Grant T. Kirker; M. Lynn Prewitt; Tor P. Schultz; Susan V. Dieh
2012-01-01
The effects of chlorothalonil (CTN), butylated hydroxytoluene (BHT), and ammoniacal copper quat (ACQ-C) on the fungal community on southern yellow pine (SYP) were assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis over 15 months. Field stakes, treated with 0.25 and 0.37 % ACQ-C, 0.1 and 0.25 % CTN, 2 % BHT alone, 0.1 and 0.25 % CTN...
Grant T. Kirker; M. Lynn Prewitt; Walter J. Diehl; Susan V. Diehl
2012-01-01
The effects of wood preservatives on the bacterial community in southern yellow pine were assessed by the molecular method âterminal restriction fragment length polymorphismâ (T-RFLP). Stakes, treated with 0.25 % and 0.37 % ammoniacal copper quat (ACQ-C), 0.1 % and 0.25 % chlorothalonil (CTN), 0.1 % and 0.25 % CTN with 2 % butylated hydroxytoluene (BHT), and 2 % BHT...
Jernberg, Cecilia; Sullivan, Asa; Edlund, Charlotta; Jansson, Janet K
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.
Jernberg, Cecilia; Sullivan, Åsa; Edlund, Charlotta; Jansson, Janet K.
2005-01-01
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic. PMID:15640226
Tanaka, Yuichiro; Takahashi, Hajime; Kitazawa, Nao; Kimura, Bon
2010-01-01
A rapid system using terminal restriction fragment length polymorphism (T-RFLP) analysis targeting 16S rDNA is described for microbial population analysis in edible fish samples. The defined terminal restriction fragment database was constructed by collecting 102 strains of bacteria representing 53 genera that are associated with fish. Digestion of these 102 strains with two restriction enzymes, HhaI and MspI, formed 54 pattern groups with discrimination to the genus level. This T-RFLP system produced results comparable to those from a culture-based method in six natural fish samples with a qualitative correspondence of 71.4 to 92.3%. Using the T-RFLP system allowed an estimation of the microbial population within 7 h. Rapid assay of the microbial population is advantageous for food manufacturers and testing laboratories; moreover, the strategy presented here allows adaptation to specific testing applications.
PCR-TRFLP methodology targeting rRNA genes has effectively been used to discriminate between microbial communities but to date has not been used specifically for the analysis of ectomycorrhizal communities colonizing plant roots. We describe here results of a study conducted to a...
Principal Component Analysis of Microbial Community Data from an Accelerated Decay Cellar Test
Grant T. Kirker; Patricia K. Lebow
2014-01-01
Analysis of microbial communities is a valuable tool for characterization and identification of microbes in a myriad of environments. We are currently using the molecular method terminal restriction fragment length polymorphism (T-RFLP) analysis to characterize changes in bacterial and fungal communities on treated and untreated wood in soil. T-RFLP uses fluorescently...
Andeer, Peter; Strand, Stuart E; Stahl, David A
2012-01-01
Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.
Blackwood, Christopher B; Hudleston, Deborah; Zak, Donald R; Buyer, Jeffrey S
2007-08-01
Ecological diversity indices are frequently applied to molecular profiling methods, such as terminal restriction fragment length polymorphism (T-RFLP), in order to compare diversity among microbial communities. We performed simulations to determine whether diversity indices calculated from T-RFLP profiles could reflect the true diversity of the underlying communities despite potential analytical artifacts. These include multiple taxa generating the same terminal restriction fragment (TRF) and rare TRFs being excluded by a relative abundance (fluorescence) threshold. True community diversity was simulated using the lognormal species abundance distribution. Simulated T-RFLP profiles were generated by assigning each species a TRF size based on an empirical or modeled TRF size distribution. With a typical threshold (1%), the only consistently useful relationship was between Smith and Wilson evenness applied to T-RFLP data (TRF-E(var)) and true Shannon diversity (H'), with correlations between 0.71 and 0.81. TRF-H' and true H' were well correlated in the simulations using the lowest number of species, but this correlation declined substantially in simulations using greater numbers of species, to the point where TRF-H' cannot be considered a useful statistic. The relationships between TRF diversity indices and true indices were sensitive to the relative abundance threshold, with greatly improved correlations observed using a 0.1% threshold, which was investigated for comparative purposes but is not possible to consistently achieve with current technology. In general, the use of diversity indices on T-RFLP data provides inaccurate estimates of true diversity in microbial communities (with the possible exception of TRF-E(var)). We suggest that, where significant differences in T-RFLP diversity indices were found in previous work, these should be reinterpreted as a reflection of differences in community composition rather than a true difference in community diversity.
Grigorescu, A S; Hozalski, R M; Lapara, T M
2012-04-01
To characterize the HAA-degrading bacteria in drinking water systems. Haloacetic acid (HAA)-degrading bacteria were analysed in drinking water systems by cultivation and by a novel application of terminal restriction fragment length polymorphism (tRFLP). Substantial similarities were observed among the tRFLP patterns of dehI and dehII gene fragments in drinking water samples obtained from three different cities (Minneapolis, MN; St Paul, MN; Bucharest, Romania) and from one biologically active granular activated carbon filter (Hershey, PA). The dominant fragment in the tRFLP profiles of dehI genes from the drinking water samples matched the pattern from an Afipia sp. that was previously isolated from drinking water. In contrast, the dominant fragment in the tRFLP profiles of dehII genes did not match any previously characterized dehII gene fragment. PCR cloning was used to characterize this gene fragment, which had <65% nucleotide sequence identity with any previously characterized dehII gene. Afipia spp. are an appropriate model organism for studying the biodegradation of HAAs in drinking water distribution systems as encoded by dehI genes; the organism that harbours the most prominent dehII gene in drinking water has yet to be cultivated and identified. The development of a novel application of tRFLP targeting dehI and dehII genes could be broadly useful in understanding HAA-degrading bacteria in numerous environments. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
de la Fuente, Gabriel; Belanche, Alejandro; Girwood, Susan E.; Pinloche, Eric; Wilkinson, Toby; Newbold, C. Jamie
2014-01-01
The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction of different protozoal populations, using both next generation sequencing (NGS: Ion Torrent PGM) and terminal restriction fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index, respectively. Dendrograms for both datasets were also highly correlated (Mantel test = 0.742). Eighteen OTUs and ten genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information on the individual members of the microbial population. PMID:25051490
Studies of ectomycorrhizal community structure have used a variety of analytical regimens including sole or partial reliance on gross morphological characterization of colonized root tips. Depending on the rigor of the classification protocol, this technique can incorrectly assig...
NASA Technical Reports Server (NTRS)
Kerkhof, L.; Santoro, M.; Garland, J.
2000-01-01
In this report, we describe an experiment conducted at Kennedy Space Center in the biomass production chamber (BPC) using soybean plants for purification and processing of human hygiene water. Specifically, we tested whether it was possible to detect changes in the root-associated bacterial assemblage of the plants and ultimately to identify the specific microorganism(s) which differed when plants were exposed to hygiene water and other hydroponic media. Plants were grown in hydroponics media corresponding to four different treatments: control (Hoagland's solution), artificial gray water (Hoagland's+surfactant), filtered gray water collected from human subjects on site, and unfiltered gray water. Differences in rhizosphere microbial populations in all experimental treatments were observed when compared to the control treatment using both community level physiological profiles (BIOLOG) and molecular fingerprinting of 16S rRNA genes by terminal restriction fragment length polymorphism analysis (TRFLP). Furthermore, screening of a clonal library of 16S rRNA genes by TRFLP yielded nearly full length SSU genes associated with the various treatments. Most 16S rRNA genes were affiliated with the Klebsiella, Pseudomonas, Variovorax, Burkholderia, Bordetella and Isosphaera groups. This molecular approach demonstrated the ability to rapidly detect and identify microorganisms unique to experimental treatments and provides a means to fingerprint microbial communities in the biosystems being developed at NASA for optimizing advanced life support operations.
Meng, Xianfa; Wang, Lin; Long, Xiaohua; Liu, Zhaopu; Zhang, Zhenhua; Zed, Rengel
2012-06-01
Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke. Copyright © 2012 Institut Pasteur. All rights reserved.
Kent, Angela D.; Smith, Dan J.; Benson, Barbara J.; Triplett, Eric W.
2003-01-01
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library. PMID:14602639
USDA-ARS?s Scientific Manuscript database
In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...
Nishi, Eiji; Watanabe, Kota; Tashiro, Yukihiro; Sakai, Kenji
2017-03-01
Human hairs are the trace evidence most commonly encountered at many crime scenes. However, they have not been effectively utilized for actual criminal investigations because of the low accuracy of their morphological inspection, low detection rate of short tandem repeat (STR) typing, and the problem of heteroplasmy in mitochondrial DNA analysis. Here, we examined the possibility of individual discrimination by comparing profiles of bacterial flora on hair. We carried out the profiling of terminal restriction fragment length polymorphisms (T-RFLP) of the amplified bacterial 16S ribosomal RNA (rRNA) gene from hair samples. Compared with existing STR typing methods that use hair roots, this method using hair shafts allowed the detection of stable bacterial DNA. We successfully obtained the T-RFLP profile from single hair shafts of all volunteers tested. The profiles were specific to each individual, and multiple profiles obtained from the individual him/herself showed higher similarity than those from different individuals. These individual-specific profiles were stably obtained from samples from most volunteers, when collected again after 6months. Storage of the collected hair samples at -30°C was effective for obtaining reproducible T-RF profiles. When unidentified hair samples collected in the laboratory were compared with a pre-constructed database, 17 of 22 hairs were assigned to a small group of people, including the corresponding individuals. These results show that T-RFLP analysis of bacterial flora on a hair shaft found at a crime scene could provide useful information for narrowing down a suspect. Copyright © 2017 Elsevier B.V. All rights reserved.
Covariance of bacterioplankton composition and environmental variables in a temperate delta system
Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.
2003-01-01
We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological roles of Delta bacterioplankton were partitioned at the genus or species level.
Tools for T-RFLP data analysis using Excel.
Fredriksson, Nils Johan; Hermansson, Malte; Wilén, Britt-Marie
2014-11-08
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a DNA-fingerprinting method that can be used for comparisons of the microbial community composition in a large number of samples. There is no consensus on how T-RFLP data should be treated and analyzed before comparisons between samples are made, and several different approaches have been proposed in the literature. The analysis of T-RFLP data can be cumbersome and time-consuming, and for large datasets manual data analysis is not feasible. The currently available tools for automated T-RFLP analysis, although valuable, offer little flexibility, and few, if any, options regarding what methods to use. To enable comparisons and combinations of different data treatment methods an analysis template and an extensive collection of macros for T-RFLP data analysis using Microsoft Excel were developed. The Tools for T-RFLP data analysis template provides procedures for the analysis of large T-RFLP datasets including application of a noise baseline threshold and setting of the analysis range, normalization and alignment of replicate profiles, generation of consensus profiles, normalization and alignment of consensus profiles and final analysis of the samples including calculation of association coefficients and diversity index. The procedures are designed so that in all analysis steps, from the initial preparation of the data to the final comparison of the samples, there are various different options available. The parameters regarding analysis range, noise baseline, T-RF alignment and generation of consensus profiles are all given by the user and several different methods are available for normalization of the T-RF profiles. In each step, the user can also choose to base the calculations on either peak height data or peak area data. The Tools for T-RFLP data analysis template enables an objective and flexible analysis of large T-RFLP datasets in a widely used spreadsheet application.
Lessons Learned on Bioaugmentation of DNAPL Source Zone Areas
2007-10-01
but rather have stringers, ganglia or blobs that can create an “effective pool length”. As the leading edge of these discontinuous DNAPL free-phases...terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel electrophoresis (DGGE), and fluorescent in situ hybridization ( FISH ...question of interest (e.g. PCR, FISH , DGGE); (ii) sampling location(s); (iii) an appropriate sampling procedure; and (iv) an appropriate sample handling
Emoto, Takuo; Yamashita, Tomoya; Kobayashi, Toshio; Sasaki, Naoto; Hirota, Yushi; Hayashi, Tomohiro; So, Anna; Kasahara, Kazuyuki; Yodoi, Keiko; Matsumoto, Takuya; Mizoguchi, Taiji; Ogawa, Wataru; Hirata, Ken-Ichi
2017-01-01
The association between atherosclerosis and gut microbiota has been attracting increased attention. We previously demonstrated a possible link between gut microbiota and coronary artery disease. Our aim of this study was to clarify the gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism (T-RFLP). This study included 39 coronary artery disease (CAD) patients and 30 age- and sex- matched no-CAD controls (Ctrls) with coronary risk factors. Bacterial DNA was extracted from their fecal samples and analyzed by T-RFLP and data mining analysis using the classification and regression algorithm. Five additional CAD patients were newly recruited to confirm the reliability of this analysis. Data mining analysis could divide the composition of gut microbiota into 2 characteristic nodes. The CAD group was classified into 4 CAD pattern nodes (35/39 = 90 %), while the Ctrl group was classified into 3 Ctrl pattern nodes (28/30 = 93 %). Five additional CAD samples were applied to the same dividing model, which could validate the accuracy to predict the risk of CAD by data mining analysis. We could demonstrate that operational taxonomic unit 853 (OTU853), OTU657, and OTU990 were determined important both by the data mining method and by the usual statistical comparison. We classified the gut microbiota profiles in coronary artery disease patients using data mining analysis of T-RFLP data and demonstrated the possibility that gut microbiota is a diagnostic marker of suffering from CAD.
Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France.
Lehours, Anne-C; Bardot, Corinne; Thenot, Aurelie; Debroas, Didier; Fonty, Gerard
2005-11-01
The Bacteria and Archaea from the meromictic Lake Pavin were analyzed in samples collected along a vertical profile in the anoxic monimolimnion and were compared to those in samples from the oxic mixolimnion. Nine targeted 16S rRNA oligonucleotide probes were used to assess the distribution of Bacteria and Archaea and to investigate the in situ occurrence of sulfate-reducing bacteria and methane-producing Archaea involved in the terminal steps of the anaerobic degradation of organic material. The diversity of the complex microbial communities was assessed from the 16S rRNA polymorphisms present in terminal restriction fragment (TRF) depth patterns. The densities of the microbial community increased in the anoxic layer, and Archaea detected with probe ARCH915 represented the largest microbial group in the water column, with a mean Archaea/Eubacteria ratio of 1.5. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed an elevated archaeal and bacterial phylotype richness in anoxic bottom-water samples. The structure of the Archaea community remained rather homogeneous, while TRFLP patterns for the eubacterial community revealed a heterogeneous distribution of eubacterial TRFs.
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Mo, Yuanyuan; Yang, Jun; Zhou, Jing; Lin, Yuanshao; Isabwe, Alain; Zhang, Jian; Gao, Xiu; Yu, Zheng
2018-07-01
Microeukaryotes play important roles in aquatic ecosystems, and could act as drivers of the biological nutrient cycling processes. However, compared with prokaryotic ones, little is known about the genetic diversity pattern of their community, and the environmental factors affecting their ecological pattern, especially in marine ecosystems. In this study, we used denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) to explore the genetic diversity structure of microeukaryotic communities in Dongshan Bay, southeast China. Our results revealed that microeukaryotic diversity ranged from 31 to 48 phylotypes (on average, 42) using the DGGE approach, while from 22 to 38 phylotypes (on average, 30) based on T-RFLP method, and the Shannon-Wiener diversity (DGGE-based) was relatively higher, suggesting that DGGE displayed a slightly higher resolution than T-RFLP. Surprisingly, the DGGE showed significant horizontal difference among microeukaryotic communities, but was similar with T-RFLP analysis that had no significant influence on microeukaryotic diversity at vertical scale. Further, redundancy analysis (RDA) indicated that the DGGE-based microeukaryotic communities distribution was significantly correlated with three environmental factors (Chl-a, TP and salinity), whereas microeukaryotic community revealed by T-RFLP was affected by four environmental factors namely salinity, temperature, depth and NOX-N. Compared with RDA, BIO-ENV analysis showed that heterotrophic bacteria and NOX-N were important environmental variable influencing microeukaryotic communities in both methods. These differences may be attributed to the noisy effects caused by the relatively large number of environmental variables. Generally speaking, despite differences in beta-diversity ordination for both DGGE and T-RFLP methods, there exists some consistency in the results of both techniques in terms of microeukaryotes responses to the environmental variables. These results suggested that environmental parameters had a great effect on spatial distribution of microeukaryotic community and contributed to marine ecosystem health to be further evaluated.
Fogarty, Lisa R; Voytek, Mary A
2005-10-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.
Fogarty, Lisa R.; Voytek, Mary A.
2005-01-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment. PMID:16204514
Fogarty, L.R.; Voytek, M.A.
2005-01-01
To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.
Castro-Carrera, T; Toral, P G; Frutos, P; McEwan, N R; Hervás, G; Abecia, L; Pinloche, E; Girdwood, S E; Belenguer, A
2014-03-01
Developing novel strategies to increase the content of bioactive unsaturated fatty acids (FA) in ruminant-derived products requires a deeper understanding of rumen biohydrogenation and bacteria involved in this process. Although high-throughput pyrosequencing may allow for a great coverage of bacterial diversity, it has hardly been used to investigate the microbiology of ruminal FA metabolism. In this experiment, 454 pyrosequencing and a molecular fingerprinting technique (terminal restriction fragment length polymorphism; T-RFLP) were used concurrently to assess the effect of diet supplementation with marine algae (MA) on the rumen bacterial community of dairy sheep. Eleven lactating ewes were divided in 2 lots and offered a total mixed ration based on alfalfa hay and concentrate (40:60), supplemented with 0 (control) or 8 (MA) g of MA/kg of dry matter. After 54 d on treatments, animals were slaughtered and samples of rumen content and fluid were collected separately for microbial analysis. Pyrosequencing yielded a greater coverage of bacterial diversity than T-RFLP and allowed the identification of low abundant populations. Conversely, both molecular approaches pointed to similar conclusions and showed that relevant changes due to MA addition were observed within the major ruminal phyla, namely Bacteroidetes, Firmicutes, and Proteobacteria. Decreases in the abundance of unclassified Bacteroidales, Porphyromonadaceae, and Ruminococcaceae and increases in as-yet uncultured species of the family Succinivibrionaceae, might be related to a potential role of these groups in different pathways of rumen FA metabolism. Diet supplementation with MA, however, had no effect on the relative abundance of Butyrivibrio and Pseudobutyrivibrio genera. In addition, results from both 454 pyrosequencing and T-RFLP indicate that the effect of MA was rather consistent in rumen content or fluid samples, despite inherent differences between these fractions in their bacterial composition. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Horz, Hans-Peter; Yimga, Merlin Tchawa; Liesack, Werner
2001-01-01
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA. PMID:11526021
Kasuga, I; Shimazaki, D; Kunikane, S
2007-01-01
The influence of backwashing on the biofilm community developed on biological activated carbon (BAC) used in a drinking water treatment plant was investigated by means of bacterial cell enumeration and terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting analysis of bacterial and eukaryotic ribosomal RNA genes (rDNA). After backwashing, the attached bacterial abundance in the top layer of the BAC bed decreased to 64% of that before backwashing. The community level changes caused by backwashing were examined through the T-RFLP profiles. In the bacterial 16S rDNA analysis, the relative abundances of some terminal-restriction fragments (T-RFs) including the Planctomycetes-derived fragment increased; however, the relative abundances of some T-RFs including the Betaproteobacteria-derived fragments decreased. In the eukaryotic 18S rDNA analysis, the relative abundances of some T-RFs including the protozoan Cercozoa-derived fragments increased; however, the relative abundances of some T-RFs including the metazoan Chaetonotus- and Paratripyla-derived fragments decreased. The T-RFLP analysis suggests that backwashing can cause changes in the relative compositions of microorganisms in a BAC biofilm in the top layer of the bed.
Extracellular DNA in single- and multiple-species unsaturated biofilms.
Steinberger, R E; Holden, P A
2005-09-01
The extracellular polymeric substances (EPS) of bacterial biofilms form a hydrated barrier between cells and their external environment. Better characterization of EPS could be useful in understanding biofilm physiology. The EPS are chemically complex, changing with both bacterial strain and culture conditions. Previously, we reported that Pseudomonas aeruginosa unsaturated biofilm EPS contains large amounts of extracellular DNA (eDNA) (R. E. Steinberger, A. R. Allen, H. G. Hansma, and P. A. Holden, Microb. Ecol. 43:416-423, 2002). Here, we investigated the compositional similarity of eDNA to cellular DNA, the relative quantity of eDNA, and the terminal restriction fragment length polymorphism (TRFLP) community profile of eDNA in multiple-species biofilms. By randomly amplified polymorphic DNA analysis, cellular DNA and eDNA appear identical for P. aeruginosa biofilms. Significantly more eDNA was produced in P. aeruginosa and Pseudomonas putida biofilms than in Rhodococcus erythropolis or Variovorax paradoxus biofilms. While the amount of eDNA in dual-species biofilms was of the same order of magnitude as that of of single-species biofilms, the amounts were not predictable from single-strain measurements. By the Shannon diversity index and principle components analysis of TRFLP profiles generated from 16S rRNA genes, eDNA of four-species biofilms differed significantly from either cellular or total DNA of the same biofilm. However, total DNA- and cellular DNA-based TRFLP analyses of this biofilm community yielded identical results. We conclude that extracellular DNA production in unsaturated biofilms is species dependent and that the phylogenetic information contained in this DNA pool is quantifiable and distinct from either total or cellular DNA.
Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata
2017-08-01
Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.
Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar
2017-01-01
The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Tymensen, Lisa; Barkley, Cindy; McAllister, Tim A
2012-01-01
Protozoa are common inhabitants of the rumen where they play roles in host nutrition and methanogenesis. Knowledge of how changes in the composition of protozoa communities affect these processes is limited in part due to a lack of efficient methods for protozoa community analysis. In this study, a terminal-restriction fragment length polymorphism (T-RFLP) assay targeting the 18S rRNA gene was developed for comparative analysis of rumen protozoa communities. Comparison of diversity and structure of protozoa communities from hay-fed versus silage/grain-fed cattle via T-RFLP analysis yielded similar overall results to microscopy analysis. According to both methods, Entodinium spp. were more abundant in the silage/grain-fed cattle and protozoa diversity (as calculated using the Shannon index) was higher for the hay-fed cattle due to greater species evenness. Type B protozoa were more prevalent in the hay-fed cattle, whereas Type A protozoa were more prevalent in the silage/grain-fed cattle. Analysis of similarity (ANOSIM) indicated that the protozoa communities from hay-fed and silage/grain-fed cattle were different, and multivariate analysis indicated that pen mates (i.e., cattle fed the same diet and housed together) tended to have similar protozoa communities types. In summary, we present a T-RFLP method for analyzing rumen protozoa communities which complements traditional microscopy approaches but has the advantage of being amenable to high-throughput. Copyright © 2011. Published by Elsevier B.V.
Marsh, Terence L.; Saxman, Paul; Cole, James; Tiedje, James
2000-01-01
Rapid analysis of microbial communities has proven to be a difficult task. This is due, in part, to both the tremendous diversity of the microbial world and the high complexity of many microbial communities. Several techniques for community analysis have emerged over the past decade, and most take advantage of the molecular phylogeny derived from 16S rRNA comparative sequence analysis. We describe a web-based research tool located at the Ribosomal Database Project web site (http://www.cme.msu.edu/RDP/html/analyses.html) that facilitates microbial community analysis using terminal restriction fragment length polymorphism of 16S ribosomal DNA. The analysis function (designated TAP T-RFLP) permits the user to perform in silico restriction digestions of the entire 16S sequence database and derive terminal restriction fragment sizes, measured in base pairs, from the 5′ terminus of the user-specified primer to the 3′ terminus of the restriction endonuclease target site. The output can be sorted and viewed either phylogenetically or by size. It is anticipated that the site will guide experimental design as well as provide insight into interpreting results of community analysis with terminal restriction fragment length polymorphisms. PMID:10919828
Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell
Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can
2012-01-01
Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725
NASA Astrophysics Data System (ADS)
Wang, S.; Somers, K.; Sudduth, E.; Hassett, B.; Bernhardt, E. S.; Urban, D. L.
2010-12-01
We used terminal restriction fragment length polymorphism (T-RFLP), a molecular fingerprinting method, to characterize denitrifier communities in sediments taken from 48 study streams in North Carolina, USA. In addition to characterizing denitrifier communities, we also used denitrification enzyme activity (DEA) assays to measure potential denitrification rates. Due to differences in watershed land-use, study streams covered a gradient of nitrogen and carbon concentrations, as well as a gradient of contaminant loading from stormwater and sanitary sewers. Nitrogen and carbon (i.e., substrate) concentrations are commonly used to make predictions about denitrification rates in streams. Such models do not take into account denitrifier community composition, which may be an important, independent control of denitrification rates, particularly under stressful conditions (e.g., high contaminant loading) that prevent communities from capitalizing on high substrate availability. Our results indicate that substrate availability by itself was a weak predictor of denitrification rates; the same was also true for denitrifier community composition. However, when both factors were incorporated in a multiple regression model, the percent variation explained increased substantially. These findings suggest that T-RFLP, a relatively cost-effective method, can be used to improve our understanding of controls on denitrification rates in streams with varying watershed land-uses.
Antizar-Ladislao, B; Bhattacharya, B D; Ray Chaudhuri, S; Sarkar, S K
2015-10-15
Little knowledge is available about the potential impact of commercial silver nanoparticles (Ag-NPs) on estuarine microbial communities. The Hugli river estuary, India, is susceptible to heavy metals pollution through boat traffic, and there is the potential for Ag-NP exposure via effluent discharged from ongoing municipal and industrial activities located in close proximity. This study investigated the effects of commercial Ag-NPs on native microbial communities in estuarine sediments collected from five stations, using terminal restriction fragment length polymorphism (T-RFLP) technique. An increase in the number of bacteria in consortium in sediments was observed following exposure to Ag-NPs. In general microbial communities may be resistant in estuarine systems to the antimicrobial effects of commercial Ag-NPs, but key microorganisms, such as Pelobacter propionicus, disappeared following exposure to Ag-NPs. In conclusion, the T-RFLP analysis indicated that Ag-NPs have the potential to shape estuarine sediment bacterial community structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tetrachloromethane-Degrading Bacterial Enrichment Cultures and Isolates from a Contaminated Aquifer.
Penny, Christian; Gruffaz, Christelle; Nadalig, Thierry; Cauchie, Henry-Michel; Vuilleumier, Stéphane; Bringel, Françoise
2015-07-02
The prokaryotic community of a groundwater aquifer exposed to high concentrations of tetrachloromethane (CCl₄) for more than three decades was followed by terminal restriction fragment length polymorphism (T-RFLP) during pump-and-treat remediation at the contamination source. Bacterial enrichments and isolates were obtained under selective anoxic conditions, and degraded 10 mg·L(-1) CCl₄, with less than 10% transient formation of chloroform. Dichloromethane and chloromethane were not detected. Several tetrachloromethane-degrading strains were isolated from these enrichments, including bacteria from the Klebsiella and Clostridium genera closely related to previously described CCl₄ degrading bacteria, and strain TM1, assigned to the genus Pelosinus, for which this property was not yet described. Pelosinus sp. TM1, an oxygen-tolerant, Gram-positive bacterium with strictly anaerobic metabolism, excreted a thermostable metabolite into the culture medium that allowed extracellular CCl₄ transformation. As estimated by T-RFLP, phylotypes of CCl₄-degrading enrichment cultures represented less than 7%, and archaeal and Pelosinus strains less than 0.5% of the total prokaryotic groundwater community.
Thomas, Matthew C; Selinger, L Brent; Inglis, G Douglas
2012-08-01
The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure.
Thomas, Matthew C.; Selinger, L. Brent
2012-01-01
The temporal dynamics of planktonic protists in river water have received limited attention despite their ecological significance and recent studies linking phagotrophic protists to the persistence of human-pathogenic bacteria. Using molecular-based techniques targeting the 18S rRNA gene, we studied the seasonal diversity of planktonic protists in Southwestern Alberta rivers (Oldman River Basin) over a 1-year period. Nonmetric multidimensional scaling analysis of terminal restriction fragment length polymorphism (T-RFLP) data revealed distinct shifts in protistan community profiles that corresponded to season rather than geographical location. Community structures were examined by using clone library analysis; HaeIII restriction profiles of 18S rRNA gene amplicons were used to remove prevalent solanaceous plant clones prior to sequencing. Sanger sequencing of the V1-to-V3 region of the 18S rRNA gene libraries from spring, summer, fall, and winter supported the T-RFLP results and showed marked seasonal differences in the protistan community structure. The spring library was dominated by Chloroplastidae (29.8%), Centrohelida (28.1%), and Alveolata (25.5%), while the summer and fall libraries contained primarily fungal clones (83.0% and 88.0%, respectively). Alveolata (35.6%), Euglenozoa (24.4%), Chloroplastida (15.6%), and Fungi (15.6%) dominated the winter library. These data demonstrate that planktonic protists, including protozoa, are abundant in river water in Southwestern Alberta and that conspicuous seasonal shifts occur in the community structure. PMID:22685143
Nocker, Andreas; Lepo, Joe Eugene; Martin, Linda Lin; Snyder, Richard Allan
2007-10-01
The information content and responsiveness of microbial biofilm community structure, as an integrative indicator of water quality, was assessed against short-term changes in oxygen and nutrient loading in an open-water estuarine setting. Biofilms were grown for 7-day periods on artificial substrates in the Pensacola Bay estuary, Florida, in the vicinity of a wastewater treatment plant (WWTP) outfall and a nearby reference site. Substrates were deployed floating at the surface and near the benthos in 5.4 m of water. Three sampling events covered a 1-month period coincident with declining seasonal WWTP flow and increasing dissolved oxygen (DO) levels in the bottom waters. Biomass accumulation in benthic biofilms appeared to be controlled by oxygen rather than nutrients. The overriding effect of DO was also seen in DNA fingerprints of community structure by terminal restriction fragment length polymorphism (T-RFLP) of amplified 16S rRNA genes. Ribotype diversity in benthic biofilms at both sites dramatically increased during the transition from hypoxic to normoxic. Terminal restriction fragment length polymorphism patterns showed pronounced differences between benthic and surface biofilm communities from the same site in terms of signal type, strength, and diversity, but minor differences between sites. Sequencing of 16S rRNA gene clone libraries from benthic biofilms at the WWTP site suggested that low DO levels favored sulfate-reducing prokaryotes (SRP), which decreased with rising oxygen levels and increasing overall diversity. A 91-bp ribotype in the CfoI-restricted 16S rRNA gene T-RFLP profiles, indicative of SRP, tracked the decrease in relative SRP abundance over time.
Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David
2009-01-01
The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.
Erwin, Patrick M; Olson, Julie B; Thacker, Robert W
2011-01-01
Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP), might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6%) of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil). The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities. Our replicated sampling strategy, which included samples that reflect the ambient environment, allowed us to differentiate resident symbionts from potentially transient or prey bacteria. Pairing replicated clone library construction with rapid community profiling via T-RFLP analyses will greatly facilitate future studies of sponge-microbe symbioses.
Chim Chan, On; Casper, Peter; Sha, Li Qing; Feng, Zhi Li; Fu, Yun; Yang, Xiao Dong; Ulrich, Andreas; Zou, Xiao Ming
2008-06-01
Bacterial community structure is influenced by vegetation, climate and soil chemical properties. To evaluate these influences, terminal restriction fragment length polymorphism (T-RFLP) and cloning of the 16S rRNA gene were used to analyze the soil bacterial communities in different ecosystems in southwestern China. We compared (1) broad-leaved forest, shrub and pastures in a high-plateau region, (2) three broad-leaved forests representing a climate gradient from high-plateau temperate to subtropical and tropical regions and (3) the humus and mineral soil layers of forests, shrub lands and pastures with open and restricted grazing activities, having varied soil carbon and nutrient contents. Principal component analysis of the T-RFLP patterns revealed that soil bacterial communities of the three vegetation types were distinct. The broad-leaved forests in different climates clustered together, and relatively minor differences were observed between the soil layers or the grazing regimes. Acidobacteria dominated the broad-leaved forests (comprising 62% of the total clone sequences), but exhibited lower relative abundances in the soils of shrub (31%) and pasture (23%). Betaproteobacteria was another dominant taxa of shrub land (31%), whereas Alpha- (19%) and Gammaproteobacteria (13%) and Bacteriodetes (16%) were major components of pasture. Vegetation exerted more pronounced influences than climate and soil chemical properties.
Jin, Tao; Yan, Qingmei
2010-01-01
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen. PMID:20405121
Dave, Maneesh; Johnson, Laura A; Walk, Seth T; Young, Vincent B; Stidham, Ryan W; Chaudhary, Meghana N; Funnell, Jessica; Higgins, Peter D R
2011-08-01
The study of intestinal microbiota has been revolutionised by the use of molecular methods, including terminal restriction fragment length polymorphism (T-RFLP) analysis. Microbiota studies of Crohn's disease patients have examined samples from stool or from the neoterminal ileum with a standard biopsy forceps, which could be contaminated by colonic bacteria when the forceps passes through the colonoscope channel. To determine whether sheathed biopsy forceps are able to obtain terminal ileal microbiota samples with less colonic bacterial contamination compared with unsheathed (standard) biopsy forceps. Prospective randomised single-centre study. Four (paired) biopsy specimens were obtained from adjacent locations in the terminal ileum using the sheathed and standard forceps of 27 consecutive subjects undergoing colonoscopy and the microbiota were characterised using T-RFLP. The Bray-Curtis similarity index between samples (sheathed vs unsheathed forceps) was calculated within patients and significant differences were tested for across all patients. There was not a significant difference in the microbial diversity of samples obtained using sheathed versus unsheathed forceps. The difference in microbial diversity between patients was much greater than the variability within patients by proximal versus distal site or by forceps type. T-RFLP is based on PCR amplification, so it is not always sensitive to rare bacterial species. Standard unsheathed forceps appear to be sufficient for microbiota sample collection from the terminal ileum.
Shiozaki, Arihiro; Yoneda, Satoshi; Yoneda, Noriko; Yonezawa, Rika; Matsubayashi, Takamichi; Seo, Genichiro; Saito, Shigeru
2014-01-01
Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.
Regan, John M; Harrington, Gregory W; Noguera, Daniel R
2002-01-01
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay.
NASA Technical Reports Server (NTRS)
Gomez, Elena del V.; Garland, Jay L.; Roberts, Michael S.
2004-01-01
The present work tested whether the relationship between functional traits and inoculum density reflected structural diversity in bacterial communities from a land-use intensification gradient applying a mathematical model. Terminal restriction fragment length polymorphism (T-RFLP) analysis was also performed to provide an independent assessment of species richness. Successive 10-fold dilutions of a soil suspension were inoculated onto Biolog GN(R) microplates. Soil bacterial density was determined by total cell and plate counts. The relationship between phenotypic traits and inoculum density fit the model, allowing the estimation of maximal phenotypic potential (Rmax) and inoculum density (KI) at which Rmax will be half-reduced. Though Rmax decreased with time elapsed since clearing of native vegetation, KI remained high in two of the disturbed sites. The genetic pool of bacterial community did not experience a significant reduction, but the active fraction responding in the Biolog assay was adversely affected, suggesting a reduction in the functional potential. c2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.
2002-01-01
Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammonia oxidizers, 16S rDNA-targeted T-RFLP indicated the presence of Nitrosomonas in each of the distribution systems, with a considerably smaller peak attributable to Nitrosospira-like AOB. Sequences of AOB amplification products aligned within the Nitrosomonas oligotropha cluster and were closely related to N. oligotropha and Nitrosomonas ureae. The nitrite-oxidizing communities were comprised primarily of Nitrospira, although Nitrobacter was detected in some samples. These results suggest a possible selection of AOB related to N. oligotropha and N. ureae in chloraminated systems and demonstrate the presence of NOB, indicating a biological mechanism for nitrite loss that contributes to a reduction in nitrite-associated chloramine decay. PMID:11772611
Tetrachloromethane-Degrading Bacterial Enrichment Cultures and Isolates from a Contaminated Aquifer
Penny, Christian; Gruffaz, Christelle; Nadalig, Thierry; Cauchie, Henry-Michel; Vuilleumier, Stéphane; Bringel, Françoise
2015-01-01
Abstract: The prokaryotic community of a groundwater aquifer exposed to high concentrations of tetrachloromethane (CCl4) for more than three decades was followed by terminal restriction fragment length polymorphism (T-RFLP) during pump-and-treat remediation at the contamination source. Bacterial enrichments and isolates were obtained under selective anoxic conditions, and degraded 10 mg·L−1 CCl4, with less than 10% transient formation of chloroform. Dichloromethane and chloromethane were not detected. Several tetrachloromethane-degrading strains were isolated from these enrichments, including bacteria from the Klebsiella and Clostridium genera closely related to previously described CCl4 degrading bacteria, and strain TM1, assigned to the genus Pelosinus, for which this property was not yet described. Pelosinus sp. TM1, an oxygen-tolerant, Gram-positive bacterium with strictly anaerobic metabolism, excreted a thermostable metabolite into the culture medium that allowed extracellular CCl4 transformation. As estimated by T-RFLP, phylotypes of CCl4-degrading enrichment cultures represented less than 7%, and archaeal and Pelosinus strains less than 0.5% of the total prokaryotic groundwater community. PMID:27682092
Bai, Yaohui; Sun, Qinghua; Sun, Renhua; Wen, Donghui; Tang, Xiaoyan
2012-09-01
The denitrifier communities of a bioaugmented and non-augmented zeolite-biological aerated filter (Z-BAFs) were investigated and compared because the bioaugmented Z-BAF provided better and more stable treatment efficiency for nitrate and nitrite removal. Terminal restriction fragment length polymorphism (T-RFLP) and reverse transcription T-RFLP (RT-T-RFLP) were applied to analyse the denitrifier community diversity in the biofilm collected from each Z-BAF. The results showed that the bioaugmentation technology favourably changed the indigenous denitrifier community and enhanced denitrification under nitrogen loading shocks. The cDNA clone libraries were developed to explore the active denitrifier community structures of both filters. The results showed that the active denitrifiers in both the bioaugmented and non-bioaugmented Z-BAF belonged to alpha-, beta- and gamma-proteobacteria. However, the sequence of the introduced denitrifier (Paracoccus sp. BW001) was not found in the clone library of the bioaugmented filter, which implied that the removal of nitrate and nitrite was attributed mainly to the indigenous denitrifiers in the adjusted bacterial community in the bioaugmented Z-BAF.
Feng, Xin Mei; Karlsson, Anna; Svensson, Bo H; Bertilsson, Stefan
2010-10-01
Laboratory-scale reactors treating food industry waste were used to investigate the effects of additions of cobalt (Co), nickel/molybdenum/boron (Ni/Mo/B) and selenium/tungsten (Se/W) on the biogas process and the associated microbial community. The highest methane production (predicted value: 860 mL g(-1) VS) was linked to high Se/W concentrations in combination with a low level of Co. A combination of quantitative real-time PCR of 16S rRNA genes, terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing was used for the community analysis. The T-RFLP data show a higher diversity for bacteria than for archaea in all the treatments. The most abundant bacterial population (31-55% of the total T-RFLP fragments' intensity) was most closely related to Actinomyces europaeus (94% homology). Two dominant archaeal populations shared 98-99% sequence homology with Methanosarcina siciliae and Methanoculleus bourgensis, respectively. Only limited influence of the trace metal additions was found on the bacterial community composition, with two bacterial populations responding to the addition of a combination of Ni/Mo/B, while the dominant archaeal populations were influenced by the addition of Ni/Mo/B and/or Se/W. The maintenance of methanogenic activity was largely independent of archaeal community composition, suggesting a high degree of functional redundancy in the methanogens of the biogas reactors. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Dave, Maneesh; Johnson, Laura A.; Walk, Seth; Young, Vincent B.; Stidham, Ryan W.; Chaudhary, Meghana N.; FunNell, Jessica; Higgins, Peter D.R.
2014-01-01
Background The study of intestinal microbiota has been revolutionized by the use of molecular methods, including terminal restriction fragment length polymorphism (T-RFLP) analysis. A number of microbiota studies of Crohn’s disease patients have examined samples from stool or from the neoterminal ileum with a standard biopsy forceps, which could be contaminated by colonic bacteria when the forceps passes through the colonoscope channel. Objective To determine whether sheathed biopsy forceps are able to obtain terminal ileal microbiota samples with less colonic bacterial contamination compared to unsheathed (standard) biopsy forceps. Design Prospective randomized single center-study. Patients and Methods We obtained four (paired) biopsy specimens from adjacent locations in the terminal ileum using the sheathed and standard forceps of 27 consecutive subjects undergoing colonoscopy and characterized the microbiota using T-RFLP. We calculated the Bray Curtis similarity index (BCI) between samples (sheathed vs. unsheathed forceps) within patients and tested for significant differences across all patients. Results There was not a significant difference in the microbial diversity of samples obtained using sheathed vs. unsheathed forceps. The difference in microbial diversity between patients was much greater than the variability within patients by proximal vs. distal site or by forceps type. Limitations T-RFLP is based on PCR amplification, so it is not always sensitive to rare bacterial species. Conclusion Standard unsheathed forceps appear to be sufficient for microbiota sample collection from the terminal ileum. PMID:21317176
NASA Astrophysics Data System (ADS)
Dolan, M. E.; Lim, H. K.; Semprini, L.; Giovanonni, S.; Vergin, K.; McCarty, P. L.; Hopkins, G. D.
2001-12-01
The goal of this project is the successful bioaugmentation of a mixed culture capable of aerobic cometabolism of chlorinated solvent mixtures into an aquifer test zone at Moffett Federal Airfield, CA (Moffett). The test zone consists of two parallel well legs both fed butane and oxygen. One leg will be bioaugmented and the other will serve as an indigenous control. Injection and extraction wells and six (3 per leg) intermediately placed groundwater monitoring points will be frequently monitored for chlorinated solvents, butane, dissolved oxygen, and pH. Groundwater will also be periodically analyzed for microbial content using terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in-situ hybridization (FISH) analyses. In each well leg, two fully-penetrating wells containing solid media will be periodically analyzed for microbial colonization (T-RFLP). The mixed bioaugmentation culture originated from environmental samples taken from Hanford, WA. The culture was enriched on butane and tested for viability in Moffett groundwater and aquifer solids. A clone library was created from the 16S rDNA in the mixed culture and 86 clones were sorted based on RFLP patterns. Complete sequencing of the 16S rDNA gene from the three most prevalent clones revealed 45 clones similar to Acidovorax or Hydrogenophaga, gram negative proteobacterium, and 12 clones similar to Rhodococcus, a gram positive filamentous organism. Fluorescently-labeled rRNA probes were designed for FISH analyses and appropriate restriction enzymes were chosen for T-RFLP analyses based upon the sequence information. Microcosm tests were conducted prior to the initiation of the field study to evaluate butane, 1,1-dichloroethylene (1,1-DCE), and 1,1,1-trichloroethane (TCA) degradation kinetics and microbial community composition. Bioaugmented microcosms began butane utilization sooner than non-bioaugmented ones in the presence and absence of 1,1-DCE, and were able to degrade more 1,1-DCE (up to 500 Yg/L) faster than non-bioaugmented microcosms. T-RFLP analyses of triplicate bottles produced very consistent results. An organism(s) with a T-RFLP signature of 183 bp was found to dominate in bioaugmented microcosms and was consistently absent from non-bioaugmented microcosms. T-RFLP and FISH analyses of groundwater and solid media during the bioaugmentation field demonstration are expected to reveal the extent of transport and subsurface colonization of the bioaugmentation culture.
Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi
2015-01-01
We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585
Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.
Schmidt, Mariane; Priemé, Anders; Stougaard, Peter
2006-12-01
Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.
Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer.
Tischer, Karolin; Kleinsteuber, Sabine; Schleinitz, Kathleen M; Fetzer, Ingo; Spott, Oliver; Stange, Florian; Lohse, Ute; Franz, Janett; Neumann, Franziska; Gerling, Sarah; Schmidt, Christian; Hasselwander, Eyk; Harms, Hauke; Wendeberg, Annelie
2013-09-01
Micro-organisms are known to degrade a wide range of toxic substances. How the environment shapes microbial communities in polluted ecosystems and thus influences degradation capabilities is not yet fully understood. In this study, we investigated microbial communities in a highly complex environment: the capillary fringe and subjacent sediments in a hydrocarbon-contaminated aquifer. Sixty sediment sections were analysed using terminal restriction fragment length polymorphism (T-RFLP) fingerprinting, cloning and sequencing of bacterial and archaeal 16S rRNA genes, complemented by chemical analyses of petroleum hydrocarbons, methane, oxygen and alternative terminal electron acceptors. Multivariate statistics revealed concentrations of contaminants and the position of the water table as significant factors shaping the microbial community composition. Micro-organisms with highest T-RFLP abundances were related to sulphate reducers belonging to the genus Desulfosporosinus, fermenting bacteria of the genera Sedimentibacter and Smithella, and aerobic hydrocarbon degraders of the genus Acidovorax. Furthermore, the acetoclastic methanogens Methanosaeta, and hydrogenotrophic methanogens Methanocella and Methanoregula were detected. Whereas sulphate and sulphate reducers prevail at the contamination source, the detection of methane, fermenting bacteria and methanogenic archaea further downstream points towards syntrophic hydrocarbon degradation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Monitoring of microbial communities in anaerobic digestion sludge for biogas optimisation.
Lim, Jun Wei; Ge, Tianshu; Tong, Yen Wah
2018-01-01
This study characterised and compared the microbial communities of anaerobic digestion (AD) sludge using three different methods - (1) Clone library; (2) Pyrosequencing; and (3) Terminal restriction fragment length polymorphism (T-RFLP). Although high-throughput sequencing techniques are becoming increasingly popular and affordable, the reliance of such techniques for frequent monitoring of microbial communities may be a financial burden for some. Furthermore, the depth of microbial analysis revealed by high-throughput sequencing may not be required for monitoring purposes. This study aims to develop a rapid, reliable and economical approach for the monitoring of microbial communities in AD sludge. A combined approach where genetic information of sequences from clone library was used to assign phylogeny to T-RFs determined experimentally was developed in this study. In order to assess the effectiveness of the combined approach, microbial communities determined by the combined approach was compared to that characterised by pyrosequencing. Results showed that both pyrosequencing and clone library methods determined the dominant bacteria phyla to be Proteobacteria, Firmicutes, Bacteroidetes, and Thermotogae. Both methods also found that sludge A and B were predominantly dominated by acetogenic methanogens followed by hydrogenotrophic methanogens. The number of OTUs detected by T-RFLP was significantly lesser than that detected by the clone library. In this study, T-RFLP analysis identified majority of the dominant species of the archaeal consortia. However, many of the more highly diverse bacteria consortia were missed. Nevertheless, the combined approach developed in this study where clone sequences from the clone library were used to assign phylogeny to T-RFs determined experimentally managed to accurately predict the same dominant microbial groups for both sludge A and sludge B, as compared to the pyrosequencing results. Results showed that the combined approach of clone library and T-RFLP accurately predicted the dominant microbial groups and thus is a reliable and more economical way to monitor the evolution of microbial systems in AD sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nagymáté, Zsuzsanna; Homonnay, Zalán G; Márialigeti, Károly
2016-01-01
Total microbial community structure, and particularly nitrifying communities inhabiting five different small drinking water networks characterized with different water physical and chemical parameters was investigated, using cultivation-based methods and sequence aided Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis. Ammonium ion, originated from well water, was only partially oxidized via nitrite to nitrate in the drinking water distribution systems. Nitrification occurred at low ammonium ion concentration (27-46μM), relatively high pH (7.6-8.2) and over a wide range of dissolved oxygen concentrations (0.4-9.0mgL(-1)). The nitrifying communities of the distribution systems were characterized by variable most probable numbers (2×10(2)-7.1×10(4) MPN L(-1)) and probably originated from the non-treated well water. The sequence aided T-RFLP method revealed that ammonia-oxidizing microorganisms and nitrite-oxidizing Bacteria (Nitrosomonas oligotropha, Nitrosopumilus maritimus, and Nitrospira moscoviensis, 'Candidatus Nitrospira defluvii') were present in different ratios in the total microbial communities of the distinct parts of the water network systems. The nitrate generated by nitrification was partly utilized by nitrate-reducing (and denitrifying) Bacteria, present in low MPN and characterized by sequence aided T-RFLP as Comamonas sp. and Pseudomonas spp. Different environmental factors, like pH, chemical oxygen demand, calculated total inorganic nitrogen content (moreover nitrite and nitrate concentration), temperature had important effect on the total bacterial and archaeal community distribution. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chang, Young-Cheol; Reddy, M. Venkateswar; Umemoto, Honoka; Sato, Yuki; Kang, Mi-Hye; Yajima, Yuka; Kikuchi, Shintaro
2015-01-01
In the present study, a 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacterial strain CY-1 was isolated from the forest soil. Based on physiological, biochemical and 16S rRNA gene sequence analysis it was identified as Cupriavidus sp. CY-1. Further 2,4-D degradation experiments at different concentrations (200 to 800 mg l-1) were carried out using CY-1. Effect of NaCl and KNO3 on 2,4-D degradation was also evaluated. Degradation of 2,4-D and the metabolites produced during degradation process were analyzed using high pressure liquid chromatography (HPLC) and GC-MS respectively. The amount of chloride ions produced during the 2,4-D degradation were analyzed by Ion chromatography (IC) and it is stoichiometric with 2,4-D dechlorination. Furthermore two different types of soils collected from two different sources were used for 2,4-D degradation studies. The isolated strain CY-1 was bio-augmented into 2,4-D contaminated soils to analyze its degradation ability. Culture independent methods like denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP), and culture dependent methods like colony forming units (CFU) and most probable number (MPN) were used to analyze the survivability of strain CY-1 in contaminated soil. Results of T-RFLP were coincident with the DGGE analysis. From the DGGE, T-RFLP, MPN and HPLC results it was concluded that strain CY-1 effectively degraded 2,4-D without disturbing the ecosystem of soil indigenous microorganisms. PMID:26710231
Wang, Yanping; Wiatrowski, Heather A; John, Ria; Lin, Chu-Ching; Young, Lily Y; Kerkhof, Lee J; Yee, Nathan; Barkay, Tamar
2013-02-01
The contamination of groundwater with mercury (Hg) is an increasing problem worldwide. Yet, little is known about the interactions of Hg with microorganisms and their processes in subsurface environments. We tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge Integrated Field Research Challenge site, where nitrate is a major contaminant and where bioremediation efforts are in progress. We observed an inverse relationship between Hg concentrations and onset and rates of denitrification in nitrate enrichment cultures containing between 53 and 1.1 μM of inorganic Hg; higher Hg concentrations increasingly extended the time to onset of denitrification and inhibited denitrification rates. Microbial community complexity, as indicated by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA genes, declined with increasing Hg concentrations; at the 312 nM Hg treatment, a single tRFLP peak was detected representing a culture of Bradyrhizobium sp. that possessed the merA gene indicating a potential for Hg reduction. A culture identified as Bradyrhizobium sp. strain FRC01 with an identical 16S rRNA sequence to that of the enriched peak in the tRFLP patterns, reduced Hg(II) to Hg(0) and carried merA whose amino acid sequence has 97 % identity to merA from the Proteobacteria and Firmicutes. This study demonstrates that in subsurface sediment incubations, Hg may inhibit denitrification and that inhibition may be alleviated when Hg resistant denitrifying Bradyrhizobium spp. detoxify Hg by its reduction to the volatile elemental form.
Green-Engert, Rebecca; Hoelzle, Katharina; Zeller, Ellen; Seifert, Jana; Hoelzle, Ludwig E.; Rodehutscord, Markus
2015-01-01
Molecular fingerprinting and sequencing based techniques have been widely used to characterize microbial communities. Terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing were used to determine the microorganisms present in the different sections of the chicken gastrointestinal tract (GIT) (crop, jejunum, ileum and caeca). Broilers fed with diets differing in phosphorous (P) and calcium (Ca) as well as in phytase levels were used to study the microbiota of the upper and lower part of the GIT. A database with terminal restriction fragments (T-RF) of the most important organism present in the different gastrointestinal sections was constructed. The analysis revealed a distinct microbial assemblage on each section. Regardless of the diet, crop, jejunum and ileum were mainly colonized by Lactobacillaceae, and caeca were the most diverse site. The correlation between Lactobacillus crispatus and L. reuteri was positive in the crop, but negative in the jejunum. In crop samples, higher P and Ca levels led to a shift in the abundance of L. reuteri and L. crispatus to L. salivarius and L. taiwanensis whereas in the ileum supplementation of phytase favored L. salivarius and L. taiwanensis but resulted in decreased abundance of L. crispatus. Both methods were correlating significantly, being T-RFLP a reliable fingerprinting method to rapidly analyze large numbers of samples in a cost-effective and rapid manner. Results are easy to interpret with no need of deep bioinformatics knowledge and can be integrated with taxonomic information. PMID:26588075
Witzig, Maren; Carminha-Silva, Amelia; Camarinha da Silva, Amelia; Green-Engert, Rebecca; Hoelzle, Katharina; Zeller, Ellen; Seifert, Jana; Hoelzle, Ludwig E; Rodehutscord, Markus
2015-01-01
Molecular fingerprinting and sequencing based techniques have been widely used to characterize microbial communities. Terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing were used to determine the microorganisms present in the different sections of the chicken gastrointestinal tract (GIT) (crop, jejunum, ileum and caeca). Broilers fed with diets differing in phosphorous (P) and calcium (Ca) as well as in phytase levels were used to study the microbiota of the upper and lower part of the GIT. A database with terminal restriction fragments (T-RF) of the most important organism present in the different gastrointestinal sections was constructed. The analysis revealed a distinct microbial assemblage on each section. Regardless of the diet, crop, jejunum and ileum were mainly colonized by Lactobacillaceae, and caeca were the most diverse site. The correlation between Lactobacillus crispatus and L. reuteri was positive in the crop, but negative in the jejunum. In crop samples, higher P and Ca levels led to a shift in the abundance of L. reuteri and L. crispatus to L. salivarius and L. taiwanensis whereas in the ileum supplementation of phytase favored L. salivarius and L. taiwanensis but resulted in decreased abundance of L. crispatus. Both methods were correlating significantly, being T-RFLP a reliable fingerprinting method to rapidly analyze large numbers of samples in a cost-effective and rapid manner. Results are easy to interpret with no need of deep bioinformatics knowledge and can be integrated with taxonomic information.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate.
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans , and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations.
Quantitative Monitoring of Microbial Species during Bioleaching of a Copper Concentrate
Hedrich, Sabrina; Guézennec, Anne-Gwenaëlle; Charron, Mickaël; Schippers, Axel; Joulian, Catherine
2016-01-01
Monitoring of the microbial community in bioleaching processes is essential in order to control process parameters and enhance the leaching efficiency. Suitable methods are, however, limited as they are usually not adapted to bioleaching samples and often no taxon-specific assays are available in the literature for these types of consortia. Therefore, our study focused on the development of novel quantitative real-time PCR (qPCR) assays for the quantification of Acidithiobacillus caldus, Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, and Sulfobacillus benefaciens and comparison of the results with data from other common molecular monitoring methods in order to evaluate their accuracy and specificity. Stirred tank bioreactors for the leaching of copper concentrate, housing a consortium of acidophilic, moderately thermophilic bacteria, relevant in several bioleaching operations, served as a model system. The microbial community analysis via qPCR allowed a precise monitoring of the evolution of total biomass as well as abundance of specific species. Data achieved by the standard fingerprinting methods, terminal restriction fragment length polymorphism (T-RFLP) and capillary electrophoresis single strand conformation polymorphism (CE-SSCP) on the same samples followed the same trend as qPCR data. The main added value of qPCR was, however, to provide quantitative data for each species whereas only relative abundance could be deduced from T-RFLP and CE-SSCP profiles. Additional value was obtained by applying two further quantitative methods which do not require nucleic acid extraction, total cell counting after SYBR Green staining and metal sulfide oxidation activity measurements via microcalorimetry. Overall, these complementary methods allow for an efficient quantitative microbial community monitoring in various bioleaching operations. PMID:28066365
Ramond, J-B; Welz, P J; Tuffin, M I; Burton, S G; Cowan, D A
2013-07-01
To assess the impact of winery wastewater (WW) on biological sand filter (BSF) bacterial community structures, and to evaluate whether BSFs can constitute alternative and valuable treatment- processes to remediate WW. During 112 days, WW was used to contaminate a BSF mesocosm (length 173 cm/width 106 cm/depth 30 cm). The effect of WW on bacterial communities of four BSF microenvironments (surface/deep, inlet/outlet) was investigated using terminal-restriction fragment length polymorphism (T-RFLP). BSF achieved high Na (95·1%), complete Cl and almost complete chemical oxygen demand (COD) (98·0%) and phenolic (99·2%) removals. T-RFLP analysis combined with anosim revealed that WW significantly modified the surface and deep BSF bacterial communities. BSF provided high COD, phenolic and salt removals throughout the experiment. WW-selected bacterial communities were thus able to tolerate and/or degrade WW, suggesting that community composition does not alter BSF performances. However, biomass increased significantly in the WW-impacted surface sediments, which could later lead to system clogging and should thus be monitored. BSFs constitute alternatives to constructed wetlands to treat agri effluents such as WW. To our knowledge, this study is the first unravelling the responses of BSF bacterial communities to contamination and suggests that WW-selected BSF communities maintained high removal performances. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.
Allmér, Johan; Vasiliauskas, Rimvis; Ihrmark, Katarina; Stenlid, Jan; Dahlberg, Anders
2006-01-01
Wood-inhabiting fungi play a key role in forest ecosystems and constitute an essential part of forest biodiversity. We therefore examined the composition and abundance of wood-inhabiting fungi by three methods: sporocarp counts, mycelial culturing and direct amplification of internal transcribed spacer terminal restriction fragment length polymorphism from wood combined with sequencing of reference rDNA. Seven-year-old slash piles left after a thinning were analyzed in a 50-year-old Norway spruce plantation. Fifty-eight fungal species were detected from the piled branches and treetops. More species were revealed by sporocarp counts and cultured mycelia than by direct amplification from wood. In principle, sporocarp monitoring may reveal all fruiting taxa, but it poorly reflects their relative abundance in the wood. In contrast, terminal restriction fragment length polymorphism will record the most frequent fungal taxa in the wood, but it may overlook uncommon taxa. Culturing mycelia from wood gives a bias towards species favoured by the cultural medium. The results demonstrate the advantage and the limitations of these methods to be considered in analyses of fungal communities in wood.
Zhang, Shu-ying; Wang, Qing-feng; Wan, Rui; Xie, Shu-guang
2011-01-01
Polycyclic aromatic hydrocarbons (PAHs) are common contaminants in a municipal solid waste (MSW) composting site. Knowledge of changes in microbial structure is useful to identify particular PAH degraders. However, the microbial community in the MSW composting soil and its change associated with prolonged exposure to PAHs and subsequent biodegradation remain largely unknown. In this study, anthracene was selected as a model compound. The bacterial community structure was investigated using terminal restriction fragment length polymorphism (TRFLP) and 16S rRNA gene clone library analysis. The two bimolecular tools revealed a large shift of bacterial community structure after anthracene amendment and subsequent biodegradation. Genera Methylophilus, Mesorhizobium, and Terrimonas had potential links to anthracene biodegradation, suggesting a consortium playing an active role. PMID:21887852
Strong seasonality and interannual recurrence in marine myovirus communities.
Pagarete, A; Chow, C-E T; Johannessen, T; Fuhrman, J A; Thingstad, T F; Sandaa, R A
2013-10-01
The temporal community dynamics and persistence of different viral types in the marine environment are still mostly obscure. Polymorphism of the major capsid protein gene, g23, was used to investigate the community composition dynamics of T4-like myoviruses in a North Atlantic fjord for a period of 2 years. A total of 160 unique operational taxonomic units (OTUs) were identified by terminal restriction fragment length polymorphism (TRFLP) of the gene g23. Three major community profiles were identified (winter-spring, summer, and autumn), which resulted in a clear seasonal succession pattern. These seasonal transitions were recurrent over the 2 years and significantly correlated with progression of seawater temperature, Synechococcus abundance, and turbidity. The appearance of the autumn viral communities was concomitant with the occurrence of prominent Synechococcus blooms. As a whole, we found a highly dynamic T4-like viral community with strong seasonality and recurrence patterns. These communities were unexpectedly dominated by a group of persistently abundant viruses.
Lepère, Cécile; Boucher, Delphine; Jardillier, Ludwig; Domaizon, Isabelle; Debroas, Didier
2006-04-01
The structure and dynamics of small eukaryotes (cells with a diameter less than 5 microm) were studied over two consecutive years in an oligomesotrophic lake (Lake Pavin in France). Water samples were collected at 5 and 30 m below the surface; when the lake was stratified, these depths corresponded to the epilimnion and hypolimnion. Changes in small-eukaryote structure were analyzed using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of the 18S rRNA genes. Terminal restriction fragments from clones were used to reveal the dominant taxa in T-RFLP profiles of the environmental samples. Spumella-like cells (Chrysophyceae) did not dominate the small eukaryote community identified by molecular techniques in lacustrine ecosystems. Small eukaryotes appeared to be dominated by heterotrophic cells, particularly Cercozoa, which represented nearly half of the identified phylotypes, followed by the Fungi-LKM11 group (25%), choanoflagellates (10.3%) and Chrysophyceae (8.9%). Bicosoecida, Cryptophyta, and ciliates represented less than 9% of the community studied. No seasonal reproducibility in temporal evolution of the small-eukaryote community was observed from 1 year to the next. The T-RFLP patterns were related to bottom-up (resources) and top-down (grazing) variables using canonical correspondence analysis. The results showed a strong top-down regulation of small eukaryotes by zooplankton, more exactly, by cladocerans at 5 m and copepods at 30 m. Among bottom-up factors, temperature had a significant effect at both depths. The concentrations of nitrogenous nutrients and total phosphorus also had an effect on small-eukaryote dynamics at 5 m, whereas bacterial abundance and dissolved oxygen played a more important structuring role in the deeper zone.
Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin
2014-01-01
In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method. PMID:25536070
Shubin, Li; Juan, Huang; RenChao, Zhou; ShiRu, Xu; YuanXiao, Jin
2014-01-01
In the present study, the terminal-restriction fragment length polymorphism (T-RFLP) technique, combined with the use of a clone library, was applied to assess the baseline diversity of fungal endophyte communities associated with rhizomes of Alpinia officinarum Hance, a medicinal plant with a long history of use. A total of 46 distinct T-RFLP fragment peaks were detected using HhaI or MspI mono-digestion-targeted, amplified fungal rDNA ITS sequences from A. officinarum rhizomes. Cloning and sequencing of representative sequences resulted in the detection of members of 10 fungal genera: Pestalotiopsis, Sebacina, Penicillium, Marasmius, Fusarium, Exserohilum, Mycoleptodiscus, Colletotrichum, Meyerozyma, and Scopulariopsis. The T-RFLP profiles revealed an influence of growth year of the host plant on fungal endophyte communities in rhizomes of this plant species; whereas, the geographic location where A. officinarum was grown contributed to only limited variation in the fungal endophyte communities of the host tissue. Furthermore, non-metric multidimensional scaling (NMDS) analysis across all of the rhizome samples showed that the fungal endophyte community assemblages in the rhizome samples could be grouped according to the presence of two types of active indicator chemicals: total volatile oils and galangin. Our present results, for the first time, address a diverse fungal endophyte community is able to internally colonize the rhizome tissue of A. officinarum. The diversity of the fungal endophytes found in the A. officinarum rhizome appeared to be closely correlated with the accumulation of active chemicals in the host plant tissue. The present study also provides the first systematic overview of the fungal endophyte communities in plant rhizome tissue using a culture-independent method.
Successive bacterial colonisation of pork and its implications for forensic investigations.
Handke, Jessica; Procopio, Noemi; Buckley, Michael; van der Meer, Dieudonne; Williams, Graham; Carr, Martin; Williams, Anna
2017-12-01
Bacteria are considered one of the major driving forces of the mammalian decomposition process and have only recently been recognised as forensic tools. At this point, little is known about their potential use as 'post-mortem clocks'. This study aimed to establish the proof of concept for using bacterial identification as post-mortem interval (PMI) indicators, using a multi-omics approach. Pieces of pork were placed in the University's outdoor facility and surface swabs were taken at regular intervals up to 60 days. Terminal restriction fragment length polymorphism (T-RFLP) of the 16S rDNA was used to identify bacterial taxa. It succeeded in detecting two out of three key contributors involved in decomposition and represents the first study to reveal Vibrionaceae as abundant on decomposing pork. However, a high fraction of present bacterial taxa could not be identified by T-RFLP. Proteomic analyses were also performed at selected time points, and they partially succeeded in the identification of precise strains, subspecies and species of bacteria that colonized the body after different PMIs. T-RFLP is incapable of reliably and fully identifying bacterial taxa, whereas proteomics could help in the identification of specific strains of bacteria. Nevertheless, microbial identification by next generation sequencing might be used as PMI clock in future investigations and in conjunction with information provided by forensic entomologists. To the best of our knowledge, this work represents the first attempt to find a cheaper and easily accessible, culture-independent alternative to high-throughput techniques to establish a 'microbial clock', in combination with proteomic strategies to address this issue. Copyright © 2017 Elsevier B.V. All rights reserved.
Indication for Co-evolution of Lactobacillus johnsonii with its hosts
2012-01-01
Background The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. Results A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Conclusions Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria. PMID:22827843
Indication for Co-evolution of Lactobacillus johnsonii with its hosts.
Buhnik-Rosenblau, Keren; Matsko-Efimov, Vera; Jung, Minju; Shin, Heuynkil; Danin-Poleg, Yael; Kashi, Yechezkel
2012-07-25
The intestinal microbiota, composed of complex bacterial populations, is host-specific and affected by environmental factors as well as host genetics. One important bacterial group is the lactic acid bacteria (LAB), which include many health-promoting strains. Here, we studied the genetic variation within a potentially probiotic LAB species, Lactobacillus johnsonii, isolated from various hosts. A wide survey of 104 fecal samples was carried out for the isolation of L. johnsonii. As part of the isolation procedure, terminal restriction fragment length polymorphism (tRFLP) was performed to identify L. johnsonii within a selected narrow spectrum of fecal LAB. The tRFLP results showed host specificity of two bacterial species, the Enterococcus faecium species cluster and Lactobacillus intestinalis, to different host taxonomic groups while the appearance of L. johnsonii and E. faecalis was not correlated with any taxonomic group. The survey ultimately resulted in the isolation of L. johnsonii from few host species. The genetic variation among the 47 L. johnsonii strains isolated from the various hosts was analyzed based on variation at simple sequence repeats (SSR) loci and multi-locus sequence typing (MLST) of conserved hypothetical genes. The genetic relationships among the strains inferred by each of the methods were similar, revealing three different clusters of L. johnsonii strains, each cluster consisting of strains from a different host, i.e. chickens, humans or mice. Our typing results support phylogenetic separation of L. johnsonii strains isolated from different animal hosts, suggesting specificity of L. johnsonii strains to their hosts. Taken together with the tRFLP results, that indicated the association of specific LAB species with the host taxonomy, our study supports co-evolution of the host and its intestinal lactic acid bacteria.
Active bacterial community structure along vertical redox gradients in Baltic Sea sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansson, Janet; Edlund, Anna; Hardeman, Fredrik
Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less
Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.
Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A
2016-04-05
Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.
Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.
Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela
2014-08-01
Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.
Ozbayram, Emine Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan
2018-01-01
The aim of this study was to develop an effective bioaugmentation concept for anaerobic digesters treating lignocellulosic biomass such as straw. For that purpose, lignocellulose-degrading methanogenic communities were enriched on wheat straw from cow and goat rumen fluid as well as from a biogas reactor acclimated to lignocellulosic biomass (sorghum as mono-substrate). The bacterial communities of the enriched cultures and the different inocula were examined by 454 amplicon sequencing of 16S rRNA genes while the methanogenic archaeal communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of the mcrA gene. Bacteroidetes was the most abundant phylum in all samples. Within the Bacteroidetes phylum, Bacteroidaceae was the most abundant family in the rumen-derived enrichment cultures, whereas Porphyromonadaceae was the predominant one in the reactor-derived culture. Additionally, the enrichment procedure increased the relative abundance of Ruminococcaceae (phylum: Firmicutes) in all cultures. T-RFLP profiles of the mcrA gene amplicons highlighted that the ruminal methanogenic communities were composed of hydrogenotrophic methanogens dominated by the order Methanobacteriales regardless of the host species. The methanogenic communities changed significantly during the enrichment procedure, but still the strict hydrogenotrophic Methanobacteriales and Methanomicrobiales were the predominant orders in the enrichment cultures. The bioaugmentation potential of the enriched methanogenic cultures will be evaluated in further studies.
Enteral tube feeding alters the oral indigenous microbiota in elderly adults.
Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa
2011-10-01
Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive.
Anderson, Ian C; Bastias, Brigitte A; Genney, David R; Parkin, Pamela I; Cairney, John W G
2007-04-01
Soil basidiomycetes play key roles in forest nutrient and carbon cycling processes, yet the diversity and structure of below ground basidiomycete communities remain poorly understood. Prescribed burning is a commonly used forest management practice and there is evidence that single fire events can have an impact on soil fungal communities but little is known about the effects of repeated prescribed burning. We have used internal transcribed spacer (ITS) terminal restriction fragment length polymorphism (T-RFLP) analysis to investigate the impacts of repeated prescribed burning every two or four years over a period of 30 years on soil basidiomycete communities in an Australian wet sclerophyll forest. Detrended correspondence analysis of ITS T-RFLP profiles separated basidiomycete communities in unburned control plots from those in burned plots, with those burned every two years being the most different from controls. Burning had no effect on basidiomycete species richness, thus these differences appear to be due to changes in community structure. Basidiomycete communities in the unburned control plots were vertically stratified in the upper 20 cm of soil, but no evidence was found for stratification in the burned plots, suggesting that repeated prescribed burning results in more uniform basidiomycete communities. Overall, the results demonstrate that repeated prescribed burning alters soil basidiomycete communities, with the effect being greater with more frequent burning.
Ma, Tingting; Cheng, Lei; Liu, Laiyan; Dai, Lirong; Zhou, Zheng; Zhang, Hui
2015-05-04
We evaluated the role of syntrophic acetate oxidation coupled with hydrogenotrophic methanogens in three different methanogenic consortia. Three methanogenic hexadecane degrading consortia named Y15, M82 and SK were taken from the same oily sludge of Shengli oil-field and enriched. They were incubated at 15, 35 and 55 °C, respectively. The consortia amended with acetate and inhibitors of NH4Cl or CH3F were further transferred and incubated at corresponding temperatures. The cultures atlate logarithmic phase were collected for terminal restriction fragment length polymorphism (T-RFLP) combined with cloning and phylogenetic analysis of 16S rRNA gene fragments. Gas chromatograph analysis showed that all of the consortia could grow and produce methane, but the lag phase was delayed and the growth rate was retarded in the cultures amended with inhibitor. Combination analysis of T-RFLP and clone library revealed the predominance of obligate aceticlastic Methanosaeta in the acetate cultures of Y15, M82 and SK. Under the mesophilic and thermophilic conditions, after add inginhibitor the relative abundance of aceticlastic methanogen decreased but hydrogenotrophic methanogen increased. Syntrophic acetate oxidation during methanogenic degradation of petroleum hydrocarbons occurs under mesophilic and thermophilic conditions, although the situation at low temperature seems uncertain.
Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M
2002-08-06
4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.
NASA Astrophysics Data System (ADS)
Hager, K. W.; Fullerton, H.; Moyer, C. L.
2015-12-01
Hydrothermal vents along the Mariana Arc and back-arc represent a hotspot of microbial diversity that has not yet been fully recognized. The Mariana Arc and back-arc contain hydrothermal vents with varied vent effluent chemistry and temperature, which translates to diverse community composition. We have focused on iron-rich sites where the dominant primary producers are iron oxidizing bacteria. Because microbes from these environments have proven elusive in culturing efforts, we performed culture independent analysis among different microbial communities found at these hydrothermal vents. Terminal-restriction fragment length polymorphism (T-RFLP) and Illumina sequencing of small subunit ribosomal gene amplicons were used to characterize community members and identify samples for shotgun metagenomics. Used in combination, these methods will better elucidate the composition and characteristics of the bacterial communities at these hydrothermal vent systems. The overarching goal of this study is to evaluate and compare taxonomic and metabolic diversity among different communities of microbial mats. We compared communities collected on a fine scale to analyze the bacterial community based on gross mat morphology, geography, and nearby vent effluent chemistry. Taxa richness and evenness are compared with rarefaction curves to visualize diversity. As well as providing a survey of diversity this study also presents a juxtaposition of three methods in which ribosomal small subunit diversity is compared with T-RFLP, next generation amplicon sequencing, and metagenomic shotgun sequencing.
Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa
2010-01-01
Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112
Water level changes affect carbon turnover and microbial community composition in lake sediments.
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-05-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. © FEMS 2016.
Enteral Tube Feeding Alters the Oral Indigenous Microbiota in Elderly Adults ▿ †
Takeshita, Toru; Yasui, Masaki; Tomioka, Mikiko; Nakano, Yoshio; Shimazaki, Yoshihiro; Yamashita, Yoshihisa
2011-01-01
Enteral tube feeding is widely used to maintain nutrition for elderly adults with eating difficulties, but its long-term use alters the environment of the oral ecosystem. This study characterized the tongue microbiota of tube-fed elderly adults by analyzing the 16S rRNA gene. The terminal restriction fragment length polymorphism (T-RFLP) profiles of 44 tube-fed subjects were compared with those of 54 subjects fed orally (average age, 86.4 ± 6.9 years). Bar-coded pyrosequencing data were also obtained for a subset of the subjects from each group (15 tube-fed subjects and 16 subjects fed orally). The T-RFLP profiles demonstrated that the microbiota of the tube-fed subjects was distinct from that of the subjects fed orally (permutational multivariate analysis of variance [perMANOVA], P < 0.001). The pyrosequencing data revealed that 22 bacterial genera, including Corynebacterium, Peptostreptococcus, and Fusobacterium, were significantly more predominant in tube-fed subjects, whereas the dominant genera in the subjects fed orally, such as Streptococcus and Veillonella, were present in much lower proportions. Opportunistic pathogens rarely detected in the normal oral microbiota, such as Corynebacterium striatum and Streptococcus agalactiae, were often found in high proportions in tube-fed subjects. The oral indigenous microbiota is disrupted by the use of enteral feeding, allowing health-threatening bacteria to thrive. PMID:21821752
Water level changes affect carbon turnover and microbial community composition in lake sediments
Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin
2016-01-01
Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802
Howell, Christopher C.; Hilton, Sally; Semple, Kirk T.; Bending, Gary D.
2014-01-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. PMID:25048906
Howell, Christopher C; Hilton, Sally; Semple, Kirk T; Bending, Gary D
2014-10-01
The application of plant protection products has the potential to significantly affect soil microbial community structure and function. However, the extent to which soil microbial communities from different trophic levels exhibit resistance and resilience to such compounds remains poorly understood. The resistance and resilience responses of a range of microbial communities (bacteria, fungi, archaea, pseudomonads, and nematodes) to different concentrations of the strobilurin fungicide, azoxystrobin were studied. A significant concentration-dependent decrease, and subsequent recovery in soil dehydrogenase activity was recorded, but no significant impact on total microbial biomass was observed. Impacts on specific microbial communities were studied using small subunit (SSU) rRNA terminal restriction fragment length polymorphism (T-RFLP) profiling using soil DNA and RNA. The application of azoxystrobin significantly affected fungal and nematode community structure and diversity but had no impact on other communities. Community impacts were more pronounced in the RNA-derived T-RFLP profiles than in the DNA-derived profiles. qPCR confirmed that azoxystrobin application significantly reduced fungal, but not bacterial, SSU rRNA gene copy number. Azoxystrobin application reduced the prevalence of ascomycete fungi, but increased the relative abundance of zygomycetes. Azoxystrobin amendment also reduced the relative abundance of nematodes in the order Enoplia, but stimulated a large increase in the relative abundance of nematodes from the order Araeolaimida. Copyright © 2014. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen Li; Rishika Haynes; Eugene Sato
Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopymore » results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.« less
Deutzmann, Jörg S.; Wörner, Susanne; Schink, Bernhard
2011-01-01
The activity and community structure of aerobic methanotrophic communities were investigated at methane seeps (pockmarks) in the littoral and profundal zones of an oligotrophic freshwater lake (Lake Constance, Germany). Measurements of potential methane oxidation rates showed that sediments inside littoral pockmarks are hot spots of methane oxidation. Potential methane oxidation rates at littoral pockmark sites exceeded the rates of the surrounding sediment by 2 orders of magnitude. Terminal restriction fragment length polymorphism (T-RFLP) analysis of the pmoA gene revealed major differences in the methanotrophic community composition between littoral pockmarks and the surrounding sediments. Clone library analysis confirmed that one distinct Methylobacter-related group dominates the community at littoral pockmarks. In profundal sediments, the differences between pockmarks and surrounding sediments were found to be less pronounced. PMID:21335392
Johnston-Monje, David; Raizada, Manish N.
2011-01-01
Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration. PMID:21673982
Johnston-Monje, David; Raizada, Manish N
2011-01-01
Endophytes are non-pathogenic microbes living inside plants. We asked whether endophytic species were conserved in the agriculturally important plant genus Zea as it became domesticated from its wild ancestors (teosinte) to modern maize (corn) and moved from Mexico to Canada. Kernels from populations of four different teosintes and 10 different maize varieties were screened for endophytic bacteria by culturing, cloning and DNA fingerprinting using terminal restriction fragment length polymorphism (TRFLP) of 16S rDNA. Principle component analysis of TRFLP data showed that seed endophyte community composition varied in relation to plant host phylogeny. However, there was a core microbiota of endophytes that was conserved in Zea seeds across boundaries of evolution, ethnography and ecology. The majority of seed endophytes in the wild ancestor persist today in domesticated maize, though ancient selection against the hard fruitcase surrounding seeds may have altered the abundance of endophytes. Four TRFLP signals including two predicted to represent Clostridium and Paenibacillus species were conserved across all Zea genotypes, while culturing showed that Enterobacter, Methylobacteria, Pantoea and Pseudomonas species were widespread, with γ-proteobacteria being the prevalent class. Twenty-six different genera were cultured, and these were evaluated for their ability to stimulate plant growth, grow on nitrogen-free media, solubilize phosphate, sequester iron, secrete RNAse, antagonize pathogens, catabolize the precursor of ethylene, produce auxin and acetoin/butanediol. Of these traits, phosphate solubilization and production of acetoin/butanediol were the most commonly observed. An isolate from the giant Mexican landrace Mixteco, with 100% identity to Burkholderia phytofirmans, significantly promoted shoot potato biomass. GFP tagging and maize stem injection confirmed that several seed endophytes could spread systemically through the plant. One seed isolate, Enterobacter asburiae, was able to exit the root and colonize the rhizosphere. Conservation and diversity in Zea-microbe relationships are discussed in the context of ecology, crop domestication, selection and migration.
Lanfranconi, Mariana P; Bosch, Rafael; Nogales, Balbina
2010-09-01
The changes caused by diesel oil pollution in the metabolically active bacterioplankton from an oligotrophic coastal location were analysed in laboratory microcosms (44 l) using 16S ribosomal RNA (16S rRNA) as molecular marker. The aim was to simulate typical hydrocarbon pollution events in a coastal area exploited for seasonal touristic activities. The experiment consisted in addition of low amounts of diesel oil without nutrients to seawater collected at different times (winter and summer). Bacterial diversity was analysed by terminal-restriction fragment length polymorphism (T-RFLP) profiling of 16S rRNAs after reverse transcription polymerase chain reaction (RT-PCR), and by generation of 16S rRNA clone libraries in control and diesel-polluted microcosms. Diesel addition caused a twofold increase in prokaryotic numbers in comparison with controls at the end of the experiment, both in winter and summer microcosms. Bacterioplankton composition, determined by 16S rRNA T-RFLP data, changed rapidly (within 17 h) in response to treatment. The resulting communities were different in microcosms with water collected in summer and winter. A reduction in diversity (Shannon index, calculated on the basis of T-RFLP data) was observed only in summer microcosms. This was due to the rapid increase of phylotypes affiliated to the Oceanospirillaceae, not observed in winter microcosms. After diesel treatment there was a reduction in the number of phylotypes related to SAR11, SAR86 and picocyanobacteria, while phylotypes of the Roseobacter clade, and the OMG group seemed to be favoured. Our results show that diesel pollution alone caused profound effects on the bacterioplankton of oligotrophic seawater, and explained many of the differences in diversity reported previously in pristine and polluted sites in this coastal area. © 2010 The Authors; Journal compilation © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L
2012-04-01
Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Hernández, Alejandro; Zalom, Frank G.
2012-01-01
A rich history of investigation documents various Drosophila-yeast mutualisms, suggesting that Drosophila suzukii similarly has an association with a specific yeast species or community. To discover candidate yeast species, yeasts were isolated from larval frass, adult midguts, and fruit hosts of D. suzukii. Terminal restriction fragment length polymorphism (TRFLP) technology and decimal dilution plating were used to identify and determine the relative abundance of yeast species present in fruit juice samples that were either infested with D. suzukii or not infested. Yeasts were less abundant in uninfested than infested samples. A total of 126 independent yeast isolates were cultivated from frass, midguts, and fruit hosts of D. suzukii, representing 28 species of yeasts, with Hanseniaspora uvarum predominating. This suggests an association between D. suzukii and H. uvarum that could be utilized for pest management of the highly pestiferous D. suzukii. PMID:22582060
Smoking cessation alters subgingival microbial recolonization.
Fullmer, S C; Preshaw, P M; Heasman, P A; Kumar, P S
2009-06-01
Smoking cessation improves the clinical manifestations of periodontitis; however, its effect on the subgingival biofilm, the primary etiological agent of periodontitis, is unclear. The purpose of this study was to investigate, longitudinally, if smoking cessation altered the composition of the subgingival microbial community, by means of a quantitative, cultivation-independent assay for bacterial profiling. Subgingival plaque was collected at baseline, and 3, 6, and 12 months post-treatment from smokers who received root planing and smoking cessation counseling. The plaque was analyzed by terminal restriction fragment length polymorphism (t-RFLP). Microbial profiles differed significantly between smokers and quitters at 6 and 12 months following smoking cessation. The microbial community in smokers was similar to baseline, while quitters demonstrated significantly divergent profiles. Changes in bacterial levels contributed to this shift. These findings reveal a critical role for smoking cessation in altering the subgingival biofilm and suggest a mechanism for improved periodontal health associated with smoking cessation.
Kohata, Yukie; Nakahara, Kenichi; Tanigawa, Tetsuya; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Toshio; Tominaga, Kazunari; Fujiwara, Yasuhiro; Arakawa, Tetsuo
2015-09-01
Barrett's esophagus (BE) is characterized by a distinct Th2-predominant cytokine profile. However, antigens that shift the immune response toward the Th2 profile are unknown. We examined the effects of rebamipide on the esophageal microbiome and BE development in a rat model. BE was induced by esophagojejunostomy in 8-week-old male Wistar rats. Rats were divided into control and rebamipide-treated group receiving either a normal or a 0.225 % rebamipide-containing diet, respectively, and killed 8, 16, 24, and 32 weeks after the operation. PCR-amplified 16S rDNAs extracted from esophageal samples were examined by terminal-restriction fragment length polymorphism (T-RFLP) analysis to assess microbiome composition. The dynamics of four bacterial genera (Lactobacillus, Clostridium, Streptococcus, and Enterococcus) were analyzed by real-time PCR. The incidences of BE in the control and rebamipide group at 24 and 32 weeks were 80 and 100, and 20 and 33 %, respectively. T-RFLP analysis of normal esophagus revealed that the proportion of Clostridium was 8.3 %, while that of Lactobacillales was 71.8 %. The proportions of Clostridium increased and that of Lactobacillales decreased at 8 weeks in both groups. Such changes were consistently observed in the control but not in the rebamipide group. Clostridium and Lactobacillus expression was lower and higher, respectively, in the rebamipide group than in the control group. Rebamipide reduced BE development and altered the esophageal microbiome composition, which might play a role in BE development.
Archaeal Diversity in Waters from Deep South African Gold Mines
Takai, Ken; Moser, Duane P.; DeFlaun, Mary; Onstott, Tullis C.; Fredrickson, James K.
2001-01-01
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated. PMID:11722932
Wang, Xiaoxu; Li, Xiaobing; Zhao, Chenxu; Hu, Pan; Chen, Hui; Liu, Zhaoxi; Liu, Guowen; Wang, Zhe
2012-04-01
The transition period is a severe challenge to dairy cows. Glucose supply cannot meet demand and body fat is mobilized, potentially leading to negative energy balance (NEB), ketosis, or fatty liver. Propionate produces glucose by gluconeogenesis, which depends heavily on the number and species of microbes. In the present study, we analyzed the rumen microbiome composition of cows in the transition period, cows with ketosis, and nonperinatal cows by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes and quantitative PCR. TRFLP analysis indicated that the quantity of Veillonellaceae organisms was reduced and that of Streptococcaceae organisms was increased in rumen samples from the transition period and ketosis groups, with the number of Lactobacillaceae organisms increased after calving. Quantitative PCR data suggested that the numbers of the main propionate-producing microbes, Megasphaera elsdenii and Selenomonas ruminantium, were decreased, while numbers of the main lactate-producing bacterium, Streptococcus bovis, were increased in the rumen of cows from the transition period and ketosis groups, with the number of Lactobacillus sp. organisms increased after calving. Volatile fatty acid (VFA) and glucose concentrations were decreased, but the lactic acid concentration was increased, in rumen samples from the transition period and ketosis groups. Our results indicate that the VFA concentration is significantly related to the numbers of Selenomonas ruminantium and Megasphaera elsdenii organisms in the rumen.
Wang, Xiaoxu; Li, Xiaobing; Zhao, Chenxu; Hu, Pan; Chen, Hui; Liu, Zhaoxi
2012-01-01
The transition period is a severe challenge to dairy cows. Glucose supply cannot meet demand and body fat is mobilized, potentially leading to negative energy balance (NEB), ketosis, or fatty liver. Propionate produces glucose by gluconeogenesis, which depends heavily on the number and species of microbes. In the present study, we analyzed the rumen microbiome composition of cows in the transition period, cows with ketosis, and nonperinatal cows by terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes and quantitative PCR. TRFLP analysis indicated that the quantity of Veillonellaceae organisms was reduced and that of Streptococcaceae organisms was increased in rumen samples from the transition period and ketosis groups, with the number of Lactobacillaceae organisms increased after calving. Quantitative PCR data suggested that the numbers of the main propionate-producing microbes, Megasphaera elsdenii and Selenomonas ruminantium, were decreased, while numbers of the main lactate-producing bacterium, Streptococcus bovis, were increased in the rumen of cows from the transition period and ketosis groups, with the number of Lactobacillus sp. organisms increased after calving. Volatile fatty acid (VFA) and glucose concentrations were decreased, but the lactic acid concentration was increased, in rumen samples from the transition period and ketosis groups. Our results indicate that the VFA concentration is significantly related to the numbers of Selenomonas ruminantium and Megasphaera elsdenii organisms in the rumen. PMID:22267666
Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi
2014-11-01
A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.
Campbell, Sara C; Wisniewski, Paul J; Noji, Michael; McGuinness, Lora R; Häggblom, Max M; Lightfoot, Stanley A; Joseph, Laurie B; Kerkhof, Lee J
2016-01-01
The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.
Shifts in microbial community composition following surface application of dredged river sediments.
Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J
2009-01-01
Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.
Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min
2015-01-01
Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444
Yoshikawa, Miho; Zhang, Ming; Kurisu, Futoshi; Toyota, Koki
2017-01-01
Most bioremediation studies on volatile organic compounds (VOCs) have focused on a single contaminant or its derived compounds and degraders have been identified under single contaminant conditions. Bioremediation of multiple contaminants remains a challenging issue. To identify a bacterial consortium that degrades multiple VOCs (dichloromethane (DCM), benzene, and toluene), we applied DNA-stable isotope probing. For individual tests, we combined a 13 C-labeled VOC with other two unlabeled VOCs, and prepared three unlabeled VOCs as a reference. Over 11 days, DNA was periodically extracted from the consortia, and the bacterial community was evaluated by next-generation sequencing of bacterial 16S rRNA gene amplicons. Density gradient fractions of the DNA extracts were amplified by universal bacterial primers for the 16S rRNA gene sequences, and the amplicons were analyzed by terminal restriction fragment length polymorphism (T-RFLP) using restriction enzymes: Hha I and Msp I. The T-RFLP fragments were identified by 16S rRNA gene cloning and sequencing. Under all test conditions, the consortia were dominated by Rhodanobacter , Bradyrhizobium / Afipia , Rhizobium , and Hyphomicrobium . DNA derived from Hyphomicrobium and Propioniferax shifted toward heavier fractions under the condition added with 13 C-DCM and 13 C-benzene, respectively, compared with the reference, but no shifts were induced by 13 C-toluene addition. This implies that Hyphomicrobium and Propioniferax were the main DCM and benzene degraders, respectively, under the coexisting condition. The known benzene degrader Pseudomonas sp. was present but not actively involved in the degradation.
Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.
Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa
2005-11-01
Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.
Non-random assembly of bacterioplankton communities in the subtropical north pacific ocean.
Eiler, Alexander; Hayakawa, Darin H; Rappé, Michael S
2011-01-01
The exploration of bacterial diversity in the global ocean has revealed new taxa and previously unrecognized metabolic potential; however, our understanding of what regulates this diversity is limited. Using terminal restriction fragment length polymorphism (T-RFLP) data from bacterial small-subunit ribosomal RNA genes we show that, independent of depth and time, a large fraction of bacterioplankton co-occurrence patterns are non-random in the oligotrophic North Pacific subtropical gyre (NPSG). Pair-wise correlations of all identified operational taxonomic units (OTUs) revealed a high degree of significance, with 6.6% of the pair-wise co-occurrences being negatively correlated and 20.7% of them being positive. The most abundant OTUs, putatively identified as Prochlorococcus, SAR11, and SAR116 bacteria, were among the most correlated OTUs. As expected, bacterial community composition lacked statistically significant patterns of seasonality in the mostly stratified water column except in a few depth horizons of the sunlit surface waters, with higher frequency variations in community structure apparently related to populations associated with the deep chlorophyll maximum. Communities were structured vertically into epipelagic, mesopelagic, and bathypelagic populations. Permutation-based statistical analyses of T-RFLP data and their corresponding metadata revealed a broad range of putative environmental drivers controlling bacterioplankton community composition in the NPSG, including concentrations of inorganic nutrients and phytoplankton pigments. Together, our results suggest that deterministic forces such as environmental filtering and interactions among taxa determine bacterioplankton community patterns, and consequently affect ecosystem functions in the NPSG.
Paleosols in central Illinois as potential sources of ammonium in groundwater
Glessner, Justin J. G.; Roy, W.R.
2009-01-01
Glacially buried paleosols of pre-Holocene age were evaluated as potential sources for anomalously large concentrations of ammonium in groundwater in East Central Illinois. Ammonium has been detected at concentrations that are problematic to water treatment facilities (greater than 2.0 mg/L) in this region. Paleosols characterized for this study were of Quaternary age, specifically Robein Silt samples. Paleosol samples displayed significant capacity to both store and release ammonium through experiments measuring processes of sorption, ion exchange, and weathering. Bacteria and fungi within paleosols may significantly facilitate the leaching of ammonium into groundwater by the processes of assimilation and mineralization. Bacterial genetic material (DNA) was successfully extracted from the Robein Silt, purified, and amplified by polymerase chain reaction to produce 16S rRNA terminal restriction fragment length polymorphism (TRFLP) community analyses. The Robein Silt was found to have established diverse and viable bacterial communities. 16S rRNA TRFLP comparisons to well-known bacterial species yielded possible matches with facultative chemolithotrophs, cellulose consumers, nitrate reducers, and actinomycetes. It was concluded that the Robein Silt is both a source and reservoir for groundwater ammonium. Therefore, the occurrence of relatively large concentrations of ammonium in groundwater monitoring data may not necessarily be an indication of only anthropogenic contamination. The results of this study, however, need to be placed in a hydrological context to better understand whether paleosols can be a significant source of ammonium to drinking water supplies. ?? 2009 National Ground Water Association.
Molecular characterization of the stomach microbiota in patients with gastric cancer and controls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicksved, J.; Lindberg, M.; Rosenquist, M.
2009-01-15
Persistent infection of the gastric mucosa by Helicobacter pylori, can initiate an inflammatory cascade that progresses into atrophic gastritis, a condition associated with reduced capacity for secretion of gastric acid and an increased risk in developing gastric cancer. The role of H. pylori as an initiator of inflammation is evident but the mechanism for development into gastric cancer has not yet been proven. A reduced capacity for gastric acid secretion allows survival and proliferation of other microbes that normally are killed by the acidic environment. It has been postulated that some of these species may be involved in the developmentmore » of gastric cancer, however their identities are poorly defined. In this study, the gastric microbiota from ten patients with gastric cancer was characterized and compared with five dyspeptic controls using the molecular profiling approach, terminal-restriction fragment length polymorphism (T-RFLP), in combination with 16S rRNA gene cloning and sequencing. T-RFLP analysis revealed a complex bacterial community in the cancer patients that was not significantly different from the controls. Sequencing of 140 clones revealed 102 phylotypes, with representatives from five bacterial phyla (Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria). The data revealed a relatively low abundance of H. pylori and showed that the gastric cancer microbiota was instead dominated by different species of the genera Streptococcus, Lactobacillus, Veillonella and Prevotella. The respective role of these species in development of gastric cancer remains to be determined.« less
Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.
Córdova-Kreylos, Ana Lucía; Cao, Yiping; Green, Peter G.; Hwang, Hyun-Min; Kuivila, Kathryn M.; LaMontagne, Michael G.; Van De Werfhorst, Laurie C.; Holden, Patricia A.; Scow, Kate M.
2006-01-01
The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. PMID:16672478
Seasonality and vertical structure of microbial communities in an ocean gyre.
Treusch, Alexander H; Vergin, Kevin L; Finlay, Liam A; Donatz, Michael G; Burton, Robert M; Carlson, Craig A; Giovannoni, Stephen J
2009-10-01
Vertical, seasonal and geographical patterns in ocean microbial communities have been observed in many studies, but the resolution of community dynamics has been limited by the scope of data sets, which are seldom up to the task of illuminating the highly structured and rhythmic patterns of change found in ocean ecosystems. We studied vertical and temporal patterns in the microbial community composition in a set of 412 samples collected from the upper 300 m of the water column in the northwestern Sargasso Sea, on cruises between 1991 and 2004. The region sampled spans the extent of deep winter mixing and the transition between the euphotic and the upper mesopelagic zones, where most carbon fixation and reoxidation occurs. A bioinformatic pipeline was developed to de-noise, normalize and align terminal restriction fragment length polymorphism (T-RFLP) data from three restriction enzymes and link T-RFLP peaks to microbial clades. Non-metric multidimensional scaling statistics resolved three microbial communities with distinctive composition during seasonal stratification: a surface community in the region of lowest nutrients, a deep chlorophyll maximum community and an upper mesopelagic community. A fourth microbial community was associated with annual spring blooms of eukaryotic phytoplankton that occur in the northwestern Sargasso Sea as a consequence of winter convective mixing that entrains nutrients to the surface. Many bacterial clades bloomed in seasonal patterns that shifted with the progression of stratification. These richly detailed patterns of community change suggest that highly specialized adaptations and interactions govern the success of microbial populations in the oligotrophic ocean.
Huws, S A; Scott, M B; Tweed, J K S; Lee, M R F
2013-11-01
In this experiment, we investigated the effect of 'green odour' products typical of those released from fresh forage postabiotic and biotic stresses on the rumen microbiota and lipid metabolism. Hydroperoxyoctadecatrienoic acid (HP), a combination of salicylic and jasmonic acid (T), and a combination of both (HPT) were incubated in vitro in the presence of freeze-dried ground silage and rumen fluid, under rumen-like conditions. 16S rRNA (16S cDNA) HaeIII-based terminal restriction fragment length polymorphism-based (T-RFLP) dendrograms, canonical analysis of principal coordinates graphs, peak number and Shanon-Weiner diversity indices show that HP, T and HPT likely had antimicrobial effects on the microbiota compared to control incubations. Following 6 h of in vitro incubation, 15.3% of 18:3n-3 and 4.4% of 18:2n-6 was biohydrogenated in control incubations, compared with 1.3, 9.4 and 8.3% of 18:3n-3 for HP, T and HPT treatments, respectively, with negligible 18:2n-6 biohydrogenation seen. T-RFLP peaks lost due to application of HP, T and HPT likely belonged to as yet uncultured bacteria within numerous genera. Hydroperoxyoctadecatrienoic acid, T and HPT released due to plant stress potentially have an antimicrobial effect on the rumen microbiota, which may explain the decreased biohydrogenation in vitro. These data suggest that these volatile chemicals may be responsible for the higher summer n-3 content of bovine milk. © 2013 The Society for Applied Microbiology.
Chapter 11. Community analysis-based methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Wu, C.H.; Andersen, G.L.
2010-05-01
Microbial communities are each a composite of populations whose presence and relative abundance in water or other environmental samples are a direct manifestation of environmental conditions, including the introduction of microbe-rich fecal material and factors promoting persistence of the microbes therein. As shown by culture-independent methods, different animal-host fecal microbial communities appear distinctive, suggesting that their community profiles can be used to differentiate fecal samples and to potentially reveal the presence of host fecal material in environmental waters. Cross-comparisons of microbial communities from different hosts also reveal relative abundances of genetic groups that can be used to distinguish sources. Inmore » increasing order of their information richness, several community analysis methods hold promise for MST applications: phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP), cloning/sequencing, and PhyloChip. Specific case studies involving TRFLP and PhyloChip approaches demonstrate the ability of community-based analyses of contaminated waters to confirm a diagnosis of water quality based on host-specific marker(s). The success of community-based MST for comprehensively confirming fecal sources relies extensively upon using appropriate multivariate statistical approaches. While community-based MST is still under evaluation and development as a primary diagnostic tool, results presented herein demonstrate its promise. Coupled with its inherently comprehensive ability to capture an unprecedented amount of microbiological data that is relevant to water quality, the tools for microbial community analysis are increasingly accessible, and community-based approaches have unparalleled potential for translation into rapid, perhaps real-time, monitoring platforms.« less
The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice
Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.
2016-01-01
Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359
Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus.
Endoh, Rikiya; Suzuki, Motofumi; Okada, Gen; Takeuchi, Yuko; Futai, Kazuyoshi
2011-07-01
Isolations were made to determine the fungal symbionts colonizing Platypus quercivorus beetle galleries of dead or dying Quercus laurifolia, Castanopsis cuspidata, Quercus serrata, Quercus crispula, and Quercus robur. For these studies, logs from oak wilt-killed trees were collected from Kyoto Prefecture, Japan. Fungi were isolated from the: (1) entrances of beetle galleries, (2) vertical galleries, (3) lateral galleries, and (4) the larval cradle of P. quercivorus in each host tree. Among the fungus colonies which appeared on YM agar plates, 1,219 were isolated as the representative isolates for fungus species inhabiting in the galleries based on their cultural characteristics. The validity of the visual classification of the fungus colonies was checked and if necessary properly corrected using microsatellite-primed PCR fingerprints. The nucleotide sequence of the D1/D2 region of the large subunit nuclear rRNA gene detected 38 fungus species (104 strains) of which three species, i.e., Candida sp. 3, Candida kashinagacola (both yeasts), and the filamentous fungus Raffaelea quercivora were isolated from all the tree species. The two yeasts were most prevalent in the interior of galleries, regardless of host tree species, suggesting their close association with the beetle. A culture-independent method, terminal restriction fragment length polymorphism (T-RFLP) analysis was also used to characterize the fungus flora of beetle galleries. T-RFLP patterns showed that yeast species belonging to the genus Ambrosiozyma frequently occurred on the gallery walls along with the two Candida species. Ours is the first report showing the specific fungi inhabiting the galleries of a platypodid ambrosia beetle.
Duran, Robert; Bonin, Patricia; Jezequel, Ronan; Dubosc, Karine; Gassie, Claire; Terrisse, Fanny; Abella, Justine; Cagnon, Christine; Militon, Cecile; Michotey, Valérie; Gilbert, Franck; Cuny, Philippe; Cravo-Laureau, Cristiana
2015-10-01
The present study aimed to examine whether the physical reworking of sediments by harrowing would be suitable for favouring the hydrocarbon degradation in coastal marine sediments. Mudflat sediments were maintained in mesocosms under conditions as closer as possible to those prevailing in natural environments with tidal cycles. Sediments were contaminated with Ural blend crude oil, and in half of them, harrowing treatment was applied in order to mimic physical reworking of surface sediments. Hydrocarbon distribution within the sediment and its removal was followed during 286 days. The harrowing treatment allowed hydrocarbon compounds to penetrate the first 6 cm of the sediments, and biodegradation indexes (such as n-C18/phytane) indicated that biodegradation started 90 days before that observed in untreated control mesocosms. However, the harrowing treatment had a severe impact on benthic organisms reducing drastically the macrofaunal abundance and diversity. In the harrowing-treated mesocosms, the bacterial abundance, determined by 16S rRNA gene Q-PCR, was slightly increased; and terminal restriction fragment length polymorphism (T-RFLP) analyses of 16S rRNA genes showed distinct and specific bacterial community structure. Co-occurrence network and canonical correspondence analyses (CCA) based on T-RFLP data indicated the main correlations between bacterial operational taxonomic units (OTUs) as well as the associations between OTUs and hydrocarbon compound contents further supported by clustered correlation (ClusCor) analysis. The analyses highlighted the OTUs constituting the network structural bases involved in hydrocarbon degradation. Negative correlations indicated the possible shifts in bacterial communities that occurred during the ecological succession.
Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots.
Flores-Mireles, Ana L; Winans, Stephen C; Holguin, Gina
2007-11-01
An analysis of the molecular diversity of N(2) fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N(2) fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments.
Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots▿
Flores-Mireles, Ana L.; Winans, Stephen C.; Holguin, Gina
2007-01-01
An analysis of the molecular diversity of N2 fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N2 fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments. PMID:17827324
Suzuki, Nao; Tanabe, Kazunari; Takeshita, Toru; Yoneda, Masahiro; Iwamoto, Tomoyuki; Oshiro, Sueko; Yamashita, Yoshihisa; Hirofuji, Takao
2012-03-01
The objective of this paper is to evaluate the effects of oil drops containing Lactobacillus salivarius WB21 on periodontal health and oral microbiota producing volatile sulfur compounds (VSCs). For this study, 42 subjects were randomly assigned to receive oil samples containing L. salivarius WB21 or a placebo for two weeks. Oral assessment and saliva collection were performed on days 1 and 15. Bacterial analysis was performed using the real-time polymerase chain reaction and terminal restriction fragment length polymorphism (T-RFLP). In both the experimental and placebo groups, the average probing depth, number of periodontal pockets, and the percentage of bleeding on probing (BOP) decreased while stimulated salivary flow increased on day 15. BOP was reduced in the experimental group compared with the placebo group (P = 0.010). In the experimental group, total bacterial numbers decreased, and the number of L. salivarius increased. The number of Prevotella intermedia, which is correlated with hydrogen sulfide concentration in mouth air, increased in the placebo group and did not change in the experimental group. T-RFLP analysis found that the peak area proportions representing Porphyromonas gingivalis, P. intermedia, Tannerella forsythensis, and Fusobacterium nucleatum decreased in the experimental group, although there was no significant change in the bacterial composition. Thus we observed oil drops containing L. salivarius WB21 improved BOP and inhibited the reproduction of total and VSC-producing periodontopathic bacteria compared with the placebo group, but also showed the limit of its efficacy in controlling VSCs producing and periodontal pathogens.
Klaus, James S; Janse, Ingmar; Heikoop, Jeffrey M; Sanford, Robert A; Fouke, Bruce W
2007-05-01
The high incidence of coral disease in shallow coastal marine environments suggests seawater depth and coastal pollution have an impact on the microbial communities inhabiting healthy coral tissues. A study was undertaken to determine how bacterial communities inhabiting tissues of the coral Montastraea annularis change at 5 m, 10 m and 20 m water depth in varying proximity to the urban centre and seaport of Willemstad, Curaçao, Netherlands Antilles. Analyses of terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA gene sequences show significant differences in bacterial communities of polluted and control localities only at the shallowest seawater depth. Furthermore, distinct differences in bacterial communities were found with increasing water depth. Comparisons of TRFLP peaks with sequenced clone libraries indicate the black band disease cyanobacterium clone CD1C11 is common and most abundant on healthy corals in less than 10 m water depth. Similarly, sequences belonging to a previously unrecognized group of likely phototrophic bacteria, herein referred to as CAB-I, were also more common in shallow water. To assess the influence of environmental and physiologic factors on bacterial community structure, canonical correspondence analysis was performed using explanatory variables associated with: (i) light availability; (ii) seawater pollution; (iii) coral mucus composition; (iv) the community structure of symbiotic algae; and (v) the photosynthetic activity of symbiotic algae. Eleven per cent of the variation in bacterial communities was accounted for by covariation with these variables; the most important being photosynthetically active radiation (sunlight) and the coral uptake of sewage-derived compounds as recorded by the delta(15)N of coral tissue.
Mendes, Lucas William; Taketani, Rodrigo Gouvêa; Navarrete, Acácio Aparecido; Tsai, Siu Mui
2012-06-01
This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Molecular Analysis of Endolithic Microbial Communities in Volcanic Glasses
NASA Astrophysics Data System (ADS)
di Meo, C. A.; Giovannoni, S.; Fisk, M.
2002-12-01
Terrestrial and marine volcanic glasses become mineralogically and chemically altered, and in many cases this alteration has been attributed to microbial activity. We have used molecular techniques to study the resident microbial communities from three different volcanic environments that may be responsible for this crustal alteration. Total microbial DNA was extracted from rhyolite glass of the 7 million year old Rattlesnake Tuff in eastern Oregon. The DNA was amplified using the polymerase chain reaction (PCR) with bacterial primers targeting the 16S rRNA gene. This 16S rDNA was cloned and screened with restriction fragment length polymorphism (RFLP). Out of 89 total clones screened, 46 belonged to 13 different clone families containing two or more members, while 43 clones were unique. Sequences of eight clones representing the most dominant clone families in the library were 92 to 97% similar to soil bacterial species. In a separate study, young pillow basalts (<20 yrs old) from six different sites along the ridge axis at 9°N, East Pacific Rise were examined for microbial life. Total DNA was extracted from the basalt glass and screened for the presence of both bacteria and archaea using the PCR. Repeated attempts with different primer sets yielded no bacterial genes, whereas archaeal genes were quite abundant. A genetic fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP), was used to compare the archaeal community compositions among the six different basalts. Filtered deep-sea water samples (~15 L) were examined in parallel to identify any overlap between rock- and seawater-associated archaea. The six rock community profiles were quite similar to each other, and the background water communities were also similar, respectively. Both the rock and water communities shared the same dominant peak. To identify the T-RFLP peaks corresponding to the individual members of the rock and seawater communities, clone libraries of the archaeal 16S rDNA for one basalt sample (Dive 3718) and its corresponding background water sample were constructed. The most abundant archaeal genes were closely related to uncultured Group I marine Crenarchaeota that have been previously identified from similar deep-sea habitats. These archaeal genes collectively correspond to the dominant T-RFLP peak present in both the rock and water samples. In a third study, we investigated the microbial community residing in a Hawaiian Scientific Drilling Program core collected near Hilo, Hawaii. Total microbial DNA was extracted from a depth of 1351 m in the drill core (ambient temperature in the drill hole ~16°C), where petrographic evidence suggested the presence of microbial alteration. Archaeal 16S rRNA genes were amplified, cloned, and twelve clones representing the most abundant groups were sequenced. Eleven out of the twelve clones were 97 to 99% similar to Group I marine Crenarchaeota, while the remaining clone was 95% similar to Euryarchaeota, based on BLAST searches of the GenBank database. Our community-level approach to studying microbes living in volcanic glasses has provided a greater understanding of the microbial communities that potentially alter these materials.
Jardillier, Ludwig; Boucher, Delphine; Personnic, Sébastien; Jacquet, Stéphan; Thénot, Aurélie; Sargos, Denis; Amblard, Christian; Debroas, Didier
2005-08-01
The effect of nutrient resources (N and P enrichment) and of different grazing communities on the prokaryotic community composition (PCC) was investigated in two freshwater ecosystems: Sep reservoir (oligomesotrophic) and lake Aydat (eutrophic). An experimental approach using microcosms was chosen, that allowed control of both predation levels, by size fractionation of predators, and resources, by nutrient amendments. Changes in PCC were monitored by fluorescent in situ hybridization (FISH) and terminal-restriction fragment length polymorphism (T-RFLP). The main mortality agents were (i) heterotrophic nanoflagellates and virus-like particles in Aydat and (ii) cladocerans in Sep. All the nutritional elements assayed (N-NO3, P-PO4 and N-NH4) together with prokaryotic production (PP) always accounted for a significant part of the variations in PCC. Overall, prokaryotic diversity was mainly explained by resources in Sep, by a comparable contribution of resources and mortality factors in lake Aydat and, to a lesser extent, by the combined action of both.
Biotechnological potential of microbial consortia and future perspectives.
Bhatia, Shashi Kant; Bhatia, Ravi Kant; Choi, Yong-Keun; Kan, Eunsung; Kim, Yun-Gon; Yang, Yung-Hun
2018-05-15
Design of a microbial consortium is a newly emerging field that enables researchers to extend the frontiers of biotechnology from a pure culture to mixed cultures. A microbial consortium enables microbes to use a broad range of carbon sources. It provides microbes with robustness in response to environmental stress factors. Microbes in a consortium can perform complex functions that are impossible for a single organism. With advancement of technology, it is now possible to understand microbial interaction mechanism and construct consortia. Microbial consortia can be classified in terms of their construction, modes of interaction, and functions. Here we discuss different trends in the study of microbial functions and interactions, including single-cell genomics (SCG), microfluidics, fluorescent imaging, and membrane separation. Community profile studies using polymerase chain-reaction denaturing gradient gel electrophoresis (PCR-DGGE), amplified ribosomal DNA restriction analysis (ARDRA), and terminal restriction fragment-length polymorphism (T-RFLP) are also reviewed. We also provide a few examples of their possible applications in areas of biopolymers, bioenergy, biochemicals, and bioremediation.
NASA Astrophysics Data System (ADS)
Mouser, P. J.; Rizzo, D. M.; Druschel, G.; O'Grady, P.; Stevens, L.
2005-12-01
This interdisciplinary study integrates hydrochemical and genome-based data to estimate the redox processes occurring at long-term monitoring sites. Groundwater samples have been collected from a well-characterized landfill-leachate contaminated aquifer in northeastern New York. Primers from the 16S rDNA gene were used to amplify Bacteria and Archaea in groundwater taken from monitoring wells located in clean, fringe, and contaminated locations within the aquifer. PCR-amplified rDNA were digested with restriction enzymes to evaluate terminal restriction fragment length polymorphism (T-RFLP) community profiles. The rDNA was cloned, sequenced, and partial sequences were matched against known organisms using the NCBI Blast database. Phylogenetic trees and bootstrapping were used to identify classifications of organisms and compare the communities from clean, fringe, and contaminated locations. We used Artificial Neural Network (ANN) models to incorporate microbial data with hydrochemical information for improving our understanding of subsurface processes.
Tanigawa, Tetsuya; Watanabe, Toshio; Otani, Koji; Nadatani, Yuji; Ohkawa, Fumikazu; Sogawa, Mitsue; Yamagami, Hirokazu; Shiba, Masatsugu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Takeuchi, Koji; Arakawa, Tetsuo
2013-03-15
Enterobacteria play important roles in the pathophysiology of small intestinal injuries induced by nonsteroidal anti-inflammatory drugs (NSAIDs). We investigated the effects of rebamipide, a gastrointestinal mucoprotective drug, on indomethacin-induced small intestinal injuries, intestinal microbiota, and expression levels of α-defensin 5, which is a Paneth cell-specific antimicrobial peptide and is important for the regulation of intestinal microbiota. Indomethacin (10mg/kg) was orally administered to mice after oral administration of rebamipide (100 or 300 mg/kg) or vehicle for 1 week, and the small intestinal injuries were assessed. After oral administration of rebamipide, the small intestinal contents were subjected to terminal restriction fragment length polymorphism (T-RFLP) analysis to assess the intestinal microbiota composition. Further, the expression levels of mRNA and protein for α-defensin 5 in the ileal tissue were determined by real-time reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Rebamipide inhibited indomethacin-induced small intestinal injuries and T-RFLP analysis showed that rebamipide increased the percentage of Lactobacillales and decreased the percentage of Bacteroides and Clostridium than that in vehicle-treated controls. The mice that were treated with rebamipide showed an increase in α-defensin 5 mRNA expression and protein levels in the ileal tissue compared to vehicle-treated control mice. Indomethacin reduced expression of α-defensin 5 mRNA in ileal tissue, while rebamipide reversed expression of α-defensin 5 mRNA. In conclusion, our study results suggest that rebamipide inhibits indomethacin-induced small intestinal injuries, possibly by modulating microbiota in the small intestine by upregulation of α-defensin 5. Copyright © 2013 Elsevier B.V. All rights reserved.
Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F
2015-10-01
This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. © 2015 Poultry Science Association Inc.
Xi, Ruijiao; Long, Xi-En; Huang, Sha; Yao, Huaiying
2017-12-01
Nitrification inhibitors and urease inhibitors, such as nitrapyrin and N-(n-butyl) thiophosphoric triamide (NBPT), can improve the efficiencies of nitrogen fertilizers in cropland. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) across different soil pH levels are still unclear. In the present work, vegetable soils at four pH levels were tested to determine the impacts of nitrification and urease inhibitors on the nitrification activities, abundances and diversities of ammonia oxidizers at different pHs by real-time PCR, terminal restriction fragment length polymorphism (T-RFLP) and clone sequence analysis. The analyses of the abundance of ammonia oxidizers and net nitrification rate suggested that AOA was the dominate ammonia oxidizer and the key driver of nitrification in acidic soil. The relationships between pH and ammonia oxidizer abundance indicated that soil pH dominantly controlled the abundance of AOA but not that of AOB. The T-RFLP results suggested that soil pH could significantly affect the AOA and AOB community structure. Nitrapyrin decreased the net nitrification rate and inhibited the abundance of bacterial amoA genes in this vegetable soil, but exhibited no effect on that of the archaeal amoA genes. In contrast, NBPT just lagged the hydrolysis of urea and kept low NH 4 + -N levels in the soil at the early stage. It exhibited no or slight effects on the abundance and community structure of ammonia oxidizers. These results indicated that soil pH, rather than the application of urea, nitrapyrin and NBPT, was a critical factor influencing the abundance and community structure of AOA and AOB.
Elkjær, K; Ancker, M-L; Gustafsson, H; Friggens, N C; Waldmann, A; Mølbak, L; Callesen, H
2013-04-01
The overall aim of this study was to describe uterine bacterial flora during the postpartum period in Danish Holstein cows using the Terminal Restriction Fragment Length Polymorphism (T-RFLP) method. This method produces a pattern of nucleic acid fragments from the microorganisms present, reflecting the "fingerprint" of the actual microbial flora. As well as characterizing changes in flora with time from calving and between herds, data were examined for strong relations between uterine bacterial flora, calving management and uterine condition. In total 125 Holstein cows from five herds were included, and for each cow calving management was recorded. Cows were clinically examined on average 8 (range 0-19) and 28 (range 22-38) days after calving, and a uterine sample was taken for bacterial identification using T-RFLP. Milk samples were taken weekly for progesterone analysis. Bacteria were found in all cows at both examinations, and the flora was composed of many species, including species not traditionally reported to be present in the bovine uterus. The bacterial composition differed according to days from calving and herd. In all five herds Fusobacterium necrophorum, Pseudomonas/Acinetobacter and Bacteroides/Sphingobacterium/Prevotellaceae were among the most common at both examinations. In four herds there was a percentage decrease of F. necrophorum from first to second examination, and in all herds there was a percentage increase of Pseudomonas/Acinetobacter from first to second examination. No differences in bacterial flora were found between cows with different uterine scores, which were influenced by herd, calving difficulty and retained placenta. Copyright © 2013 Elsevier B.V. All rights reserved.
Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.
2003-01-01
Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794
Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette
2013-01-01
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype. PMID:23974297
Kuske, Cheryl R; Yeager, Chris M; Johnson, Shannon; Ticknor, Lawrence O; Belnap, Jayne
2012-01-01
The impact of 10 years of annual foot trampling on soil biocrusts was examined in replicated field experiments at three cold desert sites of the Colorado Plateau, USA. Trampling detrimentally impacted lichens and mosses, and the keystone cyanobacterium, Microcoleus vaginatus, resulting in increased soil erosion and reduced C and N concentrations in surface soils. Trampled biocrusts contained approximately half as much extractable DNA and 20–52% less chlorophyll a when compared with intact biocrusts at each site. Two of the three sites also showed a decline in scytonemin-containing, diazotrophic cyanobacteria in trampled biocrusts. 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses of soil bacteria from untrampled and trampled biocrusts demonstrated a reduced proportion (23–65% reduction) of M. vaginatus and other Cyanobacteria in trampled plots. In parallel, other soil bacterial species that are natural residents of biocrusts, specifically members of the Actinobacteria, Chloroflexi and Bacteroidetes, became more readily detected in trampled than in untrampled biocrusts. Replicate 16S rRNA T-RFLP profiles from trampled biocrusts at all three sites contained significantly more fragments (n=17) than those of untrampled biocrusts (n⩽6) and exhibited much higher variability among field replicates, indicating transition to an unstable disturbed state. Despite the dramatic negative impacts of trampling on biocrust physical structure and composition, M. vaginatus could still be detected in surface soils after 10 years of annual trampling, suggesting the potential for biocrust re-formation over time. Physical damage of biocrusts, in concert with changing temperature and precipitation patterns, has potential to alter performance of dryland ecosystems for decades. PMID:22113374
Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan
2017-08-01
The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pedersen, Rebecca; Andersen, Anders Daniel; Hermann-Bank, Marie Louise; Stagsted, Jan; Boye, Mette
2013-01-01
The aim of this study was to investigate the effect of high-far-high-energy diet on cloned and non-cloned domestic pigs of both lean and obese phenotype and to evaluate if the lean cloned pigs had a lower inter-individual variation as compared with non-cloned pigs. The microbiota of colon and terminal ileum was investigated in cloned and non-cloned pigs that received a high-far-high-energy diet with either restricted or ad libitum access to feed, resulting in lean and obese phenotypes, respectively. The fecal microbiota of lean pigs was investigated by terminal restriction fragment length polymorphism (T-RFLP). The intestinal microbiota of lean and obese cloned and non-cloned pigs was analyzed by quantitative real time PCR and a novel high-throughput qPCR platform (Fluidigm). Principal component analysis (PCA) of the T-RFLP profiles revealed that lean cloned and non-cloned pigs had a different overall composition of their gut microbiota. The colon of lean cloned pigs contained relatively more bacteria belonging to the phylum Firmicutes and less from the phylum Bacteroidetes than obese cloned pigs as estimated by qPCR. Fluidigm qPCR results revealed differences in specific bacterial groups in the gut microbiota of both lean and obese pigs. Our results suggest that high-far-high-energy diet is associated with changes in the gut microbiota even in the absence of obesity. Overall, the cloned pigs had a different gut microbiota from that of non-cloned pigs. To our knowledge this is the first study to investigate the gut microbiota of cloned domestic pigs of lean and obese phenotype.
Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J
2016-01-01
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.
Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Ushiroda, Chihiro; Ohnogi, Hiromu; Kudo, Yoko; Yasui, Madoka; Inui, Seina; Hisada, Takayoshi; Honda, Akira; Matsuzaki, Yasushi; Yoshikawa, Toshikazu
2016-03-15
High-fat diet (HFD)-induced alteration in the gut microbial composition, known as dysbiosis, is increasingly recognized as a major risk factor for various diseases, including colon cancer. This report describes a comprehensive investigation of the effect of agaro-oligosaccharides (AGO) on HFD-induced gut dysbiosis, including alterations in short-chain fatty acid contents and bile acid metabolism in mice. C57BL/6N mice were fed a control diet or HFD, with or without AGO. Terminal restriction fragment-length polymorphism (T-RFLP) analysis produced their fecal microbiota profiles. Profiles of cecal organic acids and serum bile acids were determined, respectively, using HPLC and liquid chromatography-tandem mass spectrometry systems. T-RFLP analyses showed that an HFD changed the gut microbiota significantly. Changes in the microbiota composition induced by an HFD were characterized by a decrease in the order Lactobacillales and by an increase in the Clostridium subcluster XIVa. These changes of the microbiota community generated by HFD treatment were suppressed by AGO supplementation. As supported by the data of the proportion of Lactobacillales order, the concentration of lactic acid increased in the HFD + AGO group. Data from the serum bile acid profile showed that the level of deoxycholic acid, a carcinogenic secondary bile acid produced by gut bacteria, was increased in HFD-receiving mice. The upregulation tended to be suppressed by AGO supplementation. Finally, results show that AGO supplementation suppressed the azoxymethane-induced generation of aberrant crypt foci in the colon derived from HFD-treated mice. Our results suggest that oral intake of AGO prevents HFD-induced gut dysbiosis, thereby inhibiting colon carcinogenesis. Copyright © 2016 the American Physiological Society.
Kovatcheva-Datchary, Petia; Egert, Markus; Maathuis, Annet; Rajilić-Stojanović, Mirjana; de Graaf, Albert A; Smidt, Hauke; de Vos, Willem M; Venema, Koen
2009-04-01
Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP), we identified starch-fermenting bacteria under human colon-like conditions. To the microbiota of the TIM-2 in vitro model of the human colon 7.4 g l(-1) of [U-(13)C]-starch was added. RNA extracted from lumen samples after 0 (control), 2, 4 and 8 h was subjected to density-gradient ultracentrifugation. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting and phylogenetic analyses of the labelled and unlabelled 16S rRNA suggested populations related to Ruminococcus bromii, Prevotella spp. and Eubacterium rectale to be involved in starch metabolism. Additionally, 16S rRNA related to that of Bifidobacterium adolescentis was abundant in all analysed fractions. While this might be due to the enrichment of high-GC RNA in high-density fractions, it could also indicate an active role in starch fermentation. Comparison of the T-RFLP fingerprints of experiments performed with labelled and unlabelled starch revealed Ruminococcus bromii as the primary degrader in starch fermentation in the studied model, as it was found to solely predominate in the labelled fractions. LC-MS analyses of the lumen and dialysate samples showed that, for both experiments, starch fermentation primarily yielded acetate, butyrate and propionate. Integration of molecular and metabolite data suggests metabolic cross-feeding in the system, where populations related to Ruminococcus bromii are the primary starch degrader, while those related to Prevotella spp., Bifidobacterium adolescentis and Eubacterium rectale might be further involved in the trophic chain.
Li, Fei; Hullar, Meredith A J; Schwarz, Yvonne; Lampe, Johanna W
2009-09-01
In the human gut, commensal bacteria metabolize food components that typically serve as energy sources. These components have the potential to influence gut bacterial community composition. Cruciferous vegetables, such as broccoli and cabbage, contain distinctive compounds that can be utilized by gut bacteria. For example, glucosinolates can be hydrolyzed by certain bacteria, and dietary fibers can be fermented by a range of species. We hypothesized that cruciferous vegetable consumption would alter growth of certain bacteria, thereby altering bacterial community composition. We tested this hypothesis in a randomized, crossover, controlled feeding study. Fecal samples were collected from 17 participants at the end of 2 14-d intake periods: a low-phytochemical, low-fiber basal diet (i.e. refined grains without fruits or vegetables) and a high ("double") cruciferous vegetable diet [basal diet + 14 g cruciferous vegetables/(kg body weightd)]. Fecal bacterial composition was analyzed by the terminal restriction fragment length polymorphism (tRFLP) method using the bacterial 16S ribosomal RNA gene and nucleotide sequencing. Using blocked multi-response permutation procedures analysis, we found that overall bacterial community composition differed between the 2 consumption periods (delta = 0.603; P = 0.011). The bacterial community response to cruciferous vegetables was individual-specific, as revealed by nonmetric multidimensional scaling ordination analysis. Specific tRFLP fragments that characterized each of the diets were identified using indicator species analysis. Putative species corresponding to these fragments were identified through gene sequencing as Eubacterium hallii, Phascolarctobacterium faecium, Burkholderiales spp., Alistipes putredinis, and Eggerthella spp. In conclusion, human gut bacterial community composition was altered by cruciferous vegetable consumption, which could ultimately influence gut metabolism of bioactive food components and host exposure to these compounds.
Mulat, Daniel Girma; Jacobi, H Fabian; Feilberg, Anders; Adamsen, Anders Peter S; Richnow, Hans-Hermann; Nikolausz, Marcell
2016-01-15
Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mulat, Daniel Girma; Jacobi, H. Fabian; Feilberg, Anders; Adamsen, Anders Peter S.; Richnow, Hans-Hermann
2015-01-01
Flexible biogas production that adapts biogas output to energy demand can be regulated by changing feeding regimes. In this study, the effect of changes in feeding intervals on process performance, microbial community structure, and the methanogenesis pathway was investigated. Three different feeding regimes (once daily, every second day, and every 2 h) at the same organic loading rate were studied in continuously stirred tank reactors treating distiller's dried grains with solubles. A larger amount of biogas was produced after feeding in the reactors fed less frequently (once per day and every second day), whereas the amount remained constant in the reactor fed more frequently (every 2 h), indicating the suitability of the former for the flexible production of biogas. Compared to the conventional more frequent feeding regimes, a methane yield that was up to 14% higher and an improved stability of the process against organic overloading were achieved by employing less frequent feeding regimes. The community structures of bacteria and methanogenic archaea were monitored by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA and mcrA genes, respectively. The results showed that the composition of the bacterial community varied under the different feeding regimes, and the observed T-RFLP patterns were best explained by the differences in the total ammonia nitrogen concentrations, H2 levels, and pH values. However, the methanogenic community remained stable under all feeding regimes, with the dominance of the Methanosarcina genus followed by that of the Methanobacterium genus. Stable isotope analysis showed that the average amount of methane produced during each feeding event by acetoclastic and hydrogenotrophic methanogenesis was not influenced by the three different feeding regimes. PMID:26497462
Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano
2016-01-01
“Terre Calde di Medolla” (TCM) (literally, “Hot Lands of Medolla”) refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO2, which has been linked to CH4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard’s analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of “Terre Calde di Medolla” with the presence of microbial methane-oxidizing bacteria. PMID:27645100
Cappelletti, Martina; Ghezzi, Daniele; Zannoni, Davide; Capaccioni, Bruno; Fedi, Stefano
2016-12-23
"Terre Calde di Medolla" (TCM) (literally, "Hot Lands of Medolla") refers to a farming area in Italy with anomalously high temperatures and diffuse emissions of biogenic CO 2 , which has been linked to CH 4 oxidation processes from a depth of 0.7 m to the surface. We herein assessed the composition of the total bacterial community and diversity of methane-oxidizing bacteria (MOB) in soil samples collected at a depth at which the peak temperature was detected (0.6 m). Cultivation-independent methods were used, such as: i) a clone library analysis of the 16S rRNA gene and pmoA (coding for the α-subunit of the particulate methane monooxygenase) gene, and ii) Terminal Restriction Fragment Length Polymorphism (T-RFLP) fingerprinting. The 16S rRNA gene analysis assessed the predominance of Actinobacteria, Acidobacteria, Proteobacteria, and Bacillus in TCM samples collected at a depth of 0.6 m along with the presence of methanotrophs (Methylocaldum and Methylobacter) and methylotrophs (Methylobacillus). The phylogenetic analysis of pmoA sequences showed the presence of MOB affiliated with Methylomonas, Methylocystis, Methylococcus, and Methylocaldum in addition to as yet uncultivated and uncharacterized methanotrophs. Jaccard's analysis of T-RFLP profiles at different ground depths revealed a similar MOB composition in soil samples at depths of 0.6 m and 0.7 m, while this similarity was weaker between these samples and those taken at a depth of 2.5 m, in which the genus Methylocaldum was absent. These results correlate the anomalously high temperatures of the farming area of "Terre Calde di Medolla" with the presence of microbial methane-oxidizing bacteria.
Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.
2011-01-01
Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885
Andoh, Akira; Kobayashi, Toshio; Kuzuoka, Hiroyuki; Tsujikawa, Tomoyuki; Suzuki, Yasuo; Hirai, Fumihito; Matsui, Toshiyuki; Nakamura, Shiro; Matsumoto, Takayuki; Fujiyama, Yoshihide
2014-05-01
The gut microbiota plays a significant role in the pathogenesis of Crohn's disease (CD). In this study, we analyzed the disease activity and associated fecal microbiota profiles in 160 CD patients and 121 healthy individuals. Fecal samples from the CD patients were collected during three different clinical phases, the active (n=66), remission-achieved (n=51) and remission-maintained (n=43) phases. Terminal restriction fragment length polymorphism (T-RFLP) and data mining analysis using the Classification and Regression Tree (C&RT) approach were performed. Data mining provided a decision tree that clearly identified the various subject groups (nodes). The majority of the healthy individuals were divided into Node-5 and Node-8. Healthy subjects comprised 99% of Node-5 (91 of 92) and 84% of Node-8 (21 of 25 subjects). Node-3 was characterized by CD (136 of 160 CD subjects) and was divided into Node-6 and Node-7. Node-6 (n=103) was characterized by subjects in the active phase (n=48; 46%) and remission-achieved phase (n=39; 38%) and Node-7 was characterized by the remission-maintained phase (21 of 37 subjects; 57%). Finally, Node-6 was divided into Node-9 and Node-10. Node-9 (n=78) was characterized by subjects in the active phase (n=43; 55%) and Node-10 (n=25) was characterized by subjects in the remission-maintained phase (n=16; 64%). Differences in the gut microbiota associated with disease activity of CD patients were identified. Thus, data mining analysis appears to be an ideal tool for the characterization of the gut microbiota in inflammatory bowel disease.
Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli
2015-01-01
The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Importance of Dispersal for Bacterial Community Composition and Functioning
Lindström, Eva S.; Östman, Örjan
2011-01-01
We conducted a metacommunity experiment to investigate the role of dispersal for bacterial community composition (BCC) and function of freshwater bacteria. Bacteria were dispersed from a common source pool into three different lake communities in their natural lake water. The experiment was conducted in dialysis bags to enable a decoupling between a change in the local environment and dispersal. BCC was determined by terminal restriction fragment length polymorphism (tRFLP) of the 16S rRNA gene. We show that the greatest changes in BCC occurred between 10% and 43% of dispersal of standing stock per day. Functioning, measured as growth rate, was also affected by dispersal in all three communities but the qualitative pattern differed between communities, sometimes showing a hump-shaped relationship to dispersal and sometimes decreasing with increasing dispersal. In all waters, functioning was related to BCC. Our results show that dispersal does affect BCC and functioning but that high dispersal rates are needed. Further, the effect of dispersal on BCC and function seem to depend on the quality of the habitat to which bacteria disperse into. PMID:21998714
Molecular diagnostics of periodontitis.
Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta
2017-01-28
The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L.; Mattes, Timothy E.
2015-01-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent and bioaccumulative. In this study we investigated bacterial communities in soil microcosms spiked with PCB 52, 77 and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal and redox cycling (i.e. sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after two weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms, and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests they play a role in PCB dechlorination therein. PMID:25820643
Liang, Yi; Meggo, Richard; Hu, Dingfei; Schnoor, Jerald L; Mattes, Timothy E
2015-08-01
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.
Whang, Liang-Ming; Wu, Yi-Ju; Lee, Ya-Chin; Chen, Hong-Wei; Fukushima, Toshikazu; Chang, Ming-Yu; Cheng, Sheng-Shung; Hsu, Shu-Fu; Chang, Cheng-Huey; Shen, Wason; Huang, Chung Kai; Fu, Ryan; Chang, Barkley
2012-10-01
This study investigated nitrification performance and nitrifying community in one full-scale membrane bioreactor (MBR) treating TFT-LCD wastewater. For the A/O MBR system treating monoethanolamine (MEA) and dimethyl sulfoxide (DMSO), no nitrification was observed, due presumably to high organic loading, high colloidal COD, low DO, and low hydraulic retention time (HRT) conditions. By including additional A/O or O/A tanks, the A/O/A/O MBR and the O/A/O MBR were able to perform successful nitrification. The real-time PCR results for quantification of nitrifying populations showed a high correlation to nitrification performance, and can be a good indicator of stable nitrification. Terminal restriction fragment length polymorphism (T-RFLP) results of functional gene, amoA, suggest that Nitrosomonas oligotropha-like AOB seemed to be important to a good nitrification in the MBR system. In the MBR system, Nitrobacter- and Nitrospira-like NOB were both abundant, but the low nitrite environment is likely to promote the growth of Nitrospira-like NOB. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cheng, Hai-Hsuan; Whang, Liang-Ming; Yi, Tse-Fu; Liu, Cheng-Pin; Lin, Tsair-Fuh; Yeh, Mao-Song
2018-05-09
A pilot-scale single-stage anaerobic fluidized membrane bioreactor (AFMBR) was firstly used in this study to treat cold-rolling emulsion wastewater from steel industry. It was continuously operated for 302 days with influent COD concentration of 860-1120 mg/L. Under a hydraulic retention time of 1.5 d, the average effluent COD concentration of 72 mg/L achieved corresponding 90% of COD removal. The permeate flux was varied between 1.7 and 2.9 L/m 2 /h during operation which decreased with increased biomass concentration inside AFMBR. The trans-membrane pressure (TMP) was generally around 35-40 kPa, however, it increased up to 60 kPa when volatile suspended solid increased to above 2.5 g/L. Both flux and TMP data reveal the importance of biomass control for AFMBR operation. Results from terminal restriction fragment length polymorphism (T-RFLP) show the genus Methanosaeta was dominant on GAC and it shared dominance with the genera Methanomethylovorans and Methanosarcina in suspended sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S
2013-07-15
The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil.
Vázquez, S; Nogales, B; Ruberto, L; Hernández, E; Christie-Oleza, J; Lo Balbo, A; Bosch, R; Lalucat, J; Mac Cormack, W
2009-05-01
The effect of nutrient and inocula amendment in a bioremediation field trial using a nutrient-poor Antarctic soil chronically contaminated with hydrocarbons was tested. The analysis of the effects that the treatments caused in bacterial numbers and hydrocarbon removal was combined with the elucidation of the changes occurring on the bacterial community, by 16S rDNA-based terminal restriction fragment length polymorphism (T-RFLP) typing, and the detection of some of the genes involved in the catabolism of hydrocarbons. All treatments caused a significant increase in the number of bacteria able to grow on hydrocarbons and a significant decrease in the soil hydrocarbon content, as compared to the control. However, there were no significant differences between treatments. Comparison of the soil T-RFLP profiles indicated that there were changes in the structure and composition of bacterial communities during the bioremediation trial, although the communities in treated plots were highly similar irrespective of the treatment applied, and they had a similar temporal dynamics. These results showed that nutrient addition was the main factor contributing to the outcome of the bioremediation experiment. This was supported by the lack of evidence of the establishment of inoculated consortia in soils, since their characteristic electrophoretic peaks were only detectable in soil profiles at the beginning of the experiment. Genetic potential for naphthalene degradation, evidenced by detection of nahAc gene, was observed in all soil plots including the control. In treated plots, an increase in the detection of catechol degradation genes (nahH and catA) and in a key gene of denitrification (nosZ) was observed as well. These results indicate that treatments favored the degradation of aromatic hydrocarbons and probably stimulated denitrification, at least transiently. This mesocosm study shows that recovery of chronically contaminated Antarctic soils can be successfully accelerated using biostimulation with nutrients, and that this causes a change in the indigenous bacterial communities and in the genetic potential for hydrocarbon degradation.
Macbeth, Tamzen W.; Cummings, David E.; Spring, Stefan; Petzke, Lynn M.; Sorenson, Kent S.
2004-01-01
Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is generated primarily via the acetoclastic pathway, using acetate generated by lactate fermentation and acetogenesis in both systems. PMID:15574933
Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora.
Qi, Ce; Li, Ya; Yu, Ren-Qiang; Zhou, Sheng-Li; Wang, Xing-Guo; Le, Guo-Wei; Jin, Qing-Zhe; Xiao, Hang; Sun, Jin
2017-11-28
To demonstrate that specific bacteria might release bacterial extracellular DNA (eDNA) to exert immunomodulatory functions in the mouse small intestine. Extracellular DNA was extracted using phosphate buffered saline with 0.5 mmol/L dithiothreitol combined with two phenol extractions. TOTO-1 iodide, a cell-impermeant and high-affinity nucleic acid stain, was used to confirm the existence of eDNA in the mucus layers of the small intestine and colon in healthy Male C57BL/6 mice. Composition difference of eDNA and intracellular DNA (iDNA) of the small intestinal mucus was studied by Illumina sequencing and terminal restriction fragment length polymorphism (T-RFLP). Stimulation of cytokine production by eDNA was studied in RAW264.7 cells in vitro . TOTO-1 iodide staining confirmed existence of eDNA in loose mucus layer of the mouse colon and thin surface mucus layer of the small intestine. Illumina sequencing analysis and T-RFLP revealed that the composition of the eDNA in the small intestinal mucus was significantly different from that of the iDNA of the small intestinal mucus bacteria. Illumina Miseq sequencing showed that the eDNA sequences came mainly from Gram-negative bacteria of Bacteroidales S24-7. By contrast, predominant bacteria of the small intestinal flora comprised Gram-positive bacteria. Both eDNA and iDNA were added to native or lipopolysaccharide-stimulated Raw267.4 macrophages, respectively. The eDNA induced significantly lower tumor necrosis factor-α/interleukin-10 (IL-10) and IL-6/IL-10 ratios than iDNA, suggesting the predominance for maintaining immune homeostasis of the gut. Our results indicated that degraded bacterial genomic DNA was mainly released by Gram-negative bacteria, especially Bacteroidales-S24-7 and Stenotrophomonas genus in gut mucus of mice. They decreased pro-inflammatory activity compared to total gut flora genomic DNA.
Dong, Jun; Shi, Fei; Li, Han; Zhang, Xiaoming; Hu, Xiaozhong; Gong, Jun
2014-01-01
Nanociliates have been frequently found to be important players in the marine microbial loop, however, little is known about their diversity and distribution in coastal ecosystems. We investigated the molecular diversity and distribution patterns of nanoplanktonic oligotrich and choreotrich (OC) ciliates in surface water of three neritic basins of northern China, the South Yellow Sea (SYS), North Yellow Sea (NYS), and Bohai Sea (BS) in June and November 2011. SSU rRNA gene clone libraries generated from three summertime samples (sites B38, B4 and H8) were analyzed and revealed a large novel ribotype diversity, of which many were low-abundant phylotypes belonging to the subclass Oligotrichia, but divergent from described morphospecies. Based on the data of terminal-restriction fragment length polymorphism (T-RFLP) analysis of all 35 samples, we found that the T-RF richness was generally higher in the SYS than in the BS, and negatively correlated with the molar ratio of P to Si. Overall, multidimensional scaling and permutational multivariate analysis of variance of the community turnover demonstrated a distinct seasonal pattern but no basin-to-basin differentiation across all samples. Nevertheless, significant community differences among basins were recognized in the winter dataset. Mantel tests showed that the environmental factors, P:Si ratio, water temperature and concentration of dissolved oxygen (DO), determined the community across all samples. However, both biogeographic distance and environment shaped the community in winter, with DO being the most important physicochemical factor. Our results indicate that the stoichiometric ratio of P:Si is a key factor, through which the phytoplankton community may be shaped, resulting in a cascade effect on the diversity and community composition of OC nanociliates in the N-rich, Si-limited coastal surface waters, and that the Yellow Sea Warm Current drives the nanociliate community, and possibly the microbial food webs, in the coastal ecosystem in winter.
NASA Astrophysics Data System (ADS)
Rassa, A. C.; McAllister, S. M.; Safran, S. A.; Moyer, C. L.
2007-12-01
Loihi Seamount is Hawaii's youngest volcano and one of the earth's most active. Loihi is located 30 km SE of the big island of Hawaii and rises over 3000m above the sea floor and summits at 1100m below sea level. An eruption in 1996 of Loihi led to the formation of Pele's Pit, a 300 meter deep caldera. The current observations have revealed diffuse hydrothermal venting causing low to intermediate temperatures (10 to 65°C). The elevated temperatures, coupled with high concentrations of Fe(II) (ranging from 50 to 750 μM) support conditions allowing for extensive microbial mat formation. The focus of this study was to identify the colonizing populations of bacteria generated by the microbial mats at Loihi Seamount. Twenty-six microbial growth chambers were deployed and recovered after placement in the flow of hydrothermal vents for 3 to 8 days from within Loihi's caldera. Genomic DNA was extracted from samples and analyzed by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) using eight restriction enzyme treatments to generate fingerprints from bacterial amplicons of small subunit rRNA genes (SSU rDNAs). Pearson product-moment coupled with UPGMA cluster analysis of these T-RFLP fingerprints showed that these communities bifurcated into two primary clusters. The first (Group 1) had an average vent effluent temperature of 44°C, and the second (Group 2) had an average vent effluent temperature of 64°C. Representative samples from within the two clusters (or groups) were chosen for further clone library and sequencing analysis. These libraries revealing a dominance of the recently discovered zeta- Proteobacteria in the lower temperature group (Group 1) indicating that they were the dominant colonizers of the microbial mats. These microaerophilic, obligately lithotrophic, Fe-oxidizing bacteria are most closely related to Mariprofundus ferrooxydans. The higher temperature group (Group 2) was dominated by epsilon- Proteobacteria primarily of the genus Sulfurimonas, which are sulfur- and thiosulfate-oxidizing bacteria.
Dicksved, Johan; Jansson, Janet K; Lindberg, Jan Erik
2015-01-01
The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning.
Liu, Xikun
2016-01-01
ABSTRACT Epoxyalkane:coenzyme M transferase (EaCoMT) plays a critical role in the aerobic biodegradation and assimilation of alkenes, including ethene, propene, and the toxic chloroethene vinyl chloride (VC). To improve our understanding of the diversity and distribution of EaCoMT genes in the environment, novel EaCoMT-specific terminal-restriction fragment length polymorphism (T-RFLP) and nested-PCR methods were developed and applied to groundwater samples from six different contaminated sites. T-RFLP analysis revealed 192 different EaCoMT T-RFs. Using clone libraries, we retrieved 139 EaCoMT gene sequences from these samples. Phylogenetic analysis revealed that a majority of the sequences (78.4%) grouped with EaCoMT genes found in VC- and ethene-assimilating Mycobacterium strains and Nocardioides sp. strain JS614. The four most-abundant T-RFs were also matched with EaCoMT clone sequences related to Mycobacterium and Nocardioides strains. The remaining EaCoMT sequences clustered within two emergent EaCoMT gene subgroups represented by sequences found in propene-assimilating Gordonia rubripertincta strain B-276 and Xanthobacter autotrophicus strain Py2. EaCoMT gene abundance was positively correlated with VC and ethene concentrations at the sites studied. IMPORTANCE The EaCoMT gene plays a critical role in assimilation of short-chain alkenes, such as ethene, VC, and propene. An improved understanding of EaCoMT gene diversity and distribution is significant to the field of bioremediation in several ways. The expansion of the EaCoMT gene database and identification of incorrectly annotated EaCoMT genes currently in the database will facilitate improved design of environmental molecular diagnostic tools and high-throughput sequencing approaches for future bioremediation studies. Our results further suggest that potentially significant aerobic VC degraders in the environment are not well represented in pure culture. Future research should aim to isolate and characterize aerobic VC-degrading bacteria from these underrepresented groups. PMID:27016563
McMahan, Lanakila; Grunden, Amy M; Devine, Anthony A; Sobsey, Mark D
2012-04-15
The sensitivity and specificity of the H(2)S test to detect fecal bacteria in water has been variable and uncertain in previous studies, partly due to its presence-absence results. Furthermore, in groundwater samples false-positive results have been reported, with H(2)S-positive samples containing no fecal coliforms or Escherichia coli. False-negative results also have been reported in other studies, with H(2)S-negative samples found to contain E. coli. Using biochemical and molecular methods and a novel quantitative test format, this research identified the types and numbers of microbial community members present in natural water samples, including fecal indicators and pathogens as well as other bacteria. Representative water sources tested in this study included cistern rainwater, a protected lake, and wells in agricultural and forest settings. Samples from quantitative H(2)S tests of water were further cultured for fecal bacteria by spread plating onto the selective media for detection and isolation of Aeromonas spp., E. coli, Clostridium spp., H(2)S-producers, and species of Salmonella and Shigella. Isolates were then tested for H(2)S production, and identified to the genus and species level using biochemical methods. Terminal Restriction Fragment Length Polymorphisms (TRFLP) was the molecular method employed to quantitatively characterize microbial community diversity. Overall, it was shown that water samples testing positive for H(2)S bacteria also had bacteria of likely fecal origin and waters containing fecal pathogens also were positive for H(2)S bacteria. Of the microorganisms isolated from natural water, greater than 70 percent were identified using TRFLP analysis to reveal a relatively stable group of organisms whose community composition differed with water source and over time. These results further document the validity of the H(2)S test for detecting and quantifying fecal contamination of water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine
Bokulich, Nicholas A.; Joseph, C. M. Lucy; Allen, Greg; Benson, Andrew K.; Mills, David A.
2012-01-01
While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies. PMID:22563494
NASA Astrophysics Data System (ADS)
Nauer, P. A.; Dam, B.; Liesack, W.; Zeyer, J.; Schroth, M. H.
2012-06-01
The global methane (CH4) cycle is largely driven by methanogenic archaea and methane-oxidizing bacteria (MOB), but little is known about their activity and diversity in pioneer ecosystems. We conducted a field survey in forefields of 13 receding Swiss glaciers on both siliceous and calcareous bedrock to investigate and quantify CH4 turnover based on soil-gas CH4 concentration profiles, and to characterize the MOB community by sequencing and terminal restriction fragment length polymorphism (T-RFLP) analysis of pmoA. Methane turnover was fundamentally different in the two bedrock categories. Of the 36 CH4 concentration profiles from siliceous locations, 11 showed atmospheric CH4 consumption at concentrations of ~1-2 μL L-1 with soil-atmosphere CH4 fluxes of -0.14 to -1.1 mg m-2 d-1. Another 11 profiles showed no apparent activity, while the remaining 14 exhibited slightly increased CH4 concentrations of ~2-10 μL L-1 , most likely due to microsite methanogenesis. In contrast, all profiles from calcareous sites suggested a substantial, yet unknown CH4 source below our sampling zone, with soil-gas CH4 concentrations reaching up to 1400 μL L-1. Remarkably, most soils oxidized ~90 % of the deep-soil CH4, resulting in soil-atmosphere fluxes of 0.12 to 31 mg m-2 d-1. MOB showed limited diversity in both siliceous and calcareous forefields: all identified pmoA sequences formed only 5 operational taxonomic units (OTUs) at the species level and, with one exception, could be assigned to either Methylocystis or the as-yet-uncultivated Upland Soil Cluster γ (USCγ). The latter dominated T-RFLP patterns of all siliceous and most calcareous samples, while Methylocystis dominated in 4 calcareous samples. Members of Upland Soil Cluster α (USCα) were not detected. Apparently, USCγ adapted best to the oligotrophic cold climate conditions at the investigated pioneer sites.
Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M
2012-02-01
Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P < 0.001) and vice versa for butyric acid production from pectin and inulin (P < 0.001). Total propionic acid production was unaffected by the carbohydrate source (P = 0.791). Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P < 0.001). Principle component analysis of T-RFLP patterns revealed that both pectin and pH 5.5 resulted in pronounced changes in the microbial community composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.
Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon
Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G.
2012-01-01
Soils were incubated for 80 days in a continuously labeled 14CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of 14C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 108 km2, this represents a potential global sequestration of 0.6 to 4.9 Pg C year−1. Estimated global C sequestration rates suggest a “missing sink” for carbon of between 2 and 3 Pg C year−1. To determine whether 14CO2 incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO2-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 106 and 108 and 103 to 105 copies g−1 soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [14C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999
Dong, Lianhua; Meng, Ying; Wang, Jing; Sun, Guoqing
2016-09-01
Genetically modified crops (GMCs) hold great promise for improving agricultural output, but at the same time present challenges in terms of environmental safety assessment. Ammonia oxidizers, including ammonia oxidizing bacteria (AOB) and archaea (AOA), are very important functional microbial groups in nitrogen cycle. The abundance and diversity of AOA and AOB in the rhizosphere of genetically modified cotton (SGK321) and non-GM cotton (SY321) across growth stages were investigated using real time quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP). Results showed that cotton genotype had a significant effect on the change in abundance of AOA and AOB, as indicated by amoA copy number. Variations in AOB abundance in rhizosphere of SY321 differed from those in SGK321. The number of AOB in the rhizosphere of SY321 fluctuated considerably: It dramatically decreased from 1.2?106 copies g-1 dry soil to 3?105 copies g-1 dry soil during the flowering stage and then increased to 1.1?106 copies g-1 and 1.5?106 copies g-1 at the belling and boll opening stages, respectively. However, abundance of AOB in the rhizosphere of SGK321 was relatively stable during all the stages of growth. The effect of SGK321 and SY321 on AOA number was quite similar to that of AOB: AOA abundance in SGK321 increased smoothly from 1.0 ?105 copies g-1 dry soil to 1.4?106 copies g-1 dry soil during growth, but that in SY321 fluctuated. Correspondence analysis (CA), canonical CA (CCA), and partial CCA (pCCA) of T-RFLP profiles of AOA and AOB showed that AOB community changed across growth stages in both cotton genotypes, and cotton genotype was the most important factor affecting the AOA community. In conclusion, the current findings indicated no adverse effect of GM cotton on functional microorganisms.
Peterson, Celeste N; Day, Stephanie; Wolfe, Benjamin E; Ellison, Aaron M; Kolter, Roberto; Pringle, Anne
2008-09-01
The community of organisms inhabiting the water-filled leaves of the carnivorous pitcher-plant Sarracenia purpurea includes arthropods, protozoa and bacteria, and serves as a model system for studies of food web dynamics. Despite the wealth of data collected by ecologists and zoologists on this food web, very little is known about the bacterial assemblage in this microecosystem. We used terminal restriction fragment length polymorphism (T-RFLP) analysis to quantify bacterial diversity within the pitchers as a function of pitcher size, pH of the pitcher fluid and the presence of the keystone predator in this food web, larvae of the pitcher-plant mosquito Wyeomyia smithii. Results were analysed at two spatial scales: within a single bog and across three isolated bogs. Pitchers were sterile before they opened and composition of the bacterial assemblage was more variable between different bogs than within bogs. Measures of bacterial richness and diversity were greater in the presence of W. smithii and increased with increasing pitcher size. Our results suggest that fundamental ecological concepts derived from macroscopic food webs can also be used to predict the bacterial assemblages in pitcher plants.
Cai, Xianlei; Gao, Guang; Tang, Xiangming; Dong, Baili; Dai, Jiangyu; Chen, Dan; Song, Yuzhi
2013-10-01
To investigate the effects of different habitats and plant growth status on abundance, biomass and community structure of epiphytic microbes, Potamogeton malaianus Miq. at two different habitats (Gonghu Bay and East Taihu) in Lake Taihu were collected in June, August and November (corresponding to the period of development of submerged macrophytes). The relative abundance of major epiphytic algae groups was determined with high performance liquid chromatography (HPLC), and the structures and dynamics of epiphytic bacteria were assessed by terminal restriction fragment length polymorphism (T-RFLP) analysis. Results showed that the biomass of epiphytic microbes was not significant difference between the two sites, and the analysis of similarity found no significant intra-lake heterogeneity in community structure, but the temporal heterogeneity of epiphytic microbes was significant, which linked to the growth state of submerged macrophytes and water temperature. The difference in community structure between June and August was larger than that between August and November at each site, indicating that the growth status of submerged macrophytes has a greater impact on the community structure of epiphytic microbes than the seasonal variation of environmental conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Benthic prokaryotic community dynamics along the Ardencaple Canyon, Western Greenland Sea
NASA Astrophysics Data System (ADS)
Quéric, Nadia-Valérie; Soltwedel, Thomas
2012-07-01
The Ardencaple Canyon, emanating from the Eastern Greenland continental rise over a distance of about 200 km towards the Greenland Basin, was investigated to determine the effect of enhanced down-slope transport mechanisms on deep-sea benthic prokaryotic communities. The concentration of viable bacterial cells (Live/Dead®BacLight) and prokaryotic incorporation rates (3H-thymidine, 14C-leucine) increased with increasing distance from the continental shelf. Multidimensional scaling (MDS) results from terminal restriction fragment length polymorphism (T-RFLP) analysis indicated a spatial coherence between the benthic bacterial community structure, prokaryotic incorporation rates, water content, protein concentration and the total organic matter in the sediments. The community complexity in sediments at 4-5 cm depth was lower in the central parts of the channel compared with the northern and the southern levees, while richness in surface sediments of all stations was similar. Lacking any clear indications for a recent mass sediment transport or funneled shelf drainage flows, high similarities between bacterial assemblages in sediments along the canyon course may thus be governed by a combination of an ice-edge induced particle flux, episodic down-slope and canyon-guided transport mechanisms.
[Microbial diversity of sediments from the coasts of Dalian Changshan Islands].
Li, Jialin; Wang, Zhonghua; Qin, Song; Wang, Guangyi
2011-05-01
To understand the impacts of anthropogenic activities on structure and composition of bacterial communities and to evaluate how bacterial communities respond to environmental gradients at coastal sediments. The diversity of bacterial communities in sediments from tourist and mariculture zones at coastal area of Dalian Changshan Islands was assessed using terminal restriction fragment length polymorphism (t-RFLP) and denaturing gradient gel electrophoresis (DGGE) approaches. Meanwhile, 16S rRNA clone library was constructed to reveal the composition and structure of bacterial communities in the most seriously polluted site (D4). There were much higher values of richness, Shannon-wiener and evenness index at D4 site by the analysis of terminal restriction fragments (t-RFs). The clustering result on the t-RFs areas and DGGE patterns showed that the bacterial diversity of tourist zone were more similar, while the distinction was increased with pollution levels among the tourist and mariculture zones. The 16S rRNA clone of D4 revealed that the Proteobacteria were the dominant phylum, and gamma-proteobacteria was the main class within Proteobacteria. The study documented changes in bacterial community structure by human impacts of mariculture than geographical location.
Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale.
Bokulich, Nicholas A; Bamforth, Charles W; Mills, David A
2012-01-01
American coolship ale (ACA) is a type of spontaneously fermented beer that employs production methods similar to traditional Belgian lambic. In spite of its growing popularity in the American craft-brewing sector, the fermentation microbiology of ACA has not been previously described, and thus the interface between production methodology and microbial community structure is unexplored. Using terminal restriction fragment length polymorphism (TRFLP), barcoded amplicon sequencing (BAS), quantitative PCR (qPCR) and culture-dependent analysis, ACA fermentations were shown to follow a consistent fermentation progression, initially dominated by Enterobacteriaceae and a range of oxidative yeasts in the first month, then ceding to Saccharomyces spp. and Lactobacillales for the following year. After one year of fermentation, Brettanomyces bruxellensis was the dominant yeast population (occasionally accompanied by minor populations of Candida spp., Pichia spp., and other yeasts) and Lactobacillales remained dominant, though various aerobic bacteria became more prevalent. This work demonstrates that ACA exhibits a conserved core microbial succession in absence of inoculation, supporting the role of a resident brewhouse microbiota. These findings establish this core microbial profile of spontaneous beer fermentations as a target for production control points and quality standards for these beers.
Edwards, Arwyn; Mur, Luis A J; Girdwood, Susan E; Anesio, Alexandre M; Stibal, Marek; Rassner, Sara M E; Hell, Katherina; Pachebat, Justin A; Post, Barbara; Bussell, Jennifer S; Cameron, Simon J S; Griffith, Gareth Wyn; Hodson, Andrew J; Sattler, Birgit
2014-08-01
Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction fragment length polymorphism and Fourier transform infrared metabolite fingerprinting of cryoconite from glaciers in Austria, Greenland and Svalbard demonstrated cryoconite bacterial communities are closely correlated with cognate metabolite fingerprints. The influence of bacterial-associated fatty acids and polysaccharides was inferred, underlining the importance of bacterial community structure in the properties of cryoconite. Thus, combined application of T-RFLP and FT-IR metabolite fingerprinting promises high throughput, and hence, rapid assessment of community structure-function relationships. Pyrosequencing revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine and Arctic cryoconite habitats, reflecting the impact of local and regional conditions on the challenges of thriving in glacial ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Brewhouse-Resident Microbiota Are Responsible for Multi-Stage Fermentation of American Coolship Ale
Bokulich, Nicholas A.; Bamforth, Charles W.; Mills, David A.
2012-01-01
American coolship ale (ACA) is a type of spontaneously fermented beer that employs production methods similar to traditional Belgian lambic. In spite of its growing popularity in the American craft-brewing sector, the fermentation microbiology of ACA has not been previously described, and thus the interface between production methodology and microbial community structure is unexplored. Using terminal restriction fragment length polymorphism (TRFLP), barcoded amplicon sequencing (BAS), quantitative PCR (qPCR) and culture-dependent analysis, ACA fermentations were shown to follow a consistent fermentation progression, initially dominated by Enterobacteriaceae and a range of oxidative yeasts in the first month, then ceding to Saccharomyces spp. and Lactobacillales for the following year. After one year of fermentation, Brettanomyces bruxellensis was the dominant yeast population (occasionally accompanied by minor populations of Candida spp., Pichia spp., and other yeasts) and Lactobacillales remained dominant, though various aerobic bacteria became more prevalent. This work demonstrates that ACA exhibits a conserved core microbial succession in absence of inoculation, supporting the role of a resident brewhouse microbiota. These findings establish this core microbial profile of spontaneous beer fermentations as a target for production control points and quality standards for these beers. PMID:22530036
Bohus, Veronika; Tóth, Erika M; Székely, Anna J; Makk, Judit; Baranyi, Krisztián; Patek, Gábor; Schunk, János; Márialigeti, Károly
2010-12-01
Ultra pure waters (UPW), characterized by extremely low salt and nutrient concentrations, can suffer from microbial contamination which causes biofouling and biocorrosion, possibly leading to reduced lifetime and increased operational costs. Samples were taken from an ultra pure supply water producing plant of a power plant. Scanning electron microscopic examination was carried out on the biofilms formed in the system. Biofilm, ion exchange resin, and water samples were characterized by culture-based methods and molecular fingerprinting (terminal restriction fragment length polymorphism [T-RFLP] analysis and molecular cloning). Identification of bacteria was based on 16S rDNA sequence comparison. A complex microbial community structure was revealed. Nearly 46% of the clones were related to as yet uncultured bacteria. The community profiles of the water samples were the most diverse and most of bacteria were recruited from bacterial communities of tube surface and ion exchange resin biofilms. Microbiota of different layers of the mixed bed ion exchange resin showed the highest similarity. Most of the identified taxa (dominated by β-Proteobacteria) could take part in microbially influenced corrosion. Copyright © 2010 Elsevier Ltd. All rights reserved.
Wan, Rui; Yang, Yuyin; Sun, Weimin; Wang, Zhao; Xie, Shuguang
2014-02-01
The objective of the present study was to investigate the impact of ammonia and nitrate nitrogen sources on simazine biodegradation by Arthrobacter sp. strain SD1 and the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in non-agricultural soil. Soil microcosms with different treatments were constructed for herbicide biodegradation test. The relative abundance of the strain SD1 and the structures of AOA and AOB communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. The co-existence of two inorganic nitrogen sources (ammonia and nitrate) had certain impact on simazine dissipation by the strain SD1. Bioaugmentation could induce a shift in the community structures of both AOA and AOB, but AOA were more responsive. Nitrogen application had significant impacts on AOA and AOB communities in bioaugmented soils. Moreover, in non-bioaugmented soil, the community structure of AOA, instead of AOB, could be quickly recovered after herbicide application. This study could add some new insights towards the impacts of nitrogen sources on s-triazine bioremediation and ammonia-oxidizing microorganisms in soil ecosystem.
Dynamics of microbial communities in untreated and autoclaved food waste anaerobic digesters.
Blasco, Lucia; Kahala, Minna; Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka; Joutsjoki, Vesa
2014-10-01
This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Caldwell Eldridge, Sara L.; Driscoll, Conner; Dreher, Theo W.
2017-06-05
Monitoring the community structure and metabolic activities of cyanobacterial blooms in Upper Klamath Lake, Oregon, is critical to lake management because these blooms degrade water quality and produce toxic microcystins that are harmful to humans, domestic animals, and wildlife. Genetic tools, such as DNA fingerprinting by terminal restriction fragment length polymorphism (T-RFLP) analysis, high-throughput DNA sequencing (HTS), and real-time, quantitative polymerase chain reaction (qPCR), provide more sensitive and rapid assessments of bloom ecology than traditional techniques. The objectives of this study were (1) to characterize the microbial community at one site in Upper Klamath Lake and determine changes in the cyanobacterial community through time using T-RFLP and HTS in comparison with traditional light microscopy; (2) to determine relative abundances and changes in abundance over time of toxigenic Microcystis using qPCR; and (3) to determine relative abundances and changes in abundance over time of Aphanizomenon, Microcystis, and total cyanobacteria using qPCR. T-RFLP analysis of total cyanobacteria showed a dominance of only one or two distinct genotypes in samples from 2013, but results of HTS in 2013 and 2014 showed more variations in the bloom cycle that fit with the previous understanding of bloom dynamics in Upper Klamath Lake and indicated that potentially toxigenic Microcystis was more prevalent in 2014 than in years prior. The qPCR-estimated copy numbers of all target genes were higher in 2014 than in 2013, when microcystin concentrations also were higher. Total Microcystis density was shown with qPCR to be a better predictor of late-season increases in microcystin concentrations than the relative proportions of potentially toxigenic cells. In addition, qPCR targeting Aphanizomenon at one site in Upper Klamath Lake indicated a moderate bloom of this species (corresponding to chlorophyll a concentrations between approximately 75 and 200 micrograms per liter) from mid-June to mid-August, 2014. After August 18, the Aphanizomenon bloom was overtaken by Microcystis late in the season as microcystin concentrations peaked. Overall, results of this study showed how DNA-based, genetic methods may provide rapid and sensitive diagnoses for the presence of toxigenic cyanobacteria and that they are useful for general monitoring or ecological studies and identification of cyanobacterial community members in complex aquatic habitats. These same methods can also be used to simultaneously address spatial (horizontal and vertical) and temporal variation and under different conditions. Additionally, with some modifications, the same techniques can be applied to different sample types, including water, sediment, and tissue.
C/N Ratio Drives Soil Actinobacterial Cellobiohydrolase Gene Diversity
Prendergast-Miller, Miranda T.; Poonpatana, Pabhon; Farrell, Mark; Bissett, Andrew; Macdonald, Lynne M.; Toscas, Peter; Richardson, Alan E.; Thrall, Peter H.
2015-01-01
Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle. PMID:25710367
Ferrando, Lucía; Fernández Scavino, Ana
2015-09-01
Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui
2017-02-01
Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (Y PHA/S ) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed. Copyright © 2016. Published by Elsevier B.V.
Novel Phenanthrene-Degrading Bacteria Identified by DNA-Stable Isotope Probing
Luo, Chunling; Zhang, Dayi; Zhang, Gan
2015-01-01
Microorganisms responsible for the degradation of phenanthrene in a clean forest soil sample were identified by DNA-based stable isotope probing (SIP). The soil was artificially amended with either 12C- or 13C-labeled phenanthrene, and soil DNA was extracted on days 3, 6 and 9. Terminal restriction fragment length polymorphism (TRFLP) results revealed that the fragments of 219- and 241-bp in HaeIII digests were distributed throughout the gradient profile at three different sampling time points, and both fragments were more dominant in the heavy fractions of the samples exposed to the 13C-labeled contaminant. 16S rRNA sequencing of the 13C-enriched fraction suggested that Acidobacterium spp. within the class Acidobacteria, and Collimonas spp. within the class Betaproteobacteria, were directly involved in the uptake and degradation of phenanthrene at different times. To our knowledge, this is the first report that the genus Collimonas has the ability to degrade PAHs. Two PAH-RHDα genes were identified in 13C-labeled DNA. However, isolation of pure cultures indicated that strains of Staphylococcus sp. PHE-3, Pseudomonas sp. PHE-1, and Pseudomonas sp. PHE-2 in the soil had high phenanthrene-degrading ability. This emphasizes the role of a culture-independent method in the functional understanding of microbial communities in situ. PMID:26098417
Homonnay, Zalán G; Török, György; Makk, Judit; Brumbauer, Anikó; Major, Eva; Márialigeti, Károly; Tóth, Erika
2014-07-01
Bacterial communities of a bank-filtered drinking water system were investigated by aerobic cultivation and clone library analysis. Moreover, bacterial communities were compared using sequence-aided terminal restriction fragment length polymorphism (T-RFLP) fingerprinting at ten characteristic points located at both the collecting and the distributing part of the water supply system. Chemical characteristics of the samples were similar, except for the presence of chlorine residuals in the distribution system and increased total iron concentration in two of the samples. Assimilable organic carbon (AOC) concentration increased within the collection system, it was reduced by chlorination and it increased again in the distribution system. Neither fecal indicators nor pathogens were detected by standard cultivation techniques. Chlorination reduced bacterial diversity and heterotrophic plate counts. Community structures were found to be significantly different before and after chlorination: the diverse communities in wells and the collection system were dominated by chemolithotrophic (e.g., Gallionella and Nitrospira) and oligocarbophilic-heterotrophic bacteria (e.g., Sphingomonas, Sphingopyxis, and Bradyrhizobium). After chlorination in the distribution system, the most characteristic bacterium was related to the facultative methylotrophic Methylocella spp. Communities changed within the distribution system too, Mycobacterium spp. or Sphingopyxis spp. became predominant in certain samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shirey, T B; Thacker, R W; Olson, J B
2012-06-01
Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.
Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina
2014-01-01
The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M.; de Bruijn, Irene
2016-01-01
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture. PMID:26805821
Liu, Yiying; Zachow, Christin; Raaijmakers, Jos M; de Bruijn, Irene
2016-01-21
Animals and plants are increasingly threatened by emerging fungal and oomycete diseases. Amongst oomycetes, Saprolegnia species cause population declines in aquatic animals, especially fish and amphibians, resulting in significant perturbation in biodiversity, ecological balance and food security. Due to the prohibition of several chemical control agents, novel sustainable measures are required to control Saprolegnia infections in aquaculture. Previously, fungal community analysis by terminal restriction fragment length polymorphism (T-RFLP) revealed that the Ascomycota, specifically the genus Microdochium, was an abundant fungal phylum associated with salmon eggs from a commercial fish farm. Here, phylogenetic analyses showed that most fungal isolates obtained from salmon eggs were closely related to Microdochium lycopodinum/Microdochium phragmitis and Trichoderma viride species. Phylogenetic and quantitative PCR analyses showed both a quantitative and qualitative difference in Trichoderma population between diseased and healthy salmon eggs, which was not the case for the Microdochium population. In vitro antagonistic activity of the fungi against Saprolegnia diclina was isolate-dependent; for most Trichoderma isolates, the typical mycoparasitic coiling around and/or formation of papilla-like structures on S. diclina hyphae were observed. These results suggest that among the fungal community associated with salmon eggs, Trichoderma species may play a role in Saprolegnia suppression in aquaculture.
Hong, Ji-Young; F. Sato, Eisuke; Nishikawa, Tomoko; Hiramoto, Keiichi; Inoue, Masayasu
2009-01-01
We previously reported that the plasma level of endotoxin and colonic expression of IgA in the mouse increased with obstructive jaundice induced by bile duct ligation (BDL). To elucidate the mechanism of the BDL-induced increase, we analyzed the effect of BDL on intestinal flora in wild type and inducible nitric oxide synthase (iNOS)-deficient mice (iNOS−/−) using the terminal restriction fragment length polymorphism analysis (T-RFLP) and 16S rDNA clone libraries. The amounts of bacterial DNA detected in fecal samples from both animal groups pretreated with antibiotics were extremely low as compared with untreated groups. We found that the profiles of enteric bacteria changed markedly after BDL. The bacterial composition is significantly different between not only wild type and iNOS−/− mice but also those before and after BDL, respectively. Among enteric bacteria examined, Lactobacillus murinus was found to increase markedly after BDL in rectum of both animal groups. However, Escherichia coli markedly increased after BDL in the iNOS−/− mice. These findings suggest that profiles of enteric flora change markedly in animals during obstructive jaundice by some mechanism that is affected by bile constituents and iNOS-derived NO. PMID:19308270
Cai, Xianlei; Yao, Ling; Gao, Guang; Xie, Yinfeng; Zhang, Yingying; Tang, Xiangming
2016-06-01
To investigate the effects of water column nutrient loading on epiphytic bacteria, we determined the abundance and community composition of epiphytic bacteria on the submerged macrophyte Vallisneria natans (Lour.) Hara during the growth season (June-October) under four different nutrient concentrations (nitrogen (N)-phosphorus (P) in mg L(-1) : 0.5-0.05, 1.0-0.1, 5.0-0.5, 10.0-1.0; hereafter NP-1, NP-2, NP-3, NP-4, respectively), using epifluorescence microscopy method and terminal restriction fragment length polymorphism (T-RFLP) analysis, respectively. Relative to low nutrient conditions (NP-1), there was no significant effect on the epiphytic bacterial community, and even a decrease in the number of epiphytic bacteria, which linked to the well growth status of host macrophytes at moderate nutrient conditions (NP-2). However, further nutrient enrichment induced significant increase in the abundance of epiphytic bacteria, and marked changes in the community structures of epiphytic bacteria. Furthermore, at high nutrient conditions, epiphytic bacterial communities varied widely temporally, and were not stable compared with those at the lower nutrient conditions. These results indicated that the effects of nutrient enrichment on epiphytic bacteria were nonlinear and dependent on the nutrient concentrations in the water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Effect of lignite humic acid on soil ammonia oxidizing archaea community].
Dong, Lianhua; Li, Baozhen; Yuan, Hongli; Scow, Kate M
2010-06-01
To illuminate the impact of humic acid (HA) on soil ammonia oxidizing archaea and then reveal the effect of HA on soil nitrogen cycle. Two humic acids (cHA and bHA) were added into the soil amended with urea. Community changes of ammonia oxidizing archaea (AOA) and total archaea were studied with terminal restricted fragment length polymorphism (T-RFLP) and real time PCR in the microcosm experiment. We found that the AOA population size increased significantly and AOA community changed greatly in the urea only treatment. However, HA could inhibit the increase of AOA population, moreover, HA could buffer the change in AOA community showed by canonical correspondence analysis (CCA) result. On the other hand, the total archaeal population decreased significantly in the urea only treatment, but stabilized in the urea with HA treatments, which indicated HA could eliminate the toxicity of urea to total archaea. CCA results showed that incubation time was the most important factor for the total archaeal community, and partial CCA (pCCA, when time as a covariable) result demonstrated that cHA was the most important environmental variable for total archaeal community. These results showed that HA diminished ammonia loss by inhibiting the increase of AOA competing with plant for ammonia, thus HA can increase the urea efficiency.
Chen, Yong-Liang; Hu, Hang-Wei; Han, Hong-Yan; Du, Yue; Wan, Shi-Qiang; Xu, Zhu-Wen; Chen, Bao-Dong
2014-07-01
Based on a 6-year field trial in a temperate steppe in Inner Mongolia, we investigated the effects of nitrogen (N) and phosphorus (P) fertilization and mowing on the abundance and community compositions of ammonia-oxidizing Bacteria (AOB) and Archaea (AOA) upon early (May) and peak (August) plant growth using quantitative PCR (qPCR), terminal-restriction fragment length polymorphism (T-RFLP), cloning and sequencing. The results showed that N fertilization changed AOB community composition and increased AOB abundance in both May and August, but significantly decreased AOA abundance in May. By contrast, P fertilization significantly influenced AOB abundance only in August. Mowing significantly decreased AOA abundance and had little effect on AOA community compositions in May, while significantly influencing AOB abundance in both May and August, Moreover, AOA and AOB community structures showed obvious seasonal variations between May and August. Phylogenetic analysis showed that all AOA sequences fell into the Nitrososphaera cluster, and the AOB community was dominated by Nitrosospira Cluster 3. The results suggest that fertilization and mowing play important roles in affecting the abundance and community compositions of AOA and AOB. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Wafula, Denis; White, John R.; Canion, Andy; Jagoe, Charles; Pathak, Ashish
2015-01-01
Freshwater scarcity and regulations on wastewater disposal have necessitated the reuse of treated wastewater (TWW) for soil irrigation, which has several environmental and economic benefits. However, TWW irrigation can cause nutrient loading to the receiving environments. We assessed bacterial community structure and associated biogeochemical changes in soil plots irrigated with nitrate-rich TWW (referred to as pivots) for periods ranging from 13 to 30 years. Soil cores (0 to 40 cm) were collected in summer and winter from five irrigated pivots and three adjacently located nonirrigated plots. Total bacterial and denitrifier gene abundances were estimated by quantitative PCR (qPCR), and community structure was assessed by 454 massively parallel tag sequencing (MPTS) of small-subunit (SSU) rRNA genes along with terminal restriction fragment length polymorphism (T-RFLP) analysis of nirK, nirS, and nosZ functional genes responsible for denitrification of the TWW-associated nitrate. Soil physicochemical analyses showed that, regardless of the seasons, pH and moisture contents (MC) were higher in the irrigated (IR) pivots than in the nonirrigated (NIR) plots; organic matter (OM) and microbial biomass carbon (MBC) were higher as a function of season but not of irrigation treatment. MPTS analysis showed that TWW loading resulted in the following: (i) an increase in the relative abundance of Proteobacteria, especially Betaproteobacteria and Gammaproteobacteria; (ii) a decrease in the relative abundance of Actinobacteria; (iii) shifts in the communities of acidobacterial groups, along with a shift in the nirK and nirS denitrifier guilds as shown by T-RFLP analysis. Additionally, bacterial biomass estimated by genus/group-specific real-time qPCR analyses revealed that higher numbers of total bacteria, Acidobacteria, Actinobacteria, Alphaproteobacteria, and the nirS denitrifier guilds were present in the IR pivots than in the NIR plots. Identification of the nirK-containing microbiota as a proxy for the denitrifier community indicated that bacteria belonged to alphaproteobacteria from the Rhizobiaceae family within the agroecosystem studied. Multivariate statistical analyses further confirmed some of the above soil physicochemical and bacterial community structure changes as a function of long-term TWW application within this agroecosystem. PMID:26253672
Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark
2014-09-23
Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats.
Lynn, Tin Mar; Liu, Qiong; Hu, Yajun; Yuan, Hongzhao; Wu, Xiaohong; Khai, Aye Aye; Wu, Jinshui; Ge, Tida
2017-07-01
Studying shifts in microbial communities under different land use can help in determining the impact of land use on microbial diversity. In this study, we analyzed four different land-use types to determine their bacterial and archaeal diversity and abundance. Three natural ecosystems, that is, wetland (WL), grassland (GL), and forest (FR) soils, and one agricultural soil, that is, tea plantation (TP) soil, were investigated to determine how land use shapes bacterial and archaeal diversity. For this purpose, molecular analyses, such as quantitative polymerase chain reaction (Q-PCR), 16S rRNA gene sequencing, and terminal restriction fragment length polymorphism (T-RFLP), were used. Soil physicochemical properties were determined, and statistical analyses were performed to identify the key factors affecting microbial diversity in these soils. Phylogenetic affiliations determined using the Ribosomal Database Project (RDP) database and T-RFLP revealed that the soils had differing bacterial diversity. WL soil was rich in only Proteobacteria, whereas GR soil was rich in Proteobacteria, followed by Actinobacteria. FR soil had higher abundance of Chloroflexi species than these soils. TP soil was rich in Actinobacteria, followed by Chloroflexi, Acidobacteria, Proteobacteria, and Firmicutes. The archaeal diversity of GL and FR soils was similar in that most of their sequences were closely related to Nitrososphaerales (Thaumarchaeota phylum). In contrast, WL soil, followed by TP soil, had greater archaeal diversity than other soils. Eight different archaeal classes were found in WL soil, and Pacearchaeota class was the richest one. The abundance of bacterial and archaeal 16S rRNA gene copies in WL and GL soils was significantly higher than that in FR and TP soils. Redundancy analysis showed that bacterial diversity was influenced by abiotic factors, e.g., total organic carbon and pH, whereas total nitrogen, pH, and cation exchange capacity (CEC) significantly affected archaeal community composition. Pearson correlation analysis showed that bacterial and archaeal 16S rRNA gene abundance had the highest correlation with clay content (r > 0.905, P < 0.01), followed by total-P, CEC, pH, and silt (%). These results will lead to more comprehensive understanding of how land use affects microbial distribution.
Culturability as an indicator of succession in microbial communities
NASA Technical Reports Server (NTRS)
Garland, J. L.; Cook, K. L.; Adams, J. L.; Kerkhof, L.
2001-01-01
Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to maintenance occurs with time. Results from this work indicate that the percentage of culturable cells may be a useful method for assessing the successional state of microbial communities.
Richardson, Ruth E; Bhupathiraju, Vishvesh K; Song, Donald L; Goulet, Tanuja A; Alvarez-Cohen, Lisa
2002-06-15
An anaerobic microbial consortium (referred to as ANAS) that reductively dechlorinates trichloroethene (TCE) completely to ethene with the transient production of cisdichloroethene (cDCE) and vinyl chloride was enriched from contaminated soil obtained from Alameda Naval Air Station. ANAS uses lactate as its electron donor and has been functionally stable for over 2 years. Following a brief exposure to oxygen, a subculture (designated VCC) derived from ANAS could dechlorinate TCE only to vinyl chloride with lactate as its electron donor. Three molecular methods were used concurrently to characterize the community structure of ANAS and VCC: clone library construction/clone sequencing, terminal restriction fragment length polymorphism (T-RFLP) analysis, and fluorescent in situ hybridization (FISH) with rRNA probes. The community structure of ANAS did not change significantly over the course of a single feeding/dechlorination cycle, and only minor fluctuations occurred over many feeding cycles spanning the course of 1 year. Clone libraries and T-RFLP analyses suggested that ANAS was dominated by populations belonging to three phylogenetic groups: Dehalococcoides species, Desulfovibrio species, and members of the Clostridiaceae (within the low G + C Gram-positives). FISH results suggest that members of the Cytophaga/Flavobacterium/Bacteroides (CFB) cluster and high G + C Gram-positives (HGCs) were numerically important in ANAS despite their under-representation in the clone libraries. Parallel analyses of VCC samples suggested that Dehalococcoides species and Clostridiaceae were only minor populations in this community. Instead, VCC had increased populations of organisms in the beta and gamma subclasses of the Proteobacteria as well as significant populations of organisms in the CFB cluster. It is possible that symbiotic interactions are occurring between some of ANAS's phylogenetic groups under the enrichment conditions, including interspecies hydrogen transfer from Desulfovibrio species to Dehalococcoides species. However, the nucleic acid-based analyses performed here would need to be supplemented with chemical species data in order to test any hypotheses about functional roles of various community members. Additionally, these results suggest that an organism outside the Dehalococcoides genus may be capable of dechlorinating cDCE to vinyl chloride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee Kerkhof
The focus of our research was to provide a comprehensive study of the bacterioplankton populations off the coast of New Jersey near the Rutgers University marine field station using terminal restriction fragment polymorphism analysis (TRFLP) coupled to 16S rRNA genes for large data set studies. Our three revised objectives to this study became: (1) to describe bacterioplankton population dynamics in the Mid Atlantic Bight using TRFLP analysis of 16S rRNA genes. (2) to determine whether spatial and temporal factors are driving bacterioplankton community dynamics in the MAB using monthly samping along our transect line over a 2-year period. (3) tomore » identify dominant members of a coastal bacterioplankton population by clonal library analysis of 16S rDNA genes and sequencing of PCR product corresponding to specific TRFLP peaks in the data set. Although open ocean time-series sites have been areas of microbial research for years, relatively little was known about the population dynamics of bacterioplankton communities in the coastal ocean on kilometer spatial and seasonal temporal scales. To gain a better understanding of microbial community variability, monthly samples of bacterial biomass were collected in 1995-1996 along a 34-km transect near the Long-Term Ecosystem Observatory (LEO-15) off the New Jersey coast. Surface and bottom sampling was performed at seven stations along a transect line with depths ranging from 1 to 35m (n=178). The data revealed distinct temporal patterns among the bacterioplankton communities in the Mid-Atlantic Bight rather than grouping by sample location or depth (figure 2-next page). Principal components analysis models supported the temporal patterns. In addition, partial least squares regression modeling could not discern a significant correlation from traditional oceanographic physical and phytoplankton nutrient parameters on overall bacterial community variability patterns at LEO-15. These results suggest factors not traditionally measured during oceanographic studies are structuring coastal microbial communities.« less
Reith, Frank; Zammit, Carla M; Pohrib, Rebecca; Gregg, Adrienne L; Wakelin, Steven A
2015-11-01
This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Brito, Elcia M S; Villegas-Negrete, Norberto; Sotelo-González, Irene A; Caretta, César A; Goñi-Urriza, Marisol; Gassie, Claire; Hakil, Florence; Colin, Yannick; Duran, Robert; Gutiérrez-Corona, Felix; Piñón-Castillo, Hilda A; Cuevas-Rodríguez, Germán; Malm, Olaf; Torres, João P M; Fahy, Anne; Reyna-López, Georgina E; Guyoneaud, Rémy
2014-03-01
Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).
Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A
2015-03-01
Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Zammit, Carla M.; Pohrib, Rebecca; Gregg, Adrienne L.; Wakelin, Steven A.
2015-01-01
This study shows that the geogenic factors landform, lithology, and underlying mineral deposits (expressed by elevated metal concentrations in overlying soils) are key drivers of microbial community diversity in naturally metal-rich Australian soils with different land uses, i.e., agriculture versus natural bushland. One hundred sixty-eight soil samples were obtained from two metal-rich provinces in Australia, i.e., the Fifield Au-Pt field (New South Wales) and the Hillside Cu-Au-U rare-earth-element (REE) deposit (South Australia). Soils were analyzed using three-domain multiplex terminal-restriction-fragment-length-polymorphism (M-TRFLP) and PhyloChip microarrays. Geogenic factors were determined using field-mapping techniques and analyses of >50 geochemical parameters. At Fifield, microbial communities differed significantly with geogenic factors and equally with land use (P < 0.05). At Hillside, communities in surface soils (0.03- to 0.2-m depth) differed significantly with landform and land use (P < 0.05). Communities in deeper soils (>0.2 m) differed significantly with lithology and mineral deposit (P < 0.05). Across both sites, elevated metal contents in soils overlying mineral deposits were selective for a range of bacterial taxa, most importantly Acidobacteria, Bacilli, Betaproteobacteria, and Epsilonproteobacteria. In conclusion, long-term geogenic factors can be just as important as land use in determining soil microbial community diversity. PMID:26341204
Zhou, Qiying; Liang, Hong; Yang, Senlin; Jiang, Xia
2015-04-01
Biological removal of hydrogen sulfide in biogas is an increasingly adopted alternative to the conventional physicochemical processes, because of its economic and environmental benefits. In this study, a microaerobic biofiltration system packed with polypropylene carrier was used to investigate the removal of high concentrations of H2S contained in biogas from an anaerobic digester. The results show that H2S in biogas was removed completely under different inlet concentrations of H2S from 2065 ± 234 to 7818 ± 131 ppmv, and the elimination capacity of H2S in the filter achieved about 122 g H2S/m(3)/h. It was observed that the content of CH4 in biogas increased after the biogas biodesulfurization process, which was beneficial for the further utilization of biogas. The elemental sulfur and sulfate were the main sulfur species of H2S degradation, and elemental sulfur was dominant (about 80 %) under high inlet H2S concentration. The results of terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in situ hybridization (FISH) show that the population of sulfide-oxidizing bacteria (SOB) species in the filter changed with different concentrations of H2S. The microaerobic biofiltration system allows the potential use of biogas and the recovery of elemental sulfur resource simultaneously.
Janjaroen, Dao; Ling, Fangqiong; Monroy, Guillermo; Derlon, Nicolas; Mogenroth, Eberhard; Boppart, Stephen A.; Liu, Wen-Tso; Nguyen, Thanh H.
2013-01-01
Mechanisms of Escherichia coli attachment on biofilms grown on PVC coupons were investigated. Biofilms were grown in CDC reactors using groundwater as feed solution over a period up to 27 weeks. Biofilm physical structure was characterized at the micro- and meso-scales using Scanning Electron Microscopy (SEM) and Optical Coherence Tomography (OCT), respectively. Microbial community diversity was analyzed with Terminal Restricted Fragment Length Polymorphism (T-RFLP). Both physical structure and microbial community diversity of the biofilms were shown to be changing from 2 weeks to 14 weeks, and became relatively stable after 16 weeks. A parallel plate flow chamber coupled with an inverted fluorescent microscope was also used to monitor the attachment of fluorescent microspheres and E. coli on clean PVC surfaces and biofilms grown on PVC surfaces for different ages. Two mechanisms of E. coli attachment were identified. The adhesion rate coefficients (kd) of E. coli on nascent PVC surfaces and 2-week biofilms increased with ionic strength. However, after biofilms grew for 8 weeks, the adhesion was found to be independent of solution chemistry. Instead, a positive correlation between kd and biofilm roughness as determined by OCT was obtained, indicating that the physical structure of biofilms could play an important role in facilitating the adhesion of E. coli cells. PMID:23497979
Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli
2015-08-01
Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.
Martinson, Guntars O; Pommerenke, Bianca; Brandt, Franziska B; Homeier, Jürgen; Burneo, Juan I; Conrad, Ralf
2018-02-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that emits substantial amounts of CH 4 . Tank bromeliads growing in the forest canopy (functional type-II tank bromeliads) were found to emit more CH 4 than tank bromeliads growing on the forest floor (functional type-I tank bromeliads) but the reasons for this difference and the underlying microbial CH 4 -cycling processes have not been studied. Therefore, we characterized archaeal communities in bromeliad tanks of the two different functional types in a neotropical montane forest of southern Ecuador using terminal-restriction fragment length polymorphism (T-RFLP) and performed tank-slurry incubations to measure CH 4 production potential, stable carbon isotope fractionation and pathway of CH 4 formation. The archaeal community composition was dominated by methanogens and differed between bromeliad functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens and hydrogenotrophic methanogenesis was the dominant methanogenic pathway among all bromeliads. The relative abundance of aceticlastic Methanosaetaceae and the relative contribution of aceticlastic methanogenesis increased in type-I tank bromeliads probably due to more oxic conditions in type-I than in type-II bromeliads leading to the previously observed lower in situ CH 4 emissions from type-I tank bromeliads but to higher CH 4 production potentials in type-I tank bromeliad slurries. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Sirisena, Kosala A; Daughney, Christopher J; Moreau-Fournier, Magali; Ryan, Ken G; Chambers, Geoffrey K
2013-12-01
Groundwater is a vital component of rural and urban water supplies in New Zealand. Although extensive monitoring of chemical and physical properties is conducted due to the high demand for this valuable resource, current information on its bacterial content is limited. However, bacteria provide an immense contribution to drive the biogeochemical processes in the groundwater ecosystem as in any other ecosystem. Therefore, a proper understanding of bacterial diversity is crucial to assess the effectiveness of groundwater management policies. In this study, we investigated the bacterial community structure in NZ groundwater at a national scale using the terminal restriction fragment length polymorphism (T-RFLP) molecular profiling tool and determined the relationships between bacterial diversity and groundwater chemistry, geological parameters and human impact. Considerable bacterial diversity was present and the community structures were strongly related to groundwater chemistry, and in particular to redox potential and human impact, reflecting their potential influence on determination of bacterial diversity. Further, the mean residence time of groundwater also showed relationships with bacterial community structure. These novel findings pertaining to community composition and its relationships with environmental parameters will provide a strong foundation for qualitative exploration of the bacterial diversity in NZ groundwater in relation to sustainable management of this valuable resource. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Noguchi, Mana; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki
2014-01-01
To identify the microorganisms involved in benzene degradation, DNA-stable isotope probing (SIP) with 13C-benzene was applied to a methanogenic benzene-degrading enrichment culture. Pyrosequencing of ribosomal RNA (rRNA) gene sequences revealed that the community structure was highly complex in spite of a 3-year incubation only with benzene. The culture degraded 98% of approximately 1 mM 13C-benzene and mineralized 72% of that within 63 d. The terminal restriction fragment length polymorphism (T-RFLP) profiles of the buoyant density fractions revealed the incorporation of 13C into two phylotypes after 64 d. These two phylotypes were determined to be Desulfobacterales- and Coriobacteriaceae-related bacteria by cloning and sequencing of the 16S rRNA gene in the 13C-labeled DNA abundant fraction. Comparative pyrosequencing analysis of the buoyant density fractions of 12C- and 13C-labeled samples indicated the incorporation of 13C into three bacterial and one archaeal OTUs related to Desulfobacterales, Coriobacteriales, Rhodocyclaceae, and Methanosarcinales. The first two OTUs included the bacteria detected by T-RFLP-cloning-sequencing analysis. Furthermore, time-resolved SIP analysis confirmed that the activity of all these microbes appeared at the earliest stage of degradation. In this methanogenic culture, Desulfobacterales- and Coriobacteriaceae-related bacteria were most likely to be the major benzene degraders. PMID:24909708
Kay, Catherine M.; Rowe, Owen F.; Rocchetti, Laura; Coupland, Kris; Hallberg, Kevin B.; Johnson, D. Barrie
2013-01-01
A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”). The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP) analysis). Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2) and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans). The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes. PMID:25371339
Balzano, Sergio; Marie, Dominique; Gourvil, Priscillia; Vaulot, Daniel
2012-08-01
The composition of photosynthetic pico and nanoeukaryotes was investigated in the North East Pacific and the Arctic Ocean with special emphasis on the Beaufort Sea during the MALINA cruise in summer 2009. Photosynthetic populations were sorted using flow cytometry based on their size and pigment fluorescence. Diversity of the sorted photosynthetic eukaryotes was determined using terminal-restriction fragment length polymorphism analysis and cloning/sequencing of the 18S ribosomal RNA gene. Picoplankton was dominated by Mamiellophyceae, a class of small green algae previously included in the prasinophytes: in the North East Pacific, the contribution of an Arctic Micromonas ecotype increased steadily northward becoming the only taxon occurring at most stations throughout the Beaufort Sea. In contrast, nanoplankton was more diverse: North Pacific stations were dominated by Pseudo-nitzschia sp. whereas those in the Beaufort Sea were dominated by two distinct Chaetoceros species as well as by Chrysophyceae, Pelagophyceae and Chrysochromulina spp.. This study confirms the importance of Arctic Micromonas within picoplankton throughout the Beaufort Sea and demonstrates that the photosynthetic picoeukaryote community in the Arctic is much less diverse than at lower latitudes. Moreover, in contrast to what occurs in warmer waters, most of the key pico- and nanoplankton species found in the Beaufort Sea could be successfully established in culture.
Klang, Johanna; Theuerl, Susanne; Szewzyk, Ulrich; Huth, Markus; Tölle, Rainer; Klocke, Michael
2015-01-01
This study investigated the development of the microbial community during a long-term (337 days) anaerobic digestion of maize and sugar beet silage, two feedstocks that significantly differ in their chemical composition. For the characterization of the microbial dynamics, the community profiling method terminal restriction fragment length polymorphism (TRFLP) in combination with a cloning-sequencing approach was applied. Our results revealed a specific adaptation of the microbial community to the supplied feedstocks. Based on the high amount of complex compounds, the anaerobic conversion rate of maize silage was slightly lower compared with the sugar beet silage. It was demonstrated that members from the phylum Bacteroidetes are mainly involved in the degradation of low molecular weight substances such as sugar, ethanol and acetate, the main compounds of the sugar beet silage. It was further shown that species of the genus Methanosaeta are highly sensitive against sudden stress situations such as a strong decrease in the ammonium nitrogen (NH4+-N) concentration or a drop of the pH value. In both cases, a functional compensation by members of the genera Methanoculleus and/or Methanosarcina was detected. However, the overall biomass conversion of both feedstocks proceeded efficiently as a steady state between acid production and consumption was recorded, which further resulted in an equal biogas yield. PMID:25712194
Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D
2016-06-01
Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.
[Effects of continuous cropping of vegetables on ammonia oxidizers community structure].
Meng, De-Long; Yang, Yang; Wu, Yan-Zheng; Wu, Min-Na; Qin, Hong-Ling; Zhu, Yi-Jun; Wei, Wen-Xue
2012-04-01
Investigations were conducted on the effects of intensive application of chemical fertilizers in crop production on soil nitrifier communities and the relationship between nitrifier communities and soil nitrification ability. Two series of vegetable soils were selected from Huangxing, Changsha, reflecting continuous vegetable cropping with about 20 years and new vegetable field with only about 2 years vegetable growing history. In each series five independent topsoils (0-20 cm) were sampled and each soil was a mixture of 10 cores randomly taken in the same field. Terminal restriction fragment length polymorphism (T-RFLP) and quantity PCR (Q-PCR) were used to determine the composition and abundance of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) communities. Results indicated that long-term and continuous vegetable cropping obviously changed the compositions of both AOB and AOA amoA gene, soil pH and Olsen-P content were the dominant factors affecting the composition of AOB amoA. In the vegetable soils, although the copy number of AOA amoA gene was about 5 times higher than AOB amoA gene, no significant correlation was detected between AOA amoA gene abundance and soil nitrification rate. It was not sure whether long-term and continuous vegetable cropping could shift the abundance of AOB and AOA, but it resulted in the enrichment of some dominant AOB species and increase of soil nitrification potential (PNF).
Zhou, Ren-Chao; Huang, Juan; Li, Ze-En; Li, Shu-Bin
2014-08-01
In the present study, terminal-restriction fragment length polymorphism (T-RFLP) technique was applied to assess the diversity and tissue distribution of the fungal endophyte communities of Alpinia officinarum collected from Longtang town in Xuwen county, Guangdong province, China, at which the pharmacological effect of the medicine plant is traditional considered to be the significantly higher than that in any other growth areas in China. A total of 28 distinct Terminal-Restriction Fragment (T-RFs) were detected with HhaI Mono-digestion targeted amplified fungal nuclear ribosomal internal transcribed spacer region sequences (rDNA ITS) from the root, rhizome, stem, and leaf internal tissues of A. officinarum plant, indicating that at least 28 distinct fungal species were able to colonize the internal tissue of the host plant. The rDNA ITS-T-RFLP profiles obtained from different tissues of the host plant were obvious distinct. And the numbers of total T-RFs, and the dominant T-RFs detected from various tissues were significantly different. Based on the obtained T-RFLP profiles, Shannon's diversity index and the Shannon's evenness index were calculated, which were significantly different among tissues (P < 0.05). Furthermore, two types of active chemicals, total volatile oils by water vapor distillation method and galangin by methanol extraction-HPLC method, were examined in the each tissue of the tested plant. Both of tested components were detected in all of the four tissues of the medicine plant with varying contents. And the highest was in rhizome tissue. Correlation analysis revealed there were significant negative correlations between both of the tested active components contents and calculated Shannon's diversity index, as well as the Shannon's evenness index of the fungal endophyte communities of the host plant (P = 0, Pearson correlation coefficient ≤ -0.962), and significant positive correlations between both of the tested active components contents and 325 bp dominant T-RF linkage to Pestalotiopsis (P = 0, Pearson correlation coefficient ≥ 0.975). In conclusion, A. officinarum is colonized by diverse fungal endophytes communities. The diversity of the fungal endophytes was found in the A. officinarum varied with differences of the tissue types of the host plants and was closely correlated with the accumulation of main active components, total volatile oils and galangin contents in the host plant tissue.
2013-01-01
Background The composition of the microbiota of the equine intestinal tract is complex. Determining whether the microbial composition of fecal samples is representative of proximal compartments of the digestive tract could greatly simplify future studies. The objectives of this study were to compare the microbial populations of the duodenum, ileum, cecum, colon and rectum (feces) within and between healthy horses, and to determine whether rectal (fecal) samples are representative of proximal segments of the gastrointestinal tract. Intestinal samples were collected from ten euthanized horses. 16S rRNA gene PCR-based TRFLP was used to investigate microbiota richness in various segments of the gastrointestinal tract, and dice similarity indices were calculated to compare the samples. Results Within horses large variations of microbial populations along the gastrointestinal tract were seen. The microbiota in rectal samples was only partially representative of other intestinal compartments. The highest similarity was obtained when feces were compared to the cecum. Large compartmental variations were also seen when microbial populations were compared between six horses with similar dietary and housing management. Conclusion Rectal samples were not entirely representative of intestinal compartments in the small or large intestine. This should be taken into account when designing studies using fecal sampling to assess other intestinal compartments. Similarity between horses with similar dietary and husbandry management was also limited, suggesting that parts of the intestinal microbiota were unique to each animal in this study. PMID:23497580
Ma, Betty W; Bokulich, Nicholas A; Castillo, Patricia A; Kananurak, Anchasa; Underwood, Mark A; Mills, David A; Bevins, Charles L
2012-01-01
The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals.
Zhang, Miao-miao; Liu, Yi; Sheng, Rong; Qin, Hong-ling; Wu, Yan-zheng; Wei, Wen-xue
2013-08-01
Taking a long-term fertilization experiment in Taoyuan Agro-ecosystem Research Station under Chinese Academy of Sciences as the platform, and selecting four treatments (no fertilization, CK; rice straw returning, C; nitrogen, phosphorus and potassium fertilization, NPK; and NPK+C) as the objects, soil samples were collected at the tillering, booting and maturing stages of rice, and the abundance, composition and diversity of nifH-containing bacterial community were measured by real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP), aimed to understand the effects of rice straw returning on the nifH-containing bacterial community in paddy soil. Compared with CK, treatments NPK+C and NPK increased the abundance of nifH-containing microorganisms significantly (except at tillering stage), and NPK+C had the highest abundance of nifH-containing microorganisms. Under the effects of long-term fertilization, the composition of nifH gene community in CK differed obviously from that in the other three treatments. The nifH composition had definite difference between C and NPK, but less difference between NPK and NPK+C. Long-term fertilization did not induce significant changes in nifH diversity. Therefore, long-term rice straw returning not only induced the changes of nifH gene community composition, but also resulted in a significant increase in the abundance of nifH-containing community, and hence, the increase of soil nitrogen fixing capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Zhang, Minglu; Jiang, Sunny; Tanuwidjaja, Dian; Voutchkov, Nikolay; Hoek, Eric M. V.; Cai, Baoli
2011-01-01
Seawater reverse osmosis (SWRO) membrane biofouling remains a common challenge in the desalination industry, but the marine bacterial community that causes membrane fouling is poorly understood. Microbial communities at different stages of treatment processes (intake, cartridge filtration, and SWRO) of a desalination pilot plant were examined by both culture-based and culture-independent approaches. Bacterial isolates were identified to match the genera Shewanella, Alteromonas, Vibrio, and Cellulophaga based on 16S rRNA gene sequencing analysis. The 16S rRNA gene clone library of the SWRO membrane biofilm showed that a filamentous bacterium, Leucothrix mucor, which belongs to the gammaproteobacteria, accounted for nearly 30% of the clone library, while the rest of the microorganisms (61.2% of the total clones) were related to the alphaproteobacteria. 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that bacteria colonizing the SWRO membrane represented a subportion of microbes in the source seawater; however, they were quite different from those colonizing the cartridge filter. The examination of five SWRO membranes from desalination plants located in different parts of the world showed that although the bacterial communities from the membranes were not identical to each other, some dominant bacteria were commonly observed. In contrast, bacterial communities in source seawater were significantly different based on location and season. Microbial profiles from 14 cartridge filters collected from different plants also revealed spatial trends. PMID:21551282
Landa, B B; Montes-Borrego, M; Aranda, S; Soriano, M A; Gómez, J A; Navas-Cortés, J A
2014-04-01
Nowadays, there is a tendency in olive production systems to reduce tillage or keep a vegetative cover to reduce soil erosion and degradation. However, there is scarce information on the effects of different soil management systems (SMS) in soil bacterial community composition of olive groves. In this study, we have evaluated the effects of soil type and different SMS implemented to control weeds in the structure and diversity of bacterial communities of 58 soils in the two geographic areas that best represent the organic olive production systems in Spain. Bacterial community composition assessed by frequency and intensity of occurrence of terminal restriction profiles (TRFs) derived from terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified 16S ribosomal deoxyribonucleic acid were strongly correlated with soil type/field site (Eutric/Calcaric) that differed mainly in soil particle size distribution and soil pH, followed by a strong effect of SMS, in that order. Canonical discriminant (CD) analysis of TRFs properly classified all of the olive orchard soils as belonging to their respective soil type or SMS. Furthermore, only a small set of TRFs were enough to clearly and significantly differentiate soil samples according to soil type or SMS. Those specific TRFs could be used as bioindicators to assess the effect of changes in SMS aimed to enhance soil quality in olive production systems. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Nunes Ferraz Júnior, Antônio Djalma; Etchebehere, Claudia; Zaiat, Marcelo
2015-08-01
Bio-hydrogen production from sugarcane vinasse in anaerobic up-flow packed-bed reactors (APBR) was evaluated. Four types of support materials, expanded clay (EC), charcoal (Ch), porous ceramic (PC), and low-density polyethylene (LDP) were tested as support for biomass attachment. APBR (working volume - 2.3 L) were operated in parallel at a hydraulic retention time of 24 h, an organic loading rate of 36.2 kg-COD m(-3) d(-1), at 25 °C. Maximum volumetric hydrogen production values of 509.5, 404, 81.4 and 10.3 mL-H2 d(-1) L(-1)reactor and maximum yields of 3.2, 2.6, 0.4 and 0.05 mol-H2 mol(-1) carbohydrates total, were observed during the monitoring of the reactors filled with LDP, EC, Ch and PC, respectively. Thus, indicating the strong influence of the support material on H2 production. LDP was the most appropriate material for hydrogen production among the materials evaluated. 16S rRNA gene by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis and scanning electron microscopy confirmed the selection of different microbial populations. 454-pyrosequencing performed on samples from APBR filled with LDP revealed the presence of hydrogen-producing organisms (Clostridium and Pectinatus), lactic acid bacteria and non-fermentative organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kiermeier, Andreas; Tamplin, Mark; May, Damian; Holds, Geoff; Williams, Michelle; Dann, Alison
2013-12-01
Packaging fresh lamb in a vacuum (VAC) versus a 100% CO2 modified atmosphere (MAP) may influence product shelf-life and the bacterial communities. While VAC is a common packing method and 100% CO2 MAP is used in some countries, there is little information about how these different techniques affect the growth of spoilage bacteria and sensory attributes of lamb. The aim of this study was to assess changes in microbiological and organoleptic properties, and determine differences in microbial communities by terminal restriction fragment length polymorphism (TRFLP) and 454 pyrosequencing, in bone-in (BI) and bone-out (BO) MAP- and VAC-packed lamb shoulders stored at -0.3 °C over 12 wk. VAC and MAP lamb shoulders were acceptable in sensory test scores over 12 wk of storage at -0.3 °C, despite total viable count (TVC) and lactic acid bacteria (LAB) levels increasing to 8 log10 CFU/cm(2) for VAC lamb and 4-6 log10 CFU/cm(2) for MAP lamb. Similar to the sensory results, there were no significant differences in microbial communities between BI and BO product. However, types of bacteria were different between VAC and MAP packaging. Specifically, while VAC shoulder became dominated by Carnobacterium spp. in the middle of the storage period, the MAP shoulder microbial population remained similar from the start until later storage times. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wan, Rui; Wang, Zhao; Xie, Shuguang
2014-02-15
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.
K.D. Jermstad; A.M. Reem; J.R. Henifin; N.C. Wheeler; D.B Neale
1994-01-01
A total of 225 new genetic loci [151 restriction fragment length polymorphisms (RFLP) and 74 random amplified polymorphic DNAs (RAPD)] in coastal Douglas- fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] have been identified using a three-generation outbred pedigree. The Mendelian inheritance of 16 RFLP loci and 29...
Restriction fragment length polymorphism among Israeli Holstein-Friesian dairy bulls.
Beckmann, J S; Kashi, Y; Hallerman, E M; Nave, A; Soller, M
1986-01-01
Israeli Holstein-Friesian dairy bulls were screened for restriction fragment length polymorphisms by hybridizing cloned DNA probes for bovine growth hormone, for chymosin, and for rat muscle beta-actin to restriction endonuclease-digested DNA immobilized on nitrocellulose filters. The population proved to be polymorphic at the growth hormone locus, with evidence consistent with the phenotypes being inherited in allelic fashion. A low level of polymorphism was also observed at one of the beta-actin gene family loci. The chymosin locus was monomorphic with the restriction enzymes utilized. The results illustrate the power of restriction fragment length polymorphism methodology in visualizing genetic variability in dairy cattle populations.
Molecular basis of length polymorphism in the human zeta-globin gene complex.
Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J
1983-01-01
The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667
Katz, B Z; Niederman, J C; Olson, B A; Miller, G
1988-02-01
DNA restriction fragment length polymorphisms of Epstein-Barr virus (EBV) DNA were used as a molecular epidemiological tool to study multiple isolates of virus from the same and different individuals. We studied 35 EBV isolates: 19 from seven immunocompromised children and 16 from seven college students with mononucleosis. Analysis of the fragment length polymorphisms in this collection of isolates permitted several conclusions. Sites of polymorphism were most often encountered in regions with repetitive DNA. Epidemiologically unrelated patients harbored viruses that could be readily distinguished; by contrast, two infants and their mothers harbored similar viruses. Isolates from different sites in the same patient were similar. Variations between different clinical isolates of EBV mimic those found between different laboratory strains of the virus. Fragment length polymorphisms thus provide a useful marker for studying transmission and pathogenesis of EBV infections.
Scavino, Ana Fernandez; Ji, Yang; Pump, Judith; Klose, Melanie; Claus, Peter; Conrad, Ralf
2013-09-01
Irrigated rice fields in Uruguay are temporarily established on soils used as cattle pastures. Typically, 4 years of cattle pasture are alternated with 2 years of irrigated rice cultivation. Thus, oxic upland conditions are rotated with seasonally anoxic wetland conditions. Only the latter conditions are suitable for the production of CH4 from anaerobic degradation of organic matter. We studied soil from a permanent pasture as well as soils from different years of the pasture-rice rotation hypothesizing that activity and structure of the bacterial and archaeal communities involved in production of CH4 change systematically with the duration of either oxic or anoxic conditions. Soil samples were taken from drained fields, air-dried and used for the experiments. Indeed, methanogenic archaeal gene copy numbers (16S rRNA, mcrA) were lower in soil from the permanent pasture than from the pasture-rice alternation fields, but within the latter, there was no significant difference. Methane production started to accumulate after 16 days and 7 days of anoxic incubation in soil from the permanent pasture and the pasture-rice alternation fields respectively. Then, CH4 production rates were slightly higher in the soils used for pasture than for rice production. Analysis of δ(13) C in CH4, CO2 and acetate in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis, indicated that CH4 was mainly (58-75%) produced from acetate, except in the permanent pasture soil (42%). Terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rRNA genes showed no difference among the soils from the pasture-rice alternation fields with Methanocellaceae and Methanosarcinaceae as the main groups of methanogens, but in the permanent pasture soil, Methanocellaceae were relatively less abundant. T-RFLP analysis of bacterial 16S rRNA genes allowed the distinction of permanent pasture and fields from the pasture-rice rotation, but nevertheless with a high similarity. Pyrosequencing of bacterial 16S rRNA genes generally revealed Firmicutes as the dominant bacterial phylum, followed by Proteobacteria, Acidobacteria and Actinobacteria. We conclude that a stable methanogenic microbial community established once pastures have been turned into management by pasture-rice alternation despite the fact that 2 years of wetland conditions were followed by 4 years of upland conditions that were not suitable for CH4 production. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Can Probiotics Improve the Environmental Microbiome and Resistome of Commercial Poultry Production?
Pedroso, Adriana A.; Hurley-Bacon, Anne L.; Zedek, Andrea S.; Kwan, Tiffany W.; Jordan, Andrea P. O.; Avellaneda, Gloria; Hofacre, Charles L.; Oakley, Brian B.; Collett, Stephen R.; Maurer, John J.; Lee, Margie D.
2013-01-01
Food animal production systems have become more consolidated and integrated, producing large, concentrated animal populations and significant amounts of fecal waste. Increasing use of manure and litter as a more “natural” and affordable source of fertilizer may be contributing to contamination of fruits and vegetables with foodborne pathogens. In addition, human and animal manure have been identified as a significant source of antibiotic resistance genes thereby serving as a disseminator of resistance to soil and waterways. Therefore, identifying methods to remediate human and animal waste is critical in developing strategies to improve food safety and minimize the dissemination of antibiotic resistant bacteria. In this study, we sought to determine whether withdrawing antibiotic growth promoters or using alternatives to antibiotics would reduce the abundance of antibiotic resistance genes or prevalence of pathogens in poultry litter. Terminal restriction fragment length polymorphism (T-RFLP) paired with high throughput sequencing was used to evaluate the bacterial community composition of litter from broiler chickens that were treated with streptogramin growth-promoting antibiotics, probiotics, or prebiotics. The prevalence of resistance genes and pathogens was determined from sequencing results or PCR screens of litter community DNA. Streptogramin antibiotic usage did not elicit statistically significant differences in Shannon diversity indices or correlation coefficients among the flocks. However, T-RFLP revealed that there were inter-farm differences in the litter composition that was independent of antibiotic usage. The litter from all farms, regardless of antibiotic usage, contained streptogramin resistance genes (vatA, vatB, and vatE), macrolide-lincosamide-streptogramin B resistance genes (ermA and ermB), the tetracycline resistance gene tetM and class 1 integrons. There was inter-farm variability in the distribution of vatA and vatE with no statistically significant differences with regards to usage. Bacterial diversity was higher in litter when probiotics or prebiotics were administered to flocks but as the litter aged, diversity decreased. No statistically signficant differences were detected in the abundance of class 1 integrons where 3%–5% of the community was estimated to harbor a copy. Abundance of pathogenic Clostridium species increased in aging litter despite the treatment while the abundance of tetracycline-resistant coliforms was unaffected by treatment. However some treatments decreased the prevalence of Salmonella. These findings suggest that withdrawing antibiotics or administering alternatives to antibiotics can change the litter bacterial community and reduce the prevalence of some pathogenic bacteria, but may not immediately impact the prevalence of antibiotic resistance. PMID:24071920
Can probiotics improve the environmental microbiome and resistome of commercial poultry production?
Pedroso, Adriana A; Hurley-Bacon, Anne L; Zedek, Andrea S; Kwan, Tiffany W; Jordan, Andrea P O; Avellaneda, Gloria; Hofacre, Charles L; Oakley, Brian B; Collett, Stephen R; Maurer, John J; Lee, Margie D
2013-09-25
Food animal production systems have become more consolidated and integrated, producing large, concentrated animal populations and significant amounts of fecal waste. Increasing use of manure and litter as a more "natural" and affordable source of fertilizer may be contributing to contamination of fruits and vegetables with foodborne pathogens. In addition, human and animal manure have been identified as a significant source of antibiotic resistance genes thereby serving as a disseminator of resistance to soil and waterways. Therefore, identifying methods to remediate human and animal waste is critical in developing strategies to improve food safety and minimize the dissemination of antibiotic resistant bacteria. In this study, we sought to determine whether withdrawing antibiotic growth promoters or using alternatives to antibiotics would reduce the abundance of antibiotic resistance genes or prevalence of pathogens in poultry litter. Terminal restriction fragment length polymorphism (T-RFLP) paired with high throughput sequencing was used to evaluate the bacterial community composition of litter from broiler chickens that were treated with streptogramin growth-promoting antibiotics, probiotics, or prebiotics. The prevalence of resistance genes and pathogens was determined from sequencing results or PCR screens of litter community DNA. Streptogramin antibiotic usage did not elicit statistically significant differences in Shannon diversity indices or correlation coefficients among the flocks. However, T-RFLP revealed that there were inter-farm differences in the litter composition that was independent of antibiotic usage. The litter from all farms, regardless of antibiotic usage, contained streptogramin resistance genes (vatA, vatB, and vatE), macrolide-lincosamide-streptogramin B resistance genes (ermA and ermB), the tetracycline resistance gene tetM and class 1 integrons. There was inter-farm variability in the distribution of vatA and vatE with no statistically significant differences with regards to usage. Bacterial diversity was higher in litter when probiotics or prebiotics were administered to flocks but as the litter aged, diversity decreased. No statistically significant differences were detected in the abundance of class 1 integrons where 3%-5% of the community was estimated to harbor a copy. Abundance of pathogenic Clostridium species increased in aging litter despite the treatment while the abundance of tetracycline-resistant coliforms was unaffected by treatment. However some treatments decreased the prevalence of Salmonella. These findings suggest that withdrawing antibiotics or administering alternatives to antibiotics can change the litter bacterial community and reduce the prevalence of some pathogenic bacteria, but may not immediately impact the prevalence of antibiotic resistance.
Rogers, Geraint B; Daniels, Thomas WV; Tuck, Andrew; Carroll, Mary P; Connett, Gary J; David, Gondi JP; Bruce, Kenneth D
2009-01-01
Background Drawing from previous studies, the traditional routine diagnostic microbiology evaluation of samples from chronic respiratory conditions may provide an incomplete picture of the bacteria present in airways disease. Here, the aim was to determine the extent to which routine diagnostic microbiology gave a different assessment of the species present in sputa when analysed by using culture-independent assessment. Methods Six different media used in routine diagnostic microbiology were inoculated with sputum from twelve patients. Bacterial growth on these plates was harvested and both RNA and DNA extracted. DNA and RNA were also extracted directly from the same sample of sputum. All nucleic acids served as templates for PCR and reverse transcriptase-PCR amplification of "broad range" bacterial 16S rRNA gene regions. The regions amplified were separated by Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling and compared to assess the degree of overlap between approaches. Results A mean of 16.3 (SD 10.0) separate T-RF band lengths in the profiles from each sputum sample by Direct Molecular Analysis, with a mean of 8.8 (SD 5.8) resolved by DNA profiling and 13.3 (SD 8.0) resolved by RNA profiling. In comparison, 8.8 (SD 4.4) T-RF bands were resolved in profiles generated by Culture-derived Molecular Analysis. There were a total of 184 instances of T-RF bands detected in the direct sputum profiles but not in the corresponding culture-derived profiles, representing 83 different T-RF band lengths. Amongst these were fifteen instances where the T-RF band represented more than 10% of the total band volume (with a mean value of 23.6%). Eight different T-RF band lengths were resolved as the dominant band in profiles generated directly from sputum. Of these, only three were detected in profiles generated from the corresponding set of cultures. Conclusion Due to their focus on isolation of a small group of recognised pathogens, the use of culture-dependent methods to analyse samples from chronic respiratory infections can provide a restricted understanding of the bacterial species present. The use of a culture-independent molecular approach here identifies that there are many bacterial species in samples from CF and COPD patients that may be clinically relevant. PMID:19368727
Sorensen, Patrick O.; Germino, Matthew J.; Feris, Kevin P.
2013-01-01
Precipitation amount and seasonal timing determine the duration and distribution of water available for plant and microbial activity in the cold desert sagebrush steppe. In this study, we sought to determine if a sustained shift in the amount and timing of precipitation would affect soil microbial diversity, community composition, and soil carbon (C) storage. Field plots were irrigated (+200 mm) during the dormant or growing-season for 17 years. Microbial community responses were assessed over the course of a year at two depths (15–20 cm, 95–100 cm) by terminal restriction fragment length polymorphism (T-RFLP), along with co-occurring changes in plant cover and edaphic properties. Bacterial richness, Shannon Weaver diversity, and composition in shallow soils (15–20 cm) as well as evenness in deep soils (95–100 cm) differed across irrigation treatments during July. Irrigation timing affected fungal community diversity and community composition during the dormant season and most strongly in deep soils (95–100 cm). Dormant-season irrigation increased the ratio of shrubs to forbs and reduced soil C in shallow soils by 16% relative to ambient conditions. It is unclear whether or not soil C will continue to decline with continued treatment application or if microbial adaptation could mitigate sustained soil C losses. Future changes in precipitation timing will affect soil microbes in a seasonally dependent manner and be coupled to co-varying effects of water content on vegetation and soil C.
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-02-11
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobsson, H.; Jernberg, C.; Andersson, A.F.
Antibiotic administration is the standard treatment for the bacterium Helicobacter pylori, the main causative agent of peptic ulcer disease and gastric cancer. However, the long-term consequences of this treatment on the human indigenous microbiota are relatively unexplored. Here we studied short- and long-term effects of clarithromycin and metronidazole treatment, a commonly used therapy regimen against H. pylori, on the indigenous microbiota in the throat and in the lower intestine. The bacterial compositions in samples collected over a four year period were monitored by analyzing the 16S rRNA gene using 454-based pyrosequencing and terminal-restriction fragment length polymorphism (T-RFLP). While the microbialmore » communities of untreated control subjects were relatively stable over time, dramatic shifts were observed one week after antibiotic treatment with reduced bacterial diversity in all treated subjects in both locations. While the microbiota of the different subjects responded uniquely to the antibiotic treatment some general trends could be observed; such as a dramatic decline in Actinobacteria in both throat and feces immediately after treatment. Although the diversity of the microbiota subsequently recovered to resemble the pre treatment states, the microbiota remained perturbed in some cases for up to four years post treatment. In addition, four years after treatment high levels of the macrolide resistance gene erm(B) were found, indicating that antibiotic resistance, once selected for, can persist for longer periods of time than previously recognized. This highlights the importance of a restrictive antibiotic usage in order to prevent subsequent treatment failure and potential spread of antibiotic resistance.« less
Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun
2016-07-01
Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens.
Rändler, Manuela; Schmid, Michael; Junge, Helmut; Borriss, Rainer; Hartmann, Anton; Grosch, Rita
2013-01-01
The soil-borne pathogen Rhizoctonia solani is responsible for crop losses on a wide range of important crops worldwide. The lack of effective control strategies and the increasing demand for organically grown food has stimulated research on biological control. The aim of the present study was to evaluate the rhizosphere competence of the commercially available inoculant Bacillus amyloliquefaciens FZB42 on lettuce growth and health together with its impact on the indigenous rhizosphere bacterial community in field and pot experiments. Results of both experiments demonstrated that FZB42 is able to effectively colonize the rhizosphere (7.45 to 6.61 Log 10 CFU g−1 root dry mass) within the growth period of lettuce in the field. The disease severity (DS) of bottom rot on lettuce was significantly reduced from severe symptoms with DS category 5 to slight symptom expression with DS category 3 on average through treatment of young plants with FZB42 before and after planting. The 16S rRNA gene based fingerprinting method terminal restriction fragment length polymorphism (T-RFLP) showed that the treatment with FZB42 did not have a major impact on the indigenous rhizosphere bacterial community. However, the bacterial community showed a clear temporal shift. The results also indicated that the pathogen R. solani AG1-IB affects the rhizosphere microbial community after inoculation. Thus, we revealed that the inoculant FZB42 could establish itself successfully in the rhizosphere without showing any durable effect on the rhizosphere bacterial community. PMID:23935892
Anaerobic degradation of increased phenol concentrations in batch assays.
Wirth, Benjamin; Krebs, Maria; Andert, Janet
2015-12-01
Phenol is a wastewater contaminant depicting an environmental hazard. It can be found in effluents from various industrial processes and becomes even more common as a waste by-product of biomass-based bioenergy concepts. Because of its toxicity to anaerobic microorganisms, it can be recalcitrant during biogas production and anaerobic wastewater treatment. This study tested increased phenol loads (100 to 5000 mg L(-1)) as the sole carbon source in a semi-continuous mesophilic anaerobic adaption experiment using an unadapted microbial community from a standard biogas plant. Phenol was completely degraded at starting concentrations of up to 2000 mg L(-1). At 5000 mg L(-1), complete inhibition of the anaerobic community was observed. Lag times were reduced down to less than a day treating 2000 mg L(-1) after 16 weeks of adaption to gradually increased phenol concentrations. Specific degradation rates increased consecutively up to 7.02 mg gVS (-1) day(-1) at 2000 mg L(-1). This concentration was completely degraded within less than 12 days. The microbial community composition was assessed using 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) analysis. In the bacterial community, no clear shift was visible. Clostridia were with the highest relative abundance of 27 %, the most prominent bacterial class. T-RFs representing Clostridia, Anaerolinaceae, Flavobacteria, and Bacteroidea appeared at similar relative abundance level throughout the experiment. The archaeal community, however, changed from a Methanosarcinales-dominated community (57%) to a community with a nearly even distribution of Methanobacteriales (21%) and Methanosarcinales (34%) with increasing starting phenol concentration.
Osborne, Catherine A.; Peoples, Mark B.; Janssen, Peter H.
2010-01-01
Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil's function as a sink in the global hydrogen cycle. PMID:20061453
Naether, Astrid; Foesel, Bärbel U.; Naegele, Verena; Wüst, Pia K.; Weinert, Jan; Bonkowski, Michael; Alt, Fabian; Oelmann, Yvonne; Polle, Andrea; Lohaus, Gertrud; Gockel, Sonja; Hemp, Andreas; Kalko, Elisabeth K. V.; Linsenmair, Karl Eduard; Pfeiffer, Simone; Renner, Swen; Schöning, Ingo; Weisser, Wolfgang W.; Wells, Konstans; Fischer, Markus; Overmann, Jörg
2012-01-01
In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered. PMID:22885760
Ma, Betty W.; Bokulich, Nicholas A.; Castillo, Patricia A.; Kananurak, Anchasa; Underwood, Mark A.; Mills, David A.; Bevins, Charles L.
2012-01-01
The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals. PMID:23082164
Hilton, Sally; Bennett, Amanda J; Keane, Gary; Bending, Gary D; Chandler, David; Stobart, Ron; Mills, Peter
2013-01-01
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality.
Yao, Huaiying; Huang, Sha; Qiu, Qiongfen; Li, Yaying; Wu, Lianghuan; Mi, Wenhai; Dai, Feng
2016-08-01
Yellow clay paddy soil (Oxisols) is a typical soil with low productivity in southern China. Nitrification inhibitors and slow release fertilizers have been used to improve nitrogen fertilizer utilization and reduce environmental impaction of the paddy soil. However, their effects on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in paddy soil have rarely been investigated. In the present work, we compared the influences of several slow release fertilizers and nitrification inhibitors on the community structure and activities of the ammonia oxidizers in yellow clay soil. The abundances and community compositions of AOA and AOB were determined with qPCR, terminal restriction fragment length polymorphism (T-RFLP), and clone library approaches. Our results indicated that the potential nitrification rate (PNR) of the soil was significantly related to the abundances of both AOA and AOB. Nitrogen fertilizer application stimulated the growth of AOA and AOB, and the combinations of nitrapyrin with urea (NPU) and urea-formaldehyde (UF) inhibited the growth of AOA and AOB, respectively. Compared with other treatments, the applications of NPU and UF also led to significant shifts in the community compositions of AOA and AOB, respectively. NPU showed an inhibitory effect on AOA T-RF 166 bp that belonged to Nitrosotalea. UF had a negative effect on AOB T-RF 62 bp that was assigned to Nitrosospira. These results suggested that NPU inhibited PNR and increased nitrogen use efficiency (NUE) by inhibiting the growth of AOA and altering AOA community. UF showed no effect on NUE but decreased AOB abundance and shifted AOB community.
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-04-30
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo
2016-02-01
In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structure and function of methanotrophic communities in a landfill-cover soil.
Henneberger, Ruth; Lüke, Claudia; Mosberger, Lona; Schroth, Martin H
2012-07-01
In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Zhao, Kang; Kong, Weidong; Khan, Ajmal; Liu, Jinbo; Guo, Guangxia; Muhanmmad, Said; Zhang, Xianzhou; Dong, Xiaobin
2017-09-01
Unraveling elevational diversity patterns of plants and animals has long been attracting scientific interests. However, whether soil microorganisms exhibit similar elevational patterns remains largely less explored, especially for functional microbial communities, such as ammonia oxidizers. Here, we investigated the diversity and distribution pattern of ammonia-oxidizing archaea (AOA) in meadow soils along an elevation gradient from 4400 m to the grassline at 5100 m on the Tibetan Plateau using terminal restriction fragment length polymorphism (T-RFLP) and sequencing methods by targeting amoA gene. Increasing elevations led to lower soil temperature and pH, but higher nutrients and water content. The results showed that AOA diversity and evenness monotonically increased with elevation, while richness was relatively stable. The increase of diversity and evenness was attributed to the growth inhibition of warm-adapted AOA phylotypes by lower temperature and the growth facilitation of cold-adapted AOA phylotypes by richer nutrients at higher elevations. Low temperature thus played an important role in the AOA growth and niche separation. The AOA community variation was explained by the combined effect of all soil properties (32.6%), and 8.1% of the total variation was individually explained by soil pH. The total AOA abundance decreased, whereas soil potential nitrification rate (PNR) increased with increasing elevations. Soil PNR positively correlated with the abundance of cold-adapted AOA phylotypes. Our findings suggest that low temperature plays an important role in AOA elevational diversity pattern and niche separation, rising the negative effects of warming on AOA diversity and soil nitrification process in the Tibetan region.
Elawwad, Abdelsalam; Sandner, Hendrik; Kappelmeyer, Uwe; Koeser, Heinz
2013-01-01
The effectiveness of three operational strategies for maintaining nitrifiers in bench-scale, aerated, submerged fixed-bed biofilm reactors (SFBBRs) during long-term starvation at 20 degrees C were evaluated. The operational strategies were characterized by the resulting oxidation-reduction potential (ORP) in the SFBBRs. The activity rates of the nitrifiers were measured and the activity decay was expressed by half-life times. It was found that anoxic and alternating anoxic/aerobic conditions were the best ways to preserve ammonia-oxidizing bacteria (AOB) during long starvation periods and resulted in half-life times of up to 34 and 28 days, respectively. Extended anaerobic conditions caused the half-life for AOB to decrease to 21 days. In comparison, the activity decay of nitrite-oxidizing bacteria (NOB) tended to be slightly faster. The activity of AOB biofilms that were kept for 97 days under anoxic conditions could be completely recovered in less than one week, while over 4 weeks was needed for AOB kept under anaerobic conditions. NOB were more sensitive to starvation and required longer recovery periods than AOB. For complete recovery, NOB needed approximately 7 weeks, regardless of the starvation conditions applied. Using the fluorescence in situ hybridization (FISH) technique, Nitrospira was detected as the dominant NOB genus. Among the AOB, the terminal restriction fragment length polymorphism (TRFLP) technique showed that during starvation and recovery periods, the relative frequency of species shifted to Nitrosomonas europaea/eutropha, regardless of the starvation condition. The consequences of these findings for the operation of SFBBRs under low-load and starvation conditions are discussed.
Amplified fragment length polymorphism (AFLP) markers can be developed more quickly and at a lower cost than microsatellite and single nucleotide polymorphism markers, which makes them ideal markers for large-scale studies of understudied taxa — such as species at risk. However,...
Barroso, G.; Blesa, S.; Labarere, J.
1995-01-01
We used restriction fragment length polymorphisms to examine mitochondrial genome rearrangements in 36 wild strains of the cultivated basidiomycete Agrocybe aegerita, collected from widely distributed locations in Europe. We identified two polymorphic regions within the mitochondrial DNA which varied independently: one carrying the Cox II coding sequence and the other carrying the Cox I, ATP6, and ATP8 coding sequences. Two types of mutations were responsible for the restriction fragment length polymorphisms that we observed and, accordingly, were involved in the A. aegerita mitochondrial genome evolution: (i) point mutations, which resulted in strain-specific mitochondrial markers, and (ii) length mutations due to genome rearrangements, such as deletions, insertions, or duplications. Within each polymorphic region, the length differences defined only two mitochondrial types, suggesting that these length mutations were not randomly generated but resulted from a precise rearrangement mechanism. For each of the two polymorphic regions, the two molecular types were distributed among the 36 strains without obvious correlation with their geographic origin. On the basis of these two polymorphisms, it is possible to define four mitochondrial haplotypes. The four mitochondrial haplotypes could be the result of intermolecular recombination between allelic forms present in the population long enough to reach linkage equilibrium. All of the 36 dikaryotic strains contained only a single mitochondrial type, confirming the previously described mitochondrial sorting out after cytoplasmic mixing in basidiomycetes. PMID:16534984
Androgen receptor repeat length polymorphism associated with male-to-female transsexualism.
Hare, Lauren; Bernard, Pascal; Sánchez, Francisco J; Baird, Paul N; Vilain, Eric; Kennedy, Trudy; Harley, Vincent R
2009-01-01
There is a likely genetic component to transsexualism, and genes involved in sex steroidogenesis are good candidates. We explored the specific hypothesis that male-to-female transsexualism is associated with gene variants responsible for undermasculinization and/or feminization. Specifically, we assessed the role of disease-associated repeat length polymorphisms in the androgen receptor (AR), estrogen receptor beta (ERbeta), and aromatase (CYP19) genes. Subject-control analysis included 112 male-to-female transsexuals and 258 non-transsexual males. Associations and interactions were investigated between CAG repeat length in the AR gene, CA repeat length in the ERbeta gene, and TTTA repeat length in the CYP19 gene and male-to-female transsexualism. A significant association was identified between transsexualism and the AR allele, with transsexuals having longer AR repeat lengths than non-transsexual male control subjects (p=.04). No associations for transsexualism were evident in repeat lengths for CYP19 or ERbeta genes. Individuals were then classified as short or long for each gene polymorphism on the basis of control median polymorphism lengths in order to further elucidate possible combined effects. No interaction associations between the three genes and transsexualism were identified. This study provides evidence that male gender identity might be partly mediated through the androgen receptor.
Androgen Receptor Repeat Length Polymorphism Associated with Male-to-Female Transsexualism
Hare, Lauren; Bernard, Pascal; Sánchez, Francisco J.; Baird, Paul N.; Vilain, Eric; Kennedy, Trudy; Harley, Vincent R.
2012-01-01
Background There is a likely genetic component to transsexualism, and genes involved in sex steroidogenesis are good candidates. We explored the specific hypothesis that male-to-female transsexualism is associated with gene variants responsible for undermasculinization and/or feminization. Specifically, we assessed the role of disease-associated repeat length polymorphisms in the androgen receptor (AR), estrogen receptor β (ERβ), and aromatase (CYP19) genes. Methods Subject-control analysis included 112 male-to-female transsexuals and 258 non-transsexual males. Associations and interactions were investigated between CAG repeat length in the AR gene, CA repeat length in the ERβ gene, and TTTA repeat length in the CYP19 gene and male-to-female transsexualism. Results A significant association was identified between transsexualism and the AR allele, with transsexuals having longer AR repeat lengths than non-transsexual male control subjects (p = .04). No associations for transsexualism were evident in repeat lengths for CYP19 or ERβ genes. Individuals were then classified as short or long for each gene polymorphism on the basis of control median polymorphism lengths in order to further elucidate possible combined effects. No interaction associations between the three genes and transsexualism were identified. Conclusions This study provides evidence that male gender identity might be partly mediated through the androgen receptor. PMID:18962445
Hallerman, E M; Nave, A; Soller, M; Beckmann, J S
1988-12-01
Genomic DNA of Israeli Holstein-Friesian dairy cattle were screened with a battery of 17 cloned or subcloned DNA probes in an attempt to document restriction fragment length polymorphisms at a number of genetic loci. Restriction fragment length polymorphisms were observed at the chymosin, oxytocin-neurophysin I, lutropin beta, keratin III, keratin VI, keratin VII, prolactin, and dihydrofolate reductase loci. Use of certain genomic DNA fragments as probes produced hybridization patterns indicative of satellite DNA at the respective loci. Means for distinguishing hybridizations to coding sequences for unique genes from those to satellite DNA were developed. Results of this study are discussed in terms of strategy for the systematic development of large numbers of bovine genomic polymorphisms.
Wang, Y C; Jiang, R R; Kang, X T; Li, Z J; Han, R L; Geng, J; Fu, J X; Wang, J F; Wu, J P
2015-09-25
ASB15 is a member of the ankyrin repeat and suppressor of cytokine signaling box family, and is predominantly expressed in skeletal muscle. In the present study, an F2 resource population of Gushi chickens crossed with Anka broilers was used to investigate the genetic effects of the chicken ASB15 gene. Two single nucleotide polymorphisms (SNPs) (rs315759231 A>G and rs312619270 T>C) were identified in exon 7 of the ASB15 gene using forced chain reaction-restriction fragment length polymorphism and DNA sequencing. One was a missense SNP (rs315759231 A>G) and the other was a synonymous SNP (rs312619270 T>C). The rs315759231 A>G polymorphism was significantly associated with body weight at birth, 12-week body slanting length, semi-evisceration weight, evisceration weight, leg muscle weight, and carcass weight (P < 0.05). The rs312619270 T>C polymorphism was significantly associated with body weight at birth, 4, 8, and 12-week body weight, 8-week shank length, 12-week breast bone length, 8 and 12-week body slanting length, breast muscle weight, and carcass weight (P < 0.05). Our results suggest that the ASB15 gene profoundly affects chicken growth and carcass traits.
Green, Benjamin J; Wiriyachaiporn, Surasa; Grainge, Christopher; Rogers, Geraint B; Kehagia, Valia; Lau, Laurie; Carroll, Mary P; Bruce, Kenneth D; Howarth, Peter H
2014-01-01
Molecular microbiological analysis of airway samples in asthma has demonstrated an altered microbiome in comparison to healthy controls. Such changes may have relevance to treatment-resistant severe asthma, particularly those with neutrophilic airway inflammation, as bacteria might be anticipated to activate the innate immune response, a process that is poorly steroid responsive. An understanding of the relationship between airway bacterial presence and dominance in severe asthma may help direct alternative treatment approaches. We aimed to use a culture independent analysis strategy to describe the presence, dominance and abundance of bacterial taxa in induced sputum from treatment resistant severe asthmatics and correlate findings with clinical characteristics and airway inflammatory markers. Induced sputum was obtained from 28 stable treatment-resistant severe asthmatics. The samples were divided for supernatant IL-8 measurement, cytospin preparation for differential cell count and Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiling for bacterial community analysis. In 17/28 patients, the dominant species within the airway bacterial community was Moraxella catarrhalis or a member of the Haemophilus or Streptococcus genera. Colonisation with these species was associated with longer asthma disease duration (mean (SD) 31.8 years (16.7) vs 15.6 years (8.0), p = 0.008), worse post-bronchodilator percent predicted FEV1 (68.0% (24.0) vs 85.5% (19.7), p = 0.025) and higher sputum neutrophil differential cell counts (median (IQR) 80% (67-83) vs 43% (29-67), p = 0.001). Total abundance of these organisms significantly and positively correlated with sputum IL-8 concentration and neutrophil count. Airway colonisation with potentially pathogenic micro-organisms in asthma is associated with more severe airways obstruction and neutrophilic airway inflammation. This altered colonisation may have a role in the development of an asthma phenotype that responds less well to current asthma therapies.
Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.
Talk, Anne; Kublik, Susanne; Uksa, Marie; Engel, Marion; Berghahn, Rüdiger; Welzl, Gerhard; Schloter, Michael; Mohr, Silvia
2016-08-01
In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability. Copyright © 2016. Published by Elsevier B.V.
Vitali, Francesco; Mastromei, Giorgio; Senatore, Giuliana; Caroppo, Cesarea; Casalone, Enrico
2016-01-01
In this study, we evaluate the long-lasting effects on soil microbial communities of a change within a single land-use category, specifically the conversion from natural forest to forest plantation. To minimize the effects of impacts other than land-use (i.e., climatic and anthropogenic), we chose three sites within a Natural Park, with homogeneous orographic and soil texture characteristics. We compared microbial diversity in a total of 156 soil samples from two natural mixed forests and a similar forest converted to poplar plantation about thirty years ago. The diversity and structure of bacterial and fungal communities were investigated by terminal restriction fragments length polymorphism (T-RFLP) analysis of the 16S-rRNA gene and the ITS-rDNA regions, respectively. Bacterial and fungal communities from the forest plantation, compared to those from natural forest soils, showed different community structure and lower α-diversity values, consistently with the significantly higher pH values and lower organic matter content of those soils. β-diversity values, the number of measured and estimated dominant OTUs, and their distribution among the three sites showed that microbial communities from the two natural forests were much more similar to each other than they were to communities from the poplar plantation, suggesting an effect of the forest conversion on the composition and diversity of soil microbial communities. α-diversity in cultivated forest soils had narrower temporal fluctuations than in natural forest soils, suggesting higher temporal stability of microbial communities. Overall, we demonstrated that the conversion from natural forest to forest plantation altered soil microbial communities, changing their structure, lowering their diversity, and causing a spatial and temporal homogenization. Copyright © 2015 Elsevier GmbH. All rights reserved.
Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang
2014-11-01
It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle.
Wang, Hua; Yang, Shao-hui; Yang, Jing-ping; Lv, Ya-min; Zhao, Xing; Pang, Ji-liang
2014-01-01
It is important to understand the effects of temporal changes in microbial communities in the acidic soils of tea orchards with different fertilizers. A field experiment involving organic fertilizer (OF), chemical fertilizer (CF), and unfertilized control (CK) treatments was arranged to analyze the temporal changes in the bacterial and archaeal communities at bimonthly intervals based on the 16S ribosomal RNA (rRNA) gene using terminal restriction fragment length polymorphism (T-RFLP) profiling. The abundances of total bacteria, total archaea, and selected functional genes (bacterial and archaeal amoA, bacterial narG, nirK, nirS, and nosZ) were determined by quantitative polymerase chain reaction (qPCR). The results indicate that the structures of bacterial and archaeal communities varied significantly with time and fertilization based on changes in the relative abundance of dominant T-RFs. The abundancy of the detected genes changed with time. The total bacteria, total archaea, and archaeal amoA were less abundant in July. The bacterial amoA and denitrifying genes were less abundant in September, except the nirK gene. The OF treatment increased the abundance of the observed genes, while the CF treatment had little influence on them. The soil temperature significantly affected the bacterial and archaeal community structures. The soil moisture was significantly correlated with the abundance of denitrifying genes. Of the soil chemical properties, soil organic carbon was the most important factor and was significantly correlated with the abundance of the detected genes, except the nirK gene. Overall, this study demonstrated the effects of both temporal alteration and organic fertilizer on the structures of microbial communities and the abundance of genes involved in the nitrogen cycle. PMID:25367788
Pervin, Hasina M; Batstone, Damien J; Bond, Philip L
2013-06-01
Thermophilic biological pre-treatment enables enhanced anaerobic digestion for treatment of wastewater sludges but, at present, there is limited understanding of the hydrolytic-acidogenic microbial composition and its contribution to this process. In this study, the process was assessed by comparing the microbiology of thermophilic (50-65 °C) and mesophilic (35 °C) pre-treatment reactors treating primary sludge. A full-cycle approach for the 16S rRNA genes was applied in order to monitor the diversity of bacteria and their abundance in a thermophilic pre-treatment reactor treating primary sludge. For the thermophilic pre-treatment (TP), over 90% of the sequences were previously undetected and these had less than 97% sequence similarity to cultured organisms. During the first 83 days, members of the Betaproteobacteria dominated the community sequences and a newly designed probe was used to monitor a previously unknown bacterium affiliated with the genus Brachymonas. Between days 85 and 183, three phylotypes that affiliated with the genera Comamonas, Clostridium and Lysobacter were persistently dominant in the TP community, as revealed by terminal-restriction fragment length polymorphism (T-RFLP). Hydrolytic and fermentative functions have been speculated for these bacteria. Mesophilic pre-treatment (MP) and TP communities were different but they were both relatively dynamic. Statistical correlation analysis and the function of closely allied reference organisms indicated that previously unclassified bacteria dominated the TP community and may have been functionally involved in the enhanced hydrolytic performance of thermophilic anaerobic pre-treatment. This study is the first to reveal the diversity and dynamics of bacteria during anaerobic digestion of primary sludge. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinson, Guntars; Brandt, Franziska; Conrad, Ralf
2016-04-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata, and their constrained environmental characteristics shape the spatial structure of archaeal and bacterial communities and microbial methane cycling in neotropical bromeliad wetlands.
Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.
2010-01-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448
Redmond, Molly C; Valentine, David L; Sessions, Alex L
2010-10-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.
Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi
2015-09-01
The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.
General Suppression of Escherichia coli O157:H7 in Sand-Based Dairy Livestock Bedding▿ †
Westphal, Andreas; Williams, Michele L.; Baysal-Gurel, Fulya; LeJeune, Jeffrey T.; McSpadden Gardener, Brian B.
2011-01-01
Sand bedding material is frequently used in dairy operations to reduce the occurrence of mastitis and enhance cow comfort. One objective of this work was to determine if sand-based bedding also supported the microbiologically based suppression of an introduced bacterial pathogen. Bedding samples were collected in summer, fall, and winter from various locations within a dairy operation and tested for their ability to suppress introduced populations of Escherichia coli O157:H7. All sources of bedding displayed a heat-sensitive suppressiveness to the pathogen. Differences in suppressiveness were also noted between different samples at room temperature. At just 1 day postinoculation (dpi), the recycled sand bedding catalyzed up to a 1,000-fold reduction in E. coli counts, typically 10-fold greater than the reduction achieved with other substrates, depending on the sampling date. All bedding substrates were able to reduce E. coli populations by over 10,000-fold within 7 to 15 dpi, regardless of sampling date. Terminal restriction fragment length polymorphism (T-RFLP) analysis was used to identify bacterial populations potentially associated with the noted suppression of E. coli O157:H7 in sand bedding. Eleven terminal restriction fragments (TRFs) were overrepresented in paired comparisons of suppressive and nonsuppressive specimens at multiple sampling points, indicating that they may represent environmentally stable populations of pathogen-suppressing bacteria. Cloning and sequencing of these TRFs indicated that they represent a diverse subset of bacteria, belonging to the Cytophaga-Flexibacter-Bacteroidetes, Gammaproteobacteria, and Firmicutes, only a few of which have previously been identified in livestock manure. Such data indicate that microbial suppression may be harnessed to develop new options for mitigating the risk and dispersal of zoonotic bacterial pathogens on dairy farms. PMID:21257815
Xue, Kai; Serohijos, Raquel C; Devare, Medha; Thies, Janice E
2011-02-01
Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.
Krause, D. O.; Bhandari, S. K.; House, J. D.; Nyachoti, C. M.
2010-01-01
Postweaning diarrhea in pigs is frequently caused by enterotoxigenic Escherichia coli K88 (ETEC). The aim of this study was to test the efficacy of E. coli probiotics (PRO) in young pigs challenged with E. coli K88. We also tested the synbiotic interaction with raw potato starch (RPS), which can be used as a prebiotic. Forty 17-day-old weaned piglets were randomly assigned to four treatments: treatment 1, positive-control diet (C), no probiotics or RPS but containing in-feed antibiotics; treatment 2, probiotic (PRO), no feed antibiotics plus a 50:50 mixture of probiotic E. coli strains UM-2 and UM-7; treatment 3, 14% RPS, no antibiotics (RPS); treatment 4, 14% RPS plus a 50:50 mixture of probiotic E. coli strains UM-2 and UM-7, no antibiotics (PRO-RPS). The pigs were challenged with pathogenic E. coli K88 strains on day 7 of the experiment (24-day-old pigs) and euthanized on day 10 of the experiment (35-day-old pigs). Probiotic and pathogenic E. coli strains were enumerated by selective enrichment on antibiotics, and microbial community analysis was conducted using terminal restriction length polymorphism analysis (T-RFLP) of 16S rRNA genes. The combination of raw potato starch and the probiotic had a beneficial effect on piglet growth performance and resulted in a reduction of diarrhea and increased microbial diversity in the gut. We conclude that the use of E. coli probiotic strains against E. coli K88 in the presence of raw potato starch is effective in reducing the negative effects of ETEC in a piglet challenge model. PMID:20952649
Kelly, John J.; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R.; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A.; Rier, Steven T.; Tuchman, Nancy C.
2010-01-01
Elevated atmospheric CO2 can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO2 would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO2, and their leaves were incubated in a woodland stream. Elevated-CO2 treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO2 treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall Gram-positive bacterial sequences. PMID:20543045
Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L
2013-12-01
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kelly, John J; Bansal, Amit; Winkelman, Jonathan; Janus, Lori R; Hell, Shannon; Wencel, Marie; Belt, Patricia; Kuehn, Kevin A; Rier, Steven T; Tuchman, Nancy C
2010-08-01
Elevated atmospheric CO(2) can cause increased carbon fixation and altered foliar chemical composition in a variety of plants, which has the potential to impact forested headwater streams because they are detritus-based ecosystems that rely on leaf litter as their primary source of organic carbon. Fungi and bacteria play key roles in the entry of terrestrial carbon into aquatic food webs, as they decompose leaf litter and serve as a source of nutrition for invertebrate consumers. This study tested the hypothesis that changes in leaf chemistry caused by elevated atmospheric CO(2) would result in changes in the size and composition of microbial communities colonizing leaves in a woodland stream. Three tree species, Populus tremuloides, Salix alba, and Acer saccharum, were grown under ambient (360 ppm) or elevated (720 ppm) CO(2), and their leaves were incubated in a woodland stream. Elevated-CO(2) treatment resulted in significant increases in the phenolic and tannin contents and C/N ratios of leaves. Microbial effects, which occurred only for P. tremuloides leaves, included decreased fungal biomass and decreased bacterial counts. Analysis of fungal and bacterial communities on P. tremuloides leaves via terminal restriction fragment length polymorphism (T-RFLP) and clone library sequencing revealed that fungal community composition was mostly unchanged by the elevated-CO(2) treatment, whereas bacterial communities showed a significant shift in composition and a significant increase in diversity. Specific changes in bacterial communities included increased numbers of alphaproteobacterial and cytophaga-flavobacter-bacteroides (CFB) group sequences and decreased numbers of betaproteobacterial and firmicutes sequences, as well as a pronounced decrease in overall gram-positive bacterial sequences.
Sack, Eveline L. W.; van der Kooij, Dick
2014-01-01
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter−1 in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter−1 per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm−2 day−1), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm−2 day−1). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water. PMID:24487544
Lazzaro, Anna; Gauer, Andreas; Zeyer, Josef
2011-01-01
Studies on the effect of environmental conditions on plants and microorganisms are a central issue in ecology, and they require an adequate experimental setup. A strategy often applied in geobotanical studies is based on the reciprocal transplantation of plant species at different sites. We adopted a similar approach as a field-based tool to investigate the relationships of soil bacterial communities with the environment. Soil samples from two different (calcareous and siliceous) unvegetated glacier forefields were reciprocally transplanted and incubated for 15 months between 2009 and 2010. Controls containing local soils were included. The sites were characterized over time in terms of geographical (bedrock, exposition, sunlight, temperature, and precipitation) and physicochemical (texture, water content, soluble and nutrients) features. The incubating local (“home”) and transplanted (“away”) soils were monitored for changes in extractable nutrients and in the bacterial community structure, defined through terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA gene. Concentrations of soluble ions in most samples were more significantly affected by seasons than by the transplantation. For example, NO3− showed a seasonal pattern, increasing from 1 to 3 μg NO3− (g soil dry weight)−1 after the melting of snow but decreasing to <1 μg NO3− (g soil dry weight)−1 in autumn. Seasons, and in particular strong precipitation events occurring in the summer of 2010 (200 to 300 mm of rain monthly), were also related to changes of bacterial community structures. Our results show the suitability of this approach to compare responses of bacterial communities to different environmental conditions directly in the field. PMID:21965395
Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Zhang, Hui; Lu, Yahai
2014-01-01
Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes combined with cloning and sequencing. Enrichment incubation demonstrated the microbial oxidation of crude oil coupled to methane production at 35 and 55°C, which generated 3.7±0.3 and 2.8±0.3 mmol of methane per gram oil, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that crude oil n-alkanes were obviously degraded, and high molecular weight n-alkanes were preferentially removed over relatively shorter-chain n-alkanes. Phylogenetic analysis revealed the concurrence of acetoclastic Methanosaeta and hydrogenotrophic methanogens but different methanogenic community structures under the two temperature conditions. Candidate divisions of JS1 and WWE 1, Proteobacteria (mainly consisting of Syntrophaceae, Desulfobacteraceae and Syntrophorhabdus) and Firmicutes (mainly consisting of Desulfotomaculum) were supposed to be involved with n-alkane degradation in the mesophilic conditions. By contrast, the different bacterial phylotypes affiliated with Caldisericales, “Shengli Cluster” and Synergistetes dominated the thermophilic consortium, which was most likely to be associated with thermophilic crude oil degradation. This study revealed that the oily sludge in Shengli oilfield harbors diverse uncultured microbes with great potential in methanogenic crude oil degradation over a wide temperature range, which extend our previous understanding of methanogenic degradation of crude oil alkanes. PMID:25409013
Kuramae, Eiko E.; Hillekens, Remy; de Hollander, Mattias; Kiers, E. Toby; Röling, Wilfred F. M.; Kowalchuk, George A.; van der Heijden, Marcel G. A.
2012-01-01
The cultivation of genetically modified (GM) crops has increased significantly over the last decades. However, concerns have been raised that some GM traits may negatively affect beneficial soil biota, such as arbuscular mycorrhizal fungi (AMF), potentially leading to alterations in soil functioning. Here, we test two maize varieties expressing the Bacillus thuringiensis Cry1Ab endotoxin (Bt maize) for their effects on soil AM fungal communities. We target both fungal DNA and RNA, which is new for AM fungi, and we use two strategies as an inclusive and robust way of detecting community differences: (i) 454 pyrosequencing using general fungal rRNA gene-directed primers and (ii) terminal restriction fragment length polymorphism (T-RFLP) profiling using AM fungus-specific markers. Potential GM-induced effects were compared to the normal natural variation of AM fungal communities across 15 different agricultural fields. AM fungi were found to be abundant in the experiment, accounting for 8% and 21% of total recovered DNA- and RNA-derived fungal sequences, respectively, after 104 days of plant growth. RNA- and DNA-based sequence analyses yielded most of the same AM fungal lineages. Our research yielded three major conclusions. First, no consistent differences were detected between AM fungal communities associated with GM plants and non-GM plants. Second, temporal variation in AMF community composition (between two measured time points) was bigger than GM trait-induced variation. Third, natural variation of AMF communities across 15 agricultural fields in The Netherlands, as well as within-field temporal variation, was much higher than GM-induced variation. In conclusion, we found no indication that Bt maize cultivation poses a risk for AMF. PMID:22885748
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination. PMID:29867858
Wang, Ya Fen; Zhu, Hao Wen; Wang, Ying; Zhang, Xiang Ling; Tam, Nora Fung Yee
2018-01-01
Little is known about the diversity and succession of indigenous microbial community during debromination of polybrominated diphenyl ethers (PBDEs). This study examined the diversity and dynamics of microbial community structure in eight saline (mangrove and marine) and freshwater sediment microcosms exhibiting different debrominating capabilities for hexa-BDE 153, a common congener in sediments, using terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses. The results showed that microbial community structure greatly differed between the saline and freshwater microcosms, likely leading to distinct variations in their debrominating capabilities and pathways. Higher relative abundances of Chloroflexi and Deltaproteobacteria succeed by Alphaproteobacteria and Betaproteobacteria were detected in the two mangrove microcosms with the fastest debrominating capabilities mainly via para pathway, respectively; the dominance of Alphaproteobacteria resulted in less accumulation of tetra-BDEs and more complete debromination of lower brominated congeners (from di- to tetra-BDEs). Meanwhile, the shifts in both microbial community structure and PBDE profiles were relatively small in the less efficient freshwater microcosms, with relatively more ortho and meta brominated products of BDE-153 resulted. Coincidently, one of the freshwater microcosms showed sudden increases of Chloroflexi and Deltaproteobacteria by the end of incubation, which synchronized with the increase in the removal rate of BDE-153. The significant relationship between microbial community structure and PBDEs was confirmed by redundancy analysis (18.7% of total variance explained, P = 0.002). However, the relative abundance of the well-known dechlorinator Dehalococcoides showed no clear correlation with the debrominating capability across different microcosms. These findings shed light in the significance of microbial community network in different saline environments on enhancement of PBDE intrinsic debromination.
Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L
2010-02-01
Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Brandon R; Graw, Michael; Brodie, Eoin L
2013-11-01
The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining themore » results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.« less
Zafar, Urooj; Houlden, Ashley; Robson, Geoffrey D
2013-12-01
Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future.
Sack, Eveline L W; van der Wielen, Paul W J J; van der Kooij, Dick
2014-04-01
Biopolymers are important substrates for heterotrophic bacteria in (ultra)oligotrophic freshwater environments, but information about their utilization at microgram-per-liter levels by attached freshwater bacteria is lacking. This study aimed at characterizing biopolymer utilization in drinking-water-related biofilms by exposing such biofilms to added carbohydrates or proteins at 10 μg C liter(-1) in flowing tap water for up to 3 months. Individually added amylopectin was not utilized by the biofilms, whereas laminarin, gelatin, and caseinate were. Amylopectin was utilized during steady-state biofilm growth with simultaneously added maltose but not with simultaneously added acetate. Biofilm formation rates (BFR) at 10 μg C liter(-1) per substrate were ranked as follows, from lowest to highest: blank or amylopectin (≤6 pg ATP cm(-2) day(-1)), gelatin or caseinate, laminarin, maltose, acetate alone or acetate plus amylopectin, and maltose plus amylopectin (980 pg ATP cm(-2) day(-1)). Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene sequence analyses revealed that the predominant maltose-utilizing bacteria also dominated subsequent amylopectin utilization, indicating catabolic repression and (extracellular) enzyme induction. The accelerated BFR with amylopectin in the presence of maltose probably resulted from efficient amylopectin binding to and hydrolysis by inductive enzymes attached to the bacterial cells. Cytophagia, Flavobacteriia, Gammaproteobacteria, and Sphingobacteriia grew during polysaccharide addition, and Alpha-, Beta-, and Gammaproteobacteria, Cytophagia, Flavobacteriia, and Sphingobacteriia grew during protein addition. The succession of bacterial populations in the biofilms coincided with the decrease in the specific growth rate during biofilm formation. Biopolymers can clearly promote biofilm formation at microgram-per-liter levels in drinking water distribution systems and, depending on their concentrations, might impair the biological stability of distributed drinking water.
Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao
2015-12-15
Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong
2013-02-01
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.
Cross-Site Soil Microbial Communities under Tillage Regimes: Fungistasis and Microbial Biomarkers
Yrjälä, Kim; Alakukku, Laura; Palojärvi, Ansa
2012-01-01
The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy. PMID:22983972
Wang, Jichen; Ni, Lei; Song, Yang; Rhodes, Geoff; Li, Jing; Huang, Qiwei; Shen, Qirong
2017-01-01
Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers. PMID:28446904
Eronen-Rasimus, Eeva; Kaartokallio, Hermanni; Lyra, Christina; Autio, Riitta; Kuosa, Harri; Dieckmann, Gerhard S; Thomas, David N
2014-02-01
The structure of sea-ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal-derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T-RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea-ice bacterial communities developed in ice formed in both unenriched and DOM-enriched seawater (0-6 days). γ-Proteobacteria dominated in the DOM-enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α- and γ-Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation. © 2014 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Bacterioplankton Populations within the Oxygen Minimum Zone of the Sargasso Sea
NASA Astrophysics Data System (ADS)
Schuler, G.; Parsons, R. J.; Johnson, R. J.
2016-02-01
Oxygen minimum zones are present throughout the world's oceans, and occur at depths between 200 to 1000m. Heterotrophic bacteria reduce the dissolved oxygen within this layer through respiration, while metabolizing falling particles. This report studied the bacterioplankton in the oxygen minimum zone at the BATS (Bermuda Atlantic Times-series Study) site from July 2014 until November 2014. Total bacterioplankton populations were enumerated through direct counts. In the transitional zone (400m-800m) of the oxygen minimum zone, a secondary bacterioplankton peak formed. This study used FISH (Fluorescent in situ hybridization) and CARD-FISH (Catalyzed Reporter Deposition-Fluorescent in situ hybridization) to enumerate specific bacterial and archaeal taxa. Crenarchaeota (including Thaumarchaeota) increased in abundance within the upper oxycline. Thaumarchaeota have the ammonia monooxygenase gene that oxidizes ammonium into nitrite in low oxygen conditions. Amplification of the amoA gene confirmed that ammonia oxidizing archaea (AOA) were present within the OMZ. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP), the bacterial community structure showed high similarity based depth zones (0-80m, 160-600m, and 800-4500m). Niskin experiments determined that water collected at 800m had an exponential increase in bacterioplankton over time. While experimental design did not allow for oxygen levels to be maintained, the bacterioplankton community was predominantly bacteria with eubacteria positive cells making up 89.3% of the of the total bacterioplankton community by day 34. Improvements to the experimental design are required to determine which specific bacterial taxa caused this increase at 800m. This study suggests that there are factors other than oxygen influencing bacterioplankton populations at the BATS site, and more analysis is needed once the BATS data is available to determine the key drivers of bacterioplankton dynamics within the BATS OMZ.
Akbari, Ali; Ghoshal, Subhasis
2014-09-15
Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Zafar, Urooj; Houlden, Ashley
2013-01-01
Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469
Green, Timothy J; Smullen, Richard; Barnes, Andrew C
2013-09-27
The aquaculture industry has made substantial progress in reducing the fishmeal content of feeds for carnivorous species, driven by demand for improved sustainability and reduced cost. Soybean protein concentrate (SPC) is an attractive replacement for fishmeal, but intestinal disorders have been reported in Atlantic salmon (Salmo salar) fed these diets at high seawater temperatures, with preliminary evidence suggesting SPC induces these disorders by altering the intestinal microbiota. We compared the intestinal microbiota of marine-farmed S. salar fed experimental diets with varying levels of SPC in mid- and late-summer. Terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA clone library analysis revealed the microbiota adherent to the intestinal tract of salmon is complex at the population level, but simple and highly variable at the individual level. Temporal changes were observed with the bacterial diversity increasing in the intestinal tract in late summer. A Verrucomicrobia was the most frequently observed ribotype in early summer, whilst an Aliivibrio was the most frequently observed ribotype in late summer. Feeding SPC to salmon increased the bacterial diversity of the intestinal tract and resulted in the presence of bacteria not normally associated with marine fish (Escherichia and Propionibacterium). These diet-induced changes to the intestinal-microbiome could be ameliorated by inclusion of a prebiotic (mannan-oligosaccharide or MOS) to the diet. None of the experimental diets induced inflammation of the intestine as assessed by histopathology and expression of inflammatory cytokines. Our results support the "dysbiosis" hypothesis that SPC adversely affects the intestinal microbiota of Atlantic salmon. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Hilton, Sally; Bennett, Amanda J.; Keane, Gary; Bending, Gary D.; Chandler, David; Stobart, Ron; Mills, Peter
2013-01-01
Oilseed rape (OSR) grown in monoculture shows a decline in yield relative to virgin OSR of up to 25%, but the mechanisms responsible are unknown. A long term field experiment of OSR grown in a range of rotations with wheat was used to determine whether shifts in fungal and bacterial populations of the rhizosphere and bulk soil were associated with the development of OSR yield decline. The communities of fungi and bacteria in the rhizosphere and bulk soil from the field experiment were profiled using terminal restriction fragment length polymorphism (TRFLP) and sequencing of cloned internal transcribed spacer regions and 16S rRNA genes, respectively. OSR cropping frequency had no effect on rhizosphere bacterial communities. However, the rhizosphere fungal communities from continuously grown OSR were significantly different to those from other rotations. This was due primarily to an increase in abundance of two fungi which showed 100% and 95% DNA identity to the plant pathogens Olpidium brassicae and Pyrenochaeta lycopersici, respectively. Real-time PCR confirmed that there was significantly more of these fungi in the continuously grown OSR than the other rotations. These two fungi were isolated from the field and used to inoculate OSR and Brassica oleracea grown under controlled conditions in a glasshouse to determine their effect on yield. At high doses, Olpidium brassicae reduced top growth and root biomass in seedlings and reduced branching and subsequent pod and seed production. Pyrenochaeta sp. formed lesions on the roots of seedlings, and at high doses delayed flowering and had a negative impact on seed quantity and quality. PMID:23573215
Fine-scale genotyping methods are necessary in order to identify possible sources of human exposure to opportunistic pathogens belonging to the Mycobacterium avium complex (MAC). In this study, amplified fragment length polymorphism (AFLP) analysis was evaluated for fingerprintin...
NASA Astrophysics Data System (ADS)
Bonte, M.; van Breukelen, B. M.; Van Der Wielen, P. W. J. J.; Stuyfzand, P. J.
2012-04-01
Aquifer thermal energy storage (ATES) uses groundwater to store energy for heating or cooling purposes in the built environment. ATES systems are often located in the same aquifers used for public drinking water supply, leading to urgent questions on its environmental impacts. This contribution presents the results of research on the biogeochemical impacts of ATES in anoxic column experiments at 5, 12, 25, and 60° C. In- and effluents are analyzed for major ions, trace elements, heavy metals, dissolved organic carbon (DOC) and UV extinction. Terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes and analysis of adenosine triphosphate (ATP) were used to detect changes in the microbiological population and activity. Results from the column experiments at 5, 25, and 60° C compared to the reference column at 12° C showed a number of changes in biogeochemical conditions: At 5° C, only changes were observed in alkalinity and calcium concentrations, resulting from calcite dissolution. The 25° C and 60° C column effluents from a sediment containing Fe-(hydr)oxides showed an increase in arsenic concentrations, well above the drinking water limit. This is due to either (reductive) dissolution of, or desorption from, iron(hydro)xides containing arsenic. In addition, at these two temperatures sulfate reduction occurred while this was undetectable at 5 and 12° C within the given timeframe (25 days) and analytical accuracy. The carbon source for sulfate reduction is inferred to be sedimentary organic carbon. Increasing DOC with residence time in the 60° C effluent suggests that at 60° C the terminal sulfate reduction step is rate limiting, while at 25° C the enzymatic hydrolization step in sulfate reducing bacteria is overall rate limiting. Specific ultraviolet absorption (SUVA, the ratio of UV extinction and DOC) however shows a clear decrease in reactivity of the humic acid fraction in DOC. This means that the DOC accumulation at 60° C could also be interpreted as a shift from pure microbial mediated organic carbon hydrolysis to chemical organic carbon respiration, yielding less reactive humic acids. The results from the T-RFLP and ATP analyses showed that the microbial population at 60° C was clearly different and less active than at lower temperatures. Overall, it is concluded that water quality can change when higher temperatures (>25 °C) are invoked on anoxic sediments. Impacts from cold storage are limited. This implies that care should be taken when positioning ATES systems at higher temperatures in aquifers that are used for public drinking water supply.
NASA Astrophysics Data System (ADS)
Sun, W.; Lin, L.; Wang, P.
2012-12-01
Terrestrial mud volcano is thought to be one of the most important natural sources of methane emission. Previous studies have shown that methane cycling in terrestrial mud volcanoes involves a complex reaction network driven by the interactions between subsurface and surface abiotic and microbial processes. In situ methanogenesis appears to produce methane at quantities exceeding those of deeply-sourced thermogenic methane and the capacities of anaerobic methanotrophy at shallow depth levels, thereby contributing significantly to the methane emission. Various degrees of evaporation at surface also lead to the enhancement of chloride concentrations in pore water, favoring the proliferation of halo-tolerant and/or halophilic methanogens. The goal of this study is to investigate the extent of methanogenesis in terrestrial mud volcanoes by incubating mud slurries with various precursors (H2/CO2, acetate, methanol, and methylamine) at different salinities (up to 2000 mM) and temperatures (up to 50 oC). Methane concentrations were monitored through time and molecular analyses were applied to investigate the changes of methanogenic communities. Methanogenesis was stimulated by any investigated precursor at room temperature. However, the methanogenic response to salinity varied. Of the investigated precursors, H2/CO2 and methyl-compounds (methanol and methylamine) stimulated methanogenesis at all investigated salinities. The rates and yields of hydrogen- and methyl-utilizing methanogenesis declined significantly at salinities greater than 1500 mM. Acetate-utilizing methanogenesis proceeded at salinities less than 700 mM. At 40 oC, methanogenesis was stimulated by all investigated precursors at the in situ salinity (~400 mM). At 50 oC, only H2-utilizing methanogenesis was stimulated. Analyses of terminal restriction fragment length polymorphism (TRFLP) for 16S rRNA genes revealed various patterns upon different precursors and salinities. The TRFLP results combined with clone library analyses indicated that major RFs recovered from incubations with methyl-compounds at room temperature and 40 oC were represented by sequences affiliated with Methanococcoides spp., Methanosarcina spp., and Methanolobus spp. In particular, only Methanosarcina- and Methanococcoides-related members were detected at salinities greater than 1000 mM or at 40 oC. RFs recovered from incubations with H2/CO2 at room temperature and 40 oC were represented by sequences related to different Methanococcus spp. Overall, methanogens utilizing H2/CO2 and methyl-compounds appear to be capable of actively producing methane at salinities greater than acetate-utilizing methanogens could tolerate. These methanogens might adapt better to the fluctuation of salinity or extremely high salinity induced by the surface evaporation in terrestrial mud volcanoes. When considering the overall methane emission from terrestrial mud volcanoes, these halo-tolerant methanogens become a significant factor. Key words: mud volcano, Methane, Methanogenesis, Salinity
Rife, Terrie; Rasoul, Bareza; Pullen, Nicholas; Mitchell, David; Grathwol, Kristen; Kurth, Janice
2009-08-01
Transcriptional changes of the enzyme nitric oxide synthase I (NOS1) are believed to play a role in the development of many diseases. The gene for NOS1 has 12 alternative first exons (1A-1L). The 1F exon is one of the most highly utilized first exons in the brain and has a polymorphism ((TG)(m)TA(TG)(n)) located in its promoter region. The polymorphism's length has been suggested to affect NOS1 transcription and play a role in Parkinson's disease (PD); however, the actual influence of the polymorphism on NOS1 transcription has not been studied. To better characterize the links of the polymorphism with PD, a genotyping study was done comparing polymorphism length among 170 PD patients and 150 age-matched controls. The pattern of changes between the two group's allele frequencies shows statistical significance (P = 0.0359). The smallest polymorphism sizes are more predominant among PD patients than controls. To study the effects of this polymorphism on NOS1 gene transcription, reporter gene constructs were made by cloning the NOS1 1F promoter with polymorphism lengths of either 42, 54, or 62 bp in front of the luciferase gene and transfecting them into HeLa or Sk-N-MC cells. NOS1-directed reporter gene constructs with the 62-bp polymorphism increased transcription of luciferase 2.2-fold in HeLa and 1.8-fold in Sk-N-MC cells compared with reporter gene constructs with the 42-bp polymorphism. These data suggest that if smaller polymorphism size contributes to the higher NOS1 levels in PD patients, an as yet unknown transcriptional mechanism is required. Copyright 2009 Wiley-Liss, Inc.
Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo
1998-01-01
All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900
Pseudomonas specific 16S rDNA PCR amplification and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis using a single digestion mixture of Alu I, Hinf I, Rsa I, and Tru 9I distinguished 150 published sequences and reference strains of authentic Pseudomonas...
Zhang, M; Bai, X J
2015-05-25
The polymerase chain reaction-single-strand conformation polymorphism technique was employed to measure mononucleotide diversity in the coding region of the leptin and leptin receptor genes in the Arctic fox. The relationships between specific genetic mutations and reproductive performance in Arctic foxes were determined to im-prove breeding strategies. We found that a leptin gene polymorphism was significantly associated with body weight (P < 0.01), abdominal circumference (P < 0.01), and fur length (P < 0.01). Furthermore, a polymorphism in the leptin receptor gene was associated with carcass weight and guard hair length (P < 0.01). Leptin and leptin receptor gene combinatorial genotypes were significantly associated with abdominal circumference, fur length (P < 0.01), and body weight (P < 0.05). The leptin gene is thus a key gene affecting body weight, abdominal circumference, and fur length in Arctic foxes, whereas variations in the leptin receptor mainly affect carcass weight and guard hair. The marker loci identified in this study can be used to assist in the selection of Arctic foxes for breeding to raise the production performance of this species.
Mabry, Karen E; Streatfeild, Craig A; Keane, Brian; Solomon, Nancy G
2011-01-01
Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions.
Mabry, Karen E.; Streatfeild, Craig A.; Keane, Brian; Solomon, Nancy G.
2010-01-01
Recent discoveries of single-gene influences on social behaviour have generated a great deal of interest in the proximate mechanisms underlying the expression of complex behaviours. Length polymorphism in a microsatellite in the regulatory region of the gene encoding the vasopressin 1a receptor (avpr1a) has been associated with both inter- and intra-specific variation in socially monogamous behaviour in voles (genus Microtus) under laboratory conditions. Here, we evaluate the relationship between avpr1a length polymorphism and social associations, genetic monogamy, and reproductive success in free-living prairie vole (M. ochrogaster) populations. We found no evidence of a relationship between avpr1a microsatellite length and any of our correlates of either social or genetic monogamy in the field. Our results, especially when taken in conjunction with those of recent experimental studies in semi-natural enclosures, suggest that avpr1a polymorphism is unlikely to have been a major influence in the evolution or maintenance of social monogamy in prairie voles under natural conditions. PMID:21442019
Al-Khalifah, Nasser S; Shanavaskhan, A E
2017-01-01
Ambiguity in the total number of date palm cultivars across the world is pointing toward the necessity for an enumerative study using standard morphological and molecular markers. Among molecular markers, DNA markers are more suitable and ubiquitous to most applications. They are highly polymorphic in nature, frequently occurring in genomes, easy to access, and highly reproducible. Various molecular markers such as restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR), inter-simple sequence repeats (ISSR), and random amplified polymorphic DNA (RAPD) markers have been successfully used as efficient tools for analysis of genetic variation in date palm. This chapter explains a stepwise protocol for extracting total genomic DNA from date palm leaves. A user-friendly protocol for RAPD analysis and a table showing the primers used in different molecular techniques that produce polymorphisms in date palm are also provided.
Liu, Haiying; Liu, Chao; Yang, Guiqin; Li, Hui; Dai, Jin; Cong, Yuyan; Li, Xuejian
2012-01-01
Insulin-like growth factor binding protein-3 (IGFBP-3) gene is important for regulation of growth and development in mammals. The present investigation was carried out to study DNA polymorphism by PCR-RFLP of IGFBP-3 gene and its effect on fibre traits of Chinese Inner Mongolian cashmere goats. The fibre traits data investigated were cashmere fibre diameter, combed cashmere weight, cashmere fibre length and guard hair length. Four hundred and forty-four animals were used to detect polymorphisms in the hircine IGFBP-3 gene. A 316-bp fragment of the IGFBP-3 gene in exon 2 was amplified and digested with HaeIII restriction enzyme. Three patterns of restriction fragments were observed in the populations. The frequency of AA, AB and BB genotypes was 0.58, 0.33 and 0.09 respectively. The allelic frequency of the A and B allele was 0.75 and 0.25 respectively. Nucleotide sequencing revealed a C>G transition in the exon 2 region of the IGFBP-3 gene resulting in R158G change which caused the polymorphism. Least squares analysis revealed a significant effect of genotypes on cashmere weight (p<0.0001), cashmere fibre length (p<0.001) and hair length (p<0.05) of the animals. The effect of genotypes on cashmere fibre diameter was not statistically significant (p>0.05). The animals of AB and BB genotypes showed higher cashmere weight, cashmere fibre length and hair length than the animals possessing AA genotype. These results suggested that polymorphisms in the hircine IGFBP-3 gene might be a potential molecular marker for cashmere weight in cashmere goats. PMID:25049511
[Recent advances of amplified fragment length polymorphism and its applications in forensic botany].
Li, Cheng-Tao; Li, Li
2008-10-01
Amplified fragment length polymorphism (AFLP) is a new molecular marker to detect genomic polymorphism. This new technology has advantages of high resolution, good stability, and reproducibility. Great achievements have been derived in recent years in AFLP related technologies with several AFLP expanded methodologies available. AFLP technology has been widely used in the fields of plant, animal, and microbes. It has become one of the hotspots in Forensic Botany. This review focuses on the recent advances of AFLP and its applications in forensic biology.
Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.).
Keyte, Anna L; Percifield, Ryan; Liu, Bao; Wendel, Jonathan F
2006-01-01
Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, P.S.; Liu, Y.; Saha, N.
A length polymorphism at the 5{prime} untranslated region of the ATIII gene has been described as having been detected by polymerase chain reaction (PCR) with a frequency of 0.75 for the short allele (S) in the Caucasian population. This length polymorphism of the ATIII gene has been studied in 251 Chinese healthy subjects. Genomic DNA was amplified by PCR with primers of published sequences. Fragments of the amplified DNA were separated by agarose gel electrophoresis (3% NuSieve and 1% Seakem GTG) and photographed on a UV transilluminator. The frequency of the short allele (S) was found to be significantly lowermore » (0.37) than that in the Caucasians (0.75). The distribution of genotypes of this polymorphism of the ATIII gene was at Hardy-Weinberg equilibrium. The large difference of allelic frequencies in the Mongoloid and Caucasian populations makes it a useful marker for population studies.« less
Essentials of Conservation Biotechnology: A mini review
NASA Astrophysics Data System (ADS)
Merlyn Keziah, S.; Subathra Devi, C.
2017-11-01
Equilibrium of biodiversity is essential for the maintenance of the ecosystem as they are interdependent on each other. The decline in biodiversity is a global problem and an inevitable threat to the mankind. Major threats include unsustainable exploitation, habitat destruction, fragmentation, transformation, genetic pollution, invasive exotic species and degradation. This review covers the management strategies of biotechnology which include sin situ, ex situ conservation, computerized taxonomic analysis through construction of phylogenetic trees, calculating genetic distance, prioritizing the group for conservation, digital preservation of biodiversities within the coding and decoding keys, molecular approaches to asses biodiversity like polymerase chain reaction, real time, randomly amplified polymorphic DNA, restriction fragment length polymorphism, amplified fragment length polymorphism, single sequence repeats, DNA finger printing, single nucleotide polymorphism, cryopreservation and vitrification.
M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale
1994-01-01
A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....
NASA Astrophysics Data System (ADS)
Gilbertson, M.; Harrison, B. K.; Flood, B. E.; Myrbo, A.; Bailey, J. V.
2013-12-01
The characterization of microbial communities within urban lake sediments may offer a promising method to observe changes in lake geochemistry due to human impact. By mapping the abundances and diversity of microorganisms through the uppermost meter of sediment in three distinctive Minneapolis-St. Paul lakes (Brownie Lake and Twin Lake, both meromictic, and oligomictic Lake McCarrons) using 16S rRNA characterization, our aim was to observe changes in microbial populations across steep geochemical and lithological gradients. Lake McCarrons underwent a process of eutrophication and a shift to bottom water anoxia beginning around 1910 due mostly to agricultural run-off. This shift greatly increased the preservation potential of seasonal sedimentation and finely laminated varve accumulation. The onset of meromixis in Brownie Lake in ~1915 is abrupt and has been attributed to a sudden drop in water level. Twin Lake is perennially meromictic due to the topography of the watershed. The three lakes were sampled by collecting freeze cores in July, 2012 (McCarrons, Brownie) and February, 2013 (Twin) at the deepest locations beneath anoxic to hypoxic bottom waters. The cores were then subsampled with high resolution techniques at places of interest: within individual lamina, across mass flow deposits, and near the onset of laminae preservation (beginning of oxygen-depleted bottom waters). Terminal Restriction Fragment Length Polymorphism (T-RFLP) allows for comparison of the microbial assemblages throughout the sediment columns of each lake and from lake to lake, with a focus on the horizons mentioned previously. The microbial assemblages present in specific horizons are often introduced via sedimentation and are partially derived from community composition at the time of sedimentation. T-RFLP analyses are complemented by mineralogical and lithological descriptions. The lakes have each been subject to their own set of variables and inputs. Brownie Lake contains high levels of Fe and Mn (measured up to 78 and 6 mg/l in bottom waters, respectively, US EPA STORET). The ecology of McCarrons has been greatly disturbed most recently when the lake was targeted by a 2004 aluminum sulfate treatment to counteract high phosphorous levels. Twin Lake has mass flow deposits nearly 5 cm thick, similar to turbidites, likely caused by increased sedimentation from large housing developments on the lake shores. The microbial community in each of the lakes is impacted by these distinct parameters. This study examines variability in microbial community assemblages through time and space within these lake sediments. Changes seen in the ecology of the communities are related to changes in chemical and physical parameters, namely, shifts in lithology and sediment accumulation via the onset of meromixis. Freeze coring exceptionally allows super-high resolution subsampling techniques to identify differences across geochemical gradients and between individual seasonal laminae within each lake and from lake to lake.
Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao
2012-11-01
The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), nitrate (NO3(-) -N) and ammonia (NH4(+) -N) were significantly related to abundances of nirS-denitrifers (r = 0.724-0.922, P < 0.05) and the DEA (r = 0.453-0.938, P < 0.01). In addition, the DEAs were linearly and positively correlated with the abundances of nirS-type denitrifers (r = 0.85, P < 0.01). Redundancy analysis showed that except moisture, pH and concentrations of TP, TP, TOC, NH4(+) -N and NO3(-) -N were significantly correlated with the community structure of nirS-type denirifiers (r = 0.440-0.862, P < 0.01). Furthermore, the DEAs were significantly correlated with the compositions of nirS-denirifiers (r = 0.863, P < 0.01). In conclusion, the airS-type denitrifiers in the black soil are more responsive to the organic treatments than to the inorganic treatments in terms of community composition and abundance, both of which are correlated with the changes of DEAs.
Seshan, Hari; Goyal, Manish K; Falk, Michael W; Wuertz, Stefan
2014-04-15
The relationship between microbial community structure and function has been examined in detail in natural and engineered environments, but little work has been done on using microbial community information to predict function. We processed microbial community and operational data from controlled experiments with bench-scale bioreactor systems to predict reactor process performance. Four membrane-operated sequencing batch reactors treating synthetic wastewater were operated in two experiments to test the effects of (i) the toxic compound 3-chloroaniline (3-CA) and (ii) bioaugmentation targeting 3-CA degradation, on the sludge microbial community in the reactors. In the first experiment, two reactors were treated with 3-CA and two reactors were operated as controls without 3-CA input. In the second experiment, all four reactors were additionally bioaugmented with a Pseudomonas putida strain carrying a plasmid with a portion of the pathway for 3-CA degradation. Molecular data were generated from terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S rRNA and amoA genes from the sludge community. The electropherograms resulting from these T-RFs were used to calculate diversity indices - community richness, dynamics and evenness - for the domain Bacteria as well as for ammonia-oxidizing bacteria in each reactor over time. These diversity indices were then used to train and test a support vector regression (SVR) model to predict reactor performance based on input microbial community indices and operational data. Considering the diversity indices over time and across replicate reactors as discrete values, it was found that, although bioaugmentation with a bacterial strain harboring a subset of genes involved in the degradation of 3-CA did not bring about 3-CA degradation, it significantly affected the community as measured through all three diversity indices in both the general bacterial community and the ammonia-oxidizer community (α = 0.5). The impact of bioaugmentation was also seen qualitatively in the variation of community richness and evenness over time in each reactor, with overall community richness falling in the case of bioaugmented reactors subjected to 3-CA and community evenness remaining lower and more stable in the bioaugmented reactors as opposed to the unbioaugmented reactors. Using diversity indices, 3-CA input, bioaugmentation and time as input variables, the SVR model successfully predicted reactor performance in terms of the removal of broad-range contaminants like COD, ammonia and nitrate as well as specific contaminants like 3-CA. This work was the first to demonstrate that (i) bioaugmentation, even when unsuccessful, can produce a change in community structure and (ii) microbial community information can be used to reliably predict process performance. However, T-RFLP may not result in the most accurate representation of the microbial community itself, and a much more powerful prediction tool can potentially be developed using more sophisticated molecular methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
J. E. Davis; Thomas L. Kubisiak; M. G. Milgroom
2005-01-01
Studies on the population biology of the chestnut blight fungus, Cryphonectria parasitica, have previously been carried out with dominant restriction fragment length polymorphism (RFLP) fingerprinting markers. In this study, we described the development of 11 condominant markers from randomly amplified polymorphic DNAs (RAPDs). RAPD fragments were...
Verde, Zoraida; Reinoso-Barbero, Luis; Chicharro, Luis; Resano, Pilar; Sánchez-Hernández, Ignacio; Rodríguez González-Moro, Jose Miguel; Bandrés, Fernando; Gómez-Gallego, Félix; Santiago, Catalina
2016-04-01
Smoking implies exposure to carcinogenic agents that causes DNA damage, which could be suspected to enhance telomere attrition. To protect and deal with DNA damage, cells possess mechanisms that repair and neutralize harmful substances. Polymorphisms altering DNA repair capacity or carcinogen metabolism may lead to synergistic effects with tobacco carcinogen-induced shorter telomere length independently of cancer interaction. The aim of this study was to explore the association between leukocyte telomere length (LTL) and several genetic polymorphisms in DNA repair genes and carcinogen metabolizers in a cohort of healthy smokers. We evaluated the effect of six genetic polymorphisms in cytochrome P1A1 (Ile462Val), XRCC1 (Arg399Gln), APEX1 (Asp148Glu), XRCC3 (Thr241Met), and XPD (Asp312Asn; Lys751Gln) on LTL in a cohort of 145 healthy smokers in addition to smoking habits. Logistic regression analysis showed an association between XRCC1 399Gln allele and shorter telomere length (OR = 5.03, 95% CI = 1.08% to 23.36%). There were not association between the rest of polymorphisms analyzed and LTL. Continuous exposure to tobacco could overwhelm the DNA repair machinery, making the effect of the polymorphisms that reduce repair capacity more pronounced. Analyzing the function of smoking-induced DNA-repair genes and LTL is an important goal in order to identify therapeutic targets to treat smoking-induced diseases. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan
2017-09-01
The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Restriction fragment length polymorphism and allozyme linkage map of Cuphea lanceolata.
Webb, D M; Knapp, S J; Tagliani, L A
1992-02-01
Cuphea lanceolata Ait. has had a significant role in the domestication of Cuphea and is a useful experimental organism for investigating how medium-chain lipids are synthesized in developing seeds. To expand the genetics of this species, a linkage map of the C. lanceolata genome was constructed using five allozyme and 32 restriction-fragment-length-polymorphism (RFLP) marker loci. These loci were assigned to six linkage groups that correspond to the six chromosomes of this species. Map length is 288 cM. Levels of polymorphism were estimated for three inbred lines of C. lanceolata and an inbred line of C. viscosissima using 84 random genomic clones and two restriction enzymes, EcoRI and HindIII. Of the probes 29% detected RFLPs between C. lanceolata and C. viscosissima lines. Crosses between these species can be exploited to expand the map.
Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H
2010-01-01
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
Haider, Nadia
2017-01-01
Investigation of genetic variation and phylogenetic relationships among date palm (Phoenix dactylifera L.) cultivars is useful for their conservation and genetic improvement. Various molecular markers such as restriction fragment length polymorphisms (RFLPs), simple sequence repeat (SSR), representational difference analysis (RDA), and amplified fragment length polymorphism (AFLP) have been developed to molecularly characterize date palm cultivars. PCR-based markers random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) are powerful tools to determine the relatedness of date palm cultivars that are difficult to distinguish morphologically. In this chapter, the principles, materials, and methods of RAPD and ISSR techniques are presented. Analysis of data generated from these two techniques and the use of these data to reveal phylogenetic relationships among date palm cultivars are also discussed.
Restriction fragment length polymorphism of the human c-fms gene.
Xu, D Q; Guilhot, S; Galibert, F
1985-01-01
By using blot hybridization with a v-fms probe, a polymorphism for EcoRI, HindIII, and BamHI restriction endonuclease sites associated with the human c-fms locus was observed in a random adult population. This restriction fragment length polymorphism can be explained on the basis of the existence of two alleles, a and b, and is due to a short (congruent to 500 base pairs) deletion characteristic of allele a. The distribution in the analyzed population (48 unrelated individuals) is 23% heterozygotes ab, 75% homozygotes bb, and 2% homozygotes aa. Though the inheritance of this polymorphism follows a Mendelian pattern, the children from couples ab X bb are of the following genotype: 74% ab and 26% bb. These deviations from the expected frequencies of 50% suggest a selective pressure in favor of heterozygotes. Images PMID:2986142
Klowden, Marc J; Chambers, Gail M
2004-12-01
The males of two mosquito species within the Anopheles gambiae complex, An. gambiae s.s. and An. quadriannulatus, as well as males of An. darlingi, produced sperm of significantly varying lengths, while a sperm polymorphism was absent in Aedes aegypti and other anophelines not suspected of belonging to species complexes. The polymorphic distribution of these sperm lengths was not significantly different in smaller adult males that were reared on a low larval diet. The reproductive tract of the female was more likely to contain larger sperm, but overall sperm retention varied depending on the size of the female and the volume of the spermatheca she contained. The presence of a sperm polymorphism may be a factor that has promoted speciation, as well as providing an indication that females may mate multiply.
Marshall, S M; Melito, P L; Woodward, D L; Johnson, W M; Rodgers, F G; Mulvey, M R
1999-12-01
A rapid two-step identification scheme based on PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 16S rRNA gene was developed in order to differentiate isolates belonging to the Campylobacter, Arcobacter, and Helicobacter genera. For 158 isolates (26 reference cultures and 132 clinical isolates), specific RFLP patterns were obtained and species were successfully identified by this assay.
Verdier, Valérie; Boher, Bernard; Maraite, Henri; Geiger, Jean-Paul
1994-01-01
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava. Images PMID:16349463
Short poly-glutamine repeat in the androgen receptor in New World monkeys.
Hiramatsu, Chihiro; Paukner, Annika; Kuroshima, Hika; Fujita, Kazuo; Suomi, Stephen J; Inoue-Murayama, Miho
2017-12-01
The androgen receptor mediates various physiological and developmental functions and is highly conserved in mammals. Although great intraspecific length polymorphisms in poly glutamine (poly-Q) and poly glycine (poly-G) regions of the androgen receptor in humans, apes and several Old World monkeys have been reported, little is known about the characteristics of these regions in New World monkeys. In this study, we surveyed 17 species of New World monkeys and found length polymorphisms in these regions in three species (common squirrel monkeys, tufted capuchin monkeys and owl monkeys). We found that the poly-Q region in New World monkeys is relatively shorter than that in catarrhines (humans, apes and Old World monkeys). In addition, we observed that codon usage for poly-G region in New World monkeys is unique among primates. These results suggest that the length of polymorphic regions in androgen receptor genes have evolved uniquely in New World monkeys.
DU, Zhi-Heng; Liu, Zong-Yue; Bai, Xiu-Juan
2010-06-01
Using single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing, single nucleotide polymorphisms (SNPs) of growth hormone receptor (GHR) gene were detected in an arctic fox population. Correlation analysis between GHR polymorphisms and growth traits were carried out using the appropriate model. Four SNPs, G3A in the 5'UTR, C99T in the first exon, T59C and G65A in the fifth exon were identified on the arctic fox GHR gene. The G3A and C99T polymorphisms of GHR were associated with female fox body weight (Pamp;0.05) and the T59C and G65A polymorphisms of GHR were associated with male fox body weight (Pamp;0.05) and the skin length of the female fox (Pamp;0.01). Therefore, marker assistant selection on body weight and skin length of arctic foxes using these SNPs can be applied to get big and high quality arctic foxes.
Qin, Xiaobo; Li, Yu'e; Wang, Hong; Liu, Chong; Li, Jianling; Wan, Yunfan; Gao, Qingzhu; Fan, Fenliang; Liao, Yulin
2016-11-01
To evaluate long-term effect of biochar application on yield-scaled greenhouse gas emissions (YSGE) in a paddy rice cropping system, a 4-year field experiment by static chamber - gas chromatograph method was conducted in South China. Principal component analysis and terminal restriction fragment length polymorphism (T-RFLP) and real-time qPCR was used to unravel the microbial mechanisms of biochar addition. Six treatments were included: control (CK), application of 5tha(-1) biochar (BC1), application of 10tha(-1) biochar (BC2), application of 10tha(-1) biochar (BC3), rice straw return at 2400kgha(-1)(RS) and inoculated rice straw return at 2400kgha(-1)(RI). The results indicated that biochar amendment significantly decreased methane (CH4) and gross greenhouse gas (GHG) emissions. This may primarily be ascribed to the stimulated biodiversity and abundance of methanotrophic microbes, increased soil pH and improved aeration by reducing bulk density after biochar incorporation. Compared with CK, RS and RI, 26.18%, 70.02%, 66.47% of CH4 flux and 26.14%, 70.16%, 66.46% of gross GHG emissions were reduced by biochar (mean of three biochar treatments), respectively. Furthermore, biochar significantly increased harvest index of double rice production (p<0.05). In comparison with CK, RS and RI, 29.14%, 68.04%, 62.28% of YSGE was reduced by biochar, respectively, and the highest biochar addition rate (20tha(-1)) contributed most to the mitigation of GHG emissions (36.24% decrease compared to CK) and improvement of rice yield (7.65% increase compared to CK). Results of our study suggested that long-term application of biochar should be the potential way to mitigate GHGs emissions and simultaneously improve rice productivity in the paddy rice system. Copyright © 2016 Elsevier B.V. All rights reserved.
Lott, M J; Hose, G C; Power, M L
2015-08-01
Captive management practices have the potential to drastically alter pre-existing host-parasite relationships. This can have profound implications for the health and productivity of threatened species in captivity, even in the absence of clinical symptoms of disease. Maximising the success of captive breeding programmes requires a detailed knowledge of anthropogenic influences on the structure of parasite assemblages in captive systems. In this study, we employed two high-throughput molecular techniques to characterise the parasitic nematode (suborder Strongylida) communities of the red kangaroo, Macropus rufus, across seven captive sites. The first was terminal restriction fragment length polymorphism (T-RFLP) analysis of a region of rDNA encompassing the internal transcribed spacers 1 (ITS1), the 5.8S rRNA gene and the internal transcribed spacer 2 (ITS2). The second was Illumina MiSeq next-generation sequencing of the ITS2 region. The prevalence, intensity of infection, taxonomic composition and comparative structure of strongylid nematode assemblages was assessed at each location. Prevalence (P = <0.001) and mean infection intensity (df = 6, F = 17.494, P = <0.001) differed significantly between the seven captive sites. Significant levels of parasite community structure were observed (ANOSIM, P = 0.01), with most of the variation being distributed within, rather than between, captive sites. The range of nematode taxa that occurred in captive red kangaroos appeared to differ from that of wild conspecifics, with representatives of the genus Cloacina, a dominant nematode parasite of the macropodid forestomach, being detected at only two of the seven study sites. This study also provides the first evidence for the presence of the genus Trichostrongylus in a macropodid marsupial. Our results demonstrate that contemporary species management practices may exert a profound influence on the structure of parasite communities in captive systems.
Effects of viruses and predators on prokaryotic community composition.
Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier
2005-11-01
Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (<5 microm: treatment filtered on 5 microm, without ciliates and metazoans; UNF: unfiltered treatment with all planktonic communities). Enrichments of natural viruses (<1.2 microm: with a natural virus concentration; <1.2 mum V and VV: with enrichment leading to a double or triple concentration of viruses, respectively) were used to indirectly assess the control of virioplankton. Viral activity was estimated from the frequency of visibly infected cells (FVIC). PCC was determined by fluorescence in situ hybridization (FISH) and terminal restriction fragment length polymorphism (T-RFLP). In this study, PCC was affected by the eukaryote communities (especially flagellates), and viruses to a lesser extent. Cyanobacteria declined significantly during the experiment and were highly correlated with the FVIC. In addition, the 503-bp terminal restriction fragment (T-RF) disappeared in treatments with virus enrichments, suggesting possible viral-associated mortality processes, whereas the 506-bp T-RF was not affected in these treatments. On one hand, these results suggest a control of the PCC: first, by viral lysis of some dominant phylotypes and second, by interspecific competition between resistant strains for the uptake of substrates released by this lysis. The increase of Archaea may suggest that these cells benefit such resources. On the other hand, the disappearance and the stable proportion of some dominant phylotypes suggested a selection pressure due to the predatory activity on prokaryotes. In conclusion, prokaryotic abundance appears to be mainly controlled by flagellate protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.
NASA Astrophysics Data System (ADS)
Kong, W.; Guo, G.; Liu, J.
2014-12-01
Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic carbon.
[Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].
Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang
2015-09-01
Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in future.
Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.
2013-01-01
Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses. PMID:23914185
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.
2011-12-01
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial communities, while the quality of available organic matter may have played a significant role in supporting high performing microbial communities.
Ohland, Christina L; Kish, Lisa; Bell, Haley; Thiesen, Aducio; Hotte, Naomi; Pankiv, Evelina; Madsen, Karen L
2013-09-01
Modulation of the gut microbiota with diet and probiotic bacteria can restore intestinal homeostasis in inflammatory conditions and alter behavior via the gut-brain axis. The purpose of this study was to determine whether the modulatory effects of probiotics differ depending on diet and mouse genotype. At weaning, wild type (WT) and IL-10 deficient (IL-10(-/-)) 129/SvEv mice were placed on a standard mouse chow or a Western-style diet (fat 33%, refined carbohydrate 49%)±Lactobacillus helveticus ROO52 (10(9)cfu/d) for 21 days. Animal weight and food eaten were monitored weekly. Intestinal immune function was analysed for cytokine expression using the Meso Scale Discovery platform. Spatial memory and anxiety-like behavior was assessed in a Barnes maze. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze the fecal microbiota. Both WT and IL-10(-/-) mice on a Western diet had increased weight gain along with changes in gut microbiota and cytokine expression and altered anxiety-like behavior. The ability of L. helveticus to modulate these factors was genotype- and diet-dependent. Anxiety-like behavior and memory were negatively affected by Western-style diet depending on inflammatory state, but this change was prevented with L. helveticus administration. However, probiotics alone decreased anxiety-like behavior in WT mice on a chow diet. Mice on the Western diet had decreased inflammation and fecal corticosterone, but these markers did not correlate with changes in behavior. Analysis of bacterial phyla from WT and IL-10(-/-)mice showed discrete clustering of the groups to be associated with both diet and probiotic supplementation, with the diet-induced shift normalized to some degree by L. helveticus. These findings suggest that the type of diet consumed by the host and the presence or absence of active inflammation may significantly alter the ability of probiotics to modulate host physiological function. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jha, Neha; Saggar, Surinder; Giltrap, Donna; Tillman, Russ; Deslippe, Julie
2017-09-01
Denitrification is an anaerobic respiration process that is the primary contributor of the nitrous oxide (N2O) produced from grassland soils. Our objective was to gain insight into the relationships between denitrifier community size, structure, and activity for a range of pasture soils. We collected 10 dairy pasture soils with contrasting soil textures, drainage classes, management strategies (effluent irrigation or non-irrigation), and geographic locations in New Zealand, and measured their physicochemical characteristics. We measured denitrifier abundance by quantitative polymerase chain reaction (qPCR) and assessed denitrifier diversity and community structure by terminal restriction fragment length polymorphism (T-RFLP) of the nitrite reductase (nirS, nirK) and N2O reductase (nosZ) genes. We quantified denitrifier enzyme activity (DEA) using an acetylene inhibition technique. We investigated whether varied soil conditions lead to different denitrifier communities in soils, and if so, whether they are associated with different denitrification activities and are likely to generate different N2O emissions. Differences in the physicochemical characteristics of the soils were driven mainly by soil mineralogy and the management practices of the farms. We found that nirS and nirK communities were strongly structured along gradients of soil water and phosphorus (P) contents. By contrast, the size and structure of the nosZ community was unrelated to any of the measured soil characteristics. In soils with high water content, the richnesses and abundances of nirS, nirK, and nosZ genes were all significantly positively correlated with DEA. Our data suggest that management strategies to limit N2O emissions through denitrification are likely to be most important for dairy farms on fertile or allophanic soils during wetter periods. Finally, our data suggest that new techniques that would selectively target nirS denitrifiers may be the most effective for limiting N2O emissions through denitrification across a wide range of soil types.
An, Xinli; Baker, Paul; Li, Hu; Su, Jianqiang; Yu, Changping; Cai, Chao
2016-11-01
Microorganisms are the primary agents responsible for the modification, degradation, and/or detoxification of pollutants, and thus, they play a major role in their natural attenuation; yet, little is known about the structure and diversity of the subsurface community and relationships between microbial community and groundwater hydrochemistry. In this study, denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) allowed a comparative microbial community analysis of sulfate-contaminated groundwater samples from nine different wells in the region of Baogang rare earth tailings. Using real-time PCR, the abundance of total bacteria and the sulfate-reducing genes of aprA and dsrB were quantified. Statistical analyses showed a clear distinction of the microbial community diversity between the contaminated and uncontaminated samples, with Proteobacteria being the most dominant members of the microbial community. SO 4 2- concentrations exerted a significant effect on the variation of the bacterial community (P < 0.05), with higher concentrations of sulfate reducing the microbial diversity (H' index), indicating that human activity (e.g., mining industries) was a possible factor disturbing the structure of the bacterial community. Quantitative analysis of the functional genes showed that the proportions of dsrB to total bacteria were 0.002-2.85 %, and the sulfate-reducing bacteria (SRB) were predominant within the prokaryotic community in the groundwater. The uncontaminated groundwater with low sulfate concentration harbored higher abundance of SRB than that in the polluted samples, while no significant correlation was observed between sulfate concentrations and SRB abundances in this study, suggesting other environmental factors possibly contributed to different distributions and abundances of SRB in the different sites. The results should facilitate expanded studies to identify robust microbe-environment interactions and provide a strong foundation for qualitative exploration of the bacterial diversity in rare earth tailings groundwater that might ultimately be incorporated into the remediation of environmental contamination.
NASA Astrophysics Data System (ADS)
Han, R.; Zhang, L.; Fu, B.; Liu, H.
2014-12-01
Synthetic gases are usually generated from either cellulosic agricultural waste combustion or industrial release and could be subsequently transformed into acetate, ethanol, and/or butyrate by homoacetogenic bacteria, which commonly possess reductive acetyl-CoA synthesis pathway. Homoacetogen-based syngas fermentation technology provides an alternative solution to link greenhouse gas emission control and cellulosic solid waste treatment with biofuels production. The objective of our current project is to hunt for homoacetogens with capabilities of highly efficiently converting syngases to chemical solvents. In this study, we evaluated homoacetogens population dynamics during enrichments and pinpointed dominant homoacetogens representing diverse ecosystems enriched by different substrates. We enriched homoacetogens from four different samples including waste activate sludge, freshwater sediment, anaerobic methanogenic sludge, and cow manure using H2/CO2 (4:1) or formate as substrate for homoacetogen enrichment. Along with the formyltetrahydrofolate synthetase (FTHFS) gene (fhs gene)-specific real time qPCR assay and Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis, 16S rRNA based 454 high-throughput pyrosequencing was applied to reveal the population dynamic and community structure during enrichment from different origins. Enrichment of homoacetogenic populations coincided with accumulations of short chain fatty acids such as acetate and butyrate. 454 high-throughput pyrosequencing revealed Firmicutes and Spirochaetes populations became dominant while the overall microbial diversity decreased after enrichment. The most abundant sequences among the four origins belonged to the following phyla: Firmicutes, Spirochaetes, Proteobacteria, and Bacteroidetes, accounting for 62.1%-99.1% of the total reads. The major putative homoacetogenic species enriched on H2/CO2 or formate belonged to Clostridium spp., Acetobacterium spp., Acetoanaerobium spp., Eubacterium spp., Sporomusa spp. This comprehensive molecular ecology study on homoacetogen enrichments provides molecular evidences for shaping homoacetogenic populations and targeting novel homoacetogenic species enriched from diverse ecosystems.
Impact of chloride on denitrification potential in roadside wetlands.
Lancaster, Nakita A; Bushey, Joseph T; Tobias, Craig R; Song, Bongkeun; Vadas, Timothy M
2016-05-01
Developed landscapes are exposed to changes in hydrology and water chemistry that limit their ability to mitigate detrimental impacts to coastal water bodies, particularly those that result from stormwater runoff. The elevated level of impervious cover increases not only runoff but also contaminant loading of nutrients, metals, and road salt used for deicing to water bodies. Here we investigate the impact that road salt has on denitrification in roadside environments. Sediments were collected from a series of forested and roadside wetlands and acclimated with a range of Cl(-) concentrations from 0 to 5000 mg L(-1) for 96 h. Denitrification rates were measured by the isotope pairing technique using (15)N-NO3(-), while denitrifying community structures were compared using terminal restriction fragment length polymorphism (T-RFLP) of nitrous oxide reductase genes (nosZ). Chloride significantly (p < 0.05) inhibited denitrification in forested wetlands at a Cl(-) dosage of 2500 or 5000 mg L(-1), but the decrease in denitrification rates was less and not significant for the roadside wetlands historically exposed to elevated concentrations of Cl(-). The difference could not be attributed to other significant changes in conditions, such as DOC concentrations, N species concentrations, or pH levels. Denitrifying communities, as measured by T-RFs of the nosZ gene, in the roadside wetlands with elevated concentration of Cl(-) were distinctly different and more diverse compared to forested wetlands, and also different in roadside wetlands after 96 h exposures to Cl(-). The shifts in denitrifying communities seem to minimize the decrease in denitrification rates in the wetlands previously exposed to Cl. As development results in more Cl(-) use and exposure to a broad range of natural or manmade wetland structures, an understanding of the seasonal effect of Cl on denitrification processes in these systems would aid in design or mitigation of the effects on N removal rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zimmermann, Judith; Musyoki, Mary K; Cadisch, Georg; Rasche, Frank
2016-06-01
Our objectives were to (1) monitor the proliferation of the biocontrol agent (BCA) Fusarium oxysporum f. sp. strigae strain "Foxy-2", an effective soil-borne BCA against the parasitic weed Striga hermonthica , in the rhizosphere of maize under different agro-ecologies, and (2) investigate its impact on indigenous rhizosphere fungal community abundance and composition. Field experiments were conducted in Busia and Homa Bay districts in western Kenya during two cropping seasons to account for effects of soil type, climate, growth stage and seasonality. Maize seeds were coated with or without "Foxy-2" and soils were artificially infested with S. hermonthica seeds. One treatment with nitrogen rich organic residues ( Tithonia diversifolia ) was established to compensate hypothesized resource competition between "Foxy-2" and the indigenous fungal community. Rhizosphere soil samples collected at three growth stages (i.e., EC30, EC60, EC90) of maize were subjected to abundance measurement of "Foxy-2" and total indigenous fungi using quantitative polymerase chain reaction (qPCR) analysis. Terminal restriction fragment length polymorphism (TRFLP) analysis was used to assess potential alterations in the fungal community composition in response to "Foxy-2" presence. "Foxy-2" proliferated stronger in the soils with a sandy clay texture (Busia) than in those with a loamy sand texture (Homa Bay) and revealed slightly higher abundance in the second season. "Foxy-2" had, however, only a transient suppressive effect on total indigenous fungal abundance which ceased in the second season and was further markedly compensated after addition of T. diversifolia residues. Likewise, community structure of the indigenous fungal community was mainly altered by maize growth stages, but not by "Foxy-2". In conclusion, no adverse effects of "Foxy-2" inoculation on indigenous fungal rhizosphere communities were observed corroborating the safety of this BCA under the given agro-ecologies.
NASA Technical Reports Server (NTRS)
Sakano, Yuko; Pickering, Karen D.; Strom, Peter F.; Kerkhof, Lee J.; Janes, H. W. (Principal Investigator)
2002-01-01
Bioregenerative life support systems may be necessary for long-term space missions due to the high cost of lifting supplies and equipment into orbit. In this study, we investigated two biological wastewater treatment reactors designed to recover potable water for a spacefaring crew being tested at Johnson Space Center. The experiment (Lunar-Mars Life Support Test Project-Phase III) consisted of four crew members confined in a test chamber for 91 days. In order to recycle all water during the experiment, an immobilized cell bioreactor (ICB) was employed for organic carbon removal and a trickling filter bioreactor (TFB) was utilized for ammonia removal, followed by physical-chemical treatment. In this study, the spatial distribution of various microorganisms within each bioreactor was analyzed by using biofilm samples taken from four locations in the ICB and three locations in the TFB. Three target genes were used for characterization of bacteria: the 16S rRNA gene for the total bacterial community, the ammonia monooxygenase (amoA) gene for ammonia-oxidizing bacteria, and the nitrous oxide reductase (nosZ) gene for denitrifying bacteria. A combination of terminal restriction fragment length polymorphism (T-RFLP), sequence, and phylogenetic analyses indicated that the microbial community composition in the ICB and the TFB consisted mainly of Proteobacteria, low-G+C gram-positive bacteria, and a Cytophaga-Flexibacter-Bacteroides group. Fifty-seven novel 16S rRNA genes, 8 novel amoA genes, and 12 new nosZ genes were identified in this study. Temporal shifts in the species composition of total bacteria in both the ICB and the TFB and ammonia-oxidizing and denitrifying bacteria in the TFB were also detected when the biofilms were compared with the inocula after 91 days. This result suggests that specific microbial populations were either brought in by the crew or enriched in the reactors during the course of operation.
Dry/Wet Cycles Change the Activity and Population Dynamics of Methanotrophs in Rice Field Soil
Ma, Ke; Conrad, Ralf
2013-01-01
The methanotrophs in rice field soil are crucial in regulating the emission of methane. Drainage substantially reduces methane emission from rice fields. However, it is poorly understood how drainage affects microbial methane oxidation. Therefore, we analyzed the dynamics of methane oxidation rates, composition (using terminal restriction fragment length polymorphism [T-RFLP]), and abundance (using quantitative PCR [qPCR]) of methanotroph pmoA genes (encoding a subunit of particulate methane monooxygenase) and their transcripts over the season and in response to alternate dry/wet cycles in planted paddy field microcosms. In situ methane oxidation accounted for less than 15% of total methane production but was enhanced by intermittent drainage. The dry/wet alternations resulted in distinct effects on the methanotrophic communities in different soil compartments (bulk soil, rhizosphere soil, surface soil). The methanotrophic communities of the different soil compartments also showed distinct seasonal dynamics. In bulk soil, potential methanotrophic activity and transcription of pmoA were relatively low but were significantly stimulated by drainage. In contrast, however, in the rhizosphere and surface soils, potential methanotrophic activity and pmoA transcription were relatively high but decreased after drainage events and resumed after reflooding. While type II methanotrophs dominated the communities in the bulk soil and rhizosphere soil compartments (and to a lesser extent also in the surface soil), it was the pmoA of type I methanotrophs that was mainly transcribed under flooded conditions. Drainage affected the composition of the methanotrophic community only minimally but strongly affected metabolically active methanotrophs. Our study revealed dramatic dynamics in the abundance, composition, and activity of the various type I and type II methanotrophs on both a seasonal and a spatial scale and showed strong effects of dry/wet alternation cycles, which enhanced the attenuation of methane flux into the atmosphere. PMID:23770899
2012-01-01
Background There are several reports describing thousands of SSR markers in the peanut (Arachis hypogaea L.) genome. There is a need to integrate various research reports of peanut DNA polymorphism into a single platform. Further, because of lack of uniformity in the labeling of these markers across the publications, there is some confusion on the identities of many markers. We describe below an effort to develop a central comprehensive database of polymorphic SSR markers in peanut. Findings We compiled 1,343 SSR markers as detecting polymorphism (14.5%) within a total of 9,274 markers. Amongst all polymorphic SSRs examined, we found that AG motif (36.5%) was the most abundant followed by AAG (12.1%), AAT (10.9%), and AT (10.3%).The mean length of SSR repeats in dinucleotide SSRs was significantly longer than that in trinucleotide SSRs. Dinucleotide SSRs showed higher polymorphism frequency for genomic SSRs when compared to trinucleotide SSRs, while for EST-SSRs, the frequency of polymorphic SSRs was higher in trinucleotide SSRs than in dinucleotide SSRs. The correlation of the length of SSR and the frequency of polymorphism revealed that the frequency of polymorphism was decreased as motif repeat number increased. Conclusions The assembled polymorphic SSRs would enhance the density of the existing genetic maps of peanut, which could also be a useful source of DNA markers suitable for high-throughput QTL mapping and marker-assisted selection in peanut improvement and thus would be of value to breeders. PMID:22818284
Carpenter, Margaret A; Shaw, Martin; Cooper, Rebecca D; Frew, Tonya J; Butler, Ruth C; Murray, Sarah R; Moya, Leire; Coyne, Clarice J; Timmerman-Vaughan, Gail M
2017-08-01
Although starch consists of large macromolecules composed of glucose units linked by α-1,4-glycosidic linkages with α-1,6-glycosidic branchpoints, variation in starch structural and functional properties is found both within and between species. Interest in starch genetics is based on the importance of starch in food and industrial processes, with the potential of genetics to provide novel starches. The starch metabolic pathway is complex but has been characterized in diverse plant species, including pea. To understand how allelic variation in the pea starch metabolic pathway affects starch structure and percent amylose, partial sequences of 25 candidate genes were characterized for polymorphisms using a panel of 92 diverse pea lines. Variation in the percent amylose composition of extracted seed starch and (amylopectin) chain length distribution, one measure of starch structure, were characterized for these lines. Association mapping was undertaken to identify polymorphisms associated with the variation in starch chain length distribution and percent amylose, using a mixed linear model that incorporated population structure and kinship. Associations were found for polymorphisms in seven candidate genes plus Mendel's r locus (which conditions the round versus wrinkled seed phenotype). The genes with associated polymorphisms are involved in the substrate supply, chain elongation and branching stages of the pea carbohydrate and starch metabolic pathways. The association of polymorphisms in carbohydrate and starch metabolic genes with variation in amylopectin chain length distribution and percent amylose may help to guide manipulation of pea seed starch structural and functional properties through plant breeding.
NASA Astrophysics Data System (ADS)
Dong, Y.; Cann, I.; Mackie, R.; Price, N.; Flynn, T. M.; Sanford, R.; Miller, P.; Chia, N.; Kumar, C. G.; Kim, P.; Sivaguru, M.; Fouke, B. W.
2010-12-01
Knowledge of the composition, structure and activity of microbial communities that live in deeply buried sedimentary rocks is fundamental to the future of subsurface biosphere stewardship as it relates to hydrocarbon exploration and extraction, carbon sequestration, gas storage and groundwater management. However, the study of indigenous subsurface microorganisms has been limited by the technical challenges of collecting deep formation water samples that have not been heavily contaminated by the mud used to drill the wells. To address this issue, a “clean-sampling method” deploying the newly developed Schlumberger Quicksilver MDT probe was used to collect a subsurface sample at a depth of 1.79 km (5872 ft) from an exploratory well within Cambrian-age sandstones in the Illinois Basin. This yielded a formation water sample that was determined to have less than 4% drilling mud contamination based on tracking changes in the aqueous geochemistry of the formation water during ~3 hours of pumping at depth prior to sample collection. A suite of microscopy and culture-independent molecular analyses were completed using the DNA extracted from microbial cells in the formation water, which included 454 amplicon pyrosequencing that targeted the V1-V3 hypervariable region of bacterial 16S rRNA gene sequences. Results demonstrated an extremely low diversity microbial community living in formation water at 1.79 km-depth. More than 95 % of the total V1-V3 pyrosequencing reads (n=11574) obtained from the formation water were affiliated with a halophilic γ-proteobacterium and most closely related to the genus Halomonas. In contrast, about 3 % of the V1-V3 sequences in the drilling mud library (n=13044) were classified as genus Halomonas but were distinctly different and distantly related to the formation water Halomonas detected at 1.79 km-depth. These results were consistent with those obtained using a suite of other molecular screens (e.g., Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and the initial full length 16S rRNA amplicon libraries) and bioinformatic analyses (e.g., 16S rRNA and Open Reading Frame (ORF) calls established from the 454 metagenomic community analyses). Functional pathway modeling is underway to evaluate the adaptation of this indigenous microbial community to the hydrologic and geologic history of the deep subsurface environment of the Illinois Basin.
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between 'Red Globe' (Vitis vinifera L.) and 'Shuangyou' (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for 'Red Globe,' 63.65 for 'Shuangyou,' and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape.
Theilmann, J L; Skow, L C; Baker, J F; Womack, J E
1989-01-01
Genomic DNAs from animals representing six breeds of cattle (Angus, Brahman, Hereford, Holstein, Jersey and Texas Longhorn) were screened with cloned gene probes in a search for restriction fragment length polymorphisms (RFLPs). Eleven RFLPs were identified using seven different probes: growth hormone, prolactin, osteonectin, alpha A-crystallin, gamma crystallin, fibronectin and 21-steroid hydroxylase. The frequencies of the alleles identified by each probe were calculated and compared in a limited sampling of the six bovine breeds. These polymorphisms greatly enhance the pool of immunogenetic, biochemical and molecular markers available in cattle for linkage analysis, testing of parentage, and distinction of breeds.
Use of Amplified Fragment Length Polymorphisms for Typing Corynebacterium diphtheriae
De Zoysa, Aruni; Efstratiou, Androulla
2000-01-01
Amplified fragment length polymorphism (AFLP) was investigated for the differentiation of Corynebacterium diphtheriae isolates. Analysis using Taxotron revealed 10 distinct AFLP profiles among 57 isolates. Strains with ribotype patterns D1, D4, and D12 could not be distinguished; however, the technique discriminated isolates of ribotype patterns D3, D6, and D7 further. AFLP was rapid, fairly inexpensive, and reproducible and could be used as an alternative to ribotyping. PMID:11015416
Bacterial source tracking guides management of boat head waste in a coastal resort area.
Mallin, Michael A; Haltom, Mary I; Song, Bongkeun; Tavares, Mary E; Dellies, Stephen P
2010-12-01
Fecal contamination of water bodies causes a public health problem and economic loss. To control such contamination management actions need to be guided by sound science. From 2007-2009 a study was undertaken to determine the sources of fecal bacteria contamination to the marine waters adjoining the Town of Wrightsville Beach, North Carolina, USA. The research effort included sampling for fecal coliform and Enterococcus bacteria, sampling for optical brighteners, dye studies, and use of molecular bacterial source tracking techniques including polymerase chain reaction (PCR) and terminal restriction fragment polymorphism (T-RFLP) fingerprinting of the Bacteroides-Prevotella group. Of the 96 samples collected from nine locations during the study, the water contact standard for Enterococcus was exceeded on 13 occasions. The T-RFLP fingerprint analyses demonstrated that the most widespread source of fecal contamination was human, occurring in 38% of the samples, with secondary ruminant and avian sources also detected. Optical brightener concentrations were low, reflecting a lack of sewage line leakage or spills. A lack of sewer leaks and lack of septic systems in the town pointed toward discharge from boat heads into the marine waters as the major cause of fecal contamination; this was supported by dye studies. Based on these data, the Town initiated action to have the U.S. Environmental Protection Agency declare the coastal waters (out to 3 nautical miles), the nearby Atlantic Intracoastal Waterway and its tributaries a no-discharge zone (NDZ) to alleviate the human fecal pollution. The Town garnered supporting resolutions from other local communities who jointly petitioned the North Carolina Department of Environmental and Natural Resources. This State regulatory agency supported the local government resolutions and sent an application for an NDZ to the EPA in April 2009. The EPA concurred, and in February 2010 the coastal waters of New Hanover County, NC, became the first marine area on the U.S. eastern seaboard between Delaware and the Florida Keys to be declared a no-discharge zone. Copyright © 2010 Elsevier Ltd. All rights reserved.
Sato, Takehiro; Kazuta, Hisako; Amano, Tetsuya; Ono, Hiroko; Ishida, Hajime; Kodera, Haruto; Matsumura, Hirofumi; Yoneda, Minoru; Dodo, Yukio; Masuda, Ryuichi
2010-10-01
To investigate the genetic characteristics of the ancient populations of Hokkaido, northern Japan, polymorphisms of the ABO blood group gene were analyzed for 17 Jomon/Epi-Jomon specimens and 15 Okhotsk specimens using amplified product-length polymorphism and restriction fragment length polymorphism analyses. Five ABO alleles were identified from the Jomon/ Epi-Jomon and Okhotsk people. Allele frequencies of the Jomon/Epi-Jomon and Okhotsk people were compared with those of the modern Asian, European and Oceanic populations. The genetic relationships inferred from principal component analyses indicated that both Jomon/Epi-Jomon and Okhotsk people are included in the same group as modern Asian populations. However, the genetic characteristics of these ancient populations in Hokkaido were significantly different from each other, which is in agreement with the conclusions from mitochondrial DNA and ABCC11 gene analyses that were previously reported.
Shyamalamma, S; Chandra, S B C; Hegde, M; Naryanswamy, P
2008-07-22
Artocarpus heterophyllus Lam., commonly called jackfruit, is a medium-sized evergreen tree that bears high yields of the largest known edible fruit. Yet, it has been little explored commercially due to wide variation in fruit quality. The genetic diversity and genetic relatedness of 50 jackfruit accessions were studied using amplified fragment length polymorphism markers. Of 16 primer pairs evaluated, eight were selected for screening of genotypes based on the number and quality of polymorphic fragments produced. These primer combinations produced 5976 bands, 1267 (22%) of which were polymorphic. Among the jackfruit accessions, the similarity coefficient ranged from 0.137 to 0.978; the accessions also shared a large number of monomorphic fragments (78%). Cluster analysis and principal component analysis grouped all jackfruit genotypes into three major clusters. Cluster I included the genotypes grown in a jackfruit region of Karnataka, called Tamaka, with very dry conditions; cluster II contained the genotypes collected from locations having medium to heavy rainfall in Karnataka; cluster III grouped the genotypes in distant locations with different environmental conditions. Strong coincidence of these amplified fragment length polymorphism-based groupings with geographical localities as well as morphological characters was observed. We found moderate genetic diversity in these jackfruit accessions. This information should be useful for tree breeding programs, as part of our effort to popularize jackfruit as a commercial crop.
Telomere dynamics in an immortal human cell line.
Murnane, J P; Sabatier, L; Marder, B A; Morgan, W F
1994-01-01
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines. Images PMID:7957062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oksenberg, J.R.; Cavalli-Sforza, L.L.; Steinman, L.
1989-02-01
Polymorphic markers in genes encoding the {alpha} chain of the human T-cell receptor (TcR) have been detected by Southern blot analysis in Pss I digests. Polymorphic bands were observed at 6.3 and 2.0 kilobases (kb) with frequencies of 0.30 and 0.44, respectively, in the general population. Using the polymerase chain reaction (PCR) method, the authors amplified selected sequences derived from the full-length TcR {alpha} cDNA probe. These PcR products were used as specific probes to demonstrate that the 6.3-kb polymorphic fragment hybridizes to the variable (V)-region probe and the 2.0-kb fragment hybridizes to the constant (C)-region probe. Segregation of themore » polymorphic bands was analyzed in family studies. To look for associations between these markers and autoimmune diseases, the authors have studied the restriction fragment length polymorphism distribution of the Pss I markers in patients with multiple sclerosis, myasthenia gravis, and Graves disease. Significant differences in the frequency of the polymorphic V{sub {alpha}} and C{sub {alpha}} markers were identified between patients and healthy individuals.« less
DEVELOPMENT OF CODOMINANT MARKERS FOR IDENTIFYING SPECIES HYBRIDS
Herein we describe a simple method for developing species-diagnostic markers that would permit the rapid identification of hybrid individuals. Our method relies on amplified length polymorphism (AFLP) and single strand conformation polymorphism (SSCP) technologies, both of which...
Lee, J C; Cole, M; Linacre, A
2000-05-01
Unambiguous identification of the hallucinogenic fungi of the genera Psilocybe and Panaeolus is required by national and international drug control legislation. We report on a DNA-based test using the technique of amplified fragment length polymorphism (AFLP). AFLP can differentiate species of the two genera Psilocybe and Panaeolus by using different primer sets. The identification of hallucinogenic fungi using a DNA-based test, which can be used in conjunction with morphological features, will assist in forensic investigations.
Nassar, A; Darrasse, A; Lemattre, M; Kotoujansky, A; Dervin, C; Vedel, R; Bertheau, Y
1996-01-01
Conserved regions about 420 bp long of the pelADE cluster specific to Erwinia chrysanthemi were amplified by PCR and used to differentiate 78 strains of E. chrysanthemi that were obtained from different hosts and geographical areas. No PCR products were obtained from DNA samples extracted from other pectinolytic and nonpectinolytic species and genera. The pel fragments amplified from the E. chrysanthemi strains studied were compared by performing a restriction fragment length polymorphism (RFLP) analysis. On the basis of similarity coefficients derived from the RFLP analysis, the strains were separated into 16 PCR RFLP patterns grouped in six clusters, These clusters appeared to be correlated with other infraspecific levels of E. chrysanthemi classification, such as pathovar and biovar, and occasionally with geographical origin. Moreover, the clusters correlated well with the polymorphism of pectate lyase and pectin methylesterase isoenzymes. While the pectin methylesterase profiles correlated with host monocot-dicot classification, the pectate lyase polymorphism might reflect the cell wall microdomains of the plants belonging to these classes. PMID:8779560
Cloning of polymorphisms (COP): enrichment of polymorphic sequences from complex genomes
Li, Jingfeng; Wang, Fuli; Zabarovska, Veronika; Wahlestedt, Claes; Zabarovsky, Eugene R.
2000-01-01
Here we describe a new procedure (cloning of polymorphisms, COP) for enrichment of single nucleotide polymorphisms (SNPs) that represent restriction fragment length polymorphisms (RFLPs). COP would be applicable to the isolation of SNPs from particular regions of the genome, e.g. CpG islands, chromosomal bands, YACs or PAC contigs. A combination of digestion with restriction enzymes, treatment with uracil-DNA glycosylase and mung bean nuclease, PCR amplification and purification with streptavidin magnetic beads was used to isolate polymorphic sequences from the genomes of two human samples. After only two cycles of enrichment, 80% of the isolated clones were found to contain RFLPs. A simple method for the PCR detection of these polymorphisms was also developed. PMID:10606669
Fennell, Donna E; Rhee, Sung-Keun; Ahn, Young-Beom; Häggblom, Max M; Kerkhof, Lee J
2004-02-01
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate.
Fennell, Donna E.; Rhee, Sung-Keun; Ahn, Young-Beom; Häggblom, Max M.; Kerkhof, Lee J.
2004-01-01
Terminal restriction fragment length polymorphism analysis of reverse-transcribed 16S rRNA during periods of community flux was used as a tool to delineate the roles of the members of a 2-bromophenol-degrading, sulfate-reducing consortium. Starved, washed cultures were amended with 2-bromophenol plus sulfate, 2-bromophenol plus hydrogen, phenol plus sulfate, or phenol with no electron acceptor and were monitored for substrate use. In the presence of sulfate, 2-bromophenol and phenol were completely degraded. In the absence of sulfate, 2-bromophenol was dehalogenated and phenol accumulated. Direct terminal restriction fragment length polymorphism fingerprinting of the 16S rRNA in the various subcultures indicated that phylotype 2BP-48 (a Desulfovibrio-like sequence) was responsible for the dehalogenation of 2-bromophenol. A stable coculture was established which contained predominantly 2BP-48 and a second Desulfovibrio-like bacterium (designated BP212 based on terminal restriction fragment length polymorphism fingerprinting) that was capable of dehalogenating 2-bromophenol to phenol. Strain 2BP-48 in the coculture could couple reductive dehalogenation to growth with 2-bromophenol, 2,6-dibromophenol, or 2-iodophenol and lactate or formate as the electron donor. In addition to halophenols, strain 2BP-48 appears to use sulfate, sulfite, and thiosulfate as electron acceptors and is capable of simultaneous sulfidogenesis and reductive dehalogenation in the presence of sulfate. PMID:14766602
Guo, Yinshan; Shi, Guangli; Liu, Zhendong; Zhao, Yuhui; Yang, Xiaoxu; Zhu, Junchi; Li, Kun; Guo, Xiuwu
2015-01-01
In this study, 149 F1 plants from the interspecific cross between ‘Red Globe’ (Vitis vinifera L.) and ‘Shuangyou’ (Vitis amurensis Rupr.) and the parent were used to construct a molecular genetic linkage map by using the specific length amplified fragment sequencing technique. DNA sequencing generated 41.282 Gb data consisting of 206,411,693 paired-end reads. The average sequencing depths were 68.35 for ‘Red Globe,’ 63.65 for ‘Shuangyou,’ and 8.01 for each progeny. In all, 115,629 high-quality specific length amplified fragments were detected, of which 42,279 were polymorphic. The genetic map was constructed using 7,199 of these polymorphic markers. These polymorphic markers were assigned to 19 linkage groups; the total length of the map was 1929.13 cm, with an average distance of 0.28 cm between each maker. To our knowledge, the genetic maps constructed in this study contain the largest number of molecular markers. These high-density genetic maps might form the basis for the fine quantitative trait loci mapping and molecular-assisted breeding of grape. PMID:26089826
Leski, Tomasz A.; Caswell, Clayton C.; Pawlowski, Marcin; Klinke, David J.; Bujnicki, Janusz M.; Hart, Sean J.; Lukomski, Slawomir
2009-01-01
The Bacillus cereus group includes three closely related species, B. anthracis, B. cereus, and B. thuringiensis, which form a highly homogeneous subdivision of the genus Bacillus. One of these species, B. anthracis, has been identified as one of the most probable bacterial biowarfare agents. Here, we evaluate the sequence and length polymorphisms of the Bacillus collagen-like protein bcl genes as a basis for B. anthracis detection and fingerprinting. Five genes, designated bclA to bclE, are present in B. anthracis strains. Examination of bclABCDE sequences identified polymorphisms in bclB alleles of the B. cereus group organisms. These sequence polymorphisms allowed specific detection of B. anthracis strains by PCR using both genomic DNA and purified Bacillus spores in reactions. By exploiting the length variation of the bcl alleles it was demonstrated that the combined bclABCDE PCR products generate markedly different fingerprints for the B. anthracis Ames and Sterne strains. Moreover, we predict that bclABCDE length polymorphism creates unique signatures for B. anthracis strains, which facilitates identification of strains with specificity and confidence. Thus, we present a new diagnostic concept for B. anthracis detection and fingerprinting, which can be used alone or in combination with previously established typing platforms. PMID:19767469
Ruiz-García, Leonor; Cabezas, Jose Antonio; de María, Nuria; Cervera, María-Teresa
2010-01-01
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is a modification of the Amplified Fragment Length Polymorphism (AFLP) technique that has been used to study methylation of anonymous CCGG sequences in different fungi, plant and animal species. The main variation of this technique is based on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent cutter restriction enzyme. For each sample, AFLP analysis is performed using both EcoRI/HpaII and EcoRI/MspI digested samples. Comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) "Methylation-insensitive polymorphisms" that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples; and (2) "Methylation-sensitive polymorphisms" that are associated with amplified fragments differing in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses modifications that can be applied to adjust the technology to different species of interest.
Chloroplast and mitochondrial DNA are paternally inherited in Sequoia sempervirens D. Don Endl
Neale, David B.; Marshall, Kimberly A.; Sederoff, Ronald R.
1989-01-01
Restriction fragment length polymorphisms in controlled crosses were used to infer the mode of inheritance of chloroplast DNA and mitochondrial DNA in coast redwood (Sequoia sempervirens D. Don Endl.). Chloroplast DNA was paternally inherited, as is true for all other conifers studied thus far. Surprisingly, a restriction fragment length polymorphism detected by a mitochondrial probe was paternally inherited as well. This polymorphism could not be detected in hybridizations with chloroplast probes covering the entire chloroplast genome, thus providing evidence that the mitochondrial probe had not hybridized to chloroplast DNA on the blot. We conclude that mitochondrial DNA is paternally inherited in coast redwood. To our knowledge, paternal inheritance of mitochondrial DNA in sexual crosses of a multicellular eukaryotic organism has not been previously reported. Images PMID:16594091
A Polymorphism in Mitochondrial DNA Associated with IQ?
ERIC Educational Resources Information Center
Skuder, Patricia; And Others
1995-01-01
Of 100 DNA markers examined in an allelic association study, only 1 showed a replicated association with IQ in samples totaling 107 children. How the gene marked by the particular restriction fragment length polymorphism was tracked and its mitochondrial origin identified is described. (SLD)
Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein.
Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald
2016-11-30
Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson's disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young's modulus).
Hao, Yu-Jin; You, Chun-Xiang; Deng, Xui-Xin
2002-01-01
Shoot-tips of 10 strawberry genotypes were successfully cryopreserved using a modified encapsulation-dehydration method. All genotypes survived cryopreservation with high survival and regeneration rates. Eight Joho single-bud sibling lines were established as a model system for genetic analysis. Although cytological examination found chromosomal variation in both non-cryopreserved and cryopreserved samples, the ploidy constitution remained relatively stable after cryopreservation. DNA samples digested with MseI and PstI were used for amplified fragmentation length polymorphism (AFLP) assay. In 16 primer combinations, only one, namely, PCCA-MCAG, detected one site where band pattern changed after cryopreservation, which might be contributed to the change in DNA methylation status at PstI recognition site. Methylation sensitive amplified polymorphism (MSAP) assay was carried out for further investigation on the influence of cryopreservation on DNA methylation status. It was found that cryopreservation induced a significant change in DNA methylation status.
Rui, Wenlong; Sheng, Youyu; Hu, Ruiming; Miao, Ying; Han, Yumei; Qi, Sisi; Xu, Feng; Xu, Jinhua; Yang, Qinping
2016-01-01
To investigate the association of CAG repeat numbers in the androgen receptor (AR) gene with female pattern hair loss (FPHL) in a Chinese population. A total of 200 Han Chinese patients with FPHL (142 Ludwig II and 58 Ludwig III cases) and 200 healthy controls were enrolled in this study. The polymorphism of CAG repeat numbers was analyzed by the fluorescent amplified fragment length polymorphism technique. The CAG biallelic mean length was 23.73 ± 2.04 repeats in Han Chinese FPHL patients and 23.90 ± 2.13 repeats in healthy controls, without any significant difference between the two groups (p = 0.481). In addition, neither the shorter nor the longer CAG repeat numbers were significantly different between FPHL and control subjects (p = 0.726, p = 0.383). The polymorphism of CAG repeat numbers of the AR gene may not be the genetic marker of FPHL in a Chinese population. © 2016 S. Karger AG, Basel.
Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein
NASA Astrophysics Data System (ADS)
Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald
2016-11-01
Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
Samadpour, M; Grimm, L M; Desai, B; Alfi, D; Ongerth, J E; Tarr, P I
1993-12-01
Genomic DNAs prepared from 168 isolates of Escherichia coli O157:H7 were analyzed for restriction fragment length polymorphisms on Southern blots probed with bacteriophage lambda DNA. The isolates analyzed included strains from a recent large multistate outbreak of E. coli O157:H7 infection associated with consumption of poorly cooked beef in restaurants, a day-care center cluster, and temporally and geographically unrelated isolates. E. coli O157:H7 isolates recovered from the incriminated meat and from 61 (96.8%) of 63 patients from Washington and Nevada possessed identical lambda restriction fragment length patterns. The lambda restriction fragment length polymorphisms observed in 11 (91.7%) of 12 day-care center patients were identical, but they differed from that of the strain associated with the multistate outbreak. E. coli O157:H7 from 42 patients temporally or geographically unrelated to either cluster of infection possessed unique and different lambda restriction fragment length patterns, except for paired isolates from three separate clusters of infection. These data demonstrate that the hybridization of DNA digests of E. coli O157:H7 with radiolabelled bacteriophage lambda DNA can be a useful, stable, and discriminatory epidemiologic tool for analyzing the linkage between strains of E. coli O157:H7.
Comparative mapping in the Pinaceae
Konstantin V. Krutovsky; Michela Troggio; Garth R. Brown; Kathleen D. Jermstad; David B. Neale
2004-01-01
A comparative genetic map was constructed between two important genera of the family Pinaceae. Ten homologous linkage groups in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) were identified using orthologous expressed sequence tag polymorphism (ESTP) and restriction fragment length polymorphism (RFLP) markers. The comparative...
Genetic characterization of three varieties of Astragalus lentiginosus (Fabaceae).
Brian J. Knaus; Rich C. Cronn; Aaron Liston
2005-01-01
Astragalus lentiginosus is a polymorphic species that occurs in geologically young habitats and whose varietal circumscription implies active morphological and genetic differentiation. In this preliminary study, we evaluate the potential of amplified fragment length polymorphism (AFLP) markers to resolve infraspecific taxa in three varieties of...
Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A
2011-01-01
PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.
Typing of artiodactyl MHC-DRB genes with the help of intronic simple repeated DNA sequences.
Schwaiger, F W; Buitkamp, J; Weyers, E; Epplen, J T
1993-02-01
An efficient oligonucleotide typing method for the highly polymorphic MHC-DRB genes is described for artiodactyls like cattle, sheep and goat. By means of the polymerase chain reaction, the second exon of MHC-DRB is amplified as well as part of the adjacent intron containing a mixed simple repeat sequence. Using this primer combination we were able to amplify the MHC-DRB exons 2 and adjacent introns from all of the investigated 10 species of the family of Bovidae and giraffes. Therefore, the DRB genes of novel artiodactyl species can also be readily studied. Oligonucleotide probes specific for the polymorphisms of ungulate DRB genes are used with which sequences differing in at least one single base can be distinguished. Exonic polymorphism was found to be correlated with the allele lengths and the patterns of the repeat structures. Hence oligonucleotide probes specific for different simple repeats and polymorphic positions serve also for typing across species barriers. The strict correlation of sequence length and exonic polymorphism permits a preselection of specific oligonucleotides for hybridization. Thus more than 20 alleles can already be differentiated from each of the three species.
[Research progress of molecular genetic analysis in Schistosoma variation].
Zheng, Su-Yue; Li, Fei
2014-02-01
The development of molecular biology techniques makes important contributions to the researches of heritable variation of Schistosoma. In recent years, the molecular genetic analysis in the Schistosoma variation researches mainly includes the restriction fragment length polymorphism (RFLP), random amplified polymorphism technology (RAPD), microsatellite anchored PCR (SSR-PCR), and polymerase reaction single-strand conformation polymorphism (PCR-SSCP). This article reviews the research progress of molecular genetic analysis in Schistosoma variation in recent years.
Androgen receptor CAG repeat polymorphisms in canine prostate cancer.
Lai, C-L; L'Eplattenier, H; van den Ham, R; Verseijden, F; Jagtenberg, A; Mol, J A; Teske, E
2008-01-01
Relatively shorter lengths of the polymorphic polyglutamine repeat-1 of the androgen receptor (AR) have been associated with an increased risk of prostate cancer (PC) in humans. In the dog, there are 2 polymorphic CAG repeat (CAGr) regions. To investigate the relationship of CAGr length of the canine AR-gene and the development of PC. Thirty-two dogs with PC and 172 control dogs were used. DNA was extracted from blood. Both CAG repeats were amplified by polymerase chain reaction (PCR) and PCR products were sequenced. In dogs with PC, CAG-1 repeat length was shorter (P = .001) by an increased proportion of 10 repeats (P = .011) and no 12 repeats (P = .0017) than in the control dogs. No significant changes were found in CAG-3 length distribution. CAG-1 and CAG-3 polymorphisms proved not to be in linkage disequilibrium. Breed difference in allelic distribution was found in the control group. Of the prostate-disease sensitive breeds, a high percentage (64.5%) of the shortest haplotype 10/11 was found in the Doberman, whereas Beagles and German Pointers had higher haplotype 12/11 (47.1 and 50%). Bernese Mountain dogs and Bouvier dogs both shared a high percentage of 11 CAG-1 repeats and 13 CAG-3 repeats. Differences in (combined) allelic distributions among breeds were not significant. In this preliminary study, short CAG-1 repeats in the AR-gene were associated with an increased risk of developing canine PC. Although breed-specific differences in allelic distribution of CAG-1 and CAG-3 repeats were found, these could not be related to PC risk.
No association of apolipoprotein B gene polymorphism and blood lipids in obese Egyptian subjects.
Bogari, Neda M; Abdel-Latif, Azza M; Hassan, Maha A; Ramadan, Abeer; Fawzy, Ahmed
2015-03-18
Several environmental and genetic factors are associated with high levels of lipids in obese patients. Apolipoprotein B (ApoB) is the major protein component of low-density lipoproteins (LDL), very-low density lipoproteins (VLDL) and chylomicrons and plays a central role in lipid metabolism. Several apoB restriction fragment length polymorphisms (XbaI, EcoRI, MspI) have been reported to be associated with variation in lipid levels and obesity. To date, no data are available on the relationship between XbaI polymorphism and lipid levels in Egyptian populations. Following clinical profiling, 178 obese (body mass index [BMI] >25 kg/m(2)) and 178 age-matched non-obese (BMI ≤ 25 kg/m(2)) subjects were included in this case-control study. All samples were analysed for total cholesterol, triglycerides and HDL-cholesterol. Genetic analysis of apoB XbaI (X) was performed using Polymerase Chain Reaction-Restriction Fragment Length polymorphism (PCR-RFLP). The aim of this study was to assess the association of apoB XbaI gene polymorphism (X) and lipid profiles in obese and non-obese Egyptian populations. Obese subjects demonstrated significantly higher values of waist-to-hip ratio, blood pressure, and total lipid. However, in our sample we did not find significant differences in apoB XbaI gene polymorphism (X) genotype or allele frequencies. Moreover, none of the studied lipid parameters showed any association with the gene polymorphism. This study reveals no significant association of apoB XbaI gene polymorphism (X) with obesity or lipid profiles in an Egyptian population.
Global Diversity of Desert Hypolithic Cyanobacteria.
Lacap-Bugler, Donnabella C; Lee, Kevin K; Archer, Stephen; Gillman, Len N; Lau, Maggie C Y; Leuzinger, Sebastian; Lee, Charles K; Maki, Teruya; McKay, Christopher P; Perrott, John K; de Los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A; Hopkins, David W; Pointing, Stephen B
2017-01-01
Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nif H genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts.
Global Diversity of Desert Hypolithic Cyanobacteria
Lacap-Bugler, Donnabella C.; Lee, Kevin K.; Archer, Stephen; Gillman, Len N.; Lau, Maggie C.Y.; Leuzinger, Sebastian; Lee, Charles K.; Maki, Teruya; McKay, Christopher P.; Perrott, John K.; de los Rios-Murillo, Asunción; Warren-Rhodes, Kimberley A.; Hopkins, David W.; Pointing, Stephen B.
2017-01-01
Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nifH genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts. PMID:28559886
Sex steroid-related genes and male-to-female transsexualism.
Henningsson, Susanne; Westberg, Lars; Nilsson, Staffan; Lundström, Bengt; Ekselius, Lisa; Bodlund, Owe; Lindström, Eva; Hellstrand, Monika; Rosmond, Roland; Eriksson, Elias; Landén, Mikael
2005-08-01
Transsexualism is characterised by lifelong discomfort with the assigned sex and a strong identification with the opposite sex. The cause of transsexualism is unknown, but it has been suggested that an aberration in the early sexual differentiation of various brain structures may be involved. Animal experiments have revealed that the sexual differentiation of the brain is mainly due to an influence of testosterone, acting both via androgen receptors (ARs) and--after aromatase-catalyzed conversion to estradiol--via estrogen receptors (ERs). The present study examined the possible importance of three polymorphisms and their pairwise interactions for the development of male-to-female transsexualism: a CAG repeat sequence in the first exon of the AR gene, a tetra nucleotide repeat polymorphism in intron 4 of the aromatase gene, and a CA repeat polymorphism in intron 5 of the ERbeta gene. Subjects were 29 Caucasian male-to-female transsexuals and 229 healthy male controls. Transsexuals differed from controls with respect to the mean length of the ERbeta repeat polymorphism, but not with respect to the length of the other two studied polymorphisms. However, binary logistic regression analysis revealed significant partial effects for all three polymorphisms, as well as for the interaction between the AR and aromatase gene polymorphisms, on the risk of developing transsexualism. Given the small number of transsexuals in the study, the results should be interpreted with the utmost caution. Further study of the putative role of these and other sex steroid-related genes for the development of transsexualism may, however, be worthwhile.
Use of DNA markers in forest tree improvement research
D.B. Neale; M.E. Devey; K.D. Jermstad; M.R. Ahuja; M.C. Alosi; K.A. Marshall
1992-01-01
DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating...
Robert L. Smiley; John C. Moser
1975-01-01
Eutogenes vicinus Summer and Price is redescribed. Illustrations and descriptions are presented for the first time of the male and immature stages of this polymorphic species. Variation in length of palpi of the heteromorphic males is discussed.
Genetic Analysis of Termite Colonies in Wisconsin
R.A. Arango; D.A. Marschalek; F. Green III; K.F. Raffa; M.E. Berres
2015-01-01
The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicksved, Johan; Jansson, Janet K.; Lindberg, Jan Erik
BACKGROUND: The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphismmore » (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. RESULTS: The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. CONCLUSION: This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning.« less
Bukowski, Michal; Polakowska, Klaudia; Ilczyszyn, Weronika M; Sitarska, Agnieszka; Nytko, Kinga; Kosecka, Maja; Miedzobrodzki, Jacek; Dubin, Adam; Wladyka, Benedykt
2015-01-01
Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Coplanar semiconductor-metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy
NASA Astrophysics Data System (ADS)
Sung, Ji Ho; Heo, Hoseok; Si, Saerom; Kim, Yong Hyeon; Noh, Hyeong Rae; Song, Kyung; Kim, Juho; Lee, Chang-Soo; Seo, Seung-Young; Kim, Dong-Hwi; Kim, Hyoung Kug; Yeom, Han Woong; Kim, Tae-Hwan; Choi, Si-Young; Kim, Jun Sung; Jo, Moon-Ho
2017-11-01
Crystal polymorphism selectively stabilizes the electronic phase of atomically thin transition-metal dichalcogenides (TMDCs) as metallic or semiconducting, suggesting the potential to integrate these polymorphs as circuit components in two-dimensional electronic circuitry. Developing a selective and sequential growth strategy for such two-dimensional polymorphs in the vapour phase is a critical step in this endeavour. Here, we report on the polymorphic integration of distinct metallic (1T‧) and semiconducting (2H) MoTe2 crystals within the same atomic planes by heteroepitaxy. The realized polymorphic coplanar contact is atomically coherent, and its barrier potential is spatially tight-confined over a length of only a few nanometres, with a lowest contact barrier height of ∼25 meV. We also demonstrate the generality of our synthetic integration approach for other TMDC polymorph films with large areas.
Francomano, Davide; Greco, Emanuela A; Lenzi, Andrea; Aversa, Antonio
2013-10-01
It is controversial whether or not testing the length of the androgen receptor polymorphism in clinical practice is useful for correct diagnosis and treatment of hypogonadism. To describe the molecular and clinical implications of testing the length of the androgen receptor polymorphism for treatment of hypogonadism in both male and female subjects. A systematic Medline search was conducted using several terms related to and including the terms "androgen receptor," "CAG-repeat polymorphism," "male hypogonadism," "female hypogonadism," and "neurodegenerative disease." Clinical evidence that demonstrates the importance of CAG repeat number investigation in male and female hypogonadism. A thorough review of the clinical utility of CAG repeat polymorphism investigation in men and women with hypogonadism is presented. The role of AR CAG repeat number investigation in hypogonadism (male and female) is not yet established in the clinical practice. In both sexes, a role during clinical management of hormonal replacement therapies may be hypothesized, but the CAG repeat number's relationship with the presence or absence of hypogonadal symptoms remains unclear. Pharmacogenomic investigations of the AR polymorphism may be a future option to tailor testosterone titration individually and to better identify subjects as potentially more or less responsive to treatments; also, investigation may be important to individually predict beneficial and side effects in special subpopulations, specifically, obese men and postmenopausal women. © 2013 International Society for Sexual Medicine.
Ishii, Masakazu; Usami, Shino; Hara, Hajime; Imagawa, Atsuko; Masuda, Yutaka; Shimizu, Shuniichi
2014-06-01
Photophobia and osmophobia are typical symptoms associated with migraine, but the contributions of gene polymorphisms to these symptoms are not fully elucidated. We investigated whether the gene polymorphisms are involved in photophobia and osmophobia in patients with migraine. Ninety-one migraine patients and 119 non-headache healthy volunteers were enrolled. The 12 gene polymorphisms were determined by polymerase-chain-reaction (PCR) and PCR restriction-fragment-length polymorphism analysis. Photophobia and osmophobia were observed in 49 (54%) and 31 patients (34%), respectively. Distributions of monoamine oxidase A (MAOA) T941G and tumour necrosis factor-β (TNF-β) G252A polymorphisms were significantly different between patients with photophobia and controls. However, no gene polymorphism differences were observed between patients with osmophobia and controls. The MAOA T941G and TNF-β G252A gene polymorphisms appear to contribute to photophobia but not to osmophobia. We propose that different gene polymorphisms are responsible for photophobia and osmophobia symptoms during migraine.
Molecular mapping of resistance to blight in an interspecific cross in the genus Castanea
Thomas L. Kubisiak; F.V. Hebard; C. Dana Nelson; Jiansu Zhang; R. Bernatzky; H. Huang; S.L. Anagnostakis; R.L. Doudrick
1997-01-01
A three-generation American chestnut x Chinese chestnut pedigree was used to construct a genetic linkage map for chestnut and to investigate the control of resistance to Endothia parasitica (chestnut blight fungus). DNA genotypes for 241 polymorphic markers (eight isozymes, 17 restriction fragment length polymorphisms [RFLPs], and 216 random...
Rossi, Pierre; Gillet, François; Rohrbach, Emmanuelle; Diaby, Nouhou; Holliger, Christof
2009-01-01
The variability of terminal restriction fragment polymorphism analysis applied to complex microbial communities was assessed statistically. Recent technological improvements were implemented in the successive steps of the procedure, resulting in a standardized procedure which provided a high level of reproducibility. PMID:19749066
Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein
Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald
2016-01-01
Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus). PMID:27901068
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Williams, K.H.; Long, P.E.; Davis, J.A.; Wilkins, M.J.; N'Guessan, A. L.; Steefel, Carl; Yang, L.; Newcomer, D.; Spane, F.A.; Kerkhof, L.J.; Mcguinness, L.; Dayvault, R.; Lovley, D.R.
2011-01-01
Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126??M).During successive summer experiments - referred to as "Winchester" (2007) and "Big Rusty" (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM),and the extent to which iron reduction ("Winchester") or sulfate reduction("Big Rusty") was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI);however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 ??M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during "Big Rusty" was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration "Winchester" experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during "Big Rusty" were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days). ?? Taylor & Francis Group, LLC.
Cruz, Vanessa P; Vera, Manuel; Pardo, Belén G; Taggart, John; Martinez, Paulino; Oliveira, Claudio; Foresti, Fausto
2017-05-01
Single nucleotide polymorphism (SNP) markers were identified and validated for two stingrays species, Potamotrygon motoro and Potamotrygon falkneri, using double digest restriction-site associated DNA (ddRAD) reads using 454-Roche technology. A total of 226 774 reads (65.5 Mb) were obtained (mean read length 289 ± 183 bp) detecting a total of 5399 contigs (mean contig length: 396 ± 91 bp). Mining this data set, a panel of 143 in silico SNPs was selected. Eighty-two of these SNPs were successfully validated and 61 were polymorphic: 14 in P. falkneri, 21 in P. motoro, 3 in both species and 26 fixed for alternative variants in both species, thus being useful for population analyses and hybrid detection. © 2016 John Wiley & Sons Ltd.
Woods, D E; Edge, M D; Colten, H R
1984-01-01
Complementary DNA (cDNA) clones corresponding to the major histocompatibility (MHC) class III antigen, complement protein C2, have been isolated from human liver cDNA libraries with the use of a complex mixture of synthetic oligonucleotides (17 mer) that contains 576 different oligonucleotide sequences. The C2 cDNA were used to identify a DNA restriction enzyme fragment length polymorphism that provides a genetic marker within the MHC that was not detectable at the protein level. An extensive search for genomic polymorphisms using a cDNA clone for another MHC class III gene, factor B, failed to reveal any DNA variants. The genomic variants detected with the C2 cDNA probe provide an additional genetic marker for analysis of MHC-linked diseases. Images PMID:6086718
2010-01-01
Background Leptin modulates appetite, energy expenditure and the reproductive axis by signalling via its receptor the status of body energy stores to the brain. The present study aimed to quantify the associations between 10 novel and known single nucleotide polymorphisms in genes coding for leptin and leptin receptor with performance traits in 848 Holstein-Friesian sires, estimated from performance of up to 43,117 daughter-parity records per sire. Results All single nucleotide polymorphisms were segregating in this sample population and none deviated (P > 0.05) from Hardy-Weinberg equilibrium. Complete linkage disequilibrium existed between the novel polymorphism LEP-1609, and the previously identified polymorphisms LEP-1457 and LEP-580. LEP-2470 associated (P < 0.05) with milk protein concentration and calf perinatal mortality. It had a tendency to associate with milk yield (P < 0.1). The G allele of LEP-1238 was associated (P < 0.05) with reduced milk fat concentration, reduced milk protein concentration, longer gestation length and tended to associate (P < 0.1) with an increase in calving difficulty, calf perinatal mortality and somatic cells in the milk. LEP-963 exhibited an association (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and gestation length. It also tended to associate with milk yield (P < 0.1). The R25C SNP associated (P < 0.05) with milk fat concentration, milk protein concentration, calving difficulty and length of gestation. The T allele of the Y7F SNP significantly associated with reduced angularity (P < 0.01) and reduced milk protein yield (P < 0.05). There was also a tendency (P < 0.1) for Y7F to associate with increased body condition score, reduced milk yield and shorter gestation (P < 0.1). A80V associated with reduced survival in the herd (P < 0.05). Conclusions Several leptin polymorphisms (LEP-2470, LEP-1238, LEP-963, Y7F and R25C) associated with the energetically expensive process of lactogenesis. Only SNP Y7F associated with energy storage. Associations were also observed between leptin polymorphisms and calving difficulty, gestation length and calf perinatal mortality. The lack of an association between the leptin variants investigated with calving interval in this large data set would question the potential importance of these leptin variants, or indeed leptin, in selection for improved fertility in the Holstein-Friesian dairy cow. PMID:20670403
Paule, A; Roubeix, V; Swerhone, G D W; Roy, J; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L; Lawrence, J R
2016-03-01
Residual pesticides applied to crops migrate from agricultural lands to surface and ground waters. River biofilms are the first aquatic non-target organisms which interact with pesticides. Therefore, ecotoxicological experiments were performed at laboratory scale under controlled conditions to investigate the community-level responses of river biofilms to a chloroacetanilide herbicide (alachlor) and organic solvent (methanol) exposure through the development referenced to control. Triplicate rotating annular bioreactors, inoculated with river water, were used to cultivate river biofilms under the influence of 1 and 10 μg L(-1) of alachlor and 25 mg L(-1) of methanol. For this purpose, functional (thymidine incorporation and carbon utilization spectra) and structural responses of microbial communities were assessed after 5 weeks of development. Structural aspects included biomass (chlorophyll a, confocal laser scanning microscopy) and composition (fluor-conjugated lectin binding, molecular fingerprinting, and diatom species composition). The addition of alachlor resulted in a significant reduction of bacterial biomass at 1 μg L(-1), whereas at 10 μg L(-1), it induced a significant reduction of exopolymer lectin binding, algal, bacterial, and cyanobacterial biomass. However, there were no changes in biofilm thickness or thymidine incorporation. No significant difference between the bacterial community structures of control and alachlor-treated biofilms was revealed by terminal restriction fragment length polymorphism (T-RFLP) analyses. However, the methanol-treated bacterial communities appeared different from control and alachlor-treated communities. Moreover, methanol treatment resulted in an increase of bacterial biomass and thymidine incorporation as well. Changes in dominant lectin binding suggested changes in the exopolymeric substances and community composition. Chlorophyll a and cyanobacterial biomass were also altered by methanol. This study suggested that the concentration-dependent effect of alachlor mainly remains limited to biomass and growth inhibition without apparent changes of structural and functional characteristics measured. Our work also establishes the potential toxic effects of organic solvents on river biofilm in ecotoxicological experiments. For the ecotoxicological experiments, the alternative of dissolution in organic solvent followed by its evaporation, depositing the chemical on a glass surface prior to dissolution in river water used here, appears to allow exposure while minimizing the effect of organic solvent.
Microbial and physical properties as indicators of sandy soil quality under cropland and grassland
NASA Astrophysics Data System (ADS)
Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata
2017-04-01
Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water capacity were greater and saturated hydraulic conductivity was lower under grassland than cropland soil. The study was funded by HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015-2020).
Ferreira, L M M; Hervás, G; Belenguer, A; Celaya, R; Rodrigues, M A M; García, U; Frutos, P; Osoro, K
2017-10-01
This study aimed to compare feed intake, digestion, rumen fermentation parameters and bacterial community of 5 beef cows, 12 crossed ewes and 12 goats grazing together in spring-early summer on heather-gorse vegetation communities with an adjacent area of improved pasture. Organic matter intake (OMI) and digestibility (OMD) were estimated using alkane markers. Ruminal fluid samples were collected for measuring fermentation parameters, and studying the bacterial community using terminal restriction fragment length polymorphism (T-RFLP). Spot samples of urine were taken to determine purine derivative (PD) and creatinine concentrations to estimate microbial protein synthesis in the rumen. Herbaceous species were the main dietary component in all animal species. Cattle had higher (p < 0.05) daily OMI (g/kg LW 0.75 ) and OMD, whereas sheep and goats showed similar values. The highest ammonia concentration was observed in sheep. Total VFA, acetate and butyrate concentrations were not influenced by animal species, while propionate concentrations in goats were 1.8 times lower (p < 0.05) than in sheep. Acetate:propionate ratio was greater (p < 0.05) in goats, whereas cattle excreted more allantoin (p < 0.05). Estimated supply of microbial N was higher in cows (p < 0.01), whereas the efficiency of microbial protein synthesis was lower (p < 0.01) in this animal species. Hierarchical clustering analysis indicated a clear effect of animal species on rumen bacterial structure. Differences among animal species were also observed in the relative frequency of several T-RFs. Certain T-RFs compatible with Lachnospiraceae, Proteobacteria and Clostridiales species were not found in goats, while these animals showed high relative frequencies of some fragments compatible with the Ruminococcaceae family that were not detected in sheep and cattle. Results suggest a close relationship between animals' grazing behaviour and rumen bacterial structure and its function. Goats seem to show a greater specialization of their microbial populations to deal with the greater fibrous and tannin content of their diet. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Ji, Yang; Angel, Roey; Klose, Melanie; Claus, Peter; Marotta, Humberto; Pinho, Luana; Enrich-Prast, Alex; Conrad, Ralf
2016-12-01
Tropical lake sediments are a significant source for the greenhouse gas methane. We studied function (pathway, rate) and structure (abundance, taxonomic composition) of the microbial communities (Bacteria, Archaea) leading to methane formation together with the main physicochemical characteristics in the sediments of four clear water, six white water and three black water lakes of the Amazon River system. Concentrations of sulfate and ferric iron, pH and δ 13 C of organic carbon were usually higher, while concentrations of carbon, nitrogen and rates of CH 4 production were generally lower in white water versus clear water or black water sediments. Copy numbers of bacterial and especially archaeal ribosomal RNA genes also tended to be relatively lower in white water sediments. Hydrogenotrophic methanogenesis contributed 58 ± 16% to total CH 4 production in all systems. Network analysis identified six communities, of which four were comprised mostly of bacteria found in all sediment types, while two were mostly in clear water sediment. Terminal restriction fragment length polymorphism (T-RFLP) and pyrosequencing showed that the compositions of the communities differed between the different sediment systems, statistically related to the particular physicochemical conditions and to CH 4 production rates. Among the archaea, clear water, white water, and black water sediments contained relatively more Methanomicrobiales, Methanosarcinaceae and Methanocellales, respectively, while Methanosaetaceae were common in all systems. Proteobacteria, Deltaproteobacteria (Myxococcales, Syntrophobacterales, sulfate reducers) in particular, Acidobacteria and Firmicutes were the most abundant bacterial phyla in all sediment systems. Among the other important bacterial phyla, clear water sediments contained relatively more Alphaproteobacteria and Planctomycetes, whereas white water sediments contained relatively more Betaproteobacteria, Firmicutes, Actinobacteria, and Chloroflexi than the respective other sediment systems. The data showed communities of bacteria common to all sediment types, but also revealed microbial groups that were significantly different between the sediment types, which also differed in physicochemical conditions. Our study showed that function of the microbial communities may be understood on the basis of their structures, which in turn are determined by environmental heterogeneity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Exploring the plant-associated bacterial communities in Medicago sativa L
2012-01-01
Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti). However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti) level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40%) between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may constitute an important part of biodiversity in this system, which includes also the well known symbiont S. meliloti. Interestingly, this last species was also found in plant aerial part, by applying cultivation-independent protocols, and a genetic diversity analysis suggested that population structure could be strongly influenced by random drift. PMID:22607312
Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.
2006-12-01
Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with molecular fingerprints of wetland communities using tRFLP (Terminal Restriction Fragment Length Polymorphism) - and gave evidence of temporal and spatial variation in a wetland system, to potentially be applied as management tool in wastewater treatment. Visualization of differences in biofilm development by wild and recombinant yeast strains furthermore supported real-time quantitative data of biofilm development by Cryptococcus laurentii and Saccharomyces yeast strains. In all cases VP SEM allowed a more holistic interpretation of biofilm processes than afforded by quantitative empirical data only.
Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo
2016-06-01
The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane-based water treatment processes where additional electricity consumption and cathodic scale deposition are not of serious concerns. Copyright © 2016 Elsevier Ltd. All rights reserved.
D. A. Delaney; M.D. Meixner; N.M. Schiff; W.S. Sheppard
2009-01-01
Genetic diversity levels within and between the two commercial breeding areas in theUnited States were analyzed using the DraI restriction fragment length polymorphism of the COICOII mitochondrial region and 10 polymorphic microsatellite loci. The western commercial breeding population (WCBP) and the southeastern commercial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, D.; Weiner, A.M.
1995-12-10
The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT){sub n}{center_dot}(GA){sub n} dinucleotide repeat (n {approx} 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to studymore » the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT){sub n} tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, ogangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion. 70 refs., 5 figs.« less
Association of ghrelin polymorphisms with metabolic syndrome in Han Nationality Chinese.
Xu, Ling-Ling; Xiang, Hong-Ding; Qiu, Chang-Chun; Xu, Qun
2008-06-01
To investigate the association of ghrelin gene polymorphisms with metabolic syndrome in Han Nationality Chinese. A total of 240 patients with metabolic syndrome and 427 adults aged above forty years were recruited. Genotypes were determined by polymerase chain reaction and restriction fragment length polymorphism analysis. The allelic frequency of the Leu72Met polymorphism was 17.3% in the patient group and 11.9% in the control group (chi2 = 7.36, P = 0.007). Metabolic syndrome was more prevalent among carriers of the Met72 variant (43.8 vs 33.1%, age- and sex-adjusted odds ratio = 1.57, P = 0.01). No Arg51Gln variants were found in our study subjects. Rather than being associated with its individual components, Leu72Met polymorphism is associated with metabolic syndrome in the Han Nationality Chinese. Arg51Gln polymorphism is rare in the Han Nationality Chinese.
USDA-ARS?s Scientific Manuscript database
Tepary bean (Phaseolus acutifolius A. Gray), a truly Native American crop, is a short life-cycle annual desert legume indigenous to northwestern Mexico and the southwestern USA and is considered drought and heat tolerant. The Western Regional Plant Introduction Station currently maintains 211 acce...
D'Amora, Paulo; Sato, Hélio; Girão, Manoel J B C; Silva, Ismael D C G; Schor, Eduardo
2006-09-01
To study possible correlation between the prevalence of polymorphisms in the type I interleukin-1 receptor gene and pelvic endometriosis. Genotypes of 223 women were analyzed: 109 women with surgically and histologically confirmed endometriosis and 114 healthy women. Distributions of two single-base polymorphisms of the human interleukin-1 receptor type I (IL-1RI) gene were evaluated: PstI, due to a C-->T transition in exon 1B and BsrBI a C-->A transition at position 52 in exon 1C. Polymorphisms were detected by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism analysis (RFLP) resolved on 3% agarose gels stained with ethidium bromide. Genotypes for PstI polymorphisms did not differ significantly among control and endometriosis (P = 0.058). However, in relation to BsrBI polymorphism, protective risk was observed for the development of endometriosis [OR 0.39-IC 95% (0.2-0.9)]. BsrBI heterozygote genotype (C/A) showed protective effect against endometriosis development.
Sasaki, Seiko; Kishi, Reiko
2009-09-01
It has been recognized that metabolic enzymes mediating genetic susceptibility to environmental chemicals such as polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls might be related to adverse human health. Recent studies, including the Hokkaido Study of Environmental and Children's Health, have shown that metabolic enzymes mediating genetic susceptibility to environmental chemicals including tobacco smoke might be related to adverse birth outcomes. Certain maternal genetic polymorphisms in the polycyclic aromatic hydrocarbons (PAHs)-metabolizing enzymes have been shown to enhance the association between maternal smoking and infant birth weight in both Caucasians and Japanese. For maternal genetic polymorphisms encoding the N-nitrosamine-metabolizing enzymes, we found that infant birth weight, birth length and birth head circumference were significantly smaller among infants of smokers than among those of nonsmokers and quitters. The adverse effects of maternal smoking on infant birth size may be modified by maternal genetic polymorphisms. Further study is required to clarify the potential association between genetic polymorphisms and cognitive function in childhood, becauae it has been reported that a small birth length or a small head circumference at birth might affect neurobehavioral development during early childhood. It is necessary to elucidate additive impacts of genetic factors on adverse effects of various chemicals commonly encountered in our daily lives, follow up the development of children, and carry out longitudinal observation.
Liu, Shi; Gao, Peng; Zhu, Qianglong; Luan, Feishi; Davis, Angela R.; Wang, Xiaolu
2016-01-01
Cleaved amplified polymorphic sequence (CAPS) markers are useful tools for detecting single nucleotide polymorphisms (SNPs). This study detected and converted SNP sites into CAPS markers based on high-throughput re-sequencing data in watermelon, for linkage map construction and quantitative trait locus (QTL) analysis. Two inbred lines, Cream of Saskatchewan (COS) and LSW-177 had been re-sequenced and analyzed by Perl self-compiled script for CAPS marker development. 88.7% and 78.5% of the assembled sequences of the two parental materials could map to the reference watermelon genome, respectively. Comparative assembled genome data analysis provided 225,693 and 19,268 SNPs and indels between the two materials. 532 pairs of CAPS markers were designed with 16 restriction enzymes, among which 271 pairs of primers gave distinct bands of the expected length and polymorphic bands, via PCR and enzyme digestion, with a polymorphic rate of 50.94%. Using the new CAPS markers, an initial CAPS-based genetic linkage map was constructed with the F2 population, spanning 1836.51 cM with 11 linkage groups and 301 markers. 12 QTLs were detected related to fruit flesh color, length, width, shape index, and brix content. These newly CAPS markers will be a valuable resource for breeding programs and genetic studies of watermelon. PMID:27162496
2006-06-01
51 Appendix C. Promega Restriction Digest Protocol ....................................................53...Rsa1 Restriction Digest Results............................................................................180 9. DNA Base Pair Comparison...particular restriction endonuclease, the length of the fragments produced will differ when the DNA is digested with a restriction enzyme (Edwards
Lang, J. D.; Ray, S.; Ray, A.
1994-01-01
In Arabidopsis thaliana, a mutation in the SIN1 gene causes aberrant ovule development and female-specific sterility. The effect of the sin1 mutation is polymorphic and pleiotropic in different genetic backgrounds. The polymorphism concerns morphology of the mutant ovules. The pleiotropism involves internodal distance and inflorescence initiation time. The particular ovule phenotype and the length of internodes are dependent on an interaction of sin1 with a second recessive gene, which we term mod1. The recessive mod1 allele in a homozygous sin1 mutant plant reduces internode length and ovule integument size. The mutation sin1, but not mod1, has a demonstrable effect on ovule morphology when acting idependently. In our crosses mod1 was inseparably linked to the well known mutation erecta that is known to cause a reduction in internode and pedicel lengths. PMID:7982564
Gaafar, Ayman; Josebe Unzaga, M.; Cisterna, Ramón; Clavo, Felicitas Elena; Urra, Elena; Ayarza, Rafael; Martín, Gloria
2003-01-01
The usefulness of single-enzyme amplified-fragment length polymorphism (AFLP) analysis for the subtyping of Mycobacterium kansasii type I isolates was evaluated. This simplified technique classified 253 type I strains into 12 distinct clusters. The discriminating power of this technique was high, and the technique easily distinguished between the epidemiologically unrelated control strains and our clinical isolates. Overall, the technique was relatively rapid and technically simple, yet it gave reproducible and discriminatory results. This technique provides a powerful typing tool which may be helpful in solving many questions concerning the reservoirs, pathogenicities, and modes of transmission of these isolates. PMID:12904399
Pfennig, Karin S; Allenby, Ashley; Martin, Ryan A; Monroy, Anaïs; Jones, Corbin D
2012-09-01
Two congeneric species of spadefoot toad, Spea multiplicata and Spea bombifrons, have been the focus of hybridization studies since the 1970s. Because complex hybrids are not readily distinguished phenotypically, genetic markers are needed to identify introgressed individuals. We therefore developed a set of molecular markers (amplified fragment length polymorphism, polymerase chain reaction-restriction fragment length polymorphism and single nucleotide polymorphism) for identifying pure-species, F1 hybrids and more complex introgressed types. To do so, we tested a series of markers across both species and known hybrids using populations in both allopatry and sympatry. We retained those markers that differentiated the two pure-species and also consistently identified known species hybrids. These markers are well suited for identifying hybrids between these species. Moreover, those markers that show variation within each species can be used in conjunction with existing molecular markers in studies of population structure and gene flow. © 2012 Blackwell Publishing Ltd.
Molecular characterization of the canine mitochondrial DNA control region for forensic applications.
Eichmann, Cordula; Parson, Walther
2007-09-01
The canine mitochondrial DNA (mtDNA) control region of 133 dogs living in the area around Innsbruck, Austria was sequenced. A total of 40 polymorphic sites were observed in the first hypervariable segment and 15 in the second, which resulted in the differentiation of 40 distinct haplotypes. We observed five nucleotide positions that were highly polymorphic within different haplogroups, and they represent good candidates for mtDNA screening. We found five point heteroplasmic positions; all located in HVS-I and a polythymine region in HVS-II, the latter often being associated with length heteroplasmy. In contrast to human mtDNA, the canine control region contains a hypervariable 10 nucleotide repeat region, which is located between the two hypervariable regions. In our population sample, we observed eight different repeat types, which we characterized by direct sequencing and fragment length analysis. The discrimination power of the canine mtDNA control region was 0.93, not taking the polymorphic repeat region into consideration.
Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing
2016-03-01
Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Badoni, Saurabh; Das, Sweta; Sayal, Yogesh K.; Gopalakrishnan, S.; Singh, Ashok K.; Rao, Atmakuri R.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.
2016-01-01
We developed genome-wide 84634 ISM (intron-spanning marker) and 16510 InDel-fragment length polymorphism-based ILP (intron-length polymorphism) markers from genes physically mapped on 12 rice chromosomes. These genic markers revealed much higher amplification-efficiency (80%) and polymorphic-potential (66%) among rice accessions even by a cost-effective agarose gel-based assay. A wider level of functional molecular diversity (17–79%) and well-defined precise admixed genetic structure was assayed by 3052 genome-wide markers in a structured population of indica, japonica, aromatic and wild rice. Six major grain weight QTLs (11.9–21.6% phenotypic variation explained) were mapped on five rice chromosomes of a high-density (inter-marker distance: 0.98 cM) genetic linkage map (IR 64 x Sonasal) anchored with 2785 known/candidate gene-derived ISM and ILP markers. The designing of multiple ISM and ILP markers (2 to 4 markers/gene) in an individual gene will broaden the user-preference to select suitable primer combination for efficient assaying of functional allelic variation/diversity and realistic estimation of differential gene expression profiles among rice accessions. The genomic information generated in our study is made publicly accessible through a user-friendly web-resource, “Oryza ISM-ILP marker” database. The known/candidate gene-derived ISM and ILP markers can be enormously deployed to identify functionally relevant trait-associated molecular tags by optimal-resource expenses, leading towards genomics-assisted crop improvement in rice. PMID:27032371
Lack of correlation between p53 codon 72 polymorphism and anal cancer risk
Contu, Simone S; Agnes, Grasiela; Damin, Andrea P; Contu, Paulo C; Rosito, Mário A; Alexandre, Claudio O; Damin, Daniel C
2009-01-01
AIM: To investigate the potential role of p53 codon 72 polymorphism as a risk factor for development of anal cancer. METHODS: Thirty-two patients with invasive anal carcinoma and 103 healthy blood donors were included in the study. p53 codon 72 polymorphism was analyzed in blood samples through polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing. RESULTS: The relative frequency of each allele was 0.60 for Arg and 0.40 for Pro in patients with anal cancer, and 0.61 for Arg and 0.39 for Pro in normal controls. No significant differences in distribution of the codon 72 genotypes between patients and controls were found. CONCLUSION: These results do not support a role for the p53 codon 72 polymorphism in anal carcinogenesis. PMID:19777616
Gokcen, Cem; Kocak, Nadir; Pekgor, Ahmet
2011-01-01
Objective: The purpose of this study was to evaluate the relationship between 5,10- methylenetetrahydrofolate reductase (MTHFR) polymorphisms and Attention Deficit Hyperactivity Disorder (ADHD) in a sample of Turkish children. Study Design: MTHFR gene polymorphisms were assessed in 40 patients with ADHD and 30 healty controls. Two mutations in the MTHFR gene were investigated using polymerase chain reactions and restriction fragment length polymorphisms. Results: Although there were no statistically significant differences in genotype distributions of the C677T alleles between the ADHD and the control groups (p=0,678) but the genotypic pattern of the distributions of the A1298C alleles was different between the ADHD patients and the controls (p=0,033). Conclusions: Preliminary data imply a possible relationship between A1298C MTHFR polymorphisms and the ADHD. PMID:21897766
Ahmed, Md Atique; Fauzi, Muh; Han, Eun-Taek
2018-03-14
Human infections due to the monkey malaria parasite Plasmodium knowlesi is on the rise in most Southeast Asian countries specifically Malaysia. The C-terminal 19 kDa domain of PvMSP1P is a potential vaccine candidate, however, no study has been conducted in the orthologous gene of P. knowlesi. This study investigates level of polymorphisms, haplotypes and natural selection of full-length pkmsp1p in clinical samples from Malaysia. A total of 36 full-length pkmsp1p sequences along with the reference H-strain and 40 C-terminal pkmsp1p sequences from clinical isolates of Malaysia were downloaded from published genomes. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 and MEGA 5.0 software. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (F ST ) and population structure of parasite was determined using Arlequin v3.5 and STRUCTURE v2.3.4 software. Comparison of 36 full-length pkmsp1p sequences along with the H-strain identified 339 SNPs (175 non-synonymous and 164 synonymous substitutions). The nucleotide diversity across the full-length gene was low compared to its ortholog pvmsp1p. The nucleotide diversity was higher toward the N-terminal domains (pkmsp1p-83 and 30) compared to the C-terminal domains (pkmsp1p-38, 33 and 19). Phylogenetic analysis of full-length genes identified 2 distinct clusters of P. knowlesi from Malaysian Borneo. The 40 pkmsp1p-19 sequences showed low polymorphisms with 16 polymorphisms leading to 18 haplotypes. In total there were 10 synonymous and 6 non-synonymous substitutions and 12 cysteine residues were intact within the two EGF domains. Evidence of strong purifying selection was observed within the full-length sequences as well in all the domains. Shared haplotypes of 40 pkmsp1p-19 were identified within Malaysian Borneo haplotypes. This study is the first to report on the genetic diversity and natural selection of pkmsp1p. A low level of genetic diversity and strong evidence of negative selection was detected and observed in all the domains of pkmsp1p of P. knowlesi indicating functional constrains. Shared haplotypes were identified within pkmsp1p-19 highlighting further evaluation using larger number of clinical samples from Malaysia.
Lee, Ing-Ming; Davis, Robert E.; Hiruki, Chuji
1991-01-01
DNA was isolated from clover proliferation (CP) mycoplasmalike organism (MLO)-diseased periwinkle plants (Catharanthus roseus (L.) G. Don.) and cloned into pSP6 plasmid vectors. CP MLO-specific recombinant DNA clones were biotin labeled and used as probes in dot hybridization and restriction fragment length polymorphism analyses to study the genetic interrelatedness among CP MLO and other MLOs, including potato witches'-broom (PWB) MLO. Results from dot hybridization analyses indicated that both a Maryland strain of aster yellows and a California strain of aster yellows are distantly related to CP MLO. Elm yellows, paulownia witches'-broom, peanut witches'-broom, loofah witches'-broom, and sweet potato witches'-broom may be very distantly related, if at all, to CP MLO. A new Jersey strain of aster yellows MLO, tomato big bud MLO, clover phyllody MLO, beet leafhopper-transmitted virescence MLO, and ash yellows MLO are related to CP MLO, but PWB MLO is the most closely related. Similarity coefficients derived from restriction fragment length polymorphism analyses revealed that PWB and CP MLOs are closely related strains and thus provided direct evidence of their relatedness in contrast to reliance solely on biological characterization. Images PMID:16348604
Mitchell M. Sewell; Bradley K. Sherman; David B. Neale
1998-01-01
A consensus map for loblolly pine (Pinus taeda L.) was constructed from the integration of linkage data from two unrelated three-generation out bred pedigrees. The progeny segregation data from restriction fragment length polymorphism, random amplified polymorphic DNA, and isozyme genetic markers from each pedigree were recoded to reflect the two independent...
A polymorphism in the bovine gamma-S-crystallin gene revealed by allele-specific amplification.
Kemp, S J; Maillard, J C; Teale, A J
1993-04-01
A polymorphism was detected in the 3' untranslated region of the bovine gamma-S-crystallin gene by direct sequencing of polymerase chain reaction (PCR) products from genomic DNA of an N'Dama bull and a Boran cow. A set of three PCR primers was designed to detect this difference and thus give allele-specific amplification. The two allele-specific primers differ in length by 20 nucleotides so that the allelic products may be distinguished by simple agarose gel electrophoresis following a single PCR reaction. This provides a simple and rapid assay for this polymorphism.
Bezerra, Rosângela M N; de Castro, Vagner; Sales, Teresa; Passini, Renato; Marba, Sergio T M; Saad, Sara T O; Saad, Mario J A
2002-03-01
We studied the association between the Gly972Arg polymorphism in insulin receptor substrate-1 (IRS-1) and birth weight in a population-based sample of Brazilian newborns. We studied 194 newborn children with adequate gestational age to identify the association between the Gly972Arg polymorphism and birth weight using PCR-restriction fragment length polymorphism analysis. The data showed that the birth weight was lower in the newborns with the Gly972Arg polymorphism in IRS-1 compared with control subjects (3,141 +/- 31.8 vs. 3,373 +/- 80.3 g, P < 0.008). The results also showed that the frequency of this polymorphism was increased in newborns with a birth weight <3,000 g (P=0.041). These results suggest that the genotype Gly972Arg may influence birth weight, reinforcing the hypothesis that genetically determined insulin resistance and/or reduced insulin secretion can result in impaired insulin-mediated growth in the fetus.
Ludovic J. A. Capo-chichi; Wilson H. Faircloth; A. G. Williamson; Michael G. Patterson; James H. Miller; Edzard van Santen
2008-01-01
Nine sites of cogongrass were included in a study of genotypic dimity and spread dynamics at the point of introduction and its adjacent areas in the southern United States. Clones evaluated with two primer pairs yielded a total of 137 amplified fragment length polymorphism (AFLP) hi of which 102 (74.4%) were polymorphic. Genetic diversity was measured as the percentage...
Shiba, Hala Fathy; El-Ghamrawy, Mona Kamal; Shaheen, Iman Abd El-Mohsen; Ali, Rasha Abd El-Ghani; Mousa, Somaia Mohammed
2014-01-01
Sickle cell disease (SCD) complications are associated with oxidative stress. Glutathione S-transferases (GSTs) are a group of enzymes that protect against oxidative stress. The aims of this study was to evaluate the prevalence of GSTM1, GSTT1, and GSTP1 gene polymorphisms among homozygous sickle cell anemia patients and to investigate the possible association between the presence of these polymorphisms and SCD severity and complications. Genotyping the polymorphisms in GSTT1 and GSTM1 genes was performed using the multiplex polymerase chain reaction (PCR) method. The GSTP1 ILe105Val polymorphism was determined using PCR-restriction fragment length polymorphism. GSTM1 null genotype was significantly associated with increased risk of severe vaso-occlusive crises (VOC) (odds ratio = 1.52, 95% confidence interval = 0.42-5.56, P = 0.005). We found no significant association between GST genotypes and frequency of sickle cell-related pain, transfusion frequency, disease severity, or hydroxyurea treatment. GSTM1 gene polymorphism may be associated with risk of severe VOC among Egyptian SCD patients.
Wang, L F; Ding, Y J; Zhao, Q; Zhang, X L
2015-12-09
We conducted a case-control study to investigate the association between 3 common NALP3 polymorphisms (rs10754558, rs7512998, and rs12137901) and the susceptibility to primary gout. A total of 320 patients with primary gout and 320 controls were included in this study. The genotyping of NALP3 rs10754558, rs7512998, and rs12137901 were conducted by polymerase chain reaction-restriction fragment length polymorphism. Comparison analysis showed that primary gout patients were more likely to have higher body mass index, prevalence of hypertension, blood glucose, triglycerides, urea nitrogen, and uric acid (P < 0.05). Logistic regression analysis revealed no significant association between the NALP3 rs10754558, rs7512998, and rs12137901 polymorphisms and the risk of gouty arthritis. In conclusion, we found no significant association between NALP3 gene polymorphisms and the risk of primary gout.
Assessing Date Palm Genetic Diversity Using Different Molecular Markers.
Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S
2017-01-01
Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.
Jakovljevic, Ksenija; Malisic, Emina; Cavic, Milena; Radulovic, Sinisa; Jankovic, Radmila
2012-07-01
Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating the intracellular folate metabolism which plays an important role in carcinogenesis through DNA methylation and nucleotide synthesis. The common MTHFR single nucleotide polymorphism C677T has been reported to be associated with reduced enzymatic activity. In order to investigate the influence of this polymorphism on the risk of chronic myeloid leukemia (CML), we performed a case-control study in a Serbian population of 52 patients with CML and 53 healthy control subjects. MTHFR C677T polymorphism genotyping was assessed using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The results demonstrated no statistical difference in MTHFR 677 frequency distribution between patient and control groups. Our findings suggest that MTHFR 677 gene variants have no significant influence on the susceptibility to CML in a Serbian population.
Kim, Hyun Seok; Lee, Bo Eun; Jeon, Young Joo; Rah, HyungChul; Lee, Woo Sik; Shin, Ji Eun; Choi, Dong Hee; Kim, Nam Keun
2014-09-01
The transcobalamin II (TCN2) 776C>G polymorphism has been reported to be a genetic risk factor for idiopathic recurrent spontaneous abortion (RSA). However, the sample size in previous studies was small, and other TCN2 polymorphisms have not been studied. Moreover, the TCN2 67A>G and 776C>G polymorphisms, and the transcobalamin II receptor (TCblR/CD320) 1104C>T polymorphism, have demonstrated associations with immune responses. Three hundred and seventy-eight RSA patients who had at least two consecutive spontaneous abortions were enrolled. Two hundred and seven control subjects were collected from a convenience sample. Polymerase chain reaction and restriction fragment length polymorphism analysis were performed to identify the TCN2 67A>G and 776C>G polymorphisms, and the TCblR 1104C>T polymorphism. RSA patients showed significantly different frequencies of the TCN2 67AG+GG genotypes compared with control subjects. The TCN2 67G allele is a possible risk factor for idiopathic RSA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Association of ACE Gene I/D polymorphism with migraine in Kashmiri population.
Wani, Irfan Yousuf; Sheikh, Saleem; Shah, Zafar Amin; Pandith, Arshid A; Wani, Mushtaq; Asimi, Ravouf; Wani, Maqbool; Sheikh, Shahnawaz; Mehraj, Iqra
2016-01-01
Migraine is a complex, recurrent headache disorder that is one of the most common complaints in neurology practice. The role of various genes in its pathogenesis is being studied. We did this study to see whether an association exists between ACE gene I/D polymorphism and migraine in our region. The study included 100 patients diagnosed with migraine and 121 healthy controls. The study subject were age and gender matched. The analysis was based on Polymerase Chain Reaction (PCR) and included following steps: DNA extraction from blood, PCR and Restriction Fragment Length Polymorphism (RFLP). Out of 100 cases, 69 were females and 31 were males. Fifty-seven were having migraine without aura and 43 had migraine with aura. 45 of the cases had II polymorphism, 40 had ID polymorphism and 15 had DD polymorphism in ACE gene. We were not able to find a statistically significant association between ACE gene I/D polymorphism with migraine. The reason for difference in results between our study and other studies could be because of different ethnicity in study populations. So a continuous research is needed in this regard in order to find the genes and different polymorphism that increase the susceptibility of Kashmiri population to migraine.
Motawi, Tarek M.K.; El-Rehany, Mahmoud A.; Rizk, Sherine M.; Ramzy, Maggie M.; el-Roby, Doaa M.
2015-01-01
Estrogen might play an important role in type 2 diabetes mellitus pathogenesis. A number of polymorphisms have been reported in the estrogen receptor alpha gene including the XbaI and PvuII restriction enzyme polymorphisms. The aim of this study was to determine if ESRα gene polymorphisms are associated with type 2 diabetes mellitus and correlated with lipid profile. Ninety diabetic Egyptian patients were compared with forty healthy controls. ESRα genotyping of PvuII and XbaI was performed using restriction fragment length polymorphism analysis. Our study showed that there is more significant difference in the frequency of C and G polymorphic allele between patients and control groups in PvuII and XbaI respectively. Also carriers of minor C and G alleles of PvuII and XbaI gene polymorphisms were associated with increased fasting blood glucose and disturbance in lipid profile as there is an increase in total cholesterol, triglycerides and Low density lipoprotein. So findings of present study suggest the possibility that PvuII and XbaI polymorphisms in ERα are related to T2DM and with increased serum lipids among Egyptian population. PMID:26401488
Mazurowski, Artur; Frieske, Anna; Kokoszynski, Dariusz; Mroczkowski, Sławomir; Bernacki, Zenon; Wilkanowska, Anna
2015-01-01
The main objective of the study was to assess the polymorphism in intron 2 of the GH gene and its association with some morphological traits (body weight--BW, length of trunk with neck--LTN, length of trunk--LT, chest girth--CG, length of breast bone--LBB, length of shank--LS). Polymorphism in intron 2 of the GH gene was evaluated for four duck populations (Pekin ducks AF51, Muscovy ducks from a CK and CRAMMLCFF mother and Mulard ducks). Genetic polymorphism was determined with the PCR-RFLP method using the BsmFI restriction enzyme. In the studied duck sample two alleles (GH(C) and GH(T)) and three genotypes (GH/TT, GH/CT, GH/CC) were found at locus GH/BsmFI. In both groups of Muscovies and in Mulards the dominant allele was GH(T). On the contrary in Pekin ducks AF51, the frequency of both alleles was found to be similar. The most frequent genotype in the examined ducks was GH/TT. In Pekin ducks AF51 three genotypes were observed, while in Mulard ducks and in male Muscovy ducks from a mother marked as CK, two genotypes (GH/TT and GH/CT) were identified. Muscovy duck females from a CK mother and all males and females of Muscovy duck from a CRAMMLCFF mother were monomorphic with only the GH/TTgenotype detected. The results showed that males of Pekin duck AF51 with the GH/TT genotype were characterized by higher (P < 0.01) BW value than those with the GH/CC and GH/CTgenotype. In females of Pekin ducks AF51, this same trend was observed; individuals with GH/TT genotype were superior (P < 0.05 and P < 0.01) to birds with two other detected genotypes in respect to BW, CG, LBB and LS. In the case of Mulards, ducks with the GH/TT genotype were distinguished by higher values of all evaluated traits compared to ducks with GH/CT and GH/CC genotypes, however most of the recorded differences were not significant. The only trait markedly impacted (P < 0.05) by the polymorphism of the GH gene intron 2 was the LS value in males.
Hong, Y. P.; Hipkins, V. D.; Strauss, S. H.
1993-01-01
The amount, distribution and mutational nature of chloroplast DNA polymorphisms were studied via analysis of restriction fragment length polymorphisms in three closely related species of conifers, the California closed-cone pines-knobcone pine: Pinus attenuata Lemm.; bishop pine: Pinus muricata D. Don; and Monterey pine: Pinus radiata D. Don. Genomic DNA from 384 trees representing 19 populations were digested with 9-20 restriction enzymes and probed with cloned cpDNA fragments from Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] that comprise 82% of the chloroplast genome. Up to 313 restriction sites were surveyed, and 25 of these were observed to be polymorphic among or within species. Differences among species accounted for the majority of genetic (haplotypic) diversity observed [G(st) = 84(+/-13)%]; nucleotide diversity among species was estimated to be 0.3(+/-0.1)%. Knobcone pine and Monterey pine displayed almost no genetic variation within or among populations. Bishop pine also showed little variability within populations, but did display strong population differences [G(st) = 87(+/-8)%] that were a result of three distinct geographic groups. Mean nucleotide diversity within populations was 0.003(+/-0.002)%; intrapopulation polymorphisms were found in only five populations. This pattern of genetic variation contrasts strongly with findings from study of nuclear genes (allozymes) in the group, where most genetic diversity resides within populations rather than among populations or species. Regions of the genome subject to frequent length mutations were identified; estimates of subdivision based on length variant frequencies in one region differed strikingly from those based on site mutations or allozymes. Two trees were identified with a major chloroplast DNA inversion that closely resembled one documented between Pinus and Pseudotsuga. PMID:7905846
Toll-like receptor polymorphisms in malaria-endemic populations
Greene, Jennifer A; Moormann, Ann M; Vulule, John; Bockarie, Moses J; Zimmerman, Peter A; Kazura, James W
2009-01-01
Background Toll-like receptors (TLR) and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. Methods A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA) was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL) single nucleotide polymorphisms (SNPs), and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic) or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. Results The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD) and Hemoglobin S (HbS) in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. Conclusion Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective pressure from malaria or any other infectious agents in these populations. PMID:19317913
Dos Santos, Christine; Essioux, Laurent; Teinturier, Cécile; Tauber, Maïté; Goffin, Vincent; Bougnères, Pierre
2004-07-01
Growth hormone is used to increase height in short children who are not deficient in growth hormone, but its efficacy varies largely across individuals. The genetic factors responsible for this variation are entirely unknown. In two cohorts of short children treated with growth hormone, we found that an isoform of the growth hormone receptor gene that lacks exon 3 (d3-GHR) was associated with 1.7 to 2 times more growth acceleration induced by growth hormone than the full-length isoform (P < 0.0001). In transfection experiments, the transduction of growth hormone signaling through d3-GHR homo- or heterodimers was approximately 30% higher than through full-length GHR homodimers (P < 0.0001). One-half of Europeans are hetero- or homozygous with respect to the allele encoding the d3-GHR isoform, which is dominant over the full-length isoform. These observations suggest that the polymorphism in exon 3 of GHR is important in growth hormone pharmacogenetics.
Yi, Liuxi; Gao, Fengyun; Siqin, Bateer; Zhou, Yu; Li, Qiang; Zhao, Xiaoqing; Jia, Xiaoyun; Zhang, Hui
2017-01-01
Flax is an important crop for oil and fiber, however, no high-density genetic maps have been reported for this species. Specific length amplified fragment sequencing (SLAF-seq) is a high-resolution strategy for large scale de novo discovery and genotyping of single nucleotide polymorphisms. In this study, SLAF-seq was employed to develop SNP markers in an F2 population to construct a high-density genetic map for flax. In total, 196.29 million paired-end reads were obtained. The average sequencing depth was 25.08 in male parent, 32.17 in the female parent, and 9.64 in each F2 progeny. In total, 389,288 polymorphic SLAFs were detected, from which 260,380 polymorphic SNPs were developed. After filtering, 4,638 SNPs were found suitable for genetic map construction. The final genetic map included 4,145 SNP markers on 15 linkage groups and was 2,632.94 cM in length, with an average distance of 0.64 cM between adjacent markers. To our knowledge, this map is the densest SNP-based genetic map for flax. The SNP markers and genetic map reported in here will serve as a foundation for the fine mapping of quantitative trait loci (QTLs), map-based gene cloning and marker assisted selection (MAS) for flax.
Kageyama, Shinji; Shinmura, Kazuya; Yamamoto, Hiroko; Goto, Masanori; Suzuki, Koichi; Tanioka, Fumihiko; Tsuneyoshi, Toshihiro; Sugimura, Haruhiko
2008-04-01
The PCR-based DNA fingerprinting method called the methylation-sensitive amplified fragment length polymorphism (MS-AFLP) analysis is used for genome-wide scanning of methylation status. In this study, we developed a method of fluorescence-labeled MS-AFLP (FL-MS-AFLP) analysis by applying a fluorescence-labeled primer and fluorescence-detecting electrophoresis apparatus to the existing method of MS-AFLP analysis. The FL-MS-AFLP analysis enables quantitative evaluation of more than 350 random CpG loci per run. It was shown to allow evaluation of the differences in methylation level of blood DNA of gastric cancer patients and evaluation of hypermethylation and hypomethylation in DNA from gastric cancer tissue in comparison with adjacent non-cancerous tissue.
Hallerman, E M; Nave, A; Kashi, Y; Holzer, Z; Soller, M; Beckmann, J S
1987-01-01
Two bovine populations, a Holstein-Friesian dairy stock and a synthetic (Baladi X Hereford X Simmental X Charolais) beef stock, were screened for restriction fragment length polymorphisms (RFLPs) at the growth hormone and prolactin genes. Most RFLPs at the growth hormone gene are apparently the consequence of an insertion/deletion event which was localized to a region downstream of the structural gene. The restriction map for the genomic region including the growth hormone gene was extended. Two HindIII RFLPs at the growth hormone locus, as well as several RFLPs at the prolactin gene, seemed to be the consequence of a series of point mutations. The results are discussed in terms of the possibility that minor genomic variability underlies quantitative genetic variation.
Humberg, Roberta M. P.; Oshiro, Elisa T.; Cruz, Maria do Socorro Pires e; Ribolla, Paulo E. M.; Alonso, Diego P.; Ferreira, Alda M. T.; Bonamigo, Raquel A.; Tasso, Norton; de Oliveira, Alessandra Gutierrez
2012-01-01
We investigated the occurrence of Leishmania infantum chagasi in Didelphis albiventris opossums at a wild animal rehabilitation center in the city of Campo Grande, Brazil. A total of 54 opossums were tested for L. i. chagasi infection in peripheral blood and bone marrow samples. The samples were analyzed by direct examination, culturing in a specific medium, and polymerase chain reaction–restriction fragment length polymorphism. Leishmania i. chagasi DNA was detected by polymerase chain reaction–restriction fragment length polymorphism in 11 (20.37%) animals. A total of 81.81% of positive opossums were captured in areas of known visceral leishmaniasis transmission. These results suggest a role for D. albiventris in the urban transmission of visceral leishmaniasis. PMID:22802435
Zara, Giacomo; Zara, Severino; Pinna, Claudia; Marceddu, Salvatore; Budroni, Marilena
2009-12-01
In Saccharomyces cerevisiae, FLO11 encodes an adhesin that is associated with different phenotypes, such as adherence to solid surfaces, hydrophobicity, mat and air-liquid biofilm formation. In the present study, we analysed FLO11 allelic polymorphisms and FLO11-associated phenotypes of 20 flor strains. We identified 13 alleles of different lengths, varying from 3.0 to 6.1 kb, thus demonstrating that FLO11 is highly polymorphic. Two alleles of 3.1 and 5.0 kb were cloned into strain BY4742 to compare the FLO11-associated phenotypes in the same genetic background. We show that there is a significant correlation between biofilm-forming ability and FLO11 length both in different and in the same genetic backgrounds. Moreover, we propose a multiple regression model that allows prediction of air-liquid biofilm-forming ability on the basis of transcription levels and lengths of FLO11 alleles in a population of S. cerevisiae flor strains. Considering that transcriptional differences are only partially explained by the differences in the promoter sequences, our results are consistent with the hypothesis that FLO11 transcription levels are strongly influenced by genetic background and affect biofilm-forming ability.
Liang, Xia; Zhang, Yong-jing; Liu, Bing; Ni, Qin; Jin, Ming-juan; Ma, Xin-yuan; Yao, Kai-yan; Li, Qi-long; Chen, Kun
2009-06-01
To explore the distribution of HER-2 genetic polymorphism at codon 655 and its association with susceptibility of colorectal cancer in Chinese. A population-based case-control study was carried out. 292 patients with colorectal cancer and 842 healthy controls were interviewed. Meanwhile, the genetic polymorphism of HRE-2 was detected using polymerase chain reaction-restriction fragment length polymorphism. The frequencies of Ile/Val+Val/Val genotypes and Val allele were both higher in cases (25.34% and 13.36%) than those in controls (18.41% and 9.74%) (P<0.05). Compared with Ile/Ile genotype, Ile/Val+Val/Val genotypes were significantly associated with colorectal cancer [ORadjusted=1.54, 95% CI: 1.11-2.14]. The adjusted odds ratio of interactions between this polymorphism and smoking, alcohol drinking were 1.43 (95%CI: 0.88-2.30) and 1.29 (95%CI: 0.73-2.29), respectively. The present findings suggest that HER-2 genetic polymorphism at codon 655 may be associated with the risk of colorectal cancer in Chinese. In addition, there are no interactions between this polymorphism and smoking, alcohol drinking, respectively.
Yadav, Suresh Kumar; Singh, Sudhir; Gupta, Shalini; Brahma Bhatt, Madan Lal; Mishra, Durga P; Roy, D; Sanyal, Somali
2018-01-01
Genetic variations in nucleotide excision repair genes can alter the risk of squamous cell carcinoma of head and neck (SCCHN). The present study has genotyped 334 subjects from North Indian population for xeroderma pigmentosum complementation Group C (XPC) rs2228001A>C, XPC rs77907221 polyadenylate (PAT) deletion/insertion (D/I), xeroderma pigmentosum complementation Group D - rs13181A>C, and xeroderma pigmentosum complementation Type G rs17655 G>C polymorphisms with polymerase chain reaction (PCR)-restriction-fragment length polymorphism or allele-specific PCR methods. Compared to D allele, I allele for XPC PAT D/I polymorphism was associated with significantly decreased the risk of SCCHN (odds ratios = 0.67, 95% confidence interval [CI] =0.48-0.94, P = 0.03). Haplotype CI constituted from XPC polymorphisms was also associated with decreased risk of SCCHN (P = 0.004). In contrast, haplotype Crohn's disease significantly increased the risk for SCCHN (P < 0.00). A significant early onset of SCCHN was observed in individuals with CC genotype for XPC A>C polymorphism (P = 0.004). Our results suggest a possible risk modulation for SCCHN with XPC polymorphisms in North Indian population.
A functional EGF+61 polymorphism is associated with severity of obstructive sleep apnea.
Ding, Qunli; Cao, Chao; Chen, Zhongbo; Tabusi, Mahebali; Chen, Li; Deng, Zaichun
2015-05-01
Involvement of epidermal growth factor (EGF) is reported in diseases caused by hypoxia. Its functional polymorphism may alter its transcription, affecting EGF expression, contributing to obstructive sleep apnea (OSA). The aim of this study was to investigate associations of EGF+61 polymorphism and risk of OSA. Two hundred two participants were enrolled in this case-control study. DNA was extracted from peripheral blood, and EGF 61A/G polymorphism was determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. No significant association between EGF 61 A/G polymorphism and risk of OSA was observed in any of the gene models tested (AA vs. GG: OR = 0.97, 95% CI = 0.37-2.55; P = 0.95). However, compared with GG genotype, AG genotype associated with decreased risk of severe OSA (AG vs. GG: OR = 0.32, 95% CI = 0.11-0.94). Our study showed that AG genotype has a protective effect on OSA patients against severe disease, although EGF 61A/G polymorphisms have no role on the risk of the disease. Additional large studies should further validate our findings.
Lack of association between ESR1 gene polymorphisms and premature ovarian failure in Serbian women.
Li, J; Vujovic, S; Dalgleish, R; Thompson, J; Dragojevic-Dikic, S; Al-Azzawi, F
2014-06-01
It has previously been reported that estrogen receptor-alpha (ERα) gene (ESR1: estrogen receptor 1) polymorphisms are associated with premature ovarian failure (POF). The aim of this study was to investigate whether these genetic polymorphisms of ESR1 are associated with POF in Serbian women. A series of 197 POF cases matched with 547 fertile controls was recruited by the Institute for Endocrinology, Diabetes and Metabolic Disorders of Serbia between 2007 and 2010. Genomic DNA was extracted from saliva using Oragene® DNA sample collection kits. Two single-nucleotide polymorphisms (SNPs), PvuII and XbaI, in ESR1 were genotyped by dynamic allele-specific hybridization. Haplotype analyses were performed with the restriction fragment length polymorphism method. SNP and haplotype effects were analyzed by logistic regression models. No significant difference was found in the distribution of ESR1 PvuII and XbaI polymorphisms or haplotypes between the POF and control groups. The two ESR1 SNPs, PvuII and XbaI, are not commonly associated with POF in Serbian women and may not contribute to the genetic basis of the condition.
Taghizade Mortezaee, Fatemeh; Tabatabaiefar, Mohammad Amin; Hashemzadeh Chaleshtori, Morteza; Miraj, Sepideh
2014-01-01
Uterine leiomyoma (UL) is the most common benign smooth muscle cell tumor with as yet unknown etiology and pathogenesis. This study was carried out to investigate the association of ESR1-351 A>G, ESR1 -397 T>C and CYP1A1 (Ile462Val) polymorphisms with UL in female patients of Iranian origin. In this case-control study, 276 patients with UL and 156 healthy women were recruited. The genetic polymorphisms ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) were genotyped by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). No significant difference were found in frequencies of both genotypes and alleles of ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) polymorphisms between the two groups (p>0.05). Our findings indicated that these ESR1 and CYP1A1 polymorphisms were not associated with the development of UL in the cases reported here.
van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O
1992-01-01
Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671
Fattah, Shaimaa A; Ghattas, Maivel H; Saleh, Samy M; Abo-Elmatty, Dina M
2017-02-01
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a CD28-family receptor expressed on T-cells which suppresses T cell proliferation. CTLA-4 -318C/T polymorphism is involved in regulation of CTLA-4 expression. The study aimed to investigate the genetic association of CTLA-4 -318C/T polymorphism with rheumatoid arthritis (RA) and the activity and severity of the disease in the Egyptian population. A single nucleotide polymorphism (rs5742909) in CTLA-4 was genotyped in 100 RA patients and 100 healthy controls using polymerase chain reaction-restriction fragment length polymorphism. Diagnostic tests were measured for RA patients. The frequency of T allele in RA patients was significantly higher than in the control subjects (p = 0.002). CT and TT genotypes had high C-reactive protein, erythrocyte sedimentation rate and disease activity score 28 while CC genotype had a high rheumatoid factor. A minor allele of CTLA-4 rs5742909 polymorphism was associated with RA and the activity but not the severity of the disease.
Shin, In Sub; Shimada, Yuta; Horiguchi-Babamoto, Emi; Matsumoto, Shinya
2018-04-01
We obtained two conformational polymorphs of 2,5-dichloro-3,6-bis(dibenzylamino)-p-hydroquinone, C 34 H 30 Cl 2 N 2 O 2 . Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z' = 1/2), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face-to-edge motif between adjacent molecules, with intermolecular C-H...π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.
A universal method for automated gene mapping
Zipperlen, Peder; Nairz, Knud; Rimann, Ivo; Basler, Konrad; Hafen, Ernst; Hengartner, Michael; Hajnal, Alex
2005-01-01
Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The protocol utilizes standard sequencers and genotyping software. We have established genome-wide FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping with a minimum of manual input and at comparatively low cost. PMID:15693948
Blood grouping based on PCR methods and agarose gel electrophoresis.
Sell, Ana Maria; Visentainer, Jeane Eliete Laguila
2015-01-01
The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.
Dai, Yi; Wu, Yuquan; Li, Yansheng
2015-01-01
The aim of this study was to explore the genetic association of cyclooxygenase-2 (COX2) gene promoter region polymorphisms with Parkinson's disease (PD) susceptibility in Chinese Han population. The genotyping of COX2 gene polymorphisms was conducted by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in 122 patients with PD and 120 healthy persons. The association strength of gene polymorphism with disease was measured by odds ratio (OR) and 95% confidence interval (95% CI) calculated using χ(2) test which also evaluated the Hardy-Weinberg equilibrium (HWE) of gene polymorphism in controls. The linkage disequilibrium and haplotype were also analyzed as evidence in the analysis of association. On condition that the genotypes distributions of COX2 -1290A>G, -1195G>A, -765G>C in the control group all conformed to HWE, however, only the homozygous genotype AA of -1195G>A polymorphism showed an association with PD (OR=0.432, 95% CI=0.196-0.950). In addition, in haplotype analysis, G-A-C haplotype frequency in cases was significantly lower than the controls, compared with the common haplotype A-G-G (P=0.031, OR=0.375, 95% CI=0.149-0.940). COX2 -1195G>A polymorphism might play a protective role in the onset of PD and G-A-C haplotype in this three promoter region polymorphisms also showed a negative association.
Zeng, Ling; Gu, Wei; Chen, Kehong; Jiang, Dongpo; Zhang, Lianyang; Du, Dingyuan; Hu, Ping; Liu, Qing; Huang, Suna; Jiang, Jianxin
2009-01-01
An excessive inflammatory response is thought to account for the pathogenesis of sepsis and multiple organ dysfunction syndrome (MODS) after severe trauma. The interleukin-10 (IL-10) is a potent anti-inflammatory cytokine. The objectives of this prospective study were to investigate the distribution of IL-10 promoter polymorphisms in a cohort of 308 Chinese Han patients with major trauma, and to identify associations of IL-10 promoter polymorphisms with IL-10 production and incidence of sepsis and MODS. A total of 308 patients with major trauma were included in this study. The genotypes of polymorphisms -1082, -819 and -592 were determined by polymerase chain reaction-restriction fragment length polymorphism. The IL-10 levels in the supernatants were determined with enzyme-linked immunoabsorbent assay. The -1082A and -592A alleles were significantly associated with lower lipopolysaccharide-induced IL-10 production in an allele-dose dependent fashion. There was no significant difference for the -819 polymorphism. Except for the -1082 polymorphism, the -819 and -592 polymorphisms were not significantly associated with sepsis morbidity rate and MOD scores. Our results further confirm the functionality of the IL-10 promoter single nucleotide polymorphisms in relation to IL-10 production. They also suggest that individual difference in IL-10 production in trauma patients might be at least in part related to genetic variations in the IL-10 promoter region.
Michael, Shazia; Qamar, Raheel; Akhtar, Farah; Khan, Wajid Ali
2008-01-01
Purpose To determine whether or not there is an association of the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with disease in cohorts of primary open-angle glaucoma (POAG) and primary closed-angle glaucoma (PCAG) from Pakistan. Methods This was a prospective study consisting of 150 patients (90 POAG and 60 PCAG) and 70 control subjects. Genomic DNA was extracted from leukocytes of the peripheral blood. MTHFR C677T polymorphism analysis was performed by the polymerase chain reaction-restriction fragment length polymorphism (RFLP) technique. Results The prevalence of the MTHFR C/T genotype was 22.2% in POAG, 13.3% in PACG, and 18.6% in controls whereas the MTHFR T/T genotype was present solely in the PACG group (6.9%). The difference regarding the T/T genotype between PACG and controls was statistically significant (p<0.01). Conclusions The MTHFR C677T polymorphism was found to be associated with PCAG but not POAG in patients of Pakistani origin. PMID:18385801
Angiopoietin-2 polymorphism in women with idiopathic recurrent miscarriage.
Pietrowski, Detlef; Tempfer, Clemens; Bettendorf, Hertha; Bürkle, Bernd; Nagele, Fritz; Unfried, Gertrud; Keck, Christoph
2003-10-01
To investigate the relationship between idiopathic recurrent miscarriage and a polymorphism of the gene encoding for angiopoietin-2 (ANGPT2), an autochthonous modulator of angiogenesis during pregnancy. Prospective case control study. Academic research institution. One hundred thirty-one women with a history of three or more consecutive pregnancy losses before 20 weeks' gestation, and 125 healthy, postmenopausal controls with at least two live births and no history of pregnancy loss. Peripheral venous puncture. Polymerase chain reaction and restriction fragment length polymorphism analysis were performed to identify the different ANGPT2 alleles. No association between mutant (mt) allele and the occurrence of idiopathic recurrent miscarriage was found. Between women with primary and secondary idiopathic recurrent miscarriage, no statistically significant differences with respect to allele frequencies were observed. This is the first report on the ANGPT2 gene polymorphism in women with idiopathic recurrent miscarriage, demonstrating that the investigated polymorphism is not associated with idiopathic recurrent miscarriage in a white population.
Liu, C C; Lee, Y C; Tsai, V F S; Cheng, K H; Wu, W J; Bao, B Y; Huang, C N; Yeh, H C; Tsai, C C; Wang, C J; Huang, S P
2015-09-01
Testosterone has been found to play important roles in men's sexual function. However, the effects of testosterone can be modulated by androgen receptor (AR) CAG repeat polymorphism. It could also contribute to the risk of erectile dysfunction (ED). The aim of this study is to evaluate the interaction of serum testosterone levels and AR CAG repeat polymorphism on the risk of ED in aging Taiwanese men. This cross-sectional data of Taiwanese men older than 40 years were collected from a free health screening held between August 2010 and August 2011 in Kaohsiung city, Taiwan. All participants completed a health questionnaires included five-item version of the International Index of Erectile Function (IIEF-5) and the International Prostate Symptoms Score, received a detailed physical examination and provided 20 cm3 whole blood samples for biochemical and genetic evaluation. The IIEF-5 was used to evaluate ED. Serum albumin, total testosterone (TT), and sex hormone-binding globulin levels were measured. Free testosterone level was calculated. AR gene CAG repeat polymorphism was determined by direct sequencing. Finally, 478 men with the mean age of 55.7 ± 4.8 years were included. When TT levels were above 330 ng/dL, the effect of testosterone level on erectile function seemed to reach a plateau and a significantly negative correlation between AR CAG repeat length and the score of IIEF-5 was found (r = -0.119, p = 0.034). After adjusting for other covariates, the longer AR CAG repeat length was still an independent risk factor for ED in subjects with TT above 330 ng/dL (p = 0.006), but not in TT of 330 ng/dL or below. In conclusion, both serum testosterone levels and AR CAG repeat polymorphism can influence erectile function concomitantly. In subjects with normal TT concentration, those with longer AR CAG repeat lengths have a higher risk of developing ED. © 2015 American Society of Andrology and European Academy of Andrology.
Haemophilia A: carrier detection and prenatal diagnosis by linkage analysis using DNA polymorphism.
Tuddenham, E G; Goldman, E; McGraw, A; Kernoff, P B
1987-01-01
Restriction fragment length polymorphisms (RFLPs) within or close to the factor VIII locus are very useful for genetic linkage analysis. Such RFLPs allow a mutant allele to be tracked in a family, segregating haemophilia A even when, as is usually the case, the precise mutation causing failure to synthesise factor VIII is unknown. To date two markers tightly linked to the factor VIII locus have been described, one of which is highly polymorphic and therefore informative in most kindreds. A significant crossover rate, however, does not make diagnosis absolute. Three intragenic RFLPs have been defined, which, taken together, are informative in about 70% of women, providing virtually deterministic genetic diagnosis. PMID:2889753
Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U
2017-08-01
Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, <5 mM). Nevertheless, a clear impact of the temperature (R3, R4) and ammonia (R5, R6) shifts was observed for the respective reactors. In both reactors operated under thermophilic regime, acetic and propionic acid (10-20 mM) began to accumulate. While R4 recovered quickly from acidification, the levels of VFA remained to be high in R3 resulting in low pH values of 6.5-6.9. The digesters R5 and R6 operated under the high ammonia regime (>1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mineralogical Control on Microbial Diversity in a Weathered Granite?
NASA Astrophysics Data System (ADS)
Gleeson, D.; Clipson, N.; McDermott, F.
2003-12-01
Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that the bacterial population in whole rock, which contained approximately 30 separated bands (indicative of the number of bacterial ribotypes), is greater than muscovite (20), K-feldspar (15), and plagioclase feldspar (12) with quartz exhibiting the lowest number (6). These bands were excised from the gel for sequencing, allowing identification of the major populations. An automated approach was also used to assess similarity of bacterial communities present on each sample type, and this allowed for a statistical evaluation of bacterial diversity. Petrographic studies were carried out to assess mineral alteration effects. Scanning electron microscopy (SEM) was used to visualise in-situ bacterial cells.
Salem, Fida Ben; Said, Olfa Ben; Aissa, Patricia; Mahmoudi, Ezzeddine; Monperrus, Mathilde; Grunberger, Olivier; Duran, Robert
2016-01-01
This study aimed to identify the most commonly used agricultural pesticides around Ichkeul Lake-Bizerta Lagoon watershed. First survey of pesticide use on agricultural watershed was performed with farmers, Regional Commissioner for Agricultural Development, and pesticide dealers. Then, sediment contamination by pesticides and response of benthic communities (bacteria and free-living marine nematode) were investigated. The analysis of 22 active organochlorine pesticides in sediments was performed according to quick, easy, cheap, effective, rugged, and safe (QuEChERS) method, biodiversity of indigenous bacterial community sediment was determined by terminal restriction fragment length polymorphism (T-RFLP), and free-living marine nematodes were counted. The results of the field survey showed that iodosulfuron, mesosulfuron, 2,4-dichlorophenoxyacetic acid (2,4 D), glyphosate, and fenoxaprops were the most used herbicides, tebuconazole and epoxiconazole the most used fungicides, and deltamethrin the most used insecticide. Sixteen organochlorine pesticide compounds among the 22 examined were detected in sediments up to 2 ppm in Ichkeul Lake, endrin, dieldrin, and hexachlorocyclohexane being the most detected molecules. The most pesticide-contaminated site in the lake presented the higher density of nematode, but when considering all sites, no clear correlation with organochlorine pesticide (OCP) content could be established. The bacterial community structure in the most contaminated site in the lake was characterized by the terminal restriction fragments (T-RFs) 97, 146, 258, 285, and 335 while the most contaminated site in the lagoon was characterized by the T-RFs 54, 263, 315, 403, and 428. Interestingly, T-RFs 38 and 143 were found in the most contaminated sites of both lake and lagoon ecosystems, indicating that they were resistant to OCPs and able to cope with environmental fluctuation of salinity. In contrast, the T-RFs 63, 100, 118, and 381 in the lake and the T-RFs 40, 60, 80, 158, 300, 321, and 357 in the lagoon were sensitive to OCPs. This study highlighted that the intensive use of pesticides in agriculture, through transfer to aquatic ecosystem, may disturb the benthic ecosystem functioning of the protected area. The free-living marine nematodes and bacterial communities represent useful proxy to follow the ecosystem health and its capacity of resilience.
NASA Astrophysics Data System (ADS)
Emerson, D.; Rentz, J. A.; Moyer, C. L.
2005-12-01
The Loihi Seamount, located 30 km SE of the island of Hawai'i, is among the most active volcanos on Earth. The summit, at a depth of 1100m, includes a 250m deep caldera (Pele's Pit) formed by an eruption in 1996. The summit, and especially Pele's Pit, are the site of extensive low to intermediate temperature (10° to 65°C) hydrothermal venting, emanating both from diffuse fissures and orifices that have substantial flow rates. The vent fluid is characterized by a low sulfide content, high CO2 concentrations and Fe(II) amounts in the 10s to 100s of μM. Associated with all vents are extensive deposits of iron oxyhydroxides that typically have 107 to 108 bacterial cells/cc associated with them. The morphology of the Fe-oxides are indicative of biological origins. We have isolated microaerophilic, obligately lithotrophic Fe-oxidizing bacteria from Loihi and describe here `Mariprofundus ferroxydans' a unique bacterium that forms a filamentous iron oxide mineral. `M. ferroxydans' is the first cultured representative of a novel division of the Proteobacteria, known previously only from clones from different hydrothermal vent sites. Molecular evidence from Loihi mats based on clone libraries and terminal restriction length polymorphism (T-RFLP) analysis of 16S rRNA genes indicate that this lineage of Fe-oxidizing organisms are common inhabitants at Loihi. We speculate that this organism and its relatives form the basis of an active microbial mat community that owe their existence to the inherent gradients of Fe(II) and O2 that exist at the Loihi vents. In a geological context this is interesting because the Loihi summit and caldera are in an O2-minima zone; O2 concentrations in the bulk seawater are around 0.5 mg/l. In effect, Loihi could serve as a proxy for the late Archaean and early Proterozoic periods when the Earth's atmosphere went from reducing to oxidizing, and it is speculated that abundant Fe(II) in the Earth's oceans served as a major sink for O2 production preventing its accumulation in the atmosphere. Better understanding of extant conditions at Loihi might help us frame questions concerning the role of lithotrophic iron-oxidizing bacteria in the rusty ocean of the late Archaean Earth.
NASA Astrophysics Data System (ADS)
Hewson, Ian; Fuhrman, Jed A.
2007-05-01
Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs include many opportunistic taxa (e.g. Vibrionaceae), and because these bacteria may be more susceptible to viral attack due to enhanced resource uptake abilities and potentially rapid localized growth, it is possible that this negative effect was due to enhanced viral lysis. Consequently, virus infection may have positive effects upon bacterioplankton diversity in the oligotrophic ocean, by regulating the abundance of dominant competitors, and allowing rarer taxa to coexist; however, some rarer taxa (such as diazotrophs) may be more susceptible to viral attack due to opportunistic lifestyles.
Sun, Xi; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Su, Benying; Liu, Tong; Zhang, Cheng; Gao, Chong; Shao, Yuting
2017-01-01
Ionic liquids (ILs) were considered as "green" solvents and have been used widely because of their excellent properties. But ILs are not as "green" as has been suggested, and the toxic effects of ILs on organisms have been shown in recent years. In the present study, the toxic effects of the IL 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF 4 ) on soil enzyme activity and soil microbial communities at three different concentrations (1.0, 5.0 and 10.0mg/kg) and a control treatment over 40 days of incubation time (sampled on days 10, 20, 30 and 40) were examined under laboratory conditions. The concentrations of [Omim]BF 4 in soils were detected by high performance liquid chromatography (HPLC) and the results indicated that [Omim]BF 4 were maintained stable in the soil during the exposure period. However, the enzyme activity results showed that urease activity was stimulated on day 20 and then decreased after 30 days of incubation. The activity of β-glucosidase was stimulated after 20 days of incubation in both treatment groups. Moreover, both dehydrogenase and acid phosphatase were inhibited at a high level (10.0mg/kg) only on day 20. The analysis of terminal restriction fragment length polymorphism (T-RFLP) revealed that the soil microbial community structures were altered by [Omim]BF 4 and that the soil microbial diversity and evenness of high levels (5.0mg/kg and 10.0mg/kg) treatments were decreased. Moreover, the dominant structure of the microbial communities was not changed by [Omim]BF 4 . Furthermore, the abundance of the ammonia monooxygenase (amoA) genes of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) was examined using real time polymerase chain reaction (RT-PCR). The results revealed that the copy numbers of the amoA-gene were decreased by [Omim]BF 4 with the 5.0 and 10.0mg/kg treatments. Based on the experiment, we concluded that high levels (5.0 and 10.0mg/kg) of [Omim]BF 4 could have significantly toxic effects on soil enzyme activities and the diversity of the microbial communities. Copyright © 2016 Elsevier Inc. All rights reserved.
Preliminary genetic linkage map of the abalone Haliotis diversicolor Reeve
NASA Astrophysics Data System (ADS)
Shi, Yaohua; Guo, Ximing; Gu, Zhifeng; Wang, Aimin; Wang, Yan
2010-05-01
Haliotis diversicolor Reeve is one of the most important mollusks cultured in South China. Preliminary genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) markers. A total of 2 596 AFLP markers were obtained from 28 primer combinations in two parents and 78 offsprings. Among them, 412 markers (15.9%) were polymorphic and segregated in the mapping family. Chi-square tests showed that 151 (84.4%) markers segregated according to the expected 1:1 Mendelian ratio ( P<0.05) in the female parent, and 200 (85.8%) in the male parent. For the female map, 179 markers were used for linkage analysis and 90 markers were assigned to 17 linkage groups with an average interval length of 25.7 cm. For the male map, 233 markers were used and 94 were mapped into 18 linkage groups, with an average interval of 25.0 cm. The estimated genome length was 2 773.0 cm for the female and 2 817.1 cm for the male map. The observed length of the linkage map was 1 875.2 cm and 1 896.5 cm for the female and male maps, respectively. When doublets were considered, the map length increased to 2 152.8 cm for the female and 2 032.7 cm for the male map, corresponding to genome coverage of 77.6% and 72.2%, respectively.
Traceability of plant contribution in olive oil by amplified fragment length polymorphisms.
Pafundo, Simona; Agrimonti, Caterina; Marmiroli, Nelson
2005-09-07
Application of DNA molecular markers to traceability of foods is thought to bring new benefit to consumer's protection. Even in a complex matrix such as olive oil, DNA could be traced with PCR markers such as the amplified fragment length polymorphisms (AFLPs). In this work, fluorescent AFLPs were optimized for the characterization of olive oil DNA, to obtain highly reproducible, high-quality fingerprints, testing different parameters: the concentrations of dNTPs and labeled primer, the kind of Taq DNA polymerase and thermal cycler, and the quantity of DNA employed. It was found that correspondence of fingerprinting by comparing results in oils and in plants was close to 70% and that the DNA extraction from olive oil was the limiting step for the reliability of AFLP profiles, due to the complex matrix analyzed.
O’Neill, A. M.; Gillespie, S. H.; Whiting, G. C.
1999-01-01
A PCR-restriction fragment length polymorphism strategy directed against the pbp2b gene was evaluated for identification of penicillin susceptibility. A total of 106 United Kingdom (U.K.), 30 Danish, and 11 Papua New Guinean strains were tested. Of the U.K. strains, all the susceptible and all but one of the resistant isolates were correctly assigned. By using conventional definitions of “not resistant” and “not susceptible,” the sensitivities were 97.5 and 94.4%, the specificities were 100 and 98.9%, the positive predictive values were 100 and 94.4%, and the negative predictive values were 93.1 and 98.9%, respectively. This technique may allow susceptible (MIC, <0.1 mg/liter) and resistant (MIC, >1 mg/liter) isolates to be distinguished in a single PCR. PMID:9854082
Mapping the x-linked lymphoproliferative syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skare, J.C.; Milunsky, A.; Byron, K.S.
1987-04-01
The X-linked lymphoproliferative syndrome is triggered by Epstein-Barr virus infection and results in fatal mononucleosis, immunodeficiency, and lymphoproliferative disorders. This study shows that the mutation responsible for X-linked lymphoproliferative syndrome is genetically linked to a restriction fragment length polymorphism detected with the DXS42 probe (from Xq24-q27). The most likely recombination frequency between the loci is 4%, and the associated logarithm of the odds is 5.26. Haplotype analysis using flanking restriction fragment length polymorphism markers indicates that the locus for X-linked lymphoproliferative syndrome is distal to probe DXS42 but proximal to probe DXS99 (from Xq26-q27). It is now possible to predictmore » which members of a family with X-linked lymphoproliferative syndrome are carrier females and to diagnose the syndrome prenatally.« less
SNP identification in FBXO32 gene and their associations with growth traits in cattle.
Wang, Ailan; Zhang, Ya; Li, Mijie; Lan, Xianyong; Wang, Juqiang; Chen, Hong
2013-02-15
The F-box protein 32 (FBXO32), also known as Atrogin-1, is one of the four subunits of the ubiquitin protein ligase complex. FBXO32 has been previously shown to be involved in regulation of initiation and development of muscle mass. In the present study, we investigated the polymorphism of FBXO32 gene in 1313 cattle from seven bovine breeds using DNA sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and PCR-based amplification-created restriction site (PCR-ACRS) methods. Four novel single nucleotide polymorphisms (SNPs) were identified within bovine FBXO32, and were deposited in the GenBank database. The association studies between these four SNPs and growth traits were performed in NanYang cattle. Notably, the SNPs ss411628932 and ss411628936 were shown to be significantly associated with body length of 24-month-old NanYang cattle. Based on the above four SNPs, 16 haplotypes were identified. The main haplotype was AATA, which occurred at a frequency of more than 40%. Additionally, phylogenetic analysis showed that geographical distance was essential to gene flow among seven cattle breeds. Indigenous bovine breeds displayed genetic difference in comparison to hybrid bovine breeds that have foreign origins. We herein describe for the first time a comprehensive study on the variability of bovine FBXO32 gene that is predictive of genetic potential for body length phenotype. Copyright © 2012 Elsevier B.V. All rights reserved.
Witonski, D. ; Stefanova, R.; Ranganathan, A.; Schutze, G. E.; Eisenach, K. D.; Cave, M. D.
2006-01-01
The genome of Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 was analyzed for direct repeats, and 54 sequences containing variable-number tandem repeat loci were identified. Ten primer pairs that anneal upstream and downstream of each selected locus were designed and used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport. Four of the 10 loci did not show polymorphism in the length of products. Six loci were selected for analysis. Isolates of S. enterica serovars Typhimurium and Newport that were related to specific outbreaks and showed identical pulsed-field gel electrophoresis patterns were indistinguishable by the length of the six variable-number tandem repeats. Isolates that differed in their pulsed-field gel electrophoresis patterns showed polymorphism in variable-number tandem repeat profiles. Length of the products was confirmed by DNA sequence analysis. Only 2 of the 10 loci contained exact integers of the direct repeat. Eight loci contained partial copies. The partial copies were maintained at the ends of the variable-number tandem repeat loci in all isolates. In spite of having partial copies that were maintained in all isolates, the number of direct repeats at a locus was polymorphic. Six variable-number tandem repeat loci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had different pulsed-field gel electrophoresis patterns and in identifying outbreak-associated cases that shared a common pulsed-field gel pattern. PMID:16943354
2014-01-01
Background The epidermal growth factor receptor (EGFR) is differently expressed in breast cancer, and its presence may favor cancer progression. We hypothesized that two EGFR functional polymorphisms, a (CA)n repeat in intron 1, and a single nucleotide polymorphism, R497K, may affect EGFR expression and breast cancer clinical profile. Methods The study population consisted of 508 Brazilian women with unilateral breast cancer, and no distant metastases. Patients were genotyped for the (CA)n and R497K polymorphisms, and the associations between (CA)n polymorphism and EGFR transcript levels (n = 129), or between either polymorphism and histopathological features (n = 505) were evaluated. The REMARK criteria of tumor marker evaluation were followed. Results (CA)n lengths ranged from 14 to 24 repeats, comprehending 11 alleles and 37 genotypes. The most frequent allele was (CA)16 (0.43; 95% CI = 0.40–0.46), which was set as the cut-off length to define the Short allele. Variant (CA)n genotypes had no significant effect in tumoral EGFR mRNA levels, but patients with two (CA)n Long alleles showed lower chances of being negative for progesterone receptor (ORadjusted = 0.42; 95% CI = 0.19–0.91). The evaluation of R497K polymorphism indicated a frequency of 0.21 (95% CI = 0.19 – 0.24) for the variant (Lys) allele. Patients with variant R497K genotypes presented lower proportion of worse lymph node status (pN2 or pN3) when compared to the reference genotype Arg/Arg (ORadjusted = 0.32; 95% CI = 0.17–0.59), which resulted in lower tumor staging (ORadjusted = 0.34; 95% CI = 0.19-0.63), and lower estimated recurrence risk (OR = 0.50; 95% CI = 0.30-0.81). The combined presence of both EGFR polymorphisms (Lys allele of R497K and Long/Long (CA)n) resulted in lower TNM status (ORadjusted = 0.22; 95% CI = 0.07-0.75) and lower ERR (OR = 0.25; 95% CI = 0.09-0.71). When tumors were stratified according to biological classification, the favorable effects of variant EGFR polymorphisms were preserved for luminal A tumors, but not for other subtypes. Conclusions The data suggest that the presence of the variant forms of EGFR polymorphisms may lead to better prognosis in breast cancer, especially in patients with luminal A tumors. PMID:24629097
Solomon, N G; Richmond, A R; Harding, P A; Fries, A; Jacquemin, S; Schaefer, R L; Lucia, K E; Keane, B
2009-11-01
Integrative studies of genetics, neurobiology and behaviour indicate that polymorphism in specific genes contributes to variation observed in some complex social behaviours. The neuropeptide arginine vasopressin plays an important role in the regulation of a variety of social behaviours, including social attachment of males to females, through its action on the vasopressin 1a receptor (V1aR). In socially monogamous prairie voles (Microtus ochrogaster), polymorphism in the length of microsatellite DNA within the regulatory region of the gene (avpr1a) encoding the V1aR predicts differences among males in neural expression of V1aRs and partner preference under laboratory conditions. However, understanding the extent to which V1aR mediates variation in prairie vole social and reproductive behaviour observed in nature requires investigating the consequences of avpr1a polymorphism and environmental influences under ecologically relevant conditions. We examined the relationship between avpr1a length polymorphism and monogamy among male prairie voles living in 0.1 ha enclosures during a time similar to their natural lifespan. We found no evidence that avpr1a genotype of males predicts variation in social monogamy measured in the field but some indices of social monogamy were affected by population density. Parentage data indicated that a male's avpr1a genotype significantly influenced the number of females with which he sired offspring and the total number of offspring sired. Total brain concentrations of V1aR mRNA were not associated with either male behaviour or avpr1a genotype. These data show that melding ecological field studies with neurogenetics can substantially augment our understanding of the effects of genes and environment on social behaviours.
Bodmer, J; Bodmer, W; Heyes, J; So, A; Tonks, S; Trowsdale, J; Young, J
1987-01-01
Thirty-four lymphoblastoid cell lines that had been previously typed for HLA-DP antigens by primed lymphocyte typing (PLT) were tested by Southern blotting and by ELISA. Using two DP beta probes and a DP alpha probe with a series of enzymes, it is possible to identify restriction fragment length polymorphism (RFLP) patterns characteristic of DPw1, -2, -3, -4, and possibly -5. ELISA typing results, based on two polymorphic DP antibodies DP11.1 and ILR1, were compared with PLT-defined and RFLP-defined types. Thus, using a range of probes and enzymes it is possible to identify DP polymorphism. The value of monoclonal antibodies for such studies is demonstrated, and the molecular data can, in some cases, pinpoint the amino acids responsible for the specificity of the monoclonal antibodies. Images PMID:2885841
Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de
2015-01-01
Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834
Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.).
Peredo, Elena L; Arroyo-García, Rosa; Reed, Barbara M; Revilla, M Angeles
2008-12-01
Conventional cold storage and cryopreservation methods for hops (Humulus lupulus L.) are available but, to our knowledge, the genetic and epigenetic stability of the recovered plants have not been tested. This study analyzed 51 accessions of hop using the molecular techniques, Random Amplified DNA Polymorphism (RAPD) and Amplified Fragment Length Polymorphism (AFLP), revealing no genetic variation among greenhouse-grown controls and cold stored or cryopreserved plants. Epigenetic stability was evaluated using Methylation Sensitive Amplified Polymorphism (MSAP). Over 36% of the loci were polymorphic when the cold and cryo-treated plants were compared to greenhouse plants. The main changes were demethylation events and they were common to the cryopreserved and cold stored plants indicating the possible effect of the in vitro establishment process, an essential step in both protocols. Protocol-specific methylation patterns were also detected indicating that both methods produced epigenetic changes in plants following cold storage and cryopreservation.
Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C
2015-12-02
Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P < 0.05). Most of the variance was within populations. These findings will be important for more sustainable octopus fisheries, so that this marine resource can be conserved for its long-term utilization.
Aruna, Meka; Dasgupta, Shilpi; Sirisha, Pisapati V. S.; Andal Bhaskar, Sadaranga; Tarakeswari, Surapaneni; Singh, Lalji; Reddy, B. Mohan
2011-01-01
The aim of the present study was to investigate the role of CAG repeat polymorphism and X-chromosome Inactivation (XCI) pattern in Recurrent Spontaneous Abortions among Indian women which has not been hitherto explored. 117 RSA cases and 224 Controls were included in the study. Cases were recruited from two different hospitals - Lakshmi Fertility Clinic, Nellore and Fernandez Maternity Hospital, Hyderabad. Controls were roughly matched for age, ethnicity and socioeconomic status. The CAG repeats of the Androgen Receptor gene were genotyped using a PCR-based assay and were analysed using the GeneMapper software to determine the CAG repeat length. XCI analysis was also carried out to assess the inactivation percentages. RSA cases had a significantly greater frequency of allele sizes in the polymorphic range above 19 repeats (p = 0.006), which is the median value of the controls, and in the biallelic mean range above 21 repeats (p = 0.002). We found no evidence of abnormal incidence of skewed X-inactivation. We conclude that longer CAG repeat lengths are associated with increased odds for RSA with statistical power estimated to be ∼90%. PMID:21423805
Analysis for complete genomic sequence of HLA-B and HLA-C alleles in the Chinese Han population.
Zhu, F; He, Y; Zhang, W; He, J; He, J; Xu, X; Lv, H; Yan, L
2011-08-01
In the present study, we have determined the complete genomic sequence and analysed the intron polymorphism of partial HLA-B and HLA-C alleles in the Chinese Han population. Over 3.0 kb DNA fragments of HLA-B and HLA-C loci were amplified by polymerase chain reaction from partial 5' untranslated region to 3' noncoding region respectively, and then the amplified products were sequenced. Full-length nucleotide sequences of 14 HLA-B alleles and 10 HLA-C alleles were obtained and have been submitted to GenBank and IMGT/HLA database. Two novel alleles of HLA-B*52:01:01:02 and HLA-B*59:01:01:02 were identified, and the complete genomic sequence of HLA-B*52:01:01:01 was firstly reported. Totally 157 and 167 polymorphism positions were found in the full-length genomic sequence of HLA-B and HLA-C loci respectively. Our results suggested that many single nucleotide polymorphisms existed in the exon and intron regions, and the data can provide useful information for understanding the evolution of HLA-B and HLA-C alleles. © 2011 Blackwell Publishing Ltd.
Amplified Fragment Length Polymorphism Diversity in Cephalosporium maydis from Egypt.
Saleh, Amgad A; Zeller, Kurt A; Ismael, Abou-Serie M; Fahmy, Zeinab M; El-Assiuty, Elhamy M; Leslie, John F
2003-07-01
ABSTRACT Cephalosporium maydis, the causal agent of late wilt of maize, was first described in Egypt in the 1960s, where it can cause yield losses of up to 40% in susceptible plantings. We characterized 866 isolates of C. maydis collected from 14 governates in Egypt, 7 in the Nile River Delta and 7 in southern (Middle and Upper) Egypt, with amplified fragment length polymorphism (AFLP) markers. The four AFLP primer-pair combinations generated 68 bands, 25 of which were polymorphic, resulting in 52 clonal haplotypes that clustered the 866 isolates into four phylogenetic lineages. Three lineages were found in both the Nile River Delta and southern Egypt. Lineage IV, the most diverse group (20 haplotypes), was recovered only from governates in the Nile River Delta. In some locations, one lineage dominated (up to 98% of the isolates recovered) and, from some fields, only a single haplotype was recovered. Under field conditions in Egypt, there is no evidence that C. maydis reproduces sexually. The nonuniform geographic distribution of the pathogen lineages within the country could be due to differences in climate or in the farming system, because host material differs in susceptibility and C. maydis lineages differ in pathogenicity.
Zhang, Shuo; Ji, Guofa; Liang, Yiqian; Zhang, Rui; Shi, Puyu; Guo, Dangshe; Li, Chunqi; Feng, Jing; Liu, Feng; Peng, Rong; Chen, Mingwei
2017-01-06
The role of telomere in genomic stability is an established fact. Variation in leukocyte telomere length (LTL) has been considered a crucial factor that associated with age-associated diseases. To elucidate the association between LTL variation and ischemic stroke (IS) risk, we selected ten single nucleotide polymorphisms (SNPs) in three genes (TERC, TERT and RTEL1) that previously reported link to LTL, and genotyped SNPs of these genes in a case-control study. The association between polymorphisms and IS risk were tested by Chi squared test and haplotype analysis. In allele association analysis, allele "C" in rs10936599 of TERC gene and allele "G" in rs2853677 of TERT gene were found to have an increased risk of IS when compared with allele "T" and "A", respectively. Model association analysis showed that genotype "G/A" in the overdominant model and genotypes "G/A" and "A/A" in the dominant model of rs2242652 presented a more likelihood to have IS. Another TERT locus (rs2853677) with genotype "G" was also found IS-related risky in the log-additive model. Taken together, our results suggest a potential association between LTL related TERC, TERT gene variants and ischemic stroke risk.
Jusić, Amela; Balić, Devleta; Avdić, Aldijana; Pođanin, Maja; Balić, Adem
2018-08-01
Aim To investigate association of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms with recurrent pregnancy loss in Bosnian women. Methods A total of 60 women with two or more consecutive miscarriages before 20 weeks of gestation with the same partners and without history of known causes or recurrent pregnancy loss were included. A control group included 80 healthy women who had one or more successful pregnancies without history of any complication which could be associated with miscarriages. Genotyping of factor V Leiden, prothrombin G20210A, MTHFR C677T and PAI-1 4G/5G polymorphisms were performed by polymerase chain reaction/restriction fragments length polymorphism method (PCR/RFLP). Results Both factor V Leiden and MTHFR C677T polymorphisms were significantly associated with recurrent pregnancy loss (RPL) in Bosnian women while prothrombin G20210A and PAI-1 4G/5G polymorphisms did not show strongly significant association. Conclusion The presence of thrombophilic polymorphisms may predispose women to recurrent pregnancy loss. Future investigation should be addressed in order to find when carriers of those mutations, polymorphisms should be treated with anticoagulant therapy. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.
Ajaz, Sadia; Khaliq, Shagufta; Abid, Aiysha; Hassan, Asad Shehzad; Hashmi, Altaf; Sultan, Gauhar; Mohsin, Rehan; Mubarrak, Mohammad; Naqvi, Syed Ali Anwar; Rizvi, Syed Adib-ul-Hasan; Mehdi, Syed Qasim
2011-09-01
Vascular endothelial growth factor (VEGF) protein plays an important role in tumor development and progression. Polymorphisms in the VEGF gene may lead to over- or underexpression of the protein and may be associated with either risk or progression of malignancy. The aim of this case-control study is to identify and quantify the correlation between VEGF polymorphisms and renal cell carcinoma (RCC). Restriction fragment length polymorphism methods were used for the analysis of VEGF polymorphisms at -2578 and +936 positions in the promoter and 3'-untranslated regions, respectively. The VEGF -2578 A-allele was associated with an increased risk of RCC (odds ratio: 1.6; 95% CI: 1.2-2.3) and A-carrier genotypes were strongly correlated (odds ratio: 2.7; 95% CI: 1.5-4.7) with higher risk. Comparison of VEGF +936 C/T polymorphism between patient and control groups revealed no association with renal carcinoma. Both VEGF -2578 C/A and VEGF +936 C/T polymorphisms showed no significant association with the histopathological parameters of RCC. This study shows that VEGF -2578 A-allele and A-carrier genotypes are associated with an increased risk of RCC. In groups with higher incidence of RCC, a screening test for this polymorphism may be recommended in conjunction with other established markers.
Yilmaz, Meral; Tas, Ayca; Donmez, Gonca; Kacan, Turgut; Silig, Yavuz
2018-04-27
Background: Breast cancer is a leading cause of death in women worldwide. Genetic polymorphisms have been reported to be important etiological factors. Murine double minute 2 (MDM2) T309G interacts with p53 and mutations in p53 are present in approximately 50% of all cancers. However, it has been reported that effect of the polymorphism on breast cancer risk may vary in different populations. Here, we therefore investigated whether there is an association between MDM2 T309G (rs2279744) polymorphism and breast cancer in a Turkish population. Materials and Methods: We analysed 110 patients with breast cancer and 138 matched? controls. For genotyping, polymerase chain reaction and restriction length fragment polymorphism methods were used. Results: A significant difference was observed between case and control groups with regard to the distribution of the MDM2 T309G polymorphism (p<0.05). There was a significantly higher frequency of the TT genotype in the control group (p=0.028; OR, 2.42; 95% CI, 1.09-5.37). However, we did not find any relationships among tumor grade and metastasis status and this polymorphism. Conclusion: This study indicates that the MDM2 T309G polymorphism GG genotype and the TG+GG combination may be risk factors for breast cancer in our Turkish population. Creative Commons Attribution License
Guevara, María Ángeles; de María, Nuria; Sáez-Laguna, Enrique; Vélez, María Dolores; Cervera, María Teresa; Cabezas, José Antonio
2017-01-01
Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.
Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population.
Yoon, Su-Jung; Pae, Chi-Un; Lee, Heejin; Choi, Bomoon; Kim, Tae-Suk; Lyoo, In Kyoon; Kwon, Do-Hoon; Kim, Dai-Jin
2005-12-01
Ghrelin is a recently isolated brain-gut peptide that has growth hormone-releasing and appetite-inducing activities. Several recent studies have suggested that ghrelin plays a major role in the pathophysiology of drug-seeking behavior and anxiety. Therefore, we assessed the effect of the ghrelin precursor polymorphism on methamphetamine dependence in the Korean population. One hundred and eighteen patients with methamphetamine dependence, according to the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria, and the 144 healthy controls were enrolled in this study. Genotyping for the ghrelin precursor polymorphism was performed by the polymerase chain reaction-restriction fragment length polymorphism-based technique. The genotypic and allelic distributions of the ghrelin precursor polymorphism in the patients with methamphetamine dependence were not significantly different from those of the control subjects. However, the Met72 carriers were associated with the emotional problems of methamphetamine dependence. The patients with the Met72 allele were more depressed and anxious than the homozygous patients with the wild Leu72 allele. The present study suggests that the ghrelin precursor polymorphism may not confer a susceptibility to the development of methamphetamine dependence in the Korean population. However, the Leu72Met polymorphism could have a potential role in the emotional problems that are associated with this disease.
Association of Gene Polymorphisms in Interleukin 6 in Infantile Bronchial Asthma.
Babusikova, Eva; Jurecekova, Jana; Jesenak, Milos; Evinova, Andrea
2017-07-01
The genetic background of bronchial asthma is complex, and it is likely that multiple genes contribute to its development both directly and through gene-gene interactions. Cytokines contribute to different aspects of asthma, as they determine the type, severity and outcomes of asthma pathogenesis. Allergic asthmatics undergoing an asthmatic attack exhibit significantly higher levels of pro-inflammatory cytokines, such as interleukins and chemokines. In recent years, cytokines and their receptors have been shown to be highly polymorphic, and this prompted us to investigate interleukin 6 promoter polymorphisms at position -174G/C (rs1800795) and at -572G/C (rs1800796) in relation to asthma in children. Interleukin 6 promoter polymorphisms were analyzed in bronchial asthma patients and healthy children using polymerase chain reaction-restriction fragment length polymorphism analysis. We observed a significant association between polymorphism at -174G/C and bronchial asthma (OR=3.4, 95% CI: 2.045-5.638, P<.001). Higher associations between polymorphism at IL-6 -174G/C and bronchial asthma were observed in atopic patients (OR=4.1, 95% CI: 2.308-7.280, P<8.10 -7 ). Interleukin 6 polymorphism is associated with bronchial asthma, particularly its atopic phenotype. Expression and secretion of interleukins in asthmatic patients may be affected by genetic polymorphisms, and could have a disease-modifying effect in the asthmatic airway and modify the therapeutic response. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.
Kowalczyńska, Liliana J; Ferenc, Tomasz; Wojciechowski, Michał; Mordalska, Anna; Pogoda, Krzysztof; Malinowski, Andrzej
2014-05-01
To analyze the polymorphisms of angiotensin I converting enzyme (ACE) gene (insertion/deletion [I/D], A2350G) and angiotensin II type 1 receptor gene (A1166C) in women with endometriosis and to determine the correlation of the identified genotypes with the severity of the disease. Additionally, to estimate the prognostic value of the polymorphisms in patients with endometriosis treated due to infertility. The study group included 241 women, the control group (without endometriosis)-127. The molecular analysis was performed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism technique. For I/D ACE and A1166C AT1 polymorphisms no significant differences were observed between the study and control groups and between the severity grades of the disease (p>0.05). For A2350G ACE polymorphism the frequency of genotypes for the study and control groups respectively was the following: AA-31.54%, AG-54.36%, GG-14.11% and AA-55.12%, AG-36.22%, GG-8.66% (x(2)=19.36, p<0.0001). Statistically significant differences were found between the frequency of A and G alleles between both groups (x(2)=15.16, p=0.0001), but not when individual grades of the disease severity were compared. There was no association between the investigated polymorphisms and the effect of infertility treatment. A2350G polymorphism (allele G, AG genotype) of ACE gene seems to be associated with the development of endometriosis.
Molecular typing of Sarcocystis neurona: current status and future trends.
Elsheikha, Hany M; Mansfield, Linda S
2007-10-21
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.
Footprints of ancient-balanced polymorphisms in genetic variation data from closely related species
Gao, Ziyue; Przeworski, Molly; Sella, Guy
2015-01-01
When long-lasting, balancing selection can lead to “trans-species” polymorphisms that are shared by two or more species identical by descent. In such cases, the gene genealogy at the selected site clusters by allele instead of by species, and nearby neutral sites also have unusual genealogies because of linkage. While this scenario is expected to leave discernible footprints in genetic variation data, the specific patterns remain poorly characterized. Motivated by recent findings in primates, we focus on the case of a biallelic polymorphism under ancient balancing selection and derive approximations for summaries of the polymorphism data from two species. Specifically, we characterize the length of the segment that carries most of the footprints, the expected number of shared neutral single nucleotide polymorphisms (SNPs), and the patterns of allelic associations among them. We confirm the accuracy of our approximations by coalescent simulations. We further show that for humans and chimpanzees—more generally, for pairs of species with low genetic diversity levels—these patterns are highly unlikely to be generated by neutral recurrent mutations. We discuss the implications for the design and interpretation of genome scans for ancient balanced polymorphisms in primates and other taxa. PMID:25403856
Polymorphisms and linkage analysis for ICAM-1 and the selectin gene cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vora, D.K.; Rosenbloom, C.L.; Cottingham, R.W.
1994-06-01
Genetic polymorphisms in leukocyte and endothelial cell adhesion molecules may be important variables with regard to susceptibility to multifactorial disease processes that include an inflammatory component. For this reason, polymorphisms were sought for intercellular adhesion molecule-1 (ICAM-1; gene symbol ICAM1) and for the three genes in the selectin cluster, P-selectin, L-selectin, and E-selectin (gene symbols SELP, SELL, and SELE, respectively). Two amino acid polymorphisms were identified for ICAM-1; Gly or Arg at codon 241 and Lys or Glu at codon 469. Dinucleotide repeat polymorphisms were identified in the 3{prime}-untranslated region for ICAM-1 and in intron 9 for P-selectin. Restriction fragmentmore » length polymorphisms were found using cDNAs for each of the three selectin genes as probes; E-selectin with BglII, P-selectin with ScaI, and L-selectin with HincII. Linkage analysis was performed for the selectin gene cluster and for ICAM-1 using the CEPH families; ICAM-1 is very tightly linked to the LDL receptor on chromosome 19, and the selectin cluster is linked to markers at chromosome 1q23. 41 refs., 2 tabs.« less
Amiri Jahromi, Rakhshan; Nasiri, Mahboobeh; Jahromi, Athar Rasekh
2017-01-01
This study aimed to examine the association of three functional IRF5 rs10954213, rs3757385, and rs41298401 polymorphisms with susceptibility to unexplained recurrent pregnancy loss (RPL) among Iranian women from south of Iran. 176 women with unexplained RPL and 173 healthy postmenopausal controls were enrolled in this case-control study. Genotyping of the polymorphisms rs10954213 and rs3757385 was carried out using touchdown tetra-primer amplification refractory mutation system-polymerase chain reaction (T-ARMS PCR), and polymorphism rs41298401 was typed using PCR-restriction fragment length polymorphism (PCR-RFLP). Genotype frequencies were significantly different between RPL cases and controls regarding AG heterozygote genotype of rs10954213, GT genotype of rs3757385, and GG genotype of rs41298401. In addition, allele variants (G for rs10954213, T for rs3757385, and G for rs41298401) showed protective role against RPL, while GG haplotype of two first variants was shown to be a susceptibility factor for the disease. These data provide the first evidence, to our knowledge, of the protective role of the studied IRF5 gene polymorphisms against unexplained RPL among Iranian women from south of Iran.
Associations of SAA1 gene polymorphism with lipid lelvels and osteoporosis in Chinese women.
Feng, Zheng-Ping; Li, Xiao-Yu; Jiang, Rong; Deng, Hua-Cong; Yang, Mei; Zhou, Qin; Que, Wen-Jun; Du, Jia
2013-03-22
The development of osteoporosis is associated with several risk factors, such as genetic polymorphisms and enviromental factors. This study assessed the correlation between SAA1 gene rs12218 polymorphism and HDL-C lelvels and osteoporosis in a population of Chinese women. A total of 387 postmenopausal female patients who were diagnosed with osteoporosis (case group) based on bone mineral density measurements via dual-energy x-ray absorptiometry and 307 females with no osteoporosis (control group) were included in this study. Correlations between SAA1 gene rs12218 polymorphism and osteoporosis and HDL-C level were investigated through the identification of SAA1 gene rs12218 polymorphism genotypes using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The TT genotype of rs12218 was more frequently in osteoporosis patients than in control subjects (P <0.001). And the rs12218 was found to be associated with plasma TG, HDL-C, LDL-C, and BMD levels in osteoporosis patients (P<0.05). The present results indicate that both osteoporosis and lipids levels are associated with the TT genotype of rs12218 in the human SAA1 gene.
Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.
Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L
2003-01-01
The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus. PMID:14760938
Joo Jeon, Young; Woo Kim, Jong; Mi Park, Hye; Kim, Jung O; Geun Jang, Hyo; Oh, Jisu; Gyu Hwang, Seong; Won Kwon, Sung; Oh, Doyeun; Keun Kim, Nam
2015-01-01
Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) play important roles in tumor development, progression, and metastasis. Moreover, recent studies have reported that a number of 3′-UTR polymorphisms potentially bind to specific microRNAs in a variety of cancers. The aim of this study was to investigate the association of four MTHFR polymorphisms, 2572C>A [rs4846049], 4869C>G [rs1537514], 5488C>T [rs3737967], and 6685T>C [rs4846048] with colorectal cancer (CRC) in Koreans. A total of 850 participants (450 CRC patients and 400 controls) were enrolled in the study. The genotyping of MTHFR 3′-UTR polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism analysis or TaqMan allelic discrimination assay. We found that MTHFR 2572C>A, 4869C>G, and 5488C>T genotypes were substantially associated with CRC susceptibility. Of the potentially susceptible polymorphisms, MTHFR 2572C>A was associated with increased homocysteine and decreased folate levels in the plasma based on MTHFR 677CC. Our study provides the evidences for 3′-UTR variants in MTHFR gene as potential biomarkers for use in CRC prevention. PMID:26046315
Li, Xiaolei; Liao, Qingchuan; Zhang, Shunguo; Chen, Minling
2014-01-29
The aim of this study was to investigate the relationship between the polymorphisms of the methylenetetrahytrofolate reductase (MTHFR) gene and susceptibility to childhood acute lymphoblastic leukemia (ALL). A case-control study was conducted among 98 children with ALL and 93 age- and sex- matched non-ALL controls. Genotyping of MTHFR C677T and A1298C polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The odds ratios (ORs) of MTHFR genotypes were used to assess the associations of these polymorphisms with childhood ALL susceptibility. No significant differences were observed for frequencies of the 677CC, 677CT and 677TT genotypes between patients and controls. Frequencies of the 1298AA, 1298 AC and 1298CC genotypes between the two groups were significantly different. The risk of ALL with the 1298C allele carriers (AC + CC) was elevated by 1.1 times compared with the AA genotype [OR = 2.100; 95% CI (1.149; 3.837); P = 0.015]. The MTHFR A1298C polymorphism is associated with susceptibility to childhood ALL in the Chinese population.
Ting, Ke-Hsin; Ueng, Kwo-Chang; Chiang, Whei-Ling; Chou, Ying-Erh; Yang, Shun-Fa; Wang, Po-Hui
2015-01-01
The chemokine receptor CCR5 polymorphism, which confers resistance to HIV infection, has been associated with reduced risk of cardiovascular disease. However, the association of the chemokine, CCL5, and its receptor, CCR5, polymorphism and coronary artery disease (CAD) in the Taiwanese has not been studied. In this study, 483 subjects who received elective coronary angiography were recruited from Chung Shan Medical University Hospital. CCL5-403 and CCR5-59029 were determined by polymerase chain reaction-restriction fragment length polymorphism. We found that CCL5-403 with TT genotype frequencies was significantly associated with the risk of CAD group (odds ratio = 3.063 and p = 0.012). Moreover, the frequencies of CCR5-59029 with GG or GA genotype were higher than AA genotype in acute coronary syndrome individuals (odds ratio = 1.853, CI = 1.176–2.921, p = 0.008). In conclusion, we found that CCL5-403 polymorphism may increase genetic susceptibility of CAD. CCL5-403 or CCR5-59029 single nucleotide polymorphism may include genotype score and it may predict cardiovascular event. PMID:26688689
Tumour necrosis factor-alpha polymorphism as one of the complex inherited factors in pemphigus.
Torzecka, Jolanta Dorota; Narbutt, Joanna; Sysa-Jedrzejowska, Anna; Borowiec, Maciej; Ptasinska, Anetta; Woszczek, Grzegorz; Kowalski, Marek L
2003-10-01
The aim of our study was to analyse a significance of tumour necrosis factor (TNF)-alpha promoter gene polymorphisms in relation to the HLA-DR locus in genetic predisposition to pemphigus. TNF-alpha gene polymorphisms in position -238 and -308 were identified using a modified polymerase chain reaction-restriction fragment length polymorphism method in 53 patients with pemphigus (38 with pemphigus vulgaris, 15 with pemphigus foliaceus) and 87 healthy controls. The HLA-DRB1 locus was typed using the polymerase chain reaction SSO method in all the patients and 152 population controls. Carriers of the TNF-alpha polymorphic -308 A allele were found to be more frequent in the pemphigus foliaceus group in comparison with the control group (odds ratio (OR) = 8.12; p = 0.0005). A significant association between HLA-DRB1*04 (OR = 3.86; pcor = 0.0001) and DRB1*14 (OR = 8.4; pcor = 0.0001) and pemphigus vulgaris was found. In this group of patients a decreased frequency of HLA-DRB1*07 (OR = 0.08; pcor = 0.006) was also identified. We have shown for the first time a positive association of TNF-alpha polymorphism in position -308 with pemphigus foliaceus.
Associations of SAA1 gene polymorphism with Lipid lelvels and osteoporosis in Chinese women
2013-01-01
Background The development of osteoporosis is associated with several risk factors, such as genetic polymorphisms and enviromental factors. This study assessed the correlation between SAA1 gene rs12218 polymorphism and HDL-C lelvels and osteoporosis in a population of Chinese women. Methods A total of 387 postmenopausal female patients who were diagnosed with osteoporosis (case group) based on bone mineral density measurements via dual-energy x-ray absorptiometry and 307 females with no osteoporosis (control group) were included in this study. Correlations between SAA1 gene rs12218 polymorphism and osteoporosis and HDL-C level were investigated through the identification of SAA1 gene rs12218 polymorphism genotypes using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results The TT genotype of rs12218 was more frequently in osteoporosis patients than in control subjects (P <0.001). And the rs12218 was found to be associated with plasma TG, HDL-C, LDL-C, and BMD levels in osteoporosis patients (P<0.05). Conclusions The present results indicate that both osteoporosis and lipids levels are associated with the TT genotype of rs12218 in the human SAA1 gene. PMID:23522429
Association of Genetic Variation in Calmodulin and Left Ventricular Mass in Full-Term Newborns
Gorący, Iwona; Gorący, Jarosław; Skonieczna-Żydecka, Karolina; Kaczmarczyk, Mariusz; Dawid, Grażyna; Ciechanowicz, Andrzej
2013-01-01
Calmodulin II (CALM2) gene polymorphism might be responsible for the variation in the left ventricular mass amongst healthy individuals. The aim was to evaluate the correlation between left ventricular mass (LVM) and g.474955027G>A (rs7565161) polymorphism adjacent to the CALM2 gene. Healthy Polish newborns (n = 206) were recruited. Two-dimensional M-mode echocardiography was used to assess LVM. Polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing analyses. The carriers of the G allele of the CALM2 polymorphism had significantly higher left ventricular mass/weight (LVM/BW) values, when compared with newborns homozygous for the A allele (3.1 g/m2 versus 2.5 g/m2, P adjusted = 0.036). The AG genotype of CALM2 was associated with the highest values of LVM/BW, exhibiting a pattern of overdominance (2.9 g/kg versus 3.1 g/kg versus 2.5 g/kg, P adjusted = 0.037). The results of this study suggest that G>A CALM2 polymorphism may account for subtle variation in LVM at birth. PMID:24298550
Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).
Cox, Christian L; Chippindale, Paul T
2014-08-01
We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.
Molecular evolution of the leptin exon 3 in some species of the family Canidae.
Chmurzynska, Agata; Zajac, Magdalena; Switonski, Marek
2003-01-01
The structure of the leptin gene seems to be well conserved. The polymorphism of this gene in four species belonging to the Canidae family (the dog (Canis familiaris)--16 different breeds, the Chinese racoon dog (Nyctereutes procyonoides procyonoides), the red fox (Vulpes vulpes) and the arctic fox (Alopex lagopus)) were studied with the use of single strand conformation polymorphism (SSCP), restriction fragment length polymorphism (RFLP) and DNA sequencing techniques. For exon 2, all species presented the same SSCP pattern, while in exon 3 some differences were found. DNA sequencing of exon 3 revealed the presence of six nucleotide substitutions, differentiating the studied species. Three of them cause amino acid substitutions as well. For all dog breeds studied, SSCP patterns were identical.
Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik
2013-01-01
Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437
Wang, Hong; Edwards, Marc; Falkinham, Joseph O; Pruden, Amy
2012-09-01
The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems.
Wang, Hong; Edwards, Marc; Falkinham, Joseph O.
2012-01-01
The spread of opportunistic pathogens via public water systems is of growing concern. The purpose of this study was to identify patterns of occurrence among three opportunistic pathogens (Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa) relative to biotic and abiotic factors in two representative chloraminated drinking water distribution systems using culture-independent methods. Generally, a high occurrence of Legionella (≥69.0%) and mycobacteria (100%), lower occurrence of L. pneumophila (≤20%) and M. avium (≤33.3%), and rare detection of Pseudomonas aeruginosa (≤13.3%) were observed in both systems according to quantitative PCR. Also, Hartmanella vermiformis was more prevalent than Acanthamoeba, both of which are known hosts for opportunistic pathogen amplification, the latter itself containing pathogenic members. Three-minute flushing served to distinguish distribution system water from plumbing in buildings (i.e., premise plumbing water) and resulted in reduced numbers of copies of Legionella, mycobacteria, H. vermiformis, and 16S rRNA genes (P < 0.05) while yielding distinct terminal restriction fragment polymorphism (T-RFLP) profiles of 16S rRNA genes. Within certain subgroups of samples, some positive correlations, including correlations of numbers of mycobacteria and total bacteria (16S rRNA genes), H. vermiformis and total bacteria, mycobacteria and H. vermiformis, and Legionella and H. vermiformis, were noted, emphasizing potential microbial ecological relationships. Overall, the results provide insight into factors that may aid in controlling opportunistic pathogen proliferation in real-world water systems. PMID:22752174
Salehi, Mohaddeseh; Amin-Beidokhti, Mona; Safarpour Lima, Behnam; Gholami, Milad; Javadi, Gholam-Reza; Mirfakhraie, Reza
2018-01-01
Migraine is a painful complex neurovascular disease characterized by recurrent moderate-to-severe headaches. Increased level of homocysteine is related to dilation of cerebral vessels and endothelial injury that could trigger migraine attacks. Functional polymorphisms in the MTHFR gene affect homocysteine metabolism and, therefore, play an important role in the etiology of the disease. We aimed to investigate the possible association between MTHFR gene rs4846049, C677T, and A1298C polymorphisms and the risk of migraine in Iranian population. In this genetic association study, 498 individuals were enrolled, including 223 migraine patients and 275 healthy controls. Genotyping was performed using tetra-primer ARMS-PCR for rs4846049 and PCR-restriction fragment length polymorphism for C677T and A1298C polymorphisms. The association between rs4846049 and C677T polymorphisms and migraine was observed. For the rs4846049 polymorphism, the association was detected under a dominant model ( P =0.007; odds ratio [OR] =0.60; 95% confidence interval [CI], 0.41-0.87), and for the C677T polymorphism, the TT genotype frequency was significantly different in the studied groups ( P =0.009; OR =2.48; 95% CI, 1.25-4.92). No significant differences in the genotype or allele frequencies were found for the A1298C polymorphism between the migraineurs and controls. Present data provide evidence for the association of rs4846049 and C677T polymorphisms in the MTHFR gene and migraine. Further studies are required to validate the significance of the studied genetic variations in diverse ethnic populations.
Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K
2012-05-01
Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.