Carotid-Femoral Pulse Wave Velocity: Impact of Different Arterial Path Length Measurements
Sugawara, Jun; Hayashi, Koichiro; Yokoi, Takashi; Tanaka, Hirofumi
2009-01-01
Background Carotid-femoral pulse wave velocity (PWV) is the most established index of arterial stiffness. Yet there is no consensus on the methodology in regard to the arterial path length measurements conducted on the body surface. Currently, it is not known to what extent the differences in the arterial path length measurements affect absolute PWV values. Methods Two hundred fifty apparently healthy adults (127 men and 123 women, 19-79 years) were studied. Carotid-femoral PWV was calculated using (1) the straight distance between carotid and femoral sites (PWVcar–fem), (2) the straight distance between suprasternal notch and femoral site minus carotid arterial length (PWV(ssn–fem)-(ssn–car)), (3) the straight distance between carotid and femoral sites minus carotid arterial length (PWV(car–fem)-(ssn–car)), and (4) the combined distance from carotid site to the umbilicus and from the umbilicus to femoral site minus carotid arterial length (PWV(ssn–umb–fem)-(ssn–car)). Results All the calculated PWV were significantly correlated with each other (r=0.966-0.995). PWV accounting for carotid arterial length were 16-31% lower than PWVcar–fem. PWVcar–fem value of 12 m/sec corresponded to 8.3 m/sec for PWV(ssn–fem)-(ssn–car), 10.0 m/sec for PWV(car–fem)-(ssn–car), and 8.9 m/sec for PWV(ssn–umb–fem)-(ssn–car). Conclusion Different body surface measurements used to estimate arterial path length would produce substantial variations in absolute PWV values. PMID:20396400
NASA Astrophysics Data System (ADS)
Dzuba, Sergei A.
2016-08-01
Pulsed double electron-electron resonance technique (DEER, or PELDOR) is applied to study conformations and aggregation of peptides, proteins, nucleic acids, and other macromolecules. For a pair of spin labels, experimental data allows for the determination of their distance distribution function, P(r). P(r) is derived as a solution of a first-kind Fredholm integral equation, which is an ill-posed problem. Here, we suggest regularization by increasing the distance discretization length to its upper limit where numerical integration still provides agreement with experiment. This upper limit is found to be well above the lower limit for which the solution instability appears because of the ill-posed nature of the problem. For solving the integral equation, Monte Carlo trials of P(r) functions are employed; this method has an obvious advantage of the fulfillment of the non-negativity constraint for P(r). The regularization by the increasing of distance discretization length for the case of overlapping broad and narrow distributions may be employed selectively, with this length being different for different distance ranges. The approach is checked for model distance distributions and for experimental data taken from literature for doubly spin-labeled DNA and peptide antibiotics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Oyewale, S; Ahmad, S
2014-06-01
Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured inmore » the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.« less
Minimal Length Scale Scenarios for Quantum Gravity.
Hossenfelder, Sabine
2013-01-01
We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Albanese, B.; Angermeier, P.L.; Gowan, C.
2003-01-01
Mark-recapture studies generate biased, or distance-weighted, movement data because short distances are sampled more frequently than long distances. Using models and field data, we determined how study design affects distance weighting and the movement distributions of stream fishes. We first modeled distance weighting as a function of recapture section length in an unbranching stream. The addition of an unsampled tributary to one of these models substantially increased distance weighting by decreasing the percentage of upstream distances that were sampled. Similarly, the presence of multiple tributaries in the field study resulted in severe bias. However, increasing recapture section length strongly affected distance weighting in both the model and the field study, producing a zone where the number of fish moving could be estimated with little bias. Subsampled data from the field study indicated that longer median (three of three species) and maximum distances (two of three species) can be detected by increasing the length of the recapture section. The effect was extreme for bluehead chub Nocomis leptocephalus, a highly mobile species, which exhibited a longer median distance (133 m versus 60 m), a longer maximum distance (1,144 m versus 708 m), and a distance distribution that differed in shape when the full (4,123-m recapture section) and subsampled (1,978-m recapture section) data sets were compared. Correction factors that adjust the observed number of movements to undersampled distances upwards and those to oversampled distances downwards could not mitigate the distance weighting imposed by the shorter recapture section. Future studies should identify the spatial scale over which movements can be accurately measured before data are collected. Increasing recapture section length a priori is far superior to using post hoc correction factors to reduce the influence of distance weighting on observed distributions. Implementing these strategies will be especially important in stream networks where fish can follow multiple pathways out of the recapture section.
Anatomical characteristics of greater palatine foramen: a novel point of view.
Gibelli, Daniele; Borlando, Alessia; Dolci, Claudia; Pucciarelli, Valentina; Cattaneo, Cristina; Sforza, Chiarella
2017-12-01
Anatomy of greater palatine foramen is important for maxillary nerve blocks, haemostatic procedures, and the treatment of neuralgia; although metrical data are available about its collocation, still several aspects need to be explored, such as the influence of the cranium size. The position of greater palatine foramen was assessed on 100 skulls through six measurements (distances from intermaxillary suture, posterior palatal border, posterior nasal spine, and incisive foramen; palatal length; relative position on palatal length) and two angles (angles at incisive foramen and greater palatine foramen). Maximum cranial length, maximum cranial breadth, cranial height and bizygomatic breadth, horizontal cephalic index, and Giardina Y-index were evaluated. Possible differences according to sex and side were assessed through two-way ANOVA (p < 0.05). Measurements showing sexual dimorphism were further assessed through one-way ANCOVA including cranial parameters as covariates (p < 0.05). Distances of the greater palatine foramen from intermaxillary suture, incisive foramen, posterior palatal border, posterior nasal spine, palatal length, and position of the greater palatine foramen on the palatal length were statistically different according to sex (p < 0.05), independently from general cranial dimensions but for the distance from the posterior palatal border. The angle at the incisive foramen and distances from intermaxillary suture and from posterior nasal spine showed statistically significant differences according to side (p < 0.05). Results highlight that most of sexually dimorphic measurements useful for pinpointing the greater palatal foramen do not depend upon the cranium size. A more complete metrical assessment of the localization of the greater palatine foramen was provided.
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-01-01
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect’s ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points’ time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t-tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect’s higher-dimensional depth data to estimate foot placement locations directly from the foot’s point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor. PMID:28994731
Validation of Foot Placement Locations from Ankle Data of a Kinect v2 Sensor.
Geerse, Daphne; Coolen, Bert; Kolijn, Detmar; Roerdink, Melvyn
2017-10-10
The Kinect v2 sensor may be a cheap and easy to use sensor to quantify gait in clinical settings, especially when applied in set-ups integrating multiple Kinect sensors to increase the measurement volume. Reliable estimates of foot placement locations are required to quantify spatial gait parameters. This study aimed to systematically evaluate the effects of distance from the sensor, side and step length on estimates of foot placement locations based on Kinect's ankle body points. Subjects (n = 12) performed stepping trials at imposed foot placement locations distanced 2 m or 3 m from the Kinect sensor (distance), for left and right foot placement locations (side), and for five imposed step lengths. Body points' time series of the lower extremities were recorded with a Kinect v2 sensor, placed frontoparallelly on the left side, and a gold-standard motion-registration system. Foot placement locations, step lengths, and stepping accuracies were compared between systems using repeated-measures ANOVAs, agreement statistics and two one-sided t -tests to test equivalence. For the right side at the 2 m distance from the sensor we found significant between-systems differences in foot placement locations and step lengths, and evidence for nonequivalence. This distance by side effect was likely caused by differences in body orientation relative to the Kinect sensor. It can be reduced by using Kinect's higher-dimensional depth data to estimate foot placement locations directly from the foot's point cloud and/or by using smaller inter-sensor distances in the case of a multi-Kinect v2 set-up to estimate foot placement locations at greater distances from the sensor.
Wolgin, Michael; Grundmann, Markus J; Tchorz, Jörg P; Frank, Wilhelm; Kielbassa, Andrej M
2017-09-01
The present study investigated the accuracy of root canal preparation with regard to the integrity of the apical constriction (AC) using two different working length determination approaches: (1) the electronic method of working length determination (EWLD), and (2) the radiologic "gold standard" method (GS). Simulation models were constructed by arranging extracted human teeth by means of silicon bolstered gingiva masks, along with a conductive medium (alginate). Electronic working length determination (group 1; EWLD) and radiologic plus initial electronic working length determination for posterior comparability (group 2; GS) preceded manual root canal preparation of teeth in both groups. Master cones were inserted according to working lengths obtained from the group specific method. Subsequently, root apices (n=36) were longitudinally sectioned using a diamond-coated bur. The distance between the achieved apical endpoint of the endodontic preparation and the apical constriction (AC) was measured using digital photography. Then, distances between radiologically identified apical endpoints and AC (GS-AC) were compared with the corresponding distances EWLD-AC. Moreover, the postoperative status of the AC was examined with regard to both preparation approaches. Differences between distances GS-AC and EWLD-AC were not statistically significant (p >0.401) (Mann-Whitney-U). Among EWLD samples, 83% of the master cones exhibiting tugback at final insertion terminated close to the apical constriction (±0.5 mm), and no impairment of the minor diameter's integrity was observed. The sole use of EWLD allowed for a high accuracy of measurements and granted precise preparation of the apical regions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Soria-Carrasco, Víctor; Talavera, Gerard; Igea, Javier; Castresana, Jose
2007-11-01
We introduce a new phylogenetic comparison method that measures overall differences in the relative branch length and topology of two phylogenetic trees. To do this, the algorithm first scales one of the trees to have a global divergence as similar as possible to the other tree. Then, the branch length distance, which takes differences in topology and branch lengths into account, is applied to the two trees. We thus obtain the minimum branch length distance or K tree score. Two trees with very different relative branch lengths get a high K score whereas two trees that follow a similar among-lineage rate variation get a low score, regardless of the overall rates in both trees. There are several applications of the K tree score, two of which are explained here in more detail. First, this score allows the evaluation of the performance of phylogenetic algorithms, not only with respect to their topological accuracy, but also with respect to the reproduction of a given branch length variation. In a second example, we show how the K score allows the selection of orthologous genes by choosing those that better follow the overall shape of a given reference tree. http://molevol.ibmb.csic.es/Ktreedist.html
A study of the coherence length of ULF waves in the earth's foreshock
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.
1990-01-01
High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.
The optimum spanning catenary cable
NASA Astrophysics Data System (ADS)
Wang, C. Y.
2015-03-01
A heavy cable spans two points in space. There exists an optimum cable length such that the maximum tension is minimized. If the two end points are at the same level, the optimum length is 1.258 times the distance between the ends. The optimum lengths for end points of different heights are also found.
Role of a texture gradient in the perception of relative size.
Tozawa, Junko
2010-01-01
Two theories regarding the role of a texture gradient in the perception of the relative size of objects are compared. Relational theory states that relative size is directly specified by the projective ratio of the numbers of texture elements spanned by objects. Distance calibration theory assumes that relative size is a product of visual angle and distance, once the distance is specified by the texture. Experiment 1 involved three variables: background (no texture, texture gradient patterns), the ratio of heights of the comparison stimulus to a standard (three levels), and angular vertical separation of the standard stimulus below the horizon (two levels). The effect of the retinal length of the comparison stimulus was examined in experiment 2. In both experiments, participants judged both the apparent size and distance of a comparison stimulus relative to a standard stimulus. Results suggest that the cues selected by observers to judge relative size were to some degree different from those used to judge relative distance. Relative size was strongly affected by a texture gradient and the retinal length of a comparison stimulus whereas relative distance perception was affected by relative height. When dominant cues that specify size are different from those which specify distance, relational theory might provide a better account of relative size perception than distance calibration theory.
NASA Astrophysics Data System (ADS)
Ito, Juri; Kajikawa, Kotaro
2016-02-01
We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.
Sexual dimorphism and allometry in the sphecophilous rove beetle Triacrus dilatus.
Marlowe, Maxwell H; Murphy, Cheryl A; Chatzimanolis, Stylianos
2015-01-01
The rove beetle Triacrus dilatus is found in the Atlantic forest of South America and lives in the refuse piles of the paper wasp Agelaia vicina. Adults of T. dilatus are among the largest rove beetles, frequently measuring over 3 cm, and exhibit remarkable variation in body size. To examine sexual dimorphism and allometric relationships we measured the length of the left mandible, ocular distance and elytra. We were interested in determining if there are quantifiable differences between sexes, if there are major and minor forms within each sex and if males exhibit mandibular allometry. For all variables, a t-test was run to determine if there were significant differences between the sexes. Linear regressions were run to examine if there were significant relationships between the different measurements. A heterogeneity of slopes test was used to determine if there were significant differences between males and females. Our results indicated that males had significantly larger mandibles and ocular distances than females, but the overall body length was not significantly different between the sexes. Unlike most insects, both sexes showed positive linear allometric relationships for mandible length and head size (as measured by the ocular distance). We found no evidence of major and minor forms in either sex.
Proffitt, C.E.; Travis, S.E.; Edwards, K.R.
2003-01-01
Colonization, growth, and clonal morphology differ with genotype and are influenced by elevation. Local adaptation of Spartina alterniflora to environmental conditions may lead to dominance by different suites of genotypes in different locations within a marsh. In a constructed marsh, we found reduced colonization in terms of density of clones with increasing distance from edge in a 200-ha mudflat created in 1996; however, growth in diameter was not different among three 100-m-long zones that differed in distance from site edge. Distance from edge was confounded by elevation in this comparison of natural colonization. The rate of clonal expansion in diameter was 3.1 m/yr, and clonal growth was linear over the 28 mo of the study. The area dominated by S. alterniflora in the three distance zones increased concomitantly with clonal growth. However, the lower initial clonal densities and colonization by other plant species resulted in reduced overall dominance by S. alterniflora in the two more-interior locations. Seedling recruitment was an important component of S. alterniflora colonization at all elevations and distances from edge two years after site creation. Seedlings were spatially very patchy and tended to occur near clones that probably produced them. A field experiment revealed that S. alterniflora height and total stem length varied with genotype, while stem density and flowering stem density did not. Differences between edge and center of clonal patches also occurred for some response variables, and there were also significant interactions with genotype. Differences between edge and center are interpreted as differences in clone morphology. Elevation differences over distances of a few meters influenced total stem length and flowering stem density but not other response variables. Clones that were larger in diameter also tended to have greater stem heights and total stem lengths. A number of plant morphological measures were found to vary significantly among the five genotypes and had broad-sense heritabilities ranging up to 0.71. These results indicate that S. alterniflora populations developing on new substrata colonize broadly, but growth and reproduction vary with genotype and are influenced by changes in elevation (range: 11.8 cm), and probably other environmental factors, over relatively small distances. Differences in growth and clone morphology of different genets, and the frequent occurrence of seedlings throughout the site, underscore the importance of genetic variability in natural and created populations.
SU-F-I-40: Impact of Scan Length On Patient Dose in Abdomen/pelvis CT Diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, I; Song, J; Kim, K
Purpose: To analysis the impact of scan length on patient doses in abdomen/pelvis CT diagnosis of each hospital. Methods: Scan length of 7 hospitals from abdomen/pelvis CT diagnosis was surveyed in Korea. Surveyed scan lengths were additional distance above diaphragm and distance below pubic symphysis except for standard scan range between diaphragm and pubic symphysis. Patient dose was estimated for adult male and female according to scan length of each hospital. CT-Expo was used to estimate the patient dose under identical equipment settings (120 kVp, 100 mAs, 10 mm collimation width, etc.) except scan length. Effective dose was calculated bymore » using tissue weighting factor of ICRP 103 recommendation. Increase rate of effective dose was calculated comparing with effective dose of standard scan range Results: Scan lengths of abdomen/pelvis CT diagnosis of each hospital were different. Also effective dose was increased with increasing the scan length. Generally increasing the distance above diaphragm caused increase of effective dose of male and female, but increasing the distance below pubic symphysis caused increase of effective dose of male. Conclusion: We estimated the patient dose according to scan length of each hospital in abdomen/pelvis CT diagnosis. Effective dose was increased by increasing the scan length because dose of organs with high tissue weighting factor such as lung, breast, testis were increased. Scan length is important factor on patient dose in CT diagnosis. If radiologic technologist interested in patient dose, decreasing the unnecessary scan length will decrease the risk of patients from radiation. This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI13C0004).« less
Examining Hurricane Track Length and Stage Duration Since 1980
NASA Astrophysics Data System (ADS)
Fandrich, K. M.; Pennington, D.
2017-12-01
Each year, tropical systems impact thousands of people worldwide. Current research shows a correlation between the intensity and frequency of hurricanes and the changing climate. However, little is known about other prominent hurricane features. This includes information about hurricane track length (the total distance traveled from tropical depression through a hurricane's final category assignment) and how this distance may have changed with time. Also unknown is the typical duration of a hurricane stage, such as tropical storm to category one, and if the time spent in each stage has changed in recent decades. This research aims to examine changes in hurricane stage duration and track lengths for the 319 storms in NOAA's National Ocean Service Hurricane Reanalysis dataset that reached Category 2 - 5 from 1980 - 2015. Based on evident ocean warming, it is hypothesized that a general increase in track length with time will be detected, thus modern hurricanes are traveling a longer distance than past hurricanes. It is also expected that stage durations are decreasing with time so that hurricanes mature faster than in past decades. For each storm, coordinates are acquired at 4-times daily intervals throughout its duration and track lengths are computed for each 6-hour period. Total track lengths are then computed and storms are analyzed graphically and statistically by category for temporal track length changes. The stage durations of each storm are calculated as the time difference between two consecutive stages. Results indicate that average track lengths for Cat 2 and 3 hurricanes are increasing through time. These findings show that these hurricanes are traveling a longer distance than earlier Cat 2 and 3 hurricanes. In contrast, average track lengths for Cat 4 and 5 hurricanes are decreasing through time, showing less distance traveled than earlier decades. Stage durations for all Cat 2, 4 and 5 storms decrease through the decades but Cat 3 storms show a positive increase though time. This compliments the results of the track length analysis indicating that as storms intensify faster, they are doing so over a shorter distance. It is expected that this research could be used to improve hurricane track forecasting and provide information about the effects of climate change on tropical systems and the tropical environment.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
NASA Astrophysics Data System (ADS)
Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.
2010-01-01
A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.
Lindemann, Ulrich; Beck, Luisa; Becker, Clemens
2017-02-01
To evaluate the effect of course length and corridor width on 2-minute walk test results in older adults. Cross-sectional and experimental study with different test conditions. Geriatric rehabilitation clinic. A total of 21 patients (median age 81 years). Patients walked two minutes on a 20 m and 40 m course with a 2 m or 1 m corridor width and on a continuous course without any turning in a corridor of 2 m width, five walks in total. The distance traveled within the 2 minutes was recorded. Compared with the 20 m course length, median walking distances measured by the 2-minute walk test in a walk way 2 m broad were better on the continuous corridor without any turn (136.9 m vs. 129.3 m, p = 0.002) and on the 40 m course (131.8 m vs. 129.3 m, p = 0.003). Walking distance on a 20 m course length was longer in a corridor of 2 m width compared with the 1 m corridor width (129.3 m vs. 119.2 m, p = 0.005). The walking distance was not affected by corridor width on the 40 m course length. Performance of elderly patients on the 2-minute walk test is influenced by the width of the corridor and the length of the course used.
Optoelectronic System Measures Distances to Multiple Targets
NASA Technical Reports Server (NTRS)
Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei
2007-01-01
An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path length inside the optical fiber is not ordinarily known and can change with temperature, it is also necessary to measure the phase difference associated with this portion and subtract it from the aforementioned overall phase difference to obtain the phase difference proportional to only the free-space path length, which is the distance that one seeks to measure. Therefore, the apparatus includes a photodiode and a circulator that enable measurement of the phase difference associated with propagation from the LRU inside the fiber to the target, reflection from the fiber end, and propagation back inside the fiber to the LRU. Because this phase difference represents twice the optical path length of the fiber, this phase difference is divided in two before subtraction from the aforementioned total-path-length phase difference. Radiation-induced changes in the photodetectors in this apparatus can affect the measurements. To enable calibration for the purpose of compensation for these changes, the apparatus includes an additional target at a known short distance, located inside the camera. If the measured distance to this target changes, then the change is applied to the other targets.
Determination of molecular configuration by debye length modulation.
Vacic, Aleksandar; Criscione, Jason M; Rajan, Nitin K; Stern, Eric; Fahmy, Tarek M; Reed, Mark A
2011-09-07
Silicon nanowire field effect transistors (FETs) have emerged as ultrasensitive, label-free biodetectors that operate by sensing bound surface charge. However, the ionic strength of the environment (i.e., the Debye length of the solution) dictates the effective magnitude of the surface charge. Here, we show that control of the Debye length determines the spatial extent of sensed bound surface charge on the sensor. We apply this technique to different methods of antibody immobilization, demonstrating different effective distances of induced charge from the sensor surface.
Kacprzak, Sylwia; Njimona, Ibrahim; Renz, Anja; Feng, Juan; Reijerse, Edward; Lubitz, Wolfgang; Krauss, Norbert; Scheerer, Patrick; Nagano, Soshichiro; Lamparter, Tilman; Weber, Stefan
2017-05-05
Bacterial phytochromes are dimeric light-regulated histidine kinases that convert red light into signaling events. Light absorption by the N-terminal photosensory core module (PCM) causes the proteins to switch between two spectrally distinct forms, Pr and Pfr, thus resulting in a conformational change that modulates the C-terminal histidine kinase region. To provide further insights into structural details of photoactivation, we investigated the full-length Agp1 bacteriophytochrome from the soil bacterium Agrobacterium fabrum using a combined spectroscopic and modeling approach. We generated seven mutants suitable for spin labeling to enable application of pulsed EPR techniques. The distances between attached spin labels were measured using pulsed electron-electron double resonance spectroscopy to probe the arrangement of the subunits within the dimer. We found very good agreement of experimental and calculated distances for the histidine-kinase region when both subunits are in a parallel orientation. However, experimental distance distributions surprisingly showed only limited agreement with either parallel- or antiparallel-arranged dimer structures when spin labels were placed into the PCM region. This observation indicates that the arrangements of the PCM subunits in the full-length protein dimer in solution differ significantly from that in the PCM crystals. The pulsed electron-electron double resonance data presented here revealed either no or only minor changes of distance distributions upon Pr-to-Pfr photoconversion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Correlation of the tibial tuberosity-trochlear groove distance with the Q-angle.
Dickschas, Jörg; Harrer, Jörg; Bayer, Thomas; Schwitulla, Judith; Strecker, Wolf
2016-03-01
The Q-angle has been used for years to quantify lateralization of the patella. The tibial tuberosity-trochlea groove distance (TT-TG distance) was introduced to analyse patellar tracking. Does a significant correlation exist between these two parameters? Do other significant interrelations exist between the Q-angle/TT-TG distance, torsion of the femur and tibia, the frontal axis, overall leg length, gender, former patellar dislocation, BMI? One hundred knees in 55 patients with patellofemoral symptoms were included in a prospective study. All patients underwent clinical examination, including measurement of the Q-angle. A torsional CT was obtained from all patients. The correlation coefficient was 0.33/0.34 (left/right leg), showing that the TT-TG distance tends to rise in direct ratio to a rising Q-angle. Thus, a significant correlation was found (p = 0.017). Femoral and tibial torsion had a positive effect on the TT-TG distance, but showed no significant correlation. Leg length had a significant effect on the TT-TG distance (p = 0.04). The frontal axis had a nonsignificant influence on the Q-angle or TT-TG distance. On average, the Q-angle in women was 2.38° greater than it was in men, but the difference was not significant. A significant correlation was noted between the Q-angle and the TT-TG distance. Both depend on various parameters and must be assessed for the analysis of patellofemoral maltracking. The Q-angle did not differ significantly between men and women; thus, the conclusion is that no different ranges need not be used. Diagnostic study, Level III.
Relethford, J H
1988-05-01
The analysis of anthropometric data often allows investigation of patterns of genetic structure in historical populations. This paper focuses on interpopulational anthropometric variation in seven populations in Ireland using data collected in the 1890s. The seven populations were located within a 120-km range along the west coast of Ireland and include islands and mainland isolates. Two of the populations (the Aran Islands and Inishbofin) have a known history of English admixture in earlier centuries. Ten anthropometric measures (head length, breadth, and height; nose length and breadth; bizygomatic and bigonial breadth; stature; hand length; and forearm length) on 259 adult Irish males were analyzed following age adjustment. Discriminant and canonical variates analysis were used to determine the degree and pattern of among-group variation. Mahalanobis' distance measure, D2, was computed between each pair of populations and compared to distance measures based on geographic distance and English admixture (a binary measure indicating whether either of a pair of populations had historical indications of admixture). In addition, surname frequencies were used to construct distance measures based on random isonymy. Correlations were computed between distance measures, and their probabilities were derived using the Mantel matrix permutation method. English admixture has the greatest effect on anthropometric variation among these populations, followed by geographic distance. The correlation between anthropometric distance and geographic distance is not significant (r = -0.081, P = .590), but the correlation of admixture and anthropometric distance is significant (r = 0.829, P = .047). When the two admixed populations are removed from the analysis the correlation between geographic and anthropometric distance becomes significant (r = 0.718, P = .025). Isonymy distance shows a significant correlation with geographic distance (r = 0.425, P = .046) but not with admixture distance (r = -0.052, P = .524). The fact that anthropometrics show past patterns of gene flow and surnames do not reflects the greater impact of stochastic processes on surnames, along with the continued extinction of surnames. This study shows that 1) anthropometrics can be extremely useful in assessing population structure and history, 2) differential gene flow into populations can have a major impact on local genetic structure, and 3) microevolutionary processes can have different effects on biological characters and surnames.
Slip length measurement of confined air flow on three smooth surfaces.
Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid
2013-04-02
An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.
Steinberg, J; Kohl, C; Katz, T; Richard, G; Linke, S J
2014-04-01
The aim of the study was to quantify the difference in corneal thickness between the central and thinnest points (∆PachyZ-PachyD), the distance between the center of the cornea and its thinnest point (vector length PachyD) and to explore the impact of refractive state, age and ocular side. This was a multicenter, retrospective, cross-sectional study and medical records of 16,872 eyes were reviewed. The Orbscan® (Bausch and Lomb) procedure was used for pachymetry and keratometry. The results showed that ∆PachyZ-PachyD and vector length PachyD were higher in hyperopic eyes (∆PachyZ-PachyD: 11.99 ± 12.08 µm, vector length PachyD: 0.85 ± 0.44 mm) compared to myopic eyes (∆PachyZ-PachyD: 9.2 ± 7.86 µm, vector length PachyD: 0.7 ± 0.37 mm; p < 0.001). Refractive state, age and ocular side demonstrated an independent, statistically significant impact on ∆PachyZ-PachyD and vector length PachyD. As a result of the significant impact of refractive state, age and ocular side on ∆PachyZ-PachyD and vector length PachyD, these variables should be considered in a normative data collection.
Romano-Riquer, S. Patricia; Hernández-Ávila, Mauricio; Gladen, Beth C.; Cupul-Uicab, Lea A.; Longnecker, Matthew P.
2013-01-01
Summary Development of the perineum as well as the external genitalia is determined by dihydrotestosterone, resulting in a greater anogenital distance (AGD) in males than females. In animal experiments with hormonally active agents, anogenital distance is used as a bioassay of fetal androgen action. Use of anogenital distance in human studies has been rare. Because anogenital distance has been an easy-to-measure, sensitive outcome in animal studies, we developed an anthropometric protocol for measurement of anogenital distance in human males. In this paper we describe the method for measurement of three anogenital distances, their reliability, and an assessment of predictors for each in the context of an epidemiological study. We compare the reliabilities and predictors to those for stretched penis length and penis width. A cross-sectional study of 781 newly-delivered male infants was conducted in 2002–2003 in Chiapas, México. Replicate measures were obtained on nearly all subjects. The reliability of the measures of anogenital distance (0.82–0.91) were higher than for stretched penis length (0.78) and width (0.75). Birthweight and gestational length were more strongly related to anogenital distance than to penis length. Anogenital distance was not related to penis length (r = 0.03). Our large study clearly shows that AGD can be measured well in newborn males, and that the measurements were more reliable than those of penis length. Whether AGD measures in humans relate to clinically important outcomes, however, remains to be determined, as does its utility as a measure of androgen action in epidemiological studies. PMID:17439530
The desert ant odometer: a stride integrator that accounts for stride length and walking speed.
Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald
2007-01-01
Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.
Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma
2014-01-01
Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment.
Fiedler, Wolfgang
2005-06-01
An analysis of the external flight apparatus of 700 blackcaps from eight different populations (sedentary to long-distance migrators) is presented. With increasing migration distances of populations, (1) wing length, aspect ratio, and wing pointedness increase; (2) wing load decreases; (3) slots on the wing tips become relatively shorter; (4) the alula tends to be shorter in relation to wing length; and (5) the tail is shorter in relation to wing length. Although body mass increases from southern to northern populations, changes in wing length and wing area are two to three times larger than expected for simple isometric relationships. Regarding the aerodynamic background of these changes, it can be stated that traits for energy-effective flight are more strongly developed and traits for maneuverability are less developed in birds traveling longer distances, presumably as a consequence of trade-offs. Nonmigratory blackcaps from Madeira and the Cape Verde islands do not always show the traits we would expect in view of their sedentary behavior. This can be seen as a result of recent colonization of these islands by migrants or of selection by factors other than migration behavior. In migratory populations, changes between the first and the second set of primaries during first complete molt show almost the same pattern as the changes from nonmigratory to migratory populations. During molt of the primaries, blackcaps of nonmigratory populations do not show these changes. Hybrids between migrating and nonmigrating blackcap populations (Moscow and Madeira) showed intermediate values between parent populations in wing length, wing shape, and wing area; in the other variables they resembled either parent population.
Lubowitz, James H; Konicek, John
2010-10-01
The purpose was to measure anterior cruciate ligament (ACL) femoral tunnel lengths comparing anteromedial (AM) portal and outside-in techniques. ACL femoral guide pins were drilled into 12 cadaveric knees through the AM portal technique and then the outside-in technique in each specimen. Pin intraosseous distance was measured in millimeters by a MicroScribe 3-dimensional digitizer (Immersion, San Jose, CA). With the AM portal technique, the mean ACL femoral tunnel distance was 30.5 mm. With the outside-in technique, the mean ACL femoral tunnel distance was 34.1 mm. The difference was statistically significant (P = .04). Our results show that the outside-in technique for creating the ACL femoral tunnel results in a longer mean tunnel length than the AM portal technique for creating the ACL femoral tunnel. The outside-in technique best prevents excessively short tunnels. Our results have clinical relevance for surgeons who desire to perform independent, rather than transtibial, drilling of the ACL femoral tunnel and desire adequate length of tendon graft within the femoral bone tunnel. Copyright © 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Stagni, Elena; Normando, Simona; de Mori, Barbara
2017-08-01
Space allowance and resource dispersion is recognised as an important factor affecting the welfare of elephants in captivity. In the present pilot study, we investigated distances kept among individuals in an artificially created semi-captive mixed-sex group of African elephants, when individuals were free to disperse. The study involved a herd of six elephants, three females (aged 11 to 16years), and three males (aged 15 to 23years). They were observed through instantaneous scan sampling in order to assess distances between individuals and body orientation in space and through continuous focal animal sampling to assess inter-specific social behaviour and general activity. A total of 312 suitable scans were collected for evaluation of distances between individuals. While foraging in absence of discernible space constraints, elephants maintained a distance equalling five or more body lengths in 63.9% of the scans, with wide differences between dyads. Little social behaviour, mainly affiliative, was recorded. The results of this pilot study suggest further scientific investigation could help to understand whether placing resources at five body lengths distance or over in a controlled environment could increase their simultaneous utilisation by all members of a group and contribute to decrease aggression. However, caution is warranted when applying results to different groups, environments and management regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.
End-to-end distance and contour length distribution functions of DNA helices
NASA Astrophysics Data System (ADS)
Zoli, Marco
2018-06-01
I present a computational method to evaluate the end-to-end and the contour length distribution functions of short DNA molecules described by a mesoscopic Hamiltonian. The method generates a large statistical ensemble of possible configurations for each dimer in the sequence, selects the global equilibrium twist conformation for the molecule, and determines the average base pair distances along the molecule backbone. Integrating over the base pair radial and angular fluctuations, I derive the room temperature distribution functions as a function of the sequence length. The obtained values for the most probable end-to-end distance and contour length distance, providing a measure of the global molecule size, are used to examine the DNA flexibility at short length scales. It is found that, also in molecules with less than ˜60 base pairs, coiled configurations maintain a large statistical weight and, consistently, the persistence lengths may be much smaller than in kilo-base DNA.
Hunting of roe deer and wild boar in Germany: Is non-lead ammunition suitable for hunting?
Martin, Annett; Gremse, Carl; Selhorst, Thomas; Bandick, Niels; Müller-Graf, Christine; Greiner, Matthias; Lahrssen-Wiederholt, Monika
2017-01-01
Non-lead hunting ammunition is an alternative to bullets that contain lead. The use of lead ammunition can result in severe contamination of game meat, thus posing a health risk to consumers. With any kind of ammunition for hunting, the terminal effectiveness of bullets is an animal welfare issue. Doubts about the effectiveness of non-lead bullets for a humane kill of game animals in hunting have been discussed. The length of the escape distance after the shot has been used previously as an indicator for bullet performance. The object of this study was to determine how the bullet material (lead or non-lead) influences the observed escape distances. 1,234 records of the shooting of roe deer (Capreolus capreolus) and 825 records of the shooting of wild boar (Sus scrofa) were evaluated. As the bullet material cannot be regarded as the sole cause of variability of escape distances, interactions of other potential influencing variables like shot placement, shooting distance, were analyzed using conditional regression trees and two-part hurdle models. The length of the escape distance is not influenced by the use of lead or non-lead ammunition with either roe deer or wild boar. With roe deer, the length of the escape distance is influenced significantly by the shot placement and the type of hunting. Increasing shooting distances increased the length of the escape distance. With wild boar, shot placement and the age of the animals were found to be a significant influencing factor on the length of the escape distance. The length of the escape distance can be used as an indicator for adequate bullet effectiveness for humane killings of game animals in hunting.Non-lead bullets already exist which have an equally reliable killing effect as lead bullets.
Heo, Youn Moo; Kim, Sang Bum; Yi, Jin Woong; Kim, Tae Gyun; Lim, Byoung Gu
2016-02-01
As intramedullary (IM) fixation is one of the fixation methods used in neck fractures of the fifth metacarpal, an early motion of injured finger can be allowed. The purpose of this study is to evaluate whether immediate active motion affects the stability of antegrade IM fixation in surgical treatment of neck fractures of the fifth metacarpal bone and to assess related factors. Thirty one patients treated by closed reduction and antegrade IM fixation were consecutively enrolled. All patients started active motion of the little finger since 7 postoperative days and only daily activities including writing, typing or washing were allowed until the union of fracture. All fractures were healed within four to eight weeks. The changes of angulation, fifth metacarpal length and tip to head distance of K-wire were compared between immediate postoperative radiographs and radiographs at eight weeks. In addition, the effects by age, gender, initial angulation and comminution of the metacarpal neck were assessed. The average change of angulation was 0.12°, 5th metacarpal length was 1.49mm and tip to head distance of K-wire was 1.31mm. There was no significant difference in the change of angulation (p = 0.137). But, there were significant differences in the change of 5th metacarpal length and tip to head distance of K-wire ([Formula: see text]). The change of angulation was related to a comminution of the metacarpal neck and that of 5th metacarpal length was related to age and sex. The change of 5th metacarpal length and tip to head distance of K-wire can occur by an early mobilization in the antegrade IM fixation for neck fractures of the fifth metacarpal. However, we thought that an early active motion after surgery is important to increase the patients' satisfaction, even though careful selection of candidates is necessary.
Distance and Cable Length Measurement System
Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay
2009-01-01
A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169
Variability in the Length and Frequency of Steps of Sighted and Visually Impaired Walkers
ERIC Educational Resources Information Center
Mason, Sarah J.; Legge, Gordon E.; Kallie, Christopher S.
2005-01-01
The variability of the length and frequency of steps was measured in sighted and visually impaired walkers at three different paces. The variability was low, especially at the preferred pace, and similar for both groups. A model incorporating step counts and step frequency provides good estimates of the distance traveled. Applications to…
Vohra, V.; Niranjan, S. K.; Mishra, A. K.; Jamuna, V.; Chopra, A.; Sharma, Neelesh; Jeong, Dong Kee
2015-01-01
Phenotypic characterization and body biometric in 13 traits (height at withers, body length, chest girth, paunch girth, ear length, tail length, length of tail up to switch, face length, face width, horn length, circumference of horn at base, distances between pin bone and hip bone) were recorded in 233 adult Gojri buffaloes from Punjab and Himachal Pradesh states of India. Traits were analysed by using varimax rotated principal component analysis (PCA) with Kaiser Normalization to explain body conformation. PCA revealed four components which explained about 70.9% of the total variation. First component described the general body conformation and explained 31.5% of total variation. It was represented by significant positive high loading of height at wither, body length, heart girth, face length and face width. The communality ranged from 0.83 (hip bone distance) to 0.45 (horn length) and unique factors ranged from 0.16 to 0.55 for all these 13 different biometric traits. Present study suggests that first principal component can be used in the evaluation and comparison of body conformation in buffaloes and thus provides an opportunity to distinguish between early and late maturing to adult, based on a small group of biometric traits to explain body conformation in adult buffaloes. PMID:25656215
Crustal dynamics project session 4 validation and intercomparison experiments 1979-1980 report
NASA Technical Reports Server (NTRS)
Liebrecht, P.; Kolenkiewicz, R.; Ryan, J.; Hothem, L.
1983-01-01
As part of the Crustal Dynamics Project, an experiment was performed to verify the ability of Satellite Laser Ranging (SLR), Very Long Baseline interferometry (VLBI) and Doppler Satellite Positioning System (Doppler) techniques to estimate the baseline distances between several locations. The Goddard Space Flight Center (GSFC) lasers were in operation at all five sites available to them. The ten baselines involved were analyzed using monthly orbits and various methods of selecting data. The standard deviation of the monthly SLR baseline lengths was at the 7 cm level. The GSFC VLBI (Mark III) data was obtained during three separate experiments. November 1979 at Haystack and Owens Valley, and April and July 1980 at Haystack, Owens Valley, and Fort Davis. Repeatability of the VLBI in determining baseline lengths was calculated to be at the 2 cm level. Jet Propulsion Laboratory (JPL) VLBI (Mark II) data was acquired on the Owens Valley to Goldstone baseline on ten occasions between August 1979 and November 1980. The repeatability of these baseline length determinations was calculated to be at the 5 cm level. National Geodetic Survey (NGS) Doppler data was acquired at all five sites in January 1980. Repeatability of the Doppler determined baseline lengths results were calculated at approximately 30 cm. An intercomparison between baseline distances and associated parameters was made utilizing SLR, VLBI, and Doppler results on all available baselines. The VLBI and SLR length determinations were compared on four baselines with a resultant mean difference of -1 cm and a maximum difference of 12 cm. The SLR and Doppler length determinations were compared on ten baselines with a resultant mean difference of about 30 cm and a maximum difference of about 60 cm. The VLBI and Doppler lengths from seven baselines showed a resultant mean difference of about 30 cm and maximum difference of about 1 meter. The intercomparison of baseline orientation parameters were consistent with past analysis.
NASA Astrophysics Data System (ADS)
Simón-Moral, Andres; Santiago, Jose Luis; Krayenhoff, E. Scott; Martilli, Alberto
2014-06-01
A Reynolds-averaged Navier-Stokes model is used to investigate the evolution of the sectional drag coefficient and turbulent length scales with the layouts of aligned arrays of cubes. Results show that the sectional drag coefficient is determined by the non-dimensional streamwise distance (sheltering parameter), and the non-dimensional spanwise distance (channelling parameter) between obstacles. This is different than previous approaches that consider only plan area density . On the other hand, turbulent length scales behave similarly to the staggered case (e. g. they are function of only). Analytical formulae are proposed for the length scales and for the sectional drag coefficient as a function of sheltering and channelling parameters, and implemented in a column model. This approach demonstrates good skill in the prediction of vertical profiles of the spatially-averaged horizontal wind speed.
Persistence Characteristics of Wind-Tunnel Pressure Signatures From Two Similar Models
NASA Technical Reports Server (NTRS)
Mack, Robert J.
2004-01-01
Pressure signatures generated by two sonic-boom wind-tunnel models and measured at Mach 2 are presented, analyzed, and discussed. The two wind-tunnel models differed in length and span by a factor of fourteen, but were similar in wing-body planform shape. The geometry of the larger model had been low-boom tailored to generate a flat top ground pressure signature, and the nacelles-off pressure signatures from this model became more flattop in shape as the model-probe separation distances increased from 0.94 to 4.4 span lengths. The geometry of the smaller model had not been low-boom tailored, yet its measured pressure signatures had non-N-wave shapes that persisted as model-probe separation distances increased from 26.0 to 104.2 span lengths. Since the overall planforms of the two wind-tunnel models were so similar, it was concluded that the shape-persistence trends in the pressure signatures of the smaller, non-low-boom tailored model would also be present at very large distances in the pressure signatures of the larger, low-boom-tailored model.
Yang, Yao Ming; Jia, Ruo; Xun, Hui; Yang, Jie; Chen, Qiang; Zeng, Xiang Guang; Yang, Ming
2018-02-21
Simulium quinquestriatum Shiraki (Diptera: Simuliidae), a human-biting fly that is distributed widely across Asia, is a vector for multiple pathogens. However, the larval development of this species is poorly understood. In this study, we determined the number of instars in this pest using three batches of field-collected larvae from Guiyang, Guizhou, China. The postgenal length, head capsule width, mandibular phragma length, and body length of 773 individuals were measured, and k-means clustering was used for instar grouping. Four distance measures-Manhattan, Euclidean, Chebyshev, and Canberra-were determined. The reported instar numbers, ranging from 4 to 11, were set as initial cluster centers for k-means clustering. The Canberra distance yielded reliable instar grouping, which was consistent with the first instar, as characterized by egg bursters and prepupae with dark histoblasts. Females and males of the last cluster of larvae were identified using Feulgen-stained gonads. Morphometric differences between the two sexes were not significant. Validation was performed using the Brooks-Dyar and Crosby rules, revealing that the larval stage of S. quinquestriatum is composed of eight instars.
Hunting of roe deer and wild boar in Germany: Is non-lead ammunition suitable for hunting?
Gremse, Carl; Selhorst, Thomas; Bandick, Niels; Müller-Graf, Christine; Greiner, Matthias; Lahrssen-Wiederholt, Monika
2017-01-01
Background Non-lead hunting ammunition is an alternative to bullets that contain lead. The use of lead ammunition can result in severe contamination of game meat, thus posing a health risk to consumers. With any kind of ammunition for hunting, the terminal effectiveness of bullets is an animal welfare issue. Doubts about the effectiveness of non-lead bullets for a humane kill of game animals in hunting have been discussed. The length of the escape distance after the shot has been used previously as an indicator for bullet performance. Objective The object of this study was to determine how the bullet material (lead or non-lead) influences the observed escape distances. Methods 1,234 records of the shooting of roe deer (Capreolus capreolus) and 825 records of the shooting of wild boar (Sus scrofa) were evaluated. As the bullet material cannot be regarded as the sole cause of variability of escape distances, interactions of other potential influencing variables like shot placement, shooting distance, were analyzed using conditional regression trees and two-part hurdle models. Results The length of the escape distance is not influenced by the use of lead or non-lead ammunition with either roe deer or wild boar. With roe deer, the length of the escape distance is influenced significantly by the shot placement and the type of hunting. Increasing shooting distances increased the length of the escape distance. With wild boar, shot placement and the age of the animals were found to be a significant influencing factor on the length of the escape distance. Conclusions The length of the escape distance can be used as an indicator for adequate bullet effectiveness for humane killings of game animals in hunting.Non-lead bullets already exist which have an equally reliable killing effect as lead bullets. PMID:28926620
Application of two tests of multivariate discordancy to fisheries data sets
Stapanian, M.A.; Kocovsky, P.M.; Garner, F.C.
2008-01-01
The generalized (Mahalanobis) distance and multivariate kurtosis are two powerful tests of multivariate discordancies (outliers). Unlike the generalized distance test, the multivariate kurtosis test has not been applied as a test of discordancy to fisheries data heretofore. We applied both tests, along with published algorithms for identifying suspected causal variable(s) of discordant observations, to two fisheries data sets from Lake Erie: total length, mass, and age from 1,234 burbot, Lota lota; and 22 combinations of unique subsets of 10 morphometrics taken from 119 yellow perch, Perca flavescens. For the burbot data set, the generalized distance test identified six discordant observations and the multivariate kurtosis test identified 24 discordant observations. In contrast with the multivariate tests, the univariate generalized distance test identified no discordancies when applied separately to each variable. Removing discordancies had a substantial effect on length-versus-mass regression equations. For 500-mm burbot, the percent difference in estimated mass after removing discordancies in our study was greater than the percent difference in masses estimated for burbot of the same length in lakes that differed substantially in productivity. The number of discordant yellow perch detected ranged from 0 to 2 with the multivariate generalized distance test and from 6 to 11 with the multivariate kurtosis test. With the kurtosis test, 108 yellow perch (90.7%) were identified as discordant in zero to two combinations, and five (4.2%) were identified as discordant in either all or 21 of the 22 combinations. The relationship among the variables included in each combination determined which variables were identified as causal. The generalized distance test identified between zero and six discordancies when applied separately to each variable. Removing the discordancies found in at least one-half of the combinations (k=5) had a marked effect on a principal components analysis. In particular, the percent of the total variation explained by second and third principal components, which explain shape, increased by 52 and 44% respectively when the discordancies were removed. Multivariate applications of the tests have numerous ecological advantages over univariate applications, including improved management of fish stocks and interpretation of multivariate morphometric data. ?? 2007 Springer Science+Business Media B.V.
Mapping the Space of Genomic Signatures
Kari, Lila; Hill, Kathleen A.; Sayem, Abu S.; Karamichalis, Rallis; Bryans, Nathaniel; Davis, Katelyn; Dattani, Nikesh S.
2015-01-01
We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan, and the chimp), and that the sequence most different from it in this dataset belongs to a cucumber. PMID:26000734
Space Availability in Confined Sheep during Pregnancy, Effects in Movement Patterns and Use of Space
Averós, Xavier; Lorea, Areta; Beltrán de Heredia, Ignacia; Arranz, Josune; Ruiz, Roberto; Estevez, Inma
2014-01-01
Space availability is essential to grant the welfare of animals. To determine the effect of space availability on movement and space use in pregnant ewes (Ovis aries), 54 individuals were studied during the last 11 weeks of gestation. Three treatments were tested (1, 2, and 3 m2/ewe; 6 ewes/group). Ewes' positions were collected for 15 minutes using continuous scan samplings two days/week. Total and net distance, net/total distance ratio, maximum and minimum step length, movement activity, angular dispersion, nearest, furthest and mean neighbour distance, peripheral location ratio, and corrected peripheral location ratio were calculated. Restriction in space availability resulted in smaller total travelled distance, net to total distance ratio, maximum step length, and angular dispersion but higher movement activity at 1 m2/ewe as compared to 2 and 3 m2/ewe (P<0.01). On the other hand, nearest and furthest neighbour distances increased from 1 to 3 m2/ewe (P<0.001). Largest total distance, maximum and minimum step length, and movement activity, as well as lowest net/total distance ratio and angular dispersion were observed during the first weeks (P<0.05) while inter-individual distances increased through gestation. Results indicate that movement patterns and space use in ewes were clearly restricted by limitations of space availability to 1 m2/ewe. This reflected in shorter, more sinuous trajectories composed of shorter steps, lower inter-individual distances and higher movement activity potentially linked with higher restlessness levels. On the contrary, differences between 2 and 3 m2/ewe, for most variables indicate that increasing space availability from 2 to 3 m2/ewe would appear to have limited benefits, reflected mostly in a further increment in the inter-individual distances among group members. No major variations in spatial requirements were detected through gestation, except for slight increments in inter-individual distances and an initial adaptation period, with ewes being restless and highly motivated to explore their new environment. PMID:24733027
The semantic distance task: Quantifying semantic distance with semantic network path length.
Kenett, Yoed N; Levi, Effi; Anaki, David; Faust, Miriam
2017-09-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We propose a novel approach to computing semantic distance, based on network science methodology. Path length in a semantic network represents the amount of steps needed to traverse from 1 word in the network to the other. We examine whether path length can be used as a measure of semantic distance, by investigating how path length affect performance in a semantic relatedness judgment task and recall from memory. Our results show a differential effect on performance: Up to 4 steps separating between word-pairs, participants exhibit an increase in reaction time (RT) and decrease in the percentage of word-pairs judged as related. From 4 steps onward, participants exhibit a significant decrease in RT and the word-pairs are dominantly judged as unrelated. Furthermore, we show that as path length between word-pairs increases, success in free- and cued-recall decreases. Finally, we demonstrate how our measure outperforms computational methods measuring semantic distance (LSA and positive pointwise mutual information) in predicting participants RT and subjective judgments of semantic strength. Thus, we provide a computational alternative to computing semantic distance. Furthermore, this approach addresses key issues in cognitive theory, namely the breadth of the spreading activation process and the effect of semantic distance on memory retrieval. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Properties of a new small-world network with spatially biased random shortcuts
NASA Astrophysics Data System (ADS)
Matsuzawa, Ryo; Tanimoto, Jun; Fukuda, Eriko
2017-11-01
This paper introduces a small-world (SW) network with a power-law distance distribution that differs from conventional models in that it uses completely random shortcuts. By incorporating spatial constraints, we analyze the divergence of the proposed model from conventional models in terms of fundamental network properties such as clustering coefficient, average path length, and degree distribution. We find that when the spatial constraint more strongly prohibits a long shortcut, the clustering coefficient is improved and the average path length increases. We also analyze the spatial prisoner's dilemma (SPD) games played on our new SW network in order to understand its dynamical characteristics. Depending on the basis graph, i.e., whether it is a one-dimensional ring or a two-dimensional lattice, and the parameter controlling the prohibition of long-distance shortcuts, the emergent results can vastly differ.
Man, Jian-guo; Wang, Dong; Yu, Zhen-wen; Zhang, Yong-li; Shi, Yu
2013-08-01
Taking the high-yielding winter wheat variety Jimai 22 as test material, a field experiment was conducted in 2010-2012 to study the effects of irrigation with different length micro-sprinkling hoses on the soil water distribution in winter wheat growth period and the water consumption characteristics and grain yield of winter wheat. Three micro-sprinkling hose lengths were designed, i. e., 40 m (T40), 60 m (T60) and 80 m (T80). Under the micro-sprinkling irrigation at jointing and anthesis stages, the uniformity of the horizontal distribution of irrigation water in soil increased significantly with the decrease of hose length from 80 to 40 m. When irrigated at jointing stage, the water content of 0-200 cm soil layer in each space of wheat rows had no significant difference within the 0-40 m distanced from the border initial in treatments T40 and T60. When measured at the 38-40 m, 58-60 m, and 78-80 m distanced from the border initial in treatment T80 at jointing and anthesis stages, the water content in 0-200 cm soil layer had the same change pattern, i. e., decreased with the increasing distance from micro-sprinkling hose. The water consumption amounts in 40-60 cm soil layer from jointing to anthesis stages and in 20-80 cm soil layer from anthesis to maturing stages were higher in treatment T40 than in treatments T60 and T80. However, the soil water consumption amount, irrigation amount at anthesis stage, total irrigation amount, and total water consumption amount were significantly lower in treatment T40 than in treatments T60 and T80. The grain yield, yield water use efficiency increased with the hose length decreased from 80 to 40 m, but the flow decreased. Therefore, the effective irrigation area per unit time decreased with the same irrigation amounts. Considering the grain yield, water use efficiency, and the flow through micro-sprinkling hose, 40 and 60 m were considered to be the appropriate micro-sprinkling hose lengths under this experimental condition.
Effects of age and step length on joint kinetics during stepping task.
Bieryla, Kathleen A; Buffinton, Christine
2015-07-16
Following a balance perturbation, a stepping response is commonly used to regain support, and the distance of the recovery step can vary. To date, no other studies have examined joint kinetics in young and old adults during increasing step distances, when participants are required to bring their rear foot forward. Therefore, the purpose of this study was to examine age-related differences in joint kinetics with increasing step distance. Twenty young and 20 old adults completed the study. Participants completed a step starting from double support, at an initial distance equal to the individual's average step length. The distance was increased by 10% body height until an unsuccessful attempt. A one-way, repeated measures ANOVA was used to determine the effects of age on joint kinetics during the maximum step distance. A two-way, repeated measures, mixed model ANOVA was used to determine the effects of age, step distance, and their interaction on joint kinetics during the first three step distances for all participants. Young adults completed a significantly longer step than old adults. During the maximum step, in general, kinetic measures were greater in the young than in the old. As step distance increased, all but one kinetic measure increased for both young and old adults. This study has shown the ability to discriminate between young and old adults, and could potentially be used in the future to distinguish between fallers and non-fallers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Paschoal, L R P; Andrade, D P; Darrigran, G
2015-01-01
Corbicula fluminea is an invasive bivalve responsible for several environmental and financial problems around the globe. Despite the invasive potential of this species, it suffers certain restrictions in lentic environments due to natural phenomena that significantly affect its population structure (e.g. water column fluctuation and sunlight exposure). The present study addresses how temporal decline of the water level in a Neotropical reservoir and exposure to sunlight affect the population structure of C. fluminea. Samplings were carried out twice in the reservoir of Furnas Hydroelectric Power Station (HPS) (Minas Gerais, Brazil), in 2011 and 2012. Population density, spatial distribution and mean shell length of C. fluminea were estimated for each year after sampling in 51 quadrats (0.0625m2) placed on three transects at different distances along the reservoir margins (0, 10 and 20 m from a fixed-point). We observed a predominance of C. fluminea in both years, with a simultaneous gradual decrease in density and richness of native species in the sampling area. Significant differences in density of C. fluminea were registered at different distances from the margin, and are related to the temporal variability of physical conditions of the sediment and water in these environments. We also registered a trend toward an increase in the density and aggregation of C. fluminea as we moved away from the margin, due to the greater stability of these areas (>10 m). The mean shell length of C. fluminea showed significant difference between the distinct distances from the margin and during the years, as well as the interaction of these factors (Distances vs.Years). These results were associated with the reproductive and invasive capacity of this species. This study reveals that these temporal events (especially water column fluctuation) may cause alterations in density, spatial distribution and mean shell length of C. fluminea and the composition of the native malacofauna in Neotropical lentic environments.
Photoreactive “Nanorulers” Detect a Novel Conformation of Full length HDAC3-SMRT Complex in Solution
Abdelkarim, Hazem; Brunsteiner, Michael; Neelarapu, Raghupathi; Bai, He; Madriaga, Antonett; van Breemen, Richard B.; Blond, Sylvie Y.; Gaponenko, Vadim; Petukhov, Pavel A.
2013-01-01
Histone deacetylase 3 (HDAC3) is a promising epigenetic drug target for multiple therapeutic applications. Direct interaction between the Deacetylase Activating Domain of the silencing mediator for retinoid or thyroid hormone receptors (SMRT-DAD) is required for activation of enzymatic activity of HDAC3. The structure of this complex and the nature of interactions with HDAC inhibitors in solution are unknown. Using novel photoreactive HDAC probes – “nanorulers”, we determined the distance between the catalytic site of the full-length HDAC3 and SMRT-DAD in solution at physiologically relevant conditions and found it to be substantially different from that predicted by the X-ray model with a Δ379-428aa truncated HDAC3. Further experiments indicated that in solution this distance might change in response to chemical stimuli, while the enzymatic activity remained unaffected. These observations were further validated by Saturation Transfer Difference (STD) NMR experiments. We propose that the observed changes in the distance are an important part of the histone code that remains to be explored. Mapping direct interactions and distances between macromolecules with such “nanorulers” as a function of cellular events facilitates better understanding of basic biology and ways for its manipulation in cell and tissue specific manner. PMID:24010878
libFLASM: a software library for fixed-length approximate string matching.
Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad
2016-11-10
Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Kuhn, Neil S.
2006-01-01
A study was performed to determine a limiting separation distance for the extrapolation of pressure signatures from cruise altitude to the ground. The study was performed at two wind-tunnel facilities with two research low-boom wind-tunnel models designed to generate ground pressure signatures with "flattop" shapes. Data acquired at the first wind-tunnel facility showed that pressure signatures had not achieved the desired low-boom features for extrapolation purposes at separation distances of 2 to 5 span lengths. However, data acquired at the second wind-tunnel facility at separation distances of 5 to 20 span lengths indicated the "limiting extrapolation distance" had been achieved so pressure signatures could be extrapolated with existing codes to obtain credible predictions of ground overpressures.
Electrophoresis of semiflexible heteropolymers and the ``hydrodynamic Kuhn length''
NASA Astrophysics Data System (ADS)
Chubynsky, Mykyta V.; Slater, Gary W.
Semiflexible polymers, such as DNA, are rodlike for short lengths and coil-like for long lengths. For purely geometric properties, such as the end-to-end distance, the crossover between these two behaviors occurs when the polymer length is on the order of the Kuhn length. On the other hand, for the hydrodynamic friction coefficient it is easy to see by comparing the expressions for a rod and a coil that the crossover should occur at the polymer length, termed by us the hydrodynamic Kuhn length, which is larger than the ordinary Kuhn length by a logarithmic factor that can be quite significant. We show that for the problem of electrophoresis of a heteropolymer consisting of several blocks of (in general) different stiffnesses, both of these length scales can be important depending on the details of the problem.
Electronegativity effects and single covalent bond lengths of molecules in the gas phase.
Lang, Peter F; Smith, Barry C
2014-06-07
This paper discusses in detail the calculation of internuclear distances of heteronuclear single bond covalent molecules in the gaseous state. It reviews briefly the effect of electronegativity in covalent bond length. A set of single bond covalent radii and electronegativity values are proposed. Covalent bond lengths calculated by an adapted form of a simple expression (which calculated internuclear separation of different Group 1 and Group 2 crystalline salts to a remarkable degree of accuracy) show very good agreement with observed values. A small number of bond lengths with double bonds as well as bond lengths in the crystalline state are calculated using the same expression and when compared with observed values also give good agreement. This work shows that covalent radii are not additive and that radii in the crystalline state are different from those in the gaseous state. The results also show that electronegativity is a major influence on covalent bond lengths and the set of electronegativity scale and covalent radii proposed in this work can be used to calculate covalent bond lengths in different environments that have not yet been experimentally measured.
NASA Astrophysics Data System (ADS)
Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing
2018-05-01
Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.
Dominici, Nadia; Daprati, Elena; Nico, Daniele; Cappellini, Germana; Ivanenko, Yuri P; Lacquaniti, Francesco
2009-03-01
When walking, step length provides critical information on traveled distance along the ongoing path [corrected] Little is known on the role that knowledge about body dimensions plays within this process. Here we directly addressed this question by evaluating whether changes in body proportions interfere with computation of traveled distance for targets located outside the reaching space. We studied locomotion and distance estimation in an achondroplastic child (ACH, 11 yr) before and after surgical elongation of the shank segments of both lower limbs and in healthy adults walking on stilts, designed to mimic shank-segment elongation. Kinematic analysis of gait revealed that dynamic coupling of the thigh, shank, and foot segments changed substantially as a result of elongation. Step length remained unvaried, in spite of the significant increase in total limb length ( approximately 1.5-fold). These relatively shorter strides resulted from smaller oscillations of the shank segment, as would be predicted by proportional increments in limb size and not by asymmetrical segmental increment as in the present case (length of thighs was not modified). Distance estimation was measured by walking with eyes closed toward a memorized target. Before surgery, the behavior of ACH was comparable to that of typically developing participants. In contrast, following shank elongation, the ACH walked significantly shorter distances when aiming at the same targets. Comparable changes in limb kinematics, stride length, and estimation of traveled distance were found in adults wearing on stilts, suggesting that path integration errors in both cases were related to alterations in the intersegmental coordination of the walking limbs. The results are consistent with a dynamic locomotor body schema used for controlling step length and path estimation, based on inherent relationships between gait parameters and body proportions.
Students' Accuracy of Measurement Estimation: Context, Units, and Logical Thinking
ERIC Educational Resources Information Center
Jones, M. Gail; Gardner, Grant E.; Taylor, Amy R.; Forrester, Jennifer H.; Andre, Thomas
2012-01-01
This study examined students' accuracy of measurement estimation for linear distances, different units of measure, task context, and the relationship between accuracy estimation and logical thinking. Middle school students completed a series of tasks that included estimating the length of various objects in different contexts and completed a test…
Sluder, Greenfield; Nordberg, Joshua J
2013-01-01
This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.
On the development and global oscillations of cometary ionospheres
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, both the ionosphere's development as a comet approaches the sun and its response to sudden changes in solar wind conditions are investigated. Three different nuclear sizes (small, average, very large) and three different modes of energy addition to the atmosphere (adiabatic, isothermal, suprathermal) are considered. It is found that the crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. Two different scales are identified. It is noted that the ionosphere can also be characterized by the relative sizes of three different scale lengths: the neutral standoff distance from the nucleus, the ion standoff distance from the nucleus, and the nuclear distance at which the ions and the neutrals decouple collisionally.
Global positioning system measurements for crustal deformation: Precision and accuracy
Prescott, W.H.; Davis, J.L.; Svarc, J.L.
1989-01-01
Analysis of 27 repeated observations of Global Positioning System (GPS) position-difference vectors, up to 11 kilometers in length, indicates that the standard deviation of the measurements is 4 millimeters for the north component, 6 millimeters for the east component, and 10 to 20 millimeters for the vertical component. The uncertainty grows slowly with increasing vector length. At 225 kilometers, the standard deviation of the measurement is 6, 11, and 40 millimeters for the north, east, and up components, respectively. Measurements with GPS and Geodolite, an electromagnetic distance-measuring system, over distances of 10 to 40 kilometers agree within 0.2 part per million. Measurements with GPS and very long baseline interferometry of the 225-kilometer vector agree within 0.05 part per million.
NASA Astrophysics Data System (ADS)
Tenkès, Lucille-Marie; Hollerbach, Rainer; Kim, Eun-jin
2017-12-01
A probabilistic description is essential for understanding growth processes in non-stationary states. In this paper, we compute time-dependent probability density functions (PDFs) in order to investigate stochastic logistic and Gompertz models, which are two of the most popular growth models. We consider different types of short-correlated multiplicative and additive noise sources and compare the time-dependent PDFs in the two models, elucidating the effects of the additive and multiplicative noises on the form of PDFs. We demonstrate an interesting transition from a unimodal to a bimodal PDF as the multiplicative noise increases for a fixed value of the additive noise. A much weaker (leaky) attractor in the Gompertz model leads to a significant (singular) growth of the population of a very small size. We point out the limitation of using stationary PDFs, mean value and variance in understanding statistical properties of the growth in non-stationary states, highlighting the importance of time-dependent PDFs. We further compare these two models from the perspective of information change that occurs during the growth process. Specifically, we define an infinitesimal distance at any time by comparing two PDFs at times infinitesimally apart and sum these distances in time. The total distance along the trajectory quantifies the total number of different states that the system undergoes in time, and is called the information length. We show that the time-evolution of the two models become more similar when measured in units of the information length and point out the merit of using the information length in unifying and understanding the dynamic evolution of different growth processes.
Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
NASA Astrophysics Data System (ADS)
Graham, G. A.; Rae, I. J.; Owen, C. J.; Walsh, A. P.
2018-03-01
Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ∼1 au. Thus, we are able to obtain average strahl broadening in relation to electron energy and distance, while also taking into account the general effect of IMF topology and adiabatic focusing experienced by strahl. We find that average strahl width broadens with distance traveled along the IMF, which suggests that strahl width is related to the path length taken by the strahl from the Sun to 1 au. We also find that strahl pitch-angle width broadening per au along the IMF length increased with strahl energy, which suggests that the dominant strahl pitch-angle scattering mechanism likely has an inherent energy relation. Our pitch-angle broadening results provide a testable energy relation for the upcoming Parker Solar Probe and Solar Orbiter missions, which are both set to provide unprecedented new observations within 1 au.
Optimal focusing conditions of lenses using Gaussian beams
Franco, Juan Manuel; Cywiak, Moisés; Cywiak, David; ...
2016-04-02
By using the analytical equations of the propagation of Gaussian beams in which truncation exhibits negligible consequences, we describe a method that uses the value of the focal length of a focusing lens to classify its focusing performance. In this study, we show that for different distances between a laser and a focusing lens there are different planes where best focusing conditions can be obtained and we demonstrate how the value of the focal length impacts the lens focusing properties. To perform the classification we introduce the term delimiting focal length. As the value of the focal length used inmore » wave propagation theory is nominal and difficult to measure accurately, we describe an experimental approach to calculate its value matching our analytical description. Finally, we describe possible applications of the results for characterizing Gaussian sources, for measuring focal lengths and/or alternatively for characterizing piston-like movements.« less
Method and System for Determining Relative Displacement and Heading for Navigation
NASA Technical Reports Server (NTRS)
Sheikh, Suneel Ismail (Inventor); Pines, Darryll J. (Inventor); Conroy, Joseph Kim (Inventor); Spiridonov, Timofey N. (Inventor)
2015-01-01
A system and method for determining a location of a mobile object is provided. The system determines the location of the mobile object by determining distances between a plurality of sensors provided on a first and second movable parts of the mobile object. A stride length, heading, and separation distance between the first and second movable parts are computed based on the determined distances and the location of the mobile object is determined based on the computed stride length, heading, and separation distance.
Bouillon, Lucinda E; Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay
2012-12-01
Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single-limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Twenty men and 20 women who were recreationally active and healthy participated in the study. Two-dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side-step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed-model ANOVA, and ICCs with 95% confidence intervals were calculated. Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC(3,3) ranged from moderate to high (0.74 to 0.97) for the three tasks. Muscle activation among the eight muscles was similar between females and males during the lunge, side-step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus maximus and gluteus medius as compared to the trunk, hip flexors, or hamstring muscles. However these values were well below the recruitment levels necessary for strengthening in both genders. 4.
Wilhelm, Jacqueline; Eisel, Patricia; Wiesner, Jessica; Rachow, Megan; Hatteberg, Lindsay
2012-01-01
Purpose/Background: Researchers have observed differences in muscle activity patterns between males and females during functional exercises. The research methods employed have used various step heights and lunge distances to assess functional exercise making gender comparisons difficult. The purpose of this study was to examine core and lower extremity muscle activity between genders during single‐limb exercises using adjusted distances and step heights based on a percentage of the participant's height. Methods: Twenty men and 20 women who were recreationally active and healthy participated in the study. Two‐dimensional video and surface electromyography (SEMG) were used to assess performance during three exercise maneuvers (step down, forward lunge, and side‐step lunge). Eight muscles were assessed using SEMG (rectus abdominus, external oblique, erector spinae, rectus femoris, tensor fascia latae, gluteus medius, gluteus maximus, biceps femoris). Maximal voluntary isometric contractions (MVIC) were used for each muscle and expressed as %MVIC to normalize SEMG to account for body mass differences. Exercises were randomized and distances were normalized to the participant's lower limb length. Descriptive statistics, mixed‐model ANOVA, and ICCs with 95% confidence intervals were calculated. Results: Males were taller, heavier, and had longer leg length when compared to the females. No differences in %MVIC activity were found between genders by task across the eight muscles. For both males and females, the step down task resulted in higher %MVIC for gluteus maximus compared to lunge, (p=0.002). Step down exercise produced higher %MVIC for gluteus medius than lunge (p=0.002) and side step (p=0.006). ICC3,3 ranged from moderate to high (0.74 to 0.97) for the three tasks. Conclusions: Muscle activation among the eight muscles was similar between females and males during the lunge, side‐step, and step down tasks, with distances adjusted to leg length. Both males and females elicited higher muscle activity for gluteus maximus and gluteus medius as compared to the trunk, hip flexors, or hamstring muscles. However these values were well below the recruitment levels necessary for strengthening in both genders. Level of evidence: 4 PMID:23316423
Cho, Sung-Yong; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
This study investigated stress distribution in four different implant-abutment interface conditions in the internal tapered connection implant system. Four different implant diameters (3.5 mm, 4.0 mm, 4.5 mm, and 5.0 mm) and two abutment types (hexagonal and conical) were simulated. Four unique implant-abutment interface conditions were assumed based on wall thickness, mating surface length, distance to the vertical stop, and abutment shape. Axial and oblique loading was applied during abutment screw preload, and the Von Mises stresses were measured at the implant-abutment and abutment-screw interfaces. The implant-abutment interface stress decreased as the wall thickness increased. As the mating surface increased, the stress distribution trended downward, and when the distance to the implant vertical stop was 0 μm, the Von Mises stress was extremely high at the vertical stop. Despite their different shapes, the abutments showed similar stress distributions. However, the maximum Von Mises stress was higher in the conical connection than in the hexagonal connection, particularly at the contralateral side to loading. To decrease the stress distribution at the implant-abutment interface, the implant wall thickness, mating surface contact length, distance to the vertical stop, and abutment shape should be carefully considered.
Gagné, Olivier Charles
2018-01-01
Bond-length distributions are examined for three configurations of the H+ ion, 16 configurations of the group 14–16 non-metal ions and seven configurations of the group 17 ions bonded to oxygen, for 223 coordination polyhedra and 452 bond distances for the H+ ion, 5957 coordination polyhedra and 22 784 bond distances for the group 14–16 non-metal ions, and 248 coordination polyhedra and 1394 bond distances for the group 17 non-metal ions. H⋯O and O—H + H⋯O distances correlate with O⋯O distance (R 2 = 0.94 and 0.96): H⋯O = 1.273 × O⋯O – 1.717 Å; O—H + H⋯O = 1.068 × O⋯O – 0.170 Å. These equations may be used to locate the hydrogen atom more accurately in a structure refined by X-ray diffraction. For non-metal elements that occur with lone-pair electrons, the most observed state between the n versus n+2 oxidation state is that of highest oxidation state for period 3 cations, and lowest oxidation state for period 4 and 5 cations when bonded to O2−. Observed O—X—O bond angles indicate that the period 3 non-metal ions P3+, S4+, Cl3+ and Cl5+ are lone-pair seteroactive when bonded to O2−, even though they do not form secondary bonds. There is no strong correlation between the degree of lone-pair stereoactivity and coordination number when including secondary bonds. There is no correlation between lone-pair stereoactivity and bond-valence sum at the central cation. In synthetic compounds, PO4 polymerizes via one or two bridging oxygen atoms, but not by three. Partitioning our PO4 dataset shows that multi-modality in the distribution of bond lengths is caused by the different bond-valence constraints that arise for Obr = 0, 1 and 2. For strongly bonded cations, i.e. oxyanions, the most probable cause of mean bond length variation is the effect of structure type, i.e. stress induced by the inability of a structure to follow its a priori bond lengths. For ions with stereoactive lone-pair electrons, the most probable cause of variation is bond-length distortion.
Distance, Online and Campus Higher Education: Reflections on Learning Outcomes
ERIC Educational Resources Information Center
McPhee, Iain; Soderstrom, Tor
2012-01-01
Purpose: The purpose of this paper is to discuss performance in postgraduate education in Sweden and Scotland. Drawing on two cases, the paper considers three themes: differences in students' performance by study mode, differences in students' performance by length of study, and finally comparing performance by study mode between modules in…
Tang, Kujin; Lu, Yang Young; Sun, Fengzhu
2018-01-01
Horizontal gene transfer (HGT) plays an important role in the evolution of microbial organisms including bacteria. Alignment-free methods based on single genome compositional information have been used to detect HGT. Currently, Manhattan and Euclidean distances based on tetranucleotide frequencies are the most commonly used alignment-free dissimilarity measures to detect HGT. By testing on simulated bacterial sequences and real data sets with known horizontal transferred genomic regions, we found that more advanced alignment-free dissimilarity measures such as CVTree and [Formula: see text] that take into account the background Markov sequences can solve HGT detection problems with significantly improved performance. We also studied the influence of different factors such as evolutionary distance between host and donor sequences, size of sliding window, and host genome composition on the performances of alignment-free methods to detect HGT. Our study showed that alignment-free methods can predict HGT accurately when host and donor genomes are in different order levels. Among all methods, CVTree with word length of 3, [Formula: see text] with word length 3, Markov order 1 and [Formula: see text] with word length 4, Markov order 1 outperform others in terms of their highest F 1 -score and their robustness under the influence of different factors.
Sighting optics including an optical element having a first focal length and a second focal length
Crandall, David Lynn [Idaho Falls, ID
2011-08-01
One embodiment of sighting optics according to the teachings provided herein may include a front sight and a rear sight positioned in spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus, for a user, images of the front sight and the target.
Crandall, David Lynn
2011-08-16
Sighting optics include a front sight and a rear sight positioned in a spaced-apart relation. The rear sight includes an optical element having a first focal length and a second focal length. The first focal length is selected so that it is about equal to a distance separating the optical element and the front sight and the second focal length is selected so that it is about equal to a target distance. The optical element thus brings into simultaneous focus for a user images of the front sight and the target.
NASA Astrophysics Data System (ADS)
Morel, Eneas N.; Russo, Nélida A.; Torga, Jorge R.; Duchowicz, Ricardo
2016-01-01
We used an interferometric technique based on typical optical coherence tomography (OCT) schemes for measuring distances of industrial interest. The system employed as a light source a tunable erbium-doped fiber laser of ˜20-pm bandwidth with a tuning range between 1520 and 1570 nm. It has a sufficiently long coherence length to enable long depth range imaging. A set of fiber Bragg gratings was used as a self-calibration method, which has the advantage of being a passive system that requires no additional electronic devices. The proposed configuration and the coherence length of the laser enlarge the range of maximum distances that can be measured with the common OCT configuration, maintaining a good axial resolution. A measuring range slightly >17 cm was determined. The system performance was evaluated by studying the repeatability and axial resolution of the results when the same optical path difference was measured. Additionally, the thickness of a semitransparent medium was also measured.
Optical inverse-square displacement sensor
Howe, Robert D.; Kychakoff, George
1989-01-01
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R+.DELTA.R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as ##EQU1##
Asymmetry in Determinants of Running Speed During Curved Sprinting.
Ishimura, Kazuhiro; Sakurai, Shinji
2016-08-01
This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting.
Rilo, B; Fernández-Formoso, N; Mora, M J; Cadarso-Suárez, C; Santana, U
2009-08-01
This study was designed to characterize the distance of the contact glide in the closing masticatory stroke in healthy adult subjects, during chewing of three types of food (crustless bread, chewing gum and peanuts). Mandibular movements (masticatory movements and laterality movements with dental contact) were registered using a gnathograph (MK-6I Diagnostic System) on the right and left side during unilateral chewing of the three food types. Length of dental contact was measured in masticatory cycle, which is defined as where the terminal part of the chewing cycles could be superimposed on the pathways taken by the mandible during lateral excursions with occlusal contacts. The length of dental contact during mastication of chewing gum is 1.46 +/- 1 mm, during chewing of soft bread is 1.38 +/- 0.7 mm and during chewing of peanuts is 1.45 +/- 0.9 mm. There is no significant difference in the lengths of dental contact during mastication of three types of foods that enable direct tooth gliding.
CHRIS: Hazard Assessment Handbook
1977-12-12
3.10 Vectorial Addition of Sea and Wind Currents 50 B1 Flame Length for Gases Venting Through Holes 177 B2 Equivalent...determined are: • Flame length (flame height), • Safe distance for people (away from the flame) • Safe distance for people in fire-protective clothing (away...pencil so it can be erased) Determine the flame length from Figure B1, using the venting hole diameter and the curve corresponding to the specific
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2006-01-01
A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.
Jorapur, Vinod; Voudouris, Apostolos; Lucariello, Richard J
2005-07-01
We hypothesized that anterior mitral leaflet length (ALL) does not differ significantly between normal subjects and patients with functional mitral regurgitation (FMR) and hence may be used as a reference measurement to quantify annular dilatation and papillary muscle separation. We prospectively studied 50 controls, 15 patients with systolic left ventricular dysfunction (LVD) with significant FMR, and 15 patients with LVD without significant FMR. Significant MR was defined as an effective regurgitant orifice area > or = 0.2 cm2 as measured by the flow convergence method. Annular diameter, interpapillary distance, and ALL were measured, and the following ratios were derived: annular diameter indexed to ALL (ADI) and interpapillary distance indexed to ALL (IPDI). There was no significant difference in ALL among the three groups. The mean ADI was 1.26 times controls in patients with LVD without significant FMR compared to 1.33 times controls in patients with LVD with significant FMR (P = 0.06, no significant difference between groups). The mean IPDI was 1.42 times controls in patients with LVD without significant FMR compared to 2.1 times controls in patients with LVD with significant FMR (P < 0.0001, significant difference between groups). There was no significant difference in ALL between controls and patients with LVD. ALL can be used as a reference measurement to quantify annular dilatation and papillary muscle separation in patients with FMR. Interpapillary distance but not annular diameter indexed to ALL correlates with severity of FMR.
Perception of Saudi dentists and lay people to altered smile esthetics.
Talic, Nabeel; Alomar, Samar; Almaidhan, Asma
2013-01-01
To evaluate and compare the perceptions of Saudi dentists and lay people to altered smile features. Thirty-six digital smile photographs with altered features were used. Altered features included the following: crown length, width, gingival level of the lateral incisors, gingival display, midline diastema, and upper midline shift. The photographs were presented to a sample of 30 dentists and 30 lay people with equal gender distribution. Each participant rated each picture with a visual analogue scale, which ranged from 0 (very unattractive) to 100 (very attractive). Dentists were more critical than lay people when evaluating symmetrical crown length discrepancies. Compared to lay people, Saudi dentists gave lower ratings to a crown length discrepancy of >2 mm (P < 0.001), crown width discrepancy of ⩾2 mm (P < 0.05), change in gingiva to lip distance of ⩾2 mm (P < 0.01), and midline deviation of >1 mm (P < 0.01). There was no significant difference between dentists and lay people towards alterations in the gingival level of the lateral incisors or towards a space between the central incisors. No significant sex difference was seen across the groups. In this sample, Saudi dentists gave significantly lower attractiveness scores to crown length and crown width discrepancies, midline deviations, and changes in gingiva to lip distance compared to Saudi lay people.
NASA Astrophysics Data System (ADS)
Alagirisamy, Pasupathy S.; Jeronimidis, George; Le Moàl, Valerie
2009-08-01
Viscous coupling between filiform hair sensors of insects and arthropods has gained considerable interest recently. Study of viscous coupling between hairs at micro scale with current technologies is proving difficult and hence the hair system has been physically scaled up by a factor of 100. For instance, a typical filiform hair of 10 μm diameter and 1000 μm length has been physically scaled up to 1 mm in diameter and 100mm in length. At the base, a rotational spring with a bonded strain gauge provides the restoring force and measures the angle of deflection of the model hair. These model hairs were used in a glycerol-filled aquarium where the velocity of flow and the fluid properties were determined by imposing the Reynolds numbers compatible with biological system. Experiments have been conducted by varying the separation distance and the relative position between the moveable model hairs, of different lengths and between the movable and rigid hairs of different lengths for the steady velocity flow with Reynolds numbers of 0.02 and 0.05. In this study, the viscous coupling between hairs has been characterised. The effect of the distance from the physical boundaries, such as tank walls has also been quantified (wall effect). The purpose of this investigation is to provide relevant information for the design of MEMS systems mimicking the cricket's hair array.
NASA Astrophysics Data System (ADS)
Zeeshan, M.; Duggal, R.; Tated, M. K.; Singh, M.
2018-02-01
Heat exchangers are widely used in various energy-recovery applications. However, for specific applications where metallic tubes are subjected to various drawbacks i.e. cost, weight, corrosion etc. polymer materials are promising alternatives. In present study, various conventional as well as promising alternatives materials are chosen for investigation computationally. Experimentally, bi-annulus heat exchanger configuration is investigated for metallic materials. The simulations carried out conclude that the dimensionless temperature parameter for Cross-linked polypropylethylene (PEX) is greater than other polymers. It increases with increasing axial length of tube. The value for dimensionless temperature is higher for copper which is used as conventional tube material. Among different polymers highest temperature is observed for PEX followed by Low density polypropylene (LDPE), Polypropylene (PP) and Polyvinylidene fluoride (PVDF). For axial length up to 70mm approx. the temperature rises for PEX, LDPE is 28.3% and 26.4% respectively. However, temperature variation is same for PP and PVDF for same axial distance. This temperature variation is increased to 72.4%, 67.2%, 58.62% and 56.89% for PEX, LDPE, PP and PVDF respectively as axial distance variation reaches the end of pipe. The inner annulus temperature for PEX material at 10% length of tube is 28.3% of temperature achieved in copper tube which increases to 72.4% for full length of tube.
A new method for photon transport in Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Sato, T.; Ogawa, K.
1999-12-01
Monte Carlo methods are used to evaluate data methods such as scatter and attenuation compensation in single photon emission CT (SPECT), treatment planning in radiation therapy, and in many industrial applications. In Monte Carlo simulation, photon transport requires calculating the distance from the location of the emitted photon to the nearest boundary of each uniform attenuating medium along its path of travel, and comparing this distance with the length of its path generated at emission. Here, the authors propose a new method that omits the calculation of the location of the exit point of the photon from each voxel and of the distance between the exit point and the original position. The method only checks the medium of each voxel along the photon's path. If the medium differs from that in the voxel from which the photon was emitted, the authors calculate the location of the entry point in the voxel, and the length of the path is compared with the mean free path length generated by a random number. Simulations using the MCAT phantom show that the ratios of the calculation time were 1.0 for the voxel-based method, and 0.51 for the proposed method with a 256/spl times/256/spl times/256 matrix image, thereby confirming the effectiveness of the algorithm.
A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh
Howlader, Mohammad Sajid Ali; Nair, Abhilash; Gopalan, Sujith V.; Merilä, Juha
2015-01-01
A new species of Microhyla frog from the Nilphamari district of Bangladesh is described and compared with its morphologically similar and geographically proximate congeners. Molecular phylogeny derived from mitochondrial DNA sequences revealed that although the new species – designated here as Microhyla nilphamariensis sp. nov. – forms a clade with M. ornate, it is highly divergent from M. ornata and all of its congeners, with 5.7 – 13.2% sequence divergence at the 16S rRNA gene. The new species can be identified phenotypically on the basis of a set of diagnostic (both qualitative and quantitative) characters as follows: head length is 77% of head width, distance from front of eyes to the nostril is roughly six times greater than nostril–snout length, internarial distance is roughly five times greater than nostril–snout length, interorbital distance is two times greater than internarial distance, and distance from back of mandible to back of the eye is 15% of head length. Furthermore, inner metacarpal tubercle is small and ovoid-shaped, whereas outer metacarpal tubercle is very small and rounded. Toes have rudimentary webbing, digital discs are absent, inner metatarsal tubercle is small and round, outer metatarsal tubercle is ovoid-shaped, minute, and indistinct. PMID:25806804
Variation among Populations of Belonolaimus longicaudatus.
Robbins, R T; Hirschmann, H
1974-04-01
Three North Carolina populations of Belonolairnus longicaudatus differed significantly from three Georgia populations in stylet measurements, the c ratio, the distance of the excretory pore from the anterior end for both sexes; the a ratio for females only; and the total body length, tail length, and spicule length for males only. The Georgia nematodes were stouter, and the females possessed sclerotized vaginal pieces. The distal portion of the spicules of North Carolina males had an indentation and hump lacking in those of the Georgia males. The haploid number of chromosomes was eight for males from all populations of B. longicaudatus and a North Carolina population of B. maritimus. Interpopulation matings of the Tarboro, N.C. and Tifton, Ga. populations indicated that the offspring produced were infertile. Morphological differences and reproductive isolation suggest that the North Carolina and the Georgia populations belong to different species.
Optical inverse-square displacement sensor
Howe, R.D.; Kychakoff, G.
1989-09-12
This invention comprises an optical displacement sensor that uses the inverse-square attenuation of light reflected from a diffused surface to calculate the distance from the sensor to the reflecting surface. Light emerging from an optical fiber or the like is directed onto the surface whose distance is to be measured. The intensity I of reflected light is angle dependent, but within a sufficiently small solid angle it falls off as the inverse square of the distance from the surface. At least a pair of optical detectors are mounted to detect the reflected light within the small solid angle, their ends being at different distances R and R + [Delta]R from the surface. The distance R can then be found in terms of the ratio of the intensity measurements and the separation length as given in an equation. 10 figs.
40 CFR 146.6 - Area of review.
Code of Federal Regulations, 2012 CFR
2012-07-01
... lateral distance in which the pressures in the injection zone may cause the migration of the injection and... is the lateral distance from the perimeter of the project area, in which the pressures in the... (length) k=Hydraulic conductivity of the injection zone (length/time) H=Thickness of the injection zone...
Quantum communication beyond the localization length in disordered spin chains.
Allcock, Jonathan; Linden, Noah
2009-03-20
We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.
Cunningham, Daniel J; Shearer, David A; Carter, Neil; Drawer, Scott; Pollard, Ben; Bennett, Mark; Eager, Robin; Cook, Christian J; Farrell, John; Russell, Mark; Kilduff, Liam P
2018-01-01
The assessment of competitive movement demands in team sports has traditionally relied upon global positioning system (GPS) analyses presented as fixed-time epochs (e.g., 5-40 min). More recently, presenting game data as a rolling average has become prevalent due to concerns over a loss of sampling resolution associated with the windowing of data over fixed periods. Accordingly, this study compared rolling average (ROLL) and fixed-time (FIXED) epochs for quantifying the peak movement demands of international rugby union match-play as a function of playing position. Elite players from three different squads (n = 119) were monitored using 10 Hz GPS during 36 matches played in the 2014-2017 seasons. Players categorised broadly as forwards and backs, and then by positional sub-group (FR: front row, SR: second row, BR: back row, HB: half back, MF: midfield, B3: back three) were monitored during match-play for peak values of high-speed running (>5 m·s-1; HSR) and relative distance covered (m·min-1) over 60-300 s using two types of sample-epoch (ROLL, FIXED). Irrespective of the method used, as the epoch length increased, values for the intensity of running actions decreased (e.g., For the backs using the ROLL method, distance covered decreased from 177.4 ± 20.6 m·min-1 in the 60 s epoch to 107.5 ± 13.3 m·min-1 for the 300 s epoch). For the team as a whole, and irrespective of position, estimates of fixed effects indicated significant between-method differences across all time-points for both relative distance covered and HSR. Movement demands were underestimated consistently by FIXED versus ROLL with differences being most pronounced using 60 s epochs (95% CI HSR: -6.05 to -4.70 m·min-1, 95% CI distance: -18.45 to -16.43 m·min-1). For all HSR time epochs except one, all backs groups increased more (p < 0.01) from FIXED to ROLL than the forward groups. Linear mixed modelling of ROLL data highlighted that for HSR (except 60 s epoch), SR was the only group not significantly different to FR. For relative distance covered all other position groups were greater than the FR (p < 0.05). The FIXED method underestimated both relative distance (~11%) and HSR values (up to ~20%) compared to the ROLL method. These differences were exaggerated for the HSR variable in the backs position who covered the greatest HSR distance; highlighting important consideration for those implementing the FIXED method of analysis. The data provides coaches with a worst-case scenario reference on the running demands required for periods of 60-300 s in length. This information offers novel insight into game demands and can be used to inform the design of training games to increase specificity of preparation for the most demanding phases of matches.
Basnet, Bishal Babu; Parajuli, Prakash Kumar; Singh, Raj Kumar; Suwal, Pramita; Shrestha, Pragya; Baral, Dharanidhar
2015-01-01
Establishment of proper occlusal vertical dimension (OVD) is one of the important tasks for successful prosthodontic therapy. An ideal method for determining OVD in terms of cost, time, and instrument requirements has been sought in prosthodontics by various investigators. However, no such single method has been formulated. In the current anthropometric study, the relationship of the length of the thumb to the OVD was tested in two ethnic groups of Nepal, Aryans, and Mongoloids. The result of this study can be useful in determining proper OVD in edentulous patients. The primary aim of the present study was to evaluate the correlation between the length of the thumb and OVD in Aryan and Mongoloid ethnic groups. The secondary aim was to compare the correlation between OVD and other anatomic measurements (eye-ear distance and pupil-to-rima oris distance) in these ethnicities. The OVD, thumb length, eye-ear distance and distance between pupil of eye and rima oris were measured in a total of 500 adult dentulous volunteers. The correlation between OVD and thumb length as well as other anatomic measurements was checked with Pearson's product moment correlation coefficient. Linear regression analysis was performed to determine the relationship of OVD to the length of the thumb. The thumb length was significantly (P≤0.05) correlated with strong and positive values (Pearson's coefficient =0.874 in the whole population, 0.826 in Aryans, and 0.944 in Mongoloids). Regression analysis showed that thumb length was significantly related to OVD in both ethnic groups. Within the limitations of the present study, the result implies that thumb length can be used as an adjunct for establishing OVD in the edentulous patients.
A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces
Chen, Yan; O’Donoghue, Meghan B.; Huang, Yu-Fen; Kang, Huaizhi; Phillips, Joseph A.; Chen, Xiaolan; Estevez, M.-Carmen; Tan, Weihong
2010-01-01
Measuring distances at molecular length scales in living systems is a significant challenge. Methods like FRET have limitations due to short detection distances and strict orientations. Recently, surface energy transfer (SET) has been used in bulk solutions; however, it cannot be applied to living systems. Here, we have developed an SET nanoruler, using aptamer-gold-nanoparticle conjugates with different diameters, to monitor the distance between binding sites of a receptor on living cells. The nanoruler can measure separation distances well beyond the detection limit of FRET. Thus, for the first time, we have developed an effective SET nanoruler for live cells with long distance, easy construction, fast detection and low background. This is also the first time that the distance between the aptamer and antibody binding sites in the membrane protein PTK7 was measured accurately. The SET nanoruler represents the next leap forward to monitor structural components within living cell membranes. PMID:21038856
Growth-Associated Changes in the Periodontal Bone and Molar Teeth of Male Rats
García, María F; Moreno, Hilda; Rigalli, Alfredo; Puche, Rodolfo C
2009-01-01
Here we report quantitative data associating periodontal bone variables of young conventional rats with the growth process. The hemimandibles of male rats (IIM/Fm stock, 2 to 15 wk of age.) were excised and submitted to conventional morphologic, radiologic, and histologic evaluation. The length, area, or X-ray absorbance of various regions or structures was measured on digital images of radiographs by using an image-analysis program. The sum of periodontal bone areas undergoing resorption (interproximal + intraradicular) increased until 9 or 10 wk of age and decreased thereafter. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The mineral density of resorption areas in alveolar bone fitted sinusoidal kinetics, indicative of the ‘instability’ of the tissue due to its high metabolic activity. Mineral accretion rates and mineral density asymptotes were not significantly different among molars. The proportion of root length within alveolar bone exhibited a biphasic curve (minimum at 5 wk of age), due to differences in the growth rates of variables involved in its calculation (distance between the cementoenamel junction to the apex and height of the resorption areas). The distance between the cementoenamel junction and alveolar bone crest over time fitted a sigmoidal function with a point of inflection that did not differ significantly from that of body or mandible dry weight. In summary, the growth process appears to affect periodontal bone support and the distance between the cementoenamel junction and alveolar bone crest in male rats. PMID:19807966
Anaerobic work calculated in cycling time trials of different length.
Mulder, Roy C; Noordhof, Dionne A; Malterer, Katherine R; Foster, Carl; de Koning, Jos J
2015-03-01
Previous research showed that gross efficiency (GE) declines during exercise and therefore influences the expenditure of anaerobic and aerobic resources. To calculate the anaerobic work produced during cycling time trials of different length, with and without a GE correction. Anaerobic work was calculated in 18 trained competitive cyclists during 4 time trials (500, 1000, 2000, and 4000-m). Two additional time trials (1000 and 4000 m) that were stopped at 50% of the corresponding "full" time trial were performed to study the rate of the decline in GE. Correcting for a declining GE during time-trial exercise resulted in a significant (P<.001) increase in anaerobically attributable work of 30%, with a 95% confidence interval of [25%, 36%]. A significant interaction effect between calculation method (constant GE, declining GE) and distance (500, 1000, 2000, 4000 m) was found (P<.001). Further analysis revealed that the constant-GE calculation method was different from the declining method for all distances and that anaerobic work calculated assuming a constant GE did not result in equal values for anaerobic work calculated over different time-trial distances (P<.001). However, correcting for a declining GE resulted in a constant value for anaerobically attributable work (P=.18). Anaerobic work calculated during short time trials (<4000 m) with a correction for a declining GE is increased by 30% [25%, 36%] and may represent anaerobic energy contributions during high-intensity exercise better than calculating anaerobic work assuming a constant GE.
Bilateral Symmetry of Distortions of Tactile Size Perception.
Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem
2015-01-01
The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception. © The Author(s) 2015.
Localized surface plasmon resonance of nanotriangle dimers at different relative positions
NASA Astrophysics Data System (ADS)
Ren, Yatao; Qi, Hong; Chen, Qin; Wang, Shenling; Ruan, Liming
2017-09-01
The investigation of nanoparticle's optical properties is crucial for their biological and therapeutic applications. In the present work, a promising type of gold nanoparticle, the triangular prism which was reported to have multipolar surface plasmon peaks, was studied. The Plasmon ruler effect of nanotriangle dimers was observed and investigated for the first time. Well-defined trends of the extinction spectra maxima, which have a linear correlation with the triangle edge length, for lower order extinction corresponding to in-plane mode, were observed. On this basis, the optical property of nanotriangle dimers with different arrangements, including two nanotriangles aligned side-by-side, bottom-to-bottom, and in line, were studied. For the side-by-side arrangement, an additional peak was generated on the red shift side of the peak corresponding to dipole mode. When the distance between two prisms was scaled by the triangular side length, the relative plasmon shift can be approximated as an exponential function of the relative offset distance. Moreover, for dimers with nanotriangles arranged in line, there was a global blue shift of the extinction spectra with the approaching of two particles, including the higher order mode extinction. An interesting phenomenon was found for dimers with two nanotriangles aligned bottom-to-bottom. The resonance band split into two bands with the decreasing of the offset distance.
Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.
Hecht, Martin; Harting, Jens; Herrmann, Hans J
2007-05-01
In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If interparticle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.
Verma, Deepak; Sankhyan, Varun; Katoch, Sanjeet; Thakur, Yash Pal
2015-12-01
In the present study, biometric traits (body length [BL], heart girth [HG], paunch girth (PG), forelimb length (FLL), hind limb length (HLL), face length, forehead width, forehead length, height at hump, hump length (HL), hook to hook distance, pin to pin distance, tail length (TL), TL up to switch, horn length, horn circumference, and ear length were studied in 218 adult hill cattle of Himachal Pradesh for phenotypic characterization. Morphological and biometrical observations were recorded on 218 hill cattle randomly selected from different districts within the breeding tract. Multivariate statistics and principal component analysis are used to account for the maximum portion of variation present in the original set of variables with a minimum number of composite variables through Statistical software, SAS 9.2. Five components were extracted which accounted for 65.9% of variance. The first component explained general body confirmation and explained 34.7% variation. It was represented by significant loading for BL, HG, PG, FLL, and HLL. Communality estimate ranged from 0.41 (HL) to 0.88 (TL). Second, third, fourth, and fifth component had a high loading for tail characteristics, horn characteristics, facial biometrics, and rear body, respectively. The result of component analysis of biometric traits suggested that indigenous hill cattle of Himachal Pradesh are small and compact size cattle with a medium hump, horizontally placed short ears, and a long tail. The study also revealed that factors extracted from the present investigation could be used in breeding programs with sufficient reduction in the number of biometric traits to be recorded to explain the body confirmation.
Alberta, H B; Takayama, T; Smits, T C; Wendorff, B B; Cambria, R P; Farber, M A; Jordan, W D; Patel, V; Azizzadeh, A; Rovin, J D; Matsumura, J S
2015-12-01
To assess aortic arch morphology and aortic length in patients with dissection, traumatic injury, and aneurysm undergoing TEVAR, and to identify characteristics specific to different pathologies. This was a retrospective analysis of the aortic arch morphology and aortic length of dissection, traumatic injury, and aneurysmal patients. Computed tomography imaging was evaluated of 210 patients (49 dissection, 99 traumatic injury, 62 aneurysm) enrolled in three trials that received the conformable GORE TAG thoracic endoprosthesis. The mean age of trauma patients was 43 ± 19.6 years, 57 ± 11.7 years for dissection and 72 ± 9.6 years for aneurysm patients. A standardized protocol was used to measure aortic arch diameter, length, and take-off angle and clockface orientation of branch vessels. Differences in arch anatomy and length were assessed using ANOVA and independent t tests. Of the 210 arches evaluated, 22% had arch vessel common trunk configurations. The aortic diameter and the distance from the left main coronary (LMC) to the left common carotid (LCC) were greater in dissection patients than in trauma or aneurysm patients (p < .001). Aortic diameter in aneurysm patients was greater compared with trauma patients (p < .05). The distances from the branch vessels to the celiac artery (CA) were greater in dissection and aneurysm patients than in trauma patients (p < .001). The take-off angle of the innominate (I), LCCA, and left subclavian (LS) were greater, between 19% and 36%, in trauma patients than in dissection and aneurysm patients (p < .001). Clockface orientation of the arch vessels varies between pathologies. Arch anatomy has significant morphologic differences when comparing aortic pathologies. Describing these differences in a large sample of patients is beneficial for device designs and patient selection. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikolaev, V. S.; Timofeev, A. V.
2018-01-01
It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.
NASA Astrophysics Data System (ADS)
Li, Xiang
2016-10-01
Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.
[Research Award providing funds for a tracking video camera
NASA Technical Reports Server (NTRS)
Collett, Thomas
2000-01-01
The award provided funds for a tracking video camera. The camera has been installed and the system calibrated. It has enabled us to follow in real time the tracks of individual wood ants (Formica rufa) within a 3m square arena as they navigate singly in-doors guided by visual cues. To date we have been using the system on two projects. The first is an analysis of the navigational strategies that ants use when guided by an extended landmark (a low wall) to a feeding site. After a brief training period, ants are able to keep a defined distance and angle from the wall, using their memory of the wall's height on the retina as a controlling parameter. By training with walls of one height and length and testing with walls of different heights and lengths, we can show that ants adjust their distance from the wall so as to keep the wall at the height that they learned during training. Thus, their distance from the base of a tall wall is further than it is from the training wall, and the distance is shorter when the wall is low. The stopping point of the trajectory is defined precisely by the angle that the far end of the wall makes with the trajectory. Thus, ants walk further if the wall is extended in length and not so far if the wall is shortened. These experiments represent the first case in which the controlling parameters of an extended trajectory can be defined with some certainty. It raises many questions for future research that we are now pursuing.
Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence
Schuler, Benjamin; Lipman, Everett A.; Steinbach, Peter J.; Kumke, Michael; Eaton, William A.
2005-01-01
To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. PMID:15699337
Hössl, Bernhard; Böhm, Helmut J; Rammerstorfer, Franz G; Barth, Friedrich G
2007-04-01
Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l/slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, Dc, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift lambda, and difference in slit length Deltal between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S=0.03 l) the longitudinal shift lambda substantially influences slit compression. A change of lambda from 0 to 0.85 l causes changes of up to 420% in Dc. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.
Effects of obesity on rehabilitation outcomes after orthopedic trauma.
Vincent, Heather K; Seay, Amanda N; Vincent, Kevin R; Atchison, James W; Sadasivan, Kalia
2012-12-01
This study examined whether differences existed in inpatient rehabilitation outcomes and therapy participation in nonobese and obese patients with orthopedic trauma. This was a retrospective study of 294 consecutive patients admitted to an inpatient rehabilitation hospital. Main outcomes included participation in therapy sessions, Functional Independence Measure (FIM) ratings, walking distance and stair climb, length of stay, FIM efficiency (FIM score gain/length of stay), and discharge to home. Data were stratified by patient body mass index values (nonobese, <30 kg/m; or obese, ≥30 kg/m). There were no differences in therapy participation or length of stay between groups. Both total and motor FIM ratings at discharge were lower in obese patients compared with nonobese patients (P < 0.05). FIM efficiency was significantly lower in the obese than in the nonobese group (2.6 ± 1.5 vs. 3.1 ± 1.5 points gained per day; P = 0.05). Walking distance and stair climb ability were similar between groups by discharge. Even morbidly obese patients attained some improvement with independence in walking. Obese patients make significant functional improvement during rehabilitation, but at a lesser magnitude and rate as their nonobese counterparts. Even with morbid obesity, small but important functional gains can occur during rehabilitation for orthopedic trauma.
Distance-based microfluidic quantitative detection methods for point-of-care testing.
Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James
2016-04-07
Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.
Naser, Asieh Zamani; Mehr, Bahar Behdad
2013-01-01
Cross- sectional tomograms have been used for optimal pre-operative planning of dental implant placement. The aim of the present study was to assess the accuracy of Cone Beam Computed Tomography (CBCT) measurements of specific distances around the mandibular canal by comparing them to those obtained from Multi-Slice Computed Tomography (MSCT) images. Ten hemi-mandible specimens were examined using CBCT and MSCT. Before imaging, wires were placed at 7 locations between the anterior margin of the third molar and the anterior margin of the second premolar as reference points. Following distances were measured by two observers on each cross-sectional CBCT and MSCT image: Mandibular Width (W), Length (L), Upper Distance (UD), Lower Distance (LD), Buccal Distance (BD), and Lingual Distance (LID). The obtained data were evaluated using SPSS software, applying paired t-test and intra-class correlation coefficient (ICC). There was a significant difference between the values obtained by MSCT and CBCT measurement for all areas such as H, W, UD, LD, BD, and LID, (P < 0.001), with a difference less than 1 mm. The ICC for all distances by both techniques, measured by a single observer with a one week interval and between 2 observers was 99% and 98%, respectively. Comparing the obtained data of both techniques indicates that the difference between two techniques is 2.17% relative to MSCT. The results of this study showed that there is significant difference between measurements obtained by CBCT and MSCT. However, the difference is not clinically significant.
Distance and direction, but not light cues, support response reversal learning.
Wright, S L; Martin, G M; Thorpe, C M; Haley, K; Skinner, D M
2018-03-05
Across three experiments, we examined the cuing properties of metric (distance and direction) and nonmetric (lighting) cues in different tasks. In Experiment 1, rats were trained on a response problem in a T-maze, followed by four reversals. Rats that experienced a change in maze orientation (Direction group) or a change in the length of the start arm (Distance group) across reversals showed facilitation of reversal learning relative to a group that experienced changes in room lighting across reversals. In Experiment 2, rats learned a discrimination task more readily when distance or direction cues were used than when light cues were used as the discriminative stimuli. In Experiment 3, performance on a go/no-go task was equivalent using both direction and lighting cues. The successful use of both metric and nonmetric cues in the go/no-go task indicates that rats are sensitive to both types of cues and that the usefulness of different cues is dependent on the nature of the task.
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan
2017-01-01
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750
[Novel Device for Creating Multiple Artificial Chordae Loops in Mitral Valve Repair].
Shimamura, Yoshiei; Maisawa, Kazuma
2017-08-01
A novel device to create multiple artificial chordae loops for mitral repair is developed. The device consists of a circular metal base with a removable central rod on one end, which can easily be attached or removed by screwing into a hole located on the base, and 51 fixed rods placed radially around the central rod at distances of 10~60 mm from the central rod. A needle with CV-4 e-polytetrafluoroethylene suture is passed through a pledget, and the suture is looped from the central rod around the fixed rod located at the desired loop length. The needle is then passed back through the pledget. The suture is tied over the pledget, bringing it in contact with the central rod. When multiple loops of various lengths are required, different fixed rods located at distances corresponding to the required loop lengths are used. Following creation of the necessary loops, the central rod is unscrewed, and the loops are released from the device. Construction of artificial chordae with this device is quick, reliable, reproducible, and increases the technical possibilities for mitral valve repair.
Ndumu, Deo B; Baumung, Roswitha; Hanotte, Olivier; Wurzinger, Maria; Okeyo, Mwai A; Jianlin, Han; Kibogo, Harrison; Sölkner, Johann
2008-01-01
The study investigated the population structure, diversity and differentiation of almost all of the ecotypes representing the African Ankole Longhorn cattle breed on the basis of morphometric (shape and size), genotypic and spatial distance data. Twentyone morphometric measurements were used to describe the morphology of 439 individuals from 11 sub-populations located in five countries around the Great Lakes region of central and eastern Africa. Additionally, 472 individuals were genotyped using 15 DNA microsatellites. Femoral length, horn length, horn circumference, rump height, body length and fore-limb circumference showed the largest differences between regions. An overall FST index indicated that 2.7% of the total genetic variation was present among sub-populations. The least differentiation was observed between the two sub-populations of Mbarara south and Luwero in Uganda, while the highest level of differentiation was observed between the Mugamba in Burundi and Malagarasi in Tanzania. An estimated membership of four for the inferred clusters from a model-based Bayesian approach was obtained. Both analyses on distance-based and model-based methods consistently isolated the Mugamba sub-population in Burundi from the others.
Kinematic Analysis of Line-Out Throwing in Elite International Rugby Union
Sayers, Mark G.L.
2011-01-01
The rugby union line-out is a key aspect of game play and involves players from both teams contesting for the ball after it has been thrown in from the side line. Successful lines-out throws require the ball to be delivered accurately to the hands of a jumping and/or lifted team mate (approximately 3-3.5 m off the ground) over distances of between 5- 18 m. Previous research has suggested considerable inter and intra-individual differences in the throwing techniques of international level players. Accordingly, this project investigated the interrelationships between accuracy and the line-out throwing characteristics of three elite international rugby players, and then analyzed whether these changed for throws over increasing length. Three-dimensional (3D) data were developed from video footage (50 Hz) of three elite international subjects for 30 throws over three distances (6 m, 10 m, and 15 m). Results showed notable differences between subjects in many variables at each of the key throw phases. However, several variables such as the degree of trunk flexion at the end of the backswing and at ball release, coupled with elbow flexion angle at ball release remained constant as throw length increased. All subjects exhibited high levels of consistency in movement patterns across all throw lengths. Findings indicated that these high performance line-out throwers shared several common characteristics that will provide useful guides in the development of training programs. Key points A key aspect of this research was the assessment of throwing accuracy using a functional throwing task that mimicked normal performance. Although individual differences in throwing technique occurred, several technical aspects of the throw were common to each of these elite international players. Subjects tended to be extremely consistent in the way they positioned the ball at the end of the backswing, and had very consistent elbow (flexion) and shoulder (flexion and abduction) angles at both the end of the backswing and at ball release. In addition, throwers kept the trunk close to upright during the throw with minimal trunk flexion or extension regardless of throw distance. To throw for longer distances participants tended to increase the involvement of the legs. PMID:24150632
Saturation Length of Erodible Sediment Beds Subject to Shear Flow
NASA Astrophysics Data System (ADS)
Casler, D. M.; Kahn, B. P.; Furbish, D. J.; Schmeeckle, M. W.
2016-12-01
We examine the initial growth and wavelength selection of sand ripples based on probabilistic formulations of the flux and the Exner equation. Current formulations of this problem as a linear stability analysis appeal to the idea of a saturation length-the lag between the bed stress and the flux-as a key stabilizing influence leading to selection of a finite wavelength. We present two contrasting formulations. The first is based on the Fokker-Planck approximation of the divergence form of the Exner equation, and thus involves particle diffusion associated with variations in particle activity, in addition to the conventionally assumed advective term. The role of a saturation length associated with the particle activity is similar to previous analyses. However, particle diffusion provides an attenuating influence on the growth of small wavelengths, independent of a saturation length, and is thus a sufficient, if not necessary, condition contributing to selection of a finite wavelength. The second formulation is based on the entrainment form of the Exner equation. As a precise, probabilistic formulation of conservation, this form of the Exner equation does not distinguish between advection and diffusion, and, because it directly accounts for all particle motions via a convolution of the distribution of particle hop distances, it pays no attention to the idea of a saturation length. The formulation and resulting description of initial ripple growth and wavelength selection thus inherently subsume the effects embodied in the ideas of advection, diffusion, and a saturation length as used in other formulations. Moreover, the formulation does not distinguish between bed load and suspended load, and is thus broader in application. The analysis reveals that the length scales defined by the distribution of hop distances are more fundamental than the saturation length in determining the initial growth or decay of bedforms. Formulations involving the saturation length coincide with the special case of an exponential distribution of hop distance, where the saturation length is equal to the mean hop distance.
Butler, M G; Pratesi, R; Watson, M S; Breg, W R; Singh, D N
1993-09-01
Anthropometric and craniofacial profile patterns indicating the percent difference from the overall mean were developed on 34 physical parameters with 31 white, mentally retarded males (23 adults and 8 children) with the fra(X) syndrome matched for age with 31 white, mentally retarded males without a known cause of their retardation. The fra(X) syndrome males consistently showed larger dimensions for all anthropometric variables, with significant differences for height, sitting height, arm span, hand length, middle finger length, hand breadth, foot length, foot breadth, and testicular volume. A craniofacial pattern did emerge between the two groups of mentally retarded males, but with overlap of several variables. Significant differences were noted for head circumference, head breadth, lower face height, bizygomatic diameter, inner canthal distance, ear length and ear width, with the fra(X) syndrome males having larger head dimensions (head circumference, head breadth, head length, face height and lower face height), but smaller measurements for minimal frontal diameter, bizygomatic diameter, bigonial diameter, and inner canthal distance. Several significant correlations were found with the variables for both mentally retarded males with and without the fra(X) syndrome. In a combined anthropometric and craniofacial profile of 19 variables comparing 26 white fra(X) syndrome males (13 with high expression (> 30%) and 13 with low expression (< 30%), but matched for age), a relatively flat profile was observed with no significant differences for any of the variables. Generally, fra(X) syndrome males with increased fragile X chromosome expression have larger amplifications of the CGG trinucleotide repeat of the FMR-1 gene. No physical differences were detectable in our study between fra(X) males with high expression and apparently larger amplifications of the CGG trinucleotide repeats compared with those patients with low expression. Our research illustrates the use of anthropometry in identifying differences between mentally retarded males with or without the fra(X) syndrome and offers a comprehensive approach for screening males for the fra(X) syndrome and selecting those individuals for cytogenetic and/or molecular genetic testing.
Butler, Merlin G.; Pratesi, Riccardo; Watson, Michael S.; Breg, W. Roy; Singh, Dharmdeo N.
2017-01-01
Anthropometric and craniofacial profile patterns indicating the percent difference from the overall mean were developed on 34 physical parameters with 31 white, mentally retarded males (23 adults and 8 children) with the fra(X) syndrome matched for age with 31 white, mentally retarded males without a known cause of their retardation. The fra(X) syndrome males consistently showed larger dimensions for all anthropometric variables, with significant differences for height, sitting height, arm span, hand length, middle finger length, hand breadth, foot length, foot breadth, and testicular volume. A craniofacial pattern did emerge between the two groups of mentally retarded males, but with overlap of several variables. Significant differences were noted for head circumference, head breadth, lower face height, bizygomatic diameter, inner canthal distance, ear length and ear width, with the fra(X) syndrome males having larger head dimensions (head circumference, head breadth, head length, face height and lower face height), but smaller measurements for minimal frontal diameter, bizygomatic diameter, bigonial diameter, and inner canthal distance. Several significant correlations were found with the variables for both mentally retarded males with and without the fra(X) syndrome. In a combined anthropometric and craniofacial profile of 19 variables comparing 26 white fra(X) syndrome males (13 with high expression (>30%) and 13 with low expression (< 30%), but matched for age), a relatively flat profile was observed with no significant differences for any of the variables. Generally, fra(X) syndrome males with increased fragile X chromosome expression have larger amplifications of the CGG trinucleotide repeat of the FMR-1 gene. No physical differences were detectable in our study between fra(X) males with high expression and apparently larger amplifications of the CGG trinucleotide repeats compared with those patients with low expression. Our research illustrates the use of anthropometry in identifying differences between mentally retarded males with or without the fra(X) syndrome and offers a comprehensive approach for screening males for the fra(X) syndrome and selecting those individuals for cytogenetic and/or molecular genetic testing. PMID:8275570
González, R C; Alvarez, D; López, A M; Alvarez, J C
2009-12-01
It has been reported that spatio-temporal gait parameters can be estimated using an accelerometer to calculate the vertical displacement of the body's centre of gravity. This method has the potential to produce realistic ambulatory estimations of those parameters during unconstrained walking. In this work, we want to evaluate the crude estimations of mean step length so obtained, for their possible application in the construction of an ambulatory walking distance measurement device. Two methods have been tested with a set of volunteers in 20 m excursions. Experimental results show that estimations of walking distance can be obtained with sufficient accuracy and precision for most practical applications (errors of 3.66 +/- 6.24 and 0.96 +/- 5.55%), the main difficulty being inter-individual variability (biggest deviations of 19.70 and 15.09% for each estimator). Also, the results indicate that an inverted pendulum model for the displacement during the single stance phase, and a constant displacement per step during double stance, constitute a valid model for the travelled distance with no need of further adjustments. It allows us to explain the main part of the erroneous distance estimations in different subjects as caused by fundamental limitations of the simple inverted pendulum approach.
Thermodynamics of computation and information distance
NASA Astrophysics Data System (ADS)
Bennett, Charles H.; Gacs, Peter; Li, Ming; Vitanyi, Paul M. R. B.; Zurek, Wojciech H.
1993-06-01
Intuitively, the minimal information distance between x and y is the length of the shortest program for a universal computer to transform x into y and y into x. This measure is shown to be, up to a logarithmic additive term, equal to the maximum of the conditional Kolmogorov complexities E(sub 1)(x,y) = max(K(y/x), K(x/y)). Any reasonable distance to measure similarity of pictures should be an effectively approximable, symmetric, positive function of x and y satisfying a reasonable normalization condition and obeying the triangle inequality. It turns out that E(sub 1) is minimal up to an additive constant among all such distances. Hence it is a universal 'picture distance', which accounts for any effective similarity between pictures. A third information distance, based on the ideal that the aim should be for dissipationless computations, and hence for reversible ones, is given by the length E(sub 2)(x,y) = KR(y/x) = KR(x/y) of the shortest reversible program that transforms x into y and y into x on a universal reversible computer. It is shown that also E(sub 2) = E(sub 1), up to a logarithmic additive term. It is remarkable that three so differently motivated definitions turn out to define one and the same notion. Another information distance, E(sub 3), is obtained by minimizing the total amount of information flowing in and out during a reversible computation in which the program is not retained, in other words the number of extra bits (apart from x) that must be irreversibly supplied at the beginning, plus the number of garbage bits (apart from y) that must be irreversibly erased at the end of the computation to obtain a 'clean' y. This distance is within a logarithmic additive term of the sum of the conditional complexities, E(sub 3)(x, y) = K(y/x) + K(x/y). Using the physical theory of reversible computation, the simple difference K(x) - K(y) is shown to be an appropriate (universal, antisymmetric, and transitive) measure of the amount of thermodynamic work required to transform string x into string y by the most efficient process.
The effect of path length and display size on memory for spatial information.
Guérard, Katherine; Tremblay, Sébastien
2012-01-01
In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.
Schulz, Brian W.; Jongprasithporn, Manutchanok; Hart-Hughes, Stephanie J.; Bulat, Tatjana
2017-01-01
Background Maximum step length is a brief clinical test involving stepping out and back as far as possible with the arms folded across the chest. This test has been shown to predict fall risk, but the biomechanics of this test are not fully understood. Knee and hip kinetics (moments and powers) are greater for longer steps and for younger subjects, but younger subjects also step farther. Methods To separate effects of step length, age, and fall history on joint kinetics; 14 healthy younger, 14 older non-fallers, and 11 older fallers (27(5), 72(5), 75(6) years respectively) all stepped to the same relative target distances of 20-80% of their height. Knee and hip kinetics and knee co-contraction were calculated. Findings Hip and knee kinetics and knee co-contraction all increased with step length, but older non-fallers and fallers utilized greater stepping hip and less stepping knee extensor kinetics. Fallers had greater stepping knee co-contraction than non-fallers. Stance knee co-contraction of non-fallers was similar to young for shorter steps and similar to fallers for longer steps. Interpretation Age had minimal effects and fall history had no effects on joint kinetics of steps to similar distances. Effects of age and fall history on knee co-contraction may contribute to age-related kinetic differences and shorter maximal step lengths of older non-fallers and fallers, but step length correlated with every variable tested. Thus, declines in maximum step length could indicate declines in hip and knee extensor kinetics and impaired performance on similar tasks like recovering from a trip. PMID:23978310
NASA Astrophysics Data System (ADS)
Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui
2018-02-01
An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.
Distance Decay of Similarity in Neotropical Diatom Communities
Wetzel, Carlos E.; Bicudo, Denise de C.; Ector, Luc; Lobo, Eduardo A.; Soininen, Janne; Landeiro, Victor L.; Bini, Luis M.
2012-01-01
Background The regression of similarity against distance unites several ecological phenomena, and thus provides a highly useful approach for illustrating the spatial turnover across sites. Our aim was to test whether the rates of decay in community similarity differ between diatom growth forms suggested to show different dispersal ability. We hypothesized that the diatom group with lower dispersal ability (i.e. periphyton) would show higher distance decay rates than a group with higher dispersal ability (i.e. plankton). Methods/Principal findings Periphyton and phytoplankton samples were gathered at sites distributed over an area of approximately 800 km length in the Negro River, Amazon basin, Brazil, South America (3°08′00″S; 59°54′30″W). Distance decay relationships were then estimated using distance-based regressions, and the coefficients of these regressions were compared among the groups with different dispersal abilities to assess our predictions. We found evidence that different tributaries and reaches of the Negro River harbor different diatom communities. As expected, the rates of distance decay in community similarity were higher for periphyton than for phytoplankton indicating the lower dispersal ability of periphytic taxa. Conclusions/Significance Our study demonstrates that the comparison of distance decay relationships among taxa with similar ecological requirements, but with different growth form and thus dispersal ability provides a sound approach to evaluate the effects of dispersal ability on beta diversity patterns. Our results are also in line with the growing body of evidence indicating that microorganisms exhibit biogeographic patterns. Finally, we underscore that clumbing all microbial taxa into one group may be a flawed approach to test whether microbes exhibit biogeographic patterns. PMID:23028767
Methodology to set up nozzle-to-substrate gap for high resolution electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Park, Jaehong; Park, Ji-Woon; Nasrabadi, Ali Mohamadi; Hwang, Jungho
2016-09-01
Several efforts have been made for the prediction of jet diameter in electrohydrodynamic jet printing; however, not much attention has been paid to the jet length, which is the distance from the cone apex to the location where the jet is unstable and is broken into atomized droplets. In this study, we measured both the cone length and the jet length using a high-speed camera, and measured the line pattern width with an optical microscope to investigate the effects of cone length and jet length on the pattern quality. Measurements were carried out with variations in nozzle diameter, flow rate, and applied voltage. The pattern width was theoretically predicted for the case when the nozzle-to-substrate distance was more than the cone length, and smaller than the summation of the cone and jet lengths (which is the case when there is no jet breakup).
Porous media flux sensitivity to pore-scale geostatistics: A bottom-up approach
NASA Astrophysics Data System (ADS)
Di Palma, P. R.; Guyennon, N.; Heße, F.; Romano, E.
2017-04-01
Macroscopic properties of flow through porous media can be directly computed by solving the Navier-Stokes equations at the scales related to the actual flow processes, while considering the porous structures in an explicit way. The aim of this paper is to investigate the effects of the pore-scale spatial distribution on seepage velocity through numerical simulations of 3D fluid flow performed by the lattice Boltzmann method. To this end, we generate multiple random Gaussian fields whose spatial correlation follows an assigned semi-variogram function. The Exponential and Gaussian semi-variograms are chosen as extreme-cases of correlation for short distances and statistical properties of the resulting porous media (indicator field) are described using the Matèrn covariance model, with characteristic lengths of spatial autocorrelation (pore size) varying from 2% to 13% of the linear domain. To consider the sensitivity of the modeling results to the geostatistical representativeness of the domain as well as to the adopted resolution, porous media have been generated repetitively with re-initialized random seeds and three different resolutions have been tested for each resulting realization. The main difference among results is observed between the two adopted semi-variograms, indicating that the roughness (short distances autocorrelation) is the property mainly affecting the flux. However, computed seepage velocities show additionally a wide variability (about three orders of magnitude) for each semi-variogram model in relation to the assigned correlation length, corresponding to pore sizes. The spatial resolution affects more the results for short correlation lengths (i.e., small pore sizes), resulting in an increasing underestimation of the seepage velocity with the decreasing correlation length. On the other hand, results show an increasing uncertainty as the correlation length approaches the domain size.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances.
Gil, Manuel
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error.
Fast and accurate estimation of the covariance between pairwise maximum likelihood distances
2014-01-01
Pairwise evolutionary distances are a model-based summary statistic for a set of molecular sequences. They represent the leaf-to-leaf path lengths of the underlying phylogenetic tree. Estimates of pairwise distances with overlapping paths covary because of shared mutation events. It is desirable to take these covariance structure into account to increase precision in any process that compares or combines distances. This paper introduces a fast estimator for the covariance of two pairwise maximum likelihood distances, estimated under general Markov models. The estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the covariance to path lengths. It is proven here under a simple symmetric substitution model. A simulation shows that the estimator outperforms previously published ones in terms of the mean squared error. PMID:25279263
Cunningham, Daniel J.; Shearer, David A.; Carter, Neil; Drawer, Scott; Pollard, Ben; Bennett, Mark; Eager, Robin; Cook, Christian J.; Farrell, John; Russell, Mark
2018-01-01
The assessment of competitive movement demands in team sports has traditionally relied upon global positioning system (GPS) analyses presented as fixed-time epochs (e.g., 5–40 min). More recently, presenting game data as a rolling average has become prevalent due to concerns over a loss of sampling resolution associated with the windowing of data over fixed periods. Accordingly, this study compared rolling average (ROLL) and fixed-time (FIXED) epochs for quantifying the peak movement demands of international rugby union match-play as a function of playing position. Elite players from three different squads (n = 119) were monitored using 10 Hz GPS during 36 matches played in the 2014–2017 seasons. Players categorised broadly as forwards and backs, and then by positional sub-group (FR: front row, SR: second row, BR: back row, HB: half back, MF: midfield, B3: back three) were monitored during match-play for peak values of high-speed running (>5 m·s-1; HSR) and relative distance covered (m·min-1) over 60–300 s using two types of sample-epoch (ROLL, FIXED). Irrespective of the method used, as the epoch length increased, values for the intensity of running actions decreased (e.g., For the backs using the ROLL method, distance covered decreased from 177.4 ± 20.6 m·min-1 in the 60 s epoch to 107.5 ± 13.3 m·min-1 for the 300 s epoch). For the team as a whole, and irrespective of position, estimates of fixed effects indicated significant between-method differences across all time-points for both relative distance covered and HSR. Movement demands were underestimated consistently by FIXED versus ROLL with differences being most pronounced using 60 s epochs (95% CI HSR: -6.05 to -4.70 m·min-1, 95% CI distance: -18.45 to -16.43 m·min-1). For all HSR time epochs except one, all backs groups increased more (p < 0.01) from FIXED to ROLL than the forward groups. Linear mixed modelling of ROLL data highlighted that for HSR (except 60 s epoch), SR was the only group not significantly different to FR. For relative distance covered all other position groups were greater than the FR (p < 0.05). The FIXED method underestimated both relative distance (~11%) and HSR values (up to ~20%) compared to the ROLL method. These differences were exaggerated for the HSR variable in the backs position who covered the greatest HSR distance; highlighting important consideration for those implementing the FIXED method of analysis. The data provides coaches with a worst-case scenario reference on the running demands required for periods of 60–300 s in length. This information offers novel insight into game demands and can be used to inform the design of training games to increase specificity of preparation for the most demanding phases of matches. PMID:29621279
Hahn, Steffen; Korner-Nievergelt, Fränzi; Emmenegger, Tamara; Amrhein, Valentin; Csörgő, Tibor; Gursoy, Arzu; Ilieva, Mihaela; Kverek, Pavel; Pérez-Tris, Javier; Pirrello, Simone; Zehtindjiev, Pavel; Salewski, Volker
2016-01-01
In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range.
A Critical Characteristic in the Transverse Galloping Pattern
Wei, Xiaohui; Long, Yongjun; Wang, Chunlei; Wang, Shigang
2015-01-01
Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness, respectively. If the horizontal running speed reaches up to a critical value at a fixed leg stiffness, or if the leg stiffness reaches up to a critical value at a fixed horizontal speed, a key property would emerge which greatly reduces the overall mechanical forces of the dynamic system in a proper range of initial pitch angular velocities. Besides, for each horizontal speed, there is an optimal stiffness of legs that can reduce both the mechanical loads and the metabolic cost of transport. Furthermore, different body proportions and landing distance lags of a pair of legs are studied in the transverse gallop. We find that quadrupeds with longer length of legs compared with the length of the body are more suitable to employ the transverse galloping pattern, and the landing distance lag of a pair of legs could reduce the cost of transport and the locomotion frequency. PMID:27087773
NASA Astrophysics Data System (ADS)
Niwayama, Masatsugu
2018-03-01
We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.
Femtosecond frequency comb based distance measurement in air.
Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A
2009-05-25
Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.
Nazarova, G G; Proskurniak, L P
2012-01-01
The study was carried out on the captive bread water voles Arvicola amphibious kept in vivarium. At the first decade of January, March, and June, the body length and anogenital distance were measured, the body mass was determined, and urine was collected for determination of its protein content. The obtained results have shown that the protein content depends on sex of the animals and is connected with the reproductive status of males and their dimension-weight characteristics. The urinary protein excretion level in females remained stable at different months, whereas in males its sharp rise was noted at the period of spring growth and sexual maturation. The significant sexual differences were established in March and enhanced in June. In March the urine protein content in males was noted to correlate positively with the body mass and length and with the anogenital distance. The males reached sexual maturity at the earlier calendar terms than the females did; in sexually mature males the urine protein content was significantly higher than in the sexually immature ones.
Macro-level safety analysis of pedestrian crashes in Shanghai, China.
Wang, Xuesong; Yang, Junguang; Lee, Chris; Ji, Zhuoran; You, Shikai
2016-11-01
Pedestrian safety has become one of the most important issues in the field of traffic safety. This study aims at investigating the association between pedestrian crash frequency and various predictor variables including roadway, socio-economic, and land-use features. The relationships were modeled using the data from 263 Traffic Analysis Zones (TAZs) within the urban area of Shanghai - the largest city in China. Since spatial correlation exists among the zonal-level data, Bayesian Conditional Autoregressive (CAR) models with seven different spatial weight features (i.e. (a) 0-1 first order, adjacency-based, (b) common boundary-length-based, (c) geometric centroid-distance-based, (d) crash-weighted centroid-distance-based, (e) land use type, adjacency-based, (f) land use intensity, adjacency-based, and (g) geometric centroid-distance-order) were developed to characterize the spatial correlations among TAZs. Model results indicated that the geometric centroid-distance-order spatial weight feature, which was introduced in macro-level safety analysis for the first time, outperformed all the other spatial weight features. Population was used as the surrogate for pedestrian exposure, and had a positive effect on pedestrian crashes. Other significant factors included length of major arterials, length of minor arterials, road density, average intersection spacing, percentage of 3-legged intersections, and area of TAZ. Pedestrian crashes were higher in TAZs with medium land use intensity than in TAZs with low and high land use intensity. Thus, higher priority should be given to TAZs with medium land use intensity to improve pedestrian safety. Overall, these findings can help transportation planners and managers understand the characteristics of pedestrian crashes and improve pedestrian safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Influence of channel length to the characteristics of CuPc based OFET thin films
NASA Astrophysics Data System (ADS)
Sujarwata; Handayani, L.; Mosik; Fianti
2018-03-01
The main focus of this research is to characterize organic field effect transistor (OFET) thin films based on CuPc with a bottom-contact structure and varied channel length. OFET was prepared by Si substrate cleaning in the ultrasonic cleaner first, then deposition of the source and drain electrodes on the substrate with vacuum evaporation at room temperature, and finally CuPc thin film deposition among the source, drain, and gate electrodes. The distance between source anddrain electrodes is the channel length of the CuPc thin film. In this research, the channel length was varied; 100 μm, 200 μm and 300 μm, with the same active areas of 2.9-3.42 V and different current, IDS. The result showed that the shorter channel length causes, the bigger IDS flowing on the OFET
Roux, C Z
2009-05-01
Short phylogenetic distances between taxa occur, for example, in studies on ribosomal RNA-genes with slow substitution rates. For consistently short distances, it is proved that in the completely singular limit of the covariance matrix ordinary least squares (OLS) estimates are minimum variance or best linear unbiased (BLU) estimates of phylogenetic tree branch lengths. Although OLS estimates are in this situation equal to generalized least squares (GLS) estimates, the GLS chi-square likelihood ratio test will be inapplicable as it is associated with zero degrees of freedom. Consequently, an OLS normal distribution test or an analogous bootstrap approach will provide optimal branch length tests of significance for consistently short phylogenetic distances. As the asymptotic covariances between branch lengths will be equal to zero, it follows that the product rule can be used in tree evaluation to calculate an approximate simultaneous confidence probability that all interior branches are positive.
Saw-tooth refractive lens for high energy x-ray focusing
NASA Astrophysics Data System (ADS)
Antimonov, Mikhail A.; Khounsary, Ali M.
2014-09-01
Saw-tooth refractive lens (SRL) provides a comparatively attractive option for X-ray focusing. An SRL assembly consists of two parts, each with an array of triangular structures (prisms), set tilted symmetrically with respect to the incoming beam. Its main advantage is a simple, continuous tunability in energy and focal length. SRLs can be used for both long and short focal length focusing. Long focal distance focusing of an SRL can accurately be predicted using simple analytical relations. However, the focus size at short focal distances focusing may deviate appreciably from the expected demagnified source size when: (1) the length of the SRL is comparable with the focusing distance, (2) the incident beam is not monochromatic, and (3) and the distance between adjacent prism tips, the tip step, is large . The first factor was considered in a previous work while the other two are addressed is this paper. This preliminary work is aimed at a better understanding of the SRL lenses for focusing an undulator beamline at the Advanced Photon Source (APS).
An optical wavefront sensor based on a double layer microlens array.
Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John
2011-01-01
In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.
Panjnoush, Mehrdad; Rabiee, Zonnar Sadat; Kheirandish, Yasaman
2016-03-01
This study aimed to evaluate the location and characteristics of mental foramen, anterior loop and mandibular incisive canal using cone beam computed tomography (CBCT). This retrospective cross-sectional study evaluated 200 mandibular CBCT scans for the location of mental foramen, anterior loop prevalence and mandibular incisive canal visibility, its mean length and distance to buccal and lingual plates and inferior border of the mandible. The effect of age and gender on these variables was also analyzed (P<0.05). Anterior loop and mandibular incisive canal were seen in 59.5% and 97.5% of the cases, respectively. The mean length of the mandibular incisive canal was 10.48±4.53mm in the right and 10.40±4.52mm in the left side. The mean distance from the endpoints of the canal to buccal plate was 3.63±1.73mm in the right and 3.66±1.45mm in the left side. These distances were 3.89±1.53mm in the right and 4.13±1.48mm in the left side to lingual plate and 9.98±2.07mm in the right and 8.62±1.97mm in the left side to the inferior border of the mandible. The distance from the endpoints of the canal to lingual plate was significantly different in the right and left sides. The distance from the endpoint of the canal to the buccal plate and inferior border of the mandible was significantly shorter in females (P=0.016), and had a weak, significant correlation with age (rsp=0.215, P=0.003). Due to variability in mandibular incisive canal length and high prevalence of anterior loop, CBCT is recommended before surgical manipulation of interforaminal region.
Vehicle Speed and Length Estimation Using Data from Two Anisotropic Magneto-Resistive (AMR) Sensors
Markevicius, Vytautas; Navikas, Dangirutis; Valinevicius, Algimantas; Zilys, Mindaugas
2017-01-01
Methods for estimating a car’s length are presented in this paper, as well as the results achieved by using a self-designed system equipped with two anisotropic magneto-resistive (AMR) sensors, which were placed on a road lane. The purpose of the research was to compare the lengths of mid-size cars, i.e., family cars (hatchbacks), saloons (sedans), station wagons and SUVs. Four methods were used in the research: a simple threshold based method, a threshold method based on moving average and standard deviation, a two-extreme-peak detection method and a method based on the amplitude and time normalization using linear extrapolation (or interpolation). The results were achieved by analyzing changes in the magnitude and in the absolute z-component of the magnetic field as well. The tests, which were performed in four different Earth directions, show differences in the values of estimated lengths. The magnitude-based results in the case when cars drove from the South to the North direction were even up to 1.2 m higher than the other results achieved using the threshold methods. Smaller differences in lengths were observed when the distances were measured between two extreme peaks in the car magnetic signatures. The results were summarized in tables and the errors of estimated lengths were presented. The maximal errors, related to real lengths, were up to 22%. PMID:28771171
NASA Astrophysics Data System (ADS)
Xiong, Xingting; Qu, Xinghua; Zhang, Fumin
2018-01-01
We propose and describe a novel multi-dimensional absolute distance measurement system. This system incorporates a basic frequency modulated continuous wave (FMCW) radar and an second external cavity laser (ECL). Through the use of trilateration, the system in our paper can provide 3D resolution inherently range. However, the measured optical path length differences (OPD) is often variable in industrial environments and this will causes Doppler effect, which has greatly impact on the measurement result. With using the second ECL, the system can correct the Doppler effect to ensure the precision of absolute distance measurement. Result of the simulation will prove the influence of Doppler effect.
Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse
2009-07-28
The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.
Cetin, Emel; Hindistan, I Ethem; Ozkaya, Y Gul
2018-05-01
Cetin, E, Hindistan, IE, Ozkaya, YG. Effect of different training methods on stride parameters in speed maintenance phase of 100-m sprint running. J Strength Cond Res 32(5): 1263-1272, 2018-This study examined the effects of 2 different training methods relevant to sloping surface on stride parameters in speed maintenance phase of 100-m sprint running. Twenty recreationally active students were assigned into one of 3 groups: combined training (Com), horizontal training (H), and control (C) group. Com group performed uphill and downhill training on a sloping surface with an angle of 4°, whereas H group trained on a horizontal surface, 3 days a week for 8 weeks. Speed maintenance and deceleration phases were divided into distances with 10-m intervals, and running time (t), running velocity (RV), step frequency (SF), and step length (SL) were measured at preexercise, and postexercise period. After 8 weeks of training program, t was shortened by 3.97% in Com group, and 2.37% in H group. Running velocity also increased for totally 100 m of running distance by 4.13 and 2.35% in Com, and H groups, respectively. At the speed maintenance phase, although t and maximal RV (RVmax) found to be statistically unaltered during overall phase, t was found to be decreased, and RVmax was preceded by 10 m in distance in both training groups. Step length was increased at 60-70 m, and SF was decreased at 70-80 m in H group. Step length was increased with concomitant decrease in SF at 80-90 m in Com group. Both training groups maintained the RVmax with a great percentage at the speed maintenance phase. In conclusion, although both training methods resulted in an increase in running time and RV, Com training method was more prominently effective method in improving RV, and this improvement was originated from the positive changes in SL during the speed maintaining phase.
Weir-McCall, Jonathan R; Brown, Liam; Summersgill, Jennifer; Talarczyk, Piotr; Bonnici-Mallia, Michael; Chin, Sook C; Khan, Faisel; Struthers, Allan D; Sullivan, Frank; Colhoun, Helen M; Shore, Angela C; Aizawa, Kunihiko; Groop, Leif; Nilsson, Jan; Cockcroft, John R; McEniery, Carmel M; Wilkinson, Ian B; Ben-Shlomo, Yoav; Houston, J Graeme
2018-05-01
Current distance measurement techniques for pulse wave velocity (PWV) calculation are susceptible to intercenter variability. The aim of this study was to derive and validate a formula for this distance measurement. Based on carotid femoral distance in 1183 whole-body magnetic resonance angiograms, a formula was derived for calculating distance. This was compared with distance measurements in 128 whole-body magnetic resonance angiograms from a second study. The effects of recalculation of PWV using the new formula on association with risk factors, disease discrimination, and prediction of major adverse cardiovascular events were examined within 1242 participants from the multicenter SUMMIT study (Surrogate Markers of Micro- and Macrovascular Hard End-Points for Innovative Diabetes Tools) and 825 participants from the Caerphilly Prospective Study. The distance formula yielded a mean error of 7.8 mm (limits of agreement =-41.1 to 56.7 mm; P <0.001) compared with the second whole-body magnetic resonance angiogram group. Compared with an external distance measurement, the distance formula did not change associations between PWV and age, blood pressure, or creatinine ( P <0.01) but did remove significant associations between PWV and body mass index (BMI). After accounting for differences in age, sex, and mean arterial pressure, intercenter differences in PWV persisted using the external distance measurement ( F =4.6; P =0.004), whereas there was a loss of between center difference using the distance formula ( F =1.4; P =0.24). PWV odds ratios for cardiovascular mortality remained the same using both the external distance measurement (1.14; 95% confidence interval, 1.06-1.24; P =0.001) and the distance formula (1.17; 95% confidence interval, 1.08-1.28; P <0.001). A population-derived automatic distance calculation for PWV obtained from routinely collected clinical information is accurate and removes intercenter measurement variability without impacting the diagnostic utility of carotid-femoral PWV. © 2018 The Authors.
Distance Reached in the Anteromedial Reach Test as a Function of Learning and Leg Length
ERIC Educational Resources Information Center
Bent, Nicholas P.; Rushton, Alison B.; Wright, Chris C.; Batt, Mark E.
2012-01-01
The Anteromedial Reach Test (ART) is a new outcome measure for assessing dynamic knee stability in anterior cruciate ligament-injured patients. The effect of learning and leg length on distance reached in the ART was examined. Thirty-two healthy volunteers performed 15 trials of the ART on each leg. There was a moderate correlation (r = 0.44-0.50)…
Roers, Friederike; Mürbe, Dirk; Sundberg, Johan
2009-07-01
Students admitted to the solo singing education at the University of Music Dresden, Germany have been submitted to a detailed physical examination of a variety of factors with relevance to voice function since 1959. In the years 1959-1991, this scheme of examinations included X-ray profiles of the singers' vocal tracts. This material of 132 X-rays of voice professionals was used to investigate different laryngeal morphological measures and their relation to vocal fold length. Further, the study aimed to investigate if there are consistent anatomical differences between singers of different voice classifications. The study design used was a retrospective analysis. Vocal fold length could be measured in 29 of these singer subjects directly. These data showed a strong correlation with the anterior-posterior diameter of the subglottis and the trachea as well as with the distance from the anterior contour of the thyroid cartilage to the anterior contour of the spine. These relations were used in an attempt to predict the 132 singers' vocal fold lengths. The results revealed a clear covariation between predicted vocal fold length and voice classification. Anterior-posterior subglottic-tracheal diameter yielded mean vocal fold lengths of 14.9, 16.0, 16.6, 18.4, 19.5, and 20.9mm for sopranos, mezzo-sopranos, altos, tenors, baritones, and basses, respectively. The data support the assumption that there are consistent anatomical laryngeal differences between singers of different voice classifications, which are of relevance to pitch range and timbre of the voice.
1980-01-01
Transport of Heat ..... .......... 8 3. THE SOLUTION PROCEDURE ..... .. ................. 8 3.1 The Finite-Difference Grid Network ... .......... 8 3.2...The Finite-Difference Grid Network. Figure 4: The Iterative Solution Procedure used at each Streamwise Station. Figure 5: Velocity Profiles in the...the finite-difference grid in the y-direction. I is the mixing length. L is the distance in the x-direction from the injection slot entrance to the
Helito, Camilo Partezani; Helito, Paulo Victor Partezani; Bonadio, Marcelo Batista; da Mota e Albuquerque, Roberto Freire; Bordalo-Rodrigues, Marcelo; Pecora, Jose Ricardo; Camanho, Gilberto Luis; Demange, Marco Kawamura
2014-01-01
Background: Recent anatomical studies have identified the anterolateral ligament (ALL). Injury to this structure may lead to the presence of residual pivot shift in some reconstructions of the anterior cruciate ligament. The behavior of the length of this structure and its tension during range of motion has not been established and is essential when planning reconstruction. Purpose: To establish differences in the ALL length during range of knee motion. Study Design: Descriptive laboratory study. Methods: Ten unpaired cadavers were dissected. The attachments of the ALL were isolated. Its origin and insertion were marked with a 2 mm–diameter metallic sphere. Computed tomography scans were performed on the dissected parts under extension and 30°, 60°, and 90° of flexion; measurements of the distance between the 2 markers were taken at all mentioned degrees of flexion. The distances between the points were compared. Results: The mean ALL length increased with knee flexion. Its mean length at full extension and at 30°, 60°, and 90° of flexion was 37.9 ± 5.3, 39.3 ± 5.4, 40.9 ± 5.4, and 44.1 ± 6.4 mm, respectively. The mean increase in length from 0° to 30° was 3.99% ± 4.7%, from 30° to 60° was 4.20% ± 3.2%, and from 60° to 90° was 7.45% ± 4.8%. From full extension to 90° of flexion, the ligament length increased on average 16.7% ± 12.1%. From 60° to 90° of flexion, there was a significantly higher increase in the mean distance between the points compared with the flexion from 0° to 30° and from 30° to 60°. Conclusion: The ALL shows no isometric behavior during the range of motion of the knee. The ALL increases in length from full extension to 90° of flexion by 16.7%, on average. The increase in length was greater from 60° to 90° than from 0° to 30° and from 30° to 60°. The increase in length at higher degrees of flexion suggests greater tension with increasing flexion. Clinical Relevance: Knowledge of ALL behavior during the range of motion of the knee will allow for fixation (during its reconstruction) to be performed with a higher or lower tension, depending on the chosen degree of flexion. PMID:26535292
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle
2011-01-01
It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.
Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection
Seidl, Armin H.; Rubel, Edwin W; Harris, David M.
2010-01-01
Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies these unexpected results should inspire new thinking on the cellular biology, evolution and plasticity of the circuitry underlying low frequency sound localization in both birds and mammals. PMID:20053889
Condylar response to functional therapy with Twin-Block as shown by cone-beam computed tomography.
Yildirim, Ersin; Karacay, Seniz; Erkan, Mustafa
2014-11-01
To evaluate the condylar changes through cone-beam computed tomography (CBCT) images in patients treated with Twin-Block functional appliance. In this retrospective study, CBCT images of 30 patients who were treated with the Twin-Block appliance were used. Mandible was segmented and pretreatment and posttreatment (T0 and T1) condylar volume was compared. The angle between sella-nasion-Point A (SNA), angle between sella-nasion-Point B (SNB), angle between Point A-nasion-Point B (ANB), midfacial length (Co-A), mandibular length (Co-Gn), and the distances from right condylion to left condylion (CoR-CoL) were also measured on three-dimensional images. Differences were analyzed with Wilcoxon signed rank tests, and Mann-Whitney U-tests were used to compare the scores of male and female participants. Significance was set at P < .05. In this study, a decrease in SNA and ANB (P < .05 and P < .01, respectively) and an increase in SNB (P < .01) were found. Additionally, CoR-CoL, Co-Gn, and condylar volume increased at both the left and right sides (P < .01). However, increase at Co-A was not statistically significant (P > .05). Comparison of differences by sex was not statistically significant for all measurements (P > .05). Twin-Block appliance increases condylar volume, mandibular length, and intercondylar distance by stimulating growth of condyle in an upward and backward direction.
The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length
ERIC Educational Resources Information Center
Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam
2017-01-01
Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…
The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis
2011-01-01
Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552
NASA Astrophysics Data System (ADS)
Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei
2018-04-01
It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.
Scaling in Transportation Networks
Louf, Rémi; Roth, Camille; Barthelemy, Marc
2014-01-01
Subway systems span most large cities, and railway networks most countries in the world. These networks are fundamental in the development of countries and their cities, and it is therefore crucial to understand their formation and evolution. However, if the topological properties of these networks are fairly well understood, how they relate to population and socio-economical properties remains an open question. We propose here a general coarse-grained approach, based on a cost-benefit analysis that accounts for the scaling properties of the main quantities characterizing these systems (the number of stations, the total length, and the ridership) with the substrate's population, area and wealth. More precisely, we show that the length, number of stations and ridership of subways and rail networks can be estimated knowing the area, population and wealth of the underlying region. These predictions are in good agreement with data gathered for about subway systems and more than railway networks in the world. We also show that train networks and subway systems can be described within the same framework, but with a fundamental difference: while the interstation distance seems to be constant and determined by the typical walking distance for subways, the interstation distance for railways scales with the number of stations. PMID:25029528
Integrated Approach to Drilling Project in Unconventional Reservoir Using Reservoir Simulation
NASA Astrophysics Data System (ADS)
Stopa, Jerzy; Wiśniowski, Rafał; Wojnarowski, Paweł; Janiga, Damian; Skrzypaszek, Krzysztof
2018-03-01
Accumulation and flow mechanisms in unconventional reservoir are different compared to conventional. This requires a special approach of field management with drilling and stimulation treatments as major factor for further production. Integrated approach of unconventional reservoir production optimization assumes coupling drilling project with full scale reservoir simulation for determine best well placement, well length, fracturing treatment design and mid-length distance between wells. Full scale reservoir simulation model emulate a part of polish shale - gas field. The aim of this paper is to establish influence of technical factor for gas production from shale gas field. Due to low reservoir permeability, stimulation treatment should be direct towards maximizing the hydraulic contact. On the basis of production scenarios, 15 stages hydraulic fracturing allows boost gas production over 1.5 times compared to 8 stages. Due to the possible interference of the wells, it is necessary to determine the distance between the horizontal parts of the wells trajectories. In order to determine the distance between the wells allowing to maximize recovery factor of resources in the stimulated zone, a numerical algorithm based on a dynamic model was developed and implemented. Numerical testing and comparative study show that the most favourable arrangement assumes a minimum allowable distance between the wells. This is related to the volume ratio of the drainage zone to the total volume of the stimulated zone.
The lunar nodal tide and the distance to tne Moon during the Precambrian era
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Zahnle, K. J.
1986-01-01
The origin and early evolution of life on Earth occurred under physical and chemical conditions distinctly different from those of the present day. The broad goal of this research program is to characterize these conditions. One aspect involves the dynamics of the Earth-Moon system, the distance of the Moon from the Earth, and the length of the day. These have evolved during the course of Earth history as a result of the dissipation of tidal energy. As the moon has receded the amplitude of oceanic tides has decreased while the increasing length of the day should have influenced climate and the circulation of atmosphere and ocean. A 23.3 year periodicity preserved in a 2500 million year old banded iron-formation was interpreted as reflecting the climatic influence of the lunar nodal tide. The corresponding lunar distance would then have been approx. 52 Earth radii. The influence of the lunar nodal tide is also apparent in rocks with an age of 680 million years B.P. The derived value for lunar distance 2500 million years ago is the only datum on the dynamics of the Earth-Moon system during the Precambrian era of Earth history. The implied development of Precambrian tidal friction is in accord with more recent paleontological evidence as well as the long term stability of the lunar orbit.
NASA Astrophysics Data System (ADS)
Ouyang, Hao; Liu, Weidong; Sun, Mingbo
2017-08-01
Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.
How far could energy transport within a single crystal
NASA Astrophysics Data System (ADS)
Zhang, Yifan; Che, Yanke; Zhao, Jincai; Steve, Granick
Efficient transport of excitation energy over long distance is a vital process in light-harvesting systems and molecular electronics. The energy transfer distance is largely restricted by the probability decay of the exciton when hopping within a single crystal. Here, we fabricated an organic single crystal within which the energy could transfer more than 100 μm, a distance only limited by its crystal size. Our system could be regarded as a ``Sprint relay game'' performing on different surface of tracks. Photoinduced ``athletes'' (excitons) triggered intermolecular ``domino'' reaction to propagate energy for a long distance. In addition, athletes with the same ability runs much farther on smooth ideal track (single crystal assembled from merely van der Waals interaction) than bumpy mud track (crystal assembled from combination of pi-stacking, hydrogen bond and van der Waals interactions). Our finding presents new physics on enhancing energy transfer length within a single crystal. Current Affiliation: Institute for Basic Science, South Korea.
A phenomenological description of space-time noise in quantum gravity.
Amelino-Camelia, G
2001-04-26
Space-time 'foam' is a geometric picture of the smallest size scales in the Universe, which is characterized mainly by the presence of quantum uncertainties in the measurement of distances. All quantum-gravity theories should predict some kind of foam, but the description of the properties of this foam varies according to the theory, thereby providing a possible means of distinguishing between such theories. I previously showed that foam-induced distance fluctuations would introduce a new source of noise to the measurements of gravity-wave interferometers, but the theories are insufficiently developed to permit detailed predictions that would be of use to experimentalists. Here I propose a phenomenological approach that directly describes space-time foam, and which leads naturally to a picture of distance fluctuations that is independent of the details of the interferometer. The only unknown in the model is the length scale that sets the overall magnitude of the effect, but recent data already rule out the possibility that this length scale could be identified with the 'string length' (10-34 m < Ls < 10-33 m). Length scales even smaller than the 'Planck length' (LP approximately 10-35 m) will soon be probed experimentally.
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
Smith, Alexander M; Lee, Alpha A; Perkin, Susan
2016-06-16
According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
Villalón, Eric; Barry, Devin M; Byers, Nathan; Frizzi, Katie; Jones, Maria R; Landayan, Dan S; Dale, Jeffrey M; Downer, Natalie L; Calcutt, Nigel A; Garcia, Michael L
2018-05-14
The distance between nodes of Ranvier, referred to as internode length, positively correlates with axon diameter, and is optimized during development to ensure maximal neuronal conduction velocity. Following myelin loss, internode length is reestablished through remyelination. However, remyelination results in short internode lengths and reduced conduction rates. We analyzed the potential role of neurofilament phosphorylation in regulating internode length during remyelination and myelination. Following ethidium bromide induced demyelination, levels of neurofilament medium (NF-M) and heavy (NF-H) phosphorylation were unaffected. Preventing NF-M lysine-serine-proline (KSP) repeat phosphorylation increased internode length by 30% after remyelination. To further analyze the role of NF-M phosphorylation in regulating internode length, gene replacement was used to produce mice in which all KSP serine residues were replaced with glutamate to mimic constitutive phosphorylation. Mimicking constitutive KSP phosphorylation reduced internode length by 16% during myelination and motor nerve conduction velocity by ~27% without altering sensory nerve structure or function. Our results suggest that NF-M KSP phosphorylation is part of a cooperative mechanism between axons and Schwann cells that together determine internode length, and suggest motor and sensory axons utilize different mechanisms to establish internode length. Copyright © 2018. Published by Elsevier Inc.
Optimal cue integration in ants.
Wystrach, Antoine; Mangan, Michael; Webb, Barbara
2015-10-07
In situations with redundant or competing sensory information, humans have been shown to perform cue integration, weighting different cues according to their certainty in a quantifiably optimal manner. Ants have been shown to merge the directional information available from their path integration (PI) and visual memory, but as yet it is not clear that they do so in a way that reflects the relative certainty of the cues. In this study, we manipulate the variance of the PI home vector by allowing ants (Cataglyphis velox) to run different distances and testing their directional choice when the PI vector direction is put in competition with visual memory. Ants show progressively stronger weighting of their PI direction as PI length increases. The weighting is quantitatively predicted by modelling the expected directional variance of home vectors of different lengths and assuming optimal cue integration. However, a subsequent experiment suggests ants may not actually compute an internal estimate of the PI certainty, but are using the PI home vector length as a proxy. © 2015 The Author(s).
Deryabin, Vasily E; Krans, Valentina M; Fedotova, Tatiana K
2005-07-01
Mean values of different body dimensions in different age cohorts of children make it possible to learn a lot about their dynamic changes. Their comparative analysis, as is usually practiced, in fact leads to a simple description of changes in measurement units (mm or cm) at the average level of some body dimension during a shorter or longer period of time. To estimate comparative intensity of the growth process of different body dimensions, the authors use the analogue of Mahalanobis distance, the so-called Kullback divergence (1967), which does not demand stability of dispersion or correlation coefficients of dimensions in compared cohorts of children. Most of the dimensions, excluding skinfolds, demonstrate growth dynamics with gradually reducing increments from birth to 7 years. Body length has the highest integrative increment, leg length about 94% of body length, body mass 77%, and trunk and extremities circumferences 56%. Skinfolds have a non-monotonic pattern of accumulated standardized increments with some increase until 1-2 years of age.
Ndumu, Deo B; Baumung, Roswitha; Hanotte, Olivier; Wurzinger, Maria; Okeyo, Mwai A; Jianlin, Han; Kibogo, Harrison; Sölkner, Johann
2008-01-01
The study investigated the population structure, diversity and differentiation of almost all of the ecotypes representing the African Ankole Longhorn cattle breed on the basis of morphometric (shape and size), genotypic and spatial distance data. Twentyone morphometric measurements were used to describe the morphology of 439 individuals from 11 sub-populations located in five countries around the Great Lakes region of central and eastern Africa. Additionally, 472 individuals were genotyped using 15 DNA microsatellites. Femoral length, horn length, horn circumference, rump height, body length and fore-limb circumference showed the largest differences between regions. An overall FST index indicated that 2.7% of the total genetic variation was present among sub-populations. The least differentiation was observed between the two sub-populations of Mbarara south and Luwero in Uganda, while the highest level of differentiation was observed between the Mugamba in Burundi and Malagarasi in Tanzania. An estimated membership of four for the inferred clusters from a model-based Bayesian approach was obtained. Both analyses on distance-based and model-based methods consistently isolated the Mugamba sub-population in Burundi from the others. PMID:18694545
Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok
2016-12-14
Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
One shot, one kill: the forces delivered by archer fish shots to distant targets.
Burnette, Morgan F; Ashley-Ross, Miriam A
2015-10-01
Archer fishes are skillful hunters of terrestrial prey, firing jets of water that dislodge insects perched on overhead vegetation. In the current investigation, we sought an answer to the question: are distant targets impractical foraging choices? Targets far from the shooter might not be hit with sufficient force to cause them to fall. However, observations from other investigators show that archer fish fire streams of water that travel in a non-ballistic fashion, which is thought to keep on-target forces high, even to targets that are several body lengths distant from the fish. We presented targets at different distances and investigated three aspects of foraging behavior: (i) on-target forces, (ii) shot velocity, (iii) a two-target choice assay to determine if fish would show any preference for downing closer targets or more distant targets. In general, shots from our fish (Toxotes chatareus) showed a mild decrease (less than 15% on average) in on-target forces at our most distant target offered (5.8 body lengths) with respect to the closest target offered (2.3 body lengths). One individual in our investigation showed slightly, but significantly, greater on-target forces as target distance increased. Forces on the furthest targets offered were found to double that of attachment forces for 200mg insects, even for individuals whose on-target forces showed mild decreases with increases in target distance. High-speed video analysis of jet impact with the target revealed that the shot was traveling in a non-ballistic manner, even to our most distant target offered, corroborating previous suppositions that on-target forces should remain high. Fish were able to accomplish this without large changes to shot velocity, but we did find evidence that the water jets appeared to differ in the timing of their acceleration as target distance increased. Our two-target choice experiment revealed that fish show preference for downing the closer target first, even though impact forces on distant targets only showed mild decreases. Our overall findings (and the findings of others) suggest that archer fish modulate many aspects of their shooting behavior: from target selection to active control over the water jet that allows the fish to deliver reliably forceful impacts to prey over a wide range of distances. Copyright © 2015 Elsevier GmbH. All rights reserved.
SU-F-I-34: How Does Longitudinal Dose Profile Change with Tube Current Distribution in CT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Yang, K; Liu, B
Purpose: To investigate how longitudinal dose profile D{sub L}(z) in 30 cm-diameter water cylinder change with tube current (mA) distribution and scan length. Methods: A constant and four variable mA distributions from two previous papers [Dixon et al., Med. Phys. 40, 111920 (14pp.) (2013); Zhang et al., Med. Phys. 41, 091911 (9pp.) (2014)] were adopted in three scan lengths of 10, 28.6, and 50 cm, and all mA distributions had the same average mA over scan ranges. Using the symmetry based dose calculation algorithms and the previously published CT dose equilibration data [Li et al., Med. Phys. 40, 031903 (10pp.)more » (2013); 41, 111910 (5pp.) (2014)], the authors calculated DL(z) on the phantom central and peripheral axes. Kolmogorov-Smirnov (K-S) test was used to compare the lineshapes of two arbitrary distributions. Results: In constant mA scans, D{sub L}(z) was “bell-shaped”. In variable mA scans, D{sub L}(z) approximately followed the mA lineshape, and the K-S distance generally changed with mA distribution. The distance decreased with scan length, and was larger on the central axis than on the peripheral axis. However, the opposite trends were found in the K-S distance between the D{sub L}(z) distributions of constant and variable mA distributions. Conclusion: Radiation dose from TCM scan is best evaluated using the specific tube current distribution. A constant mA based evaluation may lead to inconsistent longitudinal dose profile with that of TCM scan. Their difference in lineshape is larger on the phantom peripheral axis than on the central axis and increases with scan length. This work confirms that radiation dose in CT depends on not only local mA but also the overall mA distribution and scan length. On the other hand, the concept of regional tube current may be useful when scan length is large, tube current peaks near scan range edge, or the target site is superficial.« less
Perceptual and Neural Olfactory Similarity in Honeybees
Sandoz, Jean-Christophe
2005-01-01
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours. PMID:15736975
Bekki, Hirofumi; Harimaya, Katsumi; Matsumoto, Yoshihiro; Hayashida, Mitsumasa; Okada, Seiji; Doi, Toshio; Iwamoto, Yukihide
2016-04-01
A computed tomography study. The aim of the study was to clarify the position of the aorta relative to the spine in patients with Lenke type 1 adolescent idiopathic scoliosis. Several authors have examined the position of the aorta in patients with scoliosis; however, their analysis included several types of curve. There is a possibility that the position of the aorta differs according to the scoliosis curve type. Thirty-eight patients with Lenke type 1 were analyzed. The angle (left pedicle aorta [LtP-Ao] angle) and distance (LtP-Ao distance) from the insertion point of the left pedicle screw to the aorta were measured from T4 through L2. The measured data were evaluated from 4 levels above to 4 levels below the apical vertebra. The difference between lumbar modifiers A and C was examined. Dangerous pedicles, which were defined as those in which the aorta entered the expected area based on the screw direction error and length, were counted from T10 to L2. The aorta was located posterolaterally and adjacent to the vertebra at the middle thoracic level, and anteromedially and distant at the thoracolumbar level. LtP-Ao angle was largest at 1 level above the apical vertebra, and LtP-Ao distance was shortest at 2 levels above. LtP-Ao angle of Lenke 1A was significantly larger than 1C from T11 to L2, and LtP-Ao distance of 1A was significantly shorter than 1C from T11 to L1. When the screw length was 40 mm and the direction error was within 10°, there were a large number of dangerous pedicles at T11, regardless of the lumbar modifier. The direction error has a potential risk of injuring the aorta around the apical vertebra. The selection of screws of the proper length is necessary to avoid a breach of the anterior vertebral wall at thoracolumbar level, especially at T11. 3.
Mandibular incisive canal: cone beam computed tomography.
Pires, Carlos A; Bissada, Nabil F; Becker, Jeffery J; Kanawati, Ali; Landers, Michael A
2012-03-01
Panoramic radiography is often used to analyze the anatomical structure of the teeth, jaws, and temporomandibular joints. Cone beam computed tomography (CBCT) imaging allows multiple axial slices of the image to be obtained through these anatomical structures. The aim of this study was to assess CBCT compared with panoramic radiography to verify the presence, location, and dimensions of the mandibular incisive canal. CBCT scan images and panoramic radiographs of 89 subjects were compared for the presence of the mandibular incisive canal, its location, size, and anterior-posterior length. The distance between the incisive canal and the buccal and lingual plate of the alveolar bone, and the distance from the canal to the inferior border of the mandible and the tooth apex were also measured. A paired t-test was used to calculate any significant difference between the two imaging techniques. Eighty-three percent of the CBCT scans showed the presence of the incisive canal, as did 11% of the panoramic radiographs. The range of the incisive canal diameter, as seen in the CBCT scans, was from 0.4 × 0.4 mm to 4.6 × 3.2 mm. The mean length of the canal was 7 ± 3.8 mm. The distance from the inferior border of the mandible to the canal was 10.2 ± 2.4 mm, and the mean distance to the buccal plate was 2.4 mm. The apex-canal distance (in dentate subjects) was 5.3 mm. The presence, location, and dimensions of the mandibular incisive canal are better determined by CBCT imaging than by panoramic radiography. © 2009 Wiley Periodicals, Inc.
Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams
NASA Astrophysics Data System (ADS)
Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.
2013-11-01
Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.
New nonbinary quantum codes with larger distance constructed from BCH codes over 𝔽q2
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Fu, Qiang; Ma, Yuena; Guo, Luobin
2017-03-01
This paper concentrates on construction of new nonbinary quantum error-correcting codes (QECCs) from three classes of narrow-sense imprimitive BCH codes over finite field 𝔽q2 (q ≥ 3 is an odd prime power). By a careful analysis on properties of cyclotomic cosets in defining set T of these BCH codes, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing BCH codes is determined to be much larger than the result given according to Aly et al. [S. A. Aly, A. Klappenecker and P. K. Sarvepalli, IEEE Trans. Inf. Theory 53, 1183 (2007)] for each different code length. Thus families of new nonbinary QECCs are constructed, and the newly obtained QECCs have larger distance than those in previous literature.
Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
Schuster, Stefan; Strauss, Roland; Götz, Karl G
2002-09-17
Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.
Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.
Hobara, H; Kobayashi, Y; Mochimaru, M
2015-06-01
The difference in world records set by able-bodied sprinters and amputee sprinters in the men's 100-m sprint is still approximately 1 s (as of 28 March 2014). Theoretically, forward velocity in a 100-m sprint is the product of step frequency and step length. The goal of this study was to examine the hypothesis that differences in the sprint performance of able-bodied and amputee sprinters would be due to a shorter step length rather than lower step frequency. Men's elite-level 100-m races with a total of 36 able-bodied, 25 unilateral and 17 bilateral amputee sprinters were analyzed from the publicly available internet broadcasts of 11 races. For each run of each sprinter, the average forward velocity, step frequency and step length over the whole 100-m distance were analyzed. The average forward velocity of able-bodied sprinters was faster than that of the other 2 groups, but there was no significant difference in average step frequency among the 3 groups. However, the average step length of able-bodied sprinters was significantly longer than that of the other 2 groups. These results suggest that the differences in sprint performance between 2 groups would be due to a shorter step length rather than lower step frequency. © Georg Thieme Verlag KG Stuttgart · New York.
Biomechanics of Distance Running.
ERIC Educational Resources Information Center
Cavanagh, Peter R., Ed.
Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…
Tronick, E Z; Fetters, Linda; Olson, Karen L; Chen, Yuping
2004-04-01
This study examined the effects of intrauterine cocaine exposure on the reaches of 19 exposed and 15 unexposed infants at 7 and 15 months using kinematic measures. Infants sat at a table and reached for a rattle, a toy doll, and a chair. Videotaped reaches were digitized using the Peak Performance system. Kinematic movement variables were extracted (e.g., reach duration, peak velocity, movement units, path length) and ratios computed (e.g., path length divided by number of movement units). Regardless of exposure status, reaches of older infants were faster, more direct, had fewer movement units, and covered more distance with the first movement unit. Exposed infants covered more distance per movement unit than unexposed infants, but there were no other significant differences. Reaches of exposed and unexposed infants were essentially similar. Importantly, reach parameters for these high-risk infants were similar to reach parameters for infants at lower social and biological risk. Copyright 2004 Wiley Periodicals, Inc.
High-speed phosphor-LED wireless communication system utilizing no blue filter
NASA Astrophysics Data System (ADS)
Yeh, C. H.; Chow, C. W.; Chen, H. Y.; Chen, J.; Liu, Y. L.; Wu, Y. F.
2014-09-01
In this paper, we propose and investigate an adaptively 84.44 to 190 Mb/s phosphor-LED visible light communication (VLC) system at a practical transmission distance. Here, we utilize the orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) modulation with power/bit-loading algorithm in proposed VLC system. In the experiment, the optimal analogy pre-equalization design is also performed at LED-Tx side and no blue filter is used at the Rx side for extending the modulation bandwidth from 1 MHz to 30 MHz. In addition, the corresponding free space transmission lengths are between 75 cm and 2 m under various data rates of proposed VLC. And the measured bit error rates (BERs) of < 3.8×10-3 [forward error correction (FEC) limit] at different transmission lengths and measured data rates can be also obtained. Finally, we believe that our proposed scheme could be another alternative VLC implementation in practical distance, supporting < 100 Mb/s, using commercially available LED and PD (without optical blue filtering) and compact size.
The locomotor activity of soccer players based on playing positions during the 2010 World Cup.
Soroka, Andrzej
2018-06-01
The aim of this study was to define the locomotor activity of footballer players during the 2010 World Cup and to assess what differences existed among different playing positions. Research was conducted using research material collected from the Castrol Performance Index, a kinematic game analysis system that records player movements during a game by use of semi-automatic cameras. A total of 599 players who participated in the championships were analyzed. The results were evaluated using one-way analysis of variance (ANOVA) and a post-hoc test that calculated the Honestly Significant Difference (HSD) in order to determine which mean values significantly differed among the player positions. It was found that midfielders covered on average the largest distance during a match (10,777.6 m, P<0.001) as well as performing the most locomotor activity at high and sprint intensities (2936.8 m and 108.4 m, respectively). Additionally, midfielders also spent the largest amount of time at performing at a high intensity (10.6%). Strikers also featured high levels of the above parameters; the total length of distance covered with high intensities was found to be on average 2586.7 m, the distance covered at sprint intensity was 105 m. The footballers, playing at the championship level feature excellent locomotor preparation. This fact is undoubtedly supported by the aerobic training of high intensity. Such training allows footballers to extend the distance they cover during the match, increase the intensity of locomotor activities and sprint speed distance.
The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.
Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian
2018-05-01
The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.
Design-of-experiments to Reduce Life-cycle Costs in Combat Aircraft Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan
2003-01-01
It is the purpose of this study to demonstrate the viability and economy of Design- of-Experiments (DOE), to arrive at micro-secondary flow control installation designs that achieve optimal inlet performance for different mission strategies. These statistical design concepts were used to investigate the properties of "low unit strength" micro-effector installation. "Low unit strength" micro-effectors are micro-vanes, set a very low angle-of incidence, with very long chord lengths. They are designed to influence the neat wall inlet flow over an extended streamwise distance. In this study, however, the long chord lengths were replicated by a series of short chord length effectors arranged in series over multiple bands of effectors. In order to properly evaluate the performance differences between the single band extended chord length installation designs and the segmented multiband short chord length designs, both sets of installations must be optimal. Critical to achieving optimal micro-secondary flow control installation designs is the understanding of the factor interactions that occur between the multiple bands of micro-scale vane effectors. These factor interactions are best understood and brought together in an optimal manner through a structured DOE process, or more specifically Response Surface Methods (RSM).
Specimen dimensions influence the measurement of material properties in tendon fascicles.
Legerlotz, Kirsten; Riley, Graham P; Screen, Hazel R C
2010-08-26
Stress, strain and modulus are regularly used to characterize material properties of tissue samples. However, when comparing results from different studies it is evident the reported material properties, particularly failure strains, vary hugely. The aim of our study was to characterize how and why specimen length and cross-sectional area (CSA) appear to influence failure stress, strain and modulus in fascicles from two functionally different tendons. Fascicles were dissected from five rat tails and five bovine foot extensors, their diameters determined by a laser micrometer, and loaded to failure at a range of grip-to-grip lengths. Strain to failure significantly decreased with increasing in specimen length in both rat and bovine fascicles, while modulus increased. Specimen length did not influence failure stress in rat tail fascicles, although in bovine fascicles it was significantly lower in the longer 40 mm specimens compared to 5 and 10mm specimens. The variations in failure strain and modulus with sample length could be predominantly explained by end-effects. However, it was also evident that strain fields along the sample length were highly variable and notably larger towards the ends of the sample than the mid-section even at distances in excess of 5mm from the gripping points. Failure strain, stress and modulus correlated significantly with CSA at certain specimen lengths. Our findings have implications for the mechanical testing of tendon tissue: while it is not always possible to control for fascicle length and/or CSA, these parameters have to be taken into account when comparing samples of different dimensions. 2010 Elsevier Ltd. All rights reserved.
The effect of varying linker length on ion-transport properties in polymeric ionic liquids
NASA Astrophysics Data System (ADS)
Keith, Jordan; Mogurampelly, Santosh; Wheatle, Bill; Ganesan, Venkat
We report results of atomistic molecular dynamics simulations on polymerized 1-butyl-3-(n-alkyl)imidazolium ionic liquids with PF6- counterions. Consistent with experimental observations, we observe that the mobility of the PF6- ions increases with increasing n-alkyl linker length. Analysis of our results suggests that the motion of PF6- ions is driven by intermolecular ion hopping between chains, which in turn is influenced by ion-pair coordination numbers and intermolecular ionic separation distances. With increasing linker length, we observe 1) the anions coordinating less closely with cations and 2) intermolecular hopping distances decreasing.
Swelling of biological and semiflexible polyelectrolytes.
Dobrynin, Andrey V; Carrillo, Jan-Michael Y
2009-10-21
We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).
Homogeneity of small-scale earthquake faulting, stress, and fault strength
Hardebeck, J.L.
2006-01-01
Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M < ??? 3) earthquakes in southern California, the east San Francisco Bay, and the aftershock sequence of the 1989 Loma Prieta earthquake. I quantify the degree of mechanism variability on a range of length scales by comparing the hypocentral disctance between every pair of events and the angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance ??2 km) tend to have very similar focal mechanisms, often identical to within the 1-sigma uncertainty of ???25??. This observed similarity implies that in small volumes of crust, while faults of many orientations may or may not be present, only similarly oriented fault planes produce earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.
Relationship between extrinsic factors and the acromio-humeral distance.
Mackenzie, Tanya Anne; Herrington, Lee; Funk, Lenard; Horsley, Ian; Cools, Ann
2016-06-01
Maintenance of the subacromial space is important in impingement syndromes. Research exploring the correlation between biomechanical factors and the subacromial space would be beneficial. To establish if relationship exists between the independent variables of scapular rotation, shoulder internal rotation, shoulder external rotation, total arc of shoulder rotation, pectoralis minor length, thoracic curve, and shoulder activity level with the dependant variables: AHD in neutral, AHD in 60° arm abduction, and percentage reduction in AHD. Controlled laboratory study. Data from 72 male control shoulders (24.28years STD 6.81 years) and 186 elite sportsmen's shoulders (25.19 STD 5.17 years) were included in the analysis. The independent variables were quantified and real time ultrasound was used to measure the dependant variable acromio-humeral distance. Shoulder internal rotation and pectoralis minor length, explained 8% and 6% respectively of variance in acromio-humeral distance in neutral. Pectoralis minor length accounted for 4% of variance in 60° arm abduction. Total arc of rotation, shoulder external rotation range, and shoulder activity levels explained 9%, 15%, and 16%-29% of variance respectively in percentage reduction in acromio-humeral distance during arm abduction to 60°. Pectorals minor length, shoulder rotation ranges, total arc of shoulder rotation, and shoulder activity levels were found to have weak to moderate relationships with acromio-humeral distance. Existence and strength of relationship was population specific and dependent on arm position. Relationships only accounted for small variances in AHD indicating that in addition to these factors there are other factors involved in determining AHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Near Work Related Parameters and Myopia in Chinese Children: the Anyang Childhood Eye Study
Li, Shi-Ming; Li, Si-Yuan; Kang, Meng-Tian; Zhou, Yuehua; Liu, Luo-Ru; Li, He; Wang, Yi-Peng; Zhan, Si-Yan; Gopinath, Bamini; Mitchell, Paul; Wang, Ningli
2015-01-01
Purpose To examine the associations of near work related parameters with spherical equivalent refraction and axial length in Chinese children. Methods A total of 1770 grade 7 students with mean age of 12.7 years were examined with cycloplegic autorefraction and axial length. Questions were asked regarding time spent in near work and outdoors per day, and near work related parameters. Results Multivariate models revealed the following associations with greater odds of myopia: continuous reading (> 45min), odds ratio [OR], 1.4; 95% confidence interval [CI], 1.1-1.8; close television viewing distance (≤ 3m), OR, 1.7; 95% CI, 1.2-2.3; head tilt when writing, OR, 1.3; 95% CI, 1.1-1.7, and desk lighting using fluorescent vs. incandescent lamp, OR, 1.5; 95% CI, 1.2-2.0. These factors, together with close reading distance and close nib-to-fingertip distance were significantly associated with greater myopia (P<0.01). Among near work activities, only reading more books for pleasure was significantly associated with greater myopia (P=0.03). Television viewing distance (≤ 3 m), fluorescent desk light, close reading distance (≤20 cm) and close nib-to-fingertip distance (≤ 2 cm) were significantly associated with longer axial length (P<0.01). Reading distance, desk light, and reading books for pleasure had significant interaction effects with parental myopia. Conclusions Continuous reading, close distances of reading, television viewing and nib-to-fingertip, head tilt when writing, reading more books for pleasure and use of fluorescent desk light were significantly associated with myopia in 12-year-old Chinese children, which indicates that visual behaviors and environments may be important factors mediating the effects of near work on myopia. PMID:26244865
An Optical Wavefront Sensor Based on a Double Layer Microlens Array
Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John
2011-01-01
In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution. PMID:22346643
Bhat, Rashi; Moiz, Jamal Ali
2013-01-01
Purpose The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. Methods A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. Results There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Conclusion Field hockey players and football players did not differ in terms of dynamic balance. PMID:24427482
Bhat, Rashi; Moiz, Jamal Ali
2013-09-01
The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Field hockey players and football players did not differ in terms of dynamic balance.
Prevalence and Length of the Anterior Loop of the Inferior Alveolar Nerve in Iranians.
Moghddam, Maryam Rastegar; Davoudmanesh, Zeinab; Azizi, Nasim; Rakhshan, Vahid; Shariati, Mahsa
2017-10-01
The anterior loop of the inferior alveolar nerve is a sensitive anatomical feature that should be taken into account during installation of dental implants anterior to the mental foramen. This study was conducted to explore the controversy regarding prevalence and length. A total of 452 mandible quadrants of 234 patients (age: 50.1 ± 13.3 years, 113 males, 121 females) were studied using cone-beam computerized tomography. After reconstructing axial, frontal, and sagittal slices, the region between the most anterior point on the mental foramen and the most anterior part of the mandibular nerve was inspected for signs of anterior loop presence. If positive, the length of the anterior loop was measured in mm as the distance between the anterior border of mental foramen and the anterior border of the loop. Prevalence and length of the anterior loop were compared statistically between sexes and age groups. The anterior loop was observed in 106 quadrants (23.5% of 451 quadrants) of 95 patients (40.6% of 234 patients), of whom 11 had bilateral anterior loops. Prevalences were similar in males (41%) and females (39%, chi-square P =.791). The mean anterior loop length was 2.77 ± 1.56 mm (95% CI: 2.5-3.1 mm), without significant sex (regression beta = -0.159, P = .134) or age (beta = -0.059, P = .578) differences. The anterior loop might exist in about 40% of patients, regardless of their gender. The mean safe anterior distance from the anterior loop is about 3 mm + (2.5-3.1 mm) = 5.5-6.1 mm, regardless of age.
Open ocean Internal Waves, Namibia Coast, Africa.
1990-12-10
These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.
Open ocean Internal Waves, Namibia Coast, Africa.
NASA Technical Reports Server (NTRS)
1990-01-01
These open ocean Internal Waves were seen off the Namibia Coast, Africa (23.0S, 14.0E). The periodic and regularly spaced sets of internal waves most likely coincide with tidal periods about 12 hours apart. The wave length (distance from crest to crest) varies between 1.5 and 5.0 miles and the crest lengths stretch across and beyond the distance of the photo. The waves are intersecting the Namibia coastline at about a 30 degree angle.
NASA Astrophysics Data System (ADS)
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka
2018-03-01
We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other hand, have a rather narrow spectrum which is less sensitive to the length of the wall. These findings shed light to the dynamical criticality of the random-field Ising model at its lower critical dimension; they can be relevant to applications of the dynamics of injected domain walls in two-dimensional nanowires and ferromagnetic films.
Morphometric characteristics of caudal cranial nerves at petroclival region in fetuses.
Ozdogmus, Omer; Saban, Enis; Ozkan, Mazhar; Yildiz, Sercan Dogukan; Verimli, Ural; Cakmak, Ozgur; Arifoglu, Yasin; Sehirli, Umit
2016-06-01
Morphometric measurements of cranial nerves in posterior cranial fossa of fetus cadavers were carried out in an attempt to identify any asymmetry in their openings into the cranium. Twenty-two fetus cadavers (8 females, 14 males) with gestational age ranging between 22 and 38 weeks (mean 30 weeks) were included in this study. The calvaria were removed, the brains were lifted, and the cranial nerves were identified. The distance of each cranial nerve opening to midline and the distances between different cranial nerve openings were measured on the left and right side and compared. The mean clivus length and width were 21.2 ± 4.4 and 13.2 ± 1.5 mm, respectively. The distance of the twelfth cranial nerve opening from midline was shorter on the right side when compared with the left side (6.6 ± 1.1 versus 7.1 ± 0.8 mm, p = 0.038). Openings of other cranial nerves did not show such asymmetry with regard to their distance from midline, and the distances between different cranial nerves were similar on the left and right side. Cranial nerves at petroclival region seem to show minimal asymmetry in fetuses.
Minnesota wolf ear lengths as possible indicators of taxonomic differences
Mech, L. David
2011-01-01
Genetic findings suggest that 2 types of wolves, Canis lupus (Gray Wolf) and C. lycaon (Eastern Wolf), and/or their hybrids occupy Minnesota (MN), and this study examines adult wolf ear lengths as a possible distinguisher between these two. Photographic evidence suggested that the Eastern Wolf possesses proportionately longer ears than Gray Wolves. Ear lengths from 22 northwestern MN wolves from the early 1970s and 22 Alaskan wolves were used to represent Gray Wolves, and the greatest length of the sample (12.8 cm) was used as the least length to demarcate Eastern Wolf from Gray Wolf influence in the samples. Twenty-three percent of 112 adult wolves from Algonquin Park in eastern Ontario and 30% of 106 recent adult wolves in northeastern MN possessed ears >12.8 cm. The northeastern MN sample differed significantly from that of current and past northwestern MN wolves. Ear-lengths of wolves in the eastern half of the northeastern MN wolf population were significantly longer than those in the western half of that study area, even though the mean distance between the 2 areas was only 40 km, and the mean length of my 2004–2009 sample was significantly longer than that of 1999–2003. These findings support the hypothesis that Eastern Wolves tend to possess longer ears than do Gray Wolves and suggest a dynamic hybridization process is still underway in MN.
Thompson, S A; Dummer, P M
1997-07-01
The aim of this study was to determine the shaping ability of NT Engine and McXim nickel-titanium rotary instruments in simulated root canals. In all, 40 canals consisting of four different shapes in terms of angle and position of curvature were prepared by a combination of NT Engine and McXim instruments using the technique recommended by the manufacturer. Part 1 of this two-part report describes the efficacy of the instruments in terms of preparation time, instrument failure, canal blockages, loss of canal length and three-dimensional canal form. Overall, the mean preparation time for all canals was 6.01 min, with canal shape having a significant effect (P < 0.01) on the speed of preparation. One instrument fractured and only four instruments deformed, with most of the failures occurring in canals with curves which began 12 mm from the orifice, that is, in short acute curves. None of the canals became blocked with debris. Following preparation, 20 canals retained their original working length but 19 lost length and one gained in length; there were significant differences (P < 0.05) between the canal shapes in terms of mean loss of distance and in the category of distance change. Apical stops as determined from intracanal impressions were present in 37 of the canals; 16 were judged to be of good quality and 21 of poor quality. The canals were found to be smooth in the apical half of the canal in 33 specimens and in the coronal half of 39 specimens. All canals had good taper characteristics and 35 had good flow characteristics. Under the conditions of this study, NT Engine and McXim instruments prepared canals rapidly, with few deformations, no canal blockages and with minimal change in working length. The three-dimensional form of the canals demonstrated good flow and taper characteristics.
High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Furumura, T.
2013-12-01
In many parts of the ocean high-frequency seismic energy is carried to very great distances from the source. The onsets of the P and S energy travel with speeds characteristic of the mantle lithosphere. The complex and elongated waveforms of such Po and So waves and their efficient transport of high frequencies (>10 Hz) have proved difficult to explain in full. Much of the character can be captured with stratified models, provided a full allowance is made for reverberations in the ocean and the basal sediments. The nature of the observations implies a strong scattering environment. By analysing the nature of the long-distance propagation we are able to identify the critical role played by shallow reverberations in the water and sediments, and the way that these link with propagation in a heterogeneous mantle. 2-D finite difference modelling to 10 Hz for ranges over 1000 km demonstrates the way in which heterogeneity shapes the wavefield, and the way in which the properties of the lithosphere and asthenosphere control the nature of the propagation processes. The nature of the Po and So phases are consistent with pervasive heterogeneity in the oceanic lithosphere with a horizontal correlation length (˜10 km) much larger than the vertical correlation length (˜0.5 km).
Ahn, A N; Monti, R J; Biewener, A A
2003-01-01
Many studies examine sarcomere dynamics in single fibres or length–tension dynamics in whole muscles in vivo or in vitro, but few studies link the various levels of organisation. To relate data addressing in vitro muscle segment behaviour with in vivo whole muscle behaviour during locomotion, we measured in vivo strain patterns of muscle segments using three sonomicrometry crystals implanted along a fascicle of the semimembranosus muscle in the American toad (Bufo americanus; n = 6) during hopping. The centre crystal emitted an ultrasonic signal, while the outer crystals received the signal allowing the instantaneous measurement of lengths from two adjacent muscle segments. On the first day, we recorded from the central and distal segments. On the second day of recordings, the most distal crystal was moved to a proximal position to record from a proximal segment and the same central segment. When the toads hopped a distance of two body lengths, the proximal and central segments strained −15.1 ± 6.1 and −14.0 ± 4.9 % (i.e. shortening), respectively. Strain of the distal segment, however, was significantly lower and more variable in pattern, often lengthening before shortening during a hop. From rest length, the distal segment initially lengthened by 2.6 ± 2.0 % before shortening by 6.5 ± 3.2 % at the same hop distance. Under in vitro conditions, the central segment always shortened more than the distal segment, except when passively cycled, during which the segments strained similarly. When the whole muscle was cycled sinusoidally and stimulated phasically in vitro, the two adjacent segments strained in opposite directions over much (up to 34 %) of the cycle. These differences in strain amplitude and direction imply that two adjacent segments can not only produce and/or absorb varying amounts of mechanical energy, but can also operate on different regions of their force–length and force–velocity relationships when activated by the same neural signal. Understanding regional differences in contractile dynamics within muscles is therefore important to linking our understanding of sarcomere behaviour with whole muscle behaviour during locomotion. PMID:12717006
Li, Jianying; Fok, Alex S L; Satterthwaite, Julian; Watts, David C
2009-05-01
The aim of this study was to measure the full-field polymerization shrinkage of dental composites using optical image correlation method. Bar specimens of cross-section 4mm x 2mm and length 10mm approximately were light cured with two irradiances, 450 mW/cm(2) and 180 mW/cm(2), respectively. The curing light was generated with Optilux 501 (Kerr) and the two different irradiances were achieved by adjusting the distance between the light tip and the specimen. A single-camera 2D measuring system was used to record the deformation of the composite specimen for 30 min at a frequency of 0.1 Hz. The specimen surface under observation was sprayed with paint to produce sufficient contrast to allow tracking of individual points on the surface. The curing light was applied to one end of the specimen for 40s during which the painted surface was fully covered. After curing, the cover was removed immediately so that deformation of the painted surface could be recorded by the camera. The images were then analyzed with specialist software and the volumetric shrinkage determined along the beam length. A typical shrinkage strain field obtained on a specimen surface was highly non-uniform, even at positions of constant distance from the irradiation surface, indicating possible heterogeneity in material composition and shrinkage behavior in the composite. The maximum volumetric shrinkage strain of approximately 1.5% occurred at a subsurface distance of about 1mm, instead of at the irradiation surface. After reaching its peak value, the shrinkage strain then gradually decreased with increasing distance along the beam length, before leveling off to a value of approximately 0.2% at a distance of 4-5mm. The maximum volumetric shrinkage obtained agreed well with the value of 1.6% reported by the manufacturer for the composite examined in this work. Using irradiance of 180 mW/cm(2) resulted in only slightly less polymerization shrinkage than using irradiance of 450 mW/cm(2). Compared to the other measurement methods, the image correlation method is capable of producing full-field information about the polymerization shrinkage behavior of dental composites.
The morphology and electrical geometry of rat jaw-elevator motoneurones.
Moore, J A; Appenteng, K
1991-01-01
1. The aim of this work was to quantify both the morphology and electrical geometry of the dendritic trees of jaw-elevator motoneurones. To do this we have made intracellular recordings from identified motoneurones in anaesthetized rats, determined their membrane properties and then filled them with horseradish peroxidase by ionophoretic ejection. Four neurones were subsequently fully reconstructed and the lengths and diameters of all the dendritic segments measured. 2. The mean soma diameter was 25 microns and values of mean dendritic length for individual cells ranged from 514 to 773 microns. Dendrites branched on average 9.1 times to produce 10.2 end-terminations. Dendritic segments could be represented as constant diameter cylinders between branch points. Values of dendritic surface area ranged from 1.08 to 2.52 x 10(5) microns 2 and values of dendritic to total surface area from 98 to 99%. 3. At branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was exactly 1.0. Therefore the individual branch points could be collapsed into a single cylinder. Furthermore for an individual dendrite the diameter of this cylinder remained constant with increasing electrical distance from the soma. Thus individual dendrites can be represented electrically as cylinders of constant diameter. 4. However dendrites of a given neurone terminated at different electrical distances from the soma. The equivalent-cylinder diameter of the combined dendritic tree remained constant over the proximal half and then showed a pronounced reduction over the distal half. The reduction in equivalent diameter could be ascribed to the termination of dendrites at differing electrical distances from the soma. Therefore the complete dendritic tree of these motoneurones is best represented as a cylinder over the proximal half of their electrical length but as a cone over the distal half. PMID:1804966
Distance Education at Arm's Length: Outsourcing of Distance Education Marking.
ERIC Educational Resources Information Center
Smith, Erica; Coombe, Kennece
Two research projects focused on use of casual markers (graders) for correcting and grading distance education (DE) students' work. A Charles Sturt University project convened focus groups of DE students, casual DE markers, and lecturers who "managed" markers to uncover concerns. University of South Australia research focused on pedagogical issues…
Term Length as an Indicator of Attrition in Online Learning
ERIC Educational Resources Information Center
Diaz, David; Cartnal, Ryan
2006-01-01
Distance education cannot escape comparisons to traditional classes, and critics of distance education frequently point to the higher drop rate in distance education as evidence of its lower educational quality. While David Diaz and Ryan Cartnal note that this conclusion is a debatable one, they acknowledge that reducing drop rates in online…
Vanden Broeck, An; Van Landuyt, Wouter; Cox, Karen; De Bruyn, Luc; Gyselings, Ralf; Oostermeijer, Gerard; Valentin, Bertille; Bozic, Gregor; Dolinar, Branko; Illyés, Zoltán; Mergeay, Joachim
2014-07-07
Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.
2014-01-01
Background Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. Results We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) ‘outlier’ loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. Conclusions The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe. PMID:24998243
Lopilly Park, H-Y; Jung, K I; Park, C K
2012-09-01
To investigate serial changes of the Ahmed glaucoma valve (AGV) implant tube in the anterior chamber by anterior segment optical coherence tomography (AS-OCT). Patients who had received AGV implantation without complications (n=48) were included in this study. Each patient received follow-up examinations including AS-OCT at days 1 and 2, week 1, and months 1, 3, 6, and 12. Tube parameters were defined to measure its length and position. The intracameral length of the tube was from the tip of the bevel-edged tube to the sclerolimbal junction. The distance between the extremity of the tube and the anterior iris surface (T-I distance), and the angle between the tube and the posterior endothelial surface of the cornea (T-C angle) were defined. Factors that were related to tube parameters were analysed by multiple regression analysis. The mean change in tube length was -0.20 ± 0.17 mm, indicating that the tube length shortened from the initial inserted length. The mean T-I distance change was 0.11 ± 0.07 mm and the mean T-C angle change was -6.7 ± 5.6°. Uveitic glaucoma and glaucoma following penetrating keratoplasty showed the most changes in tube parameters. By multiple regression analysis, diagnosis of glaucoma including uveitic glaucoma (P=0.049) and glaucoma following penetrating keratoplasty (P=0.008) were related to the change of intracameral tube length. These results suggest that the length and position of the AGV tube changes after surgery. The change was prominent in uveitic glaucoma and glaucoma following penetrating keratoplasty.
Ennen, Joshua R.; Scott, A. Floyd
2013-01-01
Little is known about the movement behavior of the stripe-necked musk turtle, Sternotherus minor peltifer. Using radiotelemetry, we calculated mean (± SD) home range length, which was 341.4 ± 90.3 m, with home range length not differing between the sexes (males, 335 ± 194 m; females, 346 ± 79.5 m). Sternotherus m. peltifer were active in every month of the year but decreased their movement distance and frequency between December and March; during nonwinter and winter periods, individuals used limestone bluffs most often.
Wei, Yinjuan; Xu, Lingxiao; Song, Hui
2017-08-01
The aim of the present study was to evaluate the effects of femtosecond laser-assisted cataract surgery (FLACS) and phacoemulsification on corneal biomechanics using corneal visualization Scheimpflug technology. The medical records of 50 eyes from 50 patients who received phacoemulsification and intraocular lens implantation because of age-related factors between June 2014 and September 2014 were retrospectively analyzed. FLACS was used in 12 eyes (FLACS group), and conventional phacoemulsification in 38 eyes (PHACO group). The evaluation of corneal biomechanical parameters included the first/second applanation time (A-time1/A-time2), the first/second applanation length (A-length1/A-length2), corneal velocity during the first/second applanation moment (Vin/Vout), highest concavity time, highest concavity-radius (HC-radius), peak distance (PD), deformation amplitude (DA), central corneal thickness (CCT), and intraocular pressure (IOP). The differences in A-length1/A-length2, IOP, CCT, PD, and DA were significant in the PHACO group between those before, 1 week after, and 1 month after surgery. No significant differences in corneal biomechanical parameters were found between those at 1 month after surgery and before surgery. There were significant differences in IOP and CCT in the FLACS group between those before, 1 week after, and 1 month after surgery. There were no significant differences in the other corneal biomechanical parameters. No significant differences were found in corneal biomechanical parameters between those 1 month after surgery and before surgery. There were significant differences in A-length1/A-length2, CCT, PD, and DA between the two groups at 1 week after surgery. There were no significant differences in corneal biomechanical parameters between the two groups at 1 month after surgery. In conclusion, the effect of FLACS on corneal biomechanics is smaller than that of phacoemulsification. The corneal biomechanical parameters are restored to preoperative levels with the healing of the incision, and the reduction of swelling of the tissue near the incision.
Scaling analysis of the non-Abelian quasiparticle tunneling in Z}}_k FQH states
NASA Astrophysics Data System (ADS)
Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang
2018-06-01
Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge–edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read–Rezayi states for and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.
Mei, Jiangyuan; Liu, Meizhu; Wang, Yuan-Fang; Gao, Huijun
2016-06-01
Multivariate time series (MTS) datasets broadly exist in numerous fields, including health care, multimedia, finance, and biometrics. How to classify MTS accurately has become a hot research topic since it is an important element in many computer vision and pattern recognition applications. In this paper, we propose a Mahalanobis distance-based dynamic time warping (DTW) measure for MTS classification. The Mahalanobis distance builds an accurate relationship between each variable and its corresponding category. It is utilized to calculate the local distance between vectors in MTS. Then we use DTW to align those MTS which are out of synchronization or with different lengths. After that, how to learn an accurate Mahalanobis distance function becomes another key problem. This paper establishes a LogDet divergence-based metric learning with triplet constraint model which can learn Mahalanobis matrix with high precision and robustness. Furthermore, the proposed method is applied on nine MTS datasets selected from the University of California, Irvine machine learning repository and Robert T. Olszewski's homepage, and the results demonstrate the improved performance of the proposed approach.
Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C
2005-01-01
This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.
Characterization of real objects by an active electrolocation sensor
NASA Astrophysics Data System (ADS)
Metzen, Michael G.; Al Ghouz, Imène; Krueger, Sandra; Bousack, Herbert; von der Emde, Gerhard
2012-04-01
Weakly electric fish use a process called 'active electrolocation' to orientate in their environment and to localize objects based on their electrical properties. To do so, the fish discharge an electric organ which emits brief electrical current pulses (electric organ discharge, EOD) and in return sense the generated electric field which builds up surrounding the animal. Caused by the electrical properties of nearby objects, fish measure characteristic signal modulations with an array of electroreceptors in their skin. The fish are able to gain important information about the geometrical properties of an object as well as its complex impedance and its distance. Thus, active electrolocation is an interesting feature to be used in biomimetic approaches. We used this sensory principle to identify different insertions in the walls of Plexiglas tubes. The insertions tested were composed of aluminum, brass and graphite in sizes between 3 and 20 mm. A carrier signal was emitted and perceived with the poles of a commercial catheter for medical diagnostics. Measurements were performed with the poles separated by 6.3 to 55.3 mm. Depending on the length of the insertion in relation to the sender-receiver distance, we observed up to three peaks in the measured electric images. The first peak was affected by the material of the insertion, while the distance between the second and third peak strongly correlated with the length of the insertion. In a second experiment we tested whether various materials could be detected by using signals of different frequency compositions. Based on their electric images we were able to discriminate between objects having different resistive properties, but not between objects of complex impedances.
Michalakis, Y.; Veuille, M.
1996-01-01
Eleven genes distributed along the Drosophila melanogaster chromosome 2 and showing exonic tandem repeats of glutamine codons (CAG or CAA) were surveyed for length variation in a sample of four European and African populations. Only one gene was monomorphic. Eight genes were polymorphic in all populations, with a total number of alleles varying between five and 12 for 120 chromosomes. The average heterozygozity per locus and population was 0.41. Selective neutrality in length variation could not be rejected under the assumptions of the infinite allele model. Significant population subdivision was found though no geographical pattern emerged, all populations being equally different. Significant linkage disequilibrium was found in four out of seven cases where the genetic distance between loci was <1 cM and was negligible when the distance was larger. There is evidence that these associations were established after the populations separated. An unexpected result was that variation at each locus was independent of the coefficient of exchange, although the latter ranged from zero to the relatively high value of 6.7%. This would indicate that background selection and selective hitchhiking, which are thought to affect levels of nucleotide substitution polymorphism, have no effect on trinucleotide repeat variation. PMID:8844158
Wolfe, C J; Haygood, M G
1991-08-01
Restriction fragment length polymorphisms within the lux and 16S ribosomal RNA gene regions were used to compare unculturable bacterial light organ symbionts of several anomalopid fish species. The method of Nei and Li (1979) was used to calculate phylogenetic distance from the patterns of restriction fragment lengths of the luxA and 16S rRNA regions. Phylogenetic trees constructed from each distance matrix (luxA and 16S rDNA data) have similar branching orders. The levels of divergence among the symbionts, relative to other culturable luminous bacteria, suggests that the symbionts differ at the level of species among host fish genera. Symbiont relatedness and host geographic location do not seem to be correlated, and the symbionts do not appear to be strains of common, free-living, luminous bacteria. In addition, the small number of hybridizing fragments within the 16S rRNA region of the symbionts, compared with that of the free-living species, suggests a decrease in copy number of rRNA operons relative to free-living species. At this level of investigation, the symbiont phylogeny is consistent with the proposed phylogeny of the host fish family and suggests that each symbiont strain coevolved with its host fish species.
Zhao, Jiangsan; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A.; Nakhforoosh, Alireza
2017-01-01
Abstract Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. PMID:28168270
The influence of the lateral pharyngeal wall anatomy on snoring and sleep apnoea.
Korhan, Ibrahim; Gode, Sercan; Midilli, Rasit; Basoglu, Ozen Kacmaz
2015-02-01
To elucidate the variations of the lateral pharyngeal wall anatomy on physical examination and to assess the clinical importance of the examination of the lateral pharyngeal wall on the presence and severity of obstructive sleep apnoea syndrome. The cross-sectional study was conducted at Ege University Medical School, Izmir, Turkey, between May 2010 and April 2011. The patients were divided into four equal groups: Group 1--snoring without apnoea (age 20-40); Group 2--snoring without apnoea (age 40-60); Group 3--apnoea-hypopnoea index < 5/hr; Group 4: apnoea-hypopnoea index > 30/hr. Calibrated oropharynx pictures were taken. Distance between palatoglossal and palatopharyngeal arches, height of palatoglossal and palatopharyngeal arches, uvula width, uvula length and distance between tonsils were measured. SPSS 17 was used for statistical analysis. Of the 80 patients in the study, 44 (55%) were men. Mean distance between palatopharyngeal and palatoglossal arches were 1.55 ± 0.34 cm and 2.70 ± 0.43 cm respectively. Mean height of palatopharyngeal and palatoglossal arches were 0.60 ± 0.21 cm and 1.37 ± 0.36 cm respectively (p > 0.05). Mean uvula width and uvula length were 0.80 ± 0.12cm and 1.25 ± 0.27 cm respectively (p > 0.05). Mean distance between tonsils was 2.24 ± 0.56 cm (p > 0.05). Distance between palatopharyngeal arches was significantly different between groups 3 and 4 (p < 0.05). Palatopharyngeal arch anatomy was found to be significantly associated with obstructive sleep apnoea syndrome severity, especially in patients with normal or small tonsil size. Patients with the palatopharyngeal arches, which narrow the oropharyngeal inlet more than the tonsils, should further be investigated with polysomnography.
Polymer Uncrossing and Knotting in Protein Folding, and Their Role in Minimal Folding Pathways
Mohazab, Ali R.; Plotkin, Steven S.
2013-01-01
We introduce a method for calculating the extent to which chain non-crossing is important in the most efficient, optimal trajectories or pathways for a protein to fold. This involves recording all unphysical crossing events of a ghost chain, and calculating the minimal uncrossing cost that would have been required to avoid such events. A depth-first tree search algorithm is applied to find minimal transformations to fold , , , and knotted proteins. In all cases, the extra uncrossing/non-crossing distance is a small fraction of the total distance travelled by a ghost chain. Different structural classes may be distinguished by the amount of extra uncrossing distance, and the effectiveness of such discrimination is compared with other order parameters. It was seen that non-crossing distance over chain length provided the best discrimination between structural and kinetic classes. The scaling of non-crossing distance with chain length implies an inevitable crossover to entanglement-dominated folding mechanisms for sufficiently long chains. We further quantify the minimal folding pathways by collecting the sequence of uncrossing moves, which generally involve leg, loop, and elbow-like uncrossing moves, and rendering the collection of these moves over the unfolded ensemble as a multiple-transformation “alignment”. The consensus minimal pathway is constructed and shown schematically for representative cases of an , , and knotted protein. An overlap parameter is defined between pathways; we find that proteins have minimal overlap indicating diverse folding pathways, knotted proteins are highly constrained to follow a dominant pathway, and proteins are somewhere in between. Thus we have shown how topological chain constraints can induce dominant pathway mechanisms in protein folding. PMID:23365638
Phylogenetic Analysis of Genome Rearrangements among Five Mammalian Orders
Luo, Haiwei; Arndt, William; Zhang, Yiwei; Shi, Guanqun; Alekseyev, Max; Tang, Jijun; Hughes, Austin L.; Friedman, Robert
2015-01-01
Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes. With a marsupial outgroup, the gene order tree supported a topology in which Rodentia fell outside the cluster of Primates, Carnivora, Perissodactyla, and Artiodactyla. Results of breakpoint reuse rate and synteny block length analyses were consistent with the prediction of random breakage model, which provided a diagnostic test to support use of gene order as an appropriate phylogenetic character in this study. We the influence of rate differences among lineages and other factors that may contribute to different resolutions of mammalian ordinal relationships by different methods of phylogenetic reconstruction. PMID:22929217
Driver responses to differing urban work zone configurations.
Morgan, J F; Duley, A R; Hancock, P A
2010-05-01
This study reports the results of a simulator-based assessment of driver response to two different urban highway work zone configurations. One configuration represented an existing design which was contrasted with a second configuration that presented a reduced taper length prototype work zone design. Twenty-one drivers navigated the two different work zones in two different conditions, one with and one without a lead vehicle; in this case a bus. Measures of driver speed, braking, travel path, and collision frequency were recorded. Drivers navigated significantly closer to the boundary of the work area in the reduced taper length design. This proximity effect was moderated by the significant interaction between lead vehicle and taper length and such interactive effects were also observed for driver speed at the end of the work zone and the number of collisions observed within the work zone itself. These results suggest that reduced taper length poses an increase in risk to both drivers and work zone personnel, primarily when driver anticipation is reduced by foreshortened viewing distances. Increase in such risk is to a degree offset by the reduction of overall exposure to the work zone that a foreshortened taper creates. The benefits and limitations to a simulation-based approach to the assessment and prediction of driver behavior in different work zone configurations are also discussed. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Parissis, Haralabos; Soo, Alan; Leotsinidis, Michalis; Dougenis, Dimitrios
2011-08-09
Ideally the length of the Intraaortic balloon membrane (22-27.5 cm) should match to the distance from the left subclavian artery (LSA) to the celiac axis (CA), (LSA - CA). By being able to estimate this distance, better guidance regarding IABP sizing could be recommended. Internal aortic lengths and demographic values were collected from a series of 40 cadavers during autopsy. External somatometric measurements were also obtained.There were 23 males and 17 females. The mean age was 73.1+/-13.11 years, weight 56.75+/-12.51 kg and the height 166+/-9.81 cm. Multiple regression analysis revealed the following predictor variables (R2 > 0.70) for estimating the length from LSA to CA: height (standardized coefficient (SRC) = 0.37, p = 0.004), age (SRC = 0.35, p < 0.001), sex (SRC = 0.21, p = 0.088) and the distance from the jugular notch to trans-pyloric plane (SRC = 0.61, p < 0.001). If LSA-CA < 21.9 cm use 34 cc IABP & if LSA-CA > 26.3 cm use 50 cc IABP. However if LSA-CA = 21.9- 26.3 cm use 40 cc, but be aware that it could be "aortic length-balloon membrane length" mismatching. Routinely, IABP size selection is being dictated by the patient's height. Inevitably, this leads to pitfalls. We reported a mathematical model of accurate intraaortic balloon sizing, which is easy to be applied and has a high predictive value.
[Case-control study on methods of limb length control in hip arthroplasty].
Zhang, Yang-yang; Zuo, Jian-lin; Gao, Zhong-li
2016-02-01
To introduce a new measuring tool for measuring postoperative limb length exactly, and to provide a convenient and effective method to control limb length after total hip replacement. From January 2013 to September 2014, 102 patients undergoing primary unilateral hip replacement were divided into two groups: experimental group and control group. There were 51 patients in the experimental group, including 25 males and 26 females, ranging in age from 37 to 92 years old, with an average of 60.41 years old. The patients in experimental group were treated with new method to control limb length. Other 51 patients in the control group, including 27 males and 24 females, ranging in age from 35 to 87 years old, with an average of 61.00 years old. The patients in the control group were treated with normal methods such as shuck test or limb touching. All the patients were operated by the same experienced surgeon. In the experimental group,total hip arthroplasties (THA) were performed on 35 patients with avascular necrosis of the femoral head or femoral neck fracture, and 16 patients were treated with hemiarthroplasty (HA). In the control group, 38 patients received THA and 13 patients received HA. On the anterior-posterior X-ray radiograph, several indexes were measured as follows: the distance of bilateral femoral offset (a), the height from tip of great trochanter to the rotation center of the femoral head (b) and the vertical distance between the top of the minor trochanter and the two tear drops line (c). The leg length discrepancy can be assessed with three parameters as follows: d1, the absolute value of the difference between the bilateral a values; d2, the difference between the bilateral b values; d3, the difference between the bilateral c values. The SPSS 21.0 was applied for the statistical analysis. In the experimental and control groups, d1 were 4.49 mm and 7.32 mm (P = 0.013); d2 were 2.37 mm and 4.32 mm (P = 0.033); d3 were 3.32 mm and 6.08 mm (P = 0.031). The values of d1, d2 and d3 in the experimental group were significant smaller than those in the control group. The new measuring tool and method can be used to control the limb length and offset effectively during operation.
Long-distance entanglement and quantum teleportation in XX spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos Venuti, L.; Giampaolo, S. M.; CNR-INFM Coherentia, Napoli
2007-11-15
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: (i) open, dimerized XX chains, and (ii) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model (i) supports true long-distance entanglement at zero temperature, while model (ii) supportsmore » 'quasi-long-distance' entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model (i) and algebraic in model (ii), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.« less
Cutillas, Cristina; de Rojas, Manuel; Zurita, Antonio; Oliveros, Rocío; Callejón, Rocío
2014-07-01
In the present work, a morphological and biometrical study of whipworms Trichuris Roederer, 1761 (Nematoda: Trichuridae) parasitizing Colobus guereza kikuyensis has been carried out. Biometrical and statistical data showed that the mean values of individual variables between Trichuris suis and Trichuris sp. from C. g. kikuyensis differed significantly (P < 0.001) when Student's t test was performed: seven male variables (width of esophageal region of body, maximum width of posterior region of body, width in the place of junction of esophagus and the intestine, length of bacillary stripes, length of spicule, length of ejaculatory duct, and distance between posterior part of testis and tail end of body) and three female variables (width of posterior region of body, length of bacillary stripes, and distance of tail end of body and posterior fold of seminal receptacle). The combination of these characters permitted the discrimination of T. suis with respect to Trichuris sp. from C. g. kikuyensis, suggesting a new species of Trichuris. Furthermore, males of Trichuris sp. from C. g. kikuyensis showed a typical subterminal pericloacal papillae associated to a cluster of small papillae that were absent in males of T. suis, while females of Trichuris from Colobus appeared with a vulval region elevated/over-mounted showing a crater-like appearance. The everted vagina showed typical triangular sharp spines by optical microscopy and SEM. Thus, the existence of a new species of Trichuris parasitizing C. g. kikuyensis has been proposed.
Sensitivity Analysis of Data Link Alternatives for LVLASO
NASA Technical Reports Server (NTRS)
Mukkamala, Ravi
1998-01-01
As part of this research, we have modeled the Mode-S system when used to enhance communications among several ground vehicles to facilitate low-visibility landing and surface operations. The model has then been simulated using Bones Designer software. The effectiveness of the model has been evaluated under several conditions: (i) different number of vehicles (100, 200, and 300), (ii) different distributions of interarrival times for squitters: uniform, exponential, and constrained exponential, and (iii) Different safe distances (for collision purpose): squitter length, 1.5*squitter length, and 2* squitter length. The model has been developed in a modular fashion to facilitate any future modifications. The results from the simulations suggest that the Mode S system is indeed capable of functioning satisfactorily even when covering up to 300 vehicles. Certainly, about 10 percent of the squitters undergo collisions and hence the interarrival times for these is much larger than the expected time of 500 msec. In fact, the delay could be as much as 2 seconds. The model could be further enhanced to incorporate more realistic scenarios.
Measurements of strain at plate boundaries using space based geodetic techniques
NASA Technical Reports Server (NTRS)
Robaudo, Stefano; Harrison, Christopher G. A.
1993-01-01
We have used the space based geodetic techniques of Satellite Laser Ranging (SLR) and VLBI to study strain along subduction and transform plate boundaries and have interpreted the results using a simple elastic dislocation model. Six stations located behind island arcs were analyzed as representative of subduction zones while 13 sites located on either side of the San Andreas fault were used for the transcurrent zones. The length deformation scale was then calculated for both tectonic margins by fitting the relative strain to an exponentially decreasing function of distance from the plate boundary. Results show that space-based data for the transcurrent boundary along the San Andreas fault help to define better the deformation length scale in the area while fitting nicely the elastic half-space earth model. For subduction type bonndaries the analysis indicates that there is no single scale length which uniquely describes the deformation. This is mainly due to the difference in subduction characteristics for the different areas.
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
Probing structures of large protein complexes using zero-length cross-linking.
Rivera-Santiago, Roland F; Sriswasdi, Sira; Harper, Sandra L; Speicher, David W
2015-11-01
Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
The proportion of the face in younger adults using the thumb rule of Leonardo da Vinci.
Oguz, O
1996-01-01
The present study was conducted to examine whether the thumb rule of Leonardo da Vinci could be an objective method in the determination of the natural and artistic proportions of human face. In this study, a sample of 400 subjects (200 male and 200 female, 22-25 years old) was used. Measurements were made of the length of thumb, the length of ear, the approximate distances between the hair line and the glabella or eyebrows, between the glabella or eyebrows and the tip of the nose and the distance between the nose and the chin, and the distance between the ear and the lateral aspect of the eye. The results obtained in the males and females showed significant (p < 0.01) correlations between the length of thumb and the proportions of the face examined in the study. Additionally, the height of the face was found to be almost three times the length of the thumb. However, the measurements obtained from female subjects were on average smaller than those taken from males. The results obtained in this experiment could be of value in understanding of the evaluation of the face for the people working in plastic surgery or art.
Abriata, Luciano Andres
2013-04-01
Protein X-ray structures with non-corrin cobalt(II)-containing sites, either natural or substituting another native ion, were downloaded from the Protein Data Bank and explored to (i) describe which amino acids are involved in their first ligand shells and (ii) analyze cobalt(II)-donor bond lengths in comparison with previously reported target distances, CSD data and EXAFS data. The set of amino acids involved in Co(II) binding is similar to that observed for catalytic Zn(II) sites, i.e. with a large fraction of carboxylate O atoms from aspartate and glutamate and aromatic N atoms from histidine. The computed Co(II)-donor bond lengths were found to depend strongly on structure resolution, an artifact previously detected for other metal-donor distances. Small corrections are suggested for the target bond lengths to the aromatic N atoms of histidines and the O atoms of water and hydroxide. The available target distance for cysteine (Scys) is confirmed; those for backbone O and other donors remain uncertain and should be handled with caution in refinement and modeling protocols. Finally, a relationship between both Co(II)-O bond lengths in bidentate carboxylates is quantified.
Minimum triplet covers of binary phylogenetic X-trees.
Huber, K T; Moulton, V; Steel, M
2017-12-01
Trees with labelled leaves and with all other vertices of degree three play an important role in systematic biology and other areas of classification. A classical combinatorial result ensures that such trees can be uniquely reconstructed from the distances between the leaves (when the edges are given any strictly positive lengths). Moreover, a linear number of these pairwise distance values suffices to determine both the tree and its edge lengths. A natural set of pairs of leaves is provided by any 'triplet cover' of the tree (based on the fact that each non-leaf vertex is the median vertex of three leaves). In this paper we describe a number of new results concerning triplet covers of minimum size. In particular, we characterize such covers in terms of an associated graph being a 2-tree. Also, we show that minimum triplet covers are 'shellable' and thereby provide a set of pairs for which the inter-leaf distance values will uniquely determine the underlying tree and its associated branch lengths.
García-Melo, J E; Albornoz-Garzón, J G; García-Melo, L J; Villa-Navarro, F A; Maldonado-Ocampo, J A
2018-04-16
Hemibrycon iqueima sp. nov., is described from small streams in the Magdalena drainage at the foothills of the western slope of the Eastern Cordillera of the Colombian Andes, Suarez municipality, Tolima Department, Colombia. The new species is distinguished from its congeners in the Magdalena-Cauca River basin by a combination of characters related to snout-anal-fin origin length, head length, dorsal-pectoral fin distance, dorsal-fin-hypural distance, postorbital distance, orbital diameter, snout length, number of total vertebrae, pre-dorsal scales, scale rows between anal-fin origin and lateral line, number of branched rays of the anal fin, maxillary teeth number and number and arrangement of hooks on the branched rays of the pectoral and dorsal fins. In addition, the validity of this species is supported by previous molecular analyses that included specimens of the new species that had been erroneously identified. Phylogenetic relationships between the new species and congeners from Pacific coast basins are discussed. This article is protected by copyright. All rights reserved.
A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
Luczak, Brian B; James, Benjamin T; Girgis, Hani Z
2017-12-06
Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.
Opportunity Rover Nears Mars Marathon Feat
2015-02-10
In February 2015, NASA Mars Exploration Rover Opportunity is approaching a cumulative driving distance on Mars equal to the length of a marathon race. This map shows the rover position relative to where it could surpass that distance.
Pang, G; Edwards, M J; Greenland, K B
2010-11-01
Previous work has assessed vocal cords-carina distance in Chinese patients and compared it to commonly used tracheal tubes. In addition, an attempt was made to identify surface anatomy measurements with short tracheas. We have examined the length of tracheas in Caucasian patients and compared it with currently used tracheal tubes. We have investigated a wider range of surface anatomy measurements in an attempt to correlate measurements with vocal cords-carina distance and identifying patients who may be at risk of endobronchial intubation. In this study, the vocal cords-carina distance was measured in 150 anaesthetised Caucasian patients with a fibreoptic bronchoscope. We also attempted to correlate height and various surface anatomy measurements on the patients' chest, neck and limb regions to predict those patients at risk of endobronchial intubation. The mean vocal cords-carina distance was 12.7 cm (standard deviation 1.6 cm). The best predictors in our study of vocal cords-carina distance less than 11.3 cm were a height of < or = 182 cm, an ulnar length of < or = 31.2 cm or a thyroid to xiphisternum distance of < or = 31.8 cm. This correlation is poor however and prediction of vocal cords-carina distance remains difficult clinically. It was therefore concluded that surface anatomy measurements are a poor predictor of vocal cords-carina distance.
Selecting Research Areas and Research Design Approaches in Distance Education: Process Issues
ERIC Educational Resources Information Center
Passi, B. K.; Mishra, Sudarshan
2004-01-01
The purpose of this paper is to study the process used for selecting research areas and methodological approaches in distance education in India. Experts from the field of distance education in India were interviewed at length, with the aim of collecting qualitative data on opinions on process-issues for selecting areas for research, research…
Analyzing Fish Condition Factor Index Through Skew-Gaussian Information Theory Quantifiers
NASA Astrophysics Data System (ADS)
Contreras-Reyes, Javier E.
2016-06-01
Biological-fishery indicators have been widely studied. As such the condition factor (CF) index, which interprets the fatness level of a certain species based on length and weight, has been investigated, too. However, CF has been studied without considering its temporal features and distribution. In this paper, we analyze the CF time series via skew-gaussian distributions that consider the asymmetry produced by extreme events. This index is characterized by a threshold autoregressive model and corresponds to a stationary process depending on the shape parameter of the skew-gaussian distribution. Then we use the Jensen-Shannon (JS) distance to compare CF by length classes. This distance has mathematical advantages over other divergences such as Kullback-Leibler and Jeffrey’s, and the triangular inequality property. Our results are applied to a biological catalogue of anchovy (Engraulis ringens) from the northern coast of Chile, for the period 1990-2010 that consider monthly CF time series by length classes and sex. We find that for high values of shape parameter, JS distance tends to be more sensible to detect discrepancies than Jeffrey’s divergence. In addition, the body condition of male anchovies with higher lengths coincides with the ending of the moderate-strong El Niño event 91-92 and for both males and females, the smaller lengths coincide with the beginning of the strong El Niño event 97-98.
Xu, Wenjing; Zhao, Zhe; Zhao, Bin; Wang, Yu; Peng, Jiang; Zhang, Li; Chen, Jifeng; Lu, Shibi
2011-10-01
Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root ganglia (DRG). Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, which were cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 x 10(3)), group B (1 x 10(4)), group C (1 x 10(5)), and group D (0, blank control), and BMSCs were co-cultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P < 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P < 0.05), but there was no significant difference between group A and group C, and between group A and group B (P > 0.05). The axon area index in groups A and B was significantly greater than that in group D (P < 0.05), but there was no significant difference between group C and group D (P > 0.05); there was no significant difference in groups A, B, and C (P > 0.05). In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.
CFD predictions of near-field pressure signatures of a low-boom aircraft
NASA Technical Reports Server (NTRS)
Fouladi, Kamran; Baize, Daniel G.
1992-01-01
A three dimensional Euler marching code has been utilized to predict near-field pressure signatures of an aircraft with low boom characteristics. Computations were extended to approximately six body lengths aft of the aircraft in order to obtain pressure data at three body lengths below the aircraft for a cruise Mach number of 1.6. The near-field pressure data were extrapolated to the ground using a Whitham based method. The distance below the aircraft where the pressure data are attained is defined in this paper as the 'separation distance.' The influences of separation distances and the still highly three-dimensional flow field on the predicted ground pressure signatures and boom loudness are presented in this paper.
Clinical predictors of the optimal spectacle correction for comfort performing desktop tasks.
Leffler, Christopher T; Davenport, Byrd; Rentz, Jodi; Miller, Amy; Benson, William
2008-11-01
The best strategy for spectacle correction of presbyopia for near tasks has not been determined. Thirty volunteers over the age of 40 years were tested for subjective accommodative amplitude, pupillary size, fusional vergence, interpupillary distance, arm length, preferred working distance, near and far visual acuity and preferred reading correction in the phoropter and trial frames. Subjects performed near tasks (reading, writing and counting change) using various spectacle correction strengths. Predictors of the correction maximising near task comfort were determined by multivariable linear regression. The mean age was 54.9 years (range 43 to 71) and 40 per cent had diabetes. Significant predictors of the most comfortable addition in univariate analyses were age (p<0.001), interpupillary distance (p=0.02), fusional vergence amplitude (p=0.02), distance visual acuity in the worse eye (p=0.01), vision at 40 cm in the worse eye with distance correction (p=0.01), duration of diabetes (p=0.01), and the preferred correction to read at 40 cm with the phoropter (p=0.002) or trial frames (p<0.001). Target distance selected wearing trial frames (in dioptres), arm length, and accommodative amplitude were not significant predictors (p>0.15). The preferred addition wearing trial frames holding a reading target at a distance selected by the patient was the only independent predictor. Excluding this variable, distance visual acuity was predictive independent of age or near vision wearing distance correction. The distance selected for task performance was predicted by vision wearing distance correction at near and at distance. Multivariable linear regression can be used to generate tables based on distance visual acuity and age or near vision wearing distance correction to determine tentative near spectacle addition. Final spectacle correction for desktop tasks can be estimated by subjective refraction with trial frames.
Numerical analysis of interface debonding detection in bonded repair with Rayleigh waves
NASA Astrophysics Data System (ADS)
Xu, Ying; Li, BingCheng; Lu, Miaomiao
2017-01-01
This paper studied how to use the variation of the dispersion curves of Rayleigh wave group velocity to detect interfacial debonding damage between FRP plate and steel beam. Since FRP strengthened steel beam is two layers medium, Rayleigh wave velocity dispersion phenomenon will happen. The interface debonding damage of FRP strengthened steel beam have an obvious effect on the Rayleigh wave velocity dispersion curve. The paper first put forward average Euclidean distance and Angle separation degree to describe the relationship between the different dispersion curves. Numerical results indicate that there is a approximate linear mapping relationship between the average Euclidean distance of dispersion curves and the length of interfacial debonding damage.
The anatomy and isometry of a quasi-anatomical reconstruction of the medial patellofemoral ligament.
Pérez-Prieto, Daniel; Capurro, Bruno; Gelber, Pablo E; Ginovart, Gerard; Reina, Francisco; Sanchis-Alfonso, Vicente; Monllau, Joan C
2017-08-01
To describe the anatomy of the medial patellofemoral ligament (MPFL) and its relationship to the Adductor Magnus (AM) tendon as well as the behaviour exhibited in length changes during knee flexion. Ten cadaveric knees were dissected. The length from the superior and inferior patellar origin of the MPFL to its femoral insertion was measured at different degrees of knee flexion (0°, 30°, 60°, 90° and 120°). The same measures were made from both patellar origins of the MPFL up to the femoral insertion of the AM. The distance between the insertion of the AM and the Hunter canal was also measured. In general, isometry up to 90° was seen in all measures of the MPFL and those of the AM. The most isometric behaviour was seen in 2 measures: the length of the AM femoral insertion up to the inferior origin of the MPFL on the patella and the length of the femoral insertion of the MPFL up to the inferior origin of the MPFL on the patella. Similar behaviour was seen regardless of the anatomical or quasi-anatomical femoral point of attachment (n.s.). The distance from the AM tendon to the Hunter canal had a mean value of 78.6 mm (SD 9.4 mm). The behaviour exhibited during the changes in the length of the anatomical femoral footprint of the MPFL and the AM is similar. Neurovascular structures were not seen at risk. This is relevant in the daily clinical practice since the AM tendon might be a suitable point of insertion for MPFL reconstruction.
Measurements of the Influence of Integral Length Scale on Stagnation Region Heat Transfer
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Ching, Chang Y.
1994-01-01
The purpose was twofold: first, to determine if a length scale existed that would cause the greatest augmentation in stagnation region heat transfer for a given turbulence intensity and second, to develop a prediction tool for stagnation heat transfer in the presence of free stream turbulence. Toward this end, a model with a circular leading edge was fabricated with heat transfer gages in the stagnation region. The model was qualified in a low turbulence wind tunnel by comparing measurements with Frossling's solution for stagnation region heat transfer in a laminar free stream. Five turbulence generating grids were fabricated; four were square mesh, biplane grids made from square bars. Each had identical mesh to bar width ratio but different bar widths. The fifth grid was an array of fine parallel wires that were perpendicular to the axis of the cylindrical leading edge. Turbulence intensity and integral length scale were measured as a function of distance from the grids. Stagnation region heat transfer was measured at various distances downstream of each grid. Data were taken at cylinder Reynolds numbers ranging from 42,000 to 193,000. Turbulence intensities were in the range 1.1 to 15.9 percent while the ratio of integral length scale to cylinder diameter ranged from 0.05 to 0.30. Stagnation region heat transfer augmentation increased with decreasing length scale. An optimum scale was not found. A correlation was developed that fit heat transfer data for the square bar grids to within +4 percent. The data from the array of wires were not predicted by the correlation; augmentation was higher for this case indicating that the degree of isotropy in the turbulent flow field has a large effect on stagnation heat transfer. The data of other researchers are also compared with the correlation.
Nolan, Lee; Patritti, Benjamin L; Stana, Laura; Tweedy, Sean M
2011-07-01
The purpose of this study was to evaluate the extent to which residual shank length affects long jump performance of elite athletes with a unilateral transtibial amputation. Sixteen elite, male, long jumpers with a transtibial amputation were videoed while competing in major championships (World Championships 1998, 2002 and Paralympic Games, 2004). The approach, take-off, and landing of each athlete's best jump was digitized to determine residual and intact shank lengths, jump distance, and horizontal and vertical velocity of center of mass at touchdown. Residual shank length ranged from 15 cm to 38 cm. There were weak, nonsignificant relationships between residual shank length and (a) distance jumped (r = 0.30), (b) horizontal velocity (r = 0.31), and vertical velocity (r = 0.05). Based on these results, residual shank length is not an important determinant of long jump performance, and it is therefore appropriate that all long jumpers with transtibial amputation compete in the same class. The relationship between residual shank length and key performance variables was stronger among athletes that jumped off their prosthetic leg (N = 5), and although this result must be interpreted cautiously, it indicates the need for further research.
Bilateral step length estimation using a single inertial measurement unit attached to the pelvis
2012-01-01
Background The estimation of the spatio-temporal gait parameters is of primary importance in both physical activity monitoring and clinical contexts. A method for estimating step length bilaterally, during level walking, using a single inertial measurement unit (IMU) attached to the pelvis is proposed. In contrast to previous studies, based either on a simplified representation of the human gait mechanics or on a general linear regressive model, the proposed method estimates the step length directly from the integration of the acceleration along the direction of progression. Methods The IMU was placed at pelvis level fixed to the subject's belt on the right side. The method was validated using measurements from a stereo-photogrammetric system as a gold standard on nine subjects walking ten laps along a closed loop track of about 25 m, varying their speed. For each loop, only the IMU data recorded in a 4 m long portion of the track included in the calibrated volume of the SP system, were used for the analysis. The method takes advantage of the cyclic nature of gait and it requires an accurate determination of the foot contact instances. A combination of a Kalman filter and of an optimally filtered direct and reverse integration applied to the IMU signals formed a single novel method (Kalman and Optimally filtered Step length Estimation - KOSE method). A correction of the IMU displacement due to the pelvic rotation occurring in gait was implemented to estimate the step length and the traversed distance. Results The step length was estimated for all subjects with less than 3% error. Traversed distance was assessed with less than 2% error. Conclusions The proposed method provided estimates of step length and traversed distance more accurate than any other method applied to measurements obtained from a single IMU that can be found in the literature. In healthy subjects, it is reasonable to expect that, errors in traversed distance estimation during daily monitoring activity would be of the same order of magnitude of those presented. PMID:22316235
Gokhin, David S.; Fowler, Velia M.
2016-01-01
The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyze periodic fluorescence signals in nonmuscle cells. PMID:27644080
Custom map projections for regional groundwater models
Kuniansky, Eve L.
2017-01-01
For regional groundwater flow models (areas greater than 100,000 km2), improper choice of map projection parameters can result in model error for boundary conditions dependent on area (recharge or evapotranspiration simulated by application of a rate using cell area from model discretization) and length (rivers simulated with head-dependent flux boundary). Smaller model areas can use local map coordinates, such as State Plane (United States) or Universal Transverse Mercator (correct zone) without introducing large errors. Map projections vary in order to preserve one or more of the following properties: area, shape, distance (length), or direction. Numerous map projections are developed for different purposes as all four properties cannot be preserved simultaneously. Preservation of area and length are most critical for groundwater models. The Albers equal-area conic projection with custom standard parallels, selected by dividing the length north to south by 6 and selecting standard parallels 1/6th above or below the southern and northern extent, preserves both area and length for continental areas in mid latitudes oriented east-west. Custom map projection parameters can also minimize area and length error in non-ideal projections. Additionally, one must also use consistent vertical and horizontal datums for all geographic data. The generalized polygon for the Floridan aquifer system study area (306,247.59 km2) is used to provide quantitative examples of the effect of map projections on length and area with different projections and parameter choices. Use of improper map projection is one model construction problem easily avoided.
Refractive indices used by the Haag-Streit Lenstar to calculate axial biometric dimensions.
Suheimat, Marwan; Verkicharla, Pavan K; Mallen, Edward A H; Rozema, Jos J; Atchison, David A
2015-01-01
To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
NASA Astrophysics Data System (ADS)
Kiguchi, Masashi; Funane, Tsukasa; Sato, Hiroki
2017-06-01
A new measurand is proposed for use in continuous wave near-infrared spectroscopy (cw-NIRS). The conventional measurand of cw-NIRS is l△c, which is the product of the change in the hemoglobin concentration (△c) and the partial path lengh (l), which depends on the source-detector (SD) distance (d). The SD distance must remain constant during cw-NIRS measurements, and we cannot compare the l△c value with that obtained using a different SD distance. In addition, the conventional measurand obtained using the standard measurement style sometimes includes a contribution from the human scalp. The SD distance independent (SID) measurand obtained using multi-SD distances is proportional to the product of the change in hemoglobin concentration and the derivative of the partial path length for the deep region with no scalp contribution under the assumption of a layer model. The principle of SID was validated by the layered phantom study. In order to check the limitation of assumption, a human study was conducted. The value of the SID measurand for the left side of the forehead during working memory task was approximately independent of the SD distance between 16 and 32 mm. The SID measurand and the standardized optode arrangement using flexible SD distances in a head coordinate system must be helpful for comparing the data in a population study.
Thoron, radon and air ions spatial distribution in indoor air.
Kolarž, Predrag; Vaupotič, Janja; Kobal, Ivan; Ujić, Predrag; Stojanovska, Zdenka; Žunić, Zora S
2017-07-01
Spatial distribution of radioactive gasses thoron (Tn) and radon (Rn) in indoor air of 9 houses mostly during winter period of 2013 has been studied. According to properties of alpha decay of both elements, air ionization was also measured. Simultaneous continual measurements using three Rn/Tn and three air-ion active instruments deployed on to three different distances from the wall surface have shown various outcomes. It has turned out that Tn and air ions concentrations decrease with the distance increase, while Rn remained uniformly distributed. Exponential fittings function for Tn variation with distance was used for the diffusion length and constant as well as the exhalation rate determination. The obtained values were similar with experimental data reported in the literature. Concentrations of air ions were found to be in relation with Rn and obvious, but to a lesser extent, with Tn. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fracture processes and mechanisms of crack growth resistance in human enamel
NASA Astrophysics Data System (ADS)
Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne
2010-07-01
Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.
NASA Technical Reports Server (NTRS)
Franklin, Rima B.; Mills, Aaron L.
2003-01-01
To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Development of a Novel Hybrid Multi-Junction Architecture for Silicon Solar Cells
2015-03-26
W Watts KOH Potassium Hydroxide xj Junction depth k Thermal conductivity z Normal distance l Conductor length σ Stefan...outermost orbit [9]. A material conducts electricity when its valence electrons move into the conduction band and become conductor electrons. Conductor ...become a conductor , it must absorb enough energy to overcome the band gap, which is the energy difference between the valence band and the conduction
Lower-body determinants of running economy in male and female distance runners.
Barnes, Kyle R; Mcguigan, Michael R; Kilding, Andrew E
2014-05-01
A variety of training approaches have been shown to improve running economy in well-trained athletes. However, there is a paucity of data exploring lower-body determinants that may affect running economy and account for differences that may exist between genders. Sixty-three male and female distance runners were assessed in the laboratory for a range of metabolic, biomechanical, and neuromuscular measures potentially related to running economy (ml·kg(-1)·min(-1)) at a range of running speeds. At all common test velocities, women were more economical than men (effect size [ES] = 0.40); however, when compared in terms of relative intensity, men had better running economy (ES = 2.41). Leg stiffness (r = -0.80) and moment arm length (r = 0.90) were large-extremely largely correlated with running economy and each other (r = -0.82). Correlations between running economy and kinetic measures (peak force, peak power, and time to peak force) for both genders were unclear. The relationship in stride rate (r = -0.27 to -0.31) was in the opposite direction to that of stride length (r = 0.32-0.49), and the relationship in contact time (r = -0.21 to -0.54) was opposite of that of flight time (r = 0.06-0.74). Although both leg stiffness and moment arm length are highly related to running economy, it seems that no single lower-body measure can completely explain differences in running economy between individuals or genders. Running economy is therefore likely determined from the sum of influences from multiple lower-body attributes.
Ma, Jinhui; Gao, Fuqiang; Sun, Wei; Guo, Wanshou; Li, Zirong; Wang, Weiguo
2016-12-01
Both adductor canal block (ACB) and periarticular infiltration (PI) have been shown to reduce pain after total knee arthroplasty (TKA) without the motor blockade. However, the efficacy and safety of combined ACB with PI (ACB + PI) as compared to PI alone for analgesia after TKA remains controversial. We therefore performed a meta-analysis to compare the effects of ACB + PI with PI alone on pain controll after TKA. PubMed, Medline, Embase, Web of Science, and the Cochrane Library were searched to identify studies comparing ACB + PI with PI alone for TKA patients. The primary outcomes included pain score with rest or activity and morphine consumption. Secondary outcomes were distance walked, length of hospital stay, and postoperative complications. Relevant data were analyzed using RevMan v5.3. Three studies involving 337 patients were included. Combined ACB with PI was associated with longer distances walked than PI alone (MD = 7.27, 95% CI: 0.43-14.12, P = 0.04) on postoperative day 1. The outcomes of pain, morphine consumption, length of hospital stay, and postoperative complications were not statistically different between the 2 groups (P > 0.05). Our meta-analysis suggests that combined ACB with PI may achieve earlier ambulation for patients after TKA without a reduction in analgesia when compared to PI alone in the early postoperative period. There were no significant differences in morphine consumption, length of hospital stay, and postoperative complications between the 2 groups. However, owing to the variation of included studies, no firm conclusions can be drawn.
Warnock, Nils; Handel, Colleen M.; Gill, Robert E.; McCaffery, Brian J.
2013-01-01
Understanding how individuals use key resources is critical for effective conservation of a population. The Yukon-Kuskokwim Delta (YKD) in western Alaska is the most important postbreeding staging area for shorebirds in the subarctic North Pacific, yet little is known about movements of shorebirds there during the postbreeding period. To address this information gap, we studied residency times and patterns of movement of 17 adult and 17 juvenile radio-marked Dunlin (Calidris alpina) on the YKD between early August and early October 2005. Throughout this postbreeding period, during which Dunlin were molting, most birds were relocated within a 130 km radius of their capture site on the YKD, but three birds were relocated more than 600 km to the south at estuaries along the Alaska Peninsula. On average, juvenile Dunlin were relocated farther away from the banding site (median relocation distance = 36.3 km) than adult Dunlin (median relocation distance = 8.8 km). Post-capture, minimum lengths of stay by Dunlin on the YKD were not significantly different between juveniles (median = 19 days) and adults (median = 23 days), with some birds staging for more than 50 days. Body mass at time of capture was the best single variable explaining length of stay on the YKD, with average length of stay decreasing by 2.5 days per additional gram of body mass at time of capture. Conservation efforts for postbreeding shorebirds should consider patterns of resource use that may differ not only by age cohort but also by individual condition.
The spectrum of genomic signatures: from dinucleotides to chaos game representation.
Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila
2005-02-14
In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.
Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.
Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young
2016-01-01
Introduction . We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods . We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results . The real values and the PACS measurement changes according to tilt value have no significant correlations ( p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements ( p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion . Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-05-01
Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.
The length of the world's glaciers - a new approach for the global calculation of center lines
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-09-01
Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.
Comparison of two methods of cervical cerclage by ultrasound cervical measurement.
Rozenberg, P; Sénat, M V; Gillet, A; Ville, Y
2003-05-01
To compare the effects of cerclage performed with a modified Shirodkar procedure or with McDonald's technique using transvaginal ultrasound measurement of the distance between the external os and the suture. We performed a retrospective study of all patients who underwent a prophylactic cerclage with either the modified Shirodkar procedure or the McDonald's technique over a 3-year period. Physicians chose the cerclage technique according to their own preferences. Transvaginal ultrasound examination of the cervix was performed 2 weeks after the cerclage to measure its functional length and the distance between the external os and the cerclage. During the study period, 14 patients had a cerclage with the modified Shirodkar procedure and 19 patients with the McDonald's technique. Twelve of these 33 patients (36.4%) delivered before 37 weeks. The obstetric characteristics of the patients in both groups were similar. There were no significant differences between the Shirodkar and McDonald groups as to the functional cervical length before (31.3 +/- 8.7 vs. 35.6 +/- 9.7 mm, respectively) or after (37.0 +/- 7.3 vs. 36.1 +/- 7.9 mm) cerclage, the distance between the external os and cerclage (16.7 +/- 3.8 vs. 14.0 +/- 5.2 mm), or the number of deliveries before 32 (0 vs. 2) and 34 (1 vs. 3) weeks. The anterior colpotomy of the Shirodkar procedure increased the distance between the external os and the cerclage by a mean of 2.7 mm. This slight gain does not justify exposing the patient to the risks related to this procedure. When cerclage is necessary, McDonald's technique seems preferable.
ERIC Educational Resources Information Center
Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.
2016-01-01
FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…
Chain hexagonal cacti with the extremal eccentric distance sum.
Qu, Hui; Yu, Guihai
2014-01-01
Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.
Control of the collapse distance in atmospheric propagation
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Sivan, Yonatan; Ehrlich, Yosi; Louzon, Einat; Fraenkel, Moshe; Eisenmann, Shmuel; Katzir, Yiftach; Zigler, Arie
2006-06-01
We show experimentally for ultrashort laser pulses propagating in air, that the collapse/filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length.
Perceiving the vertical distances of surfaces by means of a hand-held probe.
Chan, T C; Turvey, M T
1991-05-01
Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.
Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng
2014-01-01
Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.
NASA Astrophysics Data System (ADS)
Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.
2013-03-01
Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features, by providing a molecular-scale mechanism of energy dissipation. One example of occurrence of sacrificial bonds and hidden length is in the polymeric glue connection between collagen fibrils in animal bone. In this talk, we propose a simple kinetic model that describes the breakage of sacrificial bonds and the revelation of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation, at the mean-field level, allowing for the number of bonds and hidden lengths to take up non-integer values between successive, discrete bond-breakage events. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.
Ruggeri, Marco; Uhlhorn, Stephen R.; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2012-01-01
Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time. PMID:22808424
Ruggeri, Marco; Uhlhorn, Stephen R; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2012-07-01
An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time.
Mansoor, Steven E.; DeWitt, Mark A.; Farrens, David L.
2014-01-01
Studying the interplay between protein structure and function remains a daunting task. Especially lacking are methods for measuring structural changes in real time. Here we report our most recent improvements to a method that can be used to address such questions. This method, which we now call Tryptophan induced quenching (TrIQ), provides a straightforward, sensitive and inexpensive way to address questions of conformational dynamics and short-range protein interactions. Importantly, TrIQ only occurs over relatively short distances (~5 to 15 Å), making it complementary to traditional fluorescence resonance energy transfer (FRET) methods that occur over distances too large for precise studies of protein structure. As implied in the name, TrIQ measures the efficient quenching induced in some fluorophores by tryptophan (Trp). We present here our analysis of the TrIQ effect for five different fluorophores that span a range of sizes and spectral properties. Each probe was attached to four different cysteine residues on T4 lysozyme and the extent of TrIQ caused by a nearby Trp was measured. Our results show that for smaller probes, TrIQ is distance dependent. Moreover, we also demonstrate how TrIQ data can be analyzed to determine the fraction of fluorophores involved in a static, non-fluorescent complex with Trp. Based on this analysis, our study shows that each fluorophore has a different TrIQ profile, or "sphere of quenching", which correlates with its size, rotational flexibility, and the length of attachment linker. This TrIQ-based "sphere of quenching" is unique to every Trp-probe pair and reflects the distance within which one can expect to see the TrIQ effect. It provides a straightforward, readily accessible approach for mapping distances within proteins and monitoring conformational changes using fluorescence spectroscopy. PMID:20886836
Dissociation between running economy and running performance in elite Kenyan distance runners.
Mooses, Martin; Mooses, Kerli; Haile, Diresibachew Wondimu; Durussel, Jérôme; Kaasik, Priit; Pitsiladis, Yannis Paul
2015-01-01
The purpose of this study was to investigate the relationship between running economy (RE) and performance in a homogenous group of competitive Kenyan distance runners. Maximal aerobic capacity (VO2max) (68.8 ± 3.8 ml∙kg(-1)∙min(-1)) was determined on a motorised treadmill in 32 Kenyan (25.3 ± 5.0 years; IAAF performance score: 993 ± 77 p) distance runners. Leg anthropometry was assessed and moment arm of the Achilles tendon determined. While Achilles moment arm was associated with better RE (r(2) = 0.30, P = 0.003) and upper leg length, total leg length and total leg length to body height ratio were correlated with running performance (r = 0.42, P = 0.025; r = 0.40, P = 0.030 and r = 0.38, P = 0.043, respectively), RE and maximal time on treadmill (t(max)) were not associated with running performance (r = -0.01, P = 0.965; r = 0.27; P = 0.189, respectively) in competitive Kenyan distance runners. The dissociation between RE and running performance in this homogenous group of runners would suggest that RE can be compensated by other factors to maintain high performance levels and is in line with the idea that RE is only one of many factors explaining elite running performance.
NASA Astrophysics Data System (ADS)
Perrin, C.; Manighetti, I.; Gaudemer, Y.
2015-12-01
Faults grow over the long-term by accumulating displacement and lengthening, i.e., propagating laterally. We use fault maps and fault propagation evidences available in literature to examine geometrical relations between parent faults and off-fault splays. The population includes 47 worldwide crustal faults with lengths from millimeters to thousands of kilometers and of different slip modes. We show that fault splays form adjacent to any propagating fault tip, whereas they are absent at non-propagating fault ends. Independent of parent fault length, slip mode, context, etc, tip splay networks have a similar fan shape widening in direction of long-term propagation, a similar relative length and width (~30 and ~10 % of parent fault length, respectively), and a similar range of mean angles to parent fault (10-20°). Tip splays more commonly develop on one side only of the parent fault. We infer that tip splay networks are a genetic and a generic property of faults indicative of their long-term propagation. We suggest that they represent the most recent damage off-the parent fault, formed during the most recent phase of fault lengthening. The scaling relation between parent fault length and width of tip splay network implies that damage zones enlarge as parent fault length increases. Elastic properties of host rocks might thus be modified at large distances away from a fault, up to 10% of its length. During an earthquake, a significant fraction of coseismic slip and stress is dissipated into the permanent damage zone that surrounds the causative fault. We infer that coseismic dissipation might occur away from a rupture zone as far as a distance of 10% of the length of its causative fault. Coseismic deformations and stress transfers might thus be significant in broad regions about principal rupture traces. This work has been published in Comptes Rendus Geoscience under doi:10.1016/j.crte.2015.05.002 (http://www.sciencedirect.com/science/article/pii/S1631071315000528).
Scaling analysis of the non-Abelian quasiparticle tunneling in [Formula: see text] FQH states.
Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang
2018-06-27
Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge-edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read-Rezayi [Formula: see text] states for [Formula: see text] and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.
Mach wave properties in the presence of source and medium heterogeneity
NASA Astrophysics Data System (ADS)
Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.
2018-06-01
We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.
Measurement of the digit lengths and the anogenital distance in mice.
Manno, Francis Anthony Michael
2008-01-28
In humans, research has demonstrated the ratio of the 2nd to 4th digit lengths (2D:4D) are: (i) sexually dimorphic with males having a lower ratio than females, the latter having near equidistant lengths [J. Manning, D. Scutt, J. Wilson, & D. Lewis-Jones, (1998). The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum Reprod. 13(11):3000-3004], and are theorized to be (ii) determined in utero during gestational development [J. Manning, & P. Bundred, (2000). The ratio of 2nd to 4th digit length: a new predictor of disease predisposition? Med Hypotheses. 54(5):855-857], and (iii) correlated with prenatal androgen levels [J. Manning, & P. Bundred, (2000). The ratio of 2nd to 4th digit length: a new predictor of disease predisposition? Med Hypotheses. 54(5):855-857; J. Manning, R. Trivers, D. Singh, & R. Thornhill, (1999). The mystery of female beauty. Nature. 399:214-215; T. Williams, M. Pepitone, S. Christensen, B. Cooke, A. Huberman, N. Breedlove, et al., (2000). Finger-length ratios and sexual orientation: measuring people's finger patterns may reveal some surprising information. Nature. 404:455-456]. These phenotypes correspond to the hormonal effects of testosterone (i.e. androgens) in utero in both sexes. In mice, testosterone in utero is associated in males and females with the anogenital distance (AGD), a phenotype where AGD is greater in males and females contiguous with two males (2M) have a masculinized AGD phenotype whereas those juxtaposed to fewer males, one or zero (1M or 0M), have a more feminine phenotype, i.e. shorter AGD [F. vom Saal, & F. Bronson, (1980). Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science. 208:597-599; R. Gandelman, F. vom Saal, & J. Reinisch, (1977). Contiguity to male foetuses affects morphology and behaviour of female mice. Nature. 266:722-724; A. Hotchkiss, & J. Vandenbergh, (2005). The anogenital distance index of mice (Mus musculus domesticus): an analysis. Contem Top Lab Anim Sci. 44(4):46-48; C. Kinsley, J. Miele, C. Wagner, L. Ghiraldi, J. Broida, B. Svare, (1986). Prior intrauterine position influences body weight in male and female mice. Horm Behav. 20:201-211; S. Graham, R. Gandelman, (1986). The expression of ano-genital distance data in the mouse. Physiol Behav. 36(1):103-104; B. Ryan, & J. Vandenbergh, (2002). Intrauterine position effects. Neurosci Biobehav Rev. 26(6):665-678; J. Vandenbergh, & C. Huggett, (1995). The anogenital distance index, a predictor of the intrauterine position effects on reproduction in female house mice. Lab Anim Sci. 45(5):567-573]. Furthermore, in humans AGD is sexually dimorphic with neonate males having a greater distance than females [E. Salazar-Martinez, P. Romano-Riquer, E. Yanez-Marquez, M. Longnecker, M. Hernandez-Avila, (2004). Anogenital distance in human male and female newborns: a descriptive, cross-sectional study. Environmental Health: A Global Access Science Source. 2004:3:(8) (doi:10.1186/1476-069X-3-8) [12
NASA Technical Reports Server (NTRS)
Howe, John T.
1991-01-01
Thermochemical relaxation distances behind the strong normal shock waves associated with vehicles that enter the Earth atmosphere upon returning from a manned lunar or Mars mission are estimated. The relaxation distances for a Mars entry are estimated as well, in order to highlight the extent of the relaxation phenomena early in currently envisioned space exploration studies. The thermochemical relaxation length for the Aeroassist Flight Experiment is also considered. These estimates provide an indication as to whether finite relaxation needs to be considered in subsequent detailed analyses. For the Mars entry, relaxation phenomena that are fully coupled to the flow field equations are used. The relaxation-distance estimates can be scaled to flight conditions other than those discussed.
The registered distance of the celestial sphere: some historical cross-cultural data.
Plug, C
1989-02-01
Estimates of the diameters of the sun and moon expressed in centimetres have been reported by several authors in the past. These estimates imply that the sizes of the sun and moon are perceived as if these bodies are only some tens of metres distant. In this study five units of length that were used by ancient astronomers to estimate arcs on the celestial sphere were investigated. The purpose was to determine whether the lengths and angles represented by these units imply a specific registered distance of the star sphere. The sizes of the Babylonian cubit, Arab fitr and shibr, Greek eclipse digit, and Chinese chang support the conclusion that the registered distance of the stars was about 10 to 40 metres in these four cultures over the last two millennia.
NASA Technical Reports Server (NTRS)
Burk, S. M., Jr.; Bowman, J. S., Jr.; White, W. L.
1977-01-01
A spin tunnel study is reported on a scale model of a research airplane typical of low-wing, single-engine, light general aviation airplanes to determine the tail parachute diameter and canopy distance (riser length plus suspension-line length) required for energency spin recovery. Nine tail configurations were tested, resulting in a wide range of developed spin conditions, including steep spins and flat spins. The results indicate that the full-scale parachute diameter required for satisfactory recovery from the most critical conditions investigated is about 3.2 m and that the canopy distance, which was found to be critical for flat spins, should be between 4.6 and 6.1 m.
Foot Morphological Difference between Habitually Shod and Unshod Runners.
Shu, Yang; Mei, Qichang; Fernandez, Justin; Li, Zhiyong; Feng, Neng; Gu, Yaodong
2015-01-01
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4 years, 66±7.1 kg & 1.68±0.13 m and 78 females whose age, weight & height were 22±1.8 years, 55±4.7 kg & 1.6±0.11 m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6 years, 66±8.2 kg & 1.72±0.18 m and 66 females whose age, weight & height were 23±1.5 years, 54±5.6 kg & 1.62±0.15 m) (Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.
Foot Morphological Difference between Habitually Shod and Unshod Runners
Shu, Yang; Mei, Qichang; Fernandez, Justin; Li, Zhiyong; Feng, Neng; Gu, Yaodong
2015-01-01
Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23±2.4years, 66±7.1kg & 1.68±0.13m and 78 females whose age, weight & height were 22±1.8years, 55±4.7kg & 1.6±0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24±2.6years, 66±8.2kg & 1.72±0.18m and 66 females whose age, weight & height were 23±1.5years, 54±5.6kg & 1.62±0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes. PMID:26148059
Kinetics of interior loop formation in semiflexible chains.
Hyeon, Changbong; Thirumalai, D
2006-03-14
Loop formation between monomers in the interior of semiflexible chains describes elementary events in biomolecular folding and DNA bending. We calculate analytically the interior distance distribution function for semiflexible chains using a mean field approach. Using the potential of mean force derived from the distance distribution function we present a simple expression for the kinetics of interior looping by adopting Kramers theory. For the parameters, that are appropriate for DNA, the theoretical predictions in comparison with the case are in excellent agreement with explicit Brownian dynamics simulations of wormlike chain (WLC) model. The interior looping times (tauIC) can be greatly altered in the cases when the stiffness of the loop differs from that of the dangling ends. If the dangling end is stiffer than the loop then tauIC increases for the case of the WLC with uniform persistence length. In contrast, attachment of flexible dangling ends enhances rate of interior loop formation. The theory also shows that if the monomers are charged and interact via screened Coulomb potential then both the cyclization (tauc) and interior looping (tauIC) times greatly increase at low ionic concentration. Because both tauc and tauIC are determined essentially by the effective persistence length [lp(R)] we computed lp(R) by varying the range of the repulsive interaction between the monomers. For short range interactions lp(R) nearly coincides with the bare persistence length which is determined largely by the backbone chain connectivity. This finding rationalizes the efficacy of describing a number of experimental observations (response of biopolymers to force and cyclization kinetics) in biomolecules using WLC model with an effective persistence length.
Liu, Yan Fang; Yang, Hua; Zhang, Hui
2018-05-31
Chain folding is an important step during polymer crystallization. In order to study the effects of the surface on chain folding, molecular dynamics simulations of the folding of different alkane chains on three kinds of single-walled carbon nanotubes (SWCNTs) and graphene were performed. The folding behaviors of the single alkane chains on these surfaces were found to be different from their folding behaviors in vacuum. The end-to-end distances of the chains were calculated to explore the chain folding. An increasing tendency to fold into two or more stems with increasing alkane chain length was observed. This result indicates that the occurrence and the stability of chain folding are related to the surface curvature, the diameter of the SWCNT, and surface texture. In addition, the angle between the direction of the alkane chain segment and the direction of the surface texture was measured on different surfaces.
Santamaría-Villegas, Adriana; Manrique-Hernandez, Rubén; Alvarez-Varela, Emery; Restrepo-Serna, Claudia
2017-02-01
Orthopedic functional devices, are used to improve mandibular length in skeletal class II patients. However, the orthopedic functional device with the best effect to increasing the mandibular length, has not been identified before. Thus, the aim of the present investigation was to evaluate Randomized Controlled Trials (RCT), to determine the best functional appliance improving mandibular length in subjects with retrognathism. A systematic review and meta-analysis was performed, including studies published and indexed in databases between 1966 and 2016. RCTs evaluating functional appliances' effects on mandibular length (Condilion-Gnation (Co-Gn) and Condilion-Pogonion (Co-Po)), were included. Reports' structure was evaluated according to 2010 CONSORT guide. The outcome measure was distance between Co-Gn and/or Co-Po after treatment. Data were analyzed with Cochran Q Test and random effects model. Five studies were included in the meta-analysis. The overall difference in mandibular length was 1.53 mm (Confidence Interval (CI) 95% 1.15-1.92) in comparison to non-treated group. The Sander Bite Jumping reported the greatest increase in mandibular length (3.40 mm; CI 95% 1.69-5.11), followed by Twin Block, Bionator, Harvold Activator and Frankel devices. All removable functional appliances, aiming to increase mandibular length, are useful. Sander Bite Jumping was observed to be the most effective device to improve the mandibular length.
Zhao, Jiangsan; Bodner, Gernot; Rewald, Boris; Leitner, Daniel; Nagel, Kerstin A; Nakhforoosh, Alireza
2017-02-01
Root phenotyping provides trait information for plant breeding. A shortcoming of high-throughput root phenotyping is the limitation to seedling plants and failure to make inferences on mature root systems. We suggest root system architecture (RSA) models to predict mature root traits and overcome the inference problem. Sixteen pea genotypes were phenotyped in (i) seedling (Petri dishes) and (ii) mature (sand-filled columns) root phenotyping platforms. The RSA model RootBox was parameterized with seedling traits to simulate the fully developed root systems. Measured and modelled root length, first-order lateral number, and root distribution were compared to determine key traits for model-based prediction. No direct relationship in root traits (tap, lateral length, interbranch distance) was evident between phenotyping systems. RootBox significantly improved the inference over phenotyping platforms. Seedling plant tap and lateral root elongation rates and interbranch distance were sufficient model parameters to predict genotype ranking in total root length with an RSpearman of 0.83. Parameterization including uneven lateral spacing via a scaling function substantially improved the prediction of architectures underlying the differently sized root systems. We conclude that RSA models can solve the inference problem of seedling root phenotyping. RSA models should be included in the phenotyping pipeline to provide reliable information on mature root systems to breeding research. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Rojas, Alicia; Sanchis-Monsonís, Gloria; Alić, Amer; Hodžić, Adnan; Otranto, Domenico; Yasur-Landau, Daniel; Martínez-Carrasco, Carlos; Baneth, Gad
2018-05-21
Previous studies have reported nematodes of the Spirocercidae family in the stomach nodules of red foxes (Vulpes vulpes) described as Spirocerca sp. or Spirocerca lupi (Rudolphi, 1819). We characterized spirurid worms collected from red foxes and compared them to S. lupi from domestic dogs by morphometric and phylogenetic analyses. Nematodes from red foxes differed from S. lupi by the presence of six triangular teeth-like buccal capsule structures, which are absent in the latter. Additionally, in female worms from red foxes, the distance of the vulva opening to the anterior end and the ratio of the glandular-to-muscular oesophagus lengths were larger than those of S. lupi (P < 0.006). In males, the lengths of the whole oesophagus and glandular part, the ratio of the glandular-to-muscular oesophagus and the comparison of the oesophagus to the total body length were smaller in S. lupi (all P < 0.044). Phylogenetic analyses revealed that S. lupi and the red foxes spirurid represent monophyletic sister groups with pairwise nucleotide distances of 9.2 and 0.2% in the cytochrome oxidase 1 and 18S genes, respectively. Based on these comparisons, the nematodes from red foxes were considered to belong to a separate species, for which the name Spirocerca vulpis sp. nov. is proposed.
Sex difference in top performers from Ironman to double deca iron ultra-triathlon
Knechtle, Beat; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A
2014-01-01
This study investigated changes in performance and sex difference in top performers for ultra-triathlon races held between 1978 and 2013 from Ironman (3.8 km swim, 180 km cycle, and 42 km run) to double deca iron ultra-triathlon distance (76 km swim, 3,600 km cycle, and 844 km run). The fastest men ever were faster than the fastest women ever for split and overall race times, with the exception of the swimming split in the quintuple iron ultra-triathlon (19 km swim, 900 km cycle, and 210.1 km run). Correlation analyses showed an increase in sex difference with increasing length of race distance for swimming (r2=0.67, P=0.023), running (r2=0.77, P=0.009), and overall race time (r2=0.77, P=0.0087), but not for cycling (r2=0.26, P=0.23). For the annual top performers, split and overall race times decreased across years nonlinearly in female and male Ironman triathletes. For longer distances, cycling split times decreased linearly in male triple iron ultra-triathletes, and running split times decreased linearly in male double iron ultra-triathletes but increased linearly in female triple and quintuple iron ultra-triathletes. Overall race times increased nonlinearly in female triple and male quintuple iron ultra-triathletes. The sex difference decreased nonlinearly in swimming, running, and overall race time in Ironman triathletes but increased linearly in cycling and running and nonlinearly in overall race time in triple iron ultra-triathletes. These findings suggest that women reduced the sex difference nonlinearly in shorter ultra-triathlon distances (ie, Ironman), but for longer distances than the Ironman, the sex difference increased or remained unchanged across years. It seems very unlikely that female top performers will ever outrun male top performers in ultratriathlons. The nonlinear change in speed and sex difference in Ironman triathlon suggests that female and male Ironman triathletes have reached their limits in performance. PMID:25114605
Stable radio-frequency transfer over optical fiber by phase-conjugate frequency mixing.
He, Yabai; Orr, Brian J; Baldwin, Kenneth G H; Wouters, Michael J; Luiten, Andre N; Aben, Guido; Warrington, R Bruce
2013-08-12
We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length. Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length. The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s. Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser. By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.
A three-dimensional He-CO potential energy surface with improved long-range behavior
NASA Astrophysics Data System (ADS)
McBane, George C.
2016-12-01
A weakness of the "CBS + corr" He-CO potential energy surface (Peterson and McBane, 2005) has been rectified by constraining the potential to adopt accurate long-range behavior for He-CO distances well beyond 15a0 . The resulting surface is very similar to the original in the main part of the interaction. Comparison with accurately known bound-state energies indicates that the surface is slightly improved in the region sampled by the highest lying bound states. The positions of shape and Feshbach resonances within a few cm-1 of the j = 1 excitation threshold are essentially unchanged. The low-energy scattering lengths changed noticeably. The revised surface generates a small negative limiting scattering length for collisions with 4He, while the original surface gave a small positive one. Both surfaces yield scattering lengths quite different from the widely used surface of Heijmen et al. (1997) for both He isotopes.
Lang, J. D.; Ray, S.; Ray, A.
1994-01-01
In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564
NASA Astrophysics Data System (ADS)
Lieou, Charles K. C.; Elbanna, Ahmed E.; Carlson, Jean M.
2013-07-01
Sacrificial bonds and hidden length in structural molecules account for the greatly increased fracture toughness of biological materials compared to synthetic materials without such structural features by providing a molecular-scale mechanism for energy dissipation. One example is in the polymeric glue connection between collagen fibrils in animal bone. In this paper we propose a simple kinetic model that describes the breakage of sacrificial bonds and the release of hidden length, based on Bell's theory. We postulate a master equation governing the rates of bond breakage and formation. This enables us to predict the mechanical behavior of a quasi-one-dimensional ensemble of polymers at different stretching rates. We find that both the rupture peak heights and maximum stretching distance increase with the stretching rate. In addition, our theory naturally permits the possibility of self-healing in such biological structures.
Ostracod Body Size Change Across Space and Time
NASA Astrophysics Data System (ADS)
Nolen, L.; Llarena, L. A.; Saux, J.; Heim, N. A.; Payne, J.
2014-12-01
Many factors drive evolution, although it is not always clear which factors are more influential. Miller et al. (2009) found that there is a change in geographic disparity in diversity in marine biotas over time. We tested if there was also geographic disparity in body size during different epochs. We used marine ostracods, which are tiny crustaceans, as a study group for this analysis. We also studied which factor is more influential in body size change: distance or time. We compared the mean body size from different geologic time intervals as well as the mean body size from different locations for each epoch. We grouped ostracod occurrences from the Paleobiology Database into 10º x 10º grid cells on a paleogeographic map. Then we calculated the difference in mean size and the distance between the grid cells containing specimens. Our size data came from the Ellis & Messina"Catalogue of Ostracod" as well as the"Treatise on Invertebrate Paleontology". Sizes were calculated by applying the formula for the volume of an ellipsoid to three linear dimensions of the ostracod carapace (anteroposterior, dorsoventral, and right-left lengths). Throughout this analysis we have come to the realization that there is a trend in ostracods towards smaller size over time. Therefore there is also a trend through time of decreasing difference in size between occurrences in different grid cells. However, if time is not taken into account, there is no correlation between size and geographic distance. This may be attributed to the fact that one might not expect a big size difference between locations that are far apart but still at a similar latitude (for example, at the equator). This analysis suggests that distance alone is not the main factor in driving changes in ostracod size over time.
Traveling salesman problem with a center.
Lipowski, Adam; Lipowska, Dorota
2005-06-01
We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.
Irigoyen, Alejo J; Rojo, Irene; Calò, Antonio; Trobbiani, Gastón; Sánchez-Carnero, Noela; García-Charton, José A
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer's experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1-31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC.
2018-01-01
Underwater visual census (UVC) is the most common approach for estimating diversity, abundance and size of reef fishes in shallow and clear waters. Abundance estimation through UVC is particularly problematic in species occurring at low densities and/or highly aggregated because of their high variability at both spatial and temporal scales. The statistical power of experiments involving UVC techniques may be increased by augmenting the number of replicates or the area surveyed. In this work we present and test the efficiency of an UVC method based on diver towed GPS, the Tracked Roaming Transect (TRT), designed to maximize transect length (and thus the surveyed area) with respect to diving time invested in monitoring, as compared to Conventional Strip Transects (CST). Additionally, we analyze the effect of increasing transect width and length on the precision of density estimates by comparing TRT vs. CST methods using different fixed widths of 6 and 20 m (FW3 and FW10, respectively) and the Distance Sampling (DS) method, in which perpendicular distance of each fish or group of fishes to the transect line is estimated by divers up to 20 m from the transect line. The TRT was 74% more time and cost efficient than the CST (all transect widths considered together) and, for a given time, the use of TRT and/or increasing the transect width increased the precision of density estimates. In addition, since with the DS method distances of fishes to the transect line have to be estimated, and not measured directly as in terrestrial environments, errors in estimations of perpendicular distances can seriously affect DS density estimations. To assess the occurrence of distance estimation errors and their dependence on the observer’s experience, a field experiment using wooden fish models was performed. We tested the precision and accuracy of density estimators based on fixed widths and the DS method. The accuracy of the estimates was measured comparing the actual total abundance with those estimated by divers using FW3, FW10, and DS estimators. Density estimates differed by 13% (range 0.1–31%) from the actual values (average = 13.09%; median = 14.16%). Based on our results we encourage the use of the Tracked Roaming Transect with Distance Sampling (TRT+DS) method for improving density estimates of species occurring at low densities and/or highly aggregated, as well as for exploratory rapid-assessment surveys in which divers could gather spatial ecological and ecosystem information on large areas during UVC. PMID:29324887
NASA Technical Reports Server (NTRS)
Von Roos, O.; Luke, K. L.
1984-01-01
The short circuit current generated by the electron beam of a scanning electron microscope in p-n junctions is reduced by enhanced recombination at grain boundaries in polycrystalline material. Frequently, grain boundaries separate the semiconductor into regions possessing different minority carrier life times. This markedly affects the short circuit current I(sc) as a function of scanning distance from the grain boundary. It will be shown theoretically that (1) the minimum of the I(sc) in crossing the grain boundary with the scanning electron beam is shifted away from the grain boundary toward the region with smaller life time (shorter diffusion length), (2) the magnitude of the minimum differs markedly from those calculated under the assumption of equal diffusion lengths on either side of the grain boundary, and (3) the minimum disappears altogether for small surface recombination velocities (s less than 10,000 cm/s). These effects become negligible, however, for large recombination velocities s at grain boundaries. For p-type silicon this happens for s not less than 100,000 cm/s.
González-Durán, Gustavo A
2016-01-18
I describe a new species of a small-sized frog of the genus Pristimantis found in the paramo ecosystem (3700 masl) on the northern slope of Los Nevados National Park, Cordillera Central, department of Caldas, Colombia. This new species is assigned to the Pristimantis leptolophus species-group, given that Toe V is much longer than Toe III and extends to the distal edge of the distal subarticular tubercle on Toe IV. The new species differs from other taxa by its dorsal golden or yellowish color patterns, the absence of nuptial pads, lateral fringes on its fingers and toes, and the absence of vomerine odontophores. Discriminant analyses of morphometric characters of females of P. leptolophus, P. uranobates, and the new species separate the new species by snout-vent length, tibia length, eye diameter, eye-to-nostril distance, tympanum diameter, and length of toe III. Vomer terms frequently used to describe species are reviewed, such as the oblique keels of the vomer and the different forms of the dentigerous process. Species belonging to the high Andean Pristimantis leptolophus species-group are allopatric, suggesting vicariant speciation in different areas of the paramos.
NASA Astrophysics Data System (ADS)
Edholm, James
2018-03-01
General Relativity is known to produce singularities in the potential generated by a point source. Our universe can be modeled as a de Sitter (dS) metric and we show that ghost-free infinite derivative gravity (IDG) produces a nonsingular potential around a dS background, while returning to the GR prediction at large distances. We also show that although there are an apparently infinite number of coefficients in the theory, only a finite number actually affect the predictions. By writing the linearized equations of motion in a simplified form, we find that at distances below the Hubble length scale, the difference between the IDG potential around a flat background and around a de Sitter background is negligible.
Ureter tracking and segmentation in CT urography (CTU) using COMPASS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjiiski, Lubomir, E-mail: lhadjisk@umich.edu; Zick, David; Chan, Heang-Ping
2014-12-15
Purpose: The authors are developing a computerized system for automated segmentation of ureters in CTU, referred to as combined model-guided path-finding analysis and segmentation system (COMPASS). Ureter segmentation is a critical component for computer-aided diagnosis of ureter cancer. Methods: COMPASS consists of three stages: (1) rule-based adaptive thresholding and region growing, (2) path-finding and propagation, and (3) edge profile extraction and feature analysis. With institutional review board approval, 79 CTU scans performed with intravenous (IV) contrast material enhancement were collected retrospectively from 79 patient files. One hundred twenty-four ureters were selected from the 79 CTU volumes. On average, the uretersmore » spanned 283 computed tomography slices (range: 116–399, median: 301). More than half of the ureters contained malignant or benign lesions and some had ureter wall thickening due to malignancy. A starting point for each of the 124 ureters was identified manually to initialize the tracking by COMPASS. In addition, the centerline of each ureter was manually marked and used as reference standard for evaluation of tracking performance. The performance of COMPASS was quantitatively assessed by estimating the percentage of the length that was successfully tracked and segmented for each ureter and by estimating the average distance and the average maximum distance between the computer and the manually tracked centerlines. Results: Of the 124 ureters, 120 (97%) were segmented completely (100%), 121 (98%) were segmented through at least 70%, and 123 (99%) were segmented through at least 50% of its length. In comparison, using our previous method, 85 (69%) ureters were segmented completely (100%), 100 (81%) were segmented through at least 70%, and 107 (86%) were segmented at least 50% of its length. With COMPASS, the average distance between the computer and the manually generated centerlines is 0.54 mm, and the average maximum distance is 2.02 mm. With our previous method, the average distance between the centerlines was 0.80 mm, and the average maximum distance was 3.38 mm. The improvements in the ureteral tracking length and both distance measures were statistically significant (p < 0.0001). Conclusions: COMPASS improved significantly the ureter tracking, including regions across ureter lesions, wall thickening, and the narrowing of the lumen.« less
Measurement of the Length of an Optical Trap
NASA Technical Reports Server (NTRS)
Wrbanek, Susan Y.
2010-01-01
NASA Glenn has been involved in developing optical trapping and optical micromanipulation techniques in order to develop a tool that can be used to probe, characterize, and assemble nano and microscale materials to create microscale sensors for harsh flight environments. In order to be able to assemble a sensor or probe candidate sensor material, it is useful to know how far an optical trap can reach; that is, the distance beyond/below the stable trapping point through which an object will be drawn into the optical trap. Typically, to measure the distance over which an optical trap would influence matter in a horizontal (perpendicular to beam propagation) direction, it was common to hold an object in one optical trap, place a second optical trap a known distance away, turn off the first optical trap, and note if the object was moved into the second trap when it was turned on. The disadvantage of this technique is that it only gives information of trap influence distance in horizontal (x y) directions. No information about the distance of the influence of the trap is gained in the direction of propagation of the beam (the z direction). A method was developed to use a time-of-flight technique to determine the length along the propagation direction of an optical trap beam over which an object may be drawn into the optical trap. Test objects (polystyrene microspheres) were held in an optical trap in a water-filled sample chamber and raised to a pre-determined position near the top of the sample chamber. Next, the test objects were released by blocking the optical trap beam. The test objects were allowed to fall through the water for predetermined periods of time, at the end of which the trapping beam was unblocked. It was noted whether or not the test object returned to the optical trap or continued to fall. This determination of the length of an optical trap's influence by this manner assumes that the test object falls through the water in the sample chamber at terminal velocity for the duration of its fall, so that the distance of trap influence can be computed simply by: d = VTt, where d is the trap length (or distance of trap reach), VT is the terminal velocity of the test object, and t is the time interval over which the object is allowed to fall.
Pair-correlation function of a metastable helium Bose-Einstein condensate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz
2004-02-01
The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.
On the universality of the two-point galaxy correlation function
NASA Technical Reports Server (NTRS)
Davis, Marc; Meiksin, Avery; Strauss, Michael A.; Da Costa, L. Nicolaci; Yahil, Amos
1988-01-01
The behavior of the two-point galaxy correlation function in volume-limited subsamples of three complete redshift surveys is investigated. The correlation length is shown to scale approximately as the square root of the distance limit in both the CfA and Southern Sky catalogs, but to be independent of the distance limit in the IRAS sample. This effect is found to be due to factors such as the large positive density fluctuations in the foreground of the optically selected catalogs biasing the correlation length estimate downward, and the brightest galaxies appearing to be more strongly clustered than the mean.
Kelly, Charlotte; Hulme, Claire; Farragher, Tracey; Clarke, Graham
2016-01-01
Objectives To investigate whether there is an association between differences in travel time/travel distance to healthcare services and patients' health outcomes and assimilate the methodologies used to measure this. Design Systematic Review. We searched MEDLINE, Embase, Web of Science, Transport database, HMIC and EBM Reviews for studies up to 7 September 2016. Studies were excluded that included children (including maternity), emergency medical travel or countries classed as being in the global south. Settings A wide range of settings within primary and secondary care (these were not restricted in the search). Results 108 studies met the inclusion criteria. The results were mixed. 77% of the included studies identified evidence of a distance decay association, whereby patients living further away from healthcare facilities they needed to attend had worse health outcomes (eg, survival rates, length of stay in hospital and non-attendance at follow-up) than those who lived closer. 6 of the studies identified the reverse (a distance bias effect) whereby patients living at a greater distance had better health outcomes. The remaining 19 studies found no relationship. There was a large variation in the data available to the studies on the patients' geographical locations and the healthcare facilities attended, and the methods used to calculate travel times and distances were not consistent across studies. Conclusions The review observed that a relationship between travelling further and having worse health outcomes cannot be ruled out and should be considered within the healthcare services location debate. PMID:27884848
Description of Hydration Water in Protein (Green Fluorescent Protein) Solution
Perticaroli, Stefania; Ehlers, Georg; Stanley, Christopher B.; ...
2016-10-26
The structurally and dynamically perturbed hydration shells that surround proteins and biomolecules have a substantial influence upon their function and stability. This makes the extent and degree of water perturbation of practical interest for general biological study and industrial formulation. Here, we present an experimental description of the dynamical perturbation of hydration water around green fluorescent protein in solution. Less than two shells (~5.5 Å) were perturbed, with dynamics a factor of 2–10 times slower than bulk water, depending on their distance from the protein surface and the probe length of the measurement. Furthermore, this dependence on probe length demonstratesmore » that hydration water undergoes subdiffusive motions (τ ∝ q –2.5 for the first hydration shell, τ ∝ q –2.3 for perturbed water in the second shell), an important difference with neat water, which demonstrates diffusive behavior (τ ∝ q –2). Our results help clarify the seemingly conflicting range of values reported for hydration water retardation as a logical consequence of the different length scales probed by the analytical techniques used.« less
Nord, Maria; Forslund, Pär
2015-01-01
Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Marcus, E-mail: marcus.walter@vkta.d; Somers, Joseph; Bouexiere, Daniel
2011-04-15
The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond showsmore » only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.« less
Nord, Maria; Forslund, Pär
2015-01-01
Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432
LC-lens array with light field algorithm for 3D biomedical applications
NASA Astrophysics Data System (ADS)
Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun
2016-03-01
In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L; Bartram, Brian D; Sanchez, Nathaniel
2009-01-01
We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparisonmore » of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ware, S; Clouser, E
2014-06-01
Purpose: To determine the out of field response of Microstar ii OSLDs as a function of field modulation and distance in VMAT plan delivery. This work has potential application in fetal dose monitoring or measurements on cardiac pacemakers Methods: VMAT plans were created in Eclipse and optimized to varying degrees of modulation. Three plans were chosen to represent low, medium and high degrees of modulation (modulation factors as defined by MU/cGy). Plans were delivered to slabs of solid water with dimensions 60cm length, 30cm width, and 10cm height. For each modulation factor, 2 OSLDs were placed at 1cm depth withmore » out of field distances of 1, 2, 3, 5, 8 and 10cm and the plan delivered isocentrically to a depth of 5cm. This technique was repeated for a Farmer Chamber by incrementing the table by the appropriate distance. The charge readings for the Farmer Chamber were converted to dose and the ratios taken as functions of modulation factors and distances out of field Results: Examination of the results as a function of out of field distance shows a trend of increasing OSLD/Farmer Chamber ratios for all modulation factors. The slopes appear to be roughly equivalent for all modulation factors investigated. Results as a function of modulation showed a downward trend for all out of field distances, with the greatest differences seen at 5cm and 8cm Conclusion: This study demonstrates that the response of OSLD dosimeters change as a function of out of field distance and modulation. The differences seen are within the stated accuracy of the system for the out of field distances and modulations investigated. Additional investigation is warranted to see if the OSLD response changes appreciably with longer out of field distances or wider ranges of modulation.« less
Keeping you at arm's length: modifying peripersonal space influences interpersonal distance.
Quesque, F; Ruggiero, G; Mouta, S; Santos, J; Iachini, T; Coello, Y
2017-07-01
Peripersonal space represents the area around the body where objects are coded in motor terms for the purpose of voluntary goal-directed actions. Previous studies have suggested that peripersonal space is also a safe space linked with our private area, influencing interpersonal space in social contexts. However, whether these two spaces rely on similar embodied processes remains an open issue. In the present study, participants observed a point-light walker (PLW) approaching them from different directions and passing near them at different distances from their right or left shoulder. While approaching, the PLW disappeared at a distance of 2 m and the task for the participants was to estimate if the interpersonal distance, at the time the PLW would have reached their level, was comfortable or not. Between two sessions of comfort judgments, the participants manipulated a 70 cm tool entailing an extension of peripersonal space, or a 10 cm tool entailing no extension of peripersonal space. The results revealed that the comfortable interpersonal distance was larger when the PLW crossed the mid-sagittal plane of the participants than when it approached them laterally, with a concomitant increase of response time. After participants manipulated the long tool, comfortable interpersonal distance increased, but predominantly when the PLW trajectory implied crossing the participants' mid-sagittal plane. This effect was not observed when participants manipulated the short tool. Two control tasks showed that using the long tool modified the reachability (control 1), but not the time to passage (control 2) estimates of PLW stimuli, suggesting that tool use extended peripersonal space without changing perceived visual distances. Overall, the data show that comfortable interpersonal distance is linked to the representation of peripersonal space. As a consequence, increasing peripersonal space through tool use has the immediate consequence that comfortable interpersonal distance from another person also increases, suggesting that interpersonal-comfort space and peripersonal-reaching space share a common motor nature.
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Qifeng; Li, Yunpu; Yang, Jiandong; Fu, Xinghu; Bi, Weihong; Li, Yanjun
2016-10-01
A tension sensor of Photonic Crystal Fiber(PCF) is presented based on core-offset splicing and waist-enlarged fiber taper. The tension response characteristics of the sensor are studied experimentally. To analyzing the modal interference, many samples with different PCF lengths between the two splicing areas, different core-offset distances and different waist-enlarged fiber taper diameters are fabricated and tested. When the tension range is 0 to 4000μɛ, the results show that the spectrum is blue shift with the increasing of the axial tension. The sensitivity is-2.1 pm/μɛ. The experimental results show that the tension sensitivity can be not influenced by the PCF lengths, the core-offset distances.The waist-enlarged fiber taper diameters and the tension sensor is very sensitive to axial tension and the relationship between the wavelength shift and tension is linearity. To determine the number of the interfering modes, the transmission spectra of these sensor is transformed by the fast fourier transform (FFT) method. There are several peaks in the spatial frequency spectra at these sensors. Only one cladding mode is dominantly excited, while the other cladding modes are weak. The spatial frequency is proportional to the differential mode group index. Compared with the traditional fiber sensor, this sensor has some advantages including the easily fabricated, simple structure and high sensitivity. It can be used in industrial production, building monitoring, aerospace and other fields.
Popoff, N.D.; Neumann, Robert M.
2005-01-01
The 5.8-km West Branch Farmington River Trout Management Area (TMA) is one of Connecticut's premier catch-and-release fisheries for brown trout Salmo trutta. However, little is known about the behavior of brown trout in this system and to what extent brown trout emigrate from the TMA. The objectives of this study were to determine the movement, range, and emigration of resident holdover and newly stocked brown trout tagged with radio transmitters in the TMA. Transmitters were implanted into 22 first-year (mean total length = 314 mm) and 25 second-year (mean total length = 432 mm) holdover brown trout. Twenty catchable-size (mean total length = 290 mm) brown trout were also implanted with transmitters and released into the TMA. The mean range (distance between the extreme upstream and downstream locations) was greater for second-year holdover brown trout than for first-year holdover brown trout, and it was greater in fall than in winter. The movement (distance moved between successive locations) of holdover brown trout was greater in fall than in winter. Movement of first-year holdover brown trout was significantly related to discharge, water temperature, and the number of days between successive locations. Newly stocked brown trout exhibited the two largest ranges (5.3 and 4.7 km). The range of newly stocked brown trout was not different between seasons, but movement was greater in spring than in summer. Through 16 weeks poststocking, there was no discernable difference in the percentage of stocked brown trout dispersing in a predominantly upstream or downstream direction. Mean dispersal distances from the stocking location were 0.5 and 0.9 km at 2 and 12 weeks poststocking, respectively. Movement of newly stocked brown trout was positively related to discharge and negatively related to water temperature. A known 6% (4 of 67) of the tagged brown trout emigrated from the TMA, but up to 21% (14 of 67) of tagged fish could have left the study area if all missing fish were emigrants. ?? Copyright by the American Fisheries Society 2005.
Munoz, Hugo Roberto; Camacho-Cuadra, Karla
2012-04-01
Many in vitro studies have debated over the ability of different irrigant delivery and/or agitation systems to reach the apical third of curved root canals; however, little is known about irrigant penetration in vivo. Therefore, the purpose of this study was to compare the efficacy of the conventional endodontic irrigation needle, passive ultrasonic irrigation (PUI), and a negative pressure system for irrigant delivery to working length (WL) of mesial canals of mandibular molars. Thirty mesial canals of 30 vital mandibular first or second molars were randomly assigned into 3 groups (n = 10): (1) Monoject syringe with 27-gauge needle; (2) PUI with IrriSafe tip; and (3) EndoVac system. All canals were treated following the same preparation protocol to size 35/0.04 by using 5.25% NaOCl as irrigant during preparation procedure. Before obturation, canals were irrigated with 1 mL of a radiopaque solution by using the assigned irrigation system, and a digital radiograph was taken by using a parallel technique. With the aid of image editing software the distance between WL and maximum irrigant penetration was measured. Mean distances for Monoject, PUI, and EndoVac groups were 1.51 mm, 0.21 mm, and 0.42 mm, respectively. Analysis of variance test showed statistically significant differences between groups (P < .001). Tukey honestly significant difference test showed statistically significant differences between the Monoject group and the other 2 groups (P < .001) but no significant differences between PUI and EndoVac groups (P = .06). PUI and EndoVac are more effective than the conventional endodontic needle in delivering irrigant to WL of root canals. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Shin, Sang-Jin; Kim, Nam-Ki
2015-05-01
The purpose of this study was to evaluate clinical and radiological outcomes after arthroscopically assisted coracoclavicular (CC) fixation using a single adjustable-loop-length suspensory fixation device for acute acromioclavicular dislocation and to report intraoperative and postoperative complications. Eighteen consecutive patients with acute acromioclavicular dislocation underwent arthroscopically assisted CC fixation using a single TightRope (Arthrex, Naples, FL). Using the Rockwood classification, 3 patients had grade III dislocations, one patient had a grade IV dislocation, and 14 patients had grade V dislocations. The preoperative CC distance of the injured shoulder was 16.1 ± 2.7 mm (range, 11.2 to 21.0 mm), and it increased by 99% ± 36% (range, 17% to 153%) on average compared with the contralateral shoulder. The average CC distance was 10.5 ± 2.5 mm (range, 7.7 to 15.5 mm), and it increased by 30% ± 30% (range, -9.4% to 90%) at the final follow-up. Compared with immediate postoperative radiographs, the CC distance was maintained in 12 patients, increased between 50% and 100% in 4 patients, and increased more than 100% in 2 patients at final follow-up. However, there was no statistical difference in Constant scores between 6 patients with reduction loss (95.6 ± 4.5) and 12 patients with reduction maintenance (98.4 ± 2.5; P = .17). Perioperative complications occurred in 8 patients, including one case of acromioclavicular arthritis, one case of delayed distal clavicular fracture at the clavicular hole of the device, 3 cases of clavicular or coracoid button failures, and 3 cases of clavicular bony erosion. Satisfactory clinical outcomes were obtained after CC fixation using the single adjustable-loop-length suspensory fixation device for acute acromioclavicular joint dislocation. However, CC fixation failure of greater than 50% of the unaffected side in radiological examinations occurred in 33% of the patients within 3 months after the operation. Additionally, 8 patients (44%) had complications associated with the adjustable-loop-length suspensory fixation device and surgical technical problems. Despite acceptable shoulder function restoration, adequate care should be exercised in surgical treatment of acute acromioclavicular dislocation with a single adjustable-loop-length suspensory fixation device for optimal radiological outcomes. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M
2011-03-02
In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A detailed analysis of possible orientation effects (κ(2) problem) indicates that, for short linkers and unknown local environments, additional κ(2)-related uncertainties are clearly outweighed by better defined dye positions.
NASA Astrophysics Data System (ADS)
Anugrahadi, A.
2018-01-01
Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.
Bifocal Stereo for Multipath Person Re-Identification
NASA Astrophysics Data System (ADS)
Blott, G.; Heipke, C.
2017-11-01
This work presents an approach for the task of person re-identification by exploiting bifocal stereo cameras. Present monocular person re-identification approaches show a decreasing working distance, when increasing the image resolution to obtain a higher reidentification performance. We propose a novel 3D multipath bifocal approach, containing a rectilinear lens with larger focal length for long range distances and a fish eye lens of a smaller focal length for the near range. The person re-identification performance is at least on par with 2D re-identification approaches but the working distance of the approach is increased and on average 10% more re-identification performance can be achieved in the overlapping field of view compared to a single camera. In addition, the 3D information is exploited from the overlapping field of view to solve potential 2D ambiguities.
Gas dynamics of a supersonic radial jet. Part II
NASA Astrophysics Data System (ADS)
Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.
2016-05-01
The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.
Minimization of dependency length in written English.
Temperley, David
2007-11-01
Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1-76; Gibson, E. 2000. The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, Language, Brain (pp. 95-126). Cambridge, MA: MIT Press.] proposes that the processing complexity of a sentence is related to the length of its syntactic dependencies: longer dependencies are more difficult to process. The DLT is supported by a variety of phenomena in language comprehension. This raises the question: Does language production reflect a preference for shorter dependencies as well? I examine this question in a corpus study of written English, using the Wall Street Journal portion of the Penn Treebank. The DLT makes a number of predictions regarding the length of constituents in different contexts; these predictions were tested in a series of statistical tests. A number of findings support the theory: the greater length of subject noun phrases in inverted versus uninverted quotation constructions, the greater length of direct-object versus subject NPs, the greater length of postmodifying versus premodifying adverbial clauses, the greater length of relative-clause subjects within direct-object NPs versus subject NPs, the tendency towards "short-long" ordering of postmodifying adjuncts and coordinated conjuncts, and the shorter length of subject NPs (but not direct-object NPs) in clauses with premodifying adjuncts versus those without.
Rearfoot striking runners are more economical than midfoot strikers.
Ogueta-Alday, Ana; Rodríguez-Marroyo, José Antonio; García-López, Juan
2014-03-01
This study aimed to analyze the influence of foot strike pattern on running economy and biomechanical characteristics in subelite runners with a similar performance level. Twenty subelite long-distance runners participated and were divided into two groups according to their foot strike pattern: rearfoot (RF, n = 10) and midfoot (MF, n = 10) strikers. Anthropometric characteristics were measured (height, body mass, body mass index, skinfolds, circumferences, and lengths); physiological (VO2max, anaerobic threshold, and running economy) and biomechanical characteristics (contact and flight times, step rate, and step length) were registered during both incremental and submaximal tests on a treadmill. There were no significant intergroup differences in anthropometrics, VO2max, or anaerobic threshold measures. RF strikers were 5.4%, 9.3%, and 5.0% more economical than MF at submaximal speeds (11, 13, and 15 km·h respectively, although the difference was not significant at 15 km·h, P = 0.07). Step rate and step length were not different between groups, but RF showed longer contact time (P < 0.01) and shorter flight time (P < 0.01) than MF at all running speeds. The present study showed that habitually rearfoot striking runners are more economical than midfoot strikers. Foot strike pattern affected both contact and flight times, which may explain the differences in running economy.
NASA Astrophysics Data System (ADS)
Tucker, G. E.; Bradley, D. N.
2008-12-01
Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the probability distribution of displacement length is thin- tailed (approximately exponential). At high relief, hillslopes become planar, average displacement length increases by an order of magnitude, and the displacement-length distribution becomes heavy-tailed (albeit truncated at the slope length). Across the spectrum of relief values, the relationship between mean flux and gradient resembles the family of nonlinear flux-gradient curves that has been used to model hillslope evolution. We compare the emergent morphology and transport statistics with linear, nonlinear, and fractional diffusion models of hillslope transport.
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
Repeatability data and agreement of keratometry with the VERION system compared to the IOLMaster.
Nemeth, Gabor; Szalai, Eszter; Hassan, Ziad; Lipecz, Agnes; Berta, Andras; Modis, Laszlo
2015-05-01
To analyze the repeatability of keratometric and white-to-white (WTW) distance measurements with the VERION Measurement Module (Alcon Laboratories, Inc., Fort Worth, TX) and to compare the measured data to the results of the IOLMaster (Carl Zeiss Meditec, Jena, Germany). Three images were captured with the VERION and the flattest and steepest keratometric data, the astigmatism axis, and the WTW distance were recorded. Subsequently, the axial length, the keratometric data with axis, and the WTW distance were measured with an IOLMaster. The repeatability data of the keratometric value of the VERION System, converted to cross cylinder J0 and J45 vector components, were analyzed. The agreement data for keratometry obtained by the VERION System and the differences regarding keratometric data and WTW distance compared to IOLMaster were calculated. The measurements were conducted in 50 eyes of 50 healthy volunteers (median age: 50.32 years, range: 19.34 to 85.3 years). The flattest and the steepest keratometric data, the diopter of astigmatism, the J0 and J45 vector components, and WTW distance did not differ significantly between devices (P > .05). Intraclass correlation coefficients (range: 0.863 to 0.994) and Cronbach's alpha values (range: 0.950 to 0.998) were high for all parameters measured by the VERION System. The VERION System has high repeatability and agreement with the IOLMaster, making it suitable as an alternative tool in clinical practice. Copyright 2015, SLACK Incorporated.
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...
2016-11-11
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine
2007-06-01
To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.
Yamasaki, Rosiane; Murano, Emi Z; Gebrim, Eloisa; Hachiya, Adriana; Montagnoli, Arlindo; Behlau, Mara; Tsuji, Domingos
2017-07-01
To compare vocal tract (VT) adjustments of dysphonic and non-dysphonic women before and after flexible resonance tube in water exercise (FRTWE) at rest and during phonation using magnetic resonance imaging. Prospective study. Twenty women, aged 20-40 years, 10 dysphonic with vocal nodules (VNG) and 10 controls (CG), underwent four sets of sagittal VT MRI: two pre-FRTWE, at rest and during phonation, and two post-FRTWE, during phonation and at rest. The subjects performed 3 minutes of exercise. Nine parameters at rest and 21 during phonation were performed. Pre-FRTWE, eight significant differences were found, three at rest and five during phonation: at rest - laryngeal vestibule area, distance from epiglottis to pharyngeal posterior wall (PPW) and interarytenoid complex length were smaller in the VNG; during phonation - laryngeal vestibule area, angle between PPW and vocal fold (VF), epiglottis to PPW, and anterior commissure of the larynx to laryngeal posterior wall were smaller in the VNG; tongue area was larger in the VNG. Post-FRTWE, only three significant differences were found, two during phonation and one at rest: during phonation - angle between PPW and VF and the membranous portion of the VF length were smaller in the VNG; at rest - distance from epiglottis to PPW was smaller in the VNG. Results suggest that the habitual VT adjustments of dysphonic and non-dysphonic women are different at rest and during phonation. The FRTWE promoted positive VT changes in the VNG, reducing the intergroup differences. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Thankamony, Ajay; Lek, Ngee; Carroll, Dan; Williams, Martyn; Dunger, David B.; Acerini, Carlo L.; Ong, Ken K.
2013-01-01
Background: Anogenital distance (AGD) in animals is a sensitive biomarker of fetal endocrine disruption and the associated testicular dysgenesis syndrome (TDS). However, AGD in human infants with cryptorchidism and hypospadias, which are potential manifestations of TDS during childhood, is not clearly described. Objective: Our aim was to compare AGD in boys with cryptorchidism or hypospadias against normative data. Methods: Boys with isolated cryptorchidism (n = 71, age 13.4 ± 5.8 months) or hypospadias (n = 81, age 11.4 ± 6.2 months) were recruited from a tertiary center for measurement of AGD and penile length; they were compared with 487 healthy full-term boys from a birth cohort by deriving age-specific standard deviation scores (SDS). Results: Boys with cryptorchidism were older (p = 0.048) compared with boys with hypospadias. Boys with hypospadias had shorter mean AGD and penile length SDS than healthy boys (both p < 0.0001). Mean AGD and penile length SDS values in boys with cryptorchidism were longer than mean values in boys with hypospadias (both p < 0.01) and shorter than mean values in healthy boys (both p < 0.0001). Mean penile length SDS decreased as the severity of hypospadias increased (ptrend = 0.078). Conclusions: In the study population, AGD and penile length were reduced in boys with hypospadias or cryptorchidism relative to normative data derived from a longitudinal birth cohort. The findings support the use of AGD as a quantitative biomarker to examine the prenatal effects of exposure to endocrine disruptors on the development of the male reproductive tract. Citation: Thankamony A, Lek N, Carroll D, Williams M, Dunger DB, Acerini CL, Ong KK, Hughes IA. 2014. Anogenital distance and penile length in infants with hypospadias or cryptorchidism: comparison with normative data. Environ Health Perspect 122:207–211; http://dx.doi.org/10.1289/ehp.1307178 PMID:24316680
Kudoh, Nobuo
2005-01-01
Walking without vision to previously viewed targets was compared with visual perception of allocentric distance in two experiments. Experimental evidence had shown that physically equal distances in a sagittal plane on the ground were perceptually underestimated as compared with those in a frontoparallel plane, even under full-cue conditions. In spite of this perceptual anisotropy of space, Loomis et al (1992 Journal of Experimental Psychology. Human Perception and Performance 18 906-921) found that subjects could match both types of distances in a blind-walking task. In experiment 1 of the present study, subjects were required to reproduce the extent of allocentric distance between two targets by either walking towards the targets, or by walking in a direction incompatible with the locations of the targets. The latter condition required subjects to derive an accurate allocentric distance from information based on the perceived locations of the two targets. The walked distance in the two conditions was almost identical whether the two targets were presented in depth (depth-presentation condition) or in the frontoparallel plane (width-presentation condition). The results of a perceptual-matching task showed that the depth distances had to be much greater than the width distances in order to be judged to be equal in length (depth compression). In experiment 2, subjects were required to reproduce the extent of allocentric distance from the viewing point by blindly walking in a direction other than toward the targets. The walked distance in the depth-presentation condition was shorter than that in the width-presentation condition. This anisotropy in motor responses, however, was mainly caused by apparent overestimation of length oriented in width, not by depth compression. In addition, the walked distances were much better scaled than those in experiment 1. These results suggest that the perceptual and motor systems share a common representation of the location of targets, whereas a dissociation in allocentric distance exists between the two systems in full-cue conditions.
Looking northeast from shore along the length of Pier 22 ...
Looking northeast from shore along the length of Pier 22 with a view of rigging platforms and Shore Power Supply Electric Distribution Center (Building 734) in the distance - Mare Island Naval Shipyard, Finger Piers 22 & 23, Railroad Avenue near Eighteenth Street, Vallejo, Solano County, CA
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Stereological and Morphometric Analysis of MRI Chiari Malformation Type-1
Alkoç, Ozan Alper; Songur, Ahmet; Eser, Olcay; Toktas, Muhsin; Esi, Ertap; Haktanir, Alpay
2015-01-01
Objective In this study, we aimed to investigate the underlying ethiological factors in chiari malformation (CM) type-I (CMI) via performing volumetric and morphometric length-angle measurements. Methods A total of 66 individuals [33 patients (20-65 years) with CMI and 33 control subjects] were included in this study. In sagittal MR images, tonsillar herniation length and concurrent anomalies were evaluated. Supratentorial, infratentorial, and total intracranial volumes were measured using Cavalieri method. Various cranial distances and angles were used to evaluate the platybasia and posterior cranial fossa (PCF) development. Results Tonsillar herniation length was measured 9.09±3.39 mm below foramen magnum in CM group. Tonsillar herniation/concurrent syringomyelia, concavity/defect of clivus, herniation of bulbus and fourth ventricle, basilar invagination and craniovertebral junction abnormality rates were 30.3, 27, 18, 2, 3, and 3 percent, respectively. Absence of cisterna magna was encountered in 87.9% of the patients. Total, IT and ST volumes and distance between Chamberlain line and tip of dens axis, Klaus index, clivus length, distance between internal occipital protuberance and opisthion were significantly decreased in patient group. Also in patient group, it was found that Welcher basal angle/Boogard angle increased and tentorial slope angle decreased. Conclusion Mean cranial volume and length-angle measurement values significantly decreased and there was a congenital abnormality association in nearly 81.5 percent of the CM cases. As a result, it was concluded that CM ethiology can be attributed to multifactorial causes. Moreover, congenital defects can also give rise to this condition. PMID:26713146
Vasileiou, Alexandros A; Kontopoulou, Marianna; Gui, Hua; Docoslis, Aristides
2015-01-28
The objectives of this work are to quantify the degree of multiwalled carbon nanotube (MWCNT) length reduction upon melt compounding and to demonstrate unambiguously that the length reduction is mainly responsible for the increase in electrical percolation threshold of the resulting composites. Polyolefin matrices of varying viscosities and different functional groups are melt compounded with MWCNTs. A simple method is developed to solubilize the polymer matrix and isolate the MWCNTs, enabling detailed imaging analysis. In spite of the perceived strength of the MWCNTs, the results demonstrate that the shear forces developed during melt mixing are sufficient to cause significant nanotube breakage and length reduction. Breakage is promoted when higher MWCNT contents are used, due to increased probability of particle collisions. Furthermore, the higher shear forces transmitted to the nanotubes in the presence of higher matrix viscosities and functional groups that promote interfacial interactions, shift the nanotube distribution toward smaller sizes. The length reduction of the MWCNTs causes significant increases in the percolation threshold, due to the loss of interconnectivity, which results in fewer conductive pathways. These findings are validated by comparing the experimental percolation threshold values with those predicted by the improved interparticle distance theoretical model.
Application of Statistical Learning Theory to Plankton Image Analysis
2006-06-01
linear distance interval from 1 to 40 pixels and two directions formula (horizontal & vertical, and diagonals), EF2 is EF with 7 ex- ponential distance...and four directions formula (horizontal, vertical and two diagonals). It is clear that exponential distance inter- val works better than the linear ...PSI - PS by Vincent, linear and pseudo opening and closing spectra, each has 40 elements, total feature length of 160. PS2 - PS modified from Mei- jster
Yu, Hongbo; Wang, Xudong; Fang, Bing; Shen, Steve Guofang
2012-11-01
Conventional maxillary distraction osteogenesis and anterior maxillary segmental distraction were applied in the treatment of severe maxillary hypoplasia secondary to cleft clip and palate. The aim of the present study was to compare the difference between these 2 osteotomy modalities used for rigid external distraction. Ten patients with severe maxillary hypoplasia secondary to CLP were enrolled in our study. They were randomly divided into 2 groups. Conventional maxillary distraction osteogenesis was performed in 5 patients and anterior maxillary segmental distraction in 5 patients. The preoperative and postoperative lateral cephalograms were compared, and cephalometric analysis was performed. The independent sample t test was used to evaluate the differences between the 2 groups. All patients healed uneventfully, and the maxillae moved forward satisfactorily. The sella-nasion-point A angles, nasion-point A-Frankfort horizontal plane angles, overjets, and 0-meridian to subnasale distances had increased significantly after distraction osteogenesis. Significant differences were found in the changes in palatal length between the 2 groups (P < .05). A mean increase of 7.50 mm in palatal length was found in the anterior maxillary segmental distraction group. No significant difference in the changes in palatopharyngeal depth or soft palatal length was found. With the ability of increasing the palatal and arch length, avoiding changes in palatopharyngeal depth, and preserving palatopharyngeal closure function, anterior maxillary segmental distraction has great value in the treatment of maxillary hypoplasia secondary to CLP. It is a promising and valuable technique in this potentially complicated procedure. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Bernabei, Michel; van Dieën, Jaap H; Maas, Huub
2017-02-15
The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle-tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s -1 ). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways. © 2017. Published by The Company of Biologists Ltd.
Lally, Trent; Geist, James R; Yu, Qingzhao; Himel, Van T; Sabey, Kent
2015-07-01
This study compared images displayed on 1 desktop monitor, 1 laptop monitor, and 2 tablets for the detection of contrast and working length interpretation, with a null hypothesis of no differences between the devices. Three aluminum blocks, with milled circles of varying depth, were radiographed at various exposure levels to create 45 images of varying radiographic density. Six observers viewed the images on 4 devices: Lenovo M92z desktop (Lenovo, Beijing, China), Lenovo Z580 laptop (Lenovo), iPad 3 (Apple, Cupertino, CA), and iPad mini (Apple). Observers recorded the number of circles detected for each image, and a perceptibility curve was used to compare the devices. Additionally, 42 extracted teeth were imaged with working length files affixed at various levels (short, flush, and long) relative to the anatomic apex. Observers measured the distance from file tip to tooth apex on each device. The absolute mean measurement error was calculated for each image. Analysis of variance tests compared the devices. Observers repeated their sessions 1 month later to evaluate intraobserver reliability as measured with weighted kappa tests. Interclass correlation coefficients compared interobserver reliability. There was no significant difference in perceptibility detection between the Lenovo M92z desktop, iPad 3, and iPad mini. However, on average, all 3 were significantly better than the Lenovo Z580 laptop (P values ≤.015). No significant difference in the mean absolute error was noted for working length measurements among the 4 viewing devices (P = .3509). Although all 4 viewing devices seemed comparable with regard to working length evaluation, the laptop computer screen had lower overall ability to perceive contrast differences. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schellhas, Helmut F.; Barnes, Alfonso E.
1982-12-01
Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.
Front teeth-to-carina distance in children undergoing cardiac catheterization.
Hunyady, Agnes I; Pieters, Benjamin; Johnston, Troy A; Jonmarker, Christer
2008-06-01
Knowledge of normal front teeth-to-carina distance (FT-C) might prevent accidental bronchial intubation. The aim of the current study was to measure FT-C and to examine whether the Morgan formula for oral intubation depth, i.e., endotracheal tube (ETT) position at front teeth (cm) = 0.10 x height (cm) + 5, gives appropriate guidance when intubating children of different ages. FT-C was measured in 170 infants and children, aged 1 day to 19 yr, undergoing cardiac catheterization. FT-C was obtained as the sum of the ETT length at the upper front teeth/dental ridge and the distance from the ETT tip to the carina. The latter measure was taken from an anterior-posterior chest x-ray. There was close linear correlation between FT-C and height: FT-C (cm) = 0.12 x height (cm) + 5.2, R = 0.98. The linear correlation coefficients (R) for FT-C versus weight and age were 0.78 and 0.91, respectively. If the Morgan formula had been used for intubation, the ETT tip would have been at 90 +/- 4% of FT-C. No patient would have been bronchially intubated, but the ETT tip would have been less than 0.5 cm from the carina in 13 infants. FT-C can be well predicted from the height/length of the child. The Morgan formula provides good guidance for intubation in children but can result in a distal ETT tip position in small infants. Careful auscultation is necessary to ensure correct tube position.
Determination of the myosin step size from mechanical and kinetic data.
Pate, E; White, H; Cooke, R
1993-01-01
During muscle contraction, work is generated when a myosin cross-bridge attaches to an actin filament and exerts a force on it through some power-stroke distance, h. At the end of this power stroke, attached myosin heads are carried into regions where they exert a negative force on the actin filament (the drag stroke) and where they are released rapidly from actin by ATP binding. Although the length of the power stroke remains controversial, average distance traversed in the drag-stroke region can be determined when one knows both rate of cross-bridge dissociation and filament-sliding velocity. At maximum contraction velocity, the average force exerted in the drag stroke must balance that exerted in the power stroke. We discuss here a simple model of cross-bridge interaction that allows one to calculate the force exerted in the drag stroke and to relate this to the power-stroke distance h traversed by cross-bridges in the positive-force region. Both the rate at which myosin can be dissociated from actin and the velocity at which an actin filament can be translated have been measured for a series of myosin isozymes and for different substrates, producing a wide range of values for each. Nonetheless, we show here that the rate of myosin dissociation from actin correlates well with the velocity of filament sliding, providing support for the simple model presented and suggesting that the power stroke is approximately 10 nm in length. PMID:8460156
Stepping over obstacles: anticipatory modifications in children with and without Down syndrome.
Virji-Babul, Naznin; Brown, Michelle
2004-12-01
The purpose of this study was to explore the mechanism of anticipatory control of gait in relation to the perception of an obstacle. Typically developing (TD) children (4-7 years of age) and children with Down syndrome (5-6 years of age) walked and stepped over obstacles of two different heights-a "subtle" obstacle that was placed at a very low distance from the floor (1% of total body height) and an "obvious" obstacle that was placed at a much higher distance from the floor (15% of total body height). Spatial and temporal measures of the gait cycle were analyzed. TD children showed increased variability in pre-obstacle step lengths only in response to the higher obstacle. Children with DS showed a decrease in variability in response to the higher obstacle and marked qualitative changes in their gait cycle. Both groups of children were able to scale toe clearance with obstacle height. These results show that TD young children can make task-specific anticipatory adjustments by modulating step length and toe clearance. Children with DS show appropriate scaling of toe clearance and are beginning to show the emergence of anticipatory responses under specific environmental conditions.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-06-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm-30 μm, dual-taper length is 1 mm and taper distance is 4 cm-6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333-1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10(-5) RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability.
Detecting and Quantifying Topography in Neural Maps
Yarrow, Stuart; Razak, Khaleel A.; Seitz, Aaron R.; Seriès, Peggy
2014-01-01
Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance correlation, Zrehen's measure, topographic product, topological correlation, path length and wiring length) by quantifying topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of individual binaural clusters. PMID:24505279
Molecular dynamics analysis of the aggregation propensity of polyglutamine segments
Wen, Jingran; Scoles, Daniel R.
2017-01-01
Protein misfolding and aggregation is a pathogenic feature shared among at least ten polyglutamine (polyQ) neurodegenerative diseases. While solvent-solution interaction is a key factor driving protein folding and aggregation, the solvation properties of expanded polyQ tracts are not well understood. By using GPU-enabled all-atom molecular dynamics simulations of polyQ monomers in an explicit solvent environment, this study shows that solvent-polyQ interaction propensity decreases as the lengths of polyQ tract increases. This study finds a predominance in long-distance interactions between residues far apart in polyQ sequences with longer polyQ segments, that leads to significant conformational differences. This study also indicates that large loops, comprised of parallel β-structures, appear in long polyQ tracts and present new aggregation building blocks with aggregation driven by long-distance intra-polyQ interactions. Finally, consistent with previous observations using coarse-grain simulations, this study demonstrates that there is a gain in the aggregation propensity with increased polyQ length, and that this gain is correlated with decreasing ability of solvent-polyQ interaction. These results suggest the modulation of solvent-polyQ interactions as a possible therapeutic strategy for treating polyQ diseases. PMID:28542401
Gunshot residue patterns on skin in angled contact and near contact gunshot wounds.
Plattner, T; Kneubuehl, B; Thali, M; Zollinger, U
2003-12-17
The goal of this study was the reproduction of shape and pattern of gunshot residues in near contact and contact gunshot wounds by a series of experimental gunshots on a skin and soft tissue model. The aim was to investigate the shape and direction of soot deposits with regard to the muzzle according to different muzzle-target angles, firing distances, type of ammunition and weapon and barrel length. Based on a review of the literature and on the results of the experiments the authors could make the following statements of gunshot residues in angled contact and close contact gunshot: (1) gunshot residues on the target surface can be differentiated in a "inner" and "outer powder soot zone"; (2) the outer powder soot zone is much less visible than the inner powder soot zone and may lack on human skin; (3) with increasing muzzle target distance both inner and outer powder soot halo increase in size and decrease in density; (4) in angled shots the inner powder soot halo shows an eccentric, elliptic shape which points towards the muzzle, regardless of ammunition, calibre and barrel length; (5) the outer powder soot points away from the muzzle in angled contact and close contact shots.
Haro, A.; Castro-Santos, T.; Noreika, J.; Odeh, M.
2004-01-01
The ability to traverse barriers of high-velocity flow limits the distributions of many diadromous and other migratory fish species, yet very few data exist that quantify this ability. We provide a detailed analysis of sprint swimming ability of six migratory fish species (American shad (Alosa sapidissima), alewife (Alosa pseudoharengus), blueback herring (Alosa aestivalis), striped bass (Morone saxatilis), walleye (Stizostedion vitreum), and white sucker (Catostomus commersoni)) against controlled water velocities of 1.5-4.5 m??s-1 in a large, open-channel flume. Performance was strictly voluntary: no coercive incentives were used to motivate fish to sprint. We used these data to generate models of maximum distance traversed, taking into account effects of flow velocity, body length, and temperature. Although the maximum distance traversed decreased with increasing velocity, the magnitude of this effect varied among species. Other covariate effects were likewise variable, with divergent effects of temperature and nonuniform length effects. These effects do not account for all of the variability in performance, however, and behavioral traits may account for observed interspecific differences. We propose the models be used to develop criteria for fish passage structures, culverts, and breached dams.
Cho, Kang Su; Jung, Hae Do; Ham, Won Sik; Chung, Doo Yong; Kang, Yong Jin; Jang, Won Sik; Kwon, Jong Kyou; Choi, Young Deuk; Lee, Joo Yong
2015-01-01
Objectives To investigate whether skin-to-stone distance (SSD), which remains controversial in patients with ureter stones, can be a predicting factor for one session success following extracorporeal shock wave lithotripsy (ESWL) in patients with upper ureter stones. Patients and Methods We retrospectively reviewed the medical records of 1,519 patients who underwent their first ESWL between January 2005 and December 2013. Among these patients, 492 had upper ureter stones that measured 4–20 mm and were eligible for our analyses. Maximal stone length, mean stone density (HU), and SSD were determined on pretreatment non-contrast computed tomography (NCCT). For subgroup analyses, patients were divided into four groups. Group 1 consisted of patients with SSD<25th percentile, group 2 consisted of patients with SSD in the 25th to 50th percentile, group 3 patients had SSD in the 50th to 75th percentile, and group 4 patients had SSD≥75th percentile. Results In analyses of group 2 patients versus others, there were no statistical differences in mean age, stone length and density. However, the one session success rate in group 2 was higher than other groups (77.9% vs. 67.0%; P = 0.032). The multivariate logistic regression model revealed that shorter stone length, lower stone density, and the group 2 SSD were positive predictors for successful outcomes in ESWL. Using the Bayesian model-averaging approach, longer stone length, lower stone density, and group 2 SSD can be also positive predictors for successful outcomes following ESWL. Conclusions Our data indicate that a group 2 SSD of approximately 10 cm is a positive predictor for success following ESWL. PMID:26659086
Cuezzo, Carolina
2016-12-09
Coendutermes Fontes, 1985 is a monotypic South American termite genus. Coendutermes tucum Fontes, 1985, was described based on morphological characters from soldiers and workers collected in Mato Grosso, Brazil, and Jodensavanne, Suriname. Herein, I describe the imago caste of C. tucum for the first time with additional notes on soldiers, workers, and new distributional records. The studied material is deposited at the Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil (MZUSP). I use the terminology of Fontes (1987) to describe worker mandibles, and that of Noirot (2001) for the different parts of the digestive tube of workers. I measured the imagoes morphometric characters following Roonwal (1970): LH, length of head capsule (9); WH, width of head capsule without eyes (18); OF, occipito-fontanelle distance (23); DE, diameter of eye (48); LO, length of ocellus (55); WO, width of ocellus (56); EOD, eye-ocellus distance (57); LP, length of pronotum (65); WP, width of pronotum (68); LT, length of hind tibia (85). I took photographs of all castes with a stereomicroscope (Leica M205C) attached to a video camera (Leica DFC295) and images of gizzard and enteric valve under a microscope (Leica DM750B) attached to a video camera (Leica ICC50HD), then I combined the stacks of images with the software Leica LAS EZ 2.0 or Helicon Focus 5.2.11 X64. For the scanning electron micrographs (SEM), one soldier was dried to critical point while directly mounted on a stub with double face adhesive tape, then coated with gold and photographed with the SEM (Zeiss LEO 440 ®).
Development of vocal tract length during early childhood: A magnetic resonance imaging study
NASA Astrophysics Data System (ADS)
Vorperian, Houri K.; Kent, Ray D.; Lindstrom, Mary J.; Kalina, Cliff M.; Gentry, Lindell R.; Yandell, Brian S.
2005-01-01
Speech development in children is predicated partly on the growth and anatomic restructuring of the vocal tract. This study examines the growth pattern of the various hard and soft tissue vocal tract structures as visualized by magnetic resonance imaging (MRI), and assesses their relational growth with vocal tract length (VTL). Measurements on lip thickness, hard- and soft-palate length, tongue length, naso-oro-pharyngeal length, mandibular length and depth, and distance of the hyoid bone and larynx from the posterior nasal spine were used from 63 pediatric cases (ages birth to 6 years and 9 months) and 12 adults. Results indicate (a) ongoing growth of all oral and pharyngeal vocal tract structures with no sexual dimorphism, and a period of accelerated growth between birth and 18 months; (b) vocal tract structure's region (oral/anterior versus pharyngeal/posterior) and orientation (horizontal versus vertical) determine its growth pattern; and (c) the relational growth of the different structures with VTL changes with development-while the increase in VTL throughout development is predominantly due to growth of pharyngeal/posterior structures, VTL is also substantially affected by the growth of oral/anterior structures during the first 18 months of life. Findings provide normative data that can be used for modeling the development of the vocal tract. .
Alternative S2 Hinge Regions of the Myosin Rod Affect Myofibrillar Structure and Myosin Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark S.; Dambacher, Corey M.; Knowles, Aileen F.
2009-07-01
The subfragment 2/light meromyosin 'hinge' region has been proposed to significantly contribute to muscle contraction force and/or speed. Transgenic replacement of the endogenous fast muscle isovariant hinge A (exon 15a) in Drosophila melanogaster indirect flight muscle with the slow muscle hinge B (exon 15b) allows examination of the structural and functional changes when only this region of the myosin molecule is different. Hinge B was previously shown to increase myosin rod length, increase A-band and sarcomere length, and decrease flight performance compared to hinge A. We applied additional measures to these transgenic lines to further evaluate the consequences of modifyingmore » this hinge region. Structurally, the longer A-band and sarcomere lengths found in the hinge B myofibrils appear to be due to the longitudinal addition of myosin heads. Functionally, hinge B, although a significant distance from the myosin catalytic domain, alters myosin kinetics in a manner consistent with this region increasing myosin rod length. These structural and functional changes combine to decrease whole fly wing-beat frequency and flight performance. Our results indicate that this hinge region plays an important role in determining myosin kinetics and in regulating thick and thin filament lengths as well as sarcomere length.« less
Savini, Giacomo; Hoffer, Kenneth J; Lombardo, Marco; Serrao, Sebastiano; Schiano-Lomoriello, Domenico; Ducoli, Pietro
2016-01-01
To calculate the near focal distance of different multifocal intraocular lenses (IOLs) as a function of the 2 parameters that are measured before cataract surgery; that is, axial length (AL) and refractive corneal power (keratometry [K]). GB Bietti Foundation IRCCS, Rome, Italy. Noninterventional theoretical study. The IOL power for emmetropia was first calculated in an eye model with the AL ranging from 20 to 30 mm and K from 38 to 48 diopters (D). Then, the predicted myopic refraction for any given IOL add power (from +1.5 to +4.0 D) was calculated, and from this value the near focal distance was obtained. Calculations were also performed for the average eye (K = 43.81 D; AL = 23.65 mm). The near focal distance increased with increasing values of K and AL for each near power add. The near focal distance ranged between 53 cm and 72 cm (21 inches and 28 inches) for a multifocal IOL with +2.50 D, between 44 cm and 60 cm (17 inches and 24 inches) for a multifocal IOL with +3.00 D add, and between 33 cm and 44 cm (13 inches and 18 inches) for a multifocal IOL with +4.00 D add. In the average eye, the near focal distance ranges between 36 cm (near add power = 4.00 D) and 99 cm (near add power = 1.5 D). Longer eyes with steeper corneas showed the longest near focal distance and could experience more difficulties in focusing near objects after surgery. The opposite was true for short hyperopic eyes. Dr. Hoffer receives licensing fees for the commercial use of the registered trademark Hoffer from all biometry manufacturers using the Hoffer Q formula to ensure that it is programmed correctly and book royalties from Slack, Inc., for the textbook IOL Power. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Van Hoozen, Brian L.; Petersen, Poul B.
2018-04-01
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.
Drop size distribution and air velocity measurements in air assist swirl atomizer sprays
NASA Technical Reports Server (NTRS)
Mao, C.-P.; Oechsle, V.; Chigier, N.
1987-01-01
Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.
Lexical evolution rates derived from automated stability measures
NASA Astrophysics Data System (ADS)
Petroni, Filippo; Serva, Maurizio
2010-03-01
Phylogenetic trees can be reconstructed from the matrix which contains the distances between all pairs of languages in a family. Recently, we proposed a new method which uses normalized Levenshtein distances among words with the same meaning and averages over all the items of a given list. Decisions about the number of items in the input lists for language comparison have been debated since the beginning of glottochronology. The point is that words associated with some of the meanings have a rapid lexical evolution. Therefore, a large vocabulary comparison is only apparently more accurate than a smaller one, since many of the words do not carry any useful information. In principle, one should find the optimal length of the input lists, studying the stability of the different items. In this paper we tackle the problem with an automated methodology based only on our normalized Levenshtein distance. With this approach, the program of an automated reconstruction of language relationships is completed.
Muscle structure, sarcomere length and influences on meat quality: A review.
Ertbjerg, Per; Puolanne, Eero
2017-10-01
The basic contractile unit of muscle, the sarcomere, will contract as the muscle goes into rigor post-mortem. Depending on the conditions, such as the rate of pH decline, the cooling rate and the mechanical restraints on the muscles, this longitudinal shortening will result in various post-mortem sarcomere lengths as well as lateral differences in the distances between the myosin and actin filaments. This shortening is underlying the phenomena described as rigor contraction, thaw rigor, cold shortening and heat shortening. The shortening in combination with the molecular architecture of the sarcomere as defined by the myosin filaments and their S-1 and S-2 units, the interaction with the actin filaments, and the boundaries formed by the Z-disks will subsequently influence basic meat quality traits including tenderness and water-holding capacity. Biochemical reactions from proteolysis and glycogen metabolism interrelate with the sarcomere length in a complex manner. The sarcomere length is also influencing the eating quality of cooked meat and the water-holding in meat products. Copyright © 2017 Elsevier Ltd. All rights reserved.
Escovar, Jesús; Ferro, Cristina; Cárdenas, Estrella; Bello, Felio
2002-12-01
Cytogenetic characteristics were established for five native species of phlebotomine sand flies (Lutzomyia, series townsendi, verrucarum group): Lutzomyia longiflocosa, Lutzomyia townsendi, Lutzomyia spinicrassa, Lutzomyia torvida and Lutzomyia youngi. Karyotypes and chromosomal morphometry were compared. Using the squash technique, brain tissues from late 4th instar larvae provided the necessary mitotic chromosomes. Chromosomal measurements were made on the following chromosomal characteristics: short arm, long arm, arm ratio, total length, relative length, centromeric index and relative length average of chromosomes. Chromosomes were classified according to their morphometry and position of the centromere. The taxonomic distance was calculated, and the relationships among the species displayed in a phenogram. All five species possessed four pairs of chromosomes as diploid number (2N = 8). None of the karyotypes indicated presence of heteromorphic chromosomes. Statistical analysis of the morphometric data showed highly significant differences among the chromosomes pairs of the five species. However, the total length of the genome was very similar, with the exception of L. youngi. In conclusion, these closely related species were distinguishable at cytological level.
Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication.
Pagani, Guido; Green, Micah J; Poulin, Philippe; Pasquali, Matteo
2012-07-17
Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.
Yordanova, E; Vaivads, A; André, M; Buchert, S C; Vörös, Z
2008-05-23
We study the plasma turbulence, at scales larger than the ion inertial length scale, downstream of a quasiparallel bow shock using Cluster multispacecraft measurements. We show that turbulence is intermittent and well described by the extended structure function model, which takes into account the spatial inhomogeneity of the cascade rate. For the first time we use multispacecraft observations to characterize the evolution of magnetosheath turbulence, particularly its intermittency, as a function of the distance from the bow shock. The intermittency significantly changes over the distance of the order of 100 ion inertial lengths, being increasingly stronger and anisotropic away from the bow shock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.D.; Joiner, W.C.H.
1979-10-01
Flux-flow noise power spectra taken on Pb/sub 80/In/sub 20/ foils as a function of the orientation of the magnetic field with respect to the sample surfaces are used to study changes in frequencies and bundle sizes as distances of fluxoid traversal and fluxoid lengths change. The results obtained for the frequency dependence of the noise spectra are entirely consistent with our model for flux motion interrupted by pinning centers, provided one makes the reasonable assumption that the distance between pinning centers which a fluxoid may encounter scales inversely with the fluxoid length. The importance of pinning centers in determining themore » noise characteristics is also demonstrated by the way in which subpulse distributions and generalized bundle sizes are altered by changes in the metallurgical structure of the sample. In unannealed samples the dependence of bundle size on magnetic field orientation is controlled by a structural anisotropy, and we find a correlation between large bundle size and the absence of short subpulse times. Annealing removes this anisotropy, and we find a stronger angular variation of bundle size than would be expected using present simplified models.« less
Depth perception camera for autonomous vehicle applications
NASA Astrophysics Data System (ADS)
Kornreich, Philipp
2013-05-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. Since it provides numeric information of the distance from the camera to all points in its field of view it is ideally suited for autonomous vehicle navigation and robotic vision. This eliminates the LIDAR conventionally used for range measurements. The light arriving at a pixel through a convex lens adds constructively only if it comes from the object point in focus at this pixel. The light from all other object points cancels. Thus, the lens selects the point on the object who's range is to be determined. The range measurement is accomplished by short light guides at each pixel. The light guides contain a p - n junction and a pair of contacts along its length. They, too, contain light sensing elements along the length. The device uses ambient light that is only coherent in spherical shell shaped light packets of thickness of one coherence length. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel.
Geometrical modeling of optical phase difference for analyzing atmospheric turbulence
NASA Astrophysics Data System (ADS)
Yuksel, Demet; Yuksel, Heba
2013-09-01
Ways of calculating phase shifts between laser beams propagating through atmospheric turbulence can give us insight towards the understanding of spatial diversity in Free-Space Optical (FSO) links. We propose a new geometrical model to estimate phase shifts between rays as the laser beam propagates through a simulated turbulent media. Turbulence is simulated by filling the propagation path with spherical bubbles of varying sizes and refractive index discontinuities statistically distributed according to various models. The level of turbulence is increased by elongating the range and/or increasing the number of bubbles that the rays interact with along their path. For each statistical representation of the atmosphere, the trajectories of two parallel rays separated by a particular distance are analyzed and computed simultaneously using geometrical optics. The three-dimensional geometry of the spheres is taken into account in the propagation of the rays. The bubble model is used to calculate the correlation between the two rays as their separation distance changes. The total distance traveled by each ray as both rays travel to the target is computed. The difference in the path length traveled will yield the phase difference between the rays. The mean square phase difference is taken to be the phase structure function which in the literature, for a pair of collimated parallel pencil thin rays, obeys a five-third law assuming weak turbulence. All simulation results will be compared with the predictions of wave theory.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
New quantum codes constructed from quaternary BCH codes
NASA Astrophysics Data System (ADS)
Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena
2016-10-01
In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.
Prediction of the far field noise from wind energy farms
NASA Technical Reports Server (NTRS)
Shepherd, K. P.; Hubbard, H. H.
1986-01-01
The basic physical factors involved in making predictions of wind turbine noise and an approach which allows for differences in the machines, the wind energy farm configurations and propagation conditions are reviewed. Example calculations to illustrate the sensitivity of the radiated noise to such variables as machine size, spacing and numbers, and such atmosphere variables as absorption and wind direction are presented. It is found that calculated far field distances to particular sound level contours are greater for lower values of atmospheric absorption, for a larger total number of machines, for additional rows of machines and for more powerful machines. At short and intermediate distances, higher sound pressure levels are calculated for closer machine spacings, for more powerful machines, for longer row lengths and for closer row spacings.
Dosimetric investigation of LDR brachytherapy ¹⁹²Ir wires by Monte Carlo and TPS calculations.
Bozkurt, Ahmet; Acun, Hediye; Kemikler, Gonul
2013-01-01
The aim of this study was to investigate the dose rate distribution around (192)Ir wires used as radioactive sources in low-dose-rate brachytherapy applications. Monte Carlo modeling of a 0.3-mm diameter source and its surrounding water medium was performed for five different wire lengths (1-5 cm) using the MCNP software package. The computed dose rates per unit of air kerma at distances from 0.1 up to 10 cm away from the source were first verified with literature data sets. Then, the simulation results were compared with the calculations from the XiO CMS commercial treatment planning system. The study results were found to be in concordance with the treatment planning system calculations except for the shorter wires at close distances.
Curved laser microjet in near field.
Kotlyar, Victor V; Stafeev, Sergey S; Kovalev, Alexey A
2013-06-20
With the use of the finite-difference time-domain-based simulation and a scanning near-field optical microscope that has a metal cantilever tip, the diffraction of a linearly polarized plane wave of wavelength λ by a glass corner step of height 2λ is shown to generate a low divergence laser jet of a root-parabolic form: over a distance of 4.7λ on the optical axis, the beam path is shifted by 2.1λ. The curved laser jet of the FWHM length depth of focus=9.5λ has the diameter FWHM=1.94λ over the distance 5.5λ, and the intensity maximum is 5 times higher than the incident wave intensity. The discrepancy between the analytical and the experimental results amounts to 11%.
Mellone, Ugo; Klaassen, Raymond H. G.; García-Ripollés, Clara; Limiñana, Ruben; López-López, Pascual; Pavón, Diego; Strandberg, Roine; Urios, Vicente; Vardakis, Michalis; Alerstam, Thomas
2012-01-01
Background Performance of migrating birds can be affected by a number of intrinsic and extrinsic factors like morphology, meteorological conditions and migration strategies. We compared travel speeds of four raptor species during their crossing of the Sahara desert. Focusing the analyses on this region allows us to compare different species under equivalent conditions in order to disentangle which factors affect migratory performance. Methodology/Principal Finding We tracked raptors using GPS satellite transmitters from Sweden, Spain and Italy, and evaluated their migratory performance at both an hourly and a daily scale. Hourly data (flight speed and altitude for intervals of two hours) were analyzed in relation to time of day, species and season, and daily data (distance between roosting sites) in relation to species, season, day length and tailwind support. Conclusions/Significance Despite a clear variation in morphology, interspecific differences were generally very small, and did only arise in spring, with long-distance migrants (>5000 km: osprey and Western marsh-harrier) being faster than species that migrate shorter distances (Egyptian vulture and short-toed eagle). Our results suggest that the most important factor explaining hourly variation in flight speed is time of day, while at a daily scale, tailwind support is the most important factor explaining variation in daily distance, raising new questions about the consequences of possible future changes in worldwide wind patterns. PMID:22768314
NASA Astrophysics Data System (ADS)
Kiselev, V. A.; Shaposhnikov, S. N.
1989-09-01
An investigation is reported of diffraction-induced emission of surface waves under conditions of resonant transfer of light between different regular and corrugated waveguides. It is shown that the part of the emitted light flux carried by surface waves along diffraction-coupled waveguides depends strongly on the ratio of the effective refractive indices of the guides. The dependences of the optical coupling length and of the corresponding emitted light flux on the distance between the waveguides and on the difference between their refractive indices are given.
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Air-gas exchange reevaluated: clinically important results of a computer simulation.
Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair
2011-10-21
The primary aim of this study was to evaluate the efficiency of air-gas exchange techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an air-gas exchange in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in air-gas exchange efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.
Kelley, Katherine A; Young, J Isaac; Bassale, Solange; Herzig, Daniel O; Martindale, Robert G; Sheppard, Brett C; Lu, Kim C; Tsikitis, V Liana
2018-07-01
Many colorectal cancer patients receive complex surgical care remotely. We hypothesized that their readmission rates would be adversely affected after accounting for differences in travel distance from primary/index hospital and correlate with mortality. We identified 48,481 colorectal cancer patients in the Surveillance, Epidemiology and End Results (SEER)-Medicare database. Travel distance was calculated, using Google Maps, and SAS. Multivariate negative binomial regression was used to identify factors associated with readmission rates. Overall survival was analyzed, using Kaplan-Meier and Cox proportional hazard. Thirty-day readmissions occurred in 14.9% of the cohort, 27.5% of which were to a nonindex hospital. In the colon and rectal cancer cohorts, readmissions were 14.5% and 16.5%, respectively. Rectal cancer patients had an increase in readmission by 13% (incidence rate ratios [IRR] 1.13; 95% confidence interval [CI] 1.05-1.21). Factors associated with readmission were male gender, advanced disease, length of stay (LOS), discharge disposition, hospital volume, Charlson score, and poverty level (P < 0.05). Greater distance traveled increased the likelihood of readmission but did not affect mortality. Travel distance influences readmission rates but not mortality. Discharge readiness to decrease readmissions is essential for colorectal cancer patients discharged from index hospitals. Copyright © 2018 Elsevier Inc. All rights reserved.
Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts
Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas
2013-01-01
Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816
An Aggregated Method for Determining Railway Defects and Obstacle Parameters
NASA Astrophysics Data System (ADS)
Loktev, Daniil; Loktev, Alexey; Stepanov, Roman; Pevzner, Viktor; Alenov, Kanat
2018-03-01
The method of combining algorithms of image blur analysis and stereo vision to determine the distance to objects (including external defects of railway tracks) and the speed of moving objects-obstacles is proposed. To estimate the deviation of the distance depending on the blur a statistical approach, logarithmic, exponential and linear standard functions are used. The statistical approach includes a method of estimating least squares and the method of least modules. The accuracy of determining the distance to the object, its speed and direction of movement is obtained. The paper develops a method of determining distances to objects by analyzing a series of images and assessment of depth using defocusing using its aggregation with stereoscopic vision. This method is based on a physical effect of dependence on the determined distance to the object on the obtained image from the focal length or aperture of the lens. In the calculation of the blur spot diameter it is assumed that blur occurs at the point equally in all directions. According to the proposed approach, it is possible to determine the distance to the studied object and its blur by analyzing a series of images obtained using the video detector with different settings. The article proposes and scientifically substantiates new and improved existing methods for detecting the parameters of static and moving objects of control, and also compares the results of the use of various methods and the results of experiments. It is shown that the aggregate method gives the best approximation to the real distances.
Novel measurements of the length of the subglottic airway in infants and young children.
Sirisopana, Metee; Saint-Martin, Christine; Wang, Ning Nan; Manoukian, John; Nguyen, Lily H P; Brown, Karen A
2013-08-01
To date, the lengths of the subglottic and tracheal airway segments have been measured from autopsy specimens. Images of the head and neck obtained from computerized tomography (CT) provide an alternate method. Our objective in this study was to identify anatomic landmarks from CT scans in infants and young children to estimate the lengths of the subglottic and tracheal airway segments and to correlate these lengths with age. We performed a retrospective analysis of CT images of the neck for various diagnostic indications in children ≤3 years. We obtained planes of reconstruction at the level of the vocal cords (VCs), cricoid cartilage, and carina (C) which were parallel to each other and perpendicular to sagittal long axis of the trachea. The lengths of the subglottic airway (LengthSG) and total length of the laryngotracheal airway (LengthVC-C) were measured from the distance between, respectively, the VC versus cricoid cartilage and the VC versus C planes of reconstruction. Tracheal length was then calculated as the difference between LengthVC-C and LengthSG. Fifty-six children met the inclusion criteria. There were 29 boys. The median weight was 10.7 kg (range 3.1-19.0 kg). Regression analysis yielded mean LengthSG (mm) = 7.8 + 0.03·corrected age (months), r(2) = 0.07, P = 0.056; lower and upper 95% confidence interval for β = 0.03 were -0.001 and 0061. The mean LengthSG was 8.4 mm with an SD of 1.4 mm. The 95th percentile for LengthSG was 10.8 mm, and the 5% to 95% interquartile range was 4.9 mm. The estimate for the 95% confidence interval of the 95th percentile was between 10.2 and 11.3 mm. The LengthVC-C increased with age: mean LengthVC-C (cm) = 5.3 + 0.05·corrected age (months), r(2) = 0.7, P < 0.001. Tracheal length also increased with age: mean tracheal length (cm) = 4.5 + 0.05·corrected age (months), r(2) = 0.6, P < 0.001. We report a novel estimate method for the lengths of the airway segments between the VC and C in 56 infants and young children and suggest that the growth characteristics of the subglottic and tracheal airway may differ.
Demonstrating a Web-Design Technique in a Distance-Learning Environment
ERIC Educational Resources Information Center
Zdenek, Sean
2004-01-01
Objective: To lead a brief training session over a distance-learning network. Type of speech: Informative. Point value: 20% of course grade. Requirements: (a) References: Not specified; (b) Length: 15 minutes; (c) Visual aid: Yes; (d) Outline: No; (e) Prerequisite reading: Chapters 12-16, 18 (Bailey, 2002); (f) Additional requirements: None. This…
Changing the Diameter of a Viewing Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…
Time-Distance Helioseismology: Noise Estimation
NASA Astrophysics Data System (ADS)
Gizon, L.; Birch, A. C.
2004-10-01
As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.
Buresch, Kendra C; Ulmer, Kimberly M; Cramer, Corinne; McAnulty, Sarah; Davison, William; Mäthger, Lydia M; Hanlon, Roger T
2015-10-01
Cuttlefish use multiple camouflage tactics to evade their predators. Two common tactics are background matching (resembling the background to hinder detection) and masquerade (resembling an uninteresting or inanimate object to impede detection or recognition). We investigated how the distance and orientation of visual stimuli affected the choice of these two camouflage tactics. In the current experiments, cuttlefish were presented with three visual cues: 2D horizontal floor, 2D vertical wall, and 3D object. Each was placed at several distances: directly beneath (in a circle whose diameter was one body length (BL); at zero BL [(0BL); i.e., directly beside, but not beneath the cuttlefish]; at 1BL; and at 2BL. Cuttlefish continued to respond to 3D visual cues from a greater distance than to a horizontal or vertical stimulus. It appears that background matching is chosen when visual cues are relevant only in the immediate benthic surroundings. However, for masquerade, objects located multiple body lengths away remained relevant for choice of camouflage. © 2015 Marine Biological Laboratory.
The statistical fluctuation study of quantum key distribution in means of uncertainty principle
NASA Astrophysics Data System (ADS)
Liu, Dunwei; An, Huiyao; Zhang, Xiaoyu; Shi, Xuemei
2018-03-01
Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon's length is N = 10^{11}, the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle's 127 km. So our study is in line with established theory, but we make it more realistic.
Kelly, Charlotte; Hulme, Claire; Farragher, Tracey; Clarke, Graham
2016-11-24
To investigate whether there is an association between differences in travel time/travel distance to healthcare services and patients' health outcomes and assimilate the methodologies used to measure this. Systematic Review. We searched MEDLINE, Embase, Web of Science, Transport database, HMIC and EBM Reviews for studies up to 7 September 2016. Studies were excluded that included children (including maternity), emergency medical travel or countries classed as being in the global south. A wide range of settings within primary and secondary care (these were not restricted in the search). 108 studies met the inclusion criteria. The results were mixed. 77% of the included studies identified evidence of a distance decay association, whereby patients living further away from healthcare facilities they needed to attend had worse health outcomes (eg, survival rates, length of stay in hospital and non-attendance at follow-up) than those who lived closer. 6 of the studies identified the reverse (a distance bias effect) whereby patients living at a greater distance had better health outcomes. The remaining 19 studies found no relationship. There was a large variation in the data available to the studies on the patients' geographical locations and the healthcare facilities attended, and the methods used to calculate travel times and distances were not consistent across studies. The review observed that a relationship between travelling further and having worse health outcomes cannot be ruled out and should be considered within the healthcare services location debate. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Quinn, Thomas P.; Hendry , Andrew P.; Wetzel, Lisa A.
1995-01-01
Egg size is a critical life history trait, reflecting female investment and affecting off- spring fitness. We investigated several factors which may influence variation in egg weight for sockeye salmon (Oncorhynchus nerka). Comparisons were based on col- lections from 18 Alaskan populations, among which adult migration distance and ju- venile rearing habitat were similar but the size composition of incubation gravels was different. Among populations, most of the variation in egg weight could be explained by a positive correlation with different measures of the size composition of incubation gravels (Pearson's r = 0.45-0.91). In contrast, egg weight was poorly correlated with female body length and with female snout length, a morphological feature used during intra-sexual competition. Within each of the Alaskan populations, however, egg weight and snout length were positively correlated with female body length and hence with each other. A positive association between snout length and egg weight was still evident even after the effects of covariance with body size were removed using resid- uals analysis: for all of the fish pooled and within 6 of the 16 populations. A signifi- cant relationship was not detected in the other populations but the trend was neverthe- less positive in 8 of the other 10. Examination of reproductive traits (gonad weight, egg weight, egg number, snout length and hump size) within another population iden- tified a trade-off between egg weight and egg number for females of a given body length. In contrast, positive correlations between reproductive traits were more com- mon, suggesting that energy-rich individuals produce large eggs and large secondary sexual characteristics rather than sacrificing one for the other.
Effect of solenoidal magnetic field on drifting laser plasma
NASA Astrophysics Data System (ADS)
Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter
2013-04-01
An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.
Day, Kevin; Oliva, Isabel; Krupinski, Elizabeth; Marcus, Frank
2015-01-01
Precordial ECG lead placement is difficult in obese patients with increased chest wall soft tissues due to inaccurate palpation of the intercostal spaces. We investigated whether the length of the sternum (distance between the sternal notch and xiphoid process) can accurately predict the location of the 4th intercostal space, which is the traditional location for V1 lead position. Fifty-five consecutive adult chest computed tomography examinations were reviewed for measurements. The sternal notch to right 4th intercostal space distance was 67% of the sternal notch to xiphoid process length with an overall correlation of r=0.600 (p<0.001). The above measurement may be utilized to locate the 4th intercostal space for accurate placement of the precordial electrodes in adults in whom the 4th intercostal space cannot be found by physical exam. Copyright © 2015 Elsevier Inc. All rights reserved.
Kahokehr, Arman A; Selph, John P; Belsante, Michael J; Bashir, Mustafa; Sofue, Keitaro; Tausch, Timothy J; Brand, Timothy C; Lloyd, Jessica C; Goldsmith, Zachariah G; Walter, Jack R; Peterson, Andrew C
2018-06-01
To compare the length of the membranous (functional) urethra in male patients who underwent the male transobturator sling (TOS) for postradical prostatectomy urinary incontinence (PPI). The TOS is in established use for treatment of PPI; however, the precise mechanism of action is unknown. This is a prospective case-controlled study on men undergoing male TOS surgery from 2008 to 2014. The comparison arm included patients without incontinence after radical prostatectomy. All participants underwent dynamic magnetic resonance imaging (MRI) at baseline and this was repeated after TOS placement for those who underwent the procedure. Three standardized points were measured using MRI and compared in both groups in addition to clinical measures. Thirty-nine patients were enrolled and 31 patients completed the protocols. The controls (N = 14) had a longer vesicourethral anastomosis to urethra measured at the penile bulb (functional urethral length) distance compared to the pre-TOS group at rest (1.92 cm controls vs 1.27 cm pre-TOS, P = .0018) and at Valsalva (2.13 cm controls vs 1.72 cm pre-TOS, P = .0371). Placement of the sling (N = 17) increased the functional urethral length distance at rest (1.92 cm control vs 1.53 cm post-TOS, P = .09) and at Valsalva (1.94 cm post-TOS vs 2.13 cm control, P = .61), so that the difference was no longer statistically significant. We identified that one possible mechanism in improvement in stress urinary incontinence post-TOS placement is the lengthening of the vesicourethral anastomosis to bulbar-urethra distance. This is the first such study utilizing dynamics MRI in post prostatectomy controls, incontinent pre-TOS, and post-TOS to assess and show these findings. Copyright © 2018 Elsevier Inc. All rights reserved.
Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry
NASA Astrophysics Data System (ADS)
Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.
2004-04-01
A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
NASA Astrophysics Data System (ADS)
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Mapping Sequence performed during the STS-117 R-Bar Pitch Maneuver
2007-06-10
ISS015-E-11298 (10 June 2007) --- This is one of a series of images photographed with a digital still camera using an 800mm focal length featuring the different areas of the Space Shuttle Atlantis as it approached the International Space Station and performed a back-flip to accommodate close scrutiny by eyeballs and cameras. This image shows part of the commander's side or port side of Atlantis' cabin. Distance from the station and shuttle at this time was approximately 600 feet.
Mapping Sequence performed during the STS-118 R-Bar Pitch Maneuver
2007-08-10
ISS015-E-21344 (10 Aug. 2007) --- This is one of a series of images photographed with a digital still camera using an 800mm focal length featuring the different areas of the Space Shuttle Endeavour as it approached the International Space Station and performed a back-flip to accommodate close scrutiny by eyeballs and cameras. This image shows the nose cone of Endeavour and surrounding area. Distance between the station and shuttle at this time was approximately 600 feet.
Effects of antenna length and material on output power and detection of miniature radio transmitters
Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.
2007-01-01
The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.
A 10-A spectroscopic ruler applied to short polyprolines.
Sahoo, Harekrushna; Roccatano, Danilo; Hennig, Andreas; Nau, Werner M
2007-08-08
Fluorescence resonance energy transfer (FRET) from the amino acid tryptophan (Trp) as donor and a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as acceptor in peptides of the general structure Trp-(Pro)n-Dbo-NH2 (n = 1-6) was investigated by steady-state and time-resolved fluorescence, CD, and NMR spectroscopy as well as by molecular dynamics (MD) simulations (GROMOS96 force field). The Trp/Dbo FRET pair is characterized by a very short Förster radius (R0 ca. 9 A), which allowed distance determinations in such short peptides. Water and propylene glycol were investigated as solvents. The peptides were designed to show an early nucleation of the poly(Pro)II (PPII) secondary helix structure for n > or = 2, which was confirmed by their CD spectra. The shortest peptide (n = 1) adopts preferentially the trans conformation about the Trp-Pro bond, as confirmed by NMR spectra. The FRET efficiencies ranged 2-72% and were found to depend sensitively on the peptide length, i.e., the number of intervening proline residues. The analysis of the FRET data at different levels of theory (assuming either a fixed distance or distance distributions according to a wormlike chain or Gaussian model) afforded donor-acceptor distances between ca. 8 A (n = 1) and ca. 16 A (n = 6) in water, which were found to be similar or slightly higher in propylene glycol. The distances afforded by the Trp/Dbo FRET pair were found to be reasonable in comparison to literature data, expectations from the PPII helix structure, and the results from MD simulations. The persistence lengths for the longer peptides were found to lie at 30-70 A in water and 220 +/- 40 A in propylene glycol, suggesting a more rigid PPII helical structure in propylene glycol. A detailed comparison with literature data on FRET in polyprolines demonstrates that the donor-acceptor distances extracted by FRET are correlated with the Förster radii of the employed FRET pairs. This demonstrates the limitations of using FRET as a spectroscopic ruler for short polyprolines, which is presumably due to the breakdown of the point dipole approximation in Förster theory, when the size of the chromophores becomes comparable or larger than the distances under investigation.
Muscle fiber type, Achilles tendon length, potentiation, and running economy.
Hunter, Gary R; McCarthy, John P; Carter, Stephen J; Bamman, Marcas M; Gaddy, Emily S; Fisher, Gordon; Katsoulis, Kostantina; Plaisance, Eric P; Newcomer, Bradley R
2015-05-01
The purpose of this investigation was to develop a potential model for how muscle fiber type, Achilles tendon length, stretch-shortening cycle potentiation (SSCP), and leg strength interact with running economy. Twenty trained male distance runners 24-40 years of age served as subjects. Running economy (net oxygen uptake) was measured while running on a treadmill. Leg press SSCP(force) and SSCP(velocity) were determined by measuring the difference in velocity between a static leg press throw and a countermovement leg press throw. Vertical jump SSCP was determined by measuring the difference in jump height between a static jump and a drop jump from a 20.3-cm bench. Tendon length was measured by magnetic resonance imaging, and muscle fiber type was made from a vastus lateralis muscle biopsy. Type IIx muscle fiber percent (r = 0.70, p < 0.001) and leg strength (r = 0.95, p < 0.001) were positively and independently related to late eccentric force development. Achilles tendon length (r = 0.42, p ≤ 0.05) and late eccentric force during stretch-shortening cycle (r = 0.76, p < 0.001) were independently related to SSCP(force). SSCP(force) was related to SSCP(velocity), which in turn was related to running economy (r = 0.61, p < 0.01). These results suggest that longer Achilles tendon length, type II fiber, and muscular leg strength may enhance the potential for SSCP, running economy, and physiological effort while running.
Improved gap size estimation for scaffolding algorithms.
Sahlin, Kristoffer; Street, Nathaniel; Lundeberg, Joakim; Arvestad, Lars
2012-09-01
One of the important steps of genome assembly is scaffolding, in which contigs are linked using information from read-pairs. Scaffolding provides estimates about the order, relative orientation and distance between contigs. We have found that contig distance estimates are generally strongly biased and based on false assumptions. Since erroneous distance estimates can mislead in subsequent analysis, it is important to provide unbiased estimation of contig distance. In this article, we show that state-of-the-art programs for scaffolding are using an incorrect model of gap size estimation. We discuss why current maximum likelihood estimators are biased and describe what different cases of bias we are facing. Furthermore, we provide a model for the distribution of reads that span a gap and derive the maximum likelihood equation for the gap length. We motivate why this estimate is sound and show empirically that it outperforms gap estimators in popular scaffolding programs. Our results have consequences both for scaffolding software, structural variation detection and for library insert-size estimation as is commonly performed by read aligners. A reference implementation is provided at https://github.com/SciLifeLab/gapest. Supplementary data are availible at Bioinformatics online.
Colombelli-Négrel, Diane
2016-11-01
Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small-scale geographic variation in bill size and body mass in little penguins ( Eudyptula minor ) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.
The precision of locomotor odometry in humans.
Durgin, Frank H; Akagi, Mikio; Gallistel, Charles R; Haiken, Woody
2009-03-01
Two experiments measured the human ability to reproduce locomotor distances of 4.6-100 m without visual feedback and compared distance production with time production. Subjects were not permitted to count steps. It was found that the precision of human odometry follows Weber's law that variability is proportional to distance. The coefficients of variation for distance production were much lower than those measured for time production for similar durations. Gait parameters recorded during the task (average step length and step frequency) were found to be even less variable suggesting that step integration could be the basis for non-visual human odometry.
Applications of dewetting in micro and nanotechnology.
Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio
2012-06-21
Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.
NASA Technical Reports Server (NTRS)
Willard, S. A.
1997-01-01
Groups of striations called marker bands generated on a fatigue fracture surface can be used to mark the position of an advancing fatigue crack at known intervals. A technique has been developed that uses the distance between multiple sets of marker bands to obtain a vs. N, crack front shape, and fatigue crack growth rate data for small cracks. This technique is particularly usefull for specimens that require crack length measurements during testing that cannot be obtained because corrosion obscures the surface of the specimen. It is also useful for specimens with unusual or non-symmetric shapes where it is difficult to obtain accurate crack lengths using traditional methods such as compliance or electric potential difference in the early stages of testing.
Separating Fact from Fiction: Increasing Running Speed
ERIC Educational Resources Information Center
Murgia, Carla
2008-01-01
From a biomechanical point of view, this article explores the common belief that one must increase stride length and frequency in order to increase running speed. The limb length, explosive power, and anaerobic capacity of the athlete, as well as the type of running (sprinting vs. long distance) must be considered before making such a…
Quantitative metrics that describe river deltas and their channel networks
NASA Astrophysics Data System (ADS)
Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.
2011-12-01
Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.
Effects of different eLISA-like configurations on massive black hole parameter estimation
NASA Astrophysics Data System (ADS)
Porter, Edward K.
2015-09-01
As the theme for the future L3 Cosmic Vision mission, ESA has recently chosen the "Gravitational Wave Universe." Within this program, a mission concept called eLISA has been proposed. This observatory has a current initial configuration consisting of four laser links between the three satellites, which are separated by a distance of one million kilometers, constructing a single-channel Michelson interferometer. However, the final configuration for the observatory will not be fixed until the end of this decade. With this in mind, we investigate the effect of different eLISA-like configurations on massive black hole detections. This work compares the results of a Bayesian inference study of 120 massive black hole binaries out to a redshift of z ˜13 for a 106 km arm length eLISA with four and six links, as well as a 2 ×106 km arm length observatory with four links. We demonstrate that the original eLISA configuration should allow us to recover the luminosity distance of the source with an error of less than 10% out to a redshift of z ˜4 , and a sky error box of Δ Ω ≤102 deg2 out to z ˜0.1 . In contrast, both alternative configurations suggest that we should be able to conduct the same parameter recovery with errors of less than 10% in luminosity distance out to z ˜12 and Δ Ω ≤102 deg2 out to z ˜0.4 . Using the information from these studies, we also infer that if we were able to construct a 2 Gm, six-link detector, the above values would shift to z ˜20 for luminosity distance and z ˜0.9 for sky error. While the final configuration will also be dependent on both technological and financial considerations, our study suggests that increasing the size of a two-arm detector is a viable alternative to the inclusion of a third arm in a smaller detector. More importantly, this work further suggests no clear scientific loss between either choice.
NASA Astrophysics Data System (ADS)
Klaas, Dua K. S. Y.; Imteaz, Monzur Alam
2017-09-01
A robust configuration of pilot points in the parameterisation step of a model is crucial to accurately obtain a satisfactory model performance. However, the recommendations provided by the majority of recent researchers on pilot-point use are considered somewhat impractical. In this study, a practical approach is proposed for using pilot-point properties (i.e. number, distance and distribution method) in the calibration step of a groundwater model. For the first time, the relative distance-area ratio ( d/ A) and head-zonation-based (HZB) method are introduced, to assign pilot points into the model domain by incorporating a user-friendly zone ratio. This study provides some insights into the trade-off between maximising and restricting the number of pilot points, and offers a relative basis for selecting the pilot-point properties and distribution method in the development of a physically based groundwater model. The grid-based (GB) method is found to perform comparably better than the HZB method in terms of model performance and computational time. When using the GB method, this study recommends a distance-area ratio of 0.05, a distance-x-grid length ratio ( d/ X grid) of 0.10, and a distance-y-grid length ratio ( d/ Y grid) of 0.20.
Distributed ultrafast fibre laser
Liu, Xueming; Cui, Yudong; Han, Dongdong; Yao, Xiankun; Sun, Zhipei
2015-01-01
A traditional ultrafast fibre laser has a constant cavity length that is independent of the pulse wavelength. The investigation of distributed ultrafast (DUF) lasers is conceptually and technically challenging and of great interest because the laser cavity length and fundamental cavity frequency are changeable based on the wavelength. Here, we propose and demonstrate a DUF fibre laser based on a linearly chirped fibre Bragg grating, where the total cavity length is linearly changeable as a function of the pulse wavelength. The spectral sidebands in DUF lasers are enhanced greatly, including the continuous-wave (CW) and pulse components. We observe that all sidebands of the pulse experience the same round-trip time although they have different round-trip distances and refractive indices. The pulse-shaping of the DUF laser is dominated by the dissipative processes in addition to the phase modulations, which makes our ultrafast laser simple and stable. This laser provides a simple, stable, low-cost, ultrafast-pulsed source with controllable and changeable cavity frequency. PMID:25765454
Martins, M L; Yoshitoshi, E R; Umekita, H
2001-05-01
The present work studied helminth parasites of "pacu-manteiga", Myleus tiete (Osteichthyes: Characidae) from Volta Grande Reservoir, MG, Brazil. Fishes with 142.6 +/- 24.7 g weight and 17.3 +/- 1.0 cm total length were collected. Five out six analysed fish (prevalence 83.3%) were parasitized in the intestine with an average of 535.6 +/- 334.6 oxyurid nematodes per fish. The helminth was identified as Ichthyouris voltagrandensis n.sp. (Nematoda: Pharyngodonidae). It differs from I. brasiliensis (Moravec et al., 1992a) by the absence of lateral alae, higher measures of tail and caudal alae of males, esophageal isthmus length, distance of excretory pore from anterior end and spicule length. In addition, eggs were provided by two long filaments in just one pole and by the first time the authors observed flagellate spermatozoa from dissected males. The authors exposes comparative table of measures of the five described species of the genus Ichthyouris.
A PDMS microfiber Mach-Zehnder interferometer and determination of nanometer displacements
NASA Astrophysics Data System (ADS)
Martincek, Ivan; Kacik, Daniel
2018-01-01
A polydimethylsiloxane (PDMS) microfiber Mach-Zehnder interferometer (MZI), integrated between single-mode optical fibers (SMFs), is proposed and demonstrated experimentally. One arm of the interferometer consists of a microfiber of diameter 7 μm and length 270 μm; the second is an air arm. Due to the good elastic properties of PDMS microfiber, the length of the air arm of MZI can be changed by changing the distance between SMFs. The change in length of the air arm results in a change in the transmission characteristics of the MZI; thus, the relative displacement can be measured in the range 10-250 nm. By measuring the peak-to-peak amplitude of the difference in transmission powers (in dB), the smallest displacement by prepared MZI was determined as being on the order of a few nm for a ratio of intensities of 0.135. For a higher ratio of intensities of transmission functions, the smallest displacement could be determined on the order of subnanometers.
Zhao, Meijuan; Christie, Maureen; Coleman, Jonathan; Hassell, Chris; Gosbell, Ken; Lisovski, Simeon; Minton, Clive; Klaassen, Marcel
2017-01-01
Migrants have been hypothesised to use different migration strategies between seasons: a time-minimization strategy during their pre-breeding migration towards the breeding grounds and an energy-minimization strategy during their post-breeding migration towards the wintering grounds. Besides season, we propose body size as a key factor in shaping migratory behaviour. Specifically, given that body size is expected to correlate negatively with maximum migration speed and that large birds tend to use more time to complete their annual life-history events (such as moult, breeding and migration), we hypothesise that large-sized species are time stressed all year round. Consequently, large birds are not only likely to adopt a time-minimization strategy during pre-breeding migration, but also during post-breeding migration, to guarantee a timely arrival at both the non-breeding (i.e. wintering) and breeding grounds. We tested this idea using individual tracks across six long-distance migratory shorebird species (family Scolopacidae) along the East Asian-Australasian Flyway varying in size from 50 g to 750 g lean body mass. Migration performance was compared between pre- and post-breeding migration using four quantifiable migratory behaviours that serve to distinguish between a time- and energy-minimization strategy, including migration speed, number of staging sites, total migration distance and step length from one site to the next. During pre- and post-breeding migration, the shorebirds generally covered similar distances, but they tended to migrate faster, used fewer staging sites, and tended to use longer step lengths during pre-breeding migration. These seasonal differences are consistent with the prediction that a time-minimization strategy is used during pre-breeding migration, whereas an energy-minimization strategy is used during post-breeding migration. However, there was also a tendency for the seasonal difference in migration speed to progressively disappear with an increase in body size, supporting our hypothesis that larger species tend to use time-minimization strategies during both pre- and post-breeding migration. Our study highlights that body size plays an important role in shaping migratory behaviour. Larger migratory bird species are potentially time constrained during not only the pre- but also the post-breeding migration. Conservation of their habitats during both seasons may thus be crucial for averting further population declines.
Influence of preservative and mounting media on the size and shape of monogenean sclerites.
Fankoua, Severin-Oscar; Bitja Nyom, Arnold R; Bahanak, Dieu Ne Dort; Bilong Bilong, Charles F; Pariselle, Antoine
2017-08-01
Based on Cichlidogyrus sp. (Monogenea, Ancyrocephalidae) specimens from Hemichromis sp. hosts, we tested the influence of different methods to fix/preserve samples/specimens [frozen material, alcohol or formalin preserved, museum process for fish preservation (fixed in formalin and preserved in alcohol)] and different media used to mount the slides [tap water, glycerin ammonium picrate (GAP), Hoyer's one (HM)] on the size/shape of sclerotized parts of monogenean specimens. The results show that the use of HM significantly increases the size of haptoral sclerites [marginal hooks I, II, IV, V, and VI; dorsal bar length, width, distance between auricles and auricle length, ventral bar length and width], and changes their shape [angle opening between shaft and guard (outer and inner roots) in both ventral and dorsal anchors, ventral bar much wider, dorsal one less curved]. This influence seems to be reduced when specimens/samples are fixed in formalin. The systematics of Monogenea being based on the size and shape of their sclerotized parts, to prevent misidentifications or description of invalid new species, we recommend the use of GAP as mounting medium; Hoyer's one should be restricted to monogenean specimens fixed for a long time which are more shrunken.
NASA Astrophysics Data System (ADS)
Putra, Edy Giri Rachman; Patriati, Arum
2015-04-01
Small-angle neutron scattering (SANS) measurements on 0.3M sodium dodecyl sulfate (SDS) micellar solutions have been performed in the presence of n-alcohols, from ethanol to decanol at different alcohol concentrations, 2-10 wt%. The ellipsoid micellar structure which occurred in the 0.3M SDS in aqueous solution with the size range of 30-50 Å has different behavior at various hydrocarbon chain length and concentration of alcohols. At low concentration and short chain-length of alcohols, such as ethanol, propanol, and butanol, the size of micelles reduced and had a spherical-like structure. The opposite effect occurred as medium to long chain alcohols, such as hexanol, octanol and decanol was added into the 0.3M SDS micellar solutions. The micelles structure changed to be more elongated in major axis and then crossed the critical phase transition from micellar solution into liquid crystal phase as lamellar structure emerged by further addition of alcohols. The inter-lamellar distances were also depending on the hydrocarbon chain length and concentration of alcohols. In the meantime, the persistent micellar structures occurred in addition of medium chain of n-alcohol, pentanol at all concentrations.
Analytical Solution for Optimum Design of Furrow Irrigation Systems
NASA Astrophysics Data System (ADS)
Kiwan, M. E.
1996-05-01
An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.
The refined Swampland Distance Conjecture in Calabi-Yau moduli spaces
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Klaewer, Daniel; Schlechter, Lorenz; Wolf, Florian
2018-06-01
The Swampland Distance Conjecture claims that effective theories derived from a consistent theory of quantum gravity only have a finite range of validity. This will imply drastic consequences for string theory model building. The refined version of this conjecture says that this range is of the order of the naturally built in scale, namely the Planck scale. It is investigated whether the Refined Swampland Distance Conjecture is consistent with proper field distances arising in the well understood moduli spaces of Calabi-Yau compactification. Investigating in particular the non-geometric phases of Kähler moduli spaces of dimension h 11 ∈ {1 , 2 , 101}, we always find proper field distances that are smaller than the Planck-length.
Mehl, Christian; Gassling, Volker; Schultz-Langerhans, Stephan; Açil, Yahya; Bähr, Telse; Wiltfang, Jörg; Kern, Matthias
The main aim of this study was to evaluate the influence of four different abutment materials and the adhesive joint of two-piece abutments on the cervical implant bone and soft tissue. Sixty-four titanium implants (Camlog Conelog; 4.3 ± 9 mm) were placed bone level into the edentulous arches of four minipigs. Four different types of abutments were placed at implant exposure: zirconium dioxide, lithium disilicate, and titanium bonded to a titanium luting base with resin cement; one-piece titanium abutments served as the control. The animals were sacrificed 6 months after implant exposure, and the bone-to-implant contact (BIC) area, sulcus depth, the length of the junctional epithelium and the connective tissue, the biologic width, and first cervical BIC-implant shoulder distance were measured using histomorphometry and light and fluorescence microscopy. Overall, 14 implants were lost (22%). At exposure, the implant shoulder-bone distance was 0.6 ± 0.7 mm. Six months later, the bone loss was 2.1 ± 1.2 mm measured histomorphometrically. There was a significant difference between the two measurements (P ≤ .0001). No significant influence could be found between any of the abutment materials with regard to bone loss or soft tissue anatomy (P > .05), with the exception of zirconium dioxide and onepiece titanium abutments when measuring the length of the junctional epithelium (P ≤ .01). The maxilla provided significantly more soft tissue and less bone loss compared with the mandible (P ≤ .02). All tested abutment materials and techniques seem to be comparable with regard to soft tissue properties and the cervical bone level.
1980-05-28
Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
...). Here, the Navy identifies the distance that a marine mammal is likely to travel during the time... typically travel within a given time-delay period (Table 1). Based on acoustic propagation modeling... Speed and Length of Time-Delay Potential Species group Swim speed Time-delay (min) distance traveled (yd...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... marine mammal is likely to travel during the time associated with the TDFD's time delay, and that... Navy provided the approximate distance that an animal would typically travel within a given time-delay... Speed and Length of Time-Delay Potential distance Species group Swim speed Time-delay traveled Delphinid...
On the Partitioning of Squared Euclidean Distance and Its Applications in Cluster Analysis.
ERIC Educational Resources Information Center
Carter, Randy L.; And Others
1989-01-01
The partitioning of squared Euclidean--E(sup 2)--distance between two vectors in M-dimensional space into the sum of squared lengths of vectors in mutually orthogonal subspaces is discussed. Applications to specific cluster analysis problems are provided (i.e., to design Monte Carlo studies for performance comparisons of several clustering methods…
15 CFR 241.7 - Tolerances to be allowed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... follows: Tolerance inches Diameter of head 1/4 Effective diameter of head 1/4 Distance between heads 1/4 Circumference of bulge, outside measurement 11/2 Length of stave 1/2 (1) If no dimension of a barrel of Class 1... the effective diameter of head and the distance between heads algebraically and multiply the result by...
15 CFR 241.7 - Tolerances to be allowed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... follows: Tolerance inches Diameter of head 1/4 Effective diameter of head 1/4 Distance between heads 1/4 Circumference of bulge, outside measurement 11/2 Length of stave 1/2 (1) If no dimension of a barrel of Class 1... the effective diameter of head and the distance between heads algebraically and multiply the result by...
15 CFR 241.7 - Tolerances to be allowed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... follows: Tolerance inches Diameter of head 1/4 Effective diameter of head 1/4 Distance between heads 1/4 Circumference of bulge, outside measurement 11/2 Length of stave 1/2 (1) If no dimension of a barrel of Class 1... the effective diameter of head and the distance between heads algebraically and multiply the result by...
15 CFR 241.7 - Tolerances to be allowed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... follows: Tolerance inches Diameter of head 1/4 Effective diameter of head 1/4 Distance between heads 1/4 Circumference of bulge, outside measurement 11/2 Length of stave 1/2 (1) If no dimension of a barrel of Class 1... the effective diameter of head and the distance between heads algebraically and multiply the result by...
What You See Is What You Get: Investigations with a View Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This paper presents an investigation by pre-service secondary school teachers in a geometry class of the relationship between the perpendicular distance from the eyeball to the wall (x) and the viewable vertical distance on the wall (y) using a view tube of constant length and diameter. In undertaking the investigation, students used tabular and…
Information Literacy Development at a Distance: Embedded or Reality?
ERIC Educational Resources Information Center
Chisholm, Elizabeth; Lamond, Heather M.
2012-01-01
A small library using two full time equivalent (FTE) professional staff integrated into the Moodle environment of over 40 postgraduate distance courses with the potential to reach over 1,800 students and getting results. How? This is not embedding as many would think of it, with the librarian an active teacher throughout the entire length of the…
Camara, Camila Thais Pinto; de Freitas, Sandra Maria Sbeghen Ferreira; de Lima, Waléria Paixão; Lima, Camila Astolphi; Amorim, César Ferreira; Perracini, Monica Rodrigues
2017-01-01
Our aim is to estimate inter-observer reliability, test-retest reliability, anthropometric and biomechanical adequacy and minimal detectable change when measuring the length of single-point adjustable canes in community-dwelling older adults. There are 112 participants in the study. They are men and women, aged 60 years and over, who were attending an outpatient community health centre. An exploratory study design was used. Participants underwent two assessments within the same day by two independent observers and by the same observer at an interval of 15-45 days. Two measures were used to establish the length of a single-point adjustable cane: the distance from the distal wrist crease to the floor (WF) and the distance from the top of the greater trochanter of the femur to the floor (TF). Each individual was fitted according to these two measures, and elbow flexion angle was measured. Inter-observer reliability and the test-retest reliability were high in both TF (ICC 3.1 = 0.918 and ICC 2.1 = 0.935) and WF measures (ICC 3.1 = 0.967 and ICC 2.1 = 0.960). Only 1% of the individuals kept an elbow flexion angle within the standard recommendation of 30° ± 10° when the cane length was determined by the TF measure, and 30% of the participants when the cane was determined by the WF measure. The minimal detectable cane length change was 2.2 cm. Our results suggest that, even though both measures are reliable, cane length determined by WF distance is more appropriate to keep the elbow flexion angle within the standard recommendation. The minimal detectable change corresponds to approximately a hole in the cane adjustment. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Relationship of the actual thick intraocular lens optic to the thin lens equivalent.
Holladay, J T; Maverick, K J
1998-09-01
To theoretically derive and empirically validate the relationship between the actual thick intraocular lens and the thin lens equivalent. Included in the study were 12 consecutive adult patients ranging in age from 54 to 84 years (mean +/- SD, 73.5 +/- 9.4 years) with best-corrected visual acuity better than 20/40 in each eye. Each patient had bilateral intraocular lens implants of the same style, placed in the same location (bag or sulcus) by the same surgeon. Preoperatively, axial length, keratometry, refraction, and vertex distance were measured. Postoperatively, keratometry, refraction, vertex distance, and the distance from the vertex of the cornea to the anterior vertex of the intraocular lens (AV(PC1)) were measured. Alternatively, the distance (AV(PC1)) was then back-calculated from the vergence formula used for intraocular lens power calculations. The average (+/-SD) of the absolute difference in the two methods was 0.23 +/- 0.18 mm, which would translate to approximately 0.46 diopters. There was no statistical difference between the measured and calculated values; the Pearson product-moment correlation coefficient from linear regression was 0.85 (r2 = .72, F = 56). The average intereye difference was -0.030 mm (SD, 0.141 mm; SEM, 0.043 mm) using the measurement method and +0.124 mm (SD, 0.412 mm; SEM, 0.124 mm) using the calculation method. The relationship between the actual thick intraocular lens and the thin lens equivalent has been determined theoretically and demonstrated empirically. This validation provides the manufacturer and surgeon additional confidence and utility for lens constants used in intraocular lens power calculations.
Treelike networks accelerating capillary flow.
Shou, Dahua; Ye, Lin; Fan, Jintu
2014-05-01
Transport in treelike networks has received wide attention in natural systems, oil recovery, microelectronic cooling systems, and textiles. Existing studies are focused on transport behaviors under a constant potential difference (including pressure, temperature, and voltage) in a steady state [B. Yu and B. Li, Phys. Rev. E 73, 066302 (2006); J. Chen, B. Yu, P. Xu, and Y. Li, Phys. Rev. E 75, 056301 (2007)]. However, dynamic (time-dependent) transport in such systems has rarely been concerned. In this work, we theoretically investigate the dynamics of capillary flow in treelike networks and design the distribution of radius and length of local branches for the fastest capillary flow. It is demonstrated that capillary flow in the optimized tree networks is faster than in traditional parallel tube nets under fixed constraints. As well, the flow time of the liquid is found to increase approximately linearly with penetration distance, which differs from Washburn's classic description that flow time increases as the square of penetration distance in a uniform tube.
Spatial filters for high average power lasers
Erlandson, Alvin C
2012-11-27
A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second slit filter positioned between the second pair of cylindrical lenses.
Spatial filters for high power lasers
Erlandson, Alvin Charles; Bayramian, Andrew James
2014-12-02
A spatial filter includes a first filter element and a second filter element overlapping with the first filter element. The first filter element includes a first pair of cylindrical lenses separated by a first distance. Each of the first pair of cylindrical lenses has a first focal length. The first filter element also includes a first longitudinal slit filter positioned between the first pair of cylindrical lenses. The second filter element includes a second pair of cylindrical lenses separated by a second distance. Each of the second pair of cylindrical lenses has a second focal length. The second filter element also includes a second longitudinal slit filter positioned between the second pair of cylindrical lenses.
Long-distance quantum communication with atomic ensembles and linear optics.
Duan, L M; Lukin, M D; Cirac, J I; Zoller, P
2001-11-22
Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
Torsional Growth Modulation of Long Bones by Oblique Plating in a Rabbit Model.
Lazarus, David E; Farnsworth, Christine L; Jeffords, Megan E; Marino, Nikolas; Hallare, Jericho; Edmonds, Eric W
2018-02-01
There is evidence that oblique tension band plating can affect torsional growth in long bones. This study sought to determine if the torsional growth could be modulated based on the angles of the tension band plating and whether or not oblique plating affected overall longitudinal growth. New Zealand White rabbits (10.5 wk old) had one screw placed on the metaphyseal side and one on the epiphyseal side of both medial and lateral sides of the right knee distal femoral physis. The sham group (n=5) included screw placement only. For the plate group (n=13), unlocked plates, angled from 0 to 76 degrees, connected the screws and spanned the physis. Radiographs were taken at biweekly intervals. After 6 weeks of growth, hindlimbs were harvested and microCT scans performed. Femoral length, distances between screw heads and angle between the plates were measured on radiographs. Femoral length differences were compared between groups. Femoral version was measured from 3D microCT. Plate angle changes were correlated to the difference in femoral version between limbs using Pearson correlation (significance was set to P<0.05 for all comparisons). Femur length difference between the contralateral and the operative side was significantly greater in the plate group compared with the sham group over time (P=0.049). Medial and lateral screw distances changed significantly more in the sham group than the plate group on both sides (P<0.001). A greater initial angle between plates resulted in a greater change in the angle between plates (P<0.001). Significant correlations were found between right-left side femoral version differences and initial plate angle (P=0.003) and plate angle change (P=0.014). The torsional effect of oblique plating seems to correlate with the amount of initial plate angle, with an additional, not negligible, longitudinal growth effect. Placing plates at given angles across open physes may result in predictable changes in bone torsion allowing for a safer and less invasive option when treating childhood torsional deformities, but the resulting shortening of the ipsilateral femur must be considered.
Best Stent Length Predicted by Simple CT Measurement Rather than Patient Height.
Barrett, Keith; Foell, Kirsten; Lantz, Andrea; Ordon, Michael; Lee, Jason Y; Pace, Kenneth T; Honey, R John D'A
2016-09-01
Ureteral stent length is important, as stents that are too long might worsen symptoms and too short are at higher risk of migration. The purpose of this study was to determine if patient or radiologic parameters correlate with directly measured ureteral length and if directly measured ureteral length predicts proper stent positioning. During stent placement, ureteral length (ureteropelvic junction to ureterovesical junction distance) was directly measured by endoscopically viewing a ureteral catheter (with 1-cm marking) emanating from the ureteral orifice. A 22, 24, or 26 cm stent was chosen to be closest to the measured ureteral length. For ureters >26 cm, a 26 cm stent was chosen. Ends of an "ideally positioned" stent were fully curled in the renal pelvis and bladder, without crossing the bladder midline. Rates of ideal stent position were compared between patients with matching stent and ureteral lengths and those with stent lengths differing by ≥1 cm (mismatched). The measured ureteral length was correlated with patient height, L1-L5 height, and length measured on CT. Fifty-nine ureters from 57 patients were included. Height was reasonably correlated with L1-L5 height (Spearman correlation coefficient [rho] = 0.79), although both were poorly correlated with directly measured ureteral length (rho = 0.18 for height and 0.32 for lumbar height). Ureteral lengths measured on CT correlated well with direct measurement (rho = 0.63 for axial cuts and rho = 0.64 for coronal cuts). Matched stent length was associated with higher rates of ideal stent position than mismatched (100% vs 70.9%, p = 0.006). CT measurements, rather than height, correlate well with measured length and could be used to choose the appropriate stent length. Stents matching directly measured ureteral lengths are associated with high rates of ideal stent position.
Kfir, A; Blau-Venezia, N; Tsesis, I; Goldberger, T; Metzger, Z
2017-04-01
To examine whether local anaesthesia is required for treating teeth with necrotic pulps (TNP) and retreatment cases (RCs) associated with periapical lesions. Root canal treatment was performed in TNP and RCs without the administration of local anaesthesia. Patients were assured that if they experienced pain, local anaesthesia would be provided. Eighty canals, 40 TNP and 40 RCs, were included in the study. Two length measurements were performed: one using an electronic apex locator (EAL), which was defined as the electronic length (EL), and the second, the length at which the patient first reported that a size 15 file was touching the periapical tissues, which was defined as the periodontal length (PL). The difference between these two measurements (Δ = PL - EL) was the parameter studied. Statistical analysis was conducted using two-way anova and paired t-tests. Working length (WL) was defined in this study as being 0.5 mm short of the EL. EL was shorter than PL in 96% of cases. The mean difference between measurements was 0.78 (±0.11) mm in the TNP group and 0.63 (±0.15) mm in the RC group; the difference was not significant. The distances between the WL and PL were thus 1.28 and 1.13 mm, respectively. In none of the 80 canals did the patient experience any pain, either during the measurements or during the instrumentation procedures. When EALs are used, local anaesthesia may not be required for root canal treatment in teeth with necrotic pulps and retreatment cases associated with periapical lesions. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
LINDENS: A program for lineament length and density analysis*1
NASA Astrophysics Data System (ADS)
Casas, Antonio M.; Cortés, Angel L.; Maestro, Adolfo; Soriano, M. Asunción; Riaguas, Andres; Bernal, Javier
2000-11-01
Analysis of lineaments from satellite images normally includes the determination of their orientation and density. The spatial variation in the orientation and/or number of lineaments must be obtained by means of a network of cells, the lineaments included in each cell being analysed separately. The program presented in this work, LINDENS, allows the density of lineaments (number of lineaments per km 2 and length of lineaments per km 2) to be estimated. It also provides a tool for classifying the lineaments contained in different cells, so that their orientation can be represented in frequency histograms and/or rose diagrams. The input file must contain the planar coordinates of the beginning and end of each lineament. The density analysis is done by creating a network of square cells, and counting the number of lineaments that are contained within each cell, that have one of their ends within the cell or that cross-cut the cell boundary. The lengths of lineaments are then calculated. To obtain a representative density map the cell size must be fixed according to: (1) the average lineament length; (2) the distance between the lineaments; and (3) the boundaries of zones with low densities due to lithology or outcrop features. An example from the Neogene Duero Basin (Northern Spain) is provided to test the reliability of the density maps obtained with different cell sizes.
Punt, Michiel; Bruijn, Sjoerd M; Wittink, Harriet; van de Port, Ingrid G; Wubbels, Gijs; van Dieën, Jaap H
2017-10-01
Stroke survivors often fall during walking. To reduce fall risk, gait testing and training with avoidance of virtual obstacles is gaining popularity. However, it is unknown whether and how virtual obstacle crossing is associated with fall risk. The present study assessed whether obstacle crossing characteristics are reliable and assessed differences in stroke survivors who prospectively experienced falls or no falls. We recruited twenty-nine community dwelling chronic stroke survivors. Participants crossed five virtual obstacles with increasing lengths. After a break, the test was repeated to assess test-retest reliability. For each obstacle length and trial, we determined; success rate, leading limb preference, pre and post obstacle distance, margins of stability, toe clearance, and crossing step length and speed. Subsequently, fall incidence was monitored using a fall calendar and monthly phone calls over a six-month period. Test-retest reliability was poor, but improved with increasing obstacle-length. Twelve participants reported at least one fall. No association of fall incidence with any of the obstacle crossing characteristics was found. Given the absence of height of the virtual obstacles, obstacle avoidance may have been relatively easy, allowing participants to cross obstacles in multiple ways, increasing variability of crossing characteristics and reducing the association with fall risk. These finding cast some doubt on current protocols for testing and training of obstacle avoidance in stroke rehabilitation. Copyright © 2017 Elsevier B.V. All rights reserved.
Hongwarittorrn, Irin; Chaichanawongsaroj, Nuntaree; Laiwattanapaisal, Wanida
2017-12-01
A distance-based paper analytical device (dPAD) for loop mediated isothermal amplification (LAMP) detection based on distance measurement was proposed. This approach relied on visual detection by the length of colour developed on the dPAD with reference to semi-quantitative determination of the initial amount of genomic DNA. In this communication, E. coli DNA was chosen as a template DNA for LAMP reaction. In accordance with the principle, the dPAD was immobilized by polyethylenimine (PEI), which is a strong cationic polymer, in the hydrophilic channel of the paper device. Hydroxynaphthol blue (HNB), a colourimetric indicator for monitoring the change of magnesium ion concentration in the LAMP reaction, was used to react with the immobilized PEI. The positive charges of PEI react with the negative charges of free HNB in the LAMP reaction, producing a blue colour deposit on the paper device. Consequently, the apparently visual distance appeared within 5min and length of distance correlated to the amount of DNA in the sample. The distance-based PAD for the visual detection of the LAMP reaction could quantify the initial concentration of genomic DNA as low as 4.14 × 10 3 copiesµL -1 . This distance-based visual semi-quantitative platform is suitable for choice of LAMP detection method, particular in resource-limited settings because of the advantages of low cost, simple fabrication and operation, disposability and portable detection of the dPAD device. Copyright © 2017 Elsevier B.V. All rights reserved.
Preoperative CT planning of screw length in arthroscopic Latarjet.
Hardy, Alexandre; Gerometta, Antoine; Granger, Benjamin; Massein, Audrey; Casabianca, Laurent; Pascal-Moussellard, Hugues; Loriaut, Philippe
2018-01-01
The Latarjet procedure has shown its efficiency for the treatment of anterior shoulder dislocation. The success of this technique depends on the correct positioning and fusion of the bone block. The length of the screws that fix the bone block can be a problem. They can increase the risk of non-union if too short or be the cause of nerve lesion or soft tissue discomfort if too long. Suprascapular nerve injuries have been reported during shoulder stabilisation surgery up to 6 % of the case. Bone block non-union depending on the series is found around 20 % of the cases. The purpose of this study was to evaluate the efficiency of this CT preoperative planning to predict optimal screws length. The clinical importance of this study lies in the observation that it is the first study to evaluate the efficiency of CT planning to predict screw length. Inclusion criteria were patients with chronic anterior instability of the shoulder with an ISIS superior to 4. Exclusion criteria were patients with multidirectional instability or any previous surgery on this shoulder. Thirty patients were included prospectively, 11 of them went threw a CT planning, before their arthroscopic Latarjet. Optimal length of both screws was calculated, adding the size of the coracoid at 5 and 15 mm from the tip to the glenoid. Thirty-two-mm screws were used for patients without planning. On a post-operative CT scan with 3D reconstruction, the distance between the screw tip and the posterior cortex was measured. A one-sample Wilcoxon test was used to compare the distance from the tip of the screw to an acceptable positioning of ±2 mm from the posterior cortex. In the group without planning, screw 1 tended to differ from the acceptable positioning: mean 3.44 mm ± 3.13, med 2.9 mm, q1; q3 [0.6; 4.75] p = 0.1118, and screw 2 differed significantly from the acceptable position: mean 4.83 mm ± 4.11, med 3.7 mm, q1; q3 [1.7; 5.45] p = 0.0045. In the group with planning, position of screw 1 or 2 showed no significant difference from the acceptable position: mean 2.45 mm ± 2.07 med 1.8 mm, q1; q3 [1; 3.3] p = 1; mean 2.75 mm ± 2.32 med 2.3 mm, q1; q3 [1.25; 3.8] p = 0.5631. Unplanned Latarjet can lead to inaccurate screw length especially in the lower screw and can increase the risk of non-union and nerve damage. The clinical relevance of this article is that CT planning of screw length before surgery showed good results on post-operative CT.
Alaee, Ehsan; Gharib, Mohammad Javad; Fouladinejad, Mahnaz
2014-01-01
Background: Anogenital distance (AGD) is a feasible and accepted parameter of exogenous or endogenous androgens effects on development of reproductive system. Objectives: Since there is no report on penile length (PL) and AGD in our region, we investigated these parameters in male newborns in Golestan Province, Iran. Patients and Methods: In this cross-sectional study, we measured stretched PL and AGD in term newborns from different races in Dezyani Gynecologic Hospital of Gorgan, Iran. We also recorded the anthropometric parameters and maternal age. The data was analyzed using the SPSS 14. Results: Means of PL and AGD of 427 healthy term newborns were 32.1 ± 3.5 and 24.5 ± 2.5 mm, respectively. There was a positive correlation between PL and AGD (r = 0.097, P = 0.046). According to their ethnicity, there were 166 Fars (38.9%), 129 Turkmen (30.2%), and 132 Sistani (30.9%) infants with mean PL of respectively 31.8 ± 3.9, 32.3 ± 3.3, and 32.4 ± 3.3 mm and mean AGD of respectively 25 ± 2.5, 24.3 ± 2.5, and 24 ± 2.5 mm. One Fars neonate (0.23%) had micropenis (PL = 21.3 mm). Conclusions: Using -2.5 standard deviations as the cutoff for micropenis, a newborn infant in Golestan Province with a PL of < 23.3 mm had micropenis; however, more investigations are needed to clarify this issue. PMID:25763234
NASA Astrophysics Data System (ADS)
Lim, Teik-Cheng
2004-01-01
A parametric relationship between the Pearson Takai Halicioglu Tiller (PTHT) and the Kaxiras Pandey (KP) empirical potential energy functions is developed for the case of 2-body interaction. The need for such relationship arises when preferred parametric data and adopted software correspond to different potential functions. The analytical relationship was obtained by equating the potential functions' derivatives at zeroth, first and second order with respect to the interatomic distance at the equilibrium bond length, followed by comparison of coefficients in the repulsive and attractive terms. Plots of non-dimensional 2-body energy versus the nondimensional interatomic distance verified the analytical relationships developed herein. The discrepancy revealed in theoretical plots suggests that the 2-body PTHT and KP potentials are more suitable for curve-fitting "softer" and "harder" bonds respectively.
Fernandes, E.K.K.; Moraes, A.M.L.; Pacheco, R.S.; Rangel, D.E.N.; Miller, M.P.; Bittencourt, V.R.E.P.; Roberts, D.W.
2009-01-01
Aims: The genetic diversity of Beauveria bassiana was investigated by comparing isolates of this species to each other (49 from different geographical regions of Brazil and 4 from USA) and to other Beauveria spp. Methods and Results: The isolates were examined by multilocus enzyme electrophoresis (MLEE), amplified fragment length polymorphism (AFLP), and rDNA sequencing. MLEE and AFLP revealed considerable genetic variability among B. bassiana isolates. Several isolates from South and Southeast Brazil had high similarity coefficients, providing evidence of at least one population with clonal structure. There were clear genomic differences between most Brazilian and USA B. bassiana isolates. A Mantel test using data generated by AFLP provided evidence that greater geographical distances were associated with higher genetic distances. AFLP and rDNA sequencing demonstrated notable genotypic variation between B. bassiana and other Beauveria spp. Conclusion: Geographical distance between populations apparently is an important factor influencing genotypic variability among B. bassiana populations in Brazil. Significance and Impact of the Study: This study characterized many B. bassiana isolates. The results indicate that certain Brazilian isolates are considerably different from others and possibly should be regarded as separate species from B. bassiana sensu latu. The information on genetic variation among the Brazilian isolates, therefore, will be important to comprehending the population structure of B. bassiana in Brazil. ?? 2009 The Society for Applied Microbiology.
A test of the universal applicability of a commonly used principle of hoof balance.
Caldwell, M N; Allan, L A; Pinchbeck, G L; Clegg, P D; Kissick, K E; Milner, P I
2016-01-01
This study used a UK trimming protocol to determine whether hoof balance is achieved (as defined by equivalence of geometric proportions) in cadaver limbs (n = 49) and two cohorts of horses (shod, n = 6, and unshod, n = 20; three trimming cycles). To determine equivalence, dorsal hoof wall length (DHWL), distance from the heel buttress to the centre of pressure (HBUT-COP) and distance from dorsal toe to centre of rotation (DT-COR) were calculated as a proportion of bearing border length (BBL) using digital photography. Geometric proportions were tested using Fieller's test of equivalence with limits of difference of 2.8%. In 22 cadaver limbs the location of external COR and COP was also mapped radiographically to the extensor process of the third phalanx and the centre of rotation of the distal interphalangeal joint. Equivalence of geometric proportions was not present following trimming in cadaver limbs or in the two cohorts. Although the dorsal hoof wall to heel wall ratio improved in cadaver and unshod horses after trimming, dorsal hoof wall and lateral heel parallelism was absent in all groups and COP was not consistently in line with the extensor process. Increased COP-COR distance occurred in shod horses and may relate to solar arch flattening. Palmar heel migration, however, occurred more in unshod horses. The study shows that equivalence of geometric proportions as a measure of static hoof balance was not commonly present and widely published measures and ratios of hoof balance rarely occurred in this sample population of horses. Copyright © 2015 Elsevier Ltd. All rights reserved.
A morphometric analysis of the superior cervical ganglion and its surrounding structures.
Fazliogullari, Zeliha; Kilic, Cenk; Karabulut, Ahmet Kagan; Yazar, Fatih
2016-04-01
The aim of this cadaveric study was to detect the superior cervical ganglion (SCG) in a topographic manner according to vertebrae and to determine the relationship between the vertebrae, mandibular angle and longus colli muscle through morphometric analysis. The present study was performed on 40 SCG of 20 human cadavers (16 males, 4 females). The level of the SCG was determined based on the vertebrae. Ganglion length, width and thickness were detected. Distance to the adjacent vertebra, the mandibular angle and medial side of the longus colli muscle were measured. The results were evaluated statistically. The SCG existing in all cadavers was detected at the C2 vertebra level in 34 cadavers and at the C3 vertebra level in 6 cadavers. The average length, width and thickness of the SCG were 15.18 ± 1.12, 4.62 ± 0.25, and 1.83 ± 0.10 mm, respectively. No statistically significant difference was detected in terms of the distances between the ganglion and anterior tubercle of transverse processes of the vertebrae as well as the mandibular angle on either side. The distance between the SCG and the medial edge of the longus colli muscle was significantly greater on the left side in both men (p < 0.001) and women (p < 0.01). Recognition of morphometric characteristics of the SCG and detection of its location according to adjacent formations may serve as a guide for nerve blockage studies and help surgeons to preserve the ganglion in both anterior and anterolateral cervical approaches.
Hadjiaghai, Oliwia; Ladich, Friedrich
2015-01-01
Background Data on sex-specific differences in sound production, acoustic behaviour and hearing abilities in fishes are rare. Representatives of numerous catfish families are known to produce sounds in agonistic contexts (intraspecific aggression and interspecific disturbance situations) using their pectoral fins. The present study investigates differences in agonistic behaviour, sound production and hearing abilities in males and females of a callichthyid catfish. Methodology/Principal Findings Eight males and nine females of the armoured catfish Megalechis thoracata were investigated. Agonistic behaviour displayed during male-male and female-female dyadic contests and sounds emitted were recorded, sound characteristics analysed and hearing thresholds measured using the auditory evoked potential (AEP) recording technique. Male pectoral spines were on average 1.7-fold longer than those of same-sized females. Visual and acoustic threat displays differed between sexes. Males produced low-frequency harmonic barks at longer distances and thumps at close distances, whereas females emitted broad-band pulsed crackles when close to each other. Female aggressive sounds were significantly shorter than those of males (167 ms versus 219 to 240 ms) and of higher dominant frequency (562 Hz versus 132 to 403 Hz). Sound duration and sound level were positively correlated with body and pectoral spine length, but dominant frequency was inversely correlated only to spine length. Both sexes showed a similar U-shaped hearing curve with lowest thresholds between 0.2 and 1 kHz and a drop in sensitivity above 1 kHz. The main energies of sounds were located at the most sensitive frequencies. Conclusions/Significance Current data demonstrate that both male and female M. thoracata produce aggressive sounds, but the behavioural contexts and sound characteristics differ between sexes. Sexes do not differ in hearing, but it remains to be clarified if this is a general pattern among fish. This is the first study to describe sex-specific differences in agonistic behaviour in fishes. PMID:25775458
Length scales involved in decoherence of trapped bosons by buffer-gas scattering
NASA Astrophysics Data System (ADS)
Gilz, Lukas; Rico-Pérez, Luis; Anglin, James R.
2014-05-01
We ask and answer a basic question about the length scales involved in quantum decoherence: how far apart in space do two parts of a quantum system have to be before a common quantum environment decoheres them as if they were entirely separate? We frame this question specifically in a cold atom context. How far apart do two populations of bosons have to be before an environment of thermal atoms of a different species ("buffer gas") responds to their two particle numbers separately? An initial guess for this length scale is the thermal coherence length of the buffer gas; we show that a standard Born-Markov treatment partially supports this guess, but predicts only inverse-square saturation of decoherence rates with distance, and not the much more abrupt Gaussian behavior of the buffer gas's first-order coherence. We confirm this Born-Markov result with a more rigorous theory, based on an exact solution of a two-scatterer scattering problem, which also extends the result beyond weak scattering. Finally, however, we show that when interactions within the buffer-gas reservoir are taken into account, an abrupt saturation of the decoherence rate does occur, exponentially on the length scale of the buffer gas's mean free path.
Data-driven RANS for simulations of large wind farms
NASA Astrophysics Data System (ADS)
Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.
2015-06-01
In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.
NASA Astrophysics Data System (ADS)
Vorperian, Houri K.; Chung, Moo K.; Gentry, Lindell R.; Kent, Ray D.; Choih, Celia S.; Durtschi, Reid B.; Ziegert, Andrew J.
2005-09-01
As the vocal tract length (VTL) increases more than twofold from infancy to adulthood, its geometric proportions change. This study assesses the developmental changes of the various hard and soft tissue structures in the vicinity of the vocal tract (VT), and evaluates the relational growth of the various structures with VTL. Magnetic resonance images from 327 cases, ages birth to age 20, were used to secure quantitative measurements of the various soft, cartilaginous and bony structures in the oral and pharyngeal regions using established procedures [Vorperian et al. (1999), (2005)]. Structures measured include: lip thickness, hard- and soft-palate length, tongue length, naso-oro-pharyngeal length, mandibular length and depth, and distance of the hyoid bone and larynx from the posterior nasal spine. Findings indicate: (a) ongoing growth of all oral and pharyngeal structures with changes in growth rate as a function of age; (b) a strong interdependency between structure orientation and its growth curve; and (c) developmental changes in the relational growth of the different VT structures with VTL. Findings provide normative data on the anatomic changes of the supra-laryngeal speech apparatus, and can be used to model the development of the VT. [Work supported by NIH-NIDCD Grants R03-DC4362 R01-DC006282, and NIH-NICHHD P30-HK03352.
Physics on the Smallest Scales: An Introduction to Minimal Length Phenomenology
ERIC Educational Resources Information Center
Sprenger, Martin; Nicolini, Piero; Bleicher, Marcus
2012-01-01
Many modern theories which try to unify gravity with the Standard Model of particle physics, such as e.g. string theory, propose two key modifications to the commonly known physical theories: the existence of additional space dimensions; the existence of a minimal length distance or maximal resolution. While extra dimensions have received a wide…
Walkway Length Determination for Steady State Walking in Young and Older Adults
ERIC Educational Resources Information Center
Macfarlane, Pamela A.; Looney, Marilyn A.
2008-01-01
The primary purpose of this study was to determine acceleration (AC) and deceleration (DC) distances that would accommodate young and older adults walking at their preferred and fast speeds. A secondary purpose was to determine the minimal walkway length needed to record six steady state (SS) steps (three full gait cycles) for younger and older…
Perceived distance depends on the orientation of both the body and the visual environment.
Harris, Laurence R; Mander, Charles
2014-10-15
Models of depth perception typically omit the orientation and height of the observer despite the potential usefulness of the height above the ground plane and the need to know about head position to interpret retinal disparity information. To assess the contribution of orientation to perceived distance, we used the York University Tumbled and Tumbling Room facilities to modulate both perceived and actual body orientation. These facilities are realistically decorated rooms that can be systematically arranged to vary the relative orientation of visual, gravity, and body cues to upright. To assess perceived depth we exploited size/distance constancy. Observers judged the perceived length of a visual line (controlled by a QUEST adaptive procedure) projected on to the wall of the facilities, relative to the length of an unseen iron rod held in their hands. In the Tumbled Room (viewing distance 337 cm) the line was set about 10% longer when participants were supine compared to when they were upright. In the Tumbling Room (viewing distance 114 cm), the line was set about 11% longer when participants were either supine or made to feel that they were supine by the orientation of the room. Matching a longer visual line to the reference rod is compatible with the opposite wall being perceived as closer. The effect was modulated by whether viewing was monocular or binocular at a viewing distance of 114 cm but not at 337 cm suggesting that reliable binocular cues can override the effect. © 2014 ARVO.
Liu, Ping; Wang, Jianquan; Xu, Yan; Ao, Yingfang
2015-04-01
The aim of this study was to determine the in situ forces and length patterns of the fibular collateral ligament (FCL) and kinematics of the knee under various loading conditions. Six fresh-frozen cadaveric knees were used (mean age 46 ± 14.4 years; range 20-58). In situ forces and length patterns of FCL and kinematics of the knee were determined under the following loading conditions using a robotic/universal force-moment sensor testing system: no rotation, varus (10 Nm), external rotation (5 Nm), and internal rotation (5 Nm) at 0°, 15°, 30°, 60º, 90°, and 120° of flexion, respectively. Under no rotation loading, the distances between the centres of the FCL attachments decreased as the knee flexed. Under varus loading, the force in FCL peaked at 15° of flexion and decreased with further knee flexion, while distances remained nearly constant and the varus rotation increased with knee flexion. Using external rotation, the force in the FCL also peaked at 15° flexion and decreased with further knee flexion, the distances decreased with flexion, and external rotation increased with knee flexion. Using internal rotation load, the force in the FCL was relatively small across all knee flexion angles, and the distances decreased with flexion; the amount of internal rotation was fairly constant. FCL has a primary role in preventing varus and external rotation at 15° of flexion. The FCL does not perform isometrically following knee flexion during neutral rotation, and tibia rotation has significant effects on the kinematics of the FCL. Varus and external rotation laxity increased following knee flexion. By providing more realistic data about the function and length patterns of the FCL and the kinematics of the intact knee, improved reconstruction and rehabilitation protocols can be developed.
Investigations into haptic space and haptic perception of shape for active touch
NASA Astrophysics Data System (ADS)
Sanders, A. F. J.
2008-12-01
This thesis presents a number of psychophysical investigations into haptic space and haptic perception of shape. Haptic perception is understood to include the two subsystems of the cutaneous sense and kinesthesis. Chapter 2 provides an extensive quantitative study into haptic perception of curvature. I investigated bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. I found that discrimination thresholds were in the same range as unimanual thresholds reported in previous studies. Moreover, the distance between the surfaces or the position of the setup with respect to the observer had no effect on thresholds. Finally, I found idiosyncratic biases: A number of observers judged two surfaces that had different radii as equally curved. Biases were of the same order of magnitude as thresholds. In Chapter 3, I investigated haptic space. Here, haptic space is understood to be (1) the set of observer’s judgments of spatial relations in physical space, and (2) a set of constraints by which these judgments are internally consistent. I asked blindfolded observers to construct straight lines in a number of different tasks. I show that the shape of the haptically straight line depends on the task used to produce it. I therefore conclude that there is no unique definition of the haptically straight line and that doubts are cast on the usefulness of the concept of haptic space. In Chapter 4, I present a new experiment into haptic length perception. I show that when observers trace curved pathways with their index finger and judge distance traversed, their distance estimates depend on the geometry of the paths: Lengths of convex, cylindrically curved pathways were overestimated and lengths of concave pathways were underestimated. In addition, I show that a kinematic mechanism must underlie this interaction: (1) the geometry of the path traced by the finger affects movement speed and consequently movement time, and (2) movement time is taken as a measure of traversed length. The study presented in Chapter 5 addresses the question of how kinematic properties of exploratory movements affect perceived shape. I identify a kinematic invariant for the case of a single finger moving across cylindrically curved strips under conditions of slip. I found that the rotation angle of the finger increased linearly with the curvature of the stimulus. In addition, I show that observers took rotation angle as their primary measure of perceived curvature: Observers rotated their finger less on a concave curvature by a constant amount, and consequently, they overestimated the radius of the concave strips compared to the convex ones. Finally, in Chapter 6, I investigated the haptic filled-space illusion for dynamic touch: Observers move their fingertip across an unfilled extent or an extent filled with intermediate stimulations. Previous researchers have reported lengths of filled extents to be overestimated, but the parameters affecting the strength of the illusion are still largely unknown. Factors investigated in this chapter include end point effects, filler density and overall average movement speed.
NASA Astrophysics Data System (ADS)
Hudson, Richard
2017-07-01
This paper [4] - referred to below as 'LXL' - is an excellent example of cross-disciplinary work which brings together three very different disciplines, each with its different methods: quantitative computational linguistics (exploring big data), psycholinguistics (using experiments with human subjects) and theoretical linguistics (building models based on language descriptions). The measured unit is the dependency between two words, as defined by theoretical linguistics, and the question is how the length of this dependency affects the choices made by writers, as revealed in big data from a wide range of languages.
Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.
Gagné, Olivier Charles; Hawthorne, Frank Christopher
2016-08-01
Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in [4]- and [6]-coordination, Na(+) in [4]- and [6]-coordination. For alkali-metal and alkaline-earth-metal ions, there is a positive correlation between cation coordination number and the grand mean incident bond-valence sum at the central cation, the values varying from 0.84 v.u. for ([5])K(+) to 1.06 v.u. for ([8])Li(+), and from 1.76 v.u. for ([7])Ba(2+) to 2.10 v.u. for ([12])Sr(2+). Bond-valence arguments suggest coordination numbers higher than [12] for K(+), Rb(+), Cs(+) and Ba(2+).
Stretching single atom contacts at multiple subatomic step-length.
Wei, Yi-Min; Liang, Jing-Hong; Chen, Zhao-Bin; Zhou, Xiao-Shun; Mao, Bing-Wei; Oviedo, Oscar A; Leiva, Ezequiel P M
2013-08-14
This work describes jump-to-contact STM-break junction experiments leading to novel statistical distribution of last-step length associated with conductance of a single atom contact. Last-step length histograms are observed with up to five for Fe and three for Cu peaks at integral multiples close to 0.075 nm, a subatomic distance. A model is proposed in terms of gliding from a fcc hollow-site to a hcp hollow-site of adjacent atomic planes at 1/3 regular layer spacing along with tip stretching to account for the multiple subatomic step-length behavior.
Search behavior of arboreal insectivorous migrants at gulf coast stopover sites in spring
Chen, Chao-Chieh; Barrow, W.C.; Ouchley, K.; Hamilton, R.B.
2011-01-01
Search behavior of arboreal insectivorous migrants was studied at three stopover sites along the northern coast of the Gulf of Mexico during spring migrations, 1993–1995. We examined if search behavior was affected by phylogeny, or by environmental factors. A sequence of search movements (hop, flutter, or flight) in a foraging bout was recorded for each migrant encountered. Search rate, frequency, and distance of movements were calculated for each species. Search rate was positively correlated with proportion of hop, but negatively correlated to flight distance. Hop distance was positively correlated to tarsus length, as was flight distance to wing length for the 31 species of migrants. Cluster analysis indicated closely related species generally have similar foraging modes, which range from “sit-and-wait” of flycatchers to “widely foraging” of warblers. Migrants tended to use more hops in dense vegetation, but more flights in areas with sparse vegetation. Migrants also used more flights when foraging in mixed-species flocks and during periods of high migrant density. Logistic models indicated warblers were more influenced by environmental factors than vireos, possibly because warblers are near-perch searchers and more affected by these factors.
Apparatus for in-situ calibration of instruments that measure fluid depth
Campbell, Melvin D.
1994-01-01
The present invention provides a method and apparatus for in-situ calibration of distance measuring equipment. The method comprises obtaining a first distance measurement in a first location, then obtaining at least one other distance measurement in at least one other location of a precisely known distance from the first location, and calculating a calibration constant. The method is applied specifically to calculating a calibration constant for obtaining fluid level and embodied in an apparatus using a pressure transducer and a spacer of precisely known length. The calibration constant is used to calculate the depth of a fluid from subsequent single pressure measurements at any submerged position.
Length of Stay, Conditional Length of Stay, and Prolonged Stay in Pediatric Asthma
Silber, Jeffrey H; Rosenbaum, Paul R; Even-Shoshan, Orit; Shabbout, Mayadah; Zhang, Xuemei; Bradlow, Eric T; Marsh, Roger R
2003-01-01
Objective To understand differences in length of stay for asthma patients between New York State and Pennsylvania across children's and general hospitals in order to better guide policy. Data Sources/Study Setting All pediatric admissions for asthma in the states of Pennsylvania and New York using claims data obtained from each state for the years 1996–1998, n=38,310. Study Design A retrospective cohort design to model length of stay (LOS), the probability of prolonged stay, conditional length of stay (CLOS or the LOS after stay is prolonged), and the probability of readmission, controlling for patient factors, state, location and hospital type. Analytic Methods Logit models were used to estimate the probability of prolonged stay and readmission. The LOS and the CLOS were estimated with Cox regression. Model variables included comorbidities, income, race, distance from hospital, and insurance type. Prolonged stay was based on a Hollander-Proschan “New-Worse-Than-Used” test, corresponding to a three-day stay. Principal Findings The LOS was longer in New York than Pennsylvania, and the probabilities of prolonged stay and readmission were much higher in New York than Pennsylvania. However, once an admission was prolonged, there were no differences in CLOS between states (when readmissions were not added to the LOS calculation). In both states, children's hospitals and general hospitals had similar adjusted LOS. Conclusions Management of asthma appears more efficient in Pennsylvania than New York: Less severe patients are discharged faster in Pennsylvania than New York; once discharged, patients are less likely to be readmitted in Pennsylvania than New York. However, once a stay is prolonged, there is little difference between New York and Pennsylvania, suggesting medical care for severely ill patients is similar across states. Differences between children's and general hospitals were small as compared to differences between states. We conclude that policy initiatives in New York, and other states, should focus their efforts on improving the care provided to less severe patients in order to help reduce overall length of stay. PMID:12822916
Arredondo, J Tulio; Johnson, Douglas A
2011-11-01
The study of proportional relationships between size, shape, and function of part of or the whole organism is traditionally known as allometry. Examination of correlative changes in the size of interbranch distances (IBDs) at different root orders may help to identify root branching rules. Root morphological and functional characteristics in three range grasses {bluebunch wheatgrass [Pseudoroegneria spicata (Pursh) Löve], crested wheatgrass [Agropyron desertorum (Fisch. ex Link) Schult.×A. cristatum (L.) Gaert.], and cheatgrass (Bromus tectorum L.)} were examined in response to a soil nutrient gradient. Interbranch distances along the main root axis and the first-order laterals as well as other morphological and allocation root traits were determined. A model of nutrient diffusivity parameterized with root length and root diameter for the three grasses was used to estimate root functional properties (exploitation efficiency and exploitation potential). The results showed a significant negative allometric relationship between the main root axis and first-order lateral IBD (P ≤ 0.05), but only for bluebunch wheatgrass. The main root axis IBD was positively related to the number and length of roots, estimated exploitation efficiency of second-order roots, and specific root length, and was negatively related to estimated exploitation potential of first-order roots. Conversely, crested wheatgrass and cheatgrass, which rely mainly on root proliferation responses, exhibited fewer allometric relationships. Thus, the results suggested that species such as bluebunch wheatgrass, which display slow root growth and architectural root plasticity rather than opportunistic root proliferation and rapid growth, exhibit correlative allometry between the main axis IBD and morphological, allocation, and functional traits of roots.
NASA Technical Reports Server (NTRS)
Berg, E.; Carter, J. A.; Harris, D.; Laurila, S. H.; Schenck, B. E.; Sutton, G. H.; Wolfe, J. E.; Cushman, S. E.
1978-01-01
The Hawaii Institute of Geophysics has implemented a comprehensive geodetic-geophysical support program to monitor local and regional crustal deformation on the island of Maui. Presented are the actual laser-measured line lengths and new coordinate computations of the line terminals, and the internal consistency of the measured line lengths is discussed. Several spacial chord lengths have been reduced to a Mercator plane, and conditioned adjustments on that plane have been made.
Havet, Eric; Gabrion, Antoine; Leiber-Wackenheim, Frederic; Vernois, Joël; Olory, Bruno; Mertl, Patrice
2007-06-01
Restoring the joint line level is one of the surgical challenges during revision of total knee arthroplasty. The position of the tibial surface is commonly estimated by its distance to the apex of fibular head, but no study evaluating this distance accurately has been published yet. The purpose of this work was to study the distance between the knee joint line and the apex of the fibular head and the proximal tibia, particularly the tibial tuberosity. Variability with clinical data and relations with other local measurements have been evaluated on knee radiographs (an antero-posterior view, a medio-lateral view and an anteroposterior full length view) of 100 subjects (125 knees). Results showed no correlation between the joint line-fibular head apex distance and any clinical data of the patients, or any other performed measurements. Relations between tibial measurements and the sexe or the height of the subjects were noted. Besides, the review of the 25 bilateral cases did not show statistically significant side difference but the descriptive analysis showed too large discrepancies for the joint line-fibular head apex distance to be used as a landmark. We conclude that the fibular head apex cannot be used as a morphologic landmark to determine the knee joint line position. Its interest in clinical and surgical practice must be discussed.
Gravity and the Evolution of Cardiopulmonary Morphology in Snakes
Lillywhite, Harvey B.; Albert, James S.; Sheehy, Coleman M.; Seymour, Roger S.
2011-01-01
Physiological investigations of snakes have established the importance of heart position and pulmonary structure in contexts of gravity effects on blood circulation. Here we investigate morphological correlates of cardiopulmonary physiology in contexts related to ecology, behavior and evolution. We analyze data for heart position and length of vascular lung in 154 species of snakes that exhibit a broad range of characteristic behaviors and habitat associations. We construct a composite phylogeny for these species, and we codify gravitational stress according to species habitat and behavior. We use conventional regression and phylogenetically independent contrasts to evaluate whether trait diversity is correlated with gravitational habitat related to evolutionary transitions within the composite tree topology. We demonstrate that snake species living in arboreal habitats, or which express strongly climbing behaviors, possess relatively short blood columns between the heart and the head, as well as relatively short vascular lungs, compared to terrestrial species. Aquatic species, which experience little or no gravity stress in water, show the reverse – significantly longer heart–head distance and longer vascular lungs. These phylogenetic differences complement the results of physiological studies and are reflected in multiple habitat transitions during the evolutionary histories of these snake lineages, providing strong evidence that heart–to–head distance and length of vascular lung are co–adaptive cardiopulmonary features of snakes. PMID:22079804
A pilot study to assess adductor canal catheter tip migration in a cadaver model.
Leng, Jody C; Harrison, T Kyle; Miller, Brett; Howard, Steven K; Conroy, Myles; Udani, Ankeet; Shum, Cynthia; Mariano, Edward R
2015-04-01
An adductor canal catheter may facilitate early ambulation after total knee arthroplasty, but there is concern over preoperative placement since intraoperative migration of catheters may occur from surgical manipulation and result in ineffective analgesia. We hypothesized that catheter type and subcutaneous tunneling may influence tip migration for preoperatively inserted adductor canal catheters. In a male unembalmed human cadaver, 20 catheter insertion trials were divided randomly into one of four groups: flexible epidural catheter either tunneled or not tunneled; or rigid stimulating catheter either tunneled or not tunneled. Intraoperative patient manipulation was simulated by five range-of-motion exercises of the knee. Distance and length measurements were performed by a blinded regional anesthesiologist. Changes in catheter tip to nerve distance (p = 0.225) and length of catheter within the adductor canal (p = 0.467) were not different between the four groups. Two of five non-tunneled stimulating catheters (40 %) were dislodged compared to 0/5 in all other groups (p = 0.187). A cadaver model may be useful for assessing migration of regional anesthesia catheters; catheter type and subcutaneous tunneling may not affect migration of adductor canal catheters based on this preliminary study. However, future studies involving a larger sample size, actual patients, and other catheter types are warranted.
Wang, Qi; Li, Chunyue; Zhao, Chengwu; Li, Weizheng
2016-01-01
A cascaded symmetrical dual-taper Mach-Zehnder interferometer structure based on guided-mode and leaky-mode interference is proposed in this paper. Firstly, the interference spectrum characteristics of interferometer has been analyzed by the Finite Difference-Beam Propagation Method (FD-BPM). When the diameter of taper waist is 20 μm–30 μm, dual-taper length is 1 mm and taper distance is 4 cm–6 cm, the spectral contrast is higher, which is suitable for sensing. Secondly, experimental research on refractive index sensitivity is carried out. A refractive index sensitivity of 62.78 nm/RIU (refractive index unit) can achieved in the RI range of 1.3333–1.3792 (0%~25% NaCl solution), when the sensor structure parameters meet the following conditions: diameter of taper waist is 24 μm, dual-taper length is 837 μm and taper distance is 5.5 cm. The spectrum contrast is 0.8 and measurement resolution is 1.6 × 10−5 RIU. The simulation analysis is highly consistent with experimental results. Research shows that the sensor has promising application in low RI fields where high-precision measurement is required due to its high sensitivity and stability. PMID:27258281
NASA Astrophysics Data System (ADS)
Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.; Potapova, T. A.
2017-03-01
In the paper by Gleim et al (2016 Opt. Express 24 2619), it was declared that the system of quantum cryptography, exploiting quantum key distribution (QKD) protocol BB84 with the additional reference state and encoding in a sub-carrier, is able to distribute secret keys at a distance of 210 km. The following shows that a simple attack realized with a beam splitter results in a loss of privacy of the keys over substantially smaller distances. It turns out that the actual length of the secret key transmission for the QKD system encoding in the sub-carrier frequency is ten times less than that declared in Gleim et al (2016 Opt. Express 24 2619). Therefore it is impossible to safely use the keys when distributed at a larger length of the communication channel than shown below. The maximum communication distance does not exceed 22 km, even in the most optimistic scenario.
Delye, Hans; Clijmans, Tim; Mommaerts, Maurice Yves; Sloten, Jos Vnder; Goffin, Jan
2015-12-01
Finite element models (FEMs) of the head are used to study the biomechanics of traumatic brain injury and depend heavily on the use of accurate material properties and head geometry. Any FEM aimed at investigating traumatic head injury in children should therefore use age-specific dimensions of the head, as well as age-specific material properties of the different tissues. In this study, the authors built a database of age-corrected skull geometry, skull thickness, and bone density of the developing skull to aid in the development of an age-specific FEM of a child's head. Such a database, containing age-corrected normative skull geometry data, can also be used for preoperative surgical planning and postoperative long-term follow-up of craniosynostosis surgery results. Computed tomography data were processed for 187 patients (age range 0-20 years old). A 3D surface model was calculated from segmented skull surfaces. Skull models, reference points, and sutures were processed into a MATLAB-supported database. This process included automatic calculation of 2D measurements as well as 3D measurements: length of the coronal suture, length of the lambdoid suture, and the 3D anterior-posterior length, defined as the sum of the metopic and sagittal suture. Skull thickness and skull bone density calculations were included. Cephalic length, cephalic width, intercoronal distance, lateral orbital distance, intertemporal distance, and 3D measurements were obtained, confirming the well-established general growth pattern of the skull. Skull thickness increases rapidly in the first year of life, slowing down during the second year of life, while skull density increases with a fast but steady pace during the first 3 years of life. Both skull thickness and density continue to increase up to adulthood. This is the first report of normative data on 2D and 3D measurements, skull bone thickness, and skull bone density for children aged 0-20 years. This database can help build an age-specific FEM of a child's head. It can also help to tailor preoperative virtual planning in craniosynostosis surgery toward patient-specific normative target values and to perform objective long-term follow-up in craniosynostosis surgery.
Wang, Ce; Zhang, Ying; Nicholas, Tsai; Wu, Guoxin; Shi, Sheng; Bo, Yin; Wang, Xinwei; Zhou, Xuhui; Yuan, Wen
2014-01-01
High cervical spinal cord injury is associated with high morbidity and mortality. Traditional treatments carry various complications such as infection, pacemaker failure and undesirable movement. Thus, a secure surgical strategy with fewer complications analogous to physiological ventilation is still required. We hope to offer one potential method to decrease the complications and improve survival qualities of patients from the aspect of anatomy. The purpose of the study is to provide anatomic details on the accessory nerve and phrenic nerve for neurotization in patients with high spinal cord injuries. 38 cadavers (76 accessory and 76 phrenic nerves) were dissected in the study. The width, length and thickness of each accessory nerve and phrenic nerve above clavicle were measured. The distances from several landmarks on accessory nerve to the origin and the end of the phrenic nerve above clavicle were measured too. Then, the number of motor nerve fibers on different sections of the nerves was calculated using the technique of immunohistochemistry. The accessory nerves distal to its sternocleidomastoid muscular branches were 1.52 ± 0.32 mm ~1.54 ± 0.29 mm in width, 0.52 ± 0.18 mm ~ 0.56 ± 0.20mm in thickness and 9.52 ± 0.98 cm in length. And the phrenic nerves above clavicle were 1.44 ± 0.23 mm ~ 1.45 ± 0.24 mm in width, 0.47 ± 0.15 mm ~ 0.56 ± 0.25 mm in thickness and 6.48 ± 0.78 cm in length. The distance between the starting point of accessory nerve and phrenic nerve were 3.24 ± 1.17 cm, and the distance between the starting point of accessory nerve and the end of the phrenic nerve above clavicle were 8.72 ± 0.84 cm. The numbers of motor nerve fibers in accessory nerve were 1,038 ± 320~1,102 ± 216, before giving out the sternocleidomastoid muscular branches. The number of motor nerve fibers in the phrenic nerve was 911 ± 321~1,338 ± 467. The accessory nerve and the phrenic were similar in width, thickness and the number of motor nerve fibers. And the lengths of accessory nerve were long enough for neuritisation with phrenic nerve.
NASA Astrophysics Data System (ADS)
Jin, L.; Meeks, J. L.; Hubbard, K. A.; Kurian, L. M.; Siegel, D. I.; Lautz, L. K.; Otz, M. H.
2007-12-01
Temporary storage of surface water at channel sides and pools significantly affects water and solute transport downstream in watersheds. Beavers, natural "stream channel engineers", build dams which obstruct stream flow and temporarily store water in small to large ponds within stream channels. These ponds substantially delay water movement and increase the water residence time in the system. To study how water and solutes move through these obstructed stream channels, we did multiple dye tracing tests at Cherry Creek, a main tributary to Red Canyon Creek (Wind River Range, Wyoming). First we surveyed beaver dam distributions in detail within the study reaches. We then introduced dyes four times from July 2nd to 6th, 2007 using a scale-up approach. The observation site was fixed at the mouth of Cherry Creek, and 1.5 grams of Rhodamine WT (RWT) dye was injected sequentially at upstream sites with increasing test reach length. The reach lengths scaled up from 500m to 2.5 km. A field fluorometer recorded RWT concentrations every 15 seconds. The results show non-linear decreases of the peak concentration of the dye tracing cloud as the reach scaled up. Also, the times to 1.) the arrivals of the leading edges (Tl), 2.) the peak concentrations (Tp) and 3.) the tailing edges (Tt) and 4) the durations of the tracer cloud (Td) behaved non-linearly as function of length scale. For example, plots of arrivals of leading edges and tailing edges with scale distance appear to define curves of the form; Tl=27.665e1.07× Distance (r2=0.99) and Tt=162.62e0.8551× Distance (r2=0.99), respectively. The greatest non-linearity occurred for the time of tailing and the least for the time of leading edge. These observations are consistent with what would be expected with greater density of dams and/or storage volumes as the reach length increased upgradient. To come to a first approximation, we are currently modeling the breakthrough curves with the solute transport code OTIS to address the relative differences in average travel velocity, longitudinal dispersion, and storage parameters from the mouth to the headwaters of the creek.
Schuchmann, Maike; Siemers, Björn M
2010-09-17
Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure.
Schuchmann, Maike; Siemers, Björn M.
2010-01-01
Background Only recently data on bat echolocation call intensities is starting to accumulate. Yet, intensity is an ecologically crucial parameter, as it determines the extent of the bats' perceptual space and, specifically, prey detection distance. Interspecifically, we thus asked whether sympatric, congeneric bat species differ in call intensities and whether differences play a role for niche differentiation. Specifically, we investigated whether R. mehelyi that calls at a frequency clearly above what is predicted by allometry, compensates for frequency-dependent loss in detection distance by using elevated call intensity. Maximum echolocation call intensities might depend on body size or condition and thus be used as an honest signal of quality for intraspecific communication. We for the first time investigated whether a size-intensity relation is present in echolocating bats. Methodology/Principal Findings We measured maximum call intensities and frequencies for all five European horseshoe bat species. Maximum intensity differed among species largely due to R. euryale. Furthermore, we found no compensation for frequency-dependent loss in detection distance in R. mehelyi. Intraspecifically, there is a negative correlation between forearm lengths and intensity in R. euryale and a trend for a negative correlation between body condition index and intensity in R. ferrumequinum. In R. hipposideros, females had 8 dB higher intensities than males. There were no correlations with body size or sex differences and intensity for the other species. Conclusions/Significance Based on call intensity and frequency measurements, we estimated echolocation ranges for our study community. These suggest that intensity differences result in different prey detection distances and thus likely play some role for resource access. It is interesting and at first glance counter-intuitive that, where a correlation was found, smaller bats called louder than large individuals. Such negative relationship between size or condition and vocal amplitude may indicate an as yet unknown physiological or sexual selection pressure. PMID:20862252
Reference Values for Central Airway Dimensions on CT Images of Children and Adolescents.
Kuo, Wieying; Ciet, Pierluigi; Andrinopoulou, Eleni-Rosalina; Chen, Yong; Pullens, Bas; Garcia-Peña, Pilar; Fleck, Robert J; Paoletti, Matteo; McCartin, Michael; Vermeulen, Francois; Morana, Giovanni; Lee, Edward Y; Tiddens, Harm A W M
2018-02-01
The purpose of this study was to acquire normative data on central airway dimensions on chest CT scans in the pediatric population. Chest CT findings reported as normal by a radiologist were collected retrospectively at 10 international centers. An experienced and independent thoracic radiologist reevaluated all CT scans for image quality and for normal findings. Semiautomated image analysis was performed to measure dimensions of the trachea and right and left main bronchi at inspiration. Intrathoracic tracheal length was measured from carina to thorax inlet. Cross-sectional area and short and long axes were measured perpendicular to the longitudinal airway axis starting from the carina every centimeter upward for the trachea and every 0.5 cm downward for the main bronchi. The effects on airway diameters of age, sex, intrathoracic tracheal length, and distance from the carina were investigated by use of mixed-effects models analysis. Among 1160 CT scans collected, 388 were evaluated as normal by the independent radiologist with sufficient image quality and adequate inspiratory volume level. Central airways were successfully semiautomatically analyzed in 294 of 388 CT studies. Age, sex, intrathoracic tracheal length, and distance from carina were all significant predictors in the models for tracheal and right and left main bronchial diameters (p < 0.001). The central airway dimensions increased with age up to 20 years, and dimensions were larger in male than in female adolescents. Normative data were determined for the central airways of children and adolescents. Central airway dimensions depended on distance from the carina and on intrathoracic tracheal length.
Testing a model of componential processing of multi-symbol numbers-evidence from measurement units.
Huber, Stefan; Bahnmueller, Julia; Klein, Elise; Moeller, Korbinian
2015-10-01
Research on numerical cognition has addressed the processing of nonsymbolic quantities and symbolic digits extensively. However, magnitude processing of measurement units is still a neglected topic in numerical cognition research. Hence, we investigated the processing of measurement units to evaluate whether typical effects of multi-digit number processing such as the compatibility effect, the string length congruity effect, and the distance effect are also present for measurement units. In three experiments, participants had to single out the larger one of two physical quantities (e.g., lengths). In Experiment 1, the compatibility of number and measurement unit (compatible: 3 mm_6 cm with 3 < 6 and mm < cm; incompatible: 3 cm_6 mm with 3 < 6 but cm > mm) as well as string length congruity (congruent: 1 m_2 km with m < km and 2 < 3 characters; incongruent: 2 mm_1 m with mm < m, but 3 > 2 characters) were manipulated. We observed reliable compatibility effects with prolonged reaction times (RT) for incompatible trials. Moreover, a string length congruity effect was present in RT with longer RT for incongruent trials. Experiments 2 and 3 served as control experiments showing that compatibility effects persist when controlling for holistic distance and that a distance effect for measurement units exists. Our findings indicate that numbers and measurement units are processed in a componential manner and thus highlight that processing characteristics of multi-digit numbers generalize to measurement units. Thereby, our data lend further support to the recently proposed generalized model of componential multi-symbol number processing.
Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling.
Ko, Sunho; Nakazawa, Atsushi; Kurose, Yusuke; Harada, Kanako; Mitsuishi, Mamoru; Sora, Shigeo; Shono, Naoyuki; Nakatomi, Hirofumi; Saito, Nobuhito; Morita, Akio
2017-05-01
OBJECTIVE Advanced and intelligent robotic control is necessary for neurosurgical robots, which require great accuracy and precision. In this article, the authors propose methods for dynamically and automatically controlling the motion-scaling ratio of a master-slave neurosurgical robotic system to reduce the task completion time. METHODS Three dynamic motion-scaling modes were proposed and compared with the conventional fixed motion-scaling mode. These 3 modes were defined as follows: 1) the distance between a target point and the tip of the slave manipulator, 2) the distance between the tips of the slave manipulators, and 3) the velocity of the master manipulator. Five test subjects, 2 of whom were neurosurgeons, sutured 0.3-mm artificial blood vessels using the MM-3 neurosurgical robot in each mode. RESULTS The task time, total path length, and helpfulness score were evaluated. Although no statistically significant differences were observed, the mode using the distance between the tips of the slave manipulators improves the suturing performance. CONCLUSIONS Dynamic motion scaling has great potential for the intelligent and accurate control of neurosurgical robots.
Cutter, Michael G; Drieghe, Denis; Liversedge, Simon P
2018-04-25
In the current study we investigated whether readers adjust their preferred saccade length (PSL) during reading on a trial-by-trial basis. The PSL refers to the distance between a saccade launch site and saccade target (i.e., the word center during reading) when participants neither undershoot nor overshoot this target (McConkie, Kerr, Reddix, & Zola in Vision Research, 28, 1107-1118, 1988). The tendency for saccades longer or shorter than the PSL to under or overshoot their target is referred to as the range error. Recent research by Cutter, Drieghe, and Liversedge (Journal of Experimental Psychology: Human Perception and Performance, 2017) has shown that the PSL changes to be shorter when readers are presented with 30 consecutive sentences exclusively made of three-letter words, and longer when presented with 30 consecutive sentences exclusively made of five-letter words. We replicated and extended this work by this time presenting participants with these uniform sentences in an unblocked design. We found that adaptation still occurred across different sentence types despite participants only having one trial to adapt. Our analyses suggested that this effect was driven by the length of the words readers were making saccades away from, rather than the length of the words in the rest of the sentence. We propose an account of the range error in which readers use parafoveal word length information to estimate the length of a saccade between the center of two parafoveal words (termed the Centre-Based Saccade Length) prior to landing on the first of these words.
Han, Qing; Li, Youqiong; Wang, Jincheng; Zhao, Xue
2018-03-30
We aimed to figure out the anatomical features of pineal gland region on magnetic resonance imaging (MRI) and to explore the sex difference in pineal gland-related parameters with increasing age. We measured the pineal gland on MRI images from 198 healthy adults (96 males and 102 females). Included subjects were divided into 4 age groups. After 3-dimensional reconstruction, the anatomic features of pineal gland and its distances to superior colliculus and splenium of corpus callosum were analyzed in each group. The prevalence of cystic pineal gland was calculated. Moreover, we calculated the volume of pineal gland (PGV) and explored the differences of PGV in males and females across different age groups. Linear regression analysis was performed to detect the relationship between age and pineal gland-related parameters. In 198 subjects, the mean length, width, and height of pineal gland were 7.58 ± 0.45 mm, 4.92 ± 0.40 mm, and 2.90 ± 0.20 mm. The distances between pineal gland and superior colliculus as well as splenium of corpus callosum were 3.96 ± 0.92 mm and 4.3 ± 1.89 mm, respectively. The PGV was 54.1 ± 7.02 mm. Significant sex differences were found in pineal gland length (P < 0.001), cranial cavity diameter (P < 0.001), pineal gland index (P < 0.001) and PGV values (P = 0.02). The prevalence of cystic pineal gland was 36.4% in total subjects, 41.7% in males and 32.4% in females. No linear relationship was found between age and pineal gland parameters. We measured the pineal gland morphology based on MRI images. Significant influences on pineal gland parameters were found in subjects with different sex, whereas no effect was observed from age.
Interferometer with Continuously Varying Path Length Measured in Wavelengths to the Reference Mirror
NASA Technical Reports Server (NTRS)
Ohara, Tetsuo (Inventor)
2016-01-01
An interferometer in which the path length of the reference beam, measured in wavelengths, is continuously changing in sinusoidal fashion and the interference signal created by combining the measurement beam and the reference beam is processed in real time to obtain the physical distance along the measurement beam between the measured surface and a spatial reference frame such as the beam splitter. The processing involves analyzing the Fourier series of the intensity signal at one or more optical detectors in real time and using the time-domain multi-frequency harmonic signals to extract the phase information independently at each pixel position of one or more optical detectors and converting the phase information to distance information.
Gabbett, Tim J; Abernethy, Bruce; Jenkins, David G
2012-02-01
The purpose of this study was to investigate the effect of changes in field size on the physiological and skill demands of small-sided games in elite junior and senior rugby league players. Sixteen elite senior rugby league players ([mean ± SE] age, 23.6 ± 0.5 years) and 16 elite junior rugby league players ([mean ± SE] age, 17.3 ± 0.3 years) participated in this study. On day 1, 2 teams played an 8-minute small-sided game on a small field (10-m width × 40-m length), whereas the remaining 2 teams played the small-sided game on a larger sized field (40-m width × 70-m length). On day 2, the groups were crossed over. Movement was recorded by a global positioning system unit sampling at 5 Hz. Games were filmed to count the number of possessions and the number and quality of disposals. The games played on a larger field resulted in a greater (p < 0.05) total distance covered, and distances covered in moderate, high, and very-high velocity movement intensities. Senior players covered more distance at moderate, high, and very-high intensities, and less distance at low and very-low intensities during small-sided games than junior players. Although increasing field size had no significant influence (p > 0.05) over the duration of recovery periods for junior players, larger field size significantly reduced (p < 0.05) the amount of short-, moderate-, and long-duration recovery periods in senior players. No significant between-group differences (p > 0.05) were detected for games played on a small or large field for the number or quality of skill involvements. These results suggest that increases in field size serve to increase the physiological demands of small-sided games but have minimal influence over the volume or quality of skill executions in elite rugby league players.
The effect of oral motor activity on the athletic performance of professional golfers
Ringhof, Steffen; Hellmann, Daniel; Meier, Florian; Etz, Eike; Schindler, Hans J.; Stein, Thorsten
2015-01-01
Human motor control is based on complex sensorimotor processes. Recent research has shown that neuromuscular activity of the craniomandibular system (CMS) might affect human motor control. In particular, improvements in postural stability and muscle strength have been observed as a result of voluntary jaw clenching. Potential benefits of jaw aligning appliances on muscle strength and golf performance have also been described. These reports are highly contradictory, however, and the oral motor task performed is often unclear. The purpose of our study was, therefore, to investigate the effect of submaximum biting on golf performance via shot precision and shot length over three different distances. Participants were 14 male professional golfers – seven with sleep bruxism and seven without – randomly performing golf shots over 60m, 160m, or driving distance while either biting on an oral splint or biting on their teeth; habitual jaw position served as the control condition. Statistical analysis revealed that oral motor activity did not systematically affect golf performance in respect of shot precision or shot length for 60m, 160 m, or driving distance. These findings were reinforced by impact variables such as club head speed and ball speed, which were also not indicative of significant effects. The results thus showed that the strength improvements and stabilizing effects described previously are, apparently, not transferable to such coordination-demanding sports as golf. This could be due to the divergent motor demands associated with postural control and muscle strength on the one hand and the complex coordination of a golf swing on the other. Interestingly, subjects without sleep bruxism performed significantly better at the short distance (60 m) than those with bruxism. Because of the multifactorial etiology of parafunctional CMS activity, conclusions about the need for dental treatment to improve sports performance are, however, completely unwarranted. PMID:26082747
Growth from Solutions: Kink dynamics, Stoichiometry, Face Kinetics and stability in turbulent flow
NASA Technical Reports Server (NTRS)
Chernov, A. A.; DeYoreo, J. J.; Rashkovich, L. N.; Vekilov, P. G.
2005-01-01
1. Kink dynamics. The first segment of a polygomized dislocation spiral step measured by AFM demonstrates up to 60% scattering in the critical length l*- the length when the segment starts to propagate. On orthorhombic lysozyme, this length is shorter than that the observed interkink distance. Step energy from the critical segment length based on the Gibbs-Thomson law (GTL), l* = 20(omega)alpha/(Delta)mu is several times larger than the energy from 2D nucleation rate. Here o is tine building block specific voiume, a is the step riser specific free energy, Delta(mu) is the crystallization driving force. These new data support our earlier assumption that the classical Frenkel, Burton -Cabrera-Frank concept of the abundant kink supply by fluctuations is not applicable for strongly polygonized steps. Step rate measurements on brushite confirms that statement. This is the1D nucleation of kinks that control step propagation. The GTL is valid only if l*
Van Hoozen, Brian L; Petersen, Poul B
2018-04-07
Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm -1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pK A values. Dimers with large pK A differences are found to have features that can extend to frequencies below 1000 cm -1 . The relationships between mean OH/NH frequency, aqueous pK A , and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm -1 . Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pK A and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.
Venara, A; Gaudin, A; Lebigot, J; Airagnes, G; Hamel, J F; Jousset, N; Ridereau-Zins, C; Mauillon, D; Rouge-Maillart, C
2013-06-10
Forensic doctors are frequently asked by magistrates when dealing principally with knife wounds, about the depth of the blade which may have penetrated the victim's body. Without the use of imaging, it is often difficult to respond to this question, even in an approximate way. Knowledge of the various distances between organs and the skin wall would allow an assessment to be made of the minimum blade length required to obtain the injuries observed. The objective of this study is thus to determine average distances between the vital organs of the thorax and abdomen, and the skin wall, taking into account the person's body mass index (BMI). This is a prospective single-center study, carried out over a 2-month period at University Hospital in Angers. A sample of 200 people was studied. The inclusion criteria were as follows: all patients coming to the radiology department and the emergency department for an abdominal, thoracic or thoraco-abdominal scan with injection. The exclusion criteria included patients presenting a large lymphoma, a large abdominal or retroperitoneal tumor, a tumor in one of the organs targeted by our study and patients presenting ascites. The organs focused on were: the pericardium, pleura, aorta, liver, spleen, kidneys, abdominal aorta and femoral arteries. The shortest distance between the organ and the skin wall was noted. Median distances were calculated according to gender, abdominal diameter and BMI. We associated these values to propose an indicative chart which may be used by doctors in connection with their forensic activities. The problem of the depth of a wound is frequently exposed to the expert. Without a reliable tool, it is difficult to value and a personal interpretation is often done. Even if, in current days, tomodensitometry is frequently done in vivo or after death, measurement can be difficult because of the local conditions. We classified values according to the different factors of fat repartition (BMI, abdominal diameter, gender). These tables, collectively used, permit evaluation of the distance between wall and thoracic or abdominal vital organs. We suggest an indicative chart designed for forensic doctors in their professional life to help determine the minimum penetration length for a knife, which may wound a vital organ. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Huang, Jinhai; McAlinden, Colm; Huang, Yingying; Wen, Daizong; Savini, Giacomo; Tu, Ruixue; Wang, Qinmei
2017-02-24
A meta-analysis to compare ocular biometry measured by optical low-coherence reflectometry (Lenstar LS900; Haag Streit) and partial coherence interferometry (the IOLMaster optical biometer; Carl Zeiss Meditec). A systematic literature search was conducted for articles published up to August 6th 2015 in the Cochrane Library, PubMed, Medline, Embase, China Knowledge Resource Integrated Database and Wanfang Data. A total of 18 studies involving 1921 eyes were included. There were no statistically significant differences in axial length (mean difference [MD] 0 mm; 95% confidence interval (CI) -0.08 to 0.08 mm; p = 0.92), anterior chamber depth (MD 0.02 mm; 95% CI -0.07 to 0.10 mm; p = 0.67), flat keratometry (MD -0.05 D; 95% CI -0.16 to 0.06 D; p = 0.39), steep keratometry (MD -0.09 D; 95% CI -0.20 to 0.03 D; p = 0.13), and mean keratometry (MD -0.15 D; 95% CI -0.30 to 0.00 D; p = 0.05). The white to white distance showed a statistically significant difference (MD -0.14 mm; 95% CI -0.25 to -0.02 mm; p = 0.02). In conclusion, there was no difference in the comparison of AL, ACD and keratometry readings between the Lenstar and IOLMaster. However the WTW distance indicated a statistically significant difference between the two devices. Apart from the WTW distance, measurements for AL, ACD and keratometry readings may be used interchangeability with both devices.
Mapping Sequence performed during the STS-118 R-Bar Pitch Maneuver
2007-08-10
ISS015-E-21335 (10 Aug. 2007) --- This is one of a series of images photographed with a digital still camera using an 800mm focal length featuring the different areas of the Space Shuttle Endeavour as it approached the International Space Station and performed a back-flip to accommodate close scrutiny by eyeballs and cameras. This image is an almost nadir perspective over Endeavour's of aft cabin and its docking system. Distance between the station and shuttle at this time was approximately 600 feet.
Mapping Sequence performed during the STS-117 R-Bar Pitch Maneuver
2007-06-10
ISS015-E-11354 (10 June 2007) --- This is one of a series of images photographed with a digital still camera using an 800mm focal length featuring the different areas of the Space Shuttle Atlantis as it approached the International Space Station and performed a back-flip to accommodate close scrutiny by eyeballs and cameras. This image shows a view of the underside of nose/nosecap and forward landing gear doors. Distance from the station and shuttle at this time was approximately 600 feet.
Effect of EDTA preparations on rotary root canal instrumentation.
Whitbeck, Evan R; Swenson, Kelli; Tordik, Patricia A; Kondor, Shayne A; Webb, Terry D; Sun, Jirun
2015-01-01
The aim of this study was to evaluate whether rotary instrumentation using saline, EDTA 17% solution, or RC-Prep (Premier Dental, Philadelphia, PA) resulted in differences in root canal transportation. The secondary objective was to assess if instrumentation using these agents caused changes in the working length and canal volume. Moderately curved mesiobuccal roots of 24 maxillary molars were standardized in length and randomized into 1 control and 2 experimental groups. The canals were instrumented with 0.04 taper rotary files to size #30. All groups were irrigated with saline. Group 1 was also irrigated using EDTA 17% solution (Pulpdent Corp, Watertown, MA), and in group 2, RC-Prep was used. X-ray micro-computed tomographic scans and working length measurements were made before and after instrumentation. Three-dimensional models were created from the pre- and postinstrumentation scan data and compared for volume changes. Centroid points were calculated in cross-sectional slices of the canals, and transportation was determined by measuring the distance between the pre- and postinstrumentation points. The data were analyzed with 1-way analysis of variance (α = 0.05) and the Tukey post hoc test. Less transportation was observed in group 2 than in group 1 (P = .001) and the control group (P = .014). Transportation in group 1 and the control group was not significantly different. Canal volume in group 1 was increased relative to group 2 (P = .004) and the control group (P = .022). No significant differences in the working length were observed. The use of chelating agents during root canal instrumentation did not significantly increase apical transportation. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-06-01
The structural and the optical properties of different Si nanostructures have been compared. Detailed optical properties of Si nanowires arrays of different optical lengths, fabricated by facile electroless etching technique, have been reported. The theoretical calculation of exponential sine profile at constant λ = 600 nm shows a better explanation in terms of gradient index with optical length for vertical nanowires. The observations signify the possibility of strong light trapping due to an exponential gradient towards the high index along the nanowires and the existence of dense subwavelength features. The optical admittance (Ƶ) shows a strong impact on optical distance (Z) for Z < H, owing to the electromagnetic wave interaction with the nanowires that perceive a different Ƶ at the oblique angle of incidence (AOI). In addition, the experimental reflectance data and the theoretical model for transverse electric and transverse magnetic modes predict that an optical length of 5 μm can exhibit a very low reflectance value. This indicates that the Si nanowires are polarization insensitive over a wide range of AOI (0°-80°). Moreover, Raman spectra showed a very strong light confinement effect in the first order transverse optical band with increasing etching depths. The morphological dependent resonance theory predicts a strong localized light field confinement in the lower wavelength regime for SiNWs. The effect on the strong resonant absorption modes was further correlated with the simulation results obtained by using COMSOL. The obtained results are likely to enhance the maximum absorption of SiNWs for various photonic applications.
The distribution of early recombination nodules on zygotene bivalents from plants.
Anderson, L K; Hooker, K D; Stack, S M
2001-01-01
Early recombination nodules (ENs) are protein complexes approximately 100 nm in diameter that are associated with forming synaptonemal complexes (SCs) during leptotene and zygotene of meiosis. Although their functions are not yet clear, ENs may have roles in synapsis and recombination. Here we report on the frequency and distribution of ENs in zygotene SC spreads from six plant species that include one lower vascular plant, two dicots, and three monocots. For each species, the number of ENs per unit length is higher for SC segments than for (asynapsed) axial elements (AEs). In addition, EN number is strongly correlated with SC segment length. There are statistically significant differences in EN frequencies on SCs between species, but these differences are not related to genome size, number of chromosomes, or phylogenetic class. There is no difference in the frequency of ENs per unit length of SC from early to late zygotene. The distribution of distances between adjacent ENs on SC segments is random for all six species, but ENs are found at synaptic forks more often than expected for a random distribution of ENs on SCs. From these observations, we conclude that in plants: (1) some ENs bind to AEs prior to synapsis, (2) most ENs bind to forming SCs at synaptic forks, and (3) ENs do not bind to already formed SCs. PMID:11729167
The visual perception of distance ratios outdoors.
Norman, J Farley; Adkins, Olivia C; Dowell, Catherine J; Shain, Lindsey M; Hoyng, Stevie C; Kinnard, Jonathan D
2017-05-01
We conducted an experiment to evaluate the ability of 32 younger and older adults to visually perceive distances in an outdoor setting. On any given trial, the observers viewed 2 environmental distances and were required to estimate the distance ratio-the length of the (usually) larger distance relative to that of the shorter. The stimulus distance ratios ranged from 1.0 (the stimulus distances were identical) to 8.0 (1 distance interval was 8.0 times longer than the other). The stimulus distances were presented within a 26 m × 60 m portion of a grassy field. The observers were able to reliably estimate the stimulus distance ratios: The overall Pearson r correlation coefficient relating the judged and actual distance ratios was 0.762. Fifty-eight percent of the variance in the observers' perceived distance ratios could thus be accounted for by variations in the actual stimulus ratios. About half of the observers significantly underestimated the distance ratios, while the judgments of the remainder were essentially accurate. Significant modulatory effects of sex and age occurred, such that the male observers' judgments were the most precise, while those of the older males were the most accurate.
The trend of production rates with heliocentric distance for comet P/Halley
NASA Technical Reports Server (NTRS)
Fink, Uwe
1994-01-01
Comet P/Halley was observed spectroscopically in the wavelength range 5200-10,400 A during 10 observing runs, roughly a month apart from 1985 August 28 to 1986 June 6. The observations span a heliocentric distance from 0.73 to 2.52 AU. This data set is analyzed to determine the course of the production rate with heliocentric distance for C2, NH2, CN, and the continuum. The effect of changing the Haser scale lengths and their heliocentric distance dependence is examined. The production rate ratios to water change only in a minor way, but the absolute values of the production rates are more severely affected. Fluorescent efficiencies, or g-factors for the CN red system are calculated, and band intensity ratios for NH2 and CN are presented. Using presently available fluorescence efficiencies and Haser scale lengths, mixing ratios for the parents of C2, CN, and NH2 with respect to water are: 0.34 +/- 0.07%, 0.15 +/- 0.04%, and 0.13 +/- 0.05%. It is found that these mixing ratios are essentially constant over the heliocentric distance range of the observations, implying a rather uniform nucleus and uniform outgassing characteristics, although there are indications of smaller scale day-to-day variations. The results provide strong observational confirmation that water evaporation controls the activity of the comet over the distance range studied. Continuum values Af rho are determined, and their ratios to QH2O are found to have a clear dependence with heliocentric distance approximately r(exp -1.0) with a post-perihelion enhancement. No correlation of the production rate ratios with light curve of P/Halley were found, nor was there any correlation of the C2 or CN production with the dust.
Working memory differences in long-distance dependency resolution
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component. PMID:25852623
Linkage map of Escherichia coli K-12, edition 8.
Bachmann, B J
1990-01-01
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism. PMID:2194094
Working memory differences in long-distance dependency resolution.
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.
Stephan, Carl N
2015-12-01
The superimposition of a face photograph with that of a skull for identification purposes necessitates the use of comparable photographic parameters between the two image acquisition sessions, so that differences in optics and consequent recording of images does not thwart the morphological analysis. Widely divergent, but published, speculations about the thresholds at which perspective distortion becomes negligible (0.5 to >13.5 m) must be resolved and perspective distortion (PD) relationships quantified across their full range to judge tolerance levels, and the suitability of commonly employed contemporary equipment (e.g., 1 m photographic copy-stands). Herein, basic trigonometry is employed to map PD for two same sized 179 mm linear lengths - separated anteroposteriorly by 127 mm - as a function of subject-to-camera distance (SCD; 0.2-20 m). These lengths approximate basic craniofacial heights (e.g., tr-n) and widths (e.g., zy-zy), while the latter approximates facial depth (e.g., n-t). As anticipated, PD decayed in logarithmic and continuous manner with increasing SCD. At SCD of 12 m, the within-image PD was negligible (<1%). At <2.5 m SCD, it exceeded 5% and increased sharply as SCD decreased. Since life size images of skulls and faces are commonly employed for superimposition, a relative 1% perspective distortion difference is recommended as the ceiling standard for craniofacial comparison (translates into a ≤2 mm difference in physiognomical face height). Since superimposition depends on relative comparisons of a photographic pair (not one photograph), there is practically no scenario in superimposition casework where SCDs should be ignored and no single distance at which PD should be considered negligible (even if one image holds >12 m SCD). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Similarities and differences among half-marathon runners according to their performance level
Morante, Juan Carlos; Gómez-Molina, Josué; García-López, Juan
2018-01-01
This study aimed to identify the similarities and differences among half-marathon runners in relation to their performance level. Forty-eight male runners were classified into 4 groups according to their performance level in a half-marathon (min): Group 1 (n = 11, < 70 min), Group 2 (n = 13, < 80 min), Group 3 (n = 13, < 90 min), Group 4 (n = 11, < 105 min). In two separate sessions, training-related, anthropometric, physiological, foot strike pattern and spatio-temporal variables were recorded. Significant differences (p<0.05) between groups (ES = 0.55–3.16) and correlations with performance were obtained (r = 0.34–0.92) in training-related (experience and running distance per week), anthropometric (mass, body mass index and sum of 6 skinfolds), physiological (VO2max, RCT and running economy), foot strike pattern and spatio-temporal variables (contact time, step rate and length). At standardized submaximal speeds (11, 13 and 15 km·h-1), no significant differences between groups were observed in step rate and length, neither in contact time when foot strike pattern was taken into account. In conclusion, apart from training-related, anthropometric and physiological variables, foot strike pattern and step length were the only biomechanical variables sensitive to half-marathon performance, which are essential to achieve high running speeds. However, when foot strike pattern and running speeds were controlled (submaximal test), the spatio-temporal variables were similar. This indicates that foot strike pattern and running speed are responsible for spatio-temporal differences among runners of different performance level. PMID:29364940
NASA Astrophysics Data System (ADS)
Becker, M.; Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Cole, M. C.; Guiheneuf, N.
2017-12-01
Determining hydraulic and transport connectivity in fractured bedrock has long been an important objective in contaminant hydrogeology, petroleum engineering, and geothermal operations. A persistent obstacle to making this determination is that the characteristic length scale is nearly impossible to determine in sparsely fractured networks. Both flow and transport occur through an unknown structure of interconnected fracture and/or fracture zones making the actual length that water or solutes travel undetermined. This poses difficulties for flow and transport models. For, example, hydraulic equations require a separation distance between pumping and observation well to determine hydraulic parameters. When wells pairs are close, the structure of the network can influence the interpretation of well separation and the flow dimension of the tested system. This issue is explored using hydraulic tests conducted in a shallow fractured crystalline rock. Periodic (oscillatory) slug tests were performed at the Ploemeur fractured rock test site located in Brittany, France. Hydraulic connectivity was examined between three zones in one well and four zones in another, located 6 m apart in map view. The wells are sufficiently close, however, that the tangential distance between the tested zones ranges between 6 and 30 m. Using standard periodic formulations of radial flow, estimates of storativity scale inversely with the square of the separation distance and hydraulic diffusivity directly with the square of the separation distance. Uncertainty in the connection paths between the two wells leads to an order of magnitude uncertainty in estimates of storativity and hydraulic diffusivity, although estimates of transmissivity are unaffected. The assumed flow dimension results in alternative estimates of hydraulic parameters. In general, one is faced with the prospect of assuming the hydraulic parameter and inverting the separation distance, or vice versa. Similar uncertainties exist, for instance, when trying to invert transport parameters from tracer mean residence time. This field test illustrates that when dealing with fracture networks, there is a need for analytic methods of complexity that lie between simple radial solutions and discrete fracture network models.
Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig
2016-01-01
Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among Iranian P. pectinatus than previously observed for temperate European regions, due to regional differences across mountain ranges over long distances. PMID:27560947
Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig
2016-01-01
Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among Iranian P. pectinatus than previously observed for temperate European regions, due to regional differences across mountain ranges over long distances.
Del Bene, Janet E; Alkorta, Ibon; Elguero, José
2015-11-11
Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.
Marsden, A D; DeWreede, R E
2000-12-01
Marine macroalgal communities were examined near the outflow of acid mine drainage (AMD) from the Britannia Mine, British Columbia, Canada. No marine algae were present within 100 m of the mouth of Britannia Creek, which carries the AMD into the marine environment. At greater distances (300-700 m) from this Creek, mean summer cover of filamentous green algae, mostly Enteromorpha intestinalis, was >60%, which was significantly higher than at nearby reference stations. At still greater distances (600-1000 m) from Britannia Creek, Fucus gardneri dominated algal communities that were similar to those at reference stations. No consistent differences were detected in mean plant length, mean per cent cover or mean oocyte production between F. gardneri near Britannia Creek and those at reference stations. Cu body burden in F. gardneri near Britannia Creek was five to 17 times higher than in reference plants.
Upward swimming of a sperm cell in shear flow.
Omori, Toshihiro; Ishikawa, Takuji
2016-03-01
Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visualizing sound emission of elephant vocalizations: evidence for two rumble production types.
Stoeger, Angela S; Heilmann, Gunnar; Zeppelzauer, Matthias; Ganswindt, André; Hensman, Sean; Charlton, Benjamin D
2012-01-01
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'.
Visualizing Sound Emission of Elephant Vocalizations: Evidence for Two Rumble Production Types
Stoeger, Angela S.; Heilmann, Gunnar; Zeppelzauer, Matthias; Ganswindt, André; Hensman, Sean; Charlton, Benjamin D.
2012-01-01
Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'. PMID:23155427
Travel Distance and the Use of Inpatient Care among Patients with Schizophrenia
Hemenway, David; Kawachi, Ichiro; Subramanian, S. V.; Chen, Wei J.
2009-01-01
This study examines the variations in the use of inpatient care that can be explained by travel distance among patients with schizophrenia living in Taiwan. Data were drawn from the Psychiatric Inpatient Medical Claims Database. We used mediation analysis and multilevel analysis to identify associations. Travel distance did not significantly account for lower readmission rates after an index admission, but significantly explained the longer length of stay of an index admission by 9.3 days (P < 0.001, 85% of variation) between remote and non-remote regions. Policies are discussed aimed at reducing the impact of travel distance on rural mental health care through inter-disciplinary collaboration and telepsychiatry. PMID:18512144