anti- and pro-apoptotic functions depending on its mechanism of activation. Activation of full-length PAK-2 by the monomeric GTPases Cdc42 or Rac stimulates cell survival, whereas caspase activation of PAK-2 to the PAK-2p34 fragment is involved in the apoptotic response. In this study we use functional knockout of PAK-2 and gene replacement with the caspase cleavage-deficient PAK-2D212N mutant to differentiate the biological functions of full-length PAK-2 and caspase-activated PAK-2p34. Knockout of PAK-2 results in embryonic lethality at early stages before organ development, whereas replacement with the caspase cleavage-deficient PAK-2D212N results in viable and healthy mice, indicating that early embryonic lethality is caused by deficiency of full-length PAK-2 rather than lack of caspase activation to the PAK-2p34 fragment. However, deficiency of caspase activation of PAK-2 decreased spontaneous cell death of primary mouse embryonic fibroblasts and increased cell growth at high cell density. In contrast, stress-induced cell death by treatment with the anti-cancer drug cisplatin was not reduced by deficiency of caspase activation of PAK-2, but switched from an apoptotic to a nonapoptotic, caspase-independent mechanism. Homozygous PAK-2D212N primary mouse embryonic fibroblasts that lack the ability to generate the proapoptotic PAK-2p34 show less activation of the effector caspase 3, 6, and 7, indicating that caspase activation of PAK-2 amplifies the apoptotic response through a positive feedback loop resulting in more activation of effector caspases.
Understanding the length dependence of molecular junction thermopower.
Karlström, Olov; Strange, Mikkel; Solomon, Gemma C
2014-01-28
Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length.
The Dynamics of Entangled DNA Networks using Single-Molecule Methods
NASA Astrophysics Data System (ADS)
Chapman, Cole David
Single molecule experiments were performed on DNA, a model polymer, and entangled DNA networks to explore diffusion within complex polymeric fluids and their linear and non-linear viscoelasticity. DNA molecules of varying length and topology were prepared using biological methods. An ensemble of individual molecules were then fluorescently labeled and tracked in blends of entangled linear and circular DNA to examine the dependence of diffusion on polymer length, topology, and blend ratio. Diffusion was revealed to possess a non-monotonic dependence on the blend ratio, which we believe to be due to a second-order effect where the threading of circular polymers by their linear counterparts greatly slows the mobility of the system. Similar methods were used to examine the diffusive and conformational behavior of DNA within highly crowded environments, comparable to that experienced within the cell. A previously unseen gamma distributed elongation of the DNA in the presence of crowders, proposed to be due to entropic effects and crowder mobility, was observed. Additionally, linear viscoelastic properties of entangled DNA networks were explored using active microrheology. Plateau moduli values verified for the first time the predicted independence from polymer length. However, a clear bead-size dependence was observed for bead radii less than ~3x the tube radius, a newly discovered limit, above which microrheology results are within the continuum limit and may access the bulk properties of the fluid. Furthermore, the viscoelastic properties of entangled DNA in the non-linear regime, where the driven beads actively deform the network, were also examined. By rapidly driving a bead through the network utilizing optical tweezers, then removing the trap and tracking the bead's subsequent motion we are able to model the system as an over-damped harmonic oscillator and find the elasticity to be dominated by stress-dependent entanglements.
A Nucleotide-Driven Switch Regulates Flanking DNA Length Sensing by a Dimeric Chromatin Remodeler
Leonard, John D.; Narlikar, Geeta J.
2015-01-01
SUMMARY The ATP-dependent chromatin assembly factor (ACF) is a dimeric motor that spaces nucleosomes to promote formation of silent chromatin. Two copies of its ATPase subunit SNF2h bind opposite sides of a nucleosome, but how these protomers avoid competition is unknown. SNF2h senses the length of DNA flanking a nucleosome via its HAND-SANT-SLIDE (HSS) domain, yet it is unclear how this interaction enhances remodeling. Using covalently connected SNF2h dimers we show that dimerization accelerates remodeling and that the HSS contributes to communication between protomers. We further identify a nucleotide-dependent conformational change in SNF2h. In one conformation the HSS binds flanking DNA, and in another conformation the HSS engages the nucleosome core. Based on these results, we propose a model in which DNA length sensing and translocation are performed by two distinct conformational states of SNF2h. Such separation of function suggests that these activities could be independently regulated to affect remodeling outcomes. PMID:25684208
Minimization of dependency length in written English.
Temperley, David
2007-11-01
Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1-76; Gibson, E. 2000. The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, Language, Brain (pp. 95-126). Cambridge, MA: MIT Press.] proposes that the processing complexity of a sentence is related to the length of its syntactic dependencies: longer dependencies are more difficult to process. The DLT is supported by a variety of phenomena in language comprehension. This raises the question: Does language production reflect a preference for shorter dependencies as well? I examine this question in a corpus study of written English, using the Wall Street Journal portion of the Penn Treebank. The DLT makes a number of predictions regarding the length of constituents in different contexts; these predictions were tested in a series of statistical tests. A number of findings support the theory: the greater length of subject noun phrases in inverted versus uninverted quotation constructions, the greater length of direct-object versus subject NPs, the greater length of postmodifying versus premodifying adverbial clauses, the greater length of relative-clause subjects within direct-object NPs versus subject NPs, the tendency towards "short-long" ordering of postmodifying adjuncts and coordinated conjuncts, and the shorter length of subject NPs (but not direct-object NPs) in clauses with premodifying adjuncts versus those without.
Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L
2015-12-15
We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.
Population Dynamics of Viral Inactivation
NASA Astrophysics Data System (ADS)
Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex
We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.
A new model for force generation by skeletal muscle, incorporating work-dependent deactivation
Williams, Thelma L.
2010-01-01
A model is developed to predict the force generated by active skeletal muscle when subjected to imposed patterns of lengthening and shortening, such as those that occur during normal movements. The model is based on data from isolated lamprey muscle and can predict the forces developed during swimming. The model consists of a set of ordinary differential equations, which are solved numerically. The model's first part is a simplified description of the kinetics of Ca2+ release from sarcoplasmic reticulum and binding to muscle protein filaments, in response to neural activation. The second part is based on A. V. Hill's mechanical model of muscle, consisting of elastic and contractile elements in series, the latter obeying known physiological properties. The parameters of the model are determined by fitting the appropriate mathematical solutions to data recorded from isolated lamprey muscle activated under conditions of constant length or rate of change of length. The model is then used to predict the forces developed under conditions of applied sinusoidal length changes, and the results compared with corresponding data. The most significant advance of this model is the incorporation of work-dependent deactivation, whereby a muscle that has been shortening under load generates less force after the shortening ceases than otherwise expected. In addition, the stiffness in this model is not constant but increases with increasing activation. The model yields a closer prediction to data than has been obtained before, and can thus prove an important component of investigations of the neural—mechanical—environmental interactions that occur during natural movements. PMID:20118315
Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
Perišić, Ognjen; Schlick, Tamar
2017-08-24
The linker histone (LH), an auxiliary protein that can bind to chromatin and interact with the linker DNA to form stem motifs, is a key element of chromatin compaction. By affecting the chromatin condensation level, it also plays an active role in gene expression. However, the presence and variable concentration of LH in chromatin fibers with different DNA linker lengths indicate that its folding and condensation are highly adaptable and dependent on the immediate nucleosome environment. Recent experimental studies revealed that the behavior of LH in mononucleosomes markedly differs from that in small nucleosome arrays, but the associated mechanism is unknown. Here we report a structural analysis of the behavior of LH in mononucleosomes and oligonucleosomes (2-6 nucleosomes) using mesoscale chromatin simulations. We show that the adapted stem configuration heavily depends on the strength of electrostatic interactions between LH and its parental DNA linkers, and that those interactions tend to be asymmetric in small oligonucleosome systems. Namely, LH in oligonucleosomes dominantly interacts with one DNA linker only, as opposed to mononucleosomes where LH has similar interactions with both linkers and forms a highly stable nucleosome stem. Although we show that the LH condensation depends sensitively on the electrostatic interactions with entering and exiting DNA linkers, other interactions, especially by nonparental cores and nonparental linkers, modulate the structural condensation by softening LH and thus making oligonucleosomes more flexible, in comparison to to mono- and dinucleosomes. We also find that the overall LH/chromatin interactions sensitively depend on the linker length because the linker length determines the maximal nucleosome stem length. For mononucleosomes with DNA linkers shorter than LH, LH condenses fully, while for DNA linkers comparable or longer than LH, the LH extension in mononucleosomes strongly follows the length of DNA linkers, unhampered by neighboring linker histones. Thus, LH is more condensed for mononucleosomes with short linkers, compared to oligonucleosomes, and its orientation is variable and highly environment-dependent. More generally, the work underscores the agility of LH whose folding dynamics critically controls genomic packaging and gene expression.
Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru
2014-01-03
Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.
Telomerase and its extracurricular activities.
Jaiswal, Rishi Kumar; Kumar, Pramod; Yadava, Pramod Kumar
2013-12-01
The classical activity of telomerase is to synthesize telomeric repeats and thus maintain telomere length, which in turn ensures chromosome stability and cellular proliferation. However, there is growing evidence that implicates telomerase in many other functions that are independent of TERC being used as its template. Telomerase has an RNA-dependent RNA polymerase (RdRP) activity in the mitochondria. Other than viral RdRPs, it is the only RNA-dependent RNA polymerase that has been identified in mammals. It also plays a role in the Wnt signaling pathway by acting as a transcriptional modulator. Telomerase acts as a reverse transcriptase independent of its core subunit, TERC. Studies indicate that telomerase is also involved in apoptosis and DNA repair.
Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor
2012-01-01
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products. PMID:22649490
Liberato, Marcelo Vizoná; Nascimento, Alessandro S; Ayers, Steven D; Lin, Jean Z; Cvoro, Aleksandra; Silveira, Rodrigo L; Martínez, Leandro; Souza, Paulo C T; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A R; Skaf, Munir S; Webb, Paul; Polikarpov, Igor
2012-01-01
Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.
NASA Astrophysics Data System (ADS)
Dashkevich, V. I.; Orlovich, V. A.
2017-03-01
The shape of the multimode Stokes pulse generated by an eye-safe KGd(WO4)2:Nd laser with self-frequency Raman conversion and active Q-switching was shown to depend on the inhomogeneity of the active-medium pump. The laser generated a short and undistorted Stokes pulse of length 2.5 ns that increased with increasing laser cavity length for a moderately inhomogeneous pump characterized by a higher population inversion in the center of the active element. The energy of the Stokes pulse ( 11.5 mJ) varied little as the output-mirror reflectivity varied in the range 5-45%. The Raman pulse became distorted if the inhomogeneity of the pump was increased considerably. The degree of pump inhomogeneity was negligible with fundamental TEM00 mode selection. The laser generated subnanosecond Stokes pulses with peak power in the MW range.
Dendrite and Axon Specific Geometrical Transformation in Neurite Development
Mironov, Vasily I.; Semyanov, Alexey V.; Kazantsev, Victor B.
2016-01-01
We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size. PMID:26858635
Sonstein, Stephen A.; Baldwin, J. N.
1972-01-01
Growth of Stapylococcus aureus in various ionic surface-active agents resulted in loss of the ability to produce penicillinase, whereas growth in nonionic surface-active agents had no effect on penicillinase production. The curing effect of various alkyl sulfates was found to be dependent upon the chain length. Curing by surface-active agents could be inhibited by magnesium. Reciprocal transduction experiments showed that curing by a surface-active agent was a property of the plasmid, not of the bacterial strain in which the plasmic resides. PMID:4204903
Systematic Evaluation of the Dependence of Deoxyribozyme Catalysis on Random Region Length
Velez, Tania E.; Singh, Jaydeep; Xiao, Ying; Allen, Emily C.; Wong, On Yi; Chandra, Madhavaiah; Kwon, Sarah C.; Silverman, Scott K.
2012-01-01
Functional nucleic acids are DNA and RNA aptamers that bind targets, or they are deoxyribozymes and ribozymes that have catalytic activity. These functional DNA and RNA sequences can be identified from random-sequence pools by in vitro selection, which requires choosing the length of the random region. Shorter random regions allow more complete coverage of sequence space but may not permit the structural complexity necessary for binding or catalysis. In contrast, longer random regions are sampled incompletely but may allow adoption of more complicated structures that enable function. In this study, we systematically examined random region length (N20 through N60) for two particular deoxyribozyme catalytic activities, DNA cleavage and tyrosine-RNA nucleopeptide linkage formation. For both activities, we previously identified deoxyribozymes using only N40 regions. In the case of DNA cleavage, here we found that shorter N20 and N30 regions allowed robust catalytic function, either by DNA hydrolysis or by DNA deglycosylation and strand scission via β-elimination, whereas longer N50 and N60 regions did not lead to catalytically active DNA sequences. Follow-up selections with N20, N30, and N40 regions revealed an interesting interplay of metal ion cofactors and random region length. Separately, for Tyr-RNA linkage formation, N30 and N60 regions provided catalytically active sequences, whereas N20 was unsuccessful, and the N40 deoxyribozymes were functionally superior (in terms of rate and yield) to N30 and N60. Collectively, the results indicate that with future in vitro selection experiments for DNA and RNA catalysts, and by extension for aptamers, random region length should be an important experimental variable. PMID:23088677
Current Understanding of Perfluoroalkyl Acid Toxicology ...
The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-14 carbons in length) and an anionic head group (sulfonate, carboxylate or phosphonate). These compounds have excellent surface-tension reducing properties and have numerous industrial and consumer applications. However, they are chemically stable, persistent in the environment, ubiquitously distributed, and present in humans and wildlife. Two issues must be considered regarding PFAA toxicology: pharmacokinetics and potency of the chemicals. The rates of PFAA clearance and their body burden accumulation are dependent on carbon-chain length and animal species. In general, the serum half-life of PFAAs increases with chain length in both rodents and humans, but the estimates in humans are markedly higher than those in laboratory animals. Recent studies with laboratory animal models have indicated a number of toxic effects of PFAAs, including tumor induction, hepatotoxicity, developmental toxicity, immunotoxicity, neurotoxicity and endocrine disruption. The modes of PFAA actions are not well understood, but are thought to involve, in part, activation of nuclear receptor signals (such as peroxisome proliferator-activated receptor-a, PPARa). Based on PPARa activation, potency of PFAAs increases with carbon-chain length, carboxylates are stronger than sulfonates, and mouse receptor is more reactive than human receptor. Adverse effects of perfluorophospho
NASA Astrophysics Data System (ADS)
Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.
2012-04-01
CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.
2016-05-31
specificity, opsonization‑dependent phagocytic activity and protection in RTS,S‑induced antibodies is explored. Methods: A new method for measuring...the phagocytic activity mediated by CSP‑specific antibodies in THP‑1 cells is presented and applied to samples from a recently completed phase 2 RTS,S...repeat region, the C‑terminal domain and the full‑length protein. A multi‑parameter analysis of phagocytic activity and fine‑specific‑ ity data was
Dahiya, Yogesh; Babu, Kavita
2018-01-01
Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans, plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18, and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18, npr-1, npr-4, and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. PMID:29712787
The impact of signal normalization on seizure detection using line length features.
Logesparan, Lojini; Rodriguez-Villegas, Esther; Casson, Alexander J
2015-10-01
Accurate automated seizure detection remains a desirable but elusive target for many neural monitoring systems. While much attention has been given to the different feature extractions that can be used to highlight seizure activity in the EEG, very little formal attention has been given to the normalization that these features are routinely paired with. This normalization is essential in patient-independent algorithms to correct for broad-level differences in the EEG amplitude between people, and in patient-dependent algorithms to correct for amplitude variations over time. It is crucial, however, that the normalization used does not have a detrimental effect on the seizure detection process. This paper presents the first formal investigation into the impact of signal normalization techniques on seizure discrimination performance when using the line length feature to emphasize seizure activity. Comparing five normalization methods, based upon the mean, median, standard deviation, signal peak and signal range, we demonstrate differences in seizure detection accuracy (assessed as the area under a sensitivity-specificity ROC curve) of up to 52 %. This is despite the same analysis feature being used in all cases. Further, changes in performance of up to 22 % are present depending on whether the normalization is applied to the raw EEG itself or directly to the line length feature. Our results highlight the median decaying memory as the best current approach for providing normalization when using line length features, and they quantify the under-appreciated challenge of providing signal normalization that does not impair seizure detection algorithm performance.
Chin, Stephanie; Yang, Donghe; Miles, Andrew J.; Eckford, Paul D. W.; Molinski, Steven; Wallace, B. A.; Bear, Christine E.
2017-01-01
Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation. PMID:28003367
Word length and lexical activation: longer is better.
Pitt, Mark A; Samuel, Arthur G
2006-10-01
Many models of spoken word recognition posit the existence of lexical and sublexical representations, with excitatory and inhibitory mechanisms used to affect the activation levels of such representations. Bottom-up evidence provides excitatory input, and inhibition from phonetically similar representations leads to lexical competition. In such a system, long words should produce stronger lexical activation than short words, for 2 reasons: Long words provide more bottom-up evidence than short words, and short words are subject to greater inhibition due to the existence of more similar words. Four experiments provide evidence for this view. In addition, reaction-time-based partitioning of the data shows that long words generate greater activation that is available both earlier and for a longer time than is the case for short words. As a result, lexical influences on phoneme identification are extremely robust for long words but are quite fragile and condition-dependent for short words. Models of word recognition must consider words of all lengths to capture the true dynamics of lexical activation. Copyright 2006 APA.
Singh, Jasmeet; Ranganathan, Radha; Hajdu, Joseph
2008-12-25
Activity at micellar interfaces of bacterial phospholipase C from Bacillus cereus on phospholipids solubilized in micelles was investigated with the goal of elucidating the role of the interface microstructure and developing further an existing kinetic model. Enzyme kinetics and physicochemical characterization of model substrate aggregates were combined, thus enabling the interpretation of kinetics in the context of the interface. Substrates were diacylphosphatidylcholine of different acyl chain lengths in the form of mixed micelles with dodecyldimethylammoniopropanesulfonate. An early kinetic model, reformulated to reflect the interfacial nature of the kinetics, was applied to the kinetic data. A better method of data treatment is proposed, use of which makes the presence of microstructure effects quite transparent. Models for enzyme-micelle binding and enzyme-lipid binding are developed, and expressions incorporating the microstructural properties are derived for the enzyme-micelle dissociation constant K(s) and the interface Michaelis-Menten constant, K(M). Use of these expressions in the interface kinetic model brings excellent agreement between the kinetic data and the model. Numerical values for the thermodynamic and kinetic parameters are determined. Enzyme-lipid binding is found to be an activated process with an acyl chain length dependent free energy of activation that decreases with micelle lipid molar fraction with a coefficient of about -15RT and correlates with the tightness of molecular packing in the substrate aggregate. Thus, the physical insight obtained includes a model for the kinetic parameters that shows that these parameters depend on the substrate concentration and acyl chain length of the lipid. Enzyme-micelle binding is indicated to be hydrophobic and solvent mediated with a dissociation constant of 1.2 mM.
Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow
Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi
2017-01-01
Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076
Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard
2015-05-20
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.
The all-fiber cladding-pumped Yb-doped gain-switched laser.
Larsen, C; Hansen, K P; Mattsson, K E; Bang, O
2014-01-27
Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.
Brinzer, Thomas; Garrett-Roe, Sean
2017-11-21
Ultrafast two-dimensional infrared spectroscopy of a thiocyanate vibrational probe (SCN - ) was used to investigate local dynamics in alkylimidazolium bis-[trifluoromethylsulfonyl]imide ionic liquids ([Im n,1 ][Tf 2 N], n = 2, 4, 6) at temperatures from 5 to 80 °C. The rate of frequency fluctuations reported by SCN - increases with increasing temperature and decreasing alkyl chain length. Temperature-dependent correlation times scale proportionally to temperature-dependent bulk viscosities of each ionic liquid studied. A multimode Brownian oscillator model demonstrates that very low frequency (<10 cm -1 ) modes primarily drive the observed spectral diffusion and that these modes broaden and blue shift on average with increasing temperature. An Arrhenius analysis shows activation barriers for local motions around the probe between 5.5 and 6.5 kcal/mol that are very similar to those for translational diffusion of ions. [Im 6,1 ][Tf 2 N] shows an unexpected decrease in activation energy compared to [Im 4,1 ][Tf 2 N] that may be related to mesoscopically ordered polar and nonpolar domains. A model of dynamics on a rugged potential energy landscape provides a unifying description of the observed Arrhenius behavior and the Brownian oscillator model of the low frequency modes.
NASA Technical Reports Server (NTRS)
Boehm-Vitense, Erika
1988-01-01
The ratio of the emission line fluxes for the C II and C IV lines in the lower transition regions (T = 30,000 to 100,000 K) between stellar chromospheres and transition layers is shown to depend mainly on the temperature gradient in the line emitting regions which can therefore be determined from this line ratio. From the observed constant (within the limits of observational error) ratio of the emission line fluxes of the C II (1335 A) and C IV (1550 A) lines it is concluded that the temperature gradients in the lower transition layers are similar for the large majority of stars independently of T sub eff, L, and degree of activity. This means that the temperature dependence of the damping length for the mechanical flux must be the same for all these stars. Since for different kinds of mechanical fluxes the dependence of the damping length on gas pressure and temperature is quite different, it is concluded that the same heating mechanism must be responsible for the heating of all the lower transition layers of these stars, regardless of their chromospheric activity. Only the amount of mechanical flux changes. The T Tauri stars are exceptions: their emission lines are probably mainly due to circumstellar material.
Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz
2015-10-21
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.
NASA Astrophysics Data System (ADS)
Comlekoglu, T.; Weinberg, S. H.
2017-09-01
Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.
Liu, Zhongle; Myers, Lawrence C
2017-11-01
The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1 , are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention. Copyright © 2017 American Society for Microbiology.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.
2015-10-01
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.
Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2018-06-01
Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.
Optimal parameters of leader development in lightning
NASA Technical Reports Server (NTRS)
Petrov, N. I.; Petrova, G. N.
1991-01-01
The dependences between the different parameters of a leader in lightning are obtained theoretically. The physical mechanism of the instability leading to the formation of the streamer zone is proposed. The instability has the wave nature and is caused by the self-influence effects of the space charge. Using a stability condition of the leader propagation, a dependence is obtained between the current across the leader head and its velocity of motion. The dependence of the streamer zone length on the gap length is also obtained. It is shown that the streamer zone length is saturated with the increasing of the gap length. A comparison between the obtained dependences and the experimental data is presented.
NASA Astrophysics Data System (ADS)
Geng, Xiang F.; Hu, Xing Q.; Xia, Ji J.; Jia, Xue C.
2013-04-01
A series of novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants of 1,2-bis[N-ethyl-N-(2-hydroxyl-3-sulfopropyl)-alkylammonium] alkyl betaines (DBAs-n, where s and n represent the spacer length of 2, 4 and 6 and the hydrocarbon chain length of 8, 12, 14, 16 and 18, respectively) were synthesized by reacting alkylamine with sodium 3-chloro-2-hydroxypropanesulfonate (the alternative sulphonated agent), followed by the reactions with а,ω-dibromoalkyl and then ethyl bromide. Their adsorption and aggregation properties were investigated by means of equilibrium surface tension, dynamic light-scattering (DLS) and transmission electron microscopy (TEM). DBAs-n gemini surfactants showed excellent surface activities and packed tightly at the interface. For example, the minimum CMC value for DBAs-n series was of the order of 10-5 M and the surface tension of water can be decreased as low as 22.2 mN/m. It was also found that the aggregates of DBAs-n solutions were significantly dependent on their hydrocarbon chain lengths. The aggregates changed from vesicles to entangled fiber-like micelles as the chain length increased from dodecyl to tetradecyl.
Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.
Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L
2013-01-01
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
Stalk-length-dependence of the contractility of Vorticella convallaria
NASA Astrophysics Data System (ADS)
Gul Chung, Eun; Ryu, Sangjin
2017-12-01
Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.
Large-scale evidence of dependency length minimization in 37 languages
Futrell, Richard; Mahowald, Kyle; Gibson, Edward
2015-01-01
Explaining the variation between human languages and the constraints on that variation is a core goal of linguistics. In the last 20 y, it has been claimed that many striking universals of cross-linguistic variation follow from a hypothetical principle that dependency length—the distance between syntactically related words in a sentence—is minimized. Various models of human sentence production and comprehension predict that long dependencies are difficult or inefficient to process; minimizing dependency length thus enables effective communication without incurring processing difficulty. However, despite widespread application of this idea in theoretical, empirical, and practical work, there is not yet large-scale evidence that dependency length is actually minimized in real utterances across many languages; previous work has focused either on a small number of languages or on limited kinds of data about each language. Here, using parsed corpora of 37 diverse languages, we show that overall dependency lengths for all languages are shorter than conservative random baselines. The results strongly suggest that dependency length minimization is a universal quantitative property of human languages and support explanations of linguistic variation in terms of general properties of human information processing. PMID:26240370
Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.
Grandjean, Bernard; Maier, Marc A
2017-02-01
Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.
Kudalkar, Shalley N; Njuma, Olive J; Li, Yongjiang; Muldowney, Michelle; Fuanta, N Rene; Goodwin, Douglas C
2015-03-03
Catalase-peroxidases (KatGs), the only catalase-active members of their superfamily, all possess a 35-residue interhelical loop called large loop 2 (LL2). It is essential for catalase activity, but little is known about its contribution to KatG function. LL2 shows weak sequence conservation; however, its length is nearly identical across KatGs, and its apex invariably makes contact with the KatG-unique C-terminal domain. We used site-directed and deletion mutagenesis to interrogate the role of LL2 and its interaction with the C-terminal domain in KatG structure and catalysis. Single and double substitutions of the LL2 apex had little impact on the active site heme [by magnetic circular dichroism or electron paramagnetic resonance (EPR)] and activity (catalase or peroxidase). Conversely, deletion of a single amino acid from the LL2 apex reduced catalase activity by 80%. Deletion of two or more apex amino acids or all of LL2 diminished catalase activity by 300-fold. Peroxide-dependent but not electron donor-dependent kcat/KM values for deletion variant peroxidase activity were reduced 20-200-fold, and kon for cyanide binding diminished by 3 orders of magnitude. EPR spectra for deletion variants were all consistent with an increase in the level of pentacoordinate high-spin heme at the expense of hexacoordinate high-spin states. Together, these data suggest a shift in the distribution of active site waters, altering the reactivity of the ferric state, toward, among other things, compound I formation. These results identify the importance of LL2 length conservation for maintaining an intersubunit interaction that is essential for an active site water distribution that facilitates KatG catalytic activity.
Coronal Heating and the Magnetic Field in Solar Active Regions
NASA Astrophysics Data System (ADS)
Falconer, D. A.; Tiwari, S. K.; Winebarger, A. R.; Moore, R. L.
2017-12-01
A strong dependence of active-region (AR) coronal heating on the magnetic field is demonstrated by the strong correlation of AR X-ray luminosity with AR total magnetic flux (Fisher et al 1998 ApJ). AR X-ray luminosity is also correlated with AR length of strong-shear neutral line in the photospheric magnetic field (Falconer 1997). These two whole-AR magnetic parameters are also correlated with each other. From 150 ARs observed within 30 heliocentric degrees from disk center by AIA and HMI on SDO, using AR luminosity measured from the hot component of the AIA 94 Å band (Warren et al 2012, ApJ) near the time of each of 3600 measured HMI vector magnetograms of these ARs and a wide selection of whole-AR magnetic parameters from each vector magnetogram after it was deprojected to disk center, we find: (1) The single magnetic parameter having the strongest correlation with AR 94-hot luminosity is the length of strong-field neutral line. (2) The two-parameter combination having the strongest still-stronger correlation with AR 94-hot luminosity is a combination of AR total magnetic flux and AR neutral-line length weighted by the vertical-field gradient across the neutral line. We interpret these results to be consistent with the results of both Fisher et al (1998) and Falconer (1997), and with the correlation of AR coronal loop heating with loop field strength recently found by Tiwari et al (2017, ApJ Letters). Our interpretation is that, in addition to depending strongly on coronal loop field strength, AR coronal heating has a strong secondary positive dependence on the rate of flux cancelation at neutral lines at coronal loop feet. This work was funded by the Living With a Star Science and Heliophysics Guest Investigators programs of NASA's Heliophysics Division.
Telomerase Activity in Human Ovarian Carcinoma
NASA Astrophysics Data System (ADS)
Counter, Christopher M.; Hirte, Hal W.; Bacchetti, Silvia; Harley, Calvin B.
1994-04-01
Telomeres fulfill the dual function of protecting eukaryotic chromosomes from illegitimate recombination and degradation and may aid in chromosome attachment to the nuclear membrane. We have previously shown that telomerase, the enzyme which synthesizes telomeric DNA, is not detected in normal somatic cells and that telomeres shorten with replicative age. In cells immortalized in vitro, activation of telomerase apparently stabilizes telomere length, preventing a critical destabilization of chromosomes, and cell proliferation continues even when telomeres are short. In vivo, telomeres of most tumors are shorter than telomeres of control tissues, suggesting an analogous role for the enzyme. To assess the relevance of telomerase and telomere stability in the development and progression of tumors, we have measured enzyme activity and telomere length in metastatic cells of epithelial ovarian carcinoma. We report that extremely short telomeres are maintained in these cells and that tumor cells, but not isogenic nonmalignant cells, express telomerase. Our findings suggest that progression of malignancy is ultimately dependent upon activation of telomerase and that telomerase inhibitors may be effective antitumor drugs.
Choice-specific sequences in parietal cortex during a virtual-navigation decision task
Harvey, Christopher D.; Coen, Philip; Tank, David W.
2012-01-01
The posterior parietal cortex (PPC) plays an important role in many cognitive behaviors; however, the neural circuit dynamics underlying PPC function are not well understood. Here we optically imaged the spatial and temporal activity patterns of neuronal populations in mice performing a PPC-dependent task that combined a perceptual decision and memory-guided navigation in a virtual environment. Individual neurons had transient activation staggered relative to one another in time, forming a sequence of neuronal activation spanning the entire length of a task trial. Distinct sequences of neurons were triggered on trials with opposite behavioral choices and defined divergent, choice-specific trajectories through a state space of neuronal population activity. Cells participating in the different sequences and at distinct time points in the task were anatomically intermixed over microcircuit length scales (< 100 micrometers). During working memory decision tasks the PPC may therefore perform computations through sequence-based circuit dynamics, rather than long-lived stable states, implemented using anatomically intermingled microcircuits. PMID:22419153
Perceptual and Neural Olfactory Similarity in Honeybees
Sandoz, Jean-Christophe
2005-01-01
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975
NASA Astrophysics Data System (ADS)
Lin, Ray-Ming; Lu, Yuan-Chieh; Chou, Yi-Lun; Chen, Guo-Hsing; Lin, Yung-Hsiang; Wu, Meng-Chyi
2008-06-01
We have studied the characteristics of blue InGaN /GaN multiquantum-well light-emitting diodes (LEDs) after reducing the length of the lateral current path through the transparent layer through formation of a peripheral high-resistance current-blocking region in the Mg-doped GaN layer. To study the mechanism of selective activation in the Mg-doped GaN layer, we deposited titanium (Ti), gold (Au), Ti /Au, silver, and copper individually onto the Mg-doped GaN layer and investigated their effects on the hole concentration in the p-GaN layer. The Mg-doped GaN layer capped with Ti effectively depressed the hole concentration in the p-GaN layer by over one order of magnitude relative to that of the as-grown layer. This may suggest that high resistive regions are formed by diffusion of Ti and depth of high resistive region from the p-GaN surface depends on the capped Ti film thickness. Selective activation of the Mg-doped GaN layer could be used to modulate the length of the lateral current path. Furthermore, the external quantum efficiency of the LEDs was improved significantly after reducing the lateral current spreading length. In our best result, the external quantum efficiency was 52.3% higher (at 100mA) than that of the as-grown blue LEDs.
Mode-coupling theory for active Brownian particles
NASA Astrophysics Data System (ADS)
Liluashvili, Alexander; Ónody, Jonathan; Voigtmann, Thomas
2017-12-01
We present a mode-coupling theory (MCT) for the slow dynamics of two-dimensional spherical active Brownian particles (ABPs). The ABPs are characterized by a self-propulsion velocity v0 and by their translational and rotational diffusion coefficients Dt and Dr, respectively. Based on the integration-through-transients formalism, the theory requires as input only the equilibrium static structure factors of the passive system (where v0=0 ). It predicts a nontrivial idealized-glass-transition diagram in the three-dimensional parameter space of density, self-propulsion velocity, and rotational diffusivity that arise because at high densities, the persistence length of active swimming ℓp=v0/Dr interferes with the interaction length ℓc set by the caging of particles. While the low-density dynamics of ABPs is characterized by a single Péclet number Pe=v02/DrDt , close to the glass transition the dynamics is found to depend on Pe and ℓp separately. At fixed density, increasing the self-propulsion velocity causes structural relaxation to speed up, while decreasing the persistence length slows down the relaxation. The active-MCT glass is a nonergodic state that is qualitatively different from the passive glass. In it, correlations of initial density fluctuations never fully decay, but also an infinite memory of initial orientational fluctuations is retained in the positions.
The fibrinolytic mechanism of defibrotide: effect of defibrotide on plasmin activity.
Echart, Cinara L; Graziadio, Barbara; Somaini, Simona; Ferro, Laura I; Richardson, Paul G; Fareed, Jawed; Iacobelli, Massimo
2009-12-01
Fibrinolytic activity has been shown to be reduced in many vascular diseases, including hepatic veno-occlusive disease after stem cell transplantation, a microangiopathy characterized by sinusoidal endothelial cell injury. Defibrotide is a polydisperse oligonucleotide with antithrombotic, profibrinolytic, anti-ischemic, and antiadhesive properties. Numerous clinical studies have shown promising activity of defibrotide in the treatment and prevention of veno-occlusive disease, with minimal toxicity. In corollary laboratory studies, defibrotide has been shown to decrease plasminogen activator inhibitor-1, increase tissue plasminogen activator levels, and increase overall plasma fibrinolytic activity in patients. Plasmin, a potent and nonspecific serine protease, plays a pivotal role in fibrinolysis by virtue of its ability to effectively degrade fibrin clots. In this study, defibrotide increases the activity of plasmin in hydrolyzing its substrate in a dose-dependent and length-dependent manner. Similar concentration-dependent effects of defibrotide were observed when plasmin was generated by tissue plasminogen activator or urokinase activation of plasminogen. In contrast, defibrotide had no direct effect on the activation of plasminogen to plasmin. Defibrotide was also able to enhance the activity of plasmin in degrading fibrin clot formed from fibrinogen, plasminogen, and thrombin. This effect was also concentration-dependent and directly correlated with the enzymatic activity of plasmin. This study therefore demonstrates that defibrotide is capable of enhancing the activity of plasmin and so contributes to its fibrinolytic activity. Taken together, these results support the effect of defibrotide in restoring the fibrinolytic vascular phenotype, in microangiopathic conditions such as veno-occlusive disease.
Smith, Christopher E; Odoh, Samuel O; Ghosh, Soumen; Gagliardi, Laura; Cramer, Christopher J; Frisbie, C Daniel
2015-12-23
Self-assembled conjugated molecular wires containing thiophene up to 6 nm in length were grown layer-by-layer using click chemistry. Reflection-absorption infrared spectroscopy, ellipsometry and X-ray photoelectron spectroscopy were used to follow the stepwise growth. The electronic structure of the conjugated wires was studied with cyclic voltammetry and UV-vis spectroscopy as well as computationally with density functional theory (DFT). The current-voltage curves (±1 V) of the conjugated molecular wires were measured with conducting probe atomic force microscopy (CP-AFM) in which the molecular wire film bound to a gold substrate was contacted with a conductive AFM probe. By systematically measuring the low bias junction resistance as a function of length for molecules 1-4 nm long, we extracted the structure dependent tunneling attenuation factor (β) of 3.4 nm(-1) and a contact resistance of 220 kΩ. The crossover from tunneling to hopping transport was observed at a molecular length of 4-5 nm with an activation energy of 0.35 eV extracted from Arrhenius plots of resistance versus temperature. DFT calculations revealed localizations of spin densities (polarons) on molecular wire radical cations. The calculations were employed to gauge transition state energies for hopping of polarons along wire segments. Individual estimated transition state energies were 0.2-0.4 eV, in good agreement with the experimental activation energy. The transition states correspond to flattening of dihedral angles about specific imine bonds. These results open up possibilities to further explore the influence of molecular architecture on hopping transport in molecular junctions, and highlight the utility of DFT to understand charge localization and associated hopping-based transport.
NASA Astrophysics Data System (ADS)
Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.
2018-03-01
Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.
NASA Astrophysics Data System (ADS)
Fitzpatrick, Robert; Hauer, Cole; Kyrillos, Carl; McGorty, Ryan; Robertson-Anderson, Rae
Entangled polymers have complex viscoelastic properties that are tuned by polymer lengths and flexibilities. Entangled composites of distinct polymers offer added versatility and display nonlinear mechanics, serving as a platform for multifunctional materials. To determine the role of flexibility and length in polymer composites we use optical tweezers and confocal microscopy to measure mechanical and structural properties of co-entangled actin and DNA. Actin filaments have lengths of 5-20 μm, comparable to their persistence length, while DNA of similar lengths have hundreds of persistence lengths per chain. To characterize the nonlinear mechanics of actin-DNA composites, we optically drive a microsphere through the composite and measure the induced force during and following strain. We characterize viscoelasticity and relaxation timescales; and determine the dependence of these quantities on the actin:DNA ratio (0:1-1:0) and DNA length (4-100 μm). We use confocal microscopy to image distinctly labeled co-entangled actin and DNA and characterize network homogeneity and fluctuations. Initial results show actin and DNA are well-integrated and form structurally homogenous networks that exhibit stiffness and relaxation times that increase nonlinearly with increased actin. NSF Career Award (DMR-1254340), AFOSR Young Investigator Program Award (FA95550-12-1-0315), Scialog Collaborative Innovation Award funed by Research Corp. for Scientific Advancement (24192).
Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard
2015-01-01
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019
Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol
Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.
2017-01-01
In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447
Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T; Jongbloets, Bart C; Down, Thomas A; Riccio, Antonella
2013-01-01
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes.
Crepaldi, Luca; Policarpi, Cristina; Coatti, Alessandro; Sherlock, William T.; Jongbloets, Bart C.; Down, Thomas A.; Riccio, Antonella
2013-01-01
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. PMID:23966877
Photoperiod: Its importance as an impeller of pineal and seasonal reproductive rhythms
NASA Astrophysics Data System (ADS)
Reiter, R. J.
1980-03-01
A number of long day breeding rodents depend on seasonal changes in photoperiodic length to synchronize their breeding seasons with the appropriate time of the year. These relationships are particularly conspicuous in the Syrian hamster where day length is vitally important in determining periods of sexual activity and inactivity. The organ in the body whose activity is most closely attuned to the photoperiodic environment is the pineal gland. During periods of darkness the biochemical and secretory activity of the pineal is enhanced with the resultant production of antigonadotrophic principles which are strongly suppressive to reproductive physiology. In this manner, decreasing day lengths of the fall are involved with suppressing sexual capability in male and female hamsters. Throughout the winter months darkness (because of the shorter day lengths and the fact that hamsters remain underground in lightless burrows) holds the gonads in an atrophic condition and thereby prevents hamsters from breeding. As spring approaches the neuroendocrine reproductive axis becomes refractory to the inhibitory effects of darkness and the pineal gland and, as a consequence, the gonads recrudesce allowing the animals to successfully reproduce. The long days of the spring and summer serve to interrupt the refractory period so that when winter approaches shortening day lengths will again, by way of the pineal gland, induce gonadalinvolution. In this scheme both light and darkness are critically important in synchronizing the phases of the annual reproductive cycle of the hamster with the appropriate season of the year. Melatonin may be the pineal hormone which mediates the effects of darkness on reproductive physiology.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Ballistic heat conduction and mass disorder in one dimension.
Ong, Zhun-Yong; Zhang, Gang
2014-08-20
It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.
Uludag, K; Kohl, M; Steinbrink, J; Obrig, H; Villringer, A
2002-01-01
Using the modified Lambert-Beer law to analyze attenuation changes measured noninvasively during functional activation of the brain might result in an insufficient separation of chromophore changes ("cross talk") due to the wavelength dependence of the partial path length of photons in the activated volume of the head. The partial path length was estimated by performing Monte Carlo simulations on layered head models. When assuming cortical activation (e.g., in the depth of 8-12 mm), we determine negligible cross talk when considering changes in oxygenated and deoxygenated hemoglobin. But additionally taking changes in the redox state of cytochrome-c-oxidase into account, this analysis results in significant artifacts. An analysis developed for changes in mean time of flight--instead of changes in attenuation--reduces the cross talk for the layers of cortical activation. These results were validated for different oxygen saturations, wavelength combinations and scattering coefficients. For the analysis of changes in oxygenated and deoxygenated hemoglobin only, low cross talk was also found when the activated volume was assumed to be a 4-mm-diam sphere.
Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.
Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar
2016-01-20
The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion
NASA Astrophysics Data System (ADS)
Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.
2018-04-01
The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.
Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D
2008-11-01
Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.
NASA Technical Reports Server (NTRS)
Hassan, G. K. Y.
1994-01-01
A world wide interest in protecting ozone layer against manmade effects is now increasing. Assessment of the ozone depletion due to these activities depends on how successfully we can separate the natural variabilities from the data. The monthly mean values of total ozone over Cairo (30 05N) for the period 1968-1988, have been analyzed using the power spectral analysis technique. The technique used in this analysis does not depend on a pre-understanding of the natural fluctuations in the ozone data. The method depends on increasing the resolution of the spectral peaks in order to obtain the more accurate sinusoidal fluctuations with wavelength equal to or less than record length. Also it handles the possible sinusoidal fluctuations with wavelength equal to or less than record length. The results show that it is possible to detect some of the well known national fluctuations in the ozone record such as annual, semiannual, quasi-biennial and quasi-quadrennial oscillations. After separating the natural fluctuations from the ozone record, the trend analysis of total ozone over Cairo showed that a decrease of about -1.2% per decade has occurred since 1979.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.
Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions
NASA Astrophysics Data System (ADS)
Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Double dynamic scaling in human communication dynamics
NASA Astrophysics Data System (ADS)
Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua
2017-05-01
In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.
Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation
NASA Astrophysics Data System (ADS)
Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.
2004-09-01
The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.
Calcium sensitivity of residual force enhancement in rabbit skinned fibers.
Joumaa, V; Herzog, W
2014-08-15
Isometric force after active stretch of muscles is higher than the purely isometric force at the corresponding length. This property is termed residual force enhancement. Active force in skeletal muscle depends on calcium attachment characteristics to the regulatory proteins. Passive force has been shown to influence calcium attachment characteristics, specifically the sarcomere length dependence of calcium sensitivity. Since one of the mechanisms proposed to explain residual force enhancement is the increase in passive force that results from engagement of titin upon activation and stretch, our aim was to test if calcium sensitivity of residual force enhancement was different from that of its corresponding purely isometric contraction and if such a difference was related to the molecular spring titin. Force-pCa curves were established in rabbit psoas skinned fibers for reference and residual force-enhanced states at a sarcomere length of 3.0 μm 1) in a titin-intact condition, 2) after treatment with trypsin to partially eliminate titin, and 3) after treatment with trypsin and osmotic compression with dextran T-500 to decrease the lattice spacing in the absence of titin. The force-pCa curves of residual force enhancement were shifted to the left compared with their corresponding controls in titin-intact fibers, indicating increased calcium sensitivity. No difference in calcium sensitivity was observed between reference and residual force-enhanced contractions in trypsin-treated and osmotically compressed trypsin-treated fibers. Furthermore, calcium sensitivity after osmotic compression was lower than that observed for residual force enhancement in titin-intact skinned fibers. These results suggest that titin-based passive force regulates the increase in calcium sensitivity of residual force enhancement by a mechanism other than reduction of the myofilament lattice spacing. Copyright © 2014 the American Physiological Society.
Cheng, Arthur J; Davidson, Andrew W; Rice, Charles L
2010-06-01
The fatigue-related reduction in joint range of motion (ROM) during dynamic contraction tasks may be related to muscle length-dependent alterations in torque and contractile kinetics, but this has not been systematically explored previously. Twelve young men performed a repetitive voluntary muscle shortening contraction task of the dorsiflexors at a contraction load of 30% of maximum voluntary isometric contraction (MVC) torque, until total 40 degrees ROM had decreased by 50% at task failure (POST) to 20 degrees ROM. At both a short (5 degrees dorsiflexion) and long muscle length (35 degrees plantar flexion joint angle relative to a 0 degrees neutral ankle joint position), voluntary activation, MVC torque, and evoked tibialis anterior contractile properties of a 52.8 Hz high-frequency isometric tetanus [peak evoked torque, maximum rate of torque development (MRTD), maximum rate of relaxation (MRR)] were evaluated at baseline (PRE), at POST, and up to 10 min of recovery. At POST, we measured similar fatigue-related reductions in torque (voluntary and evoked) and slowing of contractile kinetics (MRTD and MRR) at both the short and long muscle lengths. Thus, the fatigue-related reduction in ROM could not be explained by length-dependent fatigue. Although torque (voluntary and evoked) at both muscle lengths was depressed and remained blunted throughout the recovery period, this was not related to the rapid recovery of ROM at 0.5 min after task failure. The reduction in ROM, however, was strongly related to the reduction in joint angular velocity (R(2) = 0.80) during the fatiguing task, although additional factors cannot yet be overlooked.
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz
2015-01-01
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624
Inoue, Takahiro; Kobirumaki-Shimozawa, Fuyu; Kagemoto, Tatsuya; Fujii, Teruyuki; Terui, Takako; Kusakari, Yoichiro; Hongo, Kenichi; Morimoto, Sachio; Ohtsuki, Iwao; Hashimoto, Kazuhiro; Fukuda, Norio
2013-10-01
It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered. For analysis of the SL dependence of active force, skinned muscle preparations were obtained from the left ventricle of WT and knock-in (ΔK210) mice. An increase in SL from 1.90 to 2.20μm shifted the mid-point (pCa50) of the force-pCa curve leftward by ~0.21pCa units in WT preparations. In ΔK210 muscles, Ca(2+) sensitivity was lower by ~0.37pCa units, and the SL-dependent shift of pCa50, i.e., ΔpCa50, was less pronounced (~0.11pCa units), with and without protein kinase A treatment. The rate of active force redevelopment was lower in ΔK210 preparations than in WT preparations, showing blunted thin filament cooperative activation. An increase in thin filament cooperative activation upon an increase in the fraction of strongly bound cross-bridges by MgADP increased ΔpCa50 to ~0.21pCa units. The depressed Frank-Starling mechanism in ΔK210 hearts is the result of a reduction in thin filament cooperative activation. © 2013.
Haesuwannakij, Setsiri; Kimura, Tetsunari; Furutani, Yuji; Okumura, Kazu; Kokubo, Ken; Sakata, Takao; Yasuda, Hidehiro; Yakiyama, Yumi; Sakurai, Hidehiro
2017-08-29
Poly(N-vinyl-2-pyrrolidone) (PVP) of varying molecular weight (M w = 40-360 kDa) were employed to stabilize gold nanoclusters of varying size. The resulting Au:PVP clusters were subsequently used as catalysts for a kinetic study on the sized-dependent aerobic oxidation of 1-indanol, which was monitored by time-resolved in situ infrared spectroscopy. The obtained results suggest that the catalytic behaviour is intimately correlated to the size of the clusters, which in turn depends on the molecular weight of the PVPs. The highest catalytic activity was observed for clusters with a core size of ~7 nm, and the size of the cluster should increase with the molecular weight of the polymer in order to maintain optimal catalytic activity. Studies on the electronic and colloid structure of these clusters revealed that the negative charge density on the cluster surface also strongly depends on the molecular weight of the stabilizing polymers.
Nagaoka, Shuhei; Matsumoto, Takeshi; Okada, Eiji; Mitsui, Masaaki; Nakajima, Atsushi
2006-08-17
The adsorption state and thermal stability of V(benzene)2 sandwich clusters soft-landed onto a self-assembled monolayer of different chain-length n-alkanethiols (Cn-SAM, n = 8, 12, 16, 18, and 22) were studied by means of infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). The IRAS measurement confirmed that V(benzene)2 clusters are molecularly adsorbed and maintain a sandwich structure on all of the SAM substrates. In addition, the clusters supported on the SAM substrates are oriented with their molecular axes tilted 70-80 degrees off the surface normal. An Arrhenius analysis of the TPD spectra reveals that the activation energy for the desorption of the supported clusters increases linearly with the chain length of the SAMs. For the longest chain C22-SAM, the activation energy reaches approximately 150 kJ/mol, and the thermal desorption of the supported clusters can be considerably suppressed near room temperature. The clear chain-length-dependent thermal stability of the supported clusters observed here can be explained well in terms of the cluster penetration into the SAM matrixes.
Muscle spindle autogenetic inhibition in the extraocular muscles of lamb.
Pettorossi, V E; Filippi, G M
1981-09-01
The role of extraocular muscle (EOM) proprioceptors on eye motility has been investigated in lambs on "encéphale isolé", by evaluating the tension of EOMs at various lengths and velocities of stretch before and after proprioceptive blocks. The EOM tension, in the absence of proprioceptive input, was higher than in normal conditions. Such an effect occurred at lengthening values greater than 3 mm of stretch from resting muscle length, corresponding to 18 degrees of eye deviation and was dependent on the velocity of the stretch, being more effective at high velocity. The muscle receptors responsible for this effect was determined by comparing the sensitivity to vibratory stimulation of spindles and tendon organs to the amount of inhibition provoked by the same stimulation on an EOM electromyographic activity. The tension inhibition appeared to be correlated to muscle spindle activation. Thus, the presence of muscle spindles can determine a reduction of the tension within the stretched muscles. This result suggests that the EOM length and velocity signals operate moment to moment reduction on the stiffness of the muscle which antagonizes eye displacement, thus facilitating the ocular movements.
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...
2015-10-06
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Hormone-Mediated Pattern Formation in Seedling of Plants: a Competitive Growth Dynamics Model
NASA Astrophysics Data System (ADS)
Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Oikawa, Noriko; Okabe, Hirotaka; Kai, Shoichi
2001-10-01
An ecologically relevant pattern formation process mediated by hormonal interactions among growing seedlings is modeled based on the experimental observations on the effects of indole acetic acid, which can act as an inhibitor and activator of root growth depending on its concentration. In the absence of any lateral root with constant hormone-sensitivity, the edge effect phenomenon is obtained depending on the secretion rate of hormone from the main root. Introduction of growth-stage-dependent hormone-sensitivity drastically amplifies the initial randomness, resulting in spatially irregular macroscopic patterns. When the lateral root growth is introduced, periodic patterns are obtained whose periodicity depends on the length of lateral roots. The growth-stage-dependent hormone-sensitivity and the lateral root growth are crucial for macroscopic periodic-pattern formation.
Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.
Menzel, Robin; Böl, Markus; Siebert, Tobias
2017-02-01
The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.
Impact of chemotherapy on telomere-length in sporadic and familial breast cancer patients
Benitez-Buelga, C.; Sanchez-Barroso, L.; Gallardo, M.; Apellániz-Ruiz, María; Inglada-Pérez, L.; Yanowski, K.; Carrillo, J.; Garcia-Estevez, L.; Calvo, I.; Perona, R.; Urioste, M.; Osorio, A.; Blasco, MA.; Rodriguez-Antona, C.; Benitez, J.
2015-01-01
Purpose Recently, we observed that telomeres of BRCA1/2 mutation carriers were shorter than those of controls or sporadic breast cancer patients, suggesting that mutations in these genes might be responsible for this event. Given the contradictory results reported in the literature, we tested whether other parameters, such as chemotherapy, could be modifying telomere-length. Methods We performed a cross-sectional study measuring leukocyte telomere-length of 266 sporadic breasts cancer patients treated with first-line chemotherapy, with a median follow up of 240 days. Additionally, we performed both cross-sectional and longitudinal studies in a series of 236 familial breast cancer patients that included affected and non-affected BRCA1/2 mutation carriers. We have measured in leukocytes from peripheral blood: The telomere-length, percentage of short telomeres (<3Kb), telomerase activity levels and the annual telomere shortening speed. Results In sporadic cases we found that chemotherapy exerts a transient telomere shortening effect (around 2 years) that varies depending on the drug combination. In familial cases, only patients receiving treatment were associated with telomere shortening but they recovered normal telomere-length after a period of two years. Conclusion Chemotherapy affects telomere-length and should be considered in the studies that correlate telomere-length with disease susceptibility. PMID:25528024
Sharma, Bibek; Patino, R.
2008-01-01
Xenopus laevis were exposed to 0-855 ??g cadmium (Cd)/l (measured concentrations) in FETAX medium from fertilization to 47 days postfertilization. Measurements included embryonic survival and, at 47 days, tadpole survival, snout-vent length, tail length, total length, hindlimb length, weight, Nieuwkoop-Faber (NF) stage of development, initiation of metamorphic climax (??? NF 58), and thyroid follicle cell height. Embryonic and larval survival were unaffected by Cd. Relative to control tadpoles, reduced tail and total length were observed at 0.1- 8 and at 855 ??g Cd/l; and reduced snout-vent length, hindlimb length, and weight were observed at 0.1-1 and at 855 ??g Cd/l. Mean stage of development and rate of initiation of climax were unaffected by Cd at 0-84 ??g/l; however, none of the tadpoles exposed to 855 ??g Cd/l progressed beyond mid-premetamorphosis (NF 51). Thyroid glands with fully formed follicles were observed in all tadpoles ??? NF 49 examined. Follicle cell height was unaffected by Cd at 0-84 ??g/l but it was reduced at 855 ??g/l; in the latter, cell height was reduced even when compared with NF 49-51 tadpoles pooled from the 0 to 84 ??g Cd/l groups. In conclusion, (1) Cd affected tadpole growth in a bimodal pattern with the first and second inhibitory modes at concentrations below and above 84 ??g Cd/l, respectively; (2) exposure to high Cd concentrations (855 ??g/l) reduced thyroid activity and arrested tadpole development at mid-premetamorphosis; and (3) unlike its effect on growth, Cd inhibited tadpole development and thyroid function in a seemingly monotonic pattern.
Stelzer, Julian E.; Larsson, Lars; Fitzsimons, Daniel P.; Moss, Richard L.
2006-01-01
Recent evidence suggests that ventricular ejection is partly powered by a delayed development of force, i.e., stretch activation, in regions of the ventricular wall due to stretch resulting from torsional twist of the ventricle around the apex-to-base axis. Given the potential importance of stretch activation in cardiac function, we characterized the stretch activation response and its Ca2+ dependence in murine skinned myocardium at 22°C in solutions of varying Ca2+ concentrations. Stretch activation was induced by suddenly imposing a stretch of 0.5–2.5% of initial length to the isometrically contracting muscle and then holding the muscle at the new length. The force response to stretch was multiphasic: force initially increased in proportion to the amount of stretch, reached a peak, and then declined to a minimum before redeveloping to a new steady level. This last phase of the response is the delayed force characteristic of myocardial stretch activation and is presumably due to increased attachment of cross-bridges as a consequence of stretch. The amplitude and rate of stretch activation varied with Ca2+ concentration and more specifically with the level of isometric force prior to the stretch. Since myocardial force is regulated both by Ca2+ binding to troponin-C and cross-bridge binding to thin filaments, we explored the role of cross-bridge binding in the stretch activation response using NEM-S1, a strong-binding, non-force–generating derivative of myosin subfragment 1. NEM-S1 treatment at submaximal Ca2+-activated isometric forces significantly accelerated the rate of the stretch activation response and reduced its amplitude. These data show that the rate and amplitude of myocardial stretch activation vary with the level of activation and that stretch activation involves cooperative binding of cross-bridges to the thin filament. Such a mechanism would contribute to increased systolic ejection in response to increased delivery of activator Ca2+ during excitation–contraction coupling. PMID:16446502
NASA Astrophysics Data System (ADS)
Karlsen, P.; Shuba, M. V.; Beckerleg, C.; Yuko, D. I.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V.; Viet, Ho; Nasibulin, A. G.; Tenne, R.; Hendry, E.
2018-01-01
We measure the conductivity spectra of thin films comprising bundled single-walled carbon nanotubes (CNTs) of different average lengths in the frequency range 0.3-1000 THz and temperature interval 10-530 K. The observed temperature-induced changes in the terahertz conductivity spectra are shown to depend strongly on the average CNT length, with a conductivity around 1 THz that increases/decreases as the temperature increases for short/long tubes. This behaviour originates from the temperature dependence of the electron scattering rate, which we obtain from Drude fits of the measured conductivity in the range 0.3-2 THz for 10 μm length CNTs. This increasing scattering rate with temperature results in a subsequent broadening of the observed THz conductivity peak at higher temperatures and a shift to lower frequencies for increasing CNT length. Finally, we show that the change in conductivity with temperature depends not only on tube length, but also varies with tube density. We record the effective conductivities of composite films comprising mixtures of WS2 nanotubes and CNTs versus CNT density for frequencies in the range 0.3-1 THz, finding that the conductivity increases/decreases for low/high density films as the temperature increases. This effect arises due to the density dependence of the effective length of conducting pathways in the composite films, which again leads to a shift and temperature dependent broadening of the THz conductivity peak.
Prenatal and adult androgen activities in alcohol dependence.
Lenz, B; Mühle, C; Braun, B; Weinland, C; Bouna-Pyrrou, P; Behrens, J; Kubis, S; Mikolaiczik, K; Muschler, M-R; Saigali, S; Sibach, M; Tanovska, P; Huber, S E; Hoppe, U; Eichler, A; Heinrich, H; Moll, G H; Engel, A; Goecke, T W; Beckmann, M W; Fasching, P A; Müller, C P; Kornhuber, J
2017-07-01
Alcohol dependence is more prevalent in men than in women. The evidence for how prenatal and adult androgens influence alcohol dependence is limited. We investigated the effects of prenatal and adult androgen activity on alcohol dependence. Moreover, we studied how the behaviours of pregnant women affect their children's prenatal androgen load. We quantified prenatal androgen markers (e.g., second-to-fourth finger length ratio [2D : 4D]) and blood androgens in 200 early-abstinent alcohol-dependent in-patients and 240 controls (2013-2015, including a 12-month follow-up). We also surveyed 134 women during pregnancy (2005-2007) and measured the 2D : 4D of their children (2013-2016). The prenatal androgen loads were higher in the male alcohol-dependent patients compared to the controls (lower 2D : 4D, P = 0.004) and correlated positively with the patients' liver transaminase activities (P < 0.001) and alcohol withdrawal severity (P = 0.019). Higher prenatal androgen loads and increasing androgen levels during withdrawal predicted earlier and more frequent 12-month hospital readmission in alcohol-dependent patients (P < 0.005). Moreover, stress levels (P = 0.002), alcohol (P = 0.010) and tobacco consumption (P = 0.017), and lifetime stressors (P = 0.019) of women during pregnancy related positively to their children's prenatal androgen loads (lower 2D : 4D). Androgen activities in alcohol-dependent patients and behaviours of pregnant women represent novel preventive and therapeutic targets of alcohol dependence. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells
LU, ZHAO; KARNE, SURESH; KOLODECIK, THOMAS; GORELICK, FRED S.
2010-01-01
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10−10 to 10−7 M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of ≥2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation. PMID:11842000
Dvornikov, Alexey V; Dewan, Sukriti; Alekhina, Olga V; Pickett, F Bryan; de Tombe, Pieter P
2014-05-01
The zebrafish (Danio rerio) has been used extensively in cardiovascular biology, but mainly in the study of heart development. The relative ease of its genetic manipulation may indicate the suitability of this species as a cost-effective model system for the study of cardiac contractile biology. However, whether the zebrafish heart is an appropriate model system for investigations pertaining to mammalian cardiac contractile structure-function relationships remains to be resolved. Myocytes were isolated from adult zebrafish hearts by enzymatic digestion, attached to carbon rods, and twitch force and intracellular Ca(2+) were measured. We observed the modulation of twitch force, but not of intracellular Ca(2+), by both extracellular [Ca(2+)] and sarcomere length. In permeabilized cells/myofibrils, we found robust myofilament length-dependent activation. Moreover, modulation of myofilament activation-relaxation and force redevelopment kinetics by varied Ca(2+) activation levels resembled that found previously in mammalian myofilaments. We conclude that the zebrafish is a valid model system for the study of cardiac contractile structure-function relationships.
Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature
NASA Astrophysics Data System (ADS)
Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang
2016-05-01
DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32
Joumaa, Venus; Bertrand, Fanny; Liu, Shuyue; Poscente, Sophia; Herzog, Walter
2018-05-16
The aim of this study was to determine the role of titin in preventing the development of sarcomere length non-uniformities following activation and after active and passive stretch, by determining the effect of partial titin degradation on sarcomere length non-uniformities and force in passive and active myofibrils. Selective partial titin degradation was performed using a low dose of trypsin. Myofibrils were set at a sarcomere length of 2.4 µm and then passively stretched to sarcomere lengths of 3.4 µm and 4.4 µm. In the active condition, myofibrils were set at a sarcomere length of 2.8µm, activated and actively stretched by 1 µm/sarcomere. The extent of sarcomere length non-uniformities was calculated for each sarcomere as the absolute difference between sarcomere length and the mean sarcomere length of the myofibril. Our main finding is that partial titin degradation does not increase sarcomere length non-uniformities after passive stretch and activation compared to when titin is intact, but increases the extent of sarcomere length non-uniformities after active stretch. Furthermore, when titin was partially degraded, active and passive stresses were substantially reduced. These results suggest that titin plays a crucial role in actively stretched myofibrils and is likely involved in active and passive force production.
Higuchi, Yukito
2016-01-01
Studies on growth hormone therapy in children have shown that height velocity is greater in summer than in winter and that this difference increases with latitude. It is hypothesized that summer daylight is a causative factor and that geographical distribution of body height will approximate the distribution of summer day length over time. This is an ecological analysis of prefecture-level data on the height of Japanese youth. Mesh climatic data of effective day length were collated. While height velocity was greatest during the summer, the height of Japanese youth was strongly and negatively correlated with the distribution of winter effective day length. Therefore, it is anticipated that summer height velocity is greater according to winter day length (dark period). This may be due to epigenetic modifications, involving reversible DNA methylation and thyroid hormone regulation found in the reproductive system of seasonal breeding vertebrates. If the function is applicable to humans, summer height growth may quantitatively increase with winter day length, and height growth seasonality can be explained by thyroid hormone activities that-induced by DNA methylation-change depending on the seasonal difference in day length. Moreover, geographical differences in body height may be caused by geographical differences in effective day length, which could influence melatonin secretion among subjects who spend a significant time indoors.
A computational algorithm addressing how vessel length might depend on vessel diameter
Jing Cai; Shuoxin Zhang; Melvin T. Tyree
2010-01-01
The objective of this method paper was to examine a computational algorithm that may reveal how vessel length might depend on vessel diameter within any given stem or species. The computational method requires the assumption that vessels remain approximately constant in diameter over their entire length. When this method is applied to three species or hybrids in the...
Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Priezjev, Nikolai
2010-03-01
The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.
Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu
2015-11-01
An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions. Copyright © 2015 Elsevier B.V. All rights reserved.
Sarkar, Jaya; Poruri, Kiranmai; Boniecki, Michal T.; McTavish, Katherine K.; Martinis, Susan A.
2012-01-01
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNALeu. In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing. PMID:22383526
Prediction of Active-Region CME Productivity from Magnetograms
NASA Technical Reports Server (NTRS)
Falconer, D. A.; Moore, R. L.; Gary, G. A.
2004-01-01
We report results of an expanded evaluation of whole-active-region magnetic measures as predictors of active-region coronal mass ejection (CME) productivity. Previously, in a sample of 17 vector magnetograms of 12 bipolar active regions observed by the Marshall Space Flight Center (MSFC) vector magnetograph, from each magnetogram we extracted a measure of the size of the active region (the active region s total magnetic flux a) and four measures of the nonpotentiality of the active region: the strong-shear length L(sub SS), the strong-gradient length L(sub SG), the net vertical electric current I(sub N), and the net-current magnetic twist parameter alpha (sub IN). This sample size allowed us to show that each of the four nonpotentiality measures was statistically significantly correlated with active-region CME productivity in time windows of a few days centered on the day of the magnetogram. We have now added a fifth measure of active-region nonpotentiality (the best-constant-alpha magnetic twist parameter (alpha sub BC)), and have expanded the sample to 36 MSFC vector magnetograms of 31 bipolar active regions. This larger sample allows us to demonstrate statistically significant correlations of each of the five nonpotentiality measures with future CME productivity, in time windows of a few days starting from the day of the magnetogram. The two magnetic twist parameters (alpha (sub 1N) and alpha (sub BC)) are normalized measures of an active region s nonpotentially in that they do not depend directly on the size of the active region, while the other three nonpotentiality measures (L(sub SS), L(sub SG), and I(sub N)) are non-normalized measures in that they do depend directly on active-region size. We find (1) Each of the five nonpotentiality measures is statistically significantly correlated (correlation confidence level greater than 95%) with future CME productivity and has a CME prediction success rate of approximately 80%. (2) None of the nonpotentiality measures is a significantly better CME predictor than the others. (3) The active-region phi shows some correlation with CME productivity, but well below a statistically significant level (correlation confidence level less than approximately 80%; CME prediction success rate less than approximately 65%). (4) In addition to depending on magnetic twist, CME productivity appears to have some direct dependence on active-region size (rather than only an indirect dependence through a correlation of magnetic twist with active-region size), but it will take a still larger sample of active regions (50 or more) to certify this. (5) Of the five nonpotentiality measures, L(sub SG) appears to be the best for operational CME forecasting because it is as good or better a CME predictor than the others and it alone does not require a vector magnetogram; L(sub SG) can be measured from a line-of-sight magnetogram such as from the Michelson Doppler Imager (MDI) on the Solar and Heliospheric Observatory (SOHO).
Porcine Stomach Smooth Muscle Force Depends on History-Effects.
Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias
2017-01-01
The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm 2 . Maximum shortening velocity ( V max ) and curvature factor ( curv ) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant ( P < 0.05) FD [up to 32% maximum muscle force ( F im )] and FE (up to 16% F im ) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying.
Porcine Stomach Smooth Muscle Force Depends on History-Effects
Tomalka, André; Borsdorf, Mischa; Böl, Markus; Siebert, Tobias
2017-01-01
The stomach serves as food reservoir, mixing organ and absorption area for certain substances, while continually varying its position and size. Large dimensional changes during ingestion and gastric emptying of the stomach are associated with large changes in smooth muscle length. These length changes might induce history-effects, namely force depression (FD) following active muscle shortening and force enhancement (FE) following active muscle stretch. Both effects have impact on the force generating capacity of the stomach, and thus functional relevance. However, less is known about history-effects and active smooth muscle properties of stomach smooth muscle. Thus, the aim of this study was to investigate biomechanical muscle properties as force-length and force-velocity relations (FVR) of porcine stomach smooth muscle strips, extended by the analysis of history-effects on smooth muscle force. Therefore, in total n = 54 tissue strips were dissected in longitudinal direction from the ventral fundus of porcine stomachs. Different isometric, isotonic, and isokinetic contraction protocols were performed during electrical muscle stimulation. Cross-sectional areas (CSA) of smooth muscles were determined from cryo-histological sections stained with Picrosirius Red. Results revealed that maximum smooth muscle tension was 10.4 ± 2.6 N/cm2. Maximum shortening velocity (Vmax) and curvature factor (curv) of the FVR were 0.04 ± 0.01 [optimum muscle length/s] and 0.36 ± 0.15, respectively. The findings of the present study demonstrated significant (P < 0.05) FD [up to 32% maximum muscle force (Fim)] and FE (up to 16% Fim) of gastric muscle tissue, respectively. The FE- and FD-values increased with increasing ramp amplitude. This outstanding muscle behavior is not accounted for in existing models so far and strongly supports the idea of a holistic reflection of distinct stomach structure and function. For the first time this study provides a comprehensive set of stomach smooth muscle parameters including classic biomechanical muscle properties and history-dependent effects, offering the possibility for the development and validation of computational stomach models. Furthermore, this data set facilitates novel insights in gastric motility and contraction behavior based on the re-evaluation of existing contractile mechanisms. That will likely help to understand physiological functions or dysfunctions in terms of gastric accommodation and emptying. PMID:29093684
Characterization of nitrosoalkane binding and activation of soluble guanylate cyclase.
Derbyshire, Emily R; Tran, Rosalie; Mathies, Richard A; Marletta, Michael A
2005-12-13
Soluble guanylate cyclase (sGC) is the primary receptor for the signaling agent nitric oxide (NO). Electronic absorption and resonance Raman spectroscopy were used to show that nitrosoalkanes bind to the heme of sGC to form six-coordinate, low-spin complexes. In the sGC-nitrosopentane complex, a band assigned to an Fe-N stretching vibration is observed at 543 cm(-)(1) which is similar to values reported for other six-coordinate NO-bound hemoproteins. Nitrosoalkanes activate sGC 2-6-fold and synergize with YC-1, a synthetic benzylindazole derivative, to activate the enzyme 11-47-fold. In addition, the observed off-rates of nitrosoalkanes from sGC were found to be dependent on the alkyl chain length. A linear correlation was found between the observed off-rates and the alkyl chain length which suggests that the sGC heme has a large hydrophobic distal ligand-binding pocket. Together, these data show that nitrosoalkanes are a novel class of heme-based sGC activators and suggest that heme ligation is a general requirement for YC-1 synergism.
Two passive mechanical conditions modulate power generation by the outer hair cells
Gracewski, Sheryl M.
2017-01-01
In the mammalian cochlea, small vibrations of the sensory epithelium are amplified due to active electro-mechanical feedback of the outer hair cells. The level of amplification is greater in the base than in the apex of the cochlea. Theoretical studies have used longitudinally varying active feedback properties to reproduce the location-dependent amplification. The active feedback force has been considered to be proportional to the basilar membrane displacement or velocity. An underlying assumption was that organ of Corti mechanics are governed by rigid body kinematics. However, recent progress in vibration measurement techniques reveals that organ of Corti mechanics are too complicated to be fully represented with rigid body kinematics. In this study, two components of the active feedback are considered explicitly—organ of Corti mechanics, and outer hair cell electro-mechanics. Physiological properties for the outer hair cells were incorporated, such as the active force gain, mechano-transduction properties, and membrane RC time constant. Instead of a kinematical model, a fully deformable 3D finite element model was used. We show that the organ of Corti mechanics dictate the longitudinal trend of cochlear amplification. Specifically, our results suggest that two mechanical conditions are responsible for location-dependent cochlear amplification. First, the phase of the outer hair cell’s somatic force with respect to its elongation rate varies along the cochlear length. Second, the local stiffness of the organ of Corti complex felt by individual outer hair cells varies along the cochlear length. We describe how these two mechanical conditions result in greater amplification toward the base of the cochlea. PMID:28880884
The Snakelike Chain Character of Unstructured RNA
Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.
2013-01-01
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087
Kulkarni, G B; Nayak, A S; Sajjan, S S; Oblesha, A; Karegoudar, T B
2013-05-01
This investigation deals with the production of IAA by a bacterial isolate Pantoea dispersa strain GPK (PDG) identified by 16S rRNA gene sequence analysis. HPLC and Mass spectral analysis of metabolites from bacterial spent medium revealed that, IAA production by PDG is Trp-dependent and follows indole-3-pyruvic acid (IPyA) pathway. Substrate specificity study of aromatic amino acid aminotransferase (AAT) showed high activities, only when tryptophan (Trp) and α-ketoglutarate (α-kg) were used as substrates. AAT is highly specific for Trp and α-kg as amino group donor and acceptor, respectively. The effect of exogenous IAA on bacterial growth was established. Low concentration of exogenous IAA induced the growth, whereas high concentration decreased the growth of bacterium. PDG treatment significantly increased the root length, shoot length and dry mass of the chickpea and pigeon pea plants. © 2013 The Society for Applied Microbiology.
Wielandt, Alex Green; Pedersen, Jesper Torbøl; Falhof, Janus; Kemmer, Gerdi Christine; Lund, Anette; Ekberg, Kira; Fuglsang, Anja Thoe; Pomorski, Thomas Günther; Buch-Pedersen, Morten Jeppe; Palmgren, Michael
2015-06-26
Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Frampton, Andrew
2017-04-01
There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.
Analysis of bulk arrival queueing system with batch size dependent service and working vacation
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Indhira, K.; Chandrasekaran, V. M.
2018-04-01
This paper concentrates on single server bulk arrival queue system with batch size dependent service and working vacation. The server provides service in two service modes depending upon the queue length. The server provides single service if the queue length is at least `a'. On the other hand the server provides fixed batch service if the queue length is at least `k' (k > a). Batch service is provided with some fixed batch size `k'. After completion of service if the queue length is less than `a' then the server leaves for working vacation. During working vacation customers are served with lower service rate than the regular service rate. Service during working vacation also contains two service modes. For the proposed model probability generating function of the queue length at an arbitrary time will be obtained by using supplementary variable technique. Some performance measures will also be presented with suitable numerical illustrations.
Wang, Xiang; Lee, Jae-Hyeok; Li, Ruibin; Liao, Yu-Pei; Kang, Joohoon; Chang, Chong Hyun; Guiney, Linda M; Mirshafiee, Vahid; Li, Linjiang; Lu, Jianqin; Xia, Tian; Hersam, Mark C; Nel, André E
2018-06-01
Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1β (IL-1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor-β1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bending effects and temperature dependence of magnetic properties in a Fe-rich amorphous wire
NASA Astrophysics Data System (ADS)
Bordin, G.; Buttino, G.; Poppi, M.
2001-08-01
Amorphous wires with composition Fe 77.5Si 7.5B 15 exhibit a very peculiar magnetization process characterized by a single and quite large Barkhausen jump. This gives rise to a squared hysteresis loop at a critical magnetic field. The bistable behaviour, widely studied in wires with typical length of 10 cm and diameter of 125 μm, appears above a length of about 7 cm in straight wires and disappears for curvature radius within the range 2-12 cm in bent wires. In this work it is shown that bistability occurs in bent wires, whatever their curvature is, provided the wires are long enough. To this purpose spiral-shaped samples with several turns are considered. However, when the wire length is not a integer number of turns the magnetization reverses through many large Barkhausen jumps. In this condition, varying the measuring temperature can activate the energy barriers for the jumps.
Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.
Berkovits, Richard
2012-04-27
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
Widmer, G; Keenan, M C; Patterson, J L
1990-01-01
Viral particles purified from species of the protozoan parasite Leishmania braziliensis subsp. guyanensis by centrifugation in CsCl gradients were examined for the presence of viral polymerase. We demonstrated that RNA-dependent RNA polymerase is associated with viral particles. Viral transcription was studied in vitro with pulse-chase experiments and by assaying the RNase sensitivity of the viral transcripts. Viral polymerase synthesized full-length transcripts within 1 h. Double-strained, genome-length, and single-stranded RNAs were produced in this system. The nature of the RNA extracted from virions was also tested by RNase protection assays; both single-stranded and double-stranded RNAs were found. Images PMID:2370680
Subcritical crack growth in fibrous materials
NASA Astrophysics Data System (ADS)
Santucci, S.; Cortet, P.-P.; Deschanel, S.; Vanel, L.; Ciliberto, S.
2006-05-01
We present experiments on the slow growth of a single crack in a fax paper sheet submitted to a constant force F. We find that statistically averaged crack growth curves can be described by only two parameters: the mean rupture time τ and a characteristic growth length ζ. We propose a model based on a thermally activated rupture process that takes into account the microstructure of cellulose fibers. The model is able to reproduce the shape of the growth curve, the dependence of ζ on F as well as the effect of temperature on the rupture time τ. We find that the length scale at which rupture occurs in this model is consistently close to the diameter of cellulose microfibrils.
Porter, Richard; Booth, David; Gray, Hamish; Frampton, Chris
2008-09-01
Propofol is a widely used anesthetic agent for electroconvulsive therapy (ECT). However, there are concerns that its anticonvulsant effect may interfere with the efficacy of ECT. We aimed to investigate the effects on seizure activity of the addition of the opiate remifentanil to propofol anesthesia for ECT. A retrospective analysis of 633 treatments in 73 patients was conducted. At each treatment, patients had received anesthesia with propofol alone or propofol plus remifentanil, depending on which anesthetist was providing anesthesia. Analysis of variance was performed to examine the effects of the anesthetic used, the electrode placement, the dose of electricity administered, and the stage in the course of treatment. Dependent variables were electroencephalogram seizure length and postictal suppression index (PSI). Addition of remifentanil resulted in a small but significantly lower dose of propofol being used to induce unconsciousness. Addition of remifentanil affected seizure length, mainly related to an effect when placement was right unilateral (F = 5.70; P = 0.017). There was also a significantly increased PSI (F = 4.3; P = 0.039), which was not dependent on dose or on placement. The data suggest that addition of remifentanil to propofol anesthesia significantly alters seizure indices. This may be secondary to a reduction in the amount of propofol required or to an independent effect of remifentanil. The increase in PSI in particular suggests that addition of remifentanil may improve clinical response. However, this can only be examined in a randomized controlled trial.
Aoubala, M; Holt, J; Clegg, R A; Rowlands, D J; Harris, M
2001-07-01
Hepatitis C virus (HCV) is an important cause of chronic liver disease, but the molecular mechanisms of viral pathogenesis remain to be established. The HCV non-structural protein NS3 complexes with NS4A and has three enzymatic activities: a proteinase and a helicase/NTPase. Recently, catalytically inactive NS3 fragments containing an arginine-rich motif have been reported to interact with, and inhibit, the catalytic subunit of cAMP-dependent protein kinase (PKA C-subunit). Here we demonstrate that full-length, catalytically active NS3/4A, purified from recombinant baculovirus-infected insect cells, is also able to inhibit PKA C-subunit in vitro. This inhibition was abrogated by mutation of either the arginine-rich motif or the conserved helicase motif II, both of which also abolished NTPase activity. As PKA C-subunit inhibition was also enhanced by poly(U) (an activator of NS3 NTPase activity), we hypothesized that PKA C-subunit inhibition could be due to NS3/4A-mediated ATP hydrolysis. This was confirmed by experiments in which a constant ATP concentration was maintained by addition of an ATP regeneration system--under these conditions PKA C-subunit inhibition was not observed. Interestingly, the mutations also abrogated the ability of wild-type NS3/4A to inhibit the PKA-regulated transcription factor CREB in transiently transfected hepatoma cells. Our data are thus not consistent with the previously proposed model in which the arginine-rich motif of NS3 was suggested to act as a pseudosubstrate inhibitor of PKA C-subunit. However, in vivo effects of NS3/4A suggest that ATPase activity may play a role in viral pathology in the infected liver.
Kishore, Ayush; Hall, Randy A
2017-06-09
Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Feng, Qing; Kumagai, Takeshi; Nakamura, Yoshimasa; Uchida, Koji; Osawa, Toshihiko
2003-05-09
Alkyl gallates are widely used as food antioxidants. Methyl, ethyl, propyl, lauryl, and cetyl gallates showed antimutagenicity to activated 2-aminoanthracene (2AA)-induced SOS responses in Salmonella typhimurium TA1535/pSK1002. They also exhibited a suppressive effect on 3-methylcholanthrene (3-MC)-induced cytochrome P450 1A (CYP1A) in human hepatoma HepG2 cells, as indexed by the 7-ethoxyresorufin-O-deethylase (EROD) activity, and on CYP1A protein level. Both antimutagenicity and suppression of CYP1A appeared to be dependent on alkyl chain lengths, which suggested lipophilicity dependence. Based on those results, we investigated 26 other phenolic compounds for their lipophilicity, antimutagenicity and inhibition of EROD activity. The lipophilicity correlated well with the inhibition of EROD activity (r=0.78), and the inhibition of EROD activity correlated with the antimutagenicity of those compounds (r=0.71). The results suggest that the lipophilicity of the phenolic compounds may be an important factor in their ability to inhibit EROD activity.
Multiscale polar theory of microtubule and motor-protein assemblies
Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...
2015-01-27
Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less
Yoshida, Jun; Nomura, Satomi; Nishizawa, Naoyuki; Ito, Yoshiaki; Kimura, Ken-ichi
2011-01-01
A new biological activity of 6-(methylsulfinyl)hexyl isothiocyanate derived from Wasabia japonica was discovered as an inhibitor of glycogen synthase kinase-3β. The most potent isothiocyanate, 9-(methylsulfinyl)hexyl isothiocyanate, inhibited glycogen synthase kinase-3β at a K(i) value of 10.5 µM and showed ATP competitive inhibition. The structure-activity relationship revealed an inhibitory potency of methylsulfinyl isothiocyanate dependent on the alkyl chain length and the sulfoxide, sulfone, and/or the isothiocyanate moiety.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-03-03
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, after laser-flash photolysis of caged calcium. Immediately before laser-flash activation, almost all of the myosin heads in the fiber are in the state M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force, and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemomechanical energy conversion in individual myosin heads changes in a load-dependent manner.
Sugi, H; Iwamoto, H; Akimoto, T; Ushitani, H
1998-01-01
Although a contracting muscle regulates its energy output depending on the load imposed on it ("Fenn effect"), the mechanism underlying the load-dependent energy output remains obscure. To explore the possibility that the mechanical efficiency, with which chemical energy derived from ATP hydrolysis is converted into mechanical work, of individual myosin heads changes in a load-dependent manner, we examined the auxotonic shortening of glycerinated rabbit psoas muscle fibers, containing ATP molecules almost equal in number to the myosin heads, following laser flash photolysis of caged calcium. Immediately before laser flash activation, almost all of the myosin heads in the fiber are in the state, M.ADP.Pi, and can undergo only one ATP hydrolysis cycle after activation. When the fibers were activated to shorten under various auxotonic loads, the length, force and power output changes were found to be scaled according to the auxotonic load. Both the power and energy outputs were maximal under a moderate auxotonic load. The amount of M.ADP.Pi utilized at a time after activation was estimated from the amount of isometric force developed after interruption of fiber shortening. This amount was minimal in the isometric condition, and increased nearly in proportion to the distance of fiber shortening. These results are taken as evidence that the efficiency of chemo-mechanical energy conversion in individual myosin heads changes in a load-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiao, Susan J; Poitras, Marc; Cook, Brandoch
Regulation of telomere length maintenance and capping are a critical cell functions in both normal and tumor cells. Tankyrase 2 (Tnks2) is a poly(ADP-ribose) polymerase (PARP) that has been shown to modify itself and TRF1, a telomere-binding protein. We show here by overexpression studies that tankyrase 2, like its closely related homolog tankyrase 1, can function as a positive regulator of telomere length in human cells, dependent on its catalytic PARP activity. To study the role of Tnks2 in vivo, we generated mice with the Tnks2 PARP domain deleted. These mice are viable and fertile but display a growth retardationmore » phenotype. Telomere analysis by quantitative fluorescence in situ hybridization (FISH), flow-FISH, and restriction fragment analysis showed no change in telomere length or telomere capping in these mice. To determine the requirement foTnks2 in long-term maintenance of telomeres, we generated embryonic stem cells with the Tnks2 PARP domain deleted and observed no change, even upon prolonged growth, in telomere length or telomere capping. Together these results suggest that Tnkjs2 has a role in normal growth and development but is not essential for telomere length maintenance or telomere capping in mice.« less
Short, N J; Norval, R A
1981-02-01
Rhipicephalus appendiculatus passes through one generation per annum in the highveld of Zimbabwe, Rhodesia and shows a well-defined pattern of seasonal activity. Peak adult activity occurs in the rainy season, whereas peak larval and nymphal activity occurs in the dry season. Adult activity is regulated by the combined influences of temperature, humidity, and day length. Climatic factors have little or no direct influence on the activity of larvae and nymphs. The occurrence of the larval and nymphal activity peaks is determined by the timing of the adult activity peak and the duration of the preceeding developmental periods, which are temperature dependent. In the early rainy season, unfed adults climb to the tips of the grass and enter a period of quiescence prior to becoming active.
Induction of a G1-S checkpoint in fission yeast.
Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta
2012-06-19
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.
Kafayat, A Fakoya; Martins, A Anetekhai; Shehu, L Akintola; Abdulwakil, O Sabal; Abass, Mikhail A
2015-03-01
The Gorean snapper, Lutanus goreensis is an important component of artisanal fisheries and trawl landings in the Gulf of Guinea. Despite its economic importance, there is a dearth of information on size structure and life history strategies of the species. Therefore, the objectives of this study were to provide baseline data on the life stages, exploitation status and habitat use for the species in Nigeria. Monthly samples were obtained from artisanal and trawl catches in Five Cowrie Creek and Lagos coastal waters between December 2008 and December 2010, respectively. Length-frequency distributions of the fishes caught were analysed to provide preliminary information on mean and modal lengths at capture and life-history strategies based on habitat use and estuarine-dependency for L. goreensis. A total of 822 specimens of L. goreensis were collected from Five Cowrie Creek while 377 specimens were collected from Lagos coastal waters. Total length varied between 7.90-34.90 cm for creek samples and from 21.90-56.10 cm for marine samples. Length-frequency histograms showed polymodal size distributions in creek and marine samples. Length-frequency distributions of L. goreensis showed a high abundance ofjuveniles (<20 cm) and sub-adults (20-35 cm) which accounted for 84.1% and 68.4% of creek and marine samples examined, respectively. For the creek samples, fish in modal length class of 13.00-13.99 cm were the most exploited while in the marine samples, length classes of 29.00-30.99 cm and 31.00-32.99cm constituted the most frequently exploited fishes. Increase in total lengths from the creek (mean +/- SD; 16.19 +/- 3.73 cm) to the marine habitat samples (32.89 +/- 6.14 cm) indicated ontogenetic shift in habitat use. Occurrence of a predominant juvenile population in Five Cowrie Creek by L. goreensis suggests estuarine-dependency and is indicative of a temporary juvenile habitat or a migratory corridor. In conclusion, data from the presently reported study and previous studies demonstrated that juvenile L. goreensis displays estuarine dependency and habitat flexibility. Hence, this underscores the importance of preserving estuarine environments as essential fish habitats to prevent overfishing. The study also concludes that the species is vulnerable to recruitment overfishing in the marine environment especially as a consequence of shrimping. Consequently, it advocates for ban on all fishing activities during peak spawning periods in breeding grounds and shrimp ground assemblage.
Clustering of galaxies around AGNs in the HSC Wide survey
NASA Astrophysics Data System (ADS)
Shirasaki, Yuji; Akiyama, Masayuki; Nagao, Tohru; Toba, Yoshiki; He, Wanqiu; Ohishi, Masatoshi; Mizumoto, Yoshihiko; Miyazaki, Satoshi; Nishizawa, Atsushi J.; Usuda, Tomonori
2018-01-01
We have measured the clustering of galaxies around active galactic nuclei (AGNs) for which single-epoch virial masses of the super-massive black hole (SMBH) are available to investigate the relation between the large-scale environment of AGNs and the evolution of SMBHs. The AGN samples used in this work were derived from the Sloan Digital Sky Survey (SDSS) observations and the galaxy samples were from the 240 deg2 S15b data of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The investigated redshift range is 0.6-3.0, and the masses of the SMBHs lie in the range 107.5-1010 M⊙. The absolute magnitude of the galaxy samples reaches to Mλ310 ˜ -18 at rest-frame wavelength 310 nm for the low-redshift end of the samples. More than 70% of the galaxies in the analysis are blue. We found a significant dependence of the cross-correlation length on redshift, which primarily reflects the brightness-dependence of the galaxy clustering. At the lowest redshifts the cross-correlation length increases from 7 h-1 Mpc around Mλ310 = -19 mag to >10 h-1 Mpc beyond Mλ310 = -20 mag. No significant dependence of the cross-correlation length on BH mass was found for whole galaxy samples dominated by blue galaxies, while there was an indication of BH mass dependence in the cross-correlation with red galaxies. These results provides a picture of the environment of AGNs studied in this paper being enriched with blue star-forming galaxies, and a fraction of the galaxies are evolving into red galaxies along with the evolution of SMBHs in that system.
Li, Alison Y.; Stevens, Charles M.; Liang, Bo; Rayani, Kaveh; Little, Sean; Davis, Jonathan; Tibbits, Glen F.
2013-01-01
The Ca2+ binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca2+ binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca2+ affinity by 27% in the steady-state measurement and increased the Ca2+ dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca2+ sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca2+ sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca2+ sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca2+ sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent. PMID:24260207
Bean, Dan W; Dalin, Peter; Dudley, Tom L
2012-01-01
In classical weed biological control, small collections of arthropods are made from one or a few sites in the native range of the target plant and are introduced to suppress the plant where it has become invasive, often across a wide geographic range. Ecological mismatches in the new range are likely, and success using the biocontrol agent may depend on postrelease evolution of beneficial life history traits. In this study, we measure the evolution of critical day length for diapause induction (day length at which 50% of the population enters dormancy), in a beetle (Diorhabda carinulata) introduced into North America from China to control an exotic shrub, Tamarix spp. Beetle populations were sampled from four sites in North America 7 years after introduction, and critical day length was shown to have declined, forming a cline over a latitudinal gradient At one field site, decreased critical day length was correlated with 16 additional days of reproductive activity, resulting in a closer match between beetle life history and the phenology of Tamarix. These findings indicate an enhanced efficacy and an increasingly wider range for D. carinulata in Tamarix control. PMID:22949926
Manalo, Marlon N; Kong, Xiangming; LiWang, Andy
2007-04-01
Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1J(NH) measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1J(NH) values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1J(NH) of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less
Thermally induced charge current through long molecules
NASA Astrophysics Data System (ADS)
Zimbovskaya, Natalya A.; Nitzan, Abraham
2018-01-01
In this work, we theoretically study steady state thermoelectric transport through a single-molecule junction with a long chain-like bridge. Electron transmission through the system is computed using a tight-binding model for the bridge. We analyze dependences of thermocurrent on the bridge length in unbiased and biased systems operating within and beyond the linear response regime. It is shown that the length-dependent thermocurrent is controlled by the lineshape of electron transmission in the interval corresponding to the HOMO/LUMO transport channel. Also, it is demonstrated that electron interactions with molecular vibrations may significantly affect the length-dependent thermocurrent.
Portella, Guillem; Pohl, Peter; de Groot, Bert L
2007-06-01
We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.
Wang, Zhaojie; Alaniz, Joseph E; Jang, Wanyoung; Garay, Javier E; Dames, Chris
2011-06-08
The thermal conductivity reduction due to grain boundary scattering is widely interpreted using a scattering length assumed equal to the grain size and independent of the phonon frequency (gray). To assess these assumptions and decouple the contributions of porosity and grain size, five samples of undoped nanocrystalline silicon have been measured with average grain sizes ranging from 550 to 64 nm and porosities from 17% to less than 1%, at temperatures from 310 to 16 K. The samples were prepared using current activated, pressure assisted densification (CAPAD). At low temperature the thermal conductivities of all samples show a T(2) dependence which cannot be explained by any traditional gray model. The measurements are explained over the entire temperature range by a new frequency-dependent model in which the mean free path for grain boundary scattering is inversely proportional to the phonon frequency, which is shown to be consistent with asymptotic analysis of atomistic simulations from the literature. In all cases the recommended boundary scattering length is smaller than the average grain size. These results should prove useful for the integration of nanocrystalline materials in devices such as advanced thermoelectrics.
Design and fabrication of segmented-in-series solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Lai, Tammy S.
Segmented-in-series solid oxide fuel cells (SS-SOFC) consist of several thick film cells deposited onto a porous, flattened tubular substrate. SS-SOFCs have a reduced need for gas-tight seals relative to planar SOFCs and can have a short current path compared to tubular SOFCs, limiting electrode ohmic resistance. Like tubular SOFCs, SS-SOFCs are suitable for stationary power generation. Their potentially small cell size makes them candidates for portable applications as well. The goals of this thesis project were to develop SS-SOFCs with 1-2 mm cell lengths and to analyze the effects of cell geometry and support current shunting on performance. Standard SOFC materials were chosen for the active components: yttria stabilized zirconia (YSZ) electrolyte; Ni-YSZ cermet anode; and (La,Sr)MnO 3-based cathode. A Pt-YSZ cermet was used as the interconnect material. Screen printing was the deposition method for all layers due to its low cost and patterning ability. A power density of >900 mW/cm2 was achieved with a cathode sheet resistance of ≈3 O/□ (≈90 mum LSM thickness). A D-optimal study was conducted to find processing conditions yielding substrates with ≥30 vol% porosity and high strength. Uniaxially pressed partially stabilized zirconia (PSZ) with 15 wt% starch pore former met the requirements, though 20 wt% graphite pore former was later found to give a smoother surface that improved screen printed layer quality. Calculations presented in this thesis take into account losses due to cell resistances, electrode ohmic resistances, interconnect resistance, and shunting by a weakly-conductive support material. Power density was maximized at an optimal cell length---it decreased at larger cell lengths due to electrode lateral resistance loss and at smaller cell lengths due to a decreasing fraction of cell active area. Assuming dimensions expected for screen printing and typical area specific resistances (RAS), optimal cell lengths typically ranged from 1 to 3 mm. The calculated and experimental values for the array RAS (active and inactive areas) showed similar dependences on cathode sheet resistance. The impact of shunting current increased with decreasing cell lengths. Shunting current was predicted to decrease array current by ˜10% for a 1.5 mm active cell length, though experimental measurements suggest that the calculation may overestimate the shunting effect.
Stretch-dependent slow force response in isolated rabbit myocardium is Na+ dependent.
von Lewinski, Dirk; Stumme, Burkhard; Maier, Lars S; Luers, Claus; Bers, Donald M; Pieske, Burkert
2003-03-15
Stretch induces functional and trophic effects in mammalian myocardium via various signal transduction pathways. We tested stretch signal transduction on immediate and slow force response (SFR) in rabbit myocardium. Experiments were performed in isolated right ventricular muscles from adult rabbit hearts (37 degrees C, 1 Hz stimulation rate, bicarbonate-buffer). Muscles were rapidly stretched from 88% of optimal length (L88) to near optimal length (L98) for functional analysis. The resulting immediate and slow increases in twitch force (first phase and SFR, respectively) were assessed at reduced [Na+]o or without and with blockade of stretch activated ion channels (SACs), angiotensin-II (AT1) receptors, endothelin-A (ET(A)) receptors, Na+/H+-exchange (NHE1), reverse mode Na+/Ca2+-exchange (NCX), or Na+/K+-ATPase. The effects of stretch on sarcoplasmic reticulum Ca2+-load were characterized using rapid cooling contractures (RCCs). Intracellular pH was measured in BCECF-AM loaded muscles, and action potential duration (APD) was assessed using floating electrodes. On average, force increased to 216+/-8% of the pre-stretch value during the immediate phase, followed by a further increase to 273+/-10% during the SFR (n=81). RCCs significantly increased during SFR, whereas pH and APD did not change. Neither inhibition of SACs, AT1, or ET(A) receptors affected the stretch-dependent immediate phase nor SFR. In contrast, SFR was reduced by NHE inhibition and almost completely abolished by reduced [Na+]o or inhibition of reverse-mode NCX, whereas increased SFR was seen after raising [Na+]i by Na+/K+-ATPase inhibition. The data demonstrate the existence of a delayed, Na+- and Ca2+-dependent but pH and APD independent SFR to stretch in rabbit myocardium. This inotropic response appears to be independent of autocrine/paracrine AT1 or ET(A) receptor activation, but mediated through stretch-induced activation of NHE and reverse mode NCX.
The snakelike chain character of unstructured RNA.
Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A
2013-12-03
In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Spatial patterns of frequent floods in Switzerland
NASA Astrophysics Data System (ADS)
Schneeberger, Klaus; Rössler, Ole; Weingartner, Rolf
2017-04-01
Information about the spatial characteristics of high and extreme streamflow is often needed for an accurate analysis of flood risk and effective co-ordination of flood related activities, such as flood defence planning. In this study we analyse the spatial dependence of frequent floods in Switzerland across different scales. Firstly, we determine the average length of high and extreme flow events for 56 runoff time series of Swiss rivers. Secondly, a dependence measure expressing the probability that streamflow peaks are as high as peaks at a conditional site is used to describe and map the spatial extend of joint occurrence of frequent floods across Switzerland. Thirdly, we apply a cluster analysis to identify groups of sites that are likely to react similarly in terms of joint occurrence of high flow events. The results indicate that a time interval with a length of 3 days seems to be most appropriate to characterise the average length of high streamflow events across spatial scales. In the main Swiss basins, high and extreme streamflows were found to be asymptotically independent. In contrast, at the meso-scale distinct flood regions, which react similarly in terms of occurrence of frequent flood, were found. The knowledge about these regions can help to optimise flood defence planning or to estimate regional flood risk properly.
Terada, Yuko; Masuda, Hideki; Watanabe, Tatsuo
2015-08-28
Allyl isothiocyanate (ITC) (4) is the main pungent component in wasabi, and it generates an acrid sensation by activating TRPA1. The flavor and pungency of ITCs vary depending on the compound. However, the differences in activity to activate TRPA1 between ITCs are not known except for a few compounds. To investigate the effect of carbon chain length and substituents of ITCs, the TRPA1-activiting ability of 16 ITCs was measured. Since most of the ITCs showed nearly equal TRPA1-activiting potency, the ITC moiety is likely the predominant contributor to their TRPA1-activating abilities, and contributions of other functional groups to their activities to activate TRPA1 are comparatively small.
Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth
2010-03-01
The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.
Alfano, Massimo; Cinque, Paola; Giusti, Guido; Proietti, Silvia; Nebuloni, Manuela; Danese, Silvio; D’Alessio, Silvia; Genua, Marco; Portale, Federica; Lo Porto, Manuela; Singhal, Pravin C.; Rastaldi, Maria Pia; Saleem, Moin A.; Mavilio, Domenico; Mikulak, Joanna
2015-01-01
Increased plasma level of soluble urokinase-type plasminogen activator receptor (suPAR) was associated recently with focal segmental glomerulosclerosis (FSGS). In addition, different clinical studies observed increased concentration of suPAR in various glomerular diseases and in other human pathologies with nephrotic syndromes such as HIV and Hantavirus infection, diabetes and cardiovascular disorders. Here, we show that suPAR induces nephrin down-modulation in human podocytes. This phenomenon is mediated only by full-length suPAR, is time-and dose-dependent and is associated with the suppression of Wilms’ tumor 1 (WT-1) transcription factor expression. Moreover, an antagonist of αvβ3 integrin RGDfv blocked suPAR-induced suppression of nephrin. These in vitro data were confirmed in an in vivo uPAR knock out Plaur−/− mice model by demonstrating that the infusion of suPAR inhibits expression of nephrin and WT-1 in podocytes and induces proteinuria. This study unveiled that interaction of full-length suPAR with αvβ3 integrin expressed on podocytes results in down-modulation of nephrin that may affect kidney functionality in different human pathologies characterized by increased concentration of suPAR. PMID:26380915
Sequence-Dependent Persistence Length of Long DNA
NASA Astrophysics Data System (ADS)
Chuang, Hui-Min; Reifenberger, Jeffrey G.; Cao, Han; Dorfman, Kevin D.
2017-12-01
Using a high-throughput genome-mapping approach, we obtained circa 50 million measurements of the extension of internal human DNA segments in a 41 nm ×41 nm nanochannel. The underlying DNA sequences, obtained by mapping to the reference human genome, are 2.5-393 kilobase pairs long and contain percent GC contents between 32.5% and 60%. Using Odijk's theory for a channel-confined wormlike chain, these data reveal that the DNA persistence length increases by almost 20% as the percent GC content increases. The increased persistence length is rationalized by a model, containing no adjustable parameters, that treats the DNA as a statistical terpolymer with a sequence-dependent intrinsic persistence length and a sequence-independent electrostatic persistence length.
Evaluating linear response in active systems with no perturbing field
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
2017-03-01
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed by Warren and Allen (Phys. Rev. Lett., 109 (2012) 250601) for out-of-equilibrium systems of passive Brownian particles. We illustrate our method by evaluating two linear response functions for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of many active particles interacting via a screened Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size.
NASA Astrophysics Data System (ADS)
Szamel, Grzegorz
We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.
Cowsert, L M; Fox, M C; Zon, G; Mirabelli, C K
1993-01-01
Papillomaviruses induce benign proliferative lesions, such as genital warts, in humans. The E2 gene product is thought to play a major role in the regulation of viral transcription and DNA replication and may represent a rational target for an antisense oligonucleotide drug action. Phosphorothioate oligonucleotides complementary to E2 mRNAs were synthesized and tested in a series of in vitro bovine papillomavirus (BPV) and human papillomavirus (HPV) models for the ability to inhibit E2 transactivation and virus-induced focus formation. The most active BPV-specific compounds were complementary to the mRNA cap region (ISIS 1751), the translation initiation region for the full-length E2 transactivator (ISIS 1753), and the translation initiation region for the E2 transrepressor mRNA (ISIS 1755). ISIS 1751 and ISIS 1753 were found to reduce E2-dependent transactivation and viral focus formation in a sequence-specific and concentration-dependent manner. ISIS 1755 increased E2 transactivation in a dose-dependent manner but had no effect on focus formation. Oligonucleotides with a chain length of 20 residues had optimal activity in the E2 transactivation assay. On the basis of the above observations, ISIS 2105, a 20-residue phosphorothioate oligonucleotide targeted to the translation initiation of both HPV type 6 (HPV-6) and HPV-11 E2 mRNA, was designed and shown to inhibit E2-dependent transactivation by HPV-11 E2 expressed from a surrogate promoter. These observations support the rationale of E2 as a target for antiviral therapy against papillomavirus infections and specifically identify ISIS 2105 as a candidate antisense oligonucleotide for the treatment of genital warts induced by HPV-6 and HPV-11. Images PMID:8383937
Dey, Abhishek; Chakrabarti, Kausik
2018-01-24
Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.
de la Mothe, Lisa; Miller, Cory T.
2017-01-01
Communication is an inherently interactive process that weaves together the fabric of both human and nonhuman primate societies. To investigate the properties of the primate brain during active social signaling, we recorded the responses of frontal cortex neurons as freely moving marmosets engaged in conversational exchanges with a visually occluded virtual marmoset. We found that small changes in firing rate (∼1 Hz) occurred across a broadly distributed population of frontal cortex neurons when marmosets heard a conspecific vocalization, and that these changes corresponded to subjects' likelihood of producing or withholding a vocal reply. Although the contributions of individual neurons were relatively small, large populations of neurons were able to clearly distinguish between these social contexts. Most significantly, this social context-dependent change in firing rate was evident even before subjects heard the vocalization, indicating that the probability of a conversational exchange was determined by the state of the frontal cortex at the time a vocalization was heard, and not by a decision driven by acoustic characteristics of the vocalization. We found that changes in neural activity scaled with the length of the conversation, with greater changes in firing rate evident for longer conversations. These data reveal specific and important facets of this neural activity that constrain its possible roles in active social signaling, and we hypothesize that the close coupling between frontal cortex activity and this natural, active primate social-signaling behavior facilitates social-monitoring mechanisms critical to conversational exchanges. SIGNIFICANCE STATEMENT We provide evidence for a novel pattern of neural activity in the frontal cortex of freely moving, naturally behaving, marmoset monkeys that may facilitate natural primate conversations. We discovered small (∼1 Hz), but reliable, changes in neural activity that occurred before marmosets even heard a conspecific vocalization that, as a population, almost perfectly predicted whether subjects would produce a vocalization in response. The change in the state of the frontal cortex persisted throughout the conversation and its magnitude scaled linearly with the length of the interaction. We hypothesize that this social context-dependent change in frontal cortex activity is supported by several mechanisms, such as social arousal and attention, and facilitates social monitoring critical for vocal coordination characteristic of human and nonhuman primate conversations. PMID:28630255
Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki
2014-06-01
Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurkin, N V; Konyshev, V A; Novikov, A G
2015-01-31
We have studied experimentally and using numerical simulations and a phenomenological analytical model the dependences of the bit error rate (BER) on the signal power and length of a coherent single-span communication line with transponders employing polarisation division multiplexing and four-level phase modulation (100 Gbit s{sup -1} DP-QPSK format). In comparing the data of the experiment, numerical simulations and theoretical analysis, we have found two optimal powers: the power at which the BER is minimal and the power at which the fade margin in the line is maximal. We have derived and analysed the dependences of the BER on themore » optical signal power at the fibre line input and the dependence of the admissible input signal power range for implementation of the communication lines with a length from 30 – 50 km up to a maximum length of 250 km. (optical transmission of information)« less
Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm.
Seol, Yeonee; Li, Jinyu; Nelson, Philip C; Perkins, Thomas T; Betterton, M D
2007-12-15
The wormlike chain (WLC) model currently provides the best description of double-stranded DNA elasticity for micron-sized molecules. This theory requires two intrinsic material parameters-the contour length L and the persistence length p. We measured and then analyzed the elasticity of double-stranded DNA as a function of L (632 nm-7.03 microm) using the classic solution to the WLC model. When the elasticity data were analyzed using this solution, the resulting fitted value for the persistence length p(wlc) depended on L; even for moderately long DNA molecules (L = 1300 nm), this apparent persistence length was 10% smaller than its limiting value for long DNA. Because p is a material parameter, and cannot depend on length, we sought a new solution to the WLC model, which we call the "finite wormlike chain (FWLC)," to account for effects not considered in the classic solution. Specifically we accounted for the finite chain length, the chain-end boundary conditions, and the bead rotational fluctuations inherent in optical trapping assays where beads are used to apply the force. After incorporating these corrections, we used our FWLC solution to generate force-extension curves, and then fit those curves with the classic WLC solution, as done in the standard experimental analysis. These results qualitatively reproduced the apparent dependence of p(wlc) on L seen in experimental data when analyzed with the classic WLC solution. Directly fitting experimental data to the FWLC solution reduces the apparent dependence of p(fwlc) on L by a factor of 3. Thus, the FWLC solution provides a significantly improved theoretical framework in which to analyze single-molecule experiments over a broad range of experimentally accessible DNA lengths, including both short (a few hundred nanometers in contour length) and very long (microns in contour length) molecules.
NASA Technical Reports Server (NTRS)
Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.
2001-01-01
Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.
Spectroscopic Evidence of Alfvén Wave Damping in the Off-limb Solar Corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, G. R., E-mail: girjesh@iucaa.in
We investigate the off-limb active-region and quiet-Sun corona using spectroscopic data. The active region is clearly visible in several spectral lines formed in the temperature range of 1.1–2.8 MK. We derive the electron number density using the line ratio method, and the nonthermal velocity in the off-limb region up to the distance of 140 Mm. We compare density scale heights derived from several spectral line pairs with expected scale heights per the hydrostatic equilibrium model. Using several isolated and unblended spectral line profiles, we estimate nonthermal velocities in the active region and quiet Sun. Nonthermal velocities obtained from warm linesmore » in the active region first show an increase and then later either a decrease or remain almost constant with height in the far off-limb region, whereas nonthermal velocities obtained from hot lines show consistent decrease. However, in the quiet-Sun region, nonthermal velocities obtained from various spectral lines show either a gradual decrease or remain almost constant with height. Using these obtained parameters, we further calculate Alfvén wave energy flux in both active and quiet-Sun regions. We find a significant decrease in wave energy fluxes with height, and hence provide evidence of Alfvén wave damping. Furthermore, we derive damping lengths of Alfvén waves in the both regions and find them to be in the range of 25–170 Mm. Different damping lengths obtained at different temperatures may be explained as either possible temperature-dependent damping or by measurements obtained in different coronal structures formed at different temperatures along the line of sight. Temperature-dependent damping may suggest some role of thermal conduction in the damping of Alfvén waves in the lower corona.« less
Engel, Benjamin D; Ludington, William B; Marshall, Wallace F
2009-10-05
The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.
Superelasticity and force plateau of nickel-titanium springs: an in vitro study
Vieira, Camila Ivini Viana; Caldas, Sergei Godeiro Fernandes Rabelo; Martins, Lídia Parsekian; Martins, Renato Parsekian
2016-01-01
abstract Objective: This paper analyzed whether nickel-titanium closed coil springs (NTCCS) have a different superelastic (SE) behavior according to activation and whether their force plateau corresponds to that informed by the manufacturer. Methods: A total of 160 springs were divided into 16 subgroups according to their features and activated proportionally to the length of the extensible part (NiTi) of the spring (Y). The force values measured were analyzed to determine SE rates and force plateaus, which were mathematically calculated. These plateaus were compared to those informed by the manufacturer. Analysis of variance was accomplished followed by Tukey post-hoc test to detect and analyze differences between groups. Results: All subgroups were SE at the activation of 400% of Y length, except for: subgroups 4B and 3A, which were SE at 300%; subgroups 4E and 4G, which were SE at 500%; and subgroup 3C, which was SE at 600%. Subgroup 3B did not show a SE behavior. Force plateaus depended on activation and, in some subgroups and some activations, were similar to the force informed. Conclusions: Most of the springs showed SE behavior at 400% of activation. Force plateaus are difficult to compare due to lack of information provided by manufacturers. PMID:27409653
Kinesin-5–dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis
Brust-Mascher, Ingrid; Sommi, Patrizia; Cheerambathur, Dhanya K.
2009-01-01
We used antibody microinjection and genetic manipulations to dissect the various roles of the homotetrameric kinesin-5, KLP61F, in astral, centrosome-controlled Drosophila embryo spindles and to test the hypothesis that it slides apart interpolar (ip) microtubules (MT), thereby controlling poleward flux and spindle length. In wild-type and Ncd null mutant embryos, anti-KLP61F dissociated the motor from spindles, producing a spatial gradient in the KLP61F content of different spindles, which was visible in KLP61F-GFP transgenic embryos. The resulting mitotic defects, supported by gene dosage experiments and time-lapse microscopy of living klp61f mutants, reveal that, after NEB, KLP61F drives persistent MT bundling and the outward sliding of antiparallel MTs, thereby contributing to several processes that all appear insensitive to cortical disruption. KLP61F activity contributes to the poleward flux of both ipMTs and kinetochore MTs and to the length of the metaphase spindle. KLP61F activity maintains the prometaphase spindle by antagonizing Ncd and another unknown force-generator and drives anaphase B, although the rate of spindle elongation is relatively insensitive to the motor's concentration. Finally, KLP61F activity contributes to normal chromosome congression, kinetochore spacing, and anaphase A rates. Thus, a KLP61F-driven sliding filament mechanism contributes to multiple aspects of mitosis in this system. PMID:19158379
Thermoelectric efficiency of single-molecule junctions with long molecular linkers.
Zimbovskaya, Natalya A
2018-06-18
We report results of theoretical studies of thermoelectric efficiency of single-molecule junctions with long molecular linkers. The linker is simulated by a chain of identical sites described using a tight-binding model. It is shown that thermoelectric figure of merit ZT strongly depends on the bridge length, being controlled by the lineshape of electron transmission function within the tunnel energy range corresponding to HOMO/LUMO transport channel. Using the adopted model we demonstrate that ZT may significantly increase as the linker lengthens, and that gateway states on the bridge (if any) may noticeably affect the length-dependent ZT. Temperature dependences of ZT for various bridge lengths are analyzed. It is shown that broad minima emerge in ZT versus temperature curves whose positions are controlled by the bridge lengths. © 2018 IOP Publishing Ltd.
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
NASA Technical Reports Server (NTRS)
Ho, C. T.; Mathias, J. D.
1981-01-01
The influence of short wavelength light on the characteristic bulk minority carrier diffusion length of the ribbon silicon photovoltaic cell has been investigated. We have measured the intensity and wavelength dependence of the diffusion length in an EFG ribbon cell, and compared it with a standard Czochralski grown silicon cell. While the various short wavelength illuminations have shown no influence on the diffusion length in the CZ cell, the diffusion lengths in the ribbon cell exhibit a strong dependence on the volume generation rate as well as on the wavelength of the superimposed lights. We have concluded that the trap-filling phenomenon at various depths in the bulk neutral region of the cell is consistent with the experimental observation.
Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio
2009-06-21
Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.
Ramzy, A R; Nausheen, S; Chelikani, P K
2014-03-01
Enhanced stimulation of the lower gut is hypothesized to play a key role in the weight loss and resolution of diabetes following bariatric surgeries. Ileal transposition (IT) permits study of the effects of direct lower gut stimulation on body weight, glucose homeostasis and other metabolic adaptations without the confounds of gastric restriction or foregut exclusion. However, the underlying mechanisms and the length of the ileum sufficient to produce metabolic benefits following IT surgery remain largely unknown. To determine the effects of transposing varying lengths of the ileum to upper jejunum on food intake, body weight, glucose tolerance and lower gut hormones, and the expression of key markers of glucose and lipid metabolism in skeletal muscle and adipose tissue in rats. Adult male Sprague-Dawley rats (n=9/group) were subjected to IT surgery with translocation of 5, 10 or 20 cm of the ileal segment to proximal jejunum or sham manipulations. Daily food intake and body weight were recorded, and an intraperitoneal glucose tolerance test was performed. Blood samples were assayed for hormones and tissue samples for mRNA (RT-qPCR) and/or protein abundance (immunoblotting) of regulatory metabolic markers. We demonstrate that IT surgery exerts ileal length-dependent effects on multiple parameters including: (1) decreased food intake and weight gain, (2) improved glucose tolerance, (3) increased tissue expression and plasma concentrations of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY), and decreased leptin concentrations and (4) upregulation of key markers of glucose metabolism (glucose transporter-4 (GLUT-4), insulin receptor substrate 1 (IRS-1), adenosine monophosphate-activated protein kinase (AMPK), hexokinase (HK) and phosphofructokinase (PFK)) together with a downregulation of lipogenic markers (fatty acid synthase (FAS)) in muscle and adipose tissue. Together, our data demonstrate that the reduction in food intake and weight gain, increase in lower gut hormones, glycemic improvements and associated changes in tissue metabolic markers following IT surgery are dependent on the length of the transposed ileum.
Static and Impulsive Models of Solar Active Regions
NASA Technical Reports Server (NTRS)
Patsourakos, S.; Klimchuk, James A.
2008-01-01
The physical modeling of active regions (ARs) and of the global coronal is receiving increasing interest lately. Recent attempts to model ARs using static equilibrium models were quite successful in reproducing AR images of hot soft X-ray (SXR) loops. They however failed to predict the bright EUV warm loops permeating ARs: the synthetic images were dominated by intense footpoint emission. We demonstrate that this failure is due to the very weak dependence of loop temperature on loop length which cannot simultaneously account for both hot and warm loops in the same AR. We then consider time-dependent AR models based on nanoflare heating. We demonstrate that such models can simultaneously reproduce EUV and SXR loops in ARs. Moreover, they predict radial intensity variations consistent with the localized core and extended emissions in SXR and EUV AR observations respectively. We finally show how the AR morphology can be used as a gauge of the properties (duration, energy, spatial dependence, repetition time) of the impulsive heating.
New insights into the passive force enhancement in skeletal muscles.
Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter
2007-01-01
The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, L. H.; Wang, X. D.; Yu, Q.
Temperature-dependent atomistic structure evolution of liquid gallium (Ga) has been investigated by using in situ high energy X-ray diffraction experiment and ab initio molecular dynamics simulation. Both experimental and theoretical results reveal the existence of a liquid structural change around 1000 K in liquid Ga. Below and above this temperature the liquid exhibits differences in activation energy for selfdiffusion, temperature-dependent heat capacity, coordination numbers, density, viscosity, electric resistivity and thermoelectric power, which are reflected from structural changes of the bond-orientational order parameter Q6, fraction of covalent dimers, averaged string length and local atomic packing. This finding will trigger more studiesmore » on the liquid-to-liquid crossover in metallic melts.« less
Hydrogen peroxide yields mechanistic insights into human mRNA capping enzyme function
Mullen, Nicholas J.
2017-01-01
Capping of nascent RNA polymerase II (Pol II) transcripts is required for gene expression and the first two steps are catalyzed by separate 5′ triphosphatase and guanylyltransferase activities of the human capping enzyme (HCE). The cap is added co-transcriptionally, but how the two activities are coordinated is unclear. Our previous in vitro work has suggested that an unidentified factor modulates the minimum length at which nascent transcripts can be capped. Using the same well-established in vitro system with hydrogen peroxide as a capping inhibitor, we show that this unidentified factor targets the guanylyltransferase activity of HCE. We also uncover the mechanism of HCE inhibition by hydrogen peroxide, and by using mass spectrometry demonstrate that the active site cysteine residue of the HCE triphosphatase domain becomes oxidized. Using recombinant proteins for the two separated HCE domains, we provide evidence that the triphosphatase normally acts on transcripts shorter than can be acted upon by the guanylyltransferase. Our further characterization of the capping reaction dependence on transcript length and its interaction with the unidentified modulator of capping raises the interesting possibility that the capping reaction could be regulated. PMID:29028835
Bajaj, Deepti; Allerton, Brianne M; Kirby, Joshua T; Miller, Freeman; Rowe, David A; Pohlig, Ryan T; Modlesky, Christopher M
2015-12-01
Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Forty typically developing children (20 boys and 20 girls; 6 to 12y) were included in the study. Measures of trabecular bone architecture [i.e., apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th) and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [cortical volume, total volume, section modulus (Z) and polar moment of inertia (J)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total physical activity and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r=0.81), appTb.N (r=0.53), appTb.Th (r=0.67), appTb.Sp (r=-0.71); all p<0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r=0.96), total volume (r=0.94), Z (r=0.94) and J (r=0.92; all p<0.001)]. Similar relationships were observed between femur length and measures of trabecular (p<0.01) and cortical (p<0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p>0.05). Because muscle volume and femur length were strongly related (r=0.91, p<0.001), muscle volume was scaled for femur length (muscle volume/femur length(2.77)). When muscle volume/femur length(2.77) was included in a regression model with femur length, sex, physical activity and calcium intake, muscle volume/femur length(2.77) was a significant predictor of appBV/TV, appTb.Th and appTb.Sp (partial r=0.44 to 0.49, p<0.05) and all measures of cortical bone architecture (partial r=0.47 to 0.54; p<0.01). The findings suggest that muscle volume in the midthigh is related to trabecular bone architecture in the distal femur of typically developing children. The relationship is weaker than the relationship between muscle volume in the midthigh and cortical bone architecture in the midfemur, but the discrepancy is driven, in large part, by the greater dependence of cortical bone architecture measures on femur length. Copyright © 2015. Published by Elsevier Inc.
New insights into neurogenic cyclic motor activity in the isolated guinea-pig colon.
Costa, M; Wiklendt, L; Keightley, L; Brookes, S J H; Dinning, P G; Spencer, N J
2017-10-01
The contents of the guinea pig distal colon consist of multiple pellets that move anally in a coordinated manner. This row of pellets results in continued distention of the colon. In this study, we have investigated quantitatively the features of the neurally dependent colonic motor patterns that are evoked by constant distension of the full length of guinea-pig colon. Constant distension was applied to the excised guinea-pig by high-resolution manometry catheters or by a series of hooks. Constant distension elicited regular Cyclic Motor Complexes (CMCs) that originated at multiple different sites along the colon and propagated in an oral or anal direction extending distances of 18.3±10.3 cm. CMCs were blocked by tetrodotoxin (TTX; 0.6 μ mol L -1 ), hexamethonium (100 μ mol L -1 ) or hyoscine (1 μ mol L -1 ). Application of TTX in a localized compartment or cutting the gut circumferentially disrupted the spatial continuity of CMCs. Localized smooth muscle contraction was not required for CMC propagation. Shortening the length of the preparations or disruption of circumferential pathways reduced the integrity and continuity of CMCs. CMCs are a distinctive neurally dependent cyclic motor pattern, that emerge with distension over long lengths of the distal colon. They do not require changes in muscle tension or contractility to entrain the neural activity underlying CMC propagation. CMCs are likely to play an important role interacting with the neuromechanical processes that time the propulsion of multiple natural pellets and may be particularly relevant in conditions of impaction or obstruction, where long segments of colon are simultaneously distended. © 2017 John Wiley & Sons Ltd.
A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling
Huang, Chiung-Yu; Qin, Jing; Follmann, Dean A.
2012-01-01
This paper considers semiparametric estimation of the Cox proportional hazards model for right-censored and length-biased data arising from prevalent sampling. To exploit the special structure of length-biased sampling, we propose a maximum pseudo-profile likelihood estimator, which can handle time-dependent covariates and is consistent under covariate-dependent censoring. Simulation studies show that the proposed estimator is more efficient than its competitors. A data analysis illustrates the methods and theory. PMID:23843659
NASA Astrophysics Data System (ADS)
Muthukrishnan, A.; Sangaranarayanan, M. V.
2007-10-01
The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.
Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John
1998-01-01
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776
Testing the time-of-flight model for flagellar length sensing.
Ishikawa, Hiroaki; Marshall, Wallace F
2017-11-07
Cilia and flagella are microtubule-based organelles that protrude from the surface of most cells, are important to the sensing of extracellular signals, and make a driving force for fluid flow. Maintenance of flagellar length requires an active transport process known as intraflagellar transport (IFT). Recent studies reveal that the amount of IFT injection negatively correlates with the length of flagella. These observations suggest that a length-dependent feedback regulates IFT. However, it is unknown how cells recognize the length of flagella and control IFT. Several theoretical models try to explain this feedback system. We focused on one of the models, the "time-of-flight" model, which measures the length of flagella on the basis of the travel time of IFT protein in the flagellar compartment. We tested the time-of-flight model using Chlamydomonas dynein mutant cells, which show slower retrograde transport speed. The amount of IFT injection in dynein mutant cells was higher than that in control cells. This observation does not support the prediction of the time-of-flight model and suggests that Chlamydomonas uses another length-control feedback system rather than that described by the time-of-flight model. © 2017 Ishikawa and Marshall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Biological responses according to the shape and size of carbon nanotubes in BEAS-2B and MESO-1 cells
Haniu, Hisao; Saito, Naoto; Matsuda, Yoshikazu; Tsukahara, Tamotsu; Usui, Yuki; Maruyama, Kayo; Takanashi, Seiji; Aoki, Kaoru; Kobayashi, Shinsuke; Nomura, Hiroki; Tanaka, Manabu; Okamoto, Masanori; Kato, Hiroyuki
2014-01-01
This study aimed to investigate the influence of the shape and size of multi-walled carbon nanotubes (MWCNTs) and cup-stacked carbon nanotubes (CSCNTs) on biological responses in vitro. Three types of MWCNTs – VGCF®-X, VGCF®-S, and VGCF® (vapor grown carbon fibers; with diameters of 15, 80, and 150 nm, respectively) – and three CSCNTs of different lengths (CS-L, 20–80 μm; CS-S, 0.5–20 μm; and CS-M, of intermediate length) were tested. Human bronchial epithelial (BEAS-2B) and malignant pleural mesothelioma cells were exposed to the CNTs (1–50 μg/mL), and cell viability, permeability, uptake, total reactive oxygen species/superoxide production, and intracellular acidity were measured. CSCNTs were less toxic than MWCNTs in both cell types over a 24-hour exposure period. The cytotoxicity of endocytosed MWCNTs varied according to cell type/size, while that of CSCNTs depended on tube length irrespective of cell type. CNT diameter and length influenced cell aggregation and injury extent. Intracellular acidity increased independently of lysosomal activity along with the number of vacuoles in BEAS-2B cells exposed for 24 hours to either CNT (concentration, 10 μg/mL). However, total reactive oxygen species/superoxide generation did not contribute to cytotoxicity. The results demonstrate that CSCNTs could be suitable for biological applications and that CNT shape and size can have differential effects depending on cell type, which can be exploited in the development of highly specialized, biocompatible CNTs. PMID:24790438
Parolini, Marco; Romano, Andrea; Khoriauli, Lela; Nergadze, Solomon G.; Caprioli, Manuela; Rubolini, Diego; Santagostino, Marco; Saino, Nicola; Giulotto, Elena
2015-01-01
Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual’s siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio. PMID:26565632
Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules
NASA Astrophysics Data System (ADS)
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a
Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor.
Lee, Jungsoon; Kim, Ji-Hyun; Biter, Amadeo B; Sielaff, Bernhard; Lee, Sukyeong; Tsai, Francis T F
2013-05-21
Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo-cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep-Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep-Tactin but no longer requires Hsp70/40. Consistent with a Strep-Tactin-dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.
Mutungi, Gabriel; Edman, K A P; Ranatunga, K W
2003-01-01
The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148
NASA Astrophysics Data System (ADS)
Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng
2015-06-01
The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.
Purification and properties of poliovirus RNA polymerase expressed in Escherichia coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotch, S.J.; Palant, O.; Gluzman, Y.
1989-01-01
A cDNA clone encoding the RNA polymerase of poliovirus has been expressed in Escherichia coli under the transcriptional control of a T7 bacteriophage promoter. This poliovirus enzyme was designed to contain only a single additional amino acid, the N-terminal methionine. The recombinant enzyme has been purified to near homogeneity, and polyclonal antibodies have been prepared against it. The enzyme exhibits poly(A)-dependent oligo(U)-primed ply(U) polymerase activity as well as RNA polymerase activity. In the presence of an oligo(U) primer, the enzyme catalyzes the synthesis of a full-length copy of either poliovirus or globin RNA templates. In the absence of added primer,more » RNA products up to twice the length of the template are synthesized. When incubated in the presence of a single nucleoside triphosphate, (..cap alpha..-/sup 32/P)UTP, the enzyme catalyzes the incorporation of radioactive label into template RNA. These results are discussed in light of previously proposed models of poliovirus RNA synthesis in vitro.« less
Electrostatic contribution to the persistence length of a semiflexible dipolar chain.
Podgornik, Rudi
2004-09-01
We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.
Mechanical properties of kinked silicon nanowires
NASA Astrophysics Data System (ADS)
Jing, Yuhang; Zhang, Chuan; Liu, Yingzhi; Guo, Licheng; Meng, Qingyuan
2015-04-01
Molecular dynamics simulations are used to investigate the mechanical properties of KSiNWs. Our results show that KSiNWs have a much larger fracture strain compared to straight SiNWs. The effects of the periodic length of KSiNWs with symmetric arms and the arm length of the KSiNW with asymmetric arms on the mechanical properties of KSiNWs are studied. The fracture stress of KSiNWs decrease as the periodic length increases. However, the fracture strain of KSiNWs is not dependent on the short periodic length and the fracture strain of KSiNWs will abruptly increase to very large value and then vary slightly as the periodic length increases. In addition, the fracture stress is not dependent on arm length while the fracture strain monotonically increases as the arm length increases. We also investigate the fracture process of KSiNWs. The results in this paper suggest that the KSiNWs with larger fracture strain can be a promising anode materials in high performance Li-ion batteries.
Turbulent flows over superhydrophobic surfaces with shear-dependent slip length
NASA Astrophysics Data System (ADS)
Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre
2015-11-01
Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).
Telomere Length Determines TERRA and R-Loop Regulation through the Cell Cycle.
Graf, Marco; Bonetti, Diego; Lockhart, Arianna; Serhal, Kamar; Kellner, Vanessa; Maicher, André; Jolivet, Pascale; Teixeira, Maria Teresa; Luke, Brian
2017-06-29
Maintenance of a minimal telomere length is essential to prevent cellular senescence. When critically short telomeres arise in the absence of telomerase, they can be repaired by homology-directed repair (HDR) to prevent premature senescence onset. It is unclear why specifically the shortest telomeres are targeted for HDR. We demonstrate that the non-coding RNA TERRA accumulates as HDR-promoting RNA-DNA hybrids (R-loops) preferentially at very short telomeres. The increased level of TERRA and R-loops, exclusively at short telomeres, is due to a local defect in RNA degradation by the Rat1 and RNase H2 nucleases, respectively. Consequently, the coordination of TERRA degradation with telomere replication is altered at shortened telomeres. R-loop persistence at short telomeres contributes to activation of the DNA damage response (DDR) and promotes recruitment of the Rad51 recombinase. Thus, the telomere length-dependent regulation of TERRA and TERRA R-loops is a critical determinant of the rate of replicative senescence. Copyright © 2017 Elsevier Inc. All rights reserved.
Tumour-cell apoptosis after cisplatin treatment is not telomere dependent.
Jeyapalan, Jessie C; Saretzki, Gabriele; Leake, Alan; Tilby, Michael J; von Zglinicki, Thomas
2006-06-01
Cisplatin is a major chemotherapeutic agent, especially for the treatment of neuroblastoma. Telomeres with their sequence (TTAGGG)n are probable targets for cisplatin intrastrand cross-linking, but the role of telomeres in mediating cisplatin cytotoxicity is not clear. After exposure to cisplatin as single dose or continuous treatment, we found no loss of telomeres in either SHSY5Y neuroblastoma cells (telomere length, approximately 4 kbp), HeLa 229 cells (telomere length, 20 kbp) or in the acute lymphoblastic T cell line 1301 (telomere length, approximately 80 kbp). There was no induction of telomeric single strand breaks, telomeric overhangs were not degraded and telomerase activity was down-regulated only after massive onset of apoptosis. In contrast, cisplatin induced a delayed formation of DNA strand breaks and induced DNA damage foci containing gamma-H2A.X at nontelomeric sites. Interstitial DNA damage appears to be more important than telomere loss or telomeric damage as inducer of the signal pathway towards apoptosis and/or growth arrest in cisplatin-treated tumour cells.
2012-01-01
Background Preparation of tyrosyl lipophilic derivatives was carried out as a response to the food, cosmetic and pharmaceutical industries' increasing demand for new lipophilic antioxidants. Results A large series of tyrosyl esters (TyC2 to TyC18:1) with increasing lipophilicity was synthesized in a good yield using lipase from Candida antarctica (Novozyme 435). Spectroscopic analyses of purified esters showed that the tyrosol was esterified on the primary hydroxyl group. Synthetized compounds were evaluated for either their antimicrobial activity, by both diffusion well and minimal inhibition concentration (MIC) methods, or their antileishmanial activity against Leishmania major and Leishmania infantum parasite species. Among all the tested compounds, our results showed that only TyC8, TyC10 and TyC12 exhibited antibacterial and antileishmanial activities. When MIC and IC50 values were plotted against the acyl chain length of each tyrosyl derivative, TyC10 showed a parabolic shape with a minimum value. This nonlinear dependency with the increase of the chain length indicates that biological activities are probably associated to the surfactant effectiveness of lipophilic derivatives. Conclusion These results open up potential applications to use medium tyrosyl derivatives surfactants, antioxidants, antimicrobial and antileishmanial compounds in cosmetic, food and pharmaceutical industries. PMID:22264330
Schmelcher, Mathias; Korobova, Olga; Schischkova, Nina; Kiseleva, Natalia; Kopylov, Paul; Pryamchuk, Sergey; Donovan, David M.; Abaev, Igor
2014-01-01
Staphylococcus aureus is an important pathogen, with methicillin-resistant (MRSA) and multi-drug resistant strains becoming increasingly prevalent in both human and veterinary clinics. S. aureus causing bovine mastitis yields high annual losses to the dairy industry. Conventional treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins present a promising new source of antimicrobials. The endolysin of prophage ΦSH2 of Staphylococcus haemolyticus strain JCSC1435 (ΦSH2 lysin) is a peptidoglycan hydrolase consisting of two catalytic domains (CHAP and amidase) and an SH3b cell wall binding domain. In this work, we demonstrated its lytic activity against live staphylococcal cells and investigated the contribution of each functional module to bacterial lysis by testing a series of deletion constructs in zymograms and turbidity reduction assays. The CHAP domain exhibited three-fold higher activity than the full length protein and optimum activity in physiological saline. This activity was further enhanced by the presence of bivalent calcium ions. The SH3b domain was shown to be required for full activity of the complete ΦSH2 lysin. The full length enzyme and the CHAP domain showed activity against multiple staphylococcal strains, including MRSA strains, mastitis isolates, and CoNS. PMID:23026556
Schmelcher, Mathias; Korobova, Olga; Schischkova, Nina; Kiseleva, Natalia; Kopylov, Paul; Pryamchuk, Sergey; Donovan, David M; Abaev, Igor
2012-12-31
Staphylococcus aureus is an important pathogen, with methicillin-resistant (MRSA) and multi-drug resistant strains becoming increasingly prevalent in both human and veterinary clinics. S. aureus causing bovine mastitis yields high annual losses to the dairy industry. Conventional treatment of mastitis by broad range antibiotics is often not successful and may contribute to development of antibiotic resistance. Bacteriophage endolysins present a promising new source of antimicrobials. The endolysin of prophage ΦSH2 of Staphylococcus haemolyticus strain JCSC1435 (ΦSH2 lysin) is a peptidoglycan hydrolase consisting of two catalytic domains (CHAP and amidase) and an SH3b cell wall binding domain. In this work, we demonstrated its lytic activity against live staphylococcal cells and investigated the contribution of each functional module to bacterial lysis by testing a series of deletion constructs in zymograms and turbidity reduction assays. The CHAP domain exhibited three-fold higher activity than the full length protein and optimum activity in physiological saline. This activity was further enhanced by the presence of bivalent calcium ions. The SH3b domain was shown to be required for full activity of the complete ΦSH2 lysin. The full length enzyme and the CHAP domain showed activity against multiple staphylococcal strains, including MRSA strains, mastitis isolates, and CoNS. Published by Elsevier B.V.
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur
2011-06-01
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
The length and time scales of water's glass transitions
NASA Astrophysics Data System (ADS)
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The length and time scales of water's glass transitions.
Limmer, David T
2014-06-07
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca
2016-04-18
We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.
Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons
NASA Astrophysics Data System (ADS)
Majee, Arnab K.; Aksamija, Zlatan
2016-06-01
Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m
Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13
Grandin, Nathalie; Damon, Christelle; Charbonneau, Michel
2001-01-01
In Saccharomyces cerevisiae, Cdc13 has been proposed to mediate telomerase recruitment at telomere ends. Stn1, which associates with Cdc13 by the two-hybrid interaction, has been implicated in telomere maintenance. Ten1, a previously uncharacterized protein, was found to associate physically with both Stn1 and Cdc13. A binding defect between Stn1-13 and Ten1 was responsible for the long telomere phenotype of stn1-13 mutant cells. Moreover, rescue of the cdc13-1 mutation by STN1 was much improved when TEN1 was simultaneously overexpressed. Several ten1 mutations were found to confer telomerase-dependent telomere lengthening. Other, temperature-sensitive, mutants of TEN1 arrested at G2/M via activation of the Rad9-dependent DNA damage checkpoint. These ten1 mutant cells were found to accumulate single-stranded DNA in telomeric regions of the chromosomes. We propose that Ten1 is required to regulate telomere length, as well as to prevent lethal damage to telomeric DNA. PMID:11230140
Yu, Yinan; Wang, Yicheng; Pratt, Jon R
2016-03-01
Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.
Day length is associated with physical activity and sedentary behavior among older women.
Schepps, Mitchell A; Shiroma, Eric J; Kamada, Masamitsu; Harris, Tamara B; Lee, I-Min
2018-04-26
Physical activity may be influenced by one's physical environment, including day length and weather. Studies of physical activity, day length, and weather have primarily used self-reported activity, broad meteorological categorization, and limited geographic regions. We aim to examine the association of day length and physical activity in a large cohort of older women, covering a wide geographic range. Participants (N = 16,741; mean (SD) age = 72.0 (SD = 5.7) years) were drawn from the Women's Health Study and lived throughout the United States. Physical activity was assessed by accelerometer (ActiGraph GT3X+) between 2011 and 2015. Day length and weather information were obtained by matching weather stations to the participants' location using National Oceanic and Atmospheric Administration databases. Women who experienced day lengths greater than 14 hours had 5.5% more steps, 9.4% more moderate-to-vigorous physical activity, and 1.6% less sedentary behavior, compared to women who experienced day lengths less than 10 hours, after adjusting for age, accelerometer wear, temperature, and precipitation. Day length is associated with physical activity and sedentary behavior in older women, and needs to be considered in programs promoting physical activity as well as in the analyses of accelerometer data covering wide geographic regions.
Applicability of cable theory to vascular conducted responses.
Hald, Bjørn Olav; Jensen, Lars Jørn; Sørensen, Preben Graae; Holstein-Rathlou, Niels-Henrik; Jacobsen, Jens Christian Brings
2012-03-21
Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, λ, derived from cable theory. However, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether λ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, λ should be interpreted as a descriptive measure and not in light of cable theory. Determination of λ using cable theory assumes steady-state conditions. In contrast, using the model it is possible to probe how conduction behaves before steady state is achieved. As ion channels have time-dependent activation and inactivation, the conduction profile changes considerably during this dynamic period with an initially longer spread of current. This may have implications in relation to explaining why different agonists have different conduction properties. Also, it illustrates the necessity of using and developing models that handle the nonlinearity of ion channels. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Samanifar, S.; Alikhani, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.
2017-05-01
Nanoscale magnetic alloy wires are being actively investigated, providing fundamental insights into tuning properties in magnetic data storage and processing technologies. However, previous studies give trivial information about the crossover angle of magnetization reversal process in alloy nanowires (NWs). Here, magnetic alloy NW arrays with different compositions, composed of Fe, Co and Ni have been electrochemically deposited into hard-anodic aluminum oxide templates with a pore diameter of approximately 150 nm. Under optimized conditions of alumina barrier layer and deposition bath concentrations, the resulting alloy NWs with aspect ratio and saturation magnetization (Ms) up to 550 and 1900 emu cm-3, respectively, are systematically investigated in terms of composition, crystalline structure and magnetic properties. Using angular dependence of coercivity extracted from hysteresis loops, the reversal processes are evaluated, indicating non-monotonic behavior. The crossover angle (θc) is found to depend on NW length and Ms. At a constant Ms, increasing NW length decreases θc, thereby decreasing the involvement of vortex mode during the magnetization reversal process. On the other hand, decreasing Ms decreases θc in large aspect ratio (>300) alloy NWs. Phenomenologically, it is newly found that increasing Ni content in the composition decreases θc. The angular first-order reversal curve (AFORC) measurements including the irreversibility of magnetization are also investigated to gain a more detailed insight into θc.
Shield, Alison J; Murray, Tracy P; Board, Philip G
2006-09-08
Mutations in the ganglioside-induced differentiation-associated protein 1 (GDAP1) gene have been linked with Charcot-Marie-Tooth (CMT) disease. This protein, and its paralogue GDAP1L1, appear to be structurally related to the cytosolic glutathione S-transferases (GST) including an N-terminal thioredoxin fold domain with conserved active site residues. The specific function, of GDAP1 remains unknown. To further characterise their structure and function we purified recombinant human GDAP1 and GDAP1L1 proteins using bacterial expression and immobilised metal affinity chromatography. Like other cytosolic GSTs, GDAP1 protein has a dimeric structure. Although the full-length proteins were largely insoluble, the deletion of a proposed C-terminal transmembrane domain allowed the preparation of soluble protein. The purified proteins were assayed for glutathione-dependent activity against a library of 'prototypic' GST substrates. No evidence of glutathione-dependent activity or an ability to bind glutathione immobilised on agarose was found.
NASA Astrophysics Data System (ADS)
Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew
2017-04-01
OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.
Evaluation of aluminum indices to predict aluminum toxicity to plants grown in nutrient solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alva, A.K.; Blamey, F.P.C.; Edwards, D.G.
1986-01-01
Difficulty has been experienced in establishing a suitable aluminum (Al) index to predict Al toxicity to plants grown in nutrient solutions with a wide range of properties. In the present study, relationships were evaluated between root length and (i) concentration of total Al, (ii) concentration of monomeric Al, and (iii) the sum of the activities of monomeric Al species (..sigma..a/sub Al mono/) in solution. Results are reported for soybean (Glycine max (L.) Merr.), subterranean clover (Trifolium subterraneum L.), alfalfa (Medicago sativa L.), and sunflower (Helianthus annuus L.). Total Al concentration in solution, comprising polymeric and monomeric Al species, was amore » poor index of Al toxicity, confirming the hypothesis that only monomeric Al is toxic to root growth. In solutions with widely differing composition, the concentration of monomeric Al also proved unsatisfactory due to ionic strength effects on the activities of monomeric Al species. ..sigma..a/sub Al mono/ was the best index of Al toxicity, accounting for 72 to 92% of the variation in root length depending on the plant species. Root length was reduced by 50% at ..sigma..a/sub Al mono/ of 7-16 ..mu..M in soybean, 13 ..mu..M in subterranean clover and alfalfa, and 11 ..mu..M in sunflower.« less
NASA Astrophysics Data System (ADS)
Lee, Hwi Don; Lee, Ju Han; Yung Jeong, Myung; Kim, Chang-Seok
2011-07-01
The static and dynamic characteristics of a wavelength-swept active mode locking (AML) fiber laser are presented in both the time-region and wavelength-region. This paper shows experimentally that the linewidth of a laser spectrum and the bandwidth of the sweeping wavelength are dependent directly on the length and dispersion of the fiber cavity as well as the modulation frequency and sweeping rate under the mode-locking condition. To achieve a narrower linewidth, a longer length and higher dispersion of the fiber cavity as well as a higher order mode locking condition are required simultaneously. For a broader bandwidth, a lower order of the mode locking condition is required using a lower modulation frequency. The dynamic sweeping performance is also analyzed experimentally to determine its applicability to optical coherence tomography imaging. It is shown that the maximum sweeping rate can be improved by the increased free spectral range from the shorter length of the fiber cavity. A reflective semiconductor optical amplifier (RSOA) was used to enhance the modulation and dispersion efficiency. Overall a triangular electrical signal can be used instead of the sinusoidal signal to sweep the lasing wavelength at a high sweeping rate due to the lack of mechanical restrictions in the wavelength sweeping mechanism.
NASA Astrophysics Data System (ADS)
Raju, K. P.
2018-05-01
The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.
Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm
Hu, Xiao; Murray, Wendy M.
2011-01-01
The mechanical properties of the human arm are regulated to maintain stability across many tasks. The static mechanics of the arm can be characterized by estimates of endpoint stiffness, considered especially relevant for the maintenance of posture. At a fixed posture, endpoint stiffness can be regulated by changes in muscle activation, but which activation-dependent muscle properties contribute to this global measure of limb mechanics remains unclear. We evaluated the role of muscle properties in the regulation of endpoint stiffness by incorporating scalable models of muscle stiffness into a three-dimensional musculoskeletal model of the human arm. Two classes of muscle models were tested: one characterizing short-range stiffness and two estimating stiffness from the slope of the force-length curve. All models were compared with previously collected experimental data describing how endpoint stiffness varies with changes in voluntary force. Importantly, muscle properties were not fit to the experimental data but scaled only by the geometry of individual muscles in the model. We found that force-dependent variations in endpoint stiffness were accurately described by the short-range stiffness of active arm muscles. Over the wide range of evaluated arm postures and voluntary forces, the musculoskeletal model incorporating short-range stiffness accounted for 98 ± 2, 91 ± 4, and 82 ± 12% of the variance in stiffness orientation, shape, and area, respectively, across all simulated subjects. In contrast, estimates based on muscle force-length curves were less accurate in all measures, especially stiffness area. These results suggest that muscle short-range stiffness is a major contributor to endpoint stiffness of the human arm. Furthermore, the developed model provides an important tool for assessing how the nervous system may regulate endpoint stiffness via changes in muscle activation. PMID:21289133
Melkina, Olga E; Koval, Vasilii S; Ivanov, Alexander A; Zhuze, Alexei L; Zavilgelsky, Gennadii B
2018-03-01
DNA sequence-specific fluorescent dimeric bisbenzimidazoles DBP(n) and DBPA(n), noncovalently interacting with A-T pairs in the minor groove of double-stranded DNA were used for studying and monitoring the expression of histone-like H-NS-dependent promoters. Histone-like H-NS selectively binds to AT-rich segments of DNA and silences a large number of genes in bacterial chromosomes. The H-NS-dependent promoters of Quorum Sensing (QS)-regulated lux operons of the marine bacteria mesophilic Aliivibrio fischeri, psychrophilic Aliivibrio logei were used. Escherichia coli lux biosensors were constructed by cloning fragments bearing QS-regulated promoters into the vector, thereby placing each fragment upstream of the promoterless Photorhabdus luminescens luxCDABE genes. It was shown that the dimeric bisbenzimidazoles DBP(n) and DBPA(n) counteract the H-NS silencing activity. Thus, the presence of DBP(n) or DBPA(n) in the medium leads to an approximately 10-100-fold increase in the level of transcription of QS promoters in E. coli hns + . The largest decrease in the level of H-NS repression was observed using ligands containing a linker with a length of ca. 18Å, such as DBP(2) and DBPA(2). Ligands containing linkers with n=1 and 3 are an order of magnitude less active; ligands with n=4 are inactive. DBPA(2) exhibits activity starting with a concentration of 0.5μM; the minimum concentration of DBP(2) is 5-7 times higher. It is suggested that A-T pairs located at five nucleotide pair intervals, which correspond to the linker length in highly active ligands with n=2, play a key role in the structure of H-NS-binding sites in QS-regulated promoters. Copyright © 2017 Elsevier GmbH. All rights reserved.
Laboratory on Legs: An Architecture for Adjustable Morphology with Legged Robots
2012-04-01
fit within the body of the robot. Additional capabilities will largely depend upon a given activity, and should be easily reconfigurable to maximize...mobile robots, the essential units of actuation, computation, and sensing must be designed to fit within the body of the robot. Additional...PackBot,36 among others. Two parallel rails, 40 cm long and spaced at a center-to-center distance of 14 cm, span the length of the each robot’s body
Development of Coactivator-Dependent, First-in-Class Therapies for Breast Cancer
2014-09-01
star: AMP-activated protein kinase stimulates fat absorption. Cell Metab. 13:1–2 53. Reineke EL, York B, Stashi E, et al. 2012. SRC-2 coactivator...receptor/SRC-3 protein complexes achieved by our group are providing powerful new insights into understanding the conformation of intact, full...length proteins in a complex and should provide valuable new information on the mechanism of action of SRC SMIs as well. 15. SUBJECT TERMS Breast
Morphometric analysis of cisplatin-induced neurite outgrowth in N1E-115 neuroblastoma cells.
Konings, P N; Philipsen, R L; van den Broek, J H; Ruigt, G S
1994-08-29
Cisplatin, a widely used cytostatic drug for the control of a variety of neoplastic tumors, unexpectedly induced neurite outgrowth in N1E-115 neuroblastoma cells and this phenomenon was studied further in detail with morphometric analysis. As expected, cisplatin dose-dependently reduced cell number. At the same time, however, cisplatin affected the morphology of the neuroblastoma cells that changed from small rounded cell bodies into large flat cell bodies with neurites. The neurite length/cell as a function of cisplatin concentration showed a bell-shaped curve. The maximal effect (1200% of control) on neurite length/cell was observed at 1 microgram/ml cisplatin. In conclusion, cisplatin induced cellular differentiation in N1E-115 neuroblastoma cells at and just above threshold doses for cytostatic activity.
Seed-specific transcription factor HSFA9 links late embryogenesis and early photomorphogenesis
Prieto-Dapena, Pilar; Almoguera, Concepción; Personat, José-María; Merchan, Francisco
2017-01-01
Abstract HSFA9 is a seed-specific transcription factor that in sunflower (Helianthus annuus) is involved in desiccation tolerance and longevity. Here we show that the constitutive overexpression of HSFA9 in tobacco (Nicotiana tabacum) seedlings attenuated hypocotyl growth under darkness and accelerated the initial photosynthetic development. Plants overexpressing HSFA9 increased accumulation of carotenoids, chlorophyllide, and chlorophyll, and displayed earlier unfolding of the cotyledons. HSFA9 enhanced phytochrome-dependent light responses, as shown by an intensified hypocotyl length reduction after treatments with continuous far-red or red light. This observation indicated the involvement of at least two phytochromes: PHYA and PHYB. Reduced hypocotyl length under darkness did not depend on phytochrome photo-activation; this was inferred from the lack of effect observed using far-red light pulses applied before the dark treatment. HSFA9 increased the expression of genes that activate photomorphogenesis, including PHYA, PHYB, and HY5. HSFA9 might directly upregulate PHYA and indirectly affect PHYB transcription, as suggested by transient expression assays. Converse effects on gene expression, greening, and cotyledon unfolding were observed using a dominant-negative form of HSFA9, which was overexpressed under a seed-specific promoter. This work uncovers a novel transcriptional link, through HSFA9, between seed maturation and early photomorphogenesis. In all, our data suggest that HSFA9 enhances photomorphogenesis via early transcriptional effects that start in seeds under darkness. PMID:28207924
Gao, Ang; Vasilyev, Nikita; Luciano, Daniel J; Levenson-Palmer, Rose; Richards, Jamie; Marsiglia, William M; Traaseth, Nathaniel J; Belasco, Joel G; Serganov, Alexander
2018-05-04
Vitally important for controlling gene expression in eukaryotes and prokaryotes, the deprotection of mRNA 5' termini is governed by enzymes whose activity is modulated by interactions with ancillary factors. In Escherichia coli, 5'-end-dependent mRNA degradation begins with the generation of monophosphorylated 5' termini by the RNA pyrophosphohydrolase RppH, which can be stimulated by DapF, a diaminopimelate epimerase involved in amino acid and cell wall biosynthesis. We have determined crystal structures of RppH-DapF complexes and measured rates of RNA deprotection. These studies show that DapF potentiates RppH activity in two ways, depending on the nature of the substrate. Its stimulatory effect on the reactivity of diphosphorylated RNAs, the predominant natural substrates of RppH, requires a substrate long enough to reach DapF in the complex, while the enhanced reactivity of triphosphorylated RNAs appears to involve DapF-induced changes in RppH itself and likewise increases with substrate length. This study provides a basis for understanding the intricate relationship between cellular metabolism and mRNA decay and reveals striking parallels with the stimulation of decapping activity in eukaryotes.
Bond Length Dependence on Quantum States as Shown by Spectroscopy
ERIC Educational Resources Information Center
Lim, Kieran F.
2005-01-01
A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…
INTERPRETATION OF THE CANCER RESPONSE TO POTENTIAL RENAL CARCINOGENS IN THE TSC2 KNOCKOUT (EKER) RAT IS DEPENDENT ON LENGTH OF TREATMENT.
Genetically increasing the function of oncogenes or knocking out the function of a tumor supressor gene has dramatically increased the...
Engelkes, Vincent B; Beebe, Jeremy M; Frisbie, C Daniel
2004-11-03
Nanoscopic tunnel junctions were formed by contacting Au-, Pt-, or Ag-coated atomic force microscopy (AFM) tips to self-assembled monolayers (SAMs) of alkanethiol or alkanedithiol molecules on polycrystalline Au, Pt, or Ag substrates. Current-voltage traces exhibited sigmoidal behavior and an exponential attenuation with molecular length, characteristic of nonresonant tunneling. The length-dependent decay parameter, beta, was found to be approximately 1.1 per carbon atom (C(-1)) or 0.88 A(-)(1) and was independent of applied bias (over a voltage range of +/-1.5 V) and electrode work function. In contrast, the contact resistance, R(0), extrapolated from resistance versus molecular length plots showed a notable decrease with both applied bias and increasing electrode work function. The doubly bound alkanedithiol junctions were observed to have a contact resistance approximately 1 to 2 orders of magnitude lower than the singly bound alkanethiol junctions. However, both alkanethiol and dithiol junctions exhibited the same length dependence (beta value). The resistance versus length data were also used to calculate transmission values for each type of contact (e.g., Au-S-C, Au/CH(3), etc.) and the transmission per C-C bond (T(C)(-)()(C)).
The Active Fault Parameters for Time-Dependent Earthquake Hazard Assessment in Taiwan
NASA Astrophysics Data System (ADS)
Lee, Y.; Cheng, C.; Lin, P.; Shao, K.; Wu, Y.; Shih, C.
2011-12-01
Taiwan is located at the boundary between the Philippine Sea Plate and the Eurasian Plate, with a convergence rate of ~ 80 mm/yr in a ~N118E direction. The plate motion is so active that earthquake is very frequent. In the Taiwan area, disaster-inducing earthquakes often result from active faults. For this reason, it's an important subject to understand the activity and hazard of active faults. The active faults in Taiwan are mainly located in the Western Foothills and the Eastern longitudinal valley. Active fault distribution map published by the Central Geological Survey (CGS) in 2010 shows that there are 31 active faults in the island of Taiwan and some of which are related to earthquake. Many researchers have investigated these active faults and continuously update new data and results, but few people have integrated them for time-dependent earthquake hazard assessment. In this study, we want to gather previous researches and field work results and then integrate these data as an active fault parameters table for time-dependent earthquake hazard assessment. We are going to gather the seismic profiles or earthquake relocation of a fault and then combine the fault trace on land to establish the 3D fault geometry model in GIS system. We collect the researches of fault source scaling in Taiwan and estimate the maximum magnitude from fault length or fault area. We use the characteristic earthquake model to evaluate the active fault earthquake recurrence interval. In the other parameters, we will collect previous studies or historical references and complete our parameter table of active faults in Taiwan. The WG08 have done the time-dependent earthquake hazard assessment of active faults in California. They established the fault models, deformation models, earthquake rate models, and probability models and then compute the probability of faults in California. Following these steps, we have the preliminary evaluated probability of earthquake-related hazards in certain faults in Taiwan. By accomplishing active fault parameters table in Taiwan, we would apply it in time-dependent earthquake hazard assessment. The result can also give engineers a reference for design. Furthermore, it can be applied in the seismic hazard map to mitigate disasters.
Dynamin phosphorylation controls optimization of endocytosis for brief action potential bursts
Armbruster, Moritz; Messa, Mirko; Ferguson, Shawn M; De Camilli, Pietro; Ryan, Timothy A
2013-01-01
Modulation of synaptic vesicle retrieval is considered to be potentially important in steady-state synaptic performance. Here we show that at physiological temperature endocytosis kinetics at hippocampal and cortical nerve terminals show a bi-phasic dependence on electrical activity. Endocytosis accelerates for the first 15–25 APs during bursts of action potential firing, after which it slows with increasing burst length creating an optimum stimulus for this kinetic parameter. We show that activity-dependent acceleration is only prominent at physiological temperature and that the mechanism of this modulation is based on the dephosphorylation of dynamin 1. Nerve terminals in which dynamin 1 and 3 have been replaced with dynamin 1 harboring dephospho- or phospho-mimetic mutations in the proline-rich domain eliminate the acceleration phase by either setting endocytosis at an accelerated state or a decelerated state, respectively. DOI: http://dx.doi.org/10.7554/eLife.00845.001 PMID:23908769
In situ biasing and off-axis electron holography of a ZnO nanowire
NASA Astrophysics Data System (ADS)
den Hertog, Martien; Donatini, Fabrice; McLeod, Robert; Monroy, Eva; Sartel, Corinne; Sallet, Vincent; Pernot, Julien
2018-01-01
Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons [1-3], ions [4] or field ionization effects [5-7] study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1 × 1018 cm-3 and negative sidewall surface charge of 2.5 × 1012 cm-2 of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed.
NASA Astrophysics Data System (ADS)
Wahlquist, Joseph A.
This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.
Anomalous transport in fluid field with random waiting time depending on the preceding jump length
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Guo-Hua
2016-11-01
Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).
Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.
Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F
1991-01-01
The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.
Banda, Jorge A; Haydel, K Farish; Davila, Tania; Desai, Manisha; Bryson, Susan; Haskell, William L; Matheson, Donna; Robinson, Thomas N
2016-01-01
To examine the effects of accelerometer epoch lengths, wear time (WT) algorithms, and activity cut-points on estimates of WT, sedentary behavior (SB), and physical activity (PA). 268 7-11 year-olds with BMI ≥ 85th percentile for age and sex wore accelerometers on their right hips for 4-7 days. Data were processed and analyzed at epoch lengths of 1-, 5-, 10-, 15-, 30-, and 60-seconds. For each epoch length, WT minutes/day was determined using three common WT algorithms, and minutes/day and percent time spent in SB, light (LPA), moderate (MPA), and vigorous (VPA) PA were determined using five common activity cut-points. ANOVA tested differences in WT, SB, LPA, MPA, VPA, and MVPA when using the different epoch lengths, WT algorithms, and activity cut-points. WT minutes/day varied significantly by epoch length when using the NHANES WT algorithm (p < .0001), but did not vary significantly by epoch length when using the ≥ 20 minute consecutive zero or Choi WT algorithms. Minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA varied significantly by epoch length for all sets of activity cut-points tested with all three WT algorithms (all p < .0001). Across all epoch lengths, minutes/day and percent time spent in SB, LPA, MPA, VPA, and MVPA also varied significantly across all sets of activity cut-points with all three WT algorithms (all p < .0001). The common practice of converting WT algorithms and activity cut-point definitions to match different epoch lengths may introduce significant errors. Estimates of SB and PA from studies that process and analyze data using different epoch lengths, WT algorithms, and/or activity cut-points are not comparable, potentially leading to very different results, interpretations, and conclusions, misleading research and public policy.
Telomere length in alcohol dependence: A role for impulsive choice and childhood maltreatment.
Kang, Jee In; Hwang, Syung Shick; Choi, Jong Rak; Lee, Seung-Tae; Kim, Jieun; Hwang, In Sik; Kim, Hae Won; Kim, Chan-Hyung; Kim, Se Joo
2017-09-01
Telomere shortening, a marker of cellular aging, has been considered to be linked with psychosocial stress as well as with chronic alcohol consumption, possibly mediated by oxidative stress and inflammatory response. Recent findings suggested that early life adversity on telomere dynamics may be related to impulsive choice. To further our understanding of the association of impulsive choice and childhood trauma on telomere length, we examined whether delayed discounting and childhood trauma or their interaction is related to leukocyte telomere length, while controlling for multiple potential confounding variables, in patients with alcohol dependence who are considered to have higher impulsive choice and shorter telomere length. We recruited 253 male patients with chronic alcohol dependence. All participants performed the delay discounting task, and the area under curve was used as a measure of delay discounting. Steeper delay discounting represents more impulsive choices. The modified Parent-Child Conflict Tactics Scale was used to measure childhood maltreatment. In addition, confounding factors, including socio-demographic characteristics, the Alcohol Use Disorders Identification Test, the Buss-Perry Aggression Questionnaire, the Resilience Quotient, the Beck Depression Inventory, and the Beck Anxiety Inventory, were also assessed. Hierarchical regression analyses showed a significant main effect of delay discounting (β=0.161, t=2.640, p=0.009), and an interaction effect between delay discounting and childhood maltreatment on leukocyte telomere length (β=0.173, t=2.138, p=0.034). In subsequent analyses stratified by childhood maltreatment, patients with alcohol dependence and high childhood trauma showed a significant relationship between delay discounting and leukocyte telomere length (β=0.279, t=3.183, p=0.002), while those with low trauma showed no association between them. Our findings suggest that higher impulsive choice is associated with shorter telomere length, and childhood trauma may exert a moderating effect in the relationship between impulsive choice and telomere length. Copyright © 2017. Published by Elsevier Ltd.
Localization of Hydrogen Ion and Chloride Ion Fluxes in Nitella
Spear, Donald G.; Barr, June K.; Barr, C. E.
1969-01-01
Alternating bands of acid and base formation have been detected along the length of the internodal cell of Nitella clavata when it is illuminated, while in the dark this phenomenon is minimal. Chloride influx occurs only or largely in the acid-extruding regions, and this is also a light-dependent ion movement. Chloride efflux is slightly dependent on illumination and is not localized as are H+ efflux and Cl- influx. The results obtained support Kitasato's (1968) proposal that a large passive H+ influx is balanced by an active efflux of this ion. Transport mechanisms suggested by the correlations of Cl- and HCO3 - influxes with H+ extrusion are discussed. PMID:5806597
Nixon, Benjamin R.; Thawornkaiwong, Ariyoporn; Jin, Janel; Brundage, Elizabeth A.; Little, Sean C.; Davis, Jonathan P.; Solaro, R. John; Biesiadecki, Brandon J.
2012-01-01
AMP-activated protein kinase (AMPK) is an energy-sensing enzyme central to the regulation of metabolic homeostasis. In the heart AMPK is activated during cardiac stress-induced ATP depletion and functions to stimulate metabolic pathways that restore the AMP/ATP balance. Recently it was demonstrated that AMPK phosphorylates cardiac troponin I (cTnI) at Ser-150 in vitro. We sought to determine if the metabolic regulatory kinase AMPK phosphorylates cTnI at Ser-150 in vivo to alter cardiac contractile function directly at the level of the myofilament. Rabbit cardiac myofibrils separated by two-dimensional isoelectric focusing subjected to a Western blot with a cTnI phosphorylation-specific antibody demonstrates that cTnI is endogenously phosphorylated at Ser-150 in the heart. Treatment of myofibrils with the AMPK holoenzyme increased cTnI Ser-150 phosphorylation within the constraints of the muscle lattice. Compared with controls, cardiac fiber bundles exchanged with troponin containing cTnI pseudo-phosphorylated at Ser-150 demonstrate increased sensitivity of calcium-dependent force development, blunting of both PKA-dependent calcium desensitization, and PKA-dependent increases in length dependent activation. Thus, in addition to the defined role of AMPK as a cardiac metabolic energy gauge, these data demonstrate AMPK Ser-150 phosphorylation of cTnI directly links the regulation of cardiac metabolic demand to myofilament contractile energetics. Furthermore, the blunting effect of cTnI Ser-150 phosphorylation cross-talk can uncouple the effects of myofilament PKA-dependent phosphorylation from β-adrenergic signaling as a novel thin filament contractile regulatory signaling mechanism. PMID:22493448
Colquhoun, D; Sakmann, B
1985-01-01
The fine structure of ion-channel activations by junctional nicotinic receptors in adult frog muscle fibres has been investigated. The agonists used were acetylcholine (ACh), carbachol (CCh), suberyldicholine (SubCh) and decan-1,10-dicarboxylic acid dicholine ester (DecCh). Individual activations (bursts) were interrupted by short closed periods; the distribution of their durations showed a major fast component ('short gaps') and a minor slower component ('intermediate gaps'). The mean duration of both short and intermediate gaps was dependent on the nature of the agonist. For short gaps the mean durations (microseconds) were: ACh, 20; SubCh, 43; DecCh, 71; CCh, 13. The mean number of short gaps per burst were: ACh, 1.9; SubCh, 4.1; DecCh, 2.0. The mean number of short gaps per burst, and the mean number per unit open time, were dependent on the nature of the agonist, but showed little dependence on agonist concentration or membrane potential for ACh, SubCh and DecCh. The short gaps in CCh increased in frequency with agonist concentration and were mainly produced by channel blockages by CCh itself. Partially open channels (subconductance states) were clearly resolved rarely (0.4% of gaps within bursts) but regularly. Conductances of 18% (most commonly) and 71% of the main value were found. However, most short gaps were probably full closures. The distribution of burst lengths had two components. The faster component represented mainly isolated short openings that were much more common at low agonist concentrations. The slower component represented bursts of longer openings. Except at very low concentrations more than 85% of activations were of this type, which corresponds to the 'channel lifetime' found by noise analysis. The frequency of channel openings increased slightly with hyperpolarization. The short gaps during activations were little affected when (a) the [H+]o or [Ca2+]o were reduced to 1/10th of normal, (b) when extracellular Ca2+ was replaced by Mg2+, (c) when the [Cl-]i was raised or (d) when, in one experiment on an isolated inside-out patch, the normal intracellular constituents were replaced by KCl. Reduction of [Ca2+]O to 1/10 of normal increased the single-channel conductance by 50%, and considerably increased the number of intermediate gaps. No temporal asymmetry was detectable in the bursts of openings. Positive correlations were found between the lengths of successive apparent open times at low SubCh concentrations, but no correlations between burst lengths were detectable. The component of brief openings behaves, at low concentrations, as though it originates from openings of singly occupied channels.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 11 Fig. 14 Plate 1 PMID:2419552
Sexual size dimorphism in three North Sea gadoids.
Keyl, F; Kempf, A J; Sell, A F
2015-01-01
Existing biological data on whiting Merlangius merlangus, cod Gadus morhua and haddock Melanogrammus aeglefinus from a long-term international survey were analysed to address sexual size dimorphism (SSD) and its effect on their ecology and management. Results show that SSD, with larger females of the same age as males, is a result of higher growth rates in females. A direct consequence of SSD is the pronounced length-dependent female ratio that was found in all three gadoids in the North Sea. Female ratios of the three species changed from equality to female dominance at specific dominance transition lengths of c. 30, 35 and 60 cm for M. merlangus, G. morhua and M. aeglefinus, respectively. An analysis by area for M. merlangus also revealed length dependence of female ratios. SSD and length-dependent female ratios under most circumstances are inseparable. Higher overall energy demand as well as a higher energy uptake rate must result from the observed SSD and dimorphism in growth rates. Potential processes related to feeding, locomotion and physiology are proposed that could balance the increased energy investment of females. Potential consequences of SSD and length dependency of female ratios are the reduction of the reproductive potential of a stock due to size-selective fishing and biased assessment of the true size of the female spawning stock that could distort decisions in fisheries management. © 2014 The Fisheries Society of the British Isles.
Crain, D.A.; Bolten, A.B.; Bjorndal, K.A.; Guillette, L.J.; Gross, T.S.
1995-01-01
This study examines size-dependent, sex-dependent, and seasonal fluctuations in plasma insulin-like growth factor-I (IGF-I) concentrations in loggerhead sea turtles (Caretta caretta). Loggerhead turtles (n = 158) were captured in shrimp trawler nets during a 12-month survey in Cape Canaveral Channel, Florida. Plasma samples were analyzed using a validated heterologous radioimmunoassay. Large turtles (>75 cm straight-line carapace length) had significantly higher plasma IGF-I concentrations than small turtles (⩽75 cm; P < 0.0001). Plasma IGF-I concentrations did not vary seasonally in small turtles, but large turtles had significantly higher plasma IGF-I concentrations during the spring and summer months (P < 0.005). Within the large turtles, adult males had significantly lower IGF-I concentrations than females and subadult males (P < 0.05). These results and a review of loggerhead turtle natural history suggest that the seasonal fluctuations in plasma IGF-I of adult turtles are due to elevated IGF-I levels in reproductively active female turtles. Further research is needed to examine correlations between reproductive activities and plasma IGF-I concentrations in reptiles.
Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet
2013-04-01
An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P < 0.05) high in males and increased with age. These observations indicate that the adipose fin in the brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.
Bajaj, Deepti; Allerton, Brianne M.; Kirby, Joshua T.; Miller, Freeman; Rowe, David A.; Pohlig, Ryan T.; Modlesky, Christopher M.
2016-01-01
Introduction Muscle is strongly related to cortical bone architecture in children; however, the relationship between muscle volume and trabecular bone architecture is poorly studied. The aim of this study was to determine if muscle volume is related to trabecular bone architecture in children and if the relationship is different than the relationship between muscle volume and cortical bone architecture. Materials and methods Forty typically developing children (20 boys and 20 girls; 6 to 12 y) were included in the study. Measures of trabecular bone architecture [apparent trabecular bone volume to total volume (appBV/TV), trabecular number (appTb.N), trabecular thickness (appTb.Th), and trabecular separation (appTb.Sp)] in the distal femur, cortical bone architecture [(cortical volume, medullary volume, total volume, polar moment of inertia (J) and section modulus (Z)] in the midfemur, muscle volume in the midthigh and femur length were assessed using magnetic resonance imaging. Total and moderate-to-vigorous physical activity were assessed using an accelerometer-based activity monitor worn around the waist for four days. Calcium intake was assessed using diet records. Relationships among the measures were tested using multiple linear regression analysis. Results Muscle volume was moderately-to-strongly related to measures of trabecular bone architecture [appBV/TV (r = 0.81, appTb.N (r = 0.53), appTb.Th (r = 0.67), appTb.Sp (r = −0.71; all p < 0.001] but more strongly related to measures of cortical bone architecture [cortical volume (r = 0.96), total volume (r = 0.94), Z (r = 0.94) and J (r = 0.92; all p < 0.001)]. Similar relationships were observed between femur length and measures of trabecular (p < 0.01) and cortical (p < 0.001) bone architecture. Sex, physical activity and calcium intake were not related to any measure of bone architecture (p > 0.05). Because muscle volume and femur length were strongly related (r = 0.91, p < 0.001), muscle volume was scaled for femur length (muscle volume/femur length2.77). When muscle volume/femur length2.77 was included in a regression model with femur length, sex, physical activity and calcium intake, muscle volume/femur length2.77 was a significant predictor of appBV/TV, appTb.Th and appTb.Sp (partial r = 0.44 to 049, p < 0.05) and all measures of cortical bone architecture (partial r = 0.47 to 054; p < 0.01). Conclusions The findings suggest that muscle volume in the midthigh is related to trabecular bone architecture in the distal femur of children. The relationship is weaker than the relationship between muscle volume in the midthigh and cortical bone architecture in the midfemur, but the discrepancy is driven, in large part, by the greater dependence of cortical bone architecture measures on femur length. PMID:26187197
NASA Astrophysics Data System (ADS)
Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.
2014-06-01
Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.
Graphene oxide: surface activity and two-dimensional assembly.
Kim, Franklin; Cote, Laura J; Huang, Jiaxing
2010-05-04
Graphene oxide (GO) is a promising precursor for preparing graphene-based composites and electronics applications. Like graphene, GO is essentially one-atom thick but can be as wide as tens of micrometers, resulting in a unique type of material building block, characterized by two very different length scales. Due to this highly anisotropic structure, the collective material properties are highly dependent on how these sheets are assembled. Therefore, understanding and controlling the assembly behavior of GO has become an important subject of research. In this Research News article the surface activity of GO and how it can be employed to create two-dimensional assemblies over large areas is discussed.
Design and synthesis of new adamantyl-substituted antileishmanial ether phospholipids.
Papanastasiou, Ioannis; Prousis, Kyriakos C; Georgikopoulou, Kalliopi; Pavlidis, Theofilos; Scoulica, Effie; Kolocouris, Nicolas; Calogeropoulou, Theodora
2010-09-15
A series of new 2-[3-(2-alkyloxy-ethyl)-adamantan-1-yl]-ethoxy substituted ether phospholipids was synthesized and their antileishmanial activity was evaluated against Leishmania infantum amastigotes. The majority of the new analogues were significantly less cytotoxic than miltefosine while, antiparasitic activity depended on the length of the 2-alkyloxy substituent. The most potent compounds were {2-[[[3-(2-hexyloxy-ethyl)-adamant-1-yl]-ethoxy]hydroxyphosphinyloxy]ethyl}-Nu,Nu,Nu-trimethyl-ammonium inner salt (5b) and {2-[[[3-(2-octyloxy-ethyl)-adamant-1-yl]-ethoxy]hydroxyphosphinyloxy]ethyl}-Nu,Nu,Nu-trimethyl-ammonium inner salt (5c). Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, B. M.; Grinnell, A. D.
1997-01-01
Neurotransmitter release from frog motor nerve terminals is strongly modulated by change in muscle length. Over the physiological range, there is an approximately 10% increase in spontaneous and evoked release per 1% muscle stretch. Because many muscle fibers do not receive suprathreshold synaptic inputs at rest length, this stretch-induced enhancement of release constitutes a strong peripheral amplifier of the spinal stretch reflex. The stretch modulation of release is inhibited by peptides that block integrin binding of natural ligands. The modulation varies linearly with length, with a delay of no more than approximately 1-2 msec and is maintained constant at the new length. Moreover, the stretch modulation persists in a zero Ca2+ Ringer and, hence, is not dependent on Ca2+ influx through stretch activated channels. Eliminating transmembrane Ca2+ gradients and buffering intraterminal Ca2+ to approximately normal resting levels does not eliminate the modulation, suggesting that it is not the result of release of Ca2+ from internal stores. Finally, changes in temperature have no detectable effect on the kinetics of stretch-induced changes in endplate potential (EPP) amplitude or miniature EPP (mEPP) frequency. We conclude, therefore, that stretch does not act via second messenger pathways or a chemical modification of molecules involved in the release pathway. Instead, there is direct mechanical modulation of release. We postulate that tension on integrins in the presynaptic membrane is transduced mechanically into changes in the position or conformation of one or more molecules involved in neurotransmitter release, altering sensitivity to Ca2+ or the equilibrium for a critical reaction leading to vesicle fusion.
Lopez-Anton, Melisa; Rudolf, András; Baird, Duncan M; Roger, Laureline; Jones, Rhiannon E; Witowski, Janusz; Fraser, Donald J; Bowen, Timothy
2017-06-01
Mesothelial cell (MC) senescence contributes to malignancy and tissue fibrosis. The role of telomere erosion in MC senescence remains controversial, with evidence for both telomere-dependent and telomere-independent mechanisms reported. Single telomere length analysis revealed considerable telomere length heterogeneity in freshly isolated human peritoneal MCs, reflecting a heterogeneous proliferative history and providing high-resolution evidence for telomere-dependent senescence. By contrast the attenuated replicative lifespan, lack of telomere erosion and induction of p16 expression in in vitro-aged cells was consistent with stress-induced senescence. Given the potential pathophysiological impact of senescence in mesothelial tissues, high-resolution MC telomere length analysis may provide clinically useful information. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-07-08
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-01-01
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses. PMID:27387525
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Xian, Huifang; Tian, Shuo; Sun, Tingzhe; Qin, Yunfei; Zhang, Shoutao; Cui, Jun
2016-07-01
RIG-I is an essential receptor in the initiation of the type I interferon (IFN) signaling pathway upon viral infection. Although K63-linked ubiquitination plays an important role in RIG-I activation, the optimal modulation of conjugated and unanchored ubiquitination of RIG-I as well as its functional implications remains unclear. In this study, we determined that, in contrast to the RIG-I CARD domain, full-length RIG-I must undergo K63-linked ubiquitination at multiple sites to reach full activity. A systems biology approach was designed based on experiments using full-length RIG-I. Model selection for 7 candidate mechanisms of RIG-I ubiquitination inferred a hierarchical architecture of the RIG-I ubiquitination mode, which was then experimentally validated. Compared with other mechanisms, the selected hierarchical mechanism exhibited superior sensitivity and robustness in RIG-I-induced type I IFN activation. Furthermore, our model analysis and experimental data revealed that TRIM4 and TRIM25 exhibited dose-dependent synergism. These results demonstrated that the hierarchical mechanism of multi-site/type ubiquitination of RIG-I provides an efficient, robust and optimal synergistic regulatory module in antiviral immune responses.
Two overlapping domains of a lyssavirus matrix protein that acts on different cell death pathways.
Larrous, Florence; Gholami, Alireza; Mouhamad, Shahul; Estaquier, Jérôme; Bourhy, Hervé
2010-10-01
The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control.
Two Overlapping Domains of a Lyssavirus Matrix Protein That Acts on Different Cell Death Pathways ▿
Larrous, Florence; Gholami, Alireza; Mouhamad, Shahul; Estaquier, Jérôme; Bourhy, Hervé
2010-01-01
The lyssavirus matrix (M) protein induces apoptosis. The regions of the M protein that are essential for triggering cell death pathways are not yet clearly defined. We therefore compared the M proteins from two viruses that have contrasting characteristics in terms of cellular apoptosis: a genotype 3 lyssavirus, Mokola virus (MOK), and a genotype 1 rabies virus isolated from a dog from Thailand (THA). We identified a 20-amino-acid fragment (corresponding to positions 67 to 86) that retained the cell death activities of the full-length M protein from MOK via both the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and inhibition of cytochrome c oxidase (CcO) activity. We found that the amino acids at positions 77 and 81 have an essential role in triggering these two cell death pathways. Directed mutagenesis demonstrated that the amino acid at position 77 affects CcO activity, whereas the amino acid at position 81 affects TRAIL-dependent apoptosis. Mutations in the full-length M protein that compromised induction of either of these two pathways resulted in delayed apoptosis compared with the time to apoptosis for the nonmutated control. PMID:20631119
Bonding properties and bond activation of ylides: recent findings and outlook.
Urriolabeitia, Esteban P
2008-11-14
The interaction of phosphorus and nitrogen ylides with metallic precursors has been examined from different points of view. The first one is related to the bonding properties of the ylides. Ylides with a unique stabilizing group bond through different atoms (the Calpha or the heteroatoms); while ylides with two stabilizing groups never coordinate through the Calpha atom. In the second section we examine the cause of the stereoselective coordination of bisylides of phosphorus, nitrogen and arsenic, and of mixed bisylides. We describe here the very interesting conformational preferences found in these systems, which have been determined and characterized. The DFT study of these bisylides has allowed for the characterization of strong intramolecular PO and AsO interactions, as well as moderate CHO[double bond, length as m-dash]C hydrogen bonds as the source of these conformational preferences. The third topic is related to the amazing reactivity of phosphorus ylides in bond activation processes. Depending on the nature of the metallic precursors, ylides can behave as sources of carbenes, of phosphine derivatives, of other ylides or of orthometallated complexes through P[double bond, length as m-dash]C, P-C or C-H bond activation reactions.
Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae
Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng
2015-01-01
Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337
Bhardwaj, Ashwani; Thapliyal, Saurabh; Dahiya, Yogesh; Babu, Kavita
2018-05-16
Animal behavior is critically dependent on the activity of neuropeptides. Reversals, one of the most conspicuous behaviors in Caenorhabditis elegans , plays an important role in determining the navigation strategy of the animal. Our experiments on hermaphrodite C. elegans show the involvement of a neuropeptide FLP-18 in modulating reversal length in these hermaphrodites. We show that FLP-18 controls the reversal length by regulating the activity of AVA interneurons through the G-protein-coupled neuropeptide receptors, NPR-4 and NPR-1. We go on to show that the site of action of these receptors is the AVA interneuron for NPR-4 and the ASE sensory neurons for NPR-1. We further show that mutants in the neuropeptide, flp-18 , and its receptors show increased reversal lengths. Consistent with the behavioral data, calcium levels in the AVA neuron of freely reversing C. elegans were significantly higher and persisted for longer durations in flp-18 , npr-1 , npr-4 , and npr-1 npr-4 genetic backgrounds compared with wild-type control animals. Finally, we show that increasing FLP-18 levels through genetic and physiological manipulations causes shorter reversal lengths. Together, our analysis suggests that the FLP-18/NPR-1/NPR-4 signaling is a pivotal point in the regulation of reversal length under varied genetic and environmental conditions. SIGNIFICANCE STATEMENT In this study, we elucidate the circuit and molecular machinery required for normal reversal behavior in hermaphrodite Caenorhabditis elegans We delineate the circuit and the neuropeptide receptors required for maintaining reversal length in C. elegans Our work sheds light on the importance of a single neuropeptide, FLP-18, and how change in levels in this one peptide could allow the animal to change the length of its reversal, thereby modulating how the C. elegans explores its environment. We also go on to show that FLP-18 functions to maintain reversal length through the neuropeptide receptors NPR-4 and NPR-1. Our study will allow for a better understanding of the complete repertoire of behaviors shown by freely moving animals as they explore their environment. Copyright © 2018 the authors 0270-6474/18/384641-14$15.00/0.
Adaptation of the length-active tension relationship in rabbit detrusor
Almasri, Atheer M.; Bhatia, Hersch; Klausner, Adam P.; Ratz, Paul H.
2009-01-01
Studies have shown that the length-tension (L-T) relationships in airway and vascular smooth muscles are dynamic and can adapt to length changes over a period of time. Our prior studies have shown that the passive L-T relationship in rabbit detrusor smooth muscle (DSM) is also dynamic and that DSM exhibits adjustable passive stiffness (APS) characterized by a passive L-T curve that can shift along the length axis as a function of strain history and activation history. The present study demonstrates that the active L-T curve for DSM is also dynamic and that the peak active tension produced at a particular muscle length is a function of both strain and activation history. More specifically, this study reveals that the active L-T relationship, or curve, does not have a unique peak tension value with a single ascending and descending limb, but instead reveals that multiple ascending and descending limbs can be exhibited in the same DSM strip. This study also demonstrates that for DSM strips not stretched far enough to reveal a descending limb, the peak active tension produced by a maximal KCl-induced contraction at a short, passively slack muscle length of 3 mm was reduced by 58.6 ± 4.1% (n = 15) following stretches to and contractions at threefold the original muscle length, 9 mm. Moreover, five subsequent contractions at the short muscle length displayed increasingly greater tension; active tension produced by the sixth contraction was 91.5 ± 9.1% of that produced by the prestretch contraction at that length. Together, these findings indicate for the first time that DSM exhibits length adaptation, similar to vascular and airway smooth muscles. In addition, our findings demonstrate that preconditioning, APS and adaptation of the active L-T curve can each impact the maximum total tension observed at a particular DSM length. PMID:19675182
Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent
2006-01-01
Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects. PMID:16569233
ERIC Educational Resources Information Center
Malkoc, Mehtap; Karadibak, Didem; Yldrm, Yucel
2009-01-01
The aim of this study was to assess the effect of physiotherapy on ventilator dependency and lengths of intensive care unit (ICU) stay. Patients were divided into two groups. The control group, which received standard nursing care, was a retrospective chart review. The data of control patients who were not receiving physiotherapy were obtained…
Adriaens, E; Dierckens, K; Bauters, T G; Nelis, H J; van Goethem, F; Vanparys, P; Remon, J P
2001-07-01
The objective of this study was to evaluate the mucosal toxicity of different benzalkonium chloride (BAC) analogues using slugs as the alternative test organism. The effect of different BAC analogues on the mucosal tissue of slugs was determined from the protein, lactate dehydrogenase, and alkaline phosphatase released from the foot mucosa after treatment. Additionally, mucus production and reduction in body weight of the slugs were measured. The eye irritation potency of the molecules was evaluated with the Bovine Corneal Opacity and Permeability (BCOP) assay. The antimicrobial activity of the different BAC analogues was also assessed. All BAC analogues induced severe damage to the mucosal epithelium of the slugs, and the irritation increased with decreasing alkyl chain length: BAC-C16 < BAC-C14 < BAC-C12 approximately BAC-mix. A similar ranking was obtained with the BCOP assay for eye irritation. The relative order of activities among the three BAC analogues was the same, i.e., BAC-C14 > or = BAC-C16 > BAC-C12. The BAC-C14 exhibited higher activity than the BAC-mix. The toxicity and activity of BAC analogues depend on the alkyl chain length. The use of BAC-C14 as a conservative agent in pharmaceutical preparations instead of the BAC-mix should be considered.
Counting Magnetic Bipoles on the Sun by Polarity Inversion
NASA Technical Reports Server (NTRS)
Jones, Harrison P.
2004-01-01
This paper presents a simple and efficient algorithm for deriving images of polarity inversion from NSO/Kitt Peak magnetograms without use of contouring routines and shows by example how these maps depend upon the spatial scale for filtering the raw data. Smaller filtering scales produce many localized closed contours in mixed polarity regions while supergranular and larger filtering scales produce more global patterns. The apparent continuity of an inversion line depends on how the spatial filtering is accomplished, but its shape depends only on scale. The total length of the magnetic polarity inversion contours varies as a power law of the filter scale with fractal dimension of order 1.9. The amplitude but nut the exponent of this power-law relation varies with solar activity. The results are compared to similar analyses of areal distributions of bipolar magnetic regions.
All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.
Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis
2013-05-20
This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.
Ludwig, Antoinette; Ginsberg, Howard; Hickling, Graham J.; Ogden, Nicholas H.
2016-01-01
The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with site-specific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.
Ludwig, Antoinette; Ginsberg, Howard S; Hickling, Graham J; Ogden, Nicholas H
2016-01-01
The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with site-specific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick. © Crown copyright 2015.
A Study of Overhead Rate Behavior at a US Air Force Base in the Context of A-76 Competitions.
1999-07-28
was included separately to portray time as an important independent variable. 12 Defense Reform Initiative Report (DoD 1997a), p. 29 . 13 Defense...a threshold of savings that is at least 10 percent of direct personnel costs or $10 million over the performance period. 29 OMB established this...been performing the activity prior to the competition and, 29 The length of the contract is generally considered to be the performance period. Depending
Time-Dependent Modeling of Brillouin Scattering in Optical Fibers Excited by a Chirped Diode Laser
2012-10-31
backscattering. To demonstrate this effect, we simulated an ytterbium -cladding- doped fiber with length L = 18 m and modal radius r = 13.75 μm at a...The resulting SBS suppression is well described by an adiabatic model and agrees with experimental results. For an 18-m active fiber pumped at 1.06...8] R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers
Chen, Lei; Zhu, Yu; Yang, Danling; Zou, Rongfeng; Wu, Junchen; Tian, He
2014-01-01
In this report, antibacterial peptides1-3 were prepared with a spiropyran fluorescence probe. The probe exhibits a change in fluorescence when isomerized from a colorless spiro-form (spiropyran, Sp) to a colored open-form (merocyanine, Mc) under different chemical environments, which can be used to study the mechanism of antimicrobial activity. Peptides 1-3 exhibit a marked decrease in antimicrobial activity with increasing alkyl chain length. This is likely due to the Sp-Mc isomers in different polar environments forming different aggregate sizes in TBS, as demonstrated by time-dependent dynamic light scattering (DLS). Moreover, peptides 1-3 exhibited low cytotoxicity and hemolytic activity. These probe-modified peptides may provide a novel approach to study the effect of structural changes on antibacterial activity, thus facilitating the design of new antimicrobial agents to combat bacterial infection. PMID:25358905
Görner, Wolfram; Durchschlag, Erich; Wolf, Julia; Brown, Elizabeth L.; Ammerer, Gustav; Ruis, Helmut; Schüller, Christoph
2002-01-01
In yeast, environmental conditions control the transcription factor Msn2, the nuclear accumulation and function of which serve as a sensitive indicator of nutrient availablity and environmental stress load. We show here that the nuclear localization signal (NLS) of Msn2 is a direct target of cAMP-dependent protein kinase (cAPK). Genetic analysis suggests that Msn2-NLS function is inhibited by phosphorylation and activated by dephosphorylation. Msn2-NLS function is unaffected by many stress conditions that normally induce nuclear accumulation of full-length Msn2. The Msn2-NLS phosphorylation status is, however, highly sensitive to carbohydrate fluctuations during fermentative growth. Dephosphorylation occurs in >2 min after glucose withdrawal but the effect is reversed rapidly by refeeding with glucose. This response to glucose depletion is due to changes in cAPK activity rather than an increase in protein phosphatase activity. Surprisingly, the classical glucose-sensing systems are not connected to this rapid response system. Our results further imply that generic stress signals do not cause short-term depressions in cAPK activity. They operate on Msn2 by affecting an Msn5-dependent nuclear export and/or retention mechanism. PMID:11782433
Damage and recovery characteristics of lithium-containing solar cells.
NASA Technical Reports Server (NTRS)
Faith, T. J.
1971-01-01
Damage and recovery characteristics were measured on lithium-containing solar cells irradiated by 1-MeV electrons. Empirical expressions for cell recovery time, diffusion-length damage coefficient immediately after irradiation, and diffusion-length damage coefficient after recovery were derived using results of short-circuit current, diffusion-length, and reverse-bias capacitance measurements. The damage coefficients were expressed in terms of a single lithium density parameter, the lithium gradient. A fluence dependence was also established, this dependence being the same for both the immediate-post-irradiation and post-recovery cases. Cell recovery rates were found to increase linearly with lithium gradient.
Smooth muscle in human bronchi is disposed to resist airway distension.
Gazzola, Morgan; Henry, Cyndi; Couture, Christian; Marsolais, David; King, Gregory G; Fredberg, Jeffrey J; Bossé, Ynuk
2016-07-15
Studying airway smooth muscle (ASM) in conditions that emulate the in vivo environment within which the bronchi normally operate may provide important clues regarding its elusive physiological function. The present study examines the effect of lengthening and shortening of ASM on tension development in human bronchial segments. ASM from each bronchial segment was set at a length approximating in situ length (Linsitu). Bronchial tension was then measured during a slow cyclical strain (0.004Hz, from 0.7Linsitu to 1.3Linsitu) in the relaxed state and at graded levels of activation by methacholine. In all cases, tension was greater at longer ASM lengths, and greater during lengthening than shortening. The threshold of methacholine concentration that was required for ASM to account for bronchial tension across the entire range of ASM lengths tested was on average smaller by 2.8 logs during lengthening than during shortening. The length-dependency of ASM tension, together with this lower threshold of methacholine concentration during lengthening versus shortening, suggest that ASM has a greater ability to resist airway dilation during lung inflation than to narrow the airways during lung deflation. More than serving to narrow the airway, as has long been thought, these data suggest that the main function of ASM contraction is to limit airway wall distension during lung inflation. Copyright © 2016 Elsevier B.V. All rights reserved.
Wick, David V.
2005-12-20
An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.
The coactivator CBP stimulates human T-cell lymphotrophic virus type I Tax transactivation in vitro.
Kashanchi, F; Duvall, J F; Kwok, R P; Lundblad, J R; Goodman, R H; Brady, J N
1998-12-18
Tax interacts with the cellular cyclic AMP-responsive element binding protein (CREB) and facilitates the binding of the coactivator CREB binding protein (CBP), forming a multimeric complex on the cyclic AMP-responsive element (CRE)-like sites in the human T-cell lymphotrophic virus type I (HTLV-I) promoter. The trimeric complex is believed to recruit additional regulatory proteins to the HTLV-I long terminal repeat, but there has been no direct evidence that CBP is required for Tax-mediated transactivation. We present evidence that Tax and CBP activate transcription from the HTLV-I 21 base pair repeats on naked DNA templates. Transcriptional activation of the HTLV-I sequences required both Tax and CBP and could be mediated by either the N-terminal activation domain of CBP or the full-length protein. Fluorescence polarization binding assays indicated that CBP does not markedly enhance the affinity of Tax for the trimeric complex. Transcription analyses suggest that CBP activates Tax-dependent transcription by promoting transcriptional initiation and reinitiation. The ability of CBP to activate the HTLV-I promoter does not involve the stabilization of Tax binding, but rather depends upon gene activation properties of the co-activator that function in the context of a naked DNA template.
Kim, Jae Kyeom; Strapazzon, Noemia; Gallaher, Cynthia M; Stoll, Dwight R; Thomas, William; Gallaher, Daniel D; Trudo, Sabrina P
2017-10-01
Cruciferous and apiaceous vegetables may be chemopreventive due to their ability to modulate carcinogen-metabolizing enzymes but whether the effects on such enzymes are sustained over time is unknown. To examine the short- and long-term effects of the vegetables, rats were fed one of four diets for 7, 30, or 60 d: AIN-93G, CRU (21% cruciferous vegetables-fresh broccoli, green cabbage, watercress), API (9% apiaceous vegetables - fresh parsnips, celery), or API + CRU (10.5% CRU + 4.5% API). Although CRU increased activity and protein expression of cytochrome P450 (CYP) 1A1 and CYP1A2 after 7 d, only activity was sustained after 30 and 60 d. There was a trend towards an interaction between the length of feeding period and CRU for CYP1A1 activity; activity increased with greater time of feeding. API increased CYP1A2 activity but decreased sulfotransferase 1A1 activity after 7 d, although not at later times. Altogether, increased CYP1A activity by CRU was maintained with long term feeding while protein amount decreased, suggesting influence by mechanisms other than, or in addition to, transcriptional regulation. Thus, response patterns and interactions with length of feeding may differ, depending upon the types of vegetables and enzymes, requiring caution when interpreting the results of short-term feeding studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huber, Warren J.; Backes, Wayne L.
2009-01-01
Heme oxygenase (HO) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, this NADPH and cytochrome P450 reductase (CPR)-dependent oxidation of heme also releases free iron and carbon monoxide. Much of the recent research involving heme oxygenase is done using a 30-kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a GST-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30-kDa degradation product that could not be eliminated. Therefore, we attempted to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces lysine with arginine. This mutation allowed the expression and purification of a full length hHO-1 protein. Unlike wild-type HO-1, the K254R mutant could be purified to a single 32-kDa protein capable of degrading heme at the same rate as the wild-type enzyme. The K254R full-length form had a specific activity of ~200–225 nmol bilirubin hr−1nmol−1 HO-1 as compared to ~140–150 nmol bilirubin hr−1nmol−1 for the WT form, which contains the 30-kDa contaminant. This is a 2–3-fold increase from the previously reported soluble 30-kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other ER-resident enzymes. PMID:17915953
Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation
NASA Astrophysics Data System (ADS)
Abed, Farid H.
The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material instability problems converge to meaningful results upon further refinement of the finite element mesh due to the successful incorporation of the material length scale in the model formulations. It is shown that the model predicted results compare very well with different experimental data over a wide range of temperatures (77K°-1000K°) and strain rates (10-3-10 4s-1). It is also concluded from this dissertation that the width of localization zone (shear band) exhibits tremendous changes with different initial temperatures (i.e., different initial viscosities and accordingly different length scales).
Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E
2015-12-01
The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.
NASA Astrophysics Data System (ADS)
Aasen, Ailo; Blokhuis, Edgar M.; Wilhelmsen, Øivind
2018-05-01
The curvature dependence of the surface tension can be described by the Tolman length (first-order correction) and the rigidity constants (second-order corrections) through the Helfrich expansion. We present and explain the general theory for this dependence for multicomponent fluids and calculate the Tolman length and rigidity constants for a hexane-heptane mixture by use of square gradient theory. We show that the Tolman length of multicomponent fluids is independent of the choice of dividing surface and present simple formulae that capture the change in the rigidity constants for different choices of dividing surface. For multicomponent fluids, the Tolman length, the rigidity constants, and the accuracy of the Helfrich expansion depend on the choice of path in composition and pressure space along which droplets and bubbles are considered. For the hexane-heptane mixture, we find that the most accurate choice of path is the direction of constant liquid-phase composition. For this path, the Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid phase, and the Helfrich expansion represents the surface tension of hexane-heptane droplets and bubbles within 0.1% down to radii of 3 nm. The presented framework is applicable to a wide range of fluid mixtures and can be used to accurately represent the surface tension of nanoscopic bubbles and droplets.
Coarsening of stripe patterns: variations with quench depth and scaling.
Tripathi, Ashwani K; Kumar, Deepak
2015-02-01
The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.
Magnetic Propulsion of Microswimmers with DNA-Based Flagellar Bundles.
Maier, Alexander M; Weig, Cornelius; Oswald, Peter; Frey, Erwin; Fischer, Peer; Liedl, Tim
2016-02-10
We show that DNA-based self-assembly can serve as a general and flexible tool to construct artificial flagella of several micrometers in length and only tens of nanometers in diameter. By attaching the DNA flagella to biocompatible magnetic microparticles, we provide a proof of concept demonstration of hybrid structures that, when rotated in an external magnetic field, propel by means of a flagellar bundle, similar to self-propelling peritrichous bacteria. Our theoretical analysis predicts that flagellar bundles that possess a length-dependent bending stiffness should exhibit a superior swimming speed compared to swimmers with a single appendage. The DNA self-assembly method permits the realization of these improved flagellar bundles in good agreement with our quantitative model. DNA flagella with well-controlled shape could fundamentally increase the functionality of fully biocompatible nanorobots and extend the scope and complexity of active materials.
Karakuzu, Agah; Pamuk, Uluç; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A
2017-05-24
Sarcomere length changes are central to force production and excursion of skeletal muscle. Previous modeling indicates non-uniformity of that if mechanical interaction of muscle with its surrounding muscular and connective tissues is taken into account. Hence, quantifying length changes along the fascicles of activated human muscle in vivo is crucial, but this is lacking due to technical complexities. Combining magnetic resonance imaging deformation analyses and diffusion tensor imaging tractography, the aim was to test the hypothesis that submaximal plantar flexion activity at 15% MVC causes heterogeneous length changes along the fascicles of human medial gastrocnemius (GM) muscle. A general fascicle strain distribution pattern shown for all subjects indicates that proximal track segments are shortened, whereas distal ones are lengthened (e.g., by 13% and 29%, respectively). Mean fiber direction strains of different tracts also shows heterogeneity (for up to 57.5% of the fascicles). Inter-subject variability of amplitude and distribution of fascicle strains is notable. These findings confirm the hypothesis and are solid indicators for the functionally dependent mechanics of human muscle, in vivo. Heterogeneity of fascicle strains can be explained by epimuscular myofascial force transmission. To the best of our knowledge, this is the first study, which quantified local deformations along human skeletal muscle fascicles caused by sustained submaximal activation. The present approach and indicated fascicle strain heterogeneity has numerous implications for muscle function in health and disease to estimate the muscle's contribution to the joint moment and excursion and to evaluate mechanisms of muscle injury and several treatment techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.
Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona?
NASA Astrophysics Data System (ADS)
Anfinogentov, S. A.; Nakariakov, V. M.; Nisticò, G.
2015-11-01
Context. We investigate the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data. In contrast to decaying kink oscillations that are excited by impulsive dynamical processes, this type of transverse oscillations is not connected to any external impulsive impact, such as a flare or coronal mass ejection, and does not show any significant decay. Moreover the amplitude of these decayless oscillations is typically lower than that of decaying oscillations. Aims: The aim of this research is to estimate the prevalence of this phenomenon and its characteristic signatures. Methods: We analysed 21 active regions (NOAA 11637-11657) observed in January 2013 in the 171 Å channel of SDO/AIA. For each active region we inspected six hours of observations, constructing time-distance plots for the slits positioned across pronounced bright loops. The oscillatory patterns in time-distance plots were visually identified and the oscillation periods and amplitudes were measured. We also estimated the length of each oscillating loop. Results: Low-amplitude decayless kink oscillations are found to be present in the majority of the analysed active regions. The oscillation periods lie in the range from 1.5 to 10 min. In two active regions with insufficient observation conditions we did not identify any oscillation patterns. The oscillation periods are found to increase with the length of the oscillating loop. Conclusions: The considered type of coronal oscillations is a common phenomenon in the corona. The established dependence of the oscillation period on the loop length is consistent with their interpretation in terms of standing kink waves. Appendix A is available in electronic form at http://www.aanda.org
Kunanusornchai, Wanlop; Muanprasat, Chatchai; Chatsudthipong, Varanuj
2016-12-01
Joint mobilization is known to be beneficial in osteoarthritis (OA) patients. This study aimed to investigate the effect of stretching on adenosine monophosphate-activated protein kinase (AMPK) activity and its role in modulating inflammation in rabbit synovial fibroblasts. Uniaxial stretching of isolated rabbit synovial fibroblasts for ten min was performed. Stretching-induced AMPK activation, its underlying mechanism, and its anti-inflammatory effect were investigated using Western blot. Static stretching at 20 % of initial length resulted in AMPK activation characterized by expression of phosphorylated AMPK and phosphorylated acetyl-Co A carboxylase. AMP-activated protein kinase phosphorylation peaked 1 h after stretching and declined toward resting activity. Using cell viability assays, static stretching did not appear to cause cellular damage. Activation of AMPK involves Ca 2+ influx via a mechanosensitive L-type Ca 2+ channel, which subsequently raises intracellular Ca 2+ and activates AMPK via Ca 2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ). Interestingly, stretching suppressed TNFα-induced expression of COX-2, iNOS, and phosphorylated NF-κB. These effects were prevented by pretreatment with compound C, an AMPK inhibitor. These results suggest that mechanical stretching suppressed inflammatory responses in synovial fibroblasts via a L-type Ca 2+ -channel-CaMKKβ-AMPK-dependent pathway which may underlie joint mobilization's ability to alleviate OA symptoms.
Taming active turbulence with patterned soft interfaces.
Guillamat, P; Ignés-Mullol, J; Sagués, F
2017-09-15
Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.
NASA Astrophysics Data System (ADS)
Rehner, Philipp; Gross, Joachim
2018-04-01
The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius Rs, as δ(Rs) = δ0 + δ1/Rs, and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.
Cavity length dependence of mode beating in passively Q-switched Nd-solid state lasers
NASA Astrophysics Data System (ADS)
Zameroski, Nathan D.; Wanke, Michael; Bossert, David
2013-03-01
The temporal intensity profile of pulse(s) from passively Q-switched and passively Q-switched mode locked (QSML) solid-state lasers is known to be dependent on cavity length. In this work, the pulse width, modulation depth, and beat frequencies of a Nd:Cr:GSGG laser using a Cr+4:YAG passive Q-switch are investigated as function cavity length. Measured temporal widths are linearly correlated with cavity length but generally 3-5 ns larger than theoretical predictions. Some cavity lengths exhibit pulse profiles with no modulation while other lengths exhibit complete amplitude modulation. The observed beat frequencies at certain cavity lengths cannot be accounted for with passively QSML models in which the pulse train repetition rate is τRT-1, τRT= round-trip time. They can be explained, however, by including coupled cavity mode-locking effects. A theoretical model developed for a two section coupled cavity semiconductor laser is adapted to a solid-state laser to interpret measured beat frequencies. We also numerically evaluate the temporal criterion required to achieve temporally smooth Q-switched pulses, versus cavity length and pump rate. We show that in flash lamp pumped systems, the difference in buildup time between longitudinal modes is largely dependent on the pump rate. In applications where short pulse delay is important, the pumping rate may limit the ability to achieve temporally smooth pulses in passively Q-switched lasers. Simulations support trends in experimental data. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Rehner, Philipp; Gross, Joachim
2018-04-28
The curvature dependence of interfacial properties has been discussed extensively over the last decades. After Tolman published his work on the effect of droplet size on surface tension, where he introduced the interfacial property now known as Tolman length, several studies were performed with varying results. In recent years, however, some consensus has been reached about the sign and magnitude of the Tolman length of simple model fluids. In this work, we re-examine Tolman's equation and how it relates the Tolman length to the surface tension and we apply non-local classical density functional theory (DFT) based on the perturbed chain statistical associating fluid theory (PC-SAFT) to characterize the curvature dependence of the surface tension of real fluids as well as mixtures. In order to obtain a simple expression for the surface tension, we use a first-order expansion of the Tolman length as a function of droplet radius R s , as δ(R s ) = δ 0 + δ 1 /R s , and subsequently expand Tolman's integral equation for the surface tension, whereby a second-order expansion is found to give excellent agreement with the DFT result. The radius-dependence of the surface tension of increasingly non-spherical substances is studied for n-alkanes, up to icosane. The infinite diameter Tolman length is approximately δ 0 = -0.38 Å at low temperatures. For more strongly non-spherical substances and for temperatures approaching the critical point, however, the infinite diameter Tolman lengths δ 0 turn positive. For mixtures, even if they contain similar molecules, the extrapolated Tolman length behaves strongly non-ideal, implying a qualitative change of the curvature behavior of the surface tension of the mixture.
Huang, Yu; Mao, Yang; Buczek-Thomas, Jo Ann; Nugent, Matthew A.; Zaia, Joseph
2014-01-01
Sulfs are extracellular endosulfatases that selectively remove the 6-O-sulfate groups from cell surface heparan sulfate (HS) chain. By altering the sulfation at these particular sites, Sulfs function to remodel HS chains. As a result of the remodeling activity, HSulf2 regulates a multitude of cell-signaling events that depend on interactions between proteins and HS. Previous efforts to characterize the substrate specificity of human Sulfs (HSulfs) focused on the analysis of HS disaccharides and synthetic repeating units. In this study, we characterized the substrate preferences of human HSulf2 using HS oligosaccharides with various lengths and sulfation degrees from several naturally occurring HS sources by applying liquid chromatography mass spectrometry based glycomics methods. The results showed that HSulf2 preferentially digests highly sulfated HS oligosaccharides with zero acetyl groups and this preference is length dependent. In terms of length of oligosaccharides, HSulf2 digestion induced more sulfation decrease on DP6 (DP: degree of polymerization) compared to DP2, DP4 and DP8. In addition, the HSulf2 preferentially digests the oligosaccharide domain located at the non-reducing end (NRE) of the HS and heparin chain. In addition, the HSulf2 digestion products were altered only for specific isomers. HSulf2 treated NRE oligosaccharides also showed greater decrease in cell proliferation than those from internal domains of the HS chain. After further chromatographic separation, we identified the three most preferred unsaturated hexasaccharide for HSulf2. PMID:25127119
Effective ergodicity breaking in an exclusion process with varying system length
NASA Astrophysics Data System (ADS)
Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi
2015-09-01
Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.
Physical activity and telomere length: Impact of aging and potential mechanisms of action
Arsenis, Nicole C.; You, Tongjian; Ogawa, Elisa F.; Tinsley, Grant M.; Zuo, Li
2017-01-01
Telomeres protect the integrity of information-carrying DNA by serving as caps on the terminal portions of chromosomes. Telomere length decreases with aging, and this contributes to cell senescence. Recent evidence supports that telomere length of leukocytes and skeletal muscle cells may be positively associated with healthy living and inversely correlated with the risk of several age-related diseases, including cancer, cardiovascular disease, obesity, diabetes, chronic pain, and stress. In observational studies, higher levels of physical activity or exercise are related to longer telomere lengths in various populations, and athletes tend to have longer telomere lengths than non-athletes. This relationship is particularly evident in older individuals, suggesting a role of physical activity in combating the typical age-induced decrements in telomere length. To date, a small number of exercise interventions have been executed to examine the potential influence of chronic exercise on telomere length, but these studies have not fully established such relationship. Several potential mechanisms through which physical activity or exercise could affect telomere length are discussed, including changes in telomerase activity, oxidative stress, inflammation, and decreased skeletal muscle satellite cell content. Future research is needed to mechanistically examine the effects of various modalities of exercise on telomere length in middle-aged and older adults, as well as in specific clinical populations. PMID:28410238
Physical activity and telomere length: Impact of aging and potential mechanisms of action.
Arsenis, Nicole C; You, Tongjian; Ogawa, Elisa F; Tinsley, Grant M; Zuo, Li
2017-07-04
Telomeres protect the integrity of information-carrying DNA by serving as caps on the terminal portions of chromosomes. Telomere length decreases with aging, and this contributes to cell senescence. Recent evidence supports that telomere length of leukocytes and skeletal muscle cells may be positively associated with healthy living and inversely correlated with the risk of several age-related diseases, including cancer, cardiovascular disease, obesity, diabetes, chronic pain, and stress. In observational studies, higher levels of physical activity or exercise are related to longer telomere lengths in various populations, and athletes tend to have longer telomere lengths than non-athletes. This relationship is particularly evident in older individuals, suggesting a role of physical activity in combating the typical age-induced decrements in telomere length. To date, a small number of exercise interventions have been executed to examine the potential influence of chronic exercise on telomere length, but these studies have not fully established such relationship. Several potential mechanisms through which physical activity or exercise could affect telomere length are discussed, including changes in telomerase activity, oxidative stress, inflammation, and decreased skeletal muscle satellite cell content. Future research is needed to mechanistically examine the effects of various modalities of exercise on telomere length in middle-aged and older adults, as well as in specific clinical populations.
Global regulation of post-translational modifications on core histones.
Galasinski, Scott C; Louie, Donna F; Gloor, Kristen K; Resing, Katheryn A; Ahn, Natalie G
2002-01-25
Full-length masses of histones were analyzed by mass spectrometry to characterize post-translational modifications of bulk histones and their changes induced by cell stimulation. By matching masses of unique peptides with full-length masses, H4 and the variants H2A.1, H2B.1, and H3.1 were identified as the main histone forms in K562 cells. Mass changes caused by covalent modifications were measured in a dose- and time-dependent manner following inhibition of phosphatases by okadaic acid. Histones H2A, H3, and H4 underwent changes in mass consistent with altered acetylation and phosphorylation, whereas H2B mass was largely unchanged. Unexpectedly, histone H4 became almost completely deacetylated in a dose-dependent manner that occurred independently of phosphorylation. Okadaic acid also partially blocked H4 hyperacetylation induced by trichostatin-A, suggesting that the mechanism of deacetylation involves inhibition of H4 acetyltransferase activity, following perturbation of cellular phosphatases. In addition, mass changes in H3 in response to okadaic acid were consistent with phosphorylation of methylated, acetylated, and phosphorylated forms. Finally, kinetic differences were observed with respect to the rate of phosphorylation of H2A versus H4, suggesting differential regulation of phosphorylation at sites on these proteins, which are highly related by sequence. These results provide novel evidence that global covalent modifications of chromatin-bound histones are regulated through phosphorylation-dependent mechanisms.
NASA Technical Reports Server (NTRS)
Vitart, V.; Christodoulou, J.; Huang, J. F.; Chazin, W. J.; Harper, J. F.; Evans, M. L. (Principal Investigator)
2000-01-01
Ca(2+)-dependent protein kinases (CDPK) have a calmodulin-like domain (CaM-LD) tethered to the C-terminal end of the kinase. Activation is proposed to involve intramolecular binding of the CaM-LD to a junction sequence that connects the CaM-LD to the kinase domain. Consistent with this model, a truncated CDPK (DeltaNC) in which the CaM-LD has been deleted can be activated in a bimolecular interaction with an isolated CaM-LD or calmodulin, similar to the activation of a calmodulin-dependent protein kinase (CaMK) by calmodulin. Here we provide genetic evidence that this bimolecular activation requires a nine-residue binding segment from F436 to I444 (numbers correspond to CPK-1 accession number L14771). Two mutations at either end of this core segment (F436/A and VI444/AA) severely disrupted bimolecular activation, whereas flanking mutations had only minor effects. Intramolecular activation of a full-length kinase was also disrupted by a VI444/AA mutation, but surprisingly not by a F436/A mutation (at the N-terminal end of the binding site). Interestingly, intramolecular but not bimolecular activation was disrupted by insertion mutations placed immediately downstream of I444. To show that mutant enzymes were not misfolded, latent kinase activity was stimulated through binding of an antijunction antibody. Results here support a model of intramolecular activation in which the tether (A445 to G455) that connects the CaM-LD to the kinase provides an important structural constraint and is not just a simple flexible connection.
Plumb, Darren; Vo, Phoung; Shah, Mittal; Staines, Katherine; Sampson, Alexandra; Shefelbine, Sandra; Pitsillides, Andrew A.; Bou-Gharios, George
2016-01-01
Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality. PMID:28002442
Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet
NASA Astrophysics Data System (ADS)
Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori
2008-08-01
A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to the continuous mode as the current exceeds a threshold. The measured emission spectrum from the arc column of the air discharge reveals that most energy of activated electrons is used for the excitation of N2 (second positive system bands) and part of the energy for the dissociation of O2. The length of the plasma torch depends on the tube length, inner gap distance, and flow rate. The maximum torch length of about 40 mm is obtained under certain conditions. The spatial distributions of plasma gas temperature are measured and confirmed by the visualization of the gas flow using Schlieren images. Furthermore, surface treatment and decolorization using the generated plasma torch are carried out, focusing on industrial applications.
Nakao, Hiroyuki; Hayashi, Chihiro; Ikeda, Keisuke; Saito, Hiroaki; Nagao, Hidemi; Nakano, Minoru
2018-04-19
Peptide-induced phospholipid flip-flop (scrambling) was evaluated using transmembrane model peptides in which the central residue was substituted with various amino acid residues (sequence: Ac-GKK(LA) n XW(LA) n LKKA-CONH 2 ). Peptides with a strongly hydrophilic residue (X = Q, N, or H) had higher scramblase activity than that of other peptides, and the activity was also dependent on the length of the peptides. Peptides with a hydrophobic stretch of 17 residues showed high flip-promotion propensity, whereas those of 21 and 25 residues did not, suggesting that membrane thinning under negative mismatch conditions promotes the flipping. Interestingly, a hydrophobic stretch of 19 residues intensively promoted phospholipid scrambling and membrane leakage. The distinctive characteristics of the peptide were ascribed by long-term molecular dynamics simulation to the arrangement of central glutamine and terminal four lysine residues on the same side of the helix. The combination of simulated and experimental data enables understanding of the mechanisms by which transmembrane helices, and ultimately unidentified scramblases in biomembranes, cause lipid scrambling.
Kumar, Pavitra V; Singh, Beena G; Phadnis, Prasad P; Jain, Vimal K; Priyadarsini, K Indira
2016-08-16
Understanding electron-transfer processes is crucial for developing organoselenium compounds as antioxidants and anti-inflammatory agents. To find new redox-active selenium antioxidants, we have investigated one-electron-transfer reactions between hydroxyl ((.) OH) radical and three bis(alkanol)selenides (SeROH) of varying alkyl chain length, using nanosecond pulse radiolysis. (.) OH radical reacts with SeROH to form radical adduct, which is converted primarily into a dimer radical cation (>Se∴Se<)(+) and α-{bis(hydroxyl alkyl)}-selenomethine radical along with a minor quantity of an intramolecularly stabilized radical cation. Some of these radicals have been subsequently converted to their corresponding selenoxide, and formaldehyde. Estimated yield of these products showed alkyl chain length dependency and correlated well with their antioxidant ability. Quantum chemical calculations suggested that compounds that formed more stable (>Se∴Se<)(+) , produced higher selenoxide and lower formaldehyde. Comparing these results with those for sulfur analogues confirmed for the first time the distinctive role of selenium in making such compounds better antioxidants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Recombination properties of dislocations in GaN
NASA Astrophysics Data System (ADS)
Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.
2018-04-01
The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.
Comparative research on activation technique for GaAs photocathodes
NASA Astrophysics Data System (ADS)
Chen, Liang; Qian, Yunsheng; Chang, Benkang; Chen, Xinlong; Yang, Rui
2012-03-01
The properties of GaAs photocathodes mainly depend on the material design and activation technique. In early researches, high-low temperature two-step activation has been proved to get more quantum efficiency than high-temperature single-step activation. But the variations of surface barriers for two activation techniques have not been well studied, thus the best activation temperature, best Cs-O ratio and best activation time for two-step activation technique have not been well found. Because the surface photovoltage spectroscopy (SPS) before activation is only in connection with the body parameters for GaAs photocathode such as electron diffusion length and the spectral response current (SRC) after activation is in connection with not only body parameters but also surface barriers, thus the surface escape probability (SEP) can be well fitted through the comparative research between SPS before activation and SEP after activation. Through deduction for the tunneling process of surface barriers by Schrödinger equation, the width and height for surface barrier I and II can be well fitted through the curves of SEP. The fitting results were well proved and analyzed by quantitative analysis of angle-dependent X-ray photoelectron spectroscopy (ADXPS) which can also study the surface chemical compositions, atomic concentration percentage and layer thickness for GaAs photocathodes. This comparative research method for fitting parameters of surface barriers through SPS before activation and SRC after activation shows a better real-time in system method for the researches of activation techniques.
Myeloperoxidase-dependent Inactivation of Surfactant Protein D in Vitro and in Vivo*
Crouch, Erika C.; Hirche, Tim O.; Shao, Baohai; Boxio, Rachel; Wartelle, Julien; Benabid, Rym; McDonald, Barbara; Heinecke, Jay; Matalon, Sadis; Belaaouaj, Azzaq
2010-01-01
Surfactant protein D (SP-D) plays diverse and important roles in innate immunity and pulmonary homeostasis. Neutrophils and myeloperoxidase (MPO) colocalized with SP-D in a murine bacterial pneumonia model of acute inflammation, suggesting that MPO-derived reactive species might alter the function of SP-D. Exposure of SP-D to the complete MPO-H2O2-halide system caused loss of SP-D-dependent aggregating activity. Hypochlorous acid (HOCl), the major oxidant generated by MPO, caused a similar loss of aggregating activity, which was accompanied by the generation of abnormal disulfide-cross-linked oligomers. A full-length SP-D mutant lacking N-terminal cysteine residues and truncation mutants lacking the N-terminal domains were resistant to the oxidant-induced alterations in disulfide bonding. Mass spectroscopy of HOCl-treated human SP-D demonstrated several modifications, but none involved key ligand binding residues. There was detectable oxidation of cysteine 15, but no HOCl-induced cysteine modifications were observed in the C-terminal lectin domain. Together, the findings localize abnormal disulfide cross-links to the N-terminal domain. MPO-deficient mice showed decreased cross-linking of SP-D and increased SP-D-dependent aggregating activity in the pneumonia model. Thus, MPO-derived oxidants can lead to modifications of SP-D structure with associated alterations in its characteristic aggregating activity. PMID:20228064
Moon, Thomas M; Sheehe, Jessica L; Nukareddy, Praveena; Nausch, Lydia W; Wohlfahrt, Jessica; Matthews, Dwight E; Blumenthal, Donald K; Dostmann, Wolfgang R
2018-05-25
The type I cGMP-dependent protein kinases (PKG I) serve essential physiological functions, including smooth muscle relaxation, cardiac remodeling, and platelet aggregation. These enzymes form homodimers through their N-terminal dimerization domains, a feature implicated in regulating their cooperative activation. Previous investigations into the activation mechanisms of PKG I isoforms have been largely influenced by structures of the cAMP-dependent protein kinase (PKA). Here, we examined PKG Iα activation by cGMP and cAMP by engineering a monomeric form that lacks N-terminal residues 1-53 (Δ53). We found that the construct exists as a monomer as assessed by whole-protein MS, size-exclusion chromatography, and small-angle X-ray scattering (SAXS). Reconstruction of the SAXS 3D envelope indicates that Δ53 has a similar shape to the heterodimeric RIα-C complex of PKA. Moreover, we found that the Δ53 construct is autoinhibited in its cGMP-free state and can bind to and be activated by cGMP in a manner similar to full-length PKG Iα as assessed by surface plasmon resonance (SPR) spectroscopy. However, we found that the Δ53 variant does not exhibit cooperative activation, and its cyclic nucleotide selectivity is diminished. These findings support a model in which, despite structural similarities, PKG Iα activation is distinct from that of PKA, and its cooperativity is driven by in trans interactions between protomers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin
2018-08-01
In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 μm. Encouragingly, the length scale covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel
Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence
2016-01-01
The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630
NASA Astrophysics Data System (ADS)
Matsuda, Shinpei; Kikuchi, Erumu; Yamane, Yasumasa; Okazaki, Yutaka; Yamazaki, Shunpei
2015-04-01
Field-effect transistors (FETs) with c-axis-aligned crystalline In-Ga-Zn-O (CAAC-IGZO) active layers have extremely low off-state leakage current. Exploiting this feature, we investigated the application of CAAC-IGZO FETs to LSI memories. A high on-state current is required for the high-speed operation of these LSI memories. The field-effect mobility μFE of a CAAC-IGZO FET is relatively low compared with the electron mobility of single-crystal Si (sc-Si). In this study, we measured and calculated the channel length L dependence of μFE for CAAC-IGZO and sc-Si FETs. For CAAC-IGZO FETs, μFE remains almost constant, particularly when L is longer than 0.3 µm, whereas that of sc-Si FETs decreases markedly as L shortens. Thus, the μFE difference between both FET types is reduced by miniaturization. This difference in μFE behavior is attributed to the different susceptibilities of electrons to phonon scattering. On the basis of this result and the extremely low off-state leakage current of CAAC-IGZO FETs, we expect high-speed LSI memories with low power consumption.
Droplet Breakup in Asymmetric T-Junctions at Intermediate to Large Capillary Numbers
NASA Astrophysics Data System (ADS)
Sadr, Reza; Cheng, Way Lee
2017-11-01
Splitting of a parent droplet into multiple daughter droplets of desired sizes is usually desired to enhance production and investigational efficiency in microfluidic devices. This can be done in an active or passive mode depending on whether an external power sources is used or not. In this study, three-dimensional simulations were done using the Volume-of-Fluid (VOF) method to analyze droplet splitting in asymmetric T-junctions with different outlet lengths. The parent droplet is divided into two uneven portions the volumetric ratio of the daughter droplets, in theory, depends on the length ratios of the outlet branches. The study identified various breakup modes such as primary, transition, bubble and non-breakup under various flow conditions and the configuration of the T-junctions. In addition, an analysis with the primary breakup regimes were conducted to study the breakup mechanisms. The results show that the way the droplet splits in an asymmetric T-junction is different than the process in a symmetric T-junction. A model for the asymmetric breakup criteria at intermediate or large Capillary number is presented. The proposed model is an expanded version to a theoretically derived model for the symmetric droplet breakup under similar flow conditions.
Superconducting Cavity Development for Free Electron Lasers.
1986-06-30
effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge
Denisov, Stepan S; Kotova, Elena A; Khailova, Ljudmila S; Korshunova, Galina A; Antonenko, Yuri N
2014-08-01
The environmentally sensitive fluorescent probe 7-nitrobenz-2-oxa-1,3-diazole (NBD) is generally utilized to monitor dynamic properties of membrane lipids and proteins. Here we studied the behavior of a homologous series of 4-n-alkylamino-substituted NBD derivatives (NBD-Cn; n=4, 6, 8, 9, 10, 12) in planar lipid bilayers, liposomes and isolated mitochondria. NBD-C10 induced proton conductivity in planar lipid membranes, while NBD-C4 was ineffective. The NBD-Cn compounds readily provoked proton permeability of neutral liposomes being less effective in negatively charged liposomes. NBD-Cn increased the respiration rate and reduced the membrane potential of isolated rat liver mitochondria. Remarkably, the bell-shaped dependence of the uncoupling activity of NBD-Cn on the alkyl chain length was found in mitochondria in contrast to the monotonous dependence in liposomes. The effect of NBD-Cn on the respiration correlated with that on proton permeability of the inner mitochondrial membrane, as measured by mitochondria swelling. Binding of NBD-Cn to mitochondria increased with n, as shown by fluorescence correlation spectroscopy. It was concluded that despite a pKa value of the amino group in NBD-Cn being about 10, i.e. far from the physiological pH range, the expected hindering of the uncoupling activity could be overcome by inserting the alkyl chain of a certain length. Copyright © 2014 Elsevier B.V. All rights reserved.
Anomalous Flexural Behaviors of Microtubules
Liu, Xiaojing; Zhou, Youhe; Gao, Huajian; Wang, Jizeng
2012-01-01
Apparent controversies exist on whether the persistence length of microtubules depends on its contour length. This issue is particularly challenging from a theoretical point of view due to the tubular structure and strongly anisotropic material property of microtubules. Here we adopt a higher order continuum orthotropic thin shell model to study the flexural behavior of microtubules. Our model overcomes some key limitations of a recent study based on a simplified anisotropic shell model and results in a closed-form solution for the contour-length-dependent persistence length of microtubules, with predictions in excellent agreement with experimental measurements. By studying the ratio between their contour and persistence lengths, we find that microtubules with length at ∼1.5 μm show the lowest flexural rigidity, whereas those with length at ∼15 μm show the highest flexural rigidity. This finding may provide an important theoretical basis for understanding the mechanical structure of mitotic spindles during cell division. Further analysis on the buckling of microtubules indicates that the critical buckling load becomes insensitive to the tube length for relatively short microtubules, in drastic contrast to the classical Euler buckling. These rich flexural behaviors of microtubules are of profound implication for many biological functions and biomimetic molecular devices. PMID:22768935
NASA Astrophysics Data System (ADS)
Roy, Kuntal
2017-11-01
There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.
On the mechanism of TBA block of the TRPV1 channel.
Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara
2007-06-01
The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.
Joo, Jung Hee; Huh, Jeong-Eun; Lee, Jee Hyun; Park, Doo Ri; Lee, Yoonji; Lee, Seul Gee; Choi, Sun; Lee, Hwa Jeong; Song, Seong-Won; Jeong, Yongmi; Goo, Ja-Il; Choi, Yongseok; Baek, Hye Kyung; Yi, Sun Shin; Park, Soo Jin; Lee, Ji Eun; Ku, Sae Kwang; Lee, Won Jae; Lee, Kee-In; Lee, Soo Young; Bae, Yun Soo
2016-01-01
Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis. PMID:26975635
Is titin a 'winding filament'? A new twist on muscle contraction.
Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L
2012-03-07
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Is titin a ‘winding filament’? A new twist on muscle contraction
Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.
2012-01-01
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329
Rassier, Dilson E; Herzog, Walter; Wakeling, Jennifer; Syme, Douglas A
2003-09-01
Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.
Magnetic exchange coupling through superconductors: A trilayer study
NASA Astrophysics Data System (ADS)
Sá de Melo, C. A.
2000-11-01
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.
2012-01-01
Background Hypospadias is a birth defect of the urethra in males, and a milder form of 46,XY disorder of sexual development (DSD). The disease is characterized by a ventrally placed urinary opening due to a premature fetal arrest of the urethra development. Moreover, the Androgen receptor (AR) gene has an essential role in the hormone-dependent stage of sexual development. In addition, longer AR polyglutamine repeat lengths encoded by CAG repeats are associated with lower transcriptional activity in vitro. In the present study, we aimed at investigating the role of the CAG repeat length in the AR gene in hypospadias cases as compared to the controls. Our study included 211 hypospadias and 208 controls of Caucasian origin. Methods We amplified the CAG repeat region with PCR, and calculated the difference in the mean CAG repeat length between the hypospadias and control group using the T-test for independent groups. Results We detected a significant increase of the CAG repeat length in the hypospadias cases when compared to the controls (contrast estimate: 2.29, 95% Confidence Interval (1.73-2.84); p-value: 0.001). In addition, the odds ratios between the hypospadias and controls revealed that the hypospadias cases are two to 3 times as likely to have longer CAG repeats than a shorter length for each repeat length investigated. Conclusions We have investigated the largest number of hypospadias cases with regards to the CAG repeat length, and we provide evidence that a higher number of the CAG repeat sequence in the AR gene have a clear effect on the risk of hypospadias in Caucasians. PMID:23167717
Ansell, Thomas K; McFawn, Peter K; McLaughlin, Robert A; Sampson, David D; Eastwood, Peter R; Hillman, David R; Mitchell, Howard W; Noble, Peter B
2015-03-01
In isolated airway smooth muscle (ASM) strips, an increase or decrease in ASM length away from its current optimum length causes an immediate reduction in force production followed by a gradual time-dependent recovery in force, a phenomenon termed length adaptation. In situ, length adaptation may be initiated by a change in transmural pressure (Ptm), which is a primary physiological determinant of ASM length. The present study sought to determine the effect of sustained changes in Ptm and therefore, ASM perimeter, on airway function. We measured contractile responses in whole porcine bronchial segments in vitro before and after a sustained inflation from a baseline Ptm of 5 cmH2O to 25 cmH2O, or deflation to -5 cmH2O, for ∼50 min in each case. In one group of airways, lumen narrowing and stiffening in response to electrical field stimulation (EFS) were assessed from volume and pressure signals using a servo-controlled syringe pump with pressure feedback. In a second group of airways, lumen narrowing and the perimeter of the ASM in situ were determined by anatomical optical coherence tomography. In a third group of airways, active tension was determined under isovolumic conditions. Both inflation and deflation reduced the contractile response to EFS. Sustained Ptm change resulted in a further decrease in contractile response, which returned to baseline levels upon return to the baseline Ptm. These findings reaffirm the importance of Ptm in regulating airway narrowing. However, they do not support a role for ASM length adaptation in situ under physiological levels of ASM lengthening and shortening. Copyright © 2015 the American Physiological Society.
Fishburn, James; Tomko, Eric; Galburt, Eric; Hahn, Steven
2015-03-31
Formation of the RNA polymerase II (Pol II) open complex (OC) requires DNA unwinding mediated by the transcription factor TFIIH helicase-related subunit XPB/Ssl2. Because XPB/Ssl2 binds DNA downstream from the location of DNA unwinding, it cannot function using a conventional helicase mechanism. Here we show that yeast TFIIH contains an Ssl2-dependent double-stranded DNA translocase activity. Ssl2 tracks along one DNA strand in the 5' → 3' direction, implying it uses the nontemplate promoter strand to reel downstream DNA into the Pol II cleft, creating torsional strain and leading to DNA unwinding. Analysis of the Ssl2 and DNA-dependent ATPase activity of TFIIH suggests that Ssl2 has a processivity of approximately one DNA turn, consistent with the length of DNA unwound during transcription initiation. Our results can explain why maintaining the OC requires continuous ATP hydrolysis and the function of TFIIH in promoter escape. Our results also suggest that XPB/Ssl2 uses this translocase mechanism during DNA repair rather than physically wedging open damaged DNA.
Is scanning in probed order recall articulatory?
Farrell, Simon; Lelièvre, Anna
2009-09-01
We consider how theories of serial recall might apply to other short-term memory tasks involving recall of order. In particular, we consider the possibility that when participants are cued to recall an item at an arbitrary position in a sequence, they covertly serially recall the list up to the cued position. One question is whether such "scanning" is articulatory in nature. Two experiments are presented in which the syllabic length of words preceding and following target positions were manipulated, to test the prediction of an articulatory-based mechanism that time to recall an item at a particular position will depend on the number of preceding long words. Although latency was dependent on target position, no word length effects on latency were observed. Additionally, the effects of word length on accuracy replicate recent demonstrations in serial recall that recall accuracy is dependent on the word length of all list items, not just that of target items, in line with distinctiveness assumptions. It is concluded that if scanning does occur, it is not carried out by covert or overt articulation.
NASA Astrophysics Data System (ADS)
Yoon, Min-Seung; Ko, Min-Ku; Kim, Bit-Na; Kim, Byung-Joon; Park, Yong-Bae; Joo, Young-Chang
2008-04-01
The relationship between the threshold current density and the critical line length in eutectic SnPb and SnAgCu electromigrations were examined using solder lines with the various lengths ranging from 100to1000μm. When the electron wind-force was balanced by the back-stress gradient force, the net flux of electromigration is zero, at which the current density and line length are defined as the threshold current density and the critical length, respectively. It was found that in SnAgCu electromigration, the 1/L dependence on the threshold current density showed good agreement, whereas the threshold current densities of the eutectic SnPb deviated from the 1/L dependence. The balance between the electron wind-force and the back-stress gradient force was the main factor determining the threshold product of SnAgCu electromigration. On the other hand, in the case of eutectic SnPb, the chemical driving force is contributed as a back-flux force in addition to the back-stress gradient force. The existence of the chemical driving force was caused by the nonequilibrium Pb concentration inside the Pb-rich phases between the cathode and anode during the electromigration procedure.
Ohannessian, Robin; Gustin, Marie-Paule; Bénet, Thomas; Gerbier-Colomban, Solweig; Girard, Raphaele; Argaud, Laurent; Rimmelé, Thomas; Guerin, Claude; Bohé, Julien; Piriou, Vincent; Vanhems, Philippe
2018-04-10
The objective of the study was to estimate the length of stay of patients with hospital-acquired infections hospitalized in ICUs using a multistate model. Active prospective surveillance of hospital-acquired infection from January 1, 1995, to December 31, 2012. Twelve ICUs at the University of Lyon hospital (France). Adult patients age greater than or equal to 18 years old and hospitalized greater than or equal to 2 days were included in the surveillance. All hospital-acquired infections (pneumonia, bacteremia, and urinary tract infection) occurring during ICU stay were collected. None. The competitive risks of in-hospital death, transfer, or discharge were considered in estimating the change in length of stay due to infection(s), using a multistate model, time of infection onset. Thirty-three thousand four-hundred forty-nine patients were involved, with an overall hospital-acquired infection attack rate of 15.5% (n = 5,176). Mean length of stay was 27.4 (± 18.3) days in patients with hospital-acquired infection and 7.3 (± 7.6) days in patients without hospital-acquired infection. A multistate model-estimated mean found an increase in length of stay by 5.0 days (95% CI, 4.6-5.4 d). The extra length of stay increased with the number of infected site and was higher for patients discharged alive from ICU. No increased length of stay was found for patients presenting late-onset hospital-acquired infection, more than the 25th day after admission. An increase length of stay of 5 days attributable to hospital-acquired infection in the ICU was estimated using a multistate model in a prospective surveillance study in France. The dose-response relationship between the number of hospitalacquired infection and length of stay and the impact of early-stage hospital-acquired infection may strengthen attention for clinicians to focus interventions on early preventions of hospital-acquired infection in ICU.
Implication of forage particle length on chewing activities and milk production in dairy goats.
Lu, C D
1987-07-01
Twenty-four primiparous Alpine does fed a high concentrate ration were utilized to study the effect of forage particle length on chewing activity, ruminal components, and milk composition. Treatments were Bermudagrass hay with mean particle length of 2.38 and 3.87 mm. Forage particle length was determined with an oscillating screen particle separator. Feeding forage with 3.87-mm mean particle length to lactating dairy goats resulted in higher total chewing and rumination times, slightly higher milk fat content, and fat-corrected milk production. Results from this experiment support the hypothesis that forage particle length affects chewing activities and production of milk fat precursors in the rumen and alters milk fat content and output of fat-corrected milk. Forage particle length appeared to be an important index for forage quality and a quantitative approach could be feasible to establish a system relating forage particle length to milk production in dairy goats.
FDG-PET detects nonuniform muscle activity in the lower body during human gait.
Kindred, John H; Ketelhut, Nathaniel B; Benson, John-Michael; Rudroff, Thorsten
2016-11-01
Nonuniform muscle activity has been partially explained by anatomically defined neuromuscular compartments. The purpose of this study was to investigate the uniformity of skeletal muscle activity during walking. Eight participants walked at a self-selected speed, and muscle activity was quantified using [ 18 F]-fluorodeoxyglucose positron emission tomography imaging. Seventeen muscles were divided into 10 equal length sections, and within muscle activity was compared. Nonuniform activity was detected in 12 of 17 muscles (ƒ > 4.074; P < 0.046), which included both uni- and multi-articular muscles. Greater proximal activity was detected in 6 muscles (P < 0.049), and greater distal versus medial activity was found in the iliopsoas (P < 0.042). Nonuniform muscle activity is likely related to recruitment of motor units located within separate neuromuscular compartments. These findings indicate that neuromuscular compartments are recruited selectively to allow for efficient energy transfer, and these patterns may be task-dependent. Muscle Nerve 54: 959-966, 2016. © 2016 Wiley Periodicals, Inc.
Lajus, Sophie; Vacher, Pierre; Huber, Denise; Dubois, Mathilde; Benassy, Marie-Noëlle; Ushkaryov, Yuri; Lang, Jochen
2006-03-03
The spider venom alpha-latrotoxin (alpha-LTX) induces massive exocytosis after binding to surface receptors, and its mechanism is not fully understood. We have investigated its action using toxin-sensitive MIN6 beta-cells, which express endogenously the alpha-LTX receptor latrophilin (LPH), and toxin-insensitive HIT-T15 beta-cells, which lack endogenous LPH. alpha-LTX evoked insulin exocytosis in HIT-T15 cells only upon expression of full-length LPH but not of LPH truncated after the first transmembrane domain (LPH-TD1). In HIT-T15 cells expressing full-length LPH and in native MIN6 cells, alpha-LTX first induced membrane depolarization by inhibition of repolarizing K(+) channels followed by the appearance of Ca(2+) transients. In a second phase, the toxin induced a large inward current and a prominent increase in intracellular calcium ([Ca(2+)](i)) reflecting pore formation. Upon expression of LPH-TD1 in HIT-T15 cells just this second phase was observed. Moreover, the mutated toxin LTX(N4C), which is devoid of pore formation, only evoked oscillations of membrane potential by reversible inhibition of iberiotoxin-sensitive K(+) channels via phospholipase C, activated L-type Ca(2+) channels independently from its effect on membrane potential, and induced an inositol 1,4,5-trisphosphate receptor-dependent release of intracellular calcium in MIN6 cells. The combined effects evoked transient increases in [Ca(2+)](i) in these cells, which were sensitive to inhibitors of phospholipase C, protein kinase C, or L-type Ca(2+) channels. The latter agents also reduced toxin-induced insulin exocytosis. In conclusion, alpha-LTX induces signaling distinct from pore formation via full-length LPH and phospholipase C to regulate physiologically important K(+) and Ca(2+) channels as novel targets of its secretory activity.
Approximate sample sizes required to estimate length distributions
Miranda, L.E.
2007-01-01
The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.
Chan, Roger W; Siegmund, Thomas; Zhang, Kai
2009-12-01
Accurate characterization of biomechanical characteristics of the vocal fold is critical for understanding the regulation of vocal fundamental frequency (F(0)), which depends on the active control of the intrinsic laryngeal muscles as well as the passive biomechanical response of the vocal fold lamina propria. Specifically, the tissue stress-strain response and viscoelastic properties under cyclic tensile deformation are relevant, when the vocal folds are subjected to length and tension changes due to posturing. This paper describes a constitutive modeling approach quantifying the relationship between vocal fold stress and strain (or stretch), and establishes predictions of F(0) with the string model of phonation based on the constitutive parameters. Results indicated that transient and time-dependent changes in F(0), including global declinations in declarative sentences, as well as local F(0) overshoots and undershoots, can be partially attributed to the time-dependent viscoplastic response of the vocal fold cover.
Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films
NASA Astrophysics Data System (ADS)
da Silva, M. A. T.; Dias, I. F. L.; Duarte, J. L.; Laureto, E.; Silvestre, I.; Cury, L. A.; Guimara~Es, P. S. S.
2008-03-01
The temperature dependence of the photoluminescence properties of a thin film of poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene-vinylene], MEH-PPV, fabricated by spin coating, is analyzed. The evolution with temperature of the peak energy of the purely electronic transition, of the first vibronic band, of the effective conjugation length, and of the Huang-Rhys factors are discussed. The asymmetric character of the pure electronic transition peak and the contribution of the individual vibrational modes to the first vibronic band line shape are considered by a model developed by Cury et al. [J. Chem. Phys. 121, 3836 (2004)]. The temperature dependence of the Huang-Rhys factors of the main vibrational modes pertaining to the first vibronic band allows us to identify two competing vibrational modes. These results show that the electron coupling to different vibrational modes depends on temperature via reduction of thermal disorder.
SU-E-I-16: Scan Length Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakalyar, D; McKenney, S; Feng, W
Purpose: The area-averaged dose in the central plane of a long cylinder following a CT scan depends upon the radial dose distribution and the length of the scan. The ICRU/TG200 phantom, a polyethylene cylinder 30 cm in diameter and 60 cm long, was the subject of this study. The purpose was to develop an analytic function that could determine the dose for a scan length L at any point in the central plane of this phantom. Methods: Monte Carlo calculations were performed on a simulated ICRU/TG200 phantom under conditions of cylindrically symmetric conditions of irradiation. Thus, the radial dose distributionmore » function must be an even function that accounts for two competing effects: The direct beam makes its weakest contribution at the center while the scatter begins abruptly at the outer radius and grows as the center is approached. The scatter contribution also increases with scan length with the increase approaching its limiting value at the periphery faster than along the central axis. An analytic function was developed that fit the data and possessed these features. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the ICRU/TG200 phantom. The relative depth of the minimum decreases as the scan length grows and an absolute maximum can occur between the center and outer edge of the cylinders. As the scan length grows, the relative dip in the center decreases so that for very long scan lengths, the dose profile is relatively flat. Conclusion: An analytic function characterizes the radial and scan length dependency of dose for long cylindrical phantoms. The function can be integrated with the results expressed in closed form. One use for this is to help determine average dose distribution over the central cylinder plane for any scan length.« less
Daniel, Milan; Malý, Marek; Danielová, Vlasta; Kříž, Bohumír; Nuttall, Patricia
2015-09-18
Abiotic conditions provide cues that drive tick questing activity. Defining these cues is critical in predicting biting risk, and in forecasting climate change impacts on tick populations. This is particularly important for Ixodes ricinus nymphs, the vector of numerous pathogens affecting humans. A 6-year study of the questing activity of I. ricinus was conducted in Central Bohemia, Czech Republic, from 2001 to 2006. Tick numbers were determined by weekly flagging the vegetation in a defined 600 m(2) field site. After capture, ticks were released back to where they were found. Concurrent temperature data and relative humidity were collected in the microhabitat and at a nearby meteorological station. Data were analysed by regression methods. During 208 monitoring visits, a total of 21,623 ticks were recorded. Larvae, nymphs, and adults showed typical bimodal questing activity curves with major spring peaks and minor late summer or autumn peaks (mid-summer for males). Questing activity of nymphs and adults began with ~12 h of daylight and ceased at ~9 h daylight, at limiting temperatures close to freezing (in early spring and late autumn); questing occurred during ~70 % calendar year without cessation in summer. The co-occurrence of larvae and nymphs varied annually, ranging from 31 to 80 % of monitoring visits, and depended on the questing activity of larvae. Near-ground temperature, day length, and relative air humidity were all significant predictors of nymphal activity. For 70 % of records, near-ground temperatures measured in the microhabitat were 4-5 °C lower than those recorded by the nearby meteorological observatory, although they were strongly dependent. Inter-annual differences in seasonal numbers of nymphs reflected extreme weather events. Weather predictions (particularly for temperature) combined with daylight length, are good predictors of the initiation and cessation of I. ricinus nymph questing activity, and hence of the risk period to humans, in Central Europe. Co-occurrence data for larvae and nymphs support the notion of intrastadial rather than interstadial co-feeding pathogen transmission. Annual questing tick numbers recover quickly from the impact of extreme weather events.
Boucher, Delphine; Debroas, Didier
2009-10-01
This study examined the effects of temporal changes in bacterial community composition (BCC) and environmental factors on potential ectoenzymatic activities (alpha-glucosidase, beta-glucosidase, alkaline phosphatase and leucine aminopeptidase) in a lacustrine ecosystem (Sep reservoir, France). BCC was assessed by terminal restriction fragment length polymorphism. Physical parameters, and inorganic and organic nutrient concentrations (dissolved carbohydrates and proteins) were measured in lakes and tributaries. According to the multivariate statistics (redundancy analysis), physical and chemical factors explained the largest part of leucine aminopeptidase activity, whereas the temporal changes of other ectoenzymatic activities were partly dependent on the variations in the BCC. In particular, the occurrence of occasional bacterial populations seemed to explain a lot of the variation in rates and patterns of polymer hydrolysis. The relation observed in this study between the bacterial structure and activity is discussed within the framework of biodiversity-ecosystem functioning.
Lauw, Y; Leermakers, F A M; Stuart, M A Cohen
2007-07-19
The persistence length of a wormlike micelle composed of ionic surfactants C(n)E(m)X(k) in an aqueous solvent is predicted by means of the self-consistent-field theory where C(n)E(m) is the conventional nonionic surfactant and X(k) is an additional sequence of k weakly charged (pH-dependent) segments. By considering a toroidal micelle at infinitesimal curvature, we evaluate the bending modulus of the wormlike micelle that corresponds to the total persistence length, consisting of an elastic/intrinsic and an electrostatic contribution. The total persistence length increases with pH and decreases with increasing background salt concentration. We estimate that the electrostatic persistence length l(p,e)(0) scales with respect to the Debye length kappa(-1) as l(p,e)(0) approximately kappa(-p) where p approximately 1.98 for wormlike micelles consisting of C(20)E(10)X(1) surfactants and p approximately 1.54 for wormlike micelles consisting of C(20)E(10)X(2) surfactants. The total persistence length l(p,t)(0) is a weak function of the head group length m but scales with the tail length n as l(p,t)(0) approximately n(x) where x approximately 2-2.6, depending on the corresponding head group length. Interestingly, l(p,t)(0) varies nonmonotonically with the number of charged groups k due to the opposing trends in the electrostatic and elastic bending rigidities upon variation of k.
Memory for tonal pitches: a music-length effect hypothesis.
Akiva-Kabiri, Lilach; Vecchi, Tomaso; Granot, Roni; Basso, Demis; Schön, Daniele
2009-07-01
One of the most studied effects of verbal working memory (WM) is the influence of the length of the words that compose the list to be remembered. This work aims to investigate the nature of musical WM by replicating the word length effect in the musical domain. Length and rate of presentation were manipulated in a recognition task of tone sequences. Results showed significant effects for both factors (length and presentation rate) as well as their interaction, suggesting the existence of different strategies (e.g., chunking and rehearsal) for the immediate memory of musical information, depending upon the length of the sequences.
X-ray light curves of active galactic nuclei are phase incoherent
NASA Technical Reports Server (NTRS)
Krolik, Julian; Done, Chris; Madejski, Grzegorz
1993-01-01
We compute the Fourier phase spectra for the light curves of five low-luminosity active galactic nuclei observed by EXOSAT. There is no statistically significant phase coherence in any of them. This statement is equivalent, subject to a technical caveat, to a demonstration that their fluctuation statistics are Gaussian. Models in which the X-ray output is controlled wholly by a unitary process undergoing a nonlinear limit cycle are therefore ruled out, while models with either a large number of randomly excited independent oscillation modes or nonlinearly interacting spatially dependent oscillations are favored. We also demonstrate how the degree of phase coherence in light curve fluctuations influences the application of causality bounds on internal length scales.
Static and dynamic characteristics of a piezoceramic strut
NASA Technical Reports Server (NTRS)
Pokines, Brett J.; Belvin, W. Keith; Inman, Daniel J.
1993-01-01
The experimental study of a piezoceramic active truss is presented. This active strut is unique in that the piezoceramic configurations allow the stroke length of the strut not to be dependent on the piezoceramic material's expansion range but on the deflection range of the piezoceramic bender segment. A finite element model of a piezoceramic strut segment was constructed. Piezoceramic actuation was simulated using thermally induced strains. This model yielded information on the stiffness and force range of a bender element. The static and dynamic properties of the strut were identified experimentally. Feedback control was used to vary the stiffness of the strut. The experimentally verified model was used to explore implementation possibilities of the strut.
Scaling of cluster growth for coagulating active particles
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut
2014-02-01
Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.
Wu, Yu-Tzu; Luben, Robert; Wareham, Nicholas; Griffin, Simon; Jones, Andy P
2017-01-01
A wide range of environmental factors have been related to active ageing, but few studies have explored the impact of weather and day length on physical activity in older adults. We investigate the cross-sectional association between weather conditions, day length and activity in older adults using a population-based cohort in England, the European Prospective Investigation into Cancer and Nutrition (EPIC) Norfolk study. Physical activity was measured objectively over 7 days using an accelerometer and this was used to calculate daily total physical activity (counts per minute), daily minutes of sedentary behaviour and light, moderate and vigorous physical activity (LMVPA). Day length and two types of weather conditions, precipitation and temperature, were obtained from a local weather station. The association between these variables and physical activity was examined by multilevel first-order autoregressive modelling. After adjusting for individual factors, short day length and poor weather conditions, including high precipitation and low temperatures, were associated with up to 10% lower average physical activity (p<0.01) and 8 minutes less time spent in LMVPA but 15 minutes more sedentary time, compared to the best conditions. Day length and weather conditions appear to be an important factor related to active ageing. Future work should focus on developing potential interventions to reduce their impact on physical activity behaviours in older adults.
Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65
Kazlauskaite, Agne; Kondapalli, Chandana; Gourlay, Robert; Campbell, David G.; Ritorto, Maria Stella; Hofmann, Kay; Alessi, Dario R.; Knebel, Axel; Trost, Matthias; Muqit, Miratul M. K.
2014-01-01
We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinson's disease. PMID:24660806
Application of CFD Modeling to Room Fire Growth on Walls
2003-04-01
to each particle. For fires of other geometries, expressions must be available for representing the characteristic velocity and flame length , in the...burning time, z , is the flame length , ri,, is the selected particle rate. The velocity of the particles generally depends on their launch site. But if...over the characteristic flame length , We used R* = 0.05 or 20 cells over the characteristic flame length . In FDS 2.0 the stoichiometric mixture
The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing
ERIC Educational Resources Information Center
Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi
2013-01-01
Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…
Liu, Jian; Pedroza, Luana S; Misch, Carissa; Fernández-Serra, Maria V; Allen, Philip B
2014-07-09
We present total energy and force calculations for the (GaN)1-x(ZnO)x alloy. Site-occupancy configurations are generated from Monte Carlo (MC) simulations, on the basis of a cluster expansion model proposed in a previous study. Local atomic coordinate relaxations of surprisingly large magnitude are found via density-functional calculations using a 432-atom periodic supercell, for three representative configurations at x = 0.5. These are used to generate bond-length distributions. The configurationally averaged composition- and temperature-dependent short-range order (SRO) parameters of the alloys are discussed. The entropy is approximated in terms of pair distribution statistics and thus related to SRO parameters. This approximate entropy is compared with accurate numerical values from MC simulations. An empirical model for the dependence of the bond length on the local chemical environments is proposed.
Charge dependence of the plasma travel length in atmospheric-pressure plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Konda, Kohmei; Masuda, Seiya
Plasma plume is generated using a quartz tube, helium gas, and foil electrode by applying AC high voltage under the atmosphere. The plasma plume is released into the atmosphere from inside of the quartz tube and is seen as the continuous movement of the plasma bullet. The travel length of plasma bullet is defined from plasma energy and force due to electric field. The drift velocity of plasma bullet has the upper limit under atmospheric-pressure because the drift velocity is determined from the balance between electric field and resistive force due to collisions between plasma and air. The plasma plumemore » charge depends on the drift velocity. Consequently, in the laminar flow of helium gas flow state, the travel length of the plasma plume logarithmically depends on the plasma plume charge which changes with both the electric field and the resistive force.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lianying; College of Life Science, Dezhou University, Dezhou 253023; Ren, Xiao-Min
2014-09-15
Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group.more » For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.« less
Bally, Julia; Paget, Eric; Droux, Michel; Job, Claudette; Job, Dominique; Dubald, Manuel
2008-01-01
Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli. This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco (Nicotiana tabacum) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.
Desikan, Radhika
2016-01-01
Cellular signal transduction usually involves activation cascades, the sequential activation of a series of proteins following the reception of an input signal. Here, we study the classic model of weakly activated cascades and obtain analytical solutions for a variety of inputs. We show that in the special but important case of optimal gain cascades (i.e. when the deactivation rates are identical) the downstream output of the cascade can be represented exactly as a lumped nonlinear module containing an incomplete gamma function with real parameters that depend on the rates and length of the cascade, as well as parameters of the input signal. The expressions obtained can be applied to the non-identical case when the deactivation rates are random to capture the variability in the cascade outputs. We also show that cascades can be rearranged so that blocks with similar rates can be lumped and represented through our nonlinear modules. Our results can be used both to represent cascades in computational models of differential equations and to fit data efficiently, by reducing the number of equations and parameters involved. In particular, the length of the cascade appears as a real-valued parameter and can thus be fitted in the same manner as Hill coefficients. Finally, we show how the obtained nonlinear modules can be used instead of delay differential equations to model delays in signal transduction. PMID:27581482
Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis
2008-01-01
Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447
Loosli, Y; Vianay, B; Luginbuehl, R; Snedeker, J G
2012-05-01
We present a novel approach to modeling cell spreading, and use it to reveal a potentially central mechanism regulating focal adhesion maturation in various cell phenotypes. Actin bundles that span neighboring focal complexes at the lamellipodium-lamellum interface were assumed to be loaded by intracellular forces in proportion to bundle length. We hypothesized that the length of an actin bundle (with the corresponding accumulated force at its adhesions) may thus regulate adhesion maturation to ensure cell mechanical stability and morphological integrity. We developed a model to test this hypothesis, implementing a "top-down" approach to simplify certain cellular processes while explicitly incorporating complexity of other key subcellular mechanisms. Filopodial and lamellipodial activities were treated as modular processes with functional spatiotemporal interactions coordinated by rules regarding focal adhesion turnover and actin bundle dynamics. This theoretical framework was able to robustly predict temporal evolution of cell area and cytoskeletal organization as reported from a wide range of cell spreading experiments using micropatterned substrates. We conclude that a geometric/temporal modeling framework can capture the key functional aspects of the rapid spreading phase and resultant cytoskeletal complexity. Hence the model is used to reveal mechanistic insight into basic cell behavior essential for spreading. It demonstrates that actin bundles spanning nascent focal adhesions such that they are aligned to the leading edge may accumulate centripetal endogenous forces along their length, and could thus trigger focal adhesion maturation in a force-length dependent fashion. We suggest that this mechanism could be a central "integrating" factor that effectively coordinates force-mediated adhesion maturation at the lamellipodium-lamellum interface.
The conversion of centrioles to centrosomes: essential coupling of duplication with segregation
Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro
2011-01-01
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were “infertile,” indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis. PMID:21576395
The conversion of centrioles to centrosomes: essential coupling of duplication with segregation.
Wang, Won-Jing; Soni, Rajesh Kumar; Uryu, Kunihiro; Tsou, Meng-Fu Bryan
2011-05-16
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.
A bacterial hydrogen-dependent CO2 reductase forms filamentous structures.
Schuchmann, Kai; Vonck, Janet; Müller, Volker
2016-04-01
Interconversion of CO2 and formic acid is an important reaction in bacteria. A novel enzyme complex that directly utilizes molecular hydrogen as electron donor for the reversible reduction of CO2 has recently been identified in the Wood-Ljungdahl pathway of an acetogenic bacterium. This pathway is utilized for carbon fixation as well as energy conservation. Here we describe the further characterization of the quaternary structure of this enzyme complex and the unexpected behavior of this enzyme in polymerizing into filamentous structures. Polymerization of metabolic enzymes into similar structures has been observed only in rare cases but the increasing number of examples point towards a more general characteristic of enzyme functioning. Polymerization of the purified enzyme into ordered filaments of more than 0.1 μm in length was only dependent on the presence of divalent cations. Polymerization was a reversible process and connected to the enzymatic activity of the oxygen-sensitive enzyme with the filamentous form being the most active state. © 2016 Federation of European Biochemical Societies.
Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities.
Harfe, Brian D; Scherz, Paul J; Nissim, Sahar; Tian, Hua; McMahon, Andrew P; Tabin, Clifford J
2004-08-20
The zone of polarizing activity (ZPA) in the posterior limb bud produces Sonic Hedgehog (Shh) protein, which plays a critical role in establishing distinct fates along the anterior-posterior axis. This activity has been modeled as a concentration-dependent response to a diffusible morphogen. Using recombinase base mapping in the mouse, we determine the ultimate fate of the Shh-producing cells. Strikingly, the descendants of the Shh-producing cells encompass all cells in the two most posterior digits and also contribute to the middle digit. Our analysis suggests that, while specification of the anterior digits depends upon differential concentrations of Shh, the length of time of exposure to Shh is critical in the specification of the differences between the most posterior digits. Genetic studies of the effects of limiting accessibility of Shh within the limb support this model, in which the effect of the Shh morphogen is dictated by a temporal as well as a spatial gradient.
Minimization of Dependency Length in Written English
ERIC Educational Resources Information Center
Temperley, David
2007-01-01
Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. "Linguistic complexity: locality of syntactic dependencies." "Cognition," 68, 1-76; Gibson, E. 2000. "The dependency locality theory: A distance-based theory of linguistic complexity." In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), "Image,…
Alkyl(C16, C18, C22)trimethylammonium-Based Herbicidal Ionic Liquids.
Pernak, Juliusz; Giszter, Rafał; Biedziak, Agnieszka; Niemczak, Michał; Olszewski, Radosław; Marcinkowska, Katarzyna; Praczyk, Tadeusz
2017-01-18
In the framework of this study a synthesis methodology and characterization of long alkyl herbicidal ionic liquids (HILs) based on four commonly used herbicides (2,4-D, MCPA, MCPP, and dicamba) are presented. New HILs were obtained with high efficiency (>95%) using an acid-base reaction between herbicidal acids and hexadecyltrimethylammonium, octadecyltrimethylammonium, and behenyltrimethylammonium hydroxides in alcoholic medium. Among all synthesized salts, only three compounds comprising the MCPP anion were liquids at room temperature. Subsequently, the influence of both the alkyl chain length and the anion structure on their physicochemical properties (thermal decomposition profiles, solubility in 10 representative solvents, surface activity, density, viscosity, and refractive index) was determined. All HILs exhibited high thermal stability as well as surface activity; however, their solubility notably depended on both the length of the carbon chain and the structure of the anion. The herbicidal efficacy of the obtained salts was tested in greenhouse and field experiments. Greenhouse testing performed on common lambsquarters (Chenopodium album L.) and flixweed (Descurainia sophia L.) as test plants indicated that HILs were characterized by similar or higher efficacy compared to commercial herbicides. The results of field trials confirmed the high activity of HILs, particularly those containing phenoxyacids as anions (MCPA, 2,4-D, and MCPP).
Synthesis and Surface Activity of Cationic Amino Acid-Based Surfactants in Aqueous Solution.
Greber, Katarzyna E
2017-01-01
I studied the possibility of using amino acid-based surfactants as emulsifiers at the same time as preservatives. Fourteen lipopeptides were synthesized employing a solid phase peptide synthesis procedure. All compounds were designed to be positively charged from +1 to +4 and acylated with fatty acid chain-palmitic and miristic. The surface activity of the obtained lipopeptides was tested using a semi-automatic tensiometer to calculate parameters describing the behavior of lipopeptides in the air/water interface. Such parameters as CMC, surface tension at the CMC point ( σ CMC ), effectiveness ( π CMC ), and efficiency (pC20) were measured. Emulsifying properties of all lipopeptides were also examined. The studies reveal that the surface active properties of synthesized compounds strongly depend on the length of alkyl chains as well as on the composition of amino acid polar heads. The critical micelle concentration decreases with increasing alkyl chain length of lipopeptides with the same polar head. The effectiveness and efficiency decrease when the number of amino acids in the polar head increases. All lipopeptides established a very weak emulsification power and created unstable water/Miglyol 812 and water/paraffin oil emulsions. Results suggest that lipopeptides cannot be used as emulsifiers; nonetheless, it is possible to use them as auxiliary surfactants with disinfectant properties in combination with more potent emulsifiers.
Telomere length regulation during cloning, embryogenesis and ageing.
Schaetzlein, S; Rudolph, K L
2005-01-01
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes with an essential role in chromosome capping. Owing to the end-replication problem of DNA polymerase, telomeres shorten during each cell division. When telomeres become critically short, they loose their capping function, which in turn induces a DNA damage-like response. This mechanism inhibits cell proliferation at the senescence stage and there is evidence that it limits the regenerative capacity of tissues and organs during chronic diseases and ageing. The holoenzyme telomerase synthesises telomeric DNA de novo, but, in humans, it is active only during embryogenesis, in immature germ cells and in a subset of stem/progenitor cells during postnatal life. Telomere length can be maintained or increased by telomerase, a process that appears to be regulated by a variety of telomere-binding proteins that control telomerase recruitment and activity at the telomeres. During embryogenesis, telomerase is strongly activated at the morula/blastocyst transition. At this transition, telomeres are significantly elongated in murine and bovine embryos. Early embryonic telomere elongation is telomerase dependent and leads to a rejuvenation of telomeres in cloned bovine embryos. Understanding of the molecular mechanisms underlying this early embryonic telomere elongation programme is of great interest for medical research in the fields of regeneration, cell therapies and therapeutic cloning.
Nyquist, Michael D.; Li, Yingming; Hwang, Tae Hyun; Manlove, Luke S.; Vessella, Robert L.; Silverstein, Kevin A. T.; Voytas, Daniel F.; Dehm, Scott M.
2013-01-01
Androgen receptor (AR) target genes direct development and survival of the prostate epithelial lineage, including prostate cancer (PCa). Thus, endocrine therapies that inhibit the AR ligand-binding domain (LBD) are effective in treating PCa. AR transcriptional reactivation is central to resistance, as evidenced by the efficacy of AR retargeting in castration-resistant PCa (CRPC) with next-generation endocrine therapies abiraterone and enzalutamide. However, resistance to abiraterone and enzalutamide limits this efficacy in most men, and PCa remains the second-leading cause of male cancer deaths. Here we show that AR gene rearrangements in CRPC tissues underlie a completely androgen-independent, yet AR-dependent, resistance mechanism. We discovered intragenic AR gene rearrangements in CRPC tissues, which we modeled using transcription activator-like effector nuclease (TALEN)-mediated genome engineering. This modeling revealed that these AR gene rearrangements blocked full-length AR synthesis, but promoted expression of truncated AR variant proteins lacking the AR ligand-binding domain. Furthermore, these AR variant proteins maintained the constitutive activity of the AR transcriptional program and a CRPC growth phenotype independent of full-length AR or androgens. These findings demonstrate that AR gene rearrangements are a unique resistance mechanism by which AR transcriptional activity can be uncoupled from endocrine regulation in CRPC. PMID:24101480
Li, Xinlei; Liu, Yongqing; Haas, Thomas A
2014-12-01
We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.
Lavagnino, Michael; Bedi, Asheesh; Walsh, Christopher P; Sibilsky Enselman, Elizabeth R; Sheibani-Rad, Shahin; Arnoczky, Steven P
2014-06-01
Tendons are viscoelastic tissues that deform (elongate) in response to cyclic loading. However, the ability of a tendon to recover this elongation is unknown. Tendon length significantly increases after in vivo or in vitro cyclic loading, and the ability to return to its original length through a cell-mediated contraction mechanism is an age-dependent phenomenon. Controlled laboratory study. In vitro, rat tail tendon fascicles (RTTfs) from Sprague-Dawley rats of 3 age groups (1, 3, and 12 months) underwent 2% cyclic strain at 0.17 Hz for 2 hours, and the percentages of elongation were determined. After loading, the RTTfs were suspended for 3 days under tissue culture conditions and photographed daily to determine the amount of length contraction. In vivo, healthy male participants (n = 29; age, 19-49 years) had lateral, single-legged weightbearing radiographs taken of the knee at 60° of flexion immediately before, immediately after, and 24 hours after completing eccentric quadriceps loading exercises on the dominant leg to fatigue. Measurements of patellar tendon length were taken from the radiographs, and the percentages of tendon elongation and subsequent contraction were calculated. In vitro, cyclic loading increased the length of all RTTfs, with specimens from younger (1 and 3 months) rats demonstrating significantly greater elongation than those from older (12 months) rats (P = .009). The RTTfs contracted to their original length significantly faster (P < .001) and in an age-dependent fashion, with younger animals contracting faster. In vivo, repetitive eccentric loading exercises significantly increased patellar tendon length (P < .001). Patellar tendon length decreased 24 hours after exercises (P < .001) but did not recover completely (P < .001). There was a weak but significant (R (2) = 0.203, P = .014) linear correlation between the amount of tendon contraction and age, with younger participants (<30 years) demonstrating significantly more contraction (P = .014) at 24 hours than older participants (>30 years). Cyclic tendon loading results in a significant increase in tendon elongation under both in vitro and in vivo conditions. Tendons in both conditions demonstrated an incomplete return to their original length after 24 hours, and the extent of this return was age dependent. The age- and time-dependent contraction of tendons, elongated after repetitive loading, could result in transient alterations in the mechanobiological environment of tendon cells. This, in turn, could induce the onset of catabolic changes associated with the pathogenesis of tendinopathy. These results suggest the importance of allowing time for contraction between bouts of repetitive exercise and may explain why age is a predisposing factor in tendinopathy. © 2014 The Author(s).
A proposal for unification of fatigue crack growth law
NASA Astrophysics Data System (ADS)
Kobelev, V.
2017-05-01
In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.
Damping factor estimation using spin wave attenuation in permalloy film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp; Yamanoi, Kazuto; Kasai, Shinya
2015-05-07
Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spinmore » waves attenuation can be useful tool for ferromagnetic thin films.« less
Determination of the paraxial focal length using Zernike polynomials over different apertures
NASA Astrophysics Data System (ADS)
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A
2010-03-01
The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.
Wu, Yu-Tzu; Luben, Robert; Wareham, Nicholas; Griffin, Simon; Jones, Andy P.
2017-01-01
Background A wide range of environmental factors have been related to active ageing, but few studies have explored the impact of weather and day length on physical activity in older adults. We investigate the cross-sectional association between weather conditions, day length and activity in older adults using a population-based cohort in England, the European Prospective Investigation into Cancer and Nutrition (EPIC) Norfolk study. Methods Physical activity was measured objectively over 7 days using an accelerometer and this was used to calculate daily total physical activity (counts per minute), daily minutes of sedentary behaviour and light, moderate and vigorous physical activity (LMVPA). Day length and two types of weather conditions, precipitation and temperature, were obtained from a local weather station. The association between these variables and physical activity was examined by multilevel first-order autoregressive modelling. Results After adjusting for individual factors, short day length and poor weather conditions, including high precipitation and low temperatures, were associated with up to 10% lower average physical activity (p<0.01) and 8 minutes less time spent in LMVPA but 15 minutes more sedentary time, compared to the best conditions. Conclusion Day length and weather conditions appear to be an important factor related to active ageing. Future work should focus on developing potential interventions to reduce their impact on physical activity behaviours in older adults. PMID:28562613
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, J.S.; Saikatendu, K.S.; Subramanian, V.
Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn{sup 2+}-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335)more » determined to a resolution of 2.9 Angstroms. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by {approx}120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgess, Mark; Chénard, Etienne; Hernández-Burgos, Kenneth
The design of chemically stable and electrochemically reversible redox active polymers (RAPs) is of great interest for energy storage technologies. Particularly, RAPs are new players for flow batteries relying on a size-exclusion based mechanism of electrolyte separation, but few studies have provided detailed molecular understanding of redox polymers in solution. Here, we use a systematic molecular design approach to investigate the impact of linker and redox-pendant electronic interactions on the performance of viologen RAPs. We used scanning electrochemical microscopy, cyclic voltammetry, bulk electrolysis, temperature-dependent absorbance, and spectroelectrochemistry to study the redox properties, charge transfer kinetics, and self-exchange of electrons throughmore » redox active dimers and their equivalent polymers. Stark contrast was observed between the electrochemical properties of viologen dimers and their corresponding polymers. Electron self-exchange kinetics in redox active dimers that only differ by their tether length and rigidity influences their charge transfer properties. Predictions from the Marcus Hush theory were consistent with observations in redox active dimers, but they failed to fully capture the behavior of macromolecular systems. For example, polymer bound viologen pendants, if too close in proximity, do not retain chemical reversibility. In contrast to polymer films, small modifications to the backbone structure decisively impact the bulk electrolysis of polymer solutions. This first comprehensive study highlights the careful balance between electronic interactions and backbone rigidity required to design RAPs with superior electrochemical performance.« less
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang
Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.
Kalynych, Sergei; Ruan, Xiang; Valvano, Miguel A; Cygler, Miroslaw
2011-08-01
The O-antigen component of the lipopolysaccharide (LPS) represents a population of polysaccharide molecules with nonrandom (modal) chain length distribution. The number of the repeat O units in each individual O-antigen polymer depends on the Wzz chain length regulator, an inner membrane protein belonging to the polysaccharide copolymerase (PCP) family. Different Wzz proteins confer vastly different ranges of modal lengths (4 to >100 repeat units), despite having remarkably conserved structural folds. The molecular mechanism responsible for the selective preference for a certain number of O units is unknown. Guided by the three-dimensional structures of PCPs, we constructed a panel of chimeric molecules containing parts of two closely related Wzz proteins from Salmonella enterica and Shigella flexneri which confer different O-antigen chain length distributions. Analysis of the O-antigen length distribution imparted by each chimera revealed the region spanning amino acids 67 to 95 (region 67 to 95), region 200 to 255, and region 269 to 274 as primarily affecting the length distribution. We also showed that there is no synergy between these regions. In particular, region 269 to 274 also influenced chain length distribution mediated by two distantly related PCPs, WzzB and FepE. Furthermore, from the 3 regions uncovered in this study, region 269 to 274 appeared to be critical for the stability of the oligomeric form of Wzz, as determined by cross-linking experiments. Together, our data suggest that chain length determination depends on regions that likely contribute to stabilize a supramolecular complex.
Potent and Selective Peptide-based Inhibition of the G Protein Gαq*
Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John
2016-01-01
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837
Potent and Selective Peptide-based Inhibition of the G Protein Gαq.
Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John
2016-12-02
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Clove oil as an anaesthetic for adult sockeye salmon: Field trials
Woody, C.A.; Nelson, Jack L.; Ramstad, K.
2002-01-01
Wild migrating sockeye salmon Oncorhynchus nerka exposed to 20, 50 and 80 mg 1-1 of clove oil could be handled within 3 min, recovered within 10 min, and survived 15 min exposure trials. Fish tested at 110 mg 1-1 did not recover from 15 min exposure trials. Response curves developed for induction and recovery time considered the following predictors: clove oil concentration, sex, fish length and depth. A significant positive dependence was observed between induction time and fish length for 20, 50 and 80 mg 1-1 test concentrations; no dependence was observed between induction time and length at 110 and 140 mg 1-1. Recovery time differed as a function of clove oil concentration, but not fish size. A concentration of 50 mg 1-1 is recommended for anaesthetizing sockeye salmon ranging in length from 400 to 550 mm at water temperatures averaging 9-10??C.
On the physics of electron ejection from laser-irradiated overdense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thévenet, M.; Vincenti, H.; Faure, J.
2016-06-15
Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less
The dependence of the properties of optical fibres on length
NASA Astrophysics Data System (ADS)
Poppett, C. L.; Allington-Smith, J. R.
2010-05-01
We investigate the dependence on length of optical fibres used in astronomy, especially the focal ratio degradation (FRD) which places constraints on the performance of fibre-fed spectrographs used for multiplexed spectroscopy. To this end, we present a modified version of the FRD model proposed by Carrasco & Parry to quantify the number of scattering defects within an optical fibre using a single parameter. The model predicts many trends which are seen experimentally, for example, a decrease in FRD as core diameter increases, and also as wavelength increases. However, the model also predicts a strong dependence on FRD with length that is not seen experimentally. By adapting the single fibre model to include a second fibre, we can quantify the amount of FRD due to stress caused by the method of termination. By fitting the model to experimental data, we find that polishing the fibre causes more stress to be induced in the end of the fibre compared to a simple cleave technique. We estimate that the number of scattering defects caused by polishing is approximately double that produced by cleaving. By placing limits on the end effect, the model can be used to estimate the residual-length dependence in very long fibres, such as those required for Extremely Large Telescopes, without having to carry out costly experiments. We also use our data to compare different methods of fibre termination.
Kinetics of cycle length dependence of ventricular repolarization: effect of autonomic blockade
NASA Technical Reports Server (NTRS)
Raeder, E. A.; Albrecht, P.; Perrott, M.; Cohen, R. J.
1995-01-01
INTRODUCTION: Beat-to-beat adaptation of ventricular repolarization duration to cardiac cycle length and autonomic activity has not been previously characterized in the spontaneously beating human heart. METHODS AND RESULTS: The ECG of 14 healthy subjects was recorded from the supine and upright positions. Autonomic blockade was accomplished by atropine and propranolol. RR and RT intervals were measured by a computer algorithm, and the impulse response (h) from RR to RT computed. In the supine position the maximal adjustment of the RT interval occurred in the first beat following a change in cycle length (hpeak = 17.8 +/- 1.6 msec/sec), but continued to be detectable for 3.8 seconds (2.9-4.7 sec). Propranolol attenuated the peak impulse response to 15.8 +/- 4.0 msec/sec (P = NS). In the standing position the peak impulse response was increased to 25.2 +/- 5.0 msec/sec (P = 0.004 vs supine), and the impulse response duration (hdur) shortened to 1.4 seconds (1.3-1.6). This was reversed by beta blockade (hpeak = 10.7 +/- 3.6 [P = 0.005 vs standing]; hdur = 5.5 sec [4.8-6.1]). Parasympathetic and combined autonomic blockade resulted in too little residual heart rate variability to estimate the impulse response accurately. The slope of the regression of delta RT and delta RR in the supine position was 0.0177 +/- 0.0016, which was closely correlated with the peak impulse response (r = 0.91). CONCLUSIONS: System identification techniques can assist in characterizing the cycle dependence of ventricular repolarization and may provide new insights into conditions associated with abnormal repolarization.
Magnetic exchange coupling through superconductors : a trilayer study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa de Melo, C. A. R.; Materials Science Division
1997-09-08
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less
NASA Astrophysics Data System (ADS)
Tan, K. L.; Chong, Z. L.; Khoo, M. B. C.; Teoh, W. L.; Teh, S. Y.
2017-09-01
Quality control is crucial in a wide variety of fields, as it can help to satisfy customers’ needs and requirements by enhancing and improving the products and services to a superior quality level. The EWMA median chart was proposed as a useful alternative to the EWMA \\bar{X} chart because the median-type chart is robust against contamination, outliers or small deviation from the normality assumption compared to the traditional \\bar{X}-type chart. To provide a complete understanding of the run-length distribution, the percentiles of the run-length distribution should be investigated rather than depending solely on the average run length (ARL) performance measure. This is because interpretation depending on the ARL alone can be misleading, as the process mean shifts change according to the skewness and shape of the run-length distribution, varying from almost symmetric when the magnitude of the mean shift is large, to highly right-skewed when the process is in-control (IC) or slightly out-of-control (OOC). Before computing the percentiles of the run-length distribution, optimal parameters of the EWMA median chart will be obtained by minimizing the OOC ARL, while retaining the IC ARL at a desired value.
Contextual Factors, Indoor Tanning, and Tanning Dependence in Young Women
Heckman, Carolyn J.; Darlow, Susan D.; Kloss, Jacqueline D.; Munshi, Teja; Manne, Sharon L.
2015-01-01
Objectives The study's purpose was to investigate the association of contextual factors such as cost, tanning accessibility, regulations, or marketing and indoor tanning or tanning dependence. Methods One hundred thirty-nine college-aged female indoor tanners completed a questionnaire between 2009 and 2011. Results Higher scores on tanning dependence and assessment in the spring/summer (versus the fall/winter) were associated with more frequent indoor tanning in the last 30 days (ps < .05). More frequent indoor tanning, greater session length, and more trouble paying for tanning were associated with higher scores on tanning dependence (ps < .05). Conclusions Public health research and practice could benefit from attention to such contextual factors as tanning cost and regulations regarding session length. PMID:25741682
Shim, Kwanseob; Jacobi, Sheila; Odle, Jack; Lin, Xi
2018-01-01
Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
Sokolova, Anastasiya S; Yarovaya, Capital O Cyrilliclga I; Shernyukov, Capital A Cyrillicndrey V; Pokrovsky, Capital Em Cyrillicichail A; Pokrovsky, Capital A Cyrillicndrey G; Lavrinenko, Valentina A; Zarubaev, Vladimir V; Tretiak, Tatiana S; Anfimov, Pavel M; Kiselev, Oleg I; Beklemishev, Anatoly B; Salakhutdinov, Nariman F
2013-11-01
The synthesis and biological evaluation of a novel series of dimeric camphor derivatives are described. The resulting compounds were studied for their antiviral activity, cyto- and genotoxicity. Compounds 3a and 3d in which the quaternary nitrogen atoms are separated by the C5H10 and С9H18 aliphatic chain, exhibited the highest efficiency as an agent inhibiting the reproduction of the influenza virus A(H1N1)pdm09. The cytotoxicity data of compounds 3 and 4 revealed their moderate activity against malignant cell lines; compound 3f had the highest activity for the CEM-13 cells. These results show close agreement with the data of independent studies on toxicity of these compounds, in particular that the toxicity of compounds strongly depends on spacer length. Copyright © 2013 Elsevier Ltd. All rights reserved.
Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayyubova, Leyla J.
2006-03-23
Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and themore » dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.« less
Antimicrobial activity of chemically modified dextran derivatives.
Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C
2017-04-01
Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
Keweloh, Lukas; Aders, Niklas; Hepp, Alexander; Pleschka, Damian; Würthwein, Ernst-Ulrich; Uhl, Werner
2018-06-12
Hydroalumination of R-P(H)-C[triple bond, length as m-dash]C-tBu with bulky H-Al[CH(SiMe3)2]2 afforded the new P-H functionalized Al/P-based frustrated Lewis pair R-P(H)-C[[double bond, length as m-dash]C(H)-tBu]-AlR2 [R = CH(SiMe3)2; FLP 7]. A weak adduct of 7 with benzonitrile (8) was detected by NMR spectroscopy, but could not be isolated. tert-Butyl isocyanide afforded a similar, but isolable adduct (9), in which the isocyanide C atom was coordinated to aluminium. The unique reactivity of 7 became evident from its reactions with the heteroatom substituted nitriles PhO-C[triple bond, length as m-dash]N, PhCH2S-C[triple bond, length as m-dash]N and H8C4N-C[triple bond, length as m-dash]N. Hydrophosphination of the C[triple bond, length as m-dash]N triple bonds afforded imines at room temperature which were coordinated to the FLP by Al-N and P-C bonds to yield AlCPCN heterocycles (10 to 12). These processes depend on substrate activation by the FLP. Diphenylcyclopropenone and its sulphur derivative reacted with 7 by addition of the P-H bond to a C-C bond of the strained C3 ring and ring opening to afford the fragment (Z)-Ph-C(H)[double bond, length as m-dash]C(Ph)-C-X-Al (X = O, S). The C-O or C-S groups were coordinated to the FLP to yield AlCPCX heterocycles (13 and 14). The thiocarbonyl derived compound 14 contains an internally stabilized phosphenium cation with a localized P[double bond, length as m-dash]C bond, a trigonal planar coordinated P atom and a short P[double bond, length as m-dash]C distance (168.9 pm). Insight into formation mechanisms, the structural and energetic properties of FLP 7 and compounds 13 and 14 was gained by quantum chemical DFT calculations.
Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina
2017-04-01
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.
Consequences of copper treatment on pigeon pea photosynthesis, osmolytes and antioxidants defense.
Sharma, Poonam; Sirhindi, Geetika; Singh, Anil Kumar; Kaur, Harpreet; Mushtaq, Ruqia
2017-10-01
An attempt was made to explore the effect of copper sulphate treatment on growth, photosynthesis, osmolytes and antioxidants in 15 days old seedlings of C. cajan (Pigeonpea). C. cajan seedlings were grown in 0, 1, 5 and 10 mM concentrations of copper sulphate in petriplates lined with Whatman filter paper for 15 days. Root length and shoot length was decreased in a dose dependent manner with highest decrease of 82.80 and 45.92% in 10 mM Cu stress. Photosynthetic efficiency (qP, qN and Y) was decreased in a dose dependent manner whereas NPQ was increased in 1 and 5 mM and decreased in 10 mM Cu. Photosynthetic pigments viz total chlorophyll and carotenoids were increased in low concentrations and decreased in high concentrations of Cu. Osmolytes such as proline, glycine betaine and sugars were found to be increased in a dose dependent manner. Similarly antioxidants such as superoxide dismutase and catalase increased to 129.17 and 169.7%, respectively under Cu stress. Vitamin C and vitamin E was also increased in different concentrations of Cu to a significant level. It can be concluded from the present study that C. cajan can tolerate Cu stress up to 5 mM by adjusting the proportion of proline, glycine betaine, sugars and vitamins along with increasing the activity of some of the antioxidant enzymes.
Yamaguchi, Motonori; Logan, Gordon D; Li, Vanessa
2013-08-01
Does response selection select words or letters in skilled typewriting? Typing performance involves hierarchically organized control processes: an outer loop that controls word level processing, and an inner loop that controls letter (or keystroke) level processing. The present study addressed whether response selection occurs in the outer loop or the inner loop by using the psychological refractory period (PRP) paradigm in which Task1 required typing single words and Task2 required vocal responses to tones. The number of letters (string length) in the words was manipulated to discriminate selection of words from selection of keystrokes. In Experiment 1, the PRP effect depended on string length of words in Task1, suggesting that response selection occurs in the inner loop. To assess contributions of the outer loop, the influence of string length was examined in a lexical-decision task that also involves word encoding and lexical access (Experiment 2), or to-be-typed words were preexposed so outer-loop processing could finish before typing started (Experiment 3). Response time for Task2 (RT2) did not depend on string length with lexical decision, and RT2 still depended on string length with typing preexposed strings. These results support the inner-loop locus of the PRP effect. In Experiment 4, typing was performed as Task2, and the effect of string length on typing RT interacted with stimulus onset asynchrony superadditively, implying that another bottleneck also exists in the outer loop. We conclude that there are at least two bottleneck processes in skilled typewriting. 2013 APA, all rights reserved
Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger
2016-09-22
The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.
Neonates and Infants Discharged Home Dependent on Medical Technology: Characteristics and Outcomes.
Toly, Valerie Boebel; Musil, Carol M; Bieda, Amy; Barnett, Kimberly; Dowling, Donna A; Sattar, Abdus
2016-10-01
Preterm neonates and neonates with complex conditions admitted to a neonatal intensive care unit (NICU) may require medical technology (eg, supplemental oxygen, feeding tubes) for their continued survival at hospital discharge. Medical technology introduces another layer of complexity for parents, including specialized education about neonatal assessment and operation of technology. The transition home presents a challenge for parents and has been linked with greater healthcare utilization. To determine incidence, characteristics, and healthcare utilization outcomes (emergency room visits, rehospitalizations) of technology-dependent neonates and infants following initial discharge from the hospital. This descriptive, correlational study used retrospective medical record review to examine technology-dependent neonates (N = 71) upon discharge home. Study variables included demographic characteristics, hospital length of stay, and type of medical technology used. Analysis of neonates (n = 22) with 1-year postdischarge data was conducted to identify relationships with healthcare utilization. Descriptive and regression analyses were performed. Approximately 40% of the technology-dependent neonates were between 23 and 26 weeks' gestation, with birth weight of less than 1000 g. Technologies used most frequently were supplemental oxygen (66%) and feeding tubes (46.5%). The mean total hospital length of stay for technology-dependent versus nontechnology-dependent neonates was 108.6 and 25.7 days, respectively. Technology-dependent neonates who were female, with a gastrostomy tube, or with longer initial hospital length of stay were at greater risk for rehospitalization. Assessment and support of families, particularly mothers of technology-dependent neonates following initial hospital discharge, are vital. Longitudinal studies to determine factors affecting long-term outcomes of technology-dependent infants are needed.
Influence of Wildland Fire on the Recovery of Endangered Plant Species Study Project.
1995-10-01
Romero 1995): Estimation of fire severity was difficult for the Kipuka Kalawamauna fire for several reasons. First, flame lengths were not measured...Andrews 1986) include flame length and heat per unit area. Flame length is used as an indicator of upward heat release, while heat per unit area is a...the downward heat pulse. Estimated flame lengths ranged from 3.5 m to 4.0 m depending on degree of slope within the Dodonaea viscosa Jacq. dominated
All the catalytic active sites of MoS 2 for hydrogen evolution
Li, Guoqing; Zhang, Du; Qiao, Qiao; ...
2016-11-29
MoS 2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS 2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated tomore » be 7.5 s –1 (65–75 mV/dec), 3.2 s –1 (65–85 mV/dec), and 0.1 s –1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS 2 is higher than that in low crystalline quality MoS 2, which may be related with the proximity of different local crystalline structures to the vacancies.« less
Electrophoresis of semiflexible heteropolymers and the ``hydrodynamic Kuhn length''
NASA Astrophysics Data System (ADS)
Chubynsky, Mykyta V.; Slater, Gary W.
Semiflexible polymers, such as DNA, are rodlike for short lengths and coil-like for long lengths. For purely geometric properties, such as the end-to-end distance, the crossover between these two behaviors occurs when the polymer length is on the order of the Kuhn length. On the other hand, for the hydrodynamic friction coefficient it is easy to see by comparing the expressions for a rod and a coil that the crossover should occur at the polymer length, termed by us the hydrodynamic Kuhn length, which is larger than the ordinary Kuhn length by a logarithmic factor that can be quite significant. We show that for the problem of electrophoresis of a heteropolymer consisting of several blocks of (in general) different stiffnesses, both of these length scales can be important depending on the details of the problem.
NASA Astrophysics Data System (ADS)
Christen, Hans M.; Puretzky, Alex A.; Cui, Hongtao; Lowndes, Douglas H.; Belay, Kalayu; Geohegan, David B.
2004-03-01
The growth of dense forests of vertically aligned arrays of multi-walled carbon nanotubes (VAA-MWNTs) by chemical vapor deposition [CVD] from a single metallic catalyst layer typically self-terminates after only a few hundred microns of tube length. In order to obtain maximal growth to long lengths, a systematic simultaneous study of catalyst composition and thickness is needed performed here by a compositional-spread approach. Using Pulsed-Laser Deposition (PLD), metallic layers with a wedge-shaped thickness profile are deposited onto Al-coated silicon substrates. High temperature annealing of the metal catalyst films in flowing Ar/H2 gas followed by the one-hour growth of VA-MWNTs by CVD using acetylene gas yields VAA-MWNTs. Tube height (and thus the catalytic activity) is determined as function of position and can be analyzed as a function of catalyst thickness and composition. A dependence of tube height as function of catalyst composition (Mo/Fe ratio) demonstrates that a specific catalyst composition exhibits a local maximum in catalytic activity, permitting the extension of nanotube array growth up to 4 millimeters in height. Other combinations of catalysts and the growth of single-walled tubes will be discussed. This research was sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, and the Laboratory-Directed Research and Development Program at ORNL.
Photoperiodic Regulation of the Orexigenic Effects of Ghrelin in Siberian Hamsters
Bradley, Sean P.; Pattullo, Lucia M.; Patel, Priyesh N.; Prendergast, Brian J.
2010-01-01
Animals living in temperate climates with predictable seasonal changes in food availability may use seasonal information to engage different metabolic strategies. Siberian hamsters decrease costs of thermoregulation during winter by reducing food intake and body mass in response to decreasing or short day lengths (SD). These experiments examined whether SD reductions in food intake in hamsters is driven, at least in part, by altered behavioral responses to ghrelin, a gut-derived orexigenic peptide which induces food intake via NPY-dependent mechanisms. Relative to hamsters housed in long day (LD) photoperiods, SD hamsters consumed less food in response to i.p. treatment with ghrelin across a range of doses from 0.03 to 3 mg/kg. To determine whether changes in photoperiod alter behavioral responses ghrelin-induced activation of NPY neurons, c-Fos and NPY expression were quantified in the arcuate nucleus (ARC) via double-label fluorescent immunocytochemistry following i.p. treatment with 0.3 mg/kg ghrelin or saline. Ghrelin induced c-Fos immunoreactivity (-ir) in a greater proportion of NPY-ir neurons of LD relative to SD hamsters. In addition, following ghrelin treatment, a greater proportion of ARC c-Fos-ir neurons were identifiable as NPY-ir in LD relative to SD hamsters. Changes in day length markedly alter the behavioral response to ghrelin. The data also identify photoperiod-induced changes in the ability of ghrelin to activate ARC NPY neurons as a possible mechanism by which changes in day length alter food intake. PMID:20600050
NASA Astrophysics Data System (ADS)
Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya
2016-05-01
An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.
Devi, Kamalakshi; Dehury, Budheswar; Phukon, Munmi; Modi, Mahendra Kumar; Sen, Priyabrata
2015-01-01
The 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR; EC1.1.1.267), an NADPH-dependent reductase, plays a pivotal role in the methylerythritol 4-phosphate pathway (MEP), in the conversion of 1-deoxy-d-xylulose-5-phosphate (DXP) into MEP. The sheath and leaf of citronella (Cymbopogon winterianus) accumulates large amount of terpenes and sesquiterpenes with proven medicinal value and economic uses. Thus, sequencing of full length dxr gene and its characterization seems to be a valuable resource in metabolic engineering to alter the flux of isoprenoid active ingredients in plants. In this study, full length DXR from citronella was characterized through in silico and tissue-specific expression studies to explain its structure–function mechanism, mode of cofactor recognition and differential expression. The modelled DXR has a three-domain architecture and its active site comprised of a cofactor (NADPH) binding pocket and the substrate-binding pocket. Molecular dynamics simulation studies indicated that DXR model retained most of its secondary structure during 10 ns simulation in aqueous solution. The modelled DXR superimposes well with its closest structural homolog but subtle variations in the charge distribution over the cofactor recognition site were noticed. Molecular docking study revealed critical residues aiding tight anchoring NADPH within the active pocket of DXR. Tissue-specific differential expression analysis using semi-quantitative RT-PCR and qRT-PCR in various tissues of citronella plant revealed distinct differential expression of DXR. To our knowledge, this is the first ever report on DXR from the important medicinal plant citronella and further characterization of this gene will open up better avenues for metabolic engineering of secondary metabolite pathway genes from medicinal plants in the near future. PMID:25941629
NASA Technical Reports Server (NTRS)
Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.
2001-01-01
NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.
Foo, Alexander C Y; Harvey, Brandon G R; Metz, Jeff J; Goto, Natalie K
2015-01-01
Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo. PMID:25307614
NASA Technical Reports Server (NTRS)
Falconer, David A.; Moore, Ron L.; Gary, G. Allen; Six, N. Frank (Technical Monitor)
2001-01-01
From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active-region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, phi) and three different measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line; I(sub N), the net electric current arching from one polarity to the other; and alpha = muI(subN/phi), a flux-normalized measure of the field twist).
Current sheet extension and reconnection scaling in collisionless, hyperresistive, Hall MHD
NASA Astrophysics Data System (ADS)
Sullivan, B. P.; Bhattacharjee, A.; Huang, Y. M.
2009-11-01
We present Sweet-Parker type scaling arguments in the context of collisionless, hyper-resistive, Hall magnetohyrdodynamics (MHD). The predicted steady state scalings are consistent with those found by Chac'on et al. [PRL 99, 235001 (2007)], and Uzdensky, [PoP 16, 040702 (2009)], though our methods differ slightly. As with those studies, no prediction of electron dissipation region length is made. Numerical experiments confirm that both cusp like & extended geometries are realizable. Importantly, the length of the electron dissipation region (taken as a parameter by several recent studies) is found to depend on the level of hyper-resistivity. Although hyper-resistivity can produce modestly extended dissipation regions, the dissipation regions observed here are much shorter than those seen in many kinetic studies. The thickness of the dissipation region scales in a similar way as the length,so that the reconnection rate is not strongly sensitive to the level of hyperresistivity. The length of the electron dissipation region depends on electron inertia as well.The limitations of scaling theories that do not predict the length of the electron dissipation region are emphasized.
Brown, Paul; Dale, Nicholas
2000-01-01
Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119
Radiation defect dynamics in Si at room temperature studied by pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Myers, M. T.; Charnvanichborikarn, S.
The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependencemore » of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ∼4–13 ms and a diffusion length of ∼15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less
Pacheco-Rodriguez, Gustavo; Malide, Daniela; Meza-Carmen, Victor; Kato, Jiro; Cui, Ye; Padilla, Philip I.; Samidurai, Arun; Gochuico, Bernadette R.
2014-01-01
Lymphangiogenesis and angiogenesis are processes that are, in part, regulated by vascular endothelial growth factor (VEGF)-D. The formation of lymphatic structures has been implicated in multiple lung diseases, including pulmonary fibrosis. VEGF-D is a secreted protein produced by fibroblasts and macrophages, which induces lymphangiogenesis by signaling via VEGF receptor-3, and angiogenesis through VEGF receptor-2. VEGF-D contains a central VEGF homology domain, which is the biologically active domain, with flanking N- and C-terminal propeptides. Full-length VEGF-D (∼ 50 kD) is proteolytically processed in the extracellular space, to generate VEGF homology domain that contains the VEGF-D receptor–binding sites. Here, we report that, independent of its cell surface receptors, full-length VEGF-D accumulated in nuclei of fibroblasts, and that this process appears to increase with cell density. In nuclei, full-length VEGF-D associated with RNA polymerase II and c-Myc. In cells depleted of VEGF-D, the transcriptionally regulated genes appear to be modulated by c-Myc. These findings have potential clinical implications, as VEGF-D was found in fibroblast nuclei in idiopathic pulmonary fibrosis, a disease characterized by fibroblast proliferation. These findings are consistent with actions of full-length VEGF-D in cellular homeostasis in health and disease, independent of its receptors. PMID:24450584
Influence of time and length size feature selections for human activity sequences recognition.
Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran
2014-01-01
In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.
Bakre, Pratibha V; Volvoikar, Prajesh S; Vernekar, Amit A; Tilve, S G
2016-07-15
Nano-sized titanium dioxide photocatalysts were synthesized by hybrid hydrolytic nonhydrolytic sol-gel method using aliphatic organic acid templates to study the effect of chain length on their properties. X-ray diffraction pattern indicated crystalline anatase phase. The Barrett-Joyner-Halenda surface area measurement gave surface area ranging from 98.4 to 205.5m(2)/g and was found to be dependent on the chain length of the aliphatic acid. The longer chain acids rendered the material with high surface area. The organic acids acted as bidentate ligand and a surfactant in controlling the size and the mesoporosity. The size of the TiO2 nanoparticulate was found to be in the range of 10-18nm. The catalyst prepared by employing long chain acids octanoic acid and palmitic acid had smaller size, narrow pore radius, higher surface area and showed better photocatalytic activity than the commercially available Degussa P25 catalyst for the degradation of methylene blue dye. A new intermediate was identified by tandem liquid chromatography mass spectrometry studies during the degradation of methylene blue solution. Copyright © 2016 Elsevier Inc. All rights reserved.
Gone for 60 seconds: reactivation length determines motor memory degradation during reconsolidation.
de Beukelaar, Toon T; Woolley, Daniel G; Wenderoth, Nicole
2014-10-01
When a stable memory is reactivated it becomes transiently labile and requires restabilization, a process known as reconsolidation. Animal studies have convincingly demonstrated that during reconsolidation memories are modifiable and can be erased when reactivation is followed by an interfering intervention. Few studies have been conducted in humans, however, and results are inconsistent regarding the extent to which a memory can be degraded. We used a motor sequence learning paradigm to show that the length of reactivation constitutes a crucial boundary condition determining whether human motor memories can be degraded. In our first experiment, we found that a short reactivation (less than 60 sec) renders the memory labile and susceptible to degradation through interference, while a longer reactivation does not. In our second experiment, we reproduce these results and show a significant linear relationship between the length of memory reactivation and the detrimental effect of the interfering task performed afterwards, i.e., the longer the reactivation, the smaller the memory loss due to interference. Our data suggest that reactivation via motor execution activates a time-dependent process that initially destabilizes the memory, which is then followed by restabilization during further practice.
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.
2013-01-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall. PMID:23783036
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L
2013-08-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
Moya, Rosita; Robertson, Hannah Kathryn; Payne, Dawson; Narsale, Aditi; Koziol, Jim; Davies, Joanna Davida
2016-05-01
In some patients with type 1 diabetes the dose of insulin required to achieve euglycemia is substantially reduced soon after diagnosis. This partial remission is associated with β-cell function and good glucose control. The purpose of this study was to assess whether frequencies of CD4(+) T cell subsets in children newly diagnosed with type 1 diabetes are associated with length of partial remission. We found that the frequency of CD4(+) memory cells, activated Treg cells and CD25(+) cells that express a high density of the IL-7 receptor, CD127 (CD127(hi)) are strongly associated with length of partial remission. Prediction of length of remission via Cox regression is significantly enhanced when CD25(+) CD127(hi) cell frequency is combined with either Insulin Dependent Adjusted A1c (IDAA1c), or glycosylated hemoglobin (HbA1c), or C-peptide levels at diagnosis. CD25(+) CD127(hi) cells do not express Foxp3, LAG-3 and CD49b, indicating that they are neither Treg nor Tr1 cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Pei, D; Neel, B G; Walsh, C T
1993-01-01
A protein-tyrosine-phosphatase (PTPase; EC 3.1.3.48) containing two Src homology 2 (SH2) domains, SHPTP1, was previously identified in hematopoietic and epithelial cells. By placing the coding sequence of the PTPase behind a bacteriophage T7 promoter, we have overexpressed both the full-length enzyme and a truncated PTPase domain in Escherichia coli. In each case, the soluble enzyme was expressed at levels of 3-4% of total soluble E. coli protein. The recombinant proteins had molecular weights of 63,000 and 45,000 for the full-length protein and the truncated PTPase domain, respectively, as determined by SDS/PAGE. The recombinant enzymes dephosphorylated p-nitrophenyl phosphate, phosphotyrosine, and phosphotyrosyl peptides but not phosphoserine, phosphothreonine, or phosphoseryl peptides. The enzymes showed a strong dependence on pH and ionic strength for their activity, with pH optima of 5.5 and 6.3 for the full-length enzyme and the catalytic domain, respectively, and an optimal NaCl concentration of 250-300 mM. The recombinant PTPases had high Km values for p-nitrophenyl phosphate and exhibited non-Michaelis-Menten kinetics for phosphotyrosyl peptides. Images PMID:8430079
Estimation of crosstalk in LED fNIRS by photon propagation Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Iwano, Takayuki; Umeyama, Shinji
2015-12-01
fNIRS (functional near-Infrared spectroscopy) can measure brain activity non-invasively and has advantages such as low cost and portability. While the conventional fNIRS has used laser light, LED light fNIRS is recently becoming common in use. Using LED for fNIRS, equipment can be more inexpensive and more portable. LED light, however, has a wider illumination spectrum than laser light, which may change crosstalk between the calculated concentration change of oxygenated and deoxygenated hemoglobins. The crosstalk is caused by difference in light path length in the head tissues depending on wavelengths used. We conducted Monte Carlo simulations of photon propagation in the tissue layers of head (scalp, skull, CSF, gray matter, and white matter) to estimate the light path length in each layers. Based on the estimated path lengths, the crosstalk in fNIRS using LED light was calculated. Our results showed that LED light more increases the crosstalk than laser light does when certain combinations of wavelengths were adopted. Even in such cases, the crosstalk increased by using LED light can be effectively suppressed by replacing the value of extinction coefficients used in the hemoglobin calculation to their weighted average over illumination spectrum.
2012-08-01
paper, we will first briefly discuss our recent results, using coarse-grained bead - spring model , on the dependence of failure stress and failure...length of the resin strands. In the coarse-grained model used here the polymer network is treated as a bead - spring system. To create highly cross...simulations of Thermosets We have used a coarse-grained bead - spring model to study the dependence of the mechanical properties of thermosets on chain
Neural correlates of humor detection and appreciation.
Moran, Joseph M; Wig, Gagan S; Adams, Reginald B; Janata, Petr; Kelley, William M
2004-03-01
Humor is a uniquely human quality whose neural substrates remain enigmatic. The present report combined dynamic, real-life content and event-related functional magnetic resonance imaging (fMRI) to dissociate humor detection ("getting the joke") from humor appreciation (the affective experience of mirth). During scanning, subjects viewed full-length episodes of the television sitcoms Seinfeld or The Simpsons. Brain activity time-locked to humor detection moments revealed increases in left inferior frontal and posterior temporal cortices, whereas brain activity time-locked to moments of humor appreciation revealed increases in bilateral regions of insular cortex and the amygdala. These findings provide evidence that humor depends critically upon extant neural systems important for resolving incongruities (humor detection) and for the expression of affect (humor appreciation).
Brian K. Via; Todd F. Shupe; Michael Stine; Chi-Leung So; Leslie H. Groom
2005-01-01
The predidion of tracheid Length using near infrared (NIR) wavelengths can provide either useful or misleading calibrations depending on the context. This can happen since tracheid length is not directly related to the absorbance at any wavelength but is instead the result of a seondary correlation with some unknown chemical constituent. In this work, the effect of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Ahmad, S; Alsbou, N
Purpose: A motion algorithm was developed to extract actual length, CT-numbers and motion amplitude of a mobile target imaged with cone-beam-CT (CBCT) retrospective to image-reconstruction. Methods: The motion model considered a mobile target moving with a sinusoidal motion and employed three measurable parameters: apparent length, CT number level and gradient of a mobile target obtained from CBCT images to extract information about the actual length and CT number value of the stationary target and motion amplitude. The algorithm was verified experimentally with a mobile phantom setup that has three targets with different sizes manufactured from homogenous tissue-equivalent gel material embeddedmore » into a thorax phantom. The phantom moved sinusoidal in one-direction using eight amplitudes (0–20mm) and a frequency of 15-cycles-per-minute. The model required imaging parameters such as slice thickness, imaging time. Results: This motion algorithm extracted three unknown parameters: length of the target, CT-number-level, motion amplitude for a mobile target retrospective to CBCT image reconstruction. The algorithm relates three unknown parameters to measurable apparent length, CT-number-level and gradient for well-defined mobile targets obtained from CBCT images. The motion model agreed with measured apparent lengths which were dependent on actual length of the target and motion amplitude. The cumulative CT-number for a mobile target was dependent on CT-number-level of the stationary target and motion amplitude. The gradient of the CT-distribution of mobile target is dependent on the stationary CT-number-level, actual target length along the direction of motion, and motion amplitude. Motion frequency and phase did not affect the elongation and CT-number distributions of mobile targets when imaging time included several motion cycles. Conclusion: The motion algorithm developed in this study has potential applications in diagnostic CT imaging and radiotherapy to extract actual length, size and CT-numbers distorted by motion in CBCT imaging. The model provides further information about motion of the target.« less
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, L.; Kim, B. K.; Was, G. S.
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
Tan, L.; Kim, B. K.; Was, G. S.
2017-09-06
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
Modeling Shear Induced Von Willebrand Factor Binding to Collagen
NASA Astrophysics Data System (ADS)
Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong
2017-11-01
Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).
Yang, Yu; Lv, Qi-Yan; Guo, Liang-Hong; Wan, Bin; Ren, Xiao-Min; Shi, Ya-Li; Cai, Ya-Qi
2017-04-01
Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.
Sun, Yugang; Alimohammadi, Farbod; Zhang, Dongtang; Guo, Guangsheng
2017-03-08
By selectively promoting heterogeneous nucleation/growth of MoS 2 on graphene monolayer sheets, edge-oriented (EO) MoS 2 nanosheets with expanded interlayer spacing (∼9.4 Å) supported on reduced graphene oxide (rGO) sheets were successfully synthesized through colloidal chemistry, showing the promise in low-cost and large-scale production. The number and edge length of MoS 2 nanosheets per area of graphene sheets were tuned by controlling the reaction time in the microwave-assisted solvothermal reduction of ammonium tetrathiomolybdate [(NH 4 ) 2 MoS 4 ] in dimethylformamide. The edge-oriented and interlayer-expanded (EO&IE) MoS 2 /rGO exhibited significantly improved catalytic activity toward hydrogen evolution reaction (HER) in terms of larger current density, lower Tafel slope, and lower charge transfer resistance compared to the corresponding interlayer-expanded MoS 2 sheets without edge-oriented geometry, highlighting the importance of synergistic effect between edge-oriented geometry and interlayer expansion on determining HER activity of MoS 2 nanosheets. Quantitative analysis clearly shows the linear dependence of current density on the edge length of MoS 2 nanosheets.
Iglesias-Guimarais, Victoria; Gil-Guiñon, Estel; Sánchez-Osuna, María; Casanelles, Elisenda; García-Belinchón, Mercè; Comella, Joan X.; Yuste, Victor J.
2013-01-01
Apoptotic nuclear morphology and oligonucleosomal double-strand DNA fragments (also known as DNA ladder) are considered the hallmarks of apoptotic cell death. From a classic point of view, these two processes occur concomitantly. Once activated, DNA fragmentation factor, 40-kDa subunit (DFF40)/caspase-activated DNase (CAD) endonuclease hydrolyzes the DNA into oligonucleosomal-size pieces, facilitating the chromatin package. However, the dogma that the apoptotic nuclear morphology depends on DNA fragmentation has been questioned. Here, we use different cellular models, including MEF CAD−/− cells, to unravel the mechanism by which DFF40/CAD influences chromatin condensation and nuclear collapse during apoptosis. Upon apoptotic insult, SK-N-AS cells display caspase-dependent apoptotic nuclear alterations in the absence of internucleosomal DNA degradation. The overexpression of a wild-type form of DFF40/CAD endonuclease, but not of different catalytic-null mutants, restores the cellular ability to degrade the chromatin into oligonucleosomal-length fragments. We show that apoptotic nuclear collapse requires a 3′-OH endonucleolytic activity even though the internucleosomal DNA degradation is impaired. Moreover, alkaline unwinding electrophoresis and In Situ End-Labeling (ISEL)/In Situ Nick Translation (ISNT) assays reveal that the apoptotic DNA damage observed in the DNA ladder-deficient SK-N-AS cells is characterized by the presence of single-strand nicks/breaks. Apoptotic single-strand breaks can be impaired by DFF40/CAD knockdown, abrogating nuclear collapse and disassembly. In conclusion, the highest order of chromatin compaction observed in the later steps of caspase-dependent apoptosis relies on DFF40/CAD-mediated DNA damage by generating 3′-OH ends in single-strand rather than double-strand DNA nicks/breaks. PMID:23430749
The color tuning of PS-b-P2VP lamellar films with changing the alkyl chain length of 1-iodoalkanes.
Shin, Sung-Eui; Kim, Su-Young; Shin, Dong-Myung
2011-05-01
Photonic crystals with tunability in the visible or near-infrared region have drawn increasing attention for controlling and processing light for the active components of future display. We prepared polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) lamellar films which is hydrophobic block-hydrophilic polyelectrolyte block polymer of 57 kg/mol-b-57 kg/mol. The lamellar stacks, which is alternating layer of hydrophilic and hydrophobic moiety of PS-b-P2VP, are obtained by exposing the spin coated film under chloroform vapor. The band gaps of the lamellar films interestingly varied after immersion into the quaternizing solvents containing 5 wt% of iodomethane, iodoethane, 1-iodobutane, 1-iodopentane, 1-iodohexane and 1-iodooctane solubilized in n-hexane. The iodoalkanes reacted with pyridine groups in PS-b-P2VP and generated the alkyl pyridinium salts readily. The degree of quaternization, alkyl chain length of iodoalkane and the salt water concentration affects the spacing of layer structure of PS-b-P2VP. The iodomethane and iodohexane produced similar band gaps and salt concentration dependence. These results are very much dependent on the hydrophobic-hydrophilic characters of PS-b-P2VP lamellar surface.
δ-Catenin Regulates Spine Architecture via Cadherin and PDZ-dependent Interactions*
Yuan, Li; Seong, Eunju; Beuscher, James L.; Arikkath, Jyothi
2015-01-01
The ability of neurons to maintain spine architecture and modulate it in response to synaptic activity is a crucial component of the cellular machinery that underlies information storage in pyramidal neurons of the hippocampus. Here we show a critical role for δ-catenin, a component of the cadherin-catenin cell adhesion complex, in regulating spine head width and length in pyramidal neurons of the hippocampus. The loss of Ctnnd2, the gene encoding δ-catenin, has been associated with the intellectual disability observed in the cri du chat syndrome, suggesting that the functional roles of δ-catenin are vital for neuronal integrity and higher order functions. We demonstrate that loss of δ-catenin in a mouse model or knockdown of δ-catenin in pyramidal neurons compromises spine head width and length, without altering spine dynamics. This is accompanied by a reduction in the levels of synaptic N-cadherin. The ability of δ-catenin to modulate spine architecture is critically dependent on its ability to interact with cadherin and PDZ domain-containing proteins. We propose that loss of δ-catenin during development perturbs synaptic architecture leading to developmental aberrations in neural circuit formation that contribute to the learning disabilities in a mouse model and humans with cri du chat syndrome. PMID:25724647
Li, Miao; Qi, Shuo; Jin, Yiguang; Yao, Weishang; Zhang, Sa; Zhao, Jingyu
2014-11-01
Lipid derivatives of nucleoside analogs and their nanoassemblies have become the research hotspot due to their unique function in cancer therapy. Six lipid derivatives of 3'-hydroxyurea-deoxythymidine were prepared with zidovudine as the raw material. The 5'-substituted lipid chains in the derivatives were from the various fatty acids including octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecanoic acid corresponding to the derivatives OHT, DHT, DDHT, TDHT, HDHT and ODHT. The amphiphilic derivatives formed Langmuir monolayers at the air/water interface with different surface pressure-molecular area isotherms depending on the length of lipid chains. The nanoassemblies of OHT, DHT, DDHT, TDHT and HDHT and the nanoscale precipitates of ODHT were obtained after we injected their tetrahydrofuran solutions doped with hydrophilic long chained polymers into water. Electron microscopy showed that the morphology of nanoassemblies may be vesicles or nanotubes depending on the length of lipid chains. The shorter the lipid chains were, the softer the nanoassemblies. Computer simulation supported the experimental results. The nanoassemblies and the nanoscale precipitates showed much higher anticancer effects on SW620 cells than the parent drug hydroxyurea. The nanostructures of the derivatives are promising anticancer nanomedicines. Copyright © 2014 Elsevier B.V. All rights reserved.
Padmore, Trudy; Stark, Carahline; Turkevich, Leonid A.; Champion, Julie A.
2017-01-01
Background In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic materials, secreting inflammatory molecules in the process. The inability of macrophages to remove these materials leads to chronic inflammation and disease. How the biophysical and biochemical mechanisms of these effects are influenced by fiber length remains undetermined. This study evaluates the role of fiber length on phagocytosis and molecular inflammatory responses to non-cytotoxic fibers, enabling development of quantitative length-based models. Methods Murine alveolar macrophages were exposed to long and short populations of JM-100 glass fibers, produced by successive sedimentation and repeated crushing, respectively. Interactions between fibers and macrophages were observed using time-lapse video microscopy, and quantified by flow cytometry. Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured. Results Uptake of short fibers occurred more readily than for long, but long fibers were more potent stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear cytokine dose-response curves evaluated with length-dependent potency models, using measured fiber length distributions, resulted in identification of critical fiber lengths that cause frustrated phagocytosis and increased inflammatory biomolecule production. Conclusion Short fibers played a minor role in the inflammatory response compared to long fibers. The critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-response curves to fiber distribution data. PMID:27784615
Ivanen, Dina R; Kulminskaya, Anna A; Shabalin, Konstantin A; Isaeva-Ivanova, Luydmila V; Ershova, Nadezhda A; Saveliev, Andrew N; Nevinsky, Gregory A; Neustroev, Kirill N
2004-08-01
Recently, amylolytic activity was detected in IgMs isolated from the sera of the patients with multiple sclerosis. All purified samples of IgM were electrophoretically homogenous and did not contain any co-purified a-amylase and a-glucosidase activities, in accordance with a set of criteria developed for abzymes. The amylolytic activity of abzymes was studied in the hydrolysis of p-nitrophenyl a-D-maltooligosaccharides with different degrees of polymerization from 1 to 8 by TLC and reverse-phase HPLC techniques. All IgM samples isolated from 54 patients with clinically definite multiple sclerosis demonstrated hydrolytic activity towards the above artificial substrates. The Michaelis constant values (Km) in the hydrolysis of p-nitrophenyl a-D-maltoheptaoside were in the range of 10 p-nitrophenyl or p-nitrophenyl a-D-glucosides, thus indicating the presence of an a-D-glucosidase activity. For a number of the investigated samples, specific amylolytic activity increased depending on the length of substrates (from p-nitrophenyl maltopentaoside to p-nitrophenyl maltohexaoside); for other IgMs, the opposite dependence was observed. All IgMs studied did not exhibit any other glycoside hydrolase activities toward p-nitrophenyl glycoside substrates. Abzyme fractions from different donors demonstrated catalytic heterogeneity in Michaelis-Menten parameters and different modes of action in the hydrolysis of p-nitrophenyl maltooligosaccharides. Enzymatic properties of the IgMs tested varied from human a-amylases. All investigated abzyme samples did not show transglycosylating ability.
Gender differences in the effects of ADH1B and ALDH2 polymorphisms on alcoholism.
Kimura, Mitsuru; Miyakawa, Tomohiro; Matsushita, Sachio; So, Mirai; Higuchi, Susumu
2011-11-01
Gender differences are known to exist in the prevalence, characteristics, and course of alcohol dependence. Elucidating gender differences in the characteristics of alcohol dependence is important in gender-based medicine and may improve treatment outcomes. Many studies have shown that genetic factors are associated with the risk of alcohol dependence in both genders. Polymorphisms of alcohol dehydrogenase-1B (ADH1B) and aldehyde dehydrogenase-2 (ALDH2) are strong genetic determinants of alcohol dependence. This study aimed to clarify gender differences in the effects of ADH1B and ALDH2 polymorphism on the development of alcohol dependence. Subjects were 200 female alcoholics and 415 male alcoholics hospitalized in Kurihama Alcoholism Center. Clinical information and background data were obtained by chart review. ALDH2 and ADH1B genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism method. The onset age of female alcoholics with inactive ALDH2 genotype was significantly lower than those with active ALDH2 genotype, but the onset age did not differ between the inactive and active ALDH2 group in male alcoholics. The difference in onset age between the ADH1B genotype groups did not reach significant levels. The prevalence of comorbid psychiatric disorders, including major depression, eating disorder, panic disorder, and borderline personality disorder, was significantly higher in female alcoholics with inactive ALDH2 or superactive ADH1B than in those with active ALDH2 or normal ADH1B. ALDH2 polymorphism appears to have contrasting effects on the development of alcoholism in women and men. One possible reason for this gender difference may be the high prevalence of psychiatric comorbidities in female alcoholics with inactive ALDH2. Copyright © 2011 by the Research Society on Alcoholism.
NASA Astrophysics Data System (ADS)
Yeboah, Douglas; Singh, Jai
2017-11-01
Recently, the dependence of exciton diffusion length (LD ) on some photophysical parameters of organic solids has been experimentally demonstrated, however no systematic theoretical analysis of this phenomenon has been carried out. We have conducted a theoretical study by using the Förster resonance energy transfer and Dexter carrier transfer mechanisms together with the Einstein-Smoluchowski diffusion equation to derive analytical models for the diffusion lengths (LD ) and diffusion coefficients (D) of singlet (S) and triplet (T) excitons in organic solids as functions of spectral overlap integral (J) , photoluminescence (PL) quantum yield (φD ) , dipole moment (μT ) and refractive index (n) of the photoactive material. The exciton diffusion lengths and diffusion coefficients in some selected organic solids were calculated, and we found that the singlet exciton diffusion length (LDS ) increases with φD and J, and decreases with n. Also, the triplet exciton diffusion length (LDT ) increases with φD and decreases with μT . These may be achieved through doping the organic solids into broad optical energy gap host materials as observed in previous experiments. The calculated exciton diffusion lengths are compared with experimental values and a reasonably good agreement is found between them. The results presented are expected to provide insight relevant to the synthesis of new organic solids for fabrication of bulk heterojunction organic solar cells characterized by better power conversion efficiency.
Yang, S M; Fang, D C; Luo, Y H; Lu, R; Battle, P D; Liu, W W
2001-08-01
In order to explore the role of alterations of telomerase activity and terminal restriction fragment (TRF) length in the development and progression of gastric cancer. Telomerase activity was detected in 176 specimens of gastric mucosa obtained through an operation or endoscopical biopsy by using the telomeric repeat amplification protocol (TRAP) assay. Meanwhile, the mean length of TRF was measured with the use of a Southern blot in part of those samples. Telomerase activity was detected in 14 of 57 (24.6%) chronic atrophy gastritis patients, six of 18 (33.3%) intestinal metaplasia patients, three of eight (37.5%) dysplasia patients and 60 of 65 (92.3%) gastric cancer patients, respectively. Normal gastric mucosa revealed no telomerase activity. No association was found between telomerase activity and any clinicopathological parameters. The mean TRF length was decreased gradually with age in normal mucosa and in gastric cancer tissue. Regression analysis demonstrated that the reduction rate in these tissues was 41 +/- 12 base pairs/year. Among 35 gastric cancers, TRF length was shown to be shorter in 20 cases (57.1%), similar in 12 cases (34.3%) and elongated in three cases (7.6%), compared to the corresponding adjacent tissues. The mean TRF length tended to decrease as the mucosa underwent chronic atrophy gastritis, intestinal metaplasia, dysplasia and into gastric cancer. The mean TRF length in gastric cancer was not statistically correlated with clinicopathological parameters and telomerase activity. Our results suggest that telomerase is expressed during the early stage of gastric carcinogenesis, and that the clinical significance of TRF length appears to be limited in gastric cancer.
Nanowire size dependence on sensitivity of silicon nanowire field-effect transistor-based pH sensor
NASA Astrophysics Data System (ADS)
Lee, Ryoongbin; Kwon, Dae Woong; Kim, Sihyun; Kim, Sangwan; Mo, Hyun-Sun; Kim, Dae Hwan; Park, Byung-Gook
2017-12-01
In this study, we investigated the effects of nanowire size on the current sensitivity of silicon nanowire (SiNW) ion-sensitive field-effect transistors (ISFETs). The changes in on-current (I on) and resistance according to pH were measured in fabricated SiNW ISFETs of various lengths and widths. As a result, it was revealed that the sensitivity expressed as relative I on change improves as the width decreases. Through technology computer-aided design (TCAD) simulation analysis, the width dependence on the relative I on change can be explained by the observation that the target molecules located at the edge region along the channel width have a stronger effect on the sensitivity as the SiNW width is reduced. Additionally, the length dependence on the sensitivity can be understood in terms of the resistance ratio of the fixed parasitic resistance, including source/drain resistance, to the varying channel resistance as a function of channel length.
NASA Astrophysics Data System (ADS)
Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito
2017-12-01
We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.
Morré, D J; Orczyk, J; Hignite, H; Kim, C
2008-02-01
Cell surface and growth-related NADH oxidases with protein disulfide-thiol interchange activity, ECTO-NOX, exhibit copper-dependent, clock-related, temperature-independent and entrainable patterns of regular oscillations in the rate of oxidation of NAD(P)H as do aqueous solutions of copper salts. Because of time scale similarities, a basis for the oscillatory patterns in nuclear spin orientations of the hydrogen atoms of the copper-associated water was sought. Extended X-ray absorption fine structure (EXAFS) measurements at 9302 eV on pure water were periodic with a ca. 3.5 min peak to peak separation. Decomposition fits revealed 5 unequally spaced maxima similar to those observed previously for Cu(II)Cl(2) to generate a period length of about 18 min. With D(2)O, the period length was proportionately increased by 30% to 24 min. The redox potential of water and of D(2)O also oscillated with 18 and 24 min period lengths, respectively. Measurements in the middle infrared spectral region above a water sample surface revealed apparent oscillations in the two alternative orientations of the nuclear spins (ortho and para) of the hydrogen atoms of the water or D(2)O with 5 unequally spaced maxima and respective period lengths of 18 and 24 min. Thus, the time keeping oscillations of ECTO-NOX proteins appear to reflect the equilibrium dynamics of ortho-para hydrogen atom spin ratios of water where the presence of metal cations such as Cu(II) in solution determine period length.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthilkumar, P.K.; Robertson, L.W.; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA
Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cellmore » cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and telomerase activity was found in NFK. ► Increased intracellular superoxide levels and reduced cell growth was seen in both. ► PCB153 may damage telomerase expressing cells like stem cells.« less
From the motor cortex to the movement and back again.
Teka, Wondimu W; Hamade, Khaldoun C; Barnett, William H; Kim, Taegyo; Markin, Sergey N; Rybak, Ilya A; Molkov, Yaroslav I
2017-01-01
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
Johnson, Amanda N.; Weil, P. Anthony
2017-01-01
Repressor activator protein 1 (Rap1) performs multiple vital cellular functions in the budding yeast Saccharomyces cerevisiae. These include regulation of telomere length, transcriptional repression of both telomere-proximal genes and the silent mating type loci, and transcriptional activation of hundreds of mRNA-encoding genes, including the highly transcribed ribosomal protein- and glycolytic enzyme-encoding genes. Studies of the contributions of Rap1 to telomere length regulation and transcriptional repression have yielded significant mechanistic insights. However, the mechanism of Rap1 transcriptional activation remains poorly understood because Rap1 is encoded by a single copy essential gene and is involved in many disparate and essential cellular functions, preventing easy interpretation of attempts to directly dissect Rap1 structure-function relationships. Moreover, conflicting reports on the ability of Rap1-heterologous DNA-binding domain fusion proteins to serve as chimeric transcriptional activators challenge use of this approach to study Rap1. Described here is the development of an altered DNA-binding specificity variant of Rap1 (Rap1AS). We used Rap1AS to map and characterize a 41-amino acid activation domain (AD) within the Rap1 C terminus. We found that this AD is required for transcription of both chimeric reporter genes and authentic chromosomal Rap1 enhancer-containing target genes. Finally, as predicted for a bona fide AD, mutation of this newly identified AD reduced the efficiency of Rap1 binding to a known transcriptional coactivator TFIID-binding target, Taf5. In summary, we show here that Rap1 contains an AD required for Rap1-dependent gene transcription. The Rap1AS variant will likely also be useful for studies of the functions of Rap1 in other biological pathways. PMID:28196871
NASA Astrophysics Data System (ADS)
Yue, Lan; Meng, Fanxin; Chen, Jiarong
2018-01-01
The thin-film transistors (TFTs) with amorphous aluminum-indium-zinc-oxide (a-AIZO) active layer were prepared by dip coating method. The dependence of properties of TFTs on the active-layer composition and structure was investigated. The results indicate that Al atoms acted as a carrier suppressor in IZO films. Meanwhile, it was found that the on/off current ratio (I on/off) of TFT was improved by embedding a high-resistivity AIZO layer between the low-resistivity AIZO layer and gate insulator. The improvement in I on/off was attributed to the decrease in off-state current of double-active-layer TFT due to an increase in the active-layer resistance and the contact resistance between active layer and source/drain electrode. Moreover, on-state current and threshold voltage (V th) can be mainly controlled through thickness and Al content of the low-resistivity AIZO layer. In addition, the saturation mobility (μ sat) of TFTs was improved with reducing the size of channel width or/and length, which was attributed to the decrease in trap states in the semiconductor and at the semiconductor/gate-insulator interface with the smaller channel width or/and shorter channel length. Thus, we can demonstrate excellent TFTs via the design of active-layer composition and structure by utilizing a low cost solution-processed method. The resulting TFT, operating in enhancement mode, has a high μ sat of 14.16 cm2 V-1 s-1, a small SS of 0.40 V/decade, a close-to-zero V th of 0.50 V, and I on/off of more than 105.
Jadhav, Sagar R; Shandilya, Umesh Kr; Kansal, Vinod K
2013-02-01
Conventional medical therapies for ulcerative colitis (UC) are still limited due to the adverse side effects like dose-dependent diarrhoea and insufficient potency to keep in remission for long-term periods. So, new alternatives that provide more effective and safe therapies for ulcerative colitis are constantly being sought. In the present study, probiotic LaBb Dahi was selected for investigation of its therapeutic effect on DSS-induced colitis model in mice. LaBb Dahi was prepared by co-culturing Dahi culture of Lactococci along with selected strain of Lactobacillus acidophilus LaVK2 and Bifidobacterium bifidum BbVK3 in buffalo milk. Four groups of mice (12 each) were fed for 17 d with buffalo milk (normal control), buffalo milk plus DSS (Colitis control), Dahi plus DSS, and LaBb Dahi plus DSS, respectively, with basal diet. The disease activity scores, weight loss, organ weight, colon length, myeloperoxidase (MPO) and β-glucoronidase activity was assessed, and the histopathological picture of the colon of mice was studied. All colitis control mice evidenced significant increase in MPO, β-glucoronidase activity and showed high disease activity scores along with histological damage to colonic tissue. Feeding with LaBb Dahi offered significant reduction in MPO activity, β-glucoronidase activity and improved disease activity scores. We found significant decline in length of colon, organ weight and body weight in colitis induced controls which were improved significantly by feeding LaBb Dahi. The present study suggests that LaBb Dahi can be used as a potential nutraceutical intervention to combat UC related changes and may offer effective adjunctive treatment for management of UC.
Mörl, Falk; Siebert, Tobias; Häufle, Daniel
2016-02-01
Experimental studies show different muscle-tendon complex (MTC) functions (e.g. motor or spring) depending on the muscle fibre-tendon length ratio. Comparing different MTC of different animals examined experimentally, the extracted MTC functions are biased by, for example, MTC-specific pennation angle and fibre-type distribution or divergent experimental protocols (e.g. influence of temperature or stimulation on MTC force). Thus, a thorough understanding of variation of these inner muscle fibre-tendon length ratios on MTC function is difficult. In this study, we used a hill-type muscle model to simulate MTC. The model consists of a contractile element (CE) simulating muscle fibres, a serial element (SE) as a model for tendon, and a parallel elastic element (PEE) modelling tissue in parallel to the muscle fibres. The simulation examines the impact of length variations of these components on contraction dynamics and MTC function. Ensuring a constant overall length of the MTC by L(MTC) = L(SE) + L(CE), the SE rest length was varied over a broad physiological range from 0.1 to 0.9 MTC length. Five different MTC functions were investigated by simulating typical physiological experiments: the stabilising function with isometric contractions, the motor function with contractions against a weight, the capability of acceleration with contractions against a small inertial mass, the braking function by decelerating a mass, and the spring function with stretch-shortening cycles. The ratio of SE and CE mainly determines the MTC function. MTC with comparably short tendon generates high force and maximal shortening velocity and is able to produce maximal work and power. MTC with long tendon is suitable to store and release a maximum amount of energy. Variation of muscle fibre-tendon ratio yielded two peaks for MTC's force response for short and long SE lengths. Further, maximum work storage capacity of the SE is at long relL(SE,0). Impact of fibre-tendon length ratio on MTC functions will be discussed. Considering a constant set of MTC parameters, quantitative changes in MTC performance (work, stiffness, force, energy storage, dissipation) depending on varying muscle fibre-tendon length ratio were provided, which enables classification and grading of different MTC designs.
Dependence of Some Mechanical Properties of Elastic Bands on the Length and Load Time
ERIC Educational Resources Information Center
Triana, C. A.; Fajardo, F.
2012-01-01
We present a study of the maximum stress supported by elastics bands of nitrile as a function of the natural length and the load time. The maximum tension of rupture and the corresponding variation in length were found by measuring the elongation of an elastic band when a mass is suspended from its free end until it reaches the breaking point. The…
Quantum theory of the generalised uncertainty principle
NASA Astrophysics Data System (ADS)
Bruneton, Jean-Philippe; Larena, Julien
2017-04-01
We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.
Hegerle, N; Bose, J; Ramachandran, G; Galen, J E; Levine, M M; Simon, R; Tennant, S M
2018-03-30
O-polysaccharide (OPS) molecules are protective antigens for several bacterial pathogens, and have broad utility as components of glycoconjugate vaccines. Variability in the OPS chain length is one obstacle towards further development of these vaccines. Introduction of sizing steps during purification of OPS molecules of suboptimal or of mixed lengths introduces additional costs and complexity while decreasing the final yield. The overall goal of this study was to demonstrate the utility of engineering Gram-negative bacteria to produce homogenous O-polysaccharide populations that can be used as the basis of carbohydrate vaccines by overexpressing O-polysaccharide chain length regulators of the Wzx-/Wzy-dependent pathway. The O-polysaccharide chain length regulators wzzB and fepE from Salmonella Typhimurium I77 and wzz2 from Pseudomonas aeruginosa PAO1 were cloned and expressed in the homologous organism or in other Gram-negative bacteria. Overexpression of these Wzz proteins in the homologous organism significantly increased the proportion of long or very long chain O-polysaccharides. The same observation was made when wzzB was overexpressed in Salmonella Paratyphi A and Shigella flexneri, and wzz2 was overexpressed in two other strains of P. aeruginosa. Overexpression of Wzz proteins in Gram-negative bacteria using the Wzx/Wzy-dependant pathway for lipopolysaccharide synthesis provides a genetic method to increase the production of an O-polysaccharide population of a defined size. The methods presented herein represent a cost-effective and improved strategy for isolating preferred OPS vaccine haptens, and could facilitate the further use of O-polysaccharides in glycoconjugate vaccine development. © 2018 The Society for Applied Microbiology.
Photoconductivity, pH Sensitivity, Noise, and Channel Length Effects in Si Nanowire FET Sensors
NASA Astrophysics Data System (ADS)
Gasparyan, Ferdinand; Zadorozhnyi, Ihor; Khondkaryan, Hrant; Arakelyan, Armen; Vitusevich, Svetlana
2018-03-01
Silicon nanowire (NW) field-effect transistor (FET) sensors of various lengths were fabricated. Transport properties of Si NW FET sensors were investigated involving noise spectroscopy and current-voltage (I-V) characterization. The static I-V dependencies demonstrate the high quality of fabricated silicon FETs without leakage current. Transport and noise properties of NW FET structures were investigated under different light illumination conditions, as well as in sensor configuration in an aqueous solution with different pH values. Furthermore, we studied channel length effects on the photoconductivity, noise, and pH sensitivity. The magnitude of the channel current is approximately inversely proportional to the length of the current channel, and the pH sensitivity increases with the increase of channel length approaching the Nernst limit value of 59.5 mV/pH. We demonstrate that dominant 1/f-noise can be screened by the generation-recombination plateau at certain pH of the solution or external optical excitation. The characteristic frequency of the generation-recombination noise component decreases with increasing of illumination power. Moreover, it is shown that the measured value of the slope of 1/f-noise spectral density dependence on the current channel length is 2.7 which is close to the theoretically predicted value of 3.
NASA Astrophysics Data System (ADS)
Ni, Yong; Song, Zhaoqiang; Jiang, Hongyuan; Yu, Shu-Hong; He, Linghui
2015-08-01
How nacreous nanocomposites with optimal combinations of stiffness, strength and toughness depend on constituent property and microstructure parameters is studied using a nonlinear shear-lag model. We show that the interfacial elasto-plasticity and the overlapping length between bricks dependent on the brick size and brick staggering mode significantly affect the nonuniformity of the shear stress, the stress-transfer efficiency and thus the failure path. There are two characteristic lengths at which the strength and toughness are optimized respectively. Simultaneous optimization of the strength and toughness is achieved by matching these lengths as close as possible in the nacreous nanocomposite with regularly staggered brick-and-mortar (BM) structure where simultaneous uniform failures of the brick and interface occur. In the randomly staggered BM structure, as the overlapping length is distributed, the nacreous nanocomposite turns the simultaneous uniform failure into progressive interface or brick failure with moderate decrease of the strength and toughness. Specifically there is a parametric range at which the strength and toughness are insensitive to the brick staggering randomness. The obtained results propose a parametric selection guideline based on the length matching for rational design of nacreous nanocomposites. Such guideline explains why nacre is strong and tough while most artificial nacreous nanocomposites aere not.
Reddy, M Rami; Erion, Mark D
2009-12-01
Molecular dynamics (MD) simulations in conjunction with thermodynamic perturbation approach was used to calculate relative solvation free energies of five pairs of small molecules, namely; (1) methanol to ethane, (2) acetone to acetamide, (3) phenol to benzene, (4) 1,1,1 trichloroethane to ethane, and (5) phenylalanine to isoleucine. Two studies were performed to evaluate the dependence of the convergence of these calculations on MD simulation length and starting configuration. In the first study, each transformation started from the same well-equilibrated configuration and the simulation length was varied from 230 to 2,540 ps. The results indicated that for transformations involving small structural changes, a simulation length of 860 ps is sufficient to obtain satisfactory convergence. In contrast, transformations involving relatively large structural changes, such as phenylalanine to isoleucine, require a significantly longer simulation length (>2,540 ps) to obtain satisfactory convergence. In the second study, the transformation was completed starting from three different configurations and using in each case 860 ps of MD simulation. The results from this study suggest that performing one long simulation may be better than averaging results from three different simulations using a shorter simulation length and three different starting configurations.
Line length dependencies in interconnect optimization
NASA Astrophysics Data System (ADS)
Kadoch, Daniel; Duane, Michael; Lee, Yohan
1997-09-01
Metal line delay has become increasingly important for ULSI devices. Numerous expressions and software tools have been developed to describe interconnect delay as a function of the geometry and layout. Although many of these formulas have line length effects, this has not been explored in depth. Most software tools are either geared towards circuit designers, or involve more complex and CPU-intensive 3D modeling. In this work, PISCES (a 2D device simulator) was used to extract metal capacitance per unit length. We extend this approach for various lengths by creating a ladder network of the RC components and simulating in SPICE, or using simple closed-form Elmore delay equations. A new key result is that there are optimum metal line width/space for a fixed pitch and height/space ratios that are metal length dependent. For metal lines shorter than about 1500 micrometers , it is better to have narrower metal lines, and for lengths less than 500 micrometers , shrinking metal height is desirable because the penalty in resistance is more than compensated by the decrease in capacitance. For longer lines, the time delay is dominated by resistance, and wider, taller lines are better. Increasing metal spacing or reducing dielectric constant were beneficial for both long and short metal lines.
Timi, J T; Lanfranchi, A L
2006-02-01
The effects of the size of Cynoscion guatucupa on the size and demographic parameters of their parasitic copepod Lernanthropus cynoscicola were evaluated. Prevalence of copepods increased with host size up to fish of intermediate length, then it decreased, probably because changes in size of gill filaments affect their attachment capability, enhancing the possibility of being detached by respiratory currents. Body length of copepods was significantly correlated with host length, indicating that only parasites of an 'adequate' size can be securely attached to a fish of a given size. The absence of relationship between the coefficient of variability in copepod length and both host length and number of conspecifics, together with the host-size dependence of both male and juvenile female sizes, prevent to interpret this relationship as a phenomenon of developmental plasticity. Therefore, the observed peak of prevalence could reflect the distribution of size frequencies in the population of copepods, with more individuals near the average length. Concluding, the 'optimum' host size for L. cynoscicola could merely be the adequate size for most individuals in the population, depending, therefore, on a populational attribute of parasites. However, its location along the host size range could be determined by a balance between fecundity and number of available hosts, which increases and decreases, respectively, with both host and parasite size.
Hafezi, Mohammad-Javad; Sharif, Farhad
2015-11-01
Study on the effect of amphiphilic copolymers structure on their self assembly is an interesting subject, with important applications in the area of drug delivery and biological system treatments. Brownian dynamics simulations were performed to study self-assembly of the linear amphiphilic block copolymers with the same hydrophilic head, but hydrophobic tails of different lengths. Critical micelle concentration (CMC), gyration radius distribution, micelle size distribution, density profiles of micelles, shape anisotropy, and dynamics of micellization were investigated as a function of tail length. Simulation results were compared with predictions from theory and simulation for mixed systems of block copolymers with long and short hydrophobic tail, reported in our previous work. Interestingly, the equilibrium structural and dynamic parameters of pure and mixed block copolymers were similarly dependant on the intrinsic/apparent hydrophobic block length. Log (CMC) was, however; proportional to the tail length and had a different behavior compared to the mixed system. The power law scaling relation of equilibrium structural parameters for amphiphilic block copolymers predicts the same dependence for similar hydrophobic tail lengths, but the power law prediction of CMC is different, which is due to its simplifying assumptions as discussed here. Copyright © 2015 Elsevier Inc. All rights reserved.
Lai, Jian-Ping; Lai, Saien; Tuluc, Florin; Tansky, Morris F.; Kilpatrick, Laurie E.; Leeman, Susan E.; Douglas, Steven D.
2008-01-01
The neurokinin-1 receptor (NK1R) has two naturally occurring forms that differ in the length of the carboxyl terminus: a full-length receptor consisting of 407 aa and a truncated receptor consisting of 311 aa. We examined whether there are differential signaling properties attributable to the carboxyl terminus of this receptor by using stably transfected human embryonic kidney (HEK293) cell lines that express either full-length or truncated NK1R. Substance P (SP) specifically triggered intracellular calcium increase in HEK293 cells expressing full-length NK1R but had no effect in the cells expressing the truncated NK1R. In addition, in cells expressing full-length NK1R, SP activated NF-κB and IL-8 mRNA expression, but in cells expressing the truncated NK1R, SP did not activate NF-κB, and it decreased IL-8 mRNA expression. In cells expressing full-length NK1R, SP stimulated phosphorylation of PKCδ but inhibited phosphorylation of PKCδ in cells expressing truncated NK1R. There are also differences in the timing of SP-induced ERK activation in cells expressing the two different forms of the receptor. Full-length NK1R activation of ERK was rapid (peak within 1–2 min), whereas truncated NK1R-mediated activation was slower (peak at 20–30 min). Thus, the carboxyl terminus of NK1R is the structural basis for differences in the functional properties of the full-length and truncated NK1R. These differences may provide important information toward the design of new NK1R receptor antagonists. PMID:18713853
Mehta, Preeti; Walia, Abhishek; Kulshrestha, Saurabh; Chauhan, Anjali; Shirkot, Chand Karan
2015-01-01
P-solubilizing bacterial isolate CB7 isolated from apple rhizosphere soil of Himachal Pradesh, India was identified as Bacillus circulans on the basis of phenotypic characteristics, biochemical tests, fatty acid methyl esters analysis, and 16S rRNA gene sequence. The isolate exhibited plant growth-promoting traits of P-solubilization, auxin, 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore, nitrogenase activity, and antagonistic activity against Dematophora necatrix. In vitro studies revealed that P-solubilization and other plant growth-promoting traits were dependent on the presence of glucose in PVK medium and removal of yeast extract had no significant effect on plant growth-promoting traits. Plant growth-promoting traits of isolate CB7 were repressed in the presence of KH2 PO4 . P-solubilization activity was associated with the release of organic acids and a drop in the pH of the Pikovskaya's medium. HPLC analysis detected gluconic and citric acid as major organic acids in the course of P-solubilization. Remarkable increase was observed in seed germination (22.32%), shoot length (15.91%), root length (25.10%), shoot dry weight (52.92%) and root dry weight (31.4%), nitrogen (18.75%), potassium (57.69%), and phosphorus (22.22%) content of shoot biomass over control. These results demonstrate that isolate CB7 has the promising PGPR attributes to be developed as a biofertilizer to enhance soil fertility and promote plant growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.
Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael
2014-04-01
The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.
Lelorain, Sophie; Sultan, Serge; Zenasni, Franck; Catu-Pinault, Annie; Jaury, Philippe; Boujut, Emilie; Rigal, Laurent
2013-03-01
Clinical empathy, i.e. the ability of physicians to adopt patient perspective, is an essential component of care, which depends in part on empathic concern, i.e. compassionate emotions felt for others. However, too much empathic concern can be challenging for physicians. Aim of this study was to examine physician practice characteristics that could explain clinical empathy beyond empathic concern. We were also interested in testing whether professional reflective activities, such as Balint group attendance or clinical supervision, might make clinical empathy less dependent on empathic concern. A total of 295 French general practitioners (response rate of 37%) completed self-reported questionnaires on empathic concern and clinical empathy, using the Toronto empathy questionnaire (TEQ) and the Jefferson scale of physician empathy (JSPE), respectively. We also recorded information on their professional practice: professional experience, duration of consultations, and participation in Balint groups or being a clinical supervisor. Hierarchical regression analyses were carried out with clinical empathy as dependent variable. Empathic concern was an important component of clinical empathy variance. The physician practice characteristics 'consultation length' and 'being a Balint attendee or a supervisor,' but not 'clinical experience' made a significant and unique contribution to clinical empathy beyond that of empathic concern. Participating to one reflective activity (either Balint group attendance or clinical supervision) made clinical empathy less dependent on empathic concern. Working conditions such as having enough consultation time and having the opportunity to attend a professional reflective activity support the maintenance of clinical empathy without the burden of too much empathic concern.
Wolkowitz, Owen M.; Mellon, Synthia H.; Lindqvist, Daniel; Epel, Elissa S.; Blackburn, Elizabeth H.; Lin, Jue; Reus, Victor I.; Burke, Heather; Rosser, Rebecca; Mahan, Laura; Mackin, Scott; Yang, Tony; Weiner, Michael; Mueller, Susanne
2015-01-01
Accelerated cell aging, indexed in peripheral leukocytes by telomere length and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD. PMID:25773002
Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface.
Stenger, Patrick C; Isbell, Stephen G; St Hillaire, Debra; Zasadzinski, Joseph A
2009-09-01
The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.
NASA Astrophysics Data System (ADS)
Kolesnikova, Anna S.; Mazepa, Margarita M.
2018-02-01
In nowadays the nanoscale materials are actively used in medicine, based on the properties of adsorption. One of the main problems of this field of medicine is the increase in specific surface of sorbent. We proposed to use carbon composites consisting of an extended in its directions graphene sheet with attached to it by chemical bonds zigzag carbon nanotubes (CNT). This paper presents the results of a theoretical study of the mechanical properties of graphene based on the CNT zigzag depending on the geometric dimensions of the composite (length and diameter of CNTs).
Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.
Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping
2012-06-15
We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.
Uringa, Evert-Jan; Youds, Jillian L; Lisaingo, Kathleen; Lansdorp, Peter M; Boulton, Simon J
2011-03-01
Telomere maintenance and DNA repair are crucial processes that protect the genome against instability. RTEL1, an essential iron-sulfur cluster-containing helicase, is a dominant factor that controls telomere length in mice and is required for telomere integrity. In addition, RTEL1 promotes synthesis-dependent strand annealing to direct DNA double-strand breaks into non-crossover outcomes during mitotic repair and in meiosis. Here, we review the role of RTEL1 in telomere maintenance and homologous recombination and discuss models linking RTEL1's enzymatic activity to its function in telomere maintenance and DNA repair.
Portable emittance measurement device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakin, D.; Seleznev, D.; Orlov, A.
2010-02-15
In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.
Cooper, Nicole; Kable, Joseph W; Kim, B Kyu; Zauberman, Gal
2013-08-07
People vary widely in how much they discount delayed rewards, yet little is known about the sources of these differences. Here we demonstrate that neural activity in ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS) when human subjects are asked to merely think about the future--specifically, to judge the subjective length of future time intervals--predicts delay discounting. High discounters showed lower activity for longer time delays, while low discounters showed the opposite pattern. Our results demonstrate that the correlation between VMPFC and VS activity and discounting occurs even in the absence of choices about future rewards, and does not depend on a person explicitly evaluating future outcomes or judging their self-relevance. This suggests a link between discounting and basic processes involved in thinking about the future, such as temporal perception. Our results also suggest that reducing impatience requires not suppression of VMPFC and VS activity altogether, but rather modulation of how these regions respond to the present versus the future.
Cooper, Nicole; Kim, B. Kyu; Zauberman, Gal
2013-01-01
People vary widely in how much they discount delayed rewards, yet little is known about the sources of these differences. Here we demonstrate that neural activity in ventromedial prefrontal cortex (VMPFC) and ventral striatum (VS) when human subjects are asked to merely think about the future—specifically, to judge the subjective length of future time intervals—predicts delay discounting. High discounters showed lower activity for longer time delays, while low discounters showed the opposite pattern. Our results demonstrate that the correlation between VMPFC and VS activity and discounting occurs even in the absence of choices about future rewards, and does not depend on a person explicitly evaluating future outcomes or judging their self-relevance. This suggests a link between discounting and basic processes involved in thinking about the future, such as temporal perception. Our results also suggest that reducing impatience requires not suppression of VMPFC and VS activity altogether, but rather modulation of how these regions respond to the present versus the future. PMID:23926268
Wang, Quanfu; Hou, Yanhua; Shi, Yonglei; Han, Xiao; Chen, Qian; Hu, Zhiguo; Liu, Yuanping; Li, YuJin
2014-01-01
Glutaredoxins (Grxs) are small ubiquitous redox enzymes that catalyze glutathione-dependent reactions to reduce protein disulfide. In this study, a full-length Grx gene (PsGrx) with 270 nucleotides was isolated from Antarctic sea-ice bacterium Pseudoalteromonas sp. AN178. It encoded deduced 89 amino acid residues with the molecular weight 9.8 kDa. Sequence analysis of the amino acid sequence revealed the catalytic motif CPYC. Recombinant PsGrx (rPsGrx) stably expressed in E. coli BL21 was purified to apparent homogeneity by Ni-affinity chromatography. rPsGrx exhibited optimal activity at 30°C and pH 8.0 and showed 25.5% of the activity at 0°C. It retained 65.0% of activity after incubation at 40°C for 20 min and still exhibited 37.0% activity in 1.0 M NaCl. These results indicated that rPsGrx was a typical cold active protein with low thermostability.
Tat-APE1/ref-1 protein inhibits TNF-{alpha}-induced endothelial cell activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yun Jeong; Lee, Ji Young; Joo, Hee Kyoung
2008-03-28
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/ref-1) is a multifunctional protein involved both in DNA base excision repair and redox regulation. In this study we evaluated the protective role of Tat-mediated APE1/ref-1 transduction on the tumor necrosis factor (TNF)-{alpha}-activated endothelial activation in cultured human umbilical vein endothelial cells. To construct Tat-APE1/ref-1 fusion protein, human full length of APE1/ref-1 was fused with Tat-protein transduction domain. Purified Tat-APE1/ref-1 fusion protein efficiently transduced cultured endothelial cells in a dose-dependent manner and reached maximum expression at 1 h after incubation. Transduced Tat-APE1/ref-1 showed inhibitory activity on the TNF-{alpha}-induced monocyte adhesion and vascular cell adhesion molecule-1 expressionmore » in cultured endothelial cells. These results suggest Tat-APE1/ref-1 might be useful to reduce vascular endothelial activation or vascular inflammatory disorders.« less
Kotur, Nikola; Stankovic, Biljana; Kassela, Katerina; Georgitsi, Marianthi; Vicha, Anna; Leontari, Iliana; Dokmanovic, Lidija; Janic, Dragana; Krstovski, Nada; Klaassen, Kristel; Radmilovic, Milena; Stojiljkovic, Maja; Nikcevic, Gordana; Simeonidis, Argiris; Sivolapenko, Gregory; Pavlovic, Sonja; Patrinos, George P; Zukic, Branka
2012-02-01
TPMT activity is characterized by a trimodal distribution, namely low, intermediate and high methylator. TPMT gene promoter contains a variable number of GC-rich tandem repeats (VNTRs), namely A, B and C, ranging from three to nine repeats in length in an A(n)B(m)C architecture. We have previously shown that the VNTR architecture in the TPMT gene promoter affects TPMT gene transcription. MATERIALS, METHODS & RESULTS: Here we demonstrate, using reporter assays, that 6-mercaptopurine (6-MP) treatment results in a VNTR architecture-dependent decrease of TPMT gene transcription, mediated by the binding of newly recruited protein complexes to the TPMT gene promoter, upon 6-MP treatment. We also show that acute lymphoblastic leukemia patients undergoing 6-MP treatment display a VNTR architecture-dependent response to 6-MP. These data suggest that the TPMT gene promoter VNTR architecture can be potentially used as a pharmacogenomic marker to predict toxicity due to 6-MP treatment in acute lymphoblastic leukemia patients.
Curtil, Claire; Enache, Liviu S; Radreau, Pauline; Dron, Anne-Gaëlle; Scholtès, Caroline; Deloire, Alexandre; Roche, Didier; Lotteau, Vincent; André, Patrice; Ramière, Christophe
2014-03-01
Hepatitis B virus (HBV) genome transcription is highly dependent on liver-enriched, metabolic nuclear receptors (NRs). Among others, NR farnesoid X receptor α (FXRα) enhances HBV core promoter activity and pregenomic RNA synthesis. Interestingly, two food-withdrawal-induced FXRα modulators, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and deacetylase SIRT1, have been found to be associated with HBV genomes ex vivo. Whereas PGC-1α induction was shown to increase HBV replication, the effect of SIRT1 on HBV transcription remains unknown. Here, we showed that, in hepatocarcinoma-derived Huh-7 cells, combined activation of FXRα by GW4064 and SIRT1 by activator 3 increased HBV core promoter-controlled luciferase expression by 25-fold, compared with a 10-fold increase with GW4064 alone. Using cell lines differentially expressing FXRα in overexpression and silencing experiments, we demonstrated that SIRT1 activated the core promoter in an FXRα- and PGC-1α-dependent manner. Maximal activation (>150-fold) was observed in FXRα- and PGC-1α-overexpressing Huh-7 cells treated with FXRα and SIRT1 activators. Similarly, in cells transfected with full-length HBV genomes, maximal induction (3.5-fold) of core promoter-controlled synthesis of 3.5-kb RNA was observed in the same conditions of transfection and treatments. Thus, we identified a subnetwork of metabolic factors regulating HBV replication, strengthening the hypothesis that transcription of HBV and metabolic genes is similarly controlled.
Physics in space-time with scale-dependent metrics
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.
2013-10-01
We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.