Sample records for length scale dependence

  1. The Snakelike Chain Character of Unstructured RNA

    PubMed Central

    Jacobson, David R.; McIntosh, Dustin B.; Saleh, Omar A.

    2013-01-01

    In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod “wormlike chain” (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a “snakelike chain,” characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. PMID:24314087

  2. The snakelike chain character of unstructured RNA.

    PubMed

    Jacobson, David R; McIntosh, Dustin B; Saleh, Omar A

    2013-12-03

    In the absence of base-pairing and tertiary structure, ribonucleic acid (RNA) assumes a random-walk conformation, modulated by the electrostatic self-repulsion of the charged, flexible backbone. This behavior is often modeled as a Kratky-Porod "wormlike chain" (WLC) with a Barrat-Joanny scale-dependent persistence length. In this study we report measurements of the end-to-end extension of poly(U) RNA under 0.1 to 10 pN applied force and observe two distinct elastic-response regimes: a low-force, power-law regime characteristic of a chain of swollen blobs on long length scales and a high-force, salt-valence-dependent regime consistent with ion-stabilized crumpling on short length scales. This short-scale structure is additionally supported by force- and salt-dependent quantification of the RNA ion atmosphere composition, which shows that ions are liberated under stretching; the number of ions liberated increases with increasing bulk salt concentration. Both this result and the observation of two elastic-response regimes directly contradict the WLC model, which predicts a single elastic regime across all forces and, when accounting for scale-dependent persistence length, the opposite trend in ion release with salt concentration. We conclude that RNA is better described as a "snakelike chain," characterized by smooth bending on long length scales and ion-stabilized crumpling on short length scales. In monovalent salt, these two regimes are separated by a characteristic length that scales with the Debye screening length, highlighting the determining importance of electrostatics in RNA conformation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Implementation of a flow-dependent background error correlation length scale formulation in the NEMOVAR OSTIA system

    NASA Astrophysics Data System (ADS)

    Fiedler, Emma; Mao, Chongyuan; Good, Simon; Waters, Jennifer; Martin, Matthew

    2017-04-01

    OSTIA is the Met Office's Operational Sea Surface Temperature (SST) and Ice Analysis system, which produces L4 (globally complete, gridded) analyses on a daily basis. Work is currently being undertaken to replace the original OI (Optimal Interpolation) data assimilation scheme with NEMOVAR, a 3D-Var data assimilation method developed for use with the NEMO ocean model. A dual background error correlation length scale formulation is used for SST in OSTIA, as implemented in NEMOVAR. Short and long length scales are combined according to the ratio of the decomposition of the background error variances into short and long spatial correlations. The pre-defined background error variances vary spatially and seasonally, but not on shorter time-scales. If the derived length scales applied to the daily analysis are too long, SST features may be smoothed out. Therefore a flow-dependent component to determining the effective length scale has also been developed. The total horizontal gradient of the background SST field is used to identify regions where the length scale should be shortened. These methods together have led to an improvement in the resolution of SST features compared to the previous OI analysis system, without the introduction of spurious noise. This presentation will show validation results for feature resolution in OSTIA using the OI scheme, the dual length scale NEMOVAR scheme, and the flow-dependent implementation.

  4. Coarsening of stripe patterns: variations with quench depth and scaling.

    PubMed

    Tripathi, Ashwani K; Kumar, Deepak

    2015-02-01

    The coarsening of stripe patterns when the system is evolved from random initial states is studied by varying the quench depth ε, which is a measure of distance from the transition point of the stripe phase. The dynamics of the growth of stripe order, which is characterized by two length scales, depends on the quench depth. The growth exponents of the two length scales vary continuously with ε. The decay exponents for free energy, stripe curvature, and densities of defects like grain boundaries and dislocations also show similar variation. This implies a breakdown of the standard picture of nonequilibrium dynamical scaling. In order to understand the variations with ε we propose an additional scaling with a length scale dependent on ε. The main contribution to this length scale comes from the "pinning potential," which is unique to systems where the order parameter is spatially periodic. The periodic order parameter gives rise to an ε-dependent potential, which can pin defects like grain boundaries, dislocations, etc. This additional scaling provides a compact description of variations of growth exponents with quench depth in terms of just one exponent for each of the length scales. The relaxation of free energy, stripe curvature, and the defect densities have also been related to these length scales. The study is done at zero temperature using Swift-Hohenberg equation in two dimensions.

  5. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  6. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    PubMed

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  7. The length and time scales of water's glass transitions

    NASA Astrophysics Data System (ADS)

    Limmer, David T.

    2014-06-01

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  8. The length and time scales of water's glass transitions.

    PubMed

    Limmer, David T

    2014-06-07

    Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.

  9. Motion of Molecular Probes and Viscosity Scaling in Polyelectrolyte Solutions at Physiological Ionic Strength

    PubMed Central

    Sozanski, Krzysztof; Wisniewska, Agnieszka; Kalwarczyk, Tomasz; Sznajder, Anna; Holyst, Robert

    2016-01-01

    We investigate transport properties of model polyelectrolyte systems at physiological ionic strength (0.154 M). Covering a broad range of flow length scales—from diffusion of molecular probes to macroscopic viscous flow—we establish a single, continuous function describing the scale dependent viscosity of high-salt polyelectrolyte solutions. The data are consistent with the model developed previously for electrically neutral polymers in a good solvent. The presented approach merges the power-law scaling concepts of de Gennes with the idea of exponential length scale dependence of effective viscosity in complex liquids. The result is a simple and applicable description of transport properties of high-salt polyelectrolyte solutions at all length scales, valid for motion of single molecules as well as macroscopic flow of the complex liquid. PMID:27536866

  10. Zonal Articular Cartilage Possesses Complex Mechanical Behavior Spanning Multiple Length Scales: Dependence on Chemical Heterogeneity, Anisotropy, and Microstructure

    NASA Astrophysics Data System (ADS)

    Wahlquist, Joseph A.

    This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.

  11. Current sheet extension and reconnection scaling in collisionless, hyperresistive, Hall MHD

    NASA Astrophysics Data System (ADS)

    Sullivan, B. P.; Bhattacharjee, A.; Huang, Y. M.

    2009-11-01

    We present Sweet-Parker type scaling arguments in the context of collisionless, hyper-resistive, Hall magnetohyrdodynamics (MHD). The predicted steady state scalings are consistent with those found by Chac'on et al. [PRL 99, 235001 (2007)], and Uzdensky, [PoP 16, 040702 (2009)], though our methods differ slightly. As with those studies, no prediction of electron dissipation region length is made. Numerical experiments confirm that both cusp like & extended geometries are realizable. Importantly, the length of the electron dissipation region (taken as a parameter by several recent studies) is found to depend on the level of hyper-resistivity. Although hyper-resistivity can produce modestly extended dissipation regions, the dissipation regions observed here are much shorter than those seen in many kinetic studies. The thickness of the dissipation region scales in a similar way as the length,so that the reconnection rate is not strongly sensitive to the level of hyperresistivity. The length of the electron dissipation region depends on electron inertia as well.The limitations of scaling theories that do not predict the length of the electron dissipation region are emphasized.

  12. Large-scale evidence of dependency length minimization in 37 languages

    PubMed Central

    Futrell, Richard; Mahowald, Kyle; Gibson, Edward

    2015-01-01

    Explaining the variation between human languages and the constraints on that variation is a core goal of linguistics. In the last 20 y, it has been claimed that many striking universals of cross-linguistic variation follow from a hypothetical principle that dependency length—the distance between syntactically related words in a sentence—is minimized. Various models of human sentence production and comprehension predict that long dependencies are difficult or inefficient to process; minimizing dependency length thus enables effective communication without incurring processing difficulty. However, despite widespread application of this idea in theoretical, empirical, and practical work, there is not yet large-scale evidence that dependency length is actually minimized in real utterances across many languages; previous work has focused either on a small number of languages or on limited kinds of data about each language. Here, using parsed corpora of 37 diverse languages, we show that overall dependency lengths for all languages are shorter than conservative random baselines. The results strongly suggest that dependency length minimization is a universal quantitative property of human languages and support explanations of linguistic variation in terms of general properties of human information processing. PMID:26240370

  13. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  14. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.

    PubMed

    Fried, Eliot; Gurtin, Morton E

    2007-05-01

    We present a continuum-mechanical formulation and generalization of the Navier-Stokes alpha theory based on a general framework for fluid-dynamical theories with gradient dependencies. Our flow equation involves two additional problem-dependent length scales alpha and beta. The first of these scales enters the theory through the internal kinetic energy, per unit mass, alpha2|D|2, where D is the symmetric part of the gradient of the filtered velocity. The remaining scale is associated with a dissipative hyperstress which depends linearly on the gradient of the filtered vorticity. When alpha and beta are equal, our flow equation reduces to the Navier-Stokes alpha equation. In contrast to the original derivation of the Navier-Stokes alpha equation, which relies on Lagrangian averaging, our formulation delivers boundary conditions. For a confined flow, our boundary conditions involve an additional length scale l characteristic of the eddies found near walls. Based on a comparison with direct numerical simulations for fully developed turbulent flow in a rectangular channel of height 2h, we find that alphabeta approximately Re(0.470) and lh approximately Re(-0.772), where Re is the Reynolds number. The first result, which arises as a consequence of identifying the internal kinetic energy with the turbulent kinetic energy, indicates that the choice alpha=beta required to reduce our flow equation to the Navier-Stokes alpha equation is likely to be problematic. The second result evinces the classical scaling relation eta/L approximately Re(-3/4) for the ratio of the Kolmogorov microscale eta to the integral length scale L . The numerical data also suggests that l < or = beta . We are therefore led to conjecture a tentative hierarchy, l < or = beta < alpha , involving the three length scales entering our theory.

  15. Dependence of displacement-length scaling relations for fractures and deformation bands on the volumetric changes across them

    USGS Publications Warehouse

    Schultz, R.A.; Soliva, R.; Fossen, H.; Okubo, C.H.; Reeves, D.M.

    2008-01-01

    Displacement-length data from faults, joints, veins, igneous dikes, shear deformation bands, and compaction bands define two groups. The first group, having a power-law scaling relation with a slope of n = 1 and therefore a linear dependence of maximum displacement and discontinuity length (Dmax = ??L), comprises faults and shear (non-compactional or non-dilational) deformation bands. These shearing-mode structures, having shearing strains that predominate over volumetric strains across them, grow under conditions of constant driving stress, with the magnitude of near-tip stress on the same order as the rock's yield strength in shear. The second group, having a power-law scaling relation with a slope of n = 0.5 and therefore a dependence of maximum displacement on the square root of discontinuity length (Dmax = ??L0.5), comprises joints, veins, igneous dikes, cataclastic deformation bands, and compaction bands. These opening- and closing-mode structures grow under conditions of constant fracture toughness, implying significant amplification of near-tip stress within a zone of small-scale yielding at the discontinuity tip. Volumetric changes accommodated by grain fragmentation, and thus control of propagation by the rock's fracture toughness, are associated with scaling of predominantly dilational and compactional structures with an exponent of n = 0.5. ?? 2008 Elsevier Ltd.

  16. Non-Hookean statistical mechanics of clamped graphene ribbons

    NASA Astrophysics Data System (ADS)

    Bowick, Mark J.; Košmrlj, Andrej; Nelson, David R.; Sknepnek, Rastko

    2017-03-01

    Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hooke's Law: Large distance elastic parameters are in fact not constant but instead depend on the macroscopic dimensions. Inspired by recent experiments on free-standing graphene cantilevers, we combine the statistical mechanics of thin elastic plates and large-scale numerical simulations to investigate the thermal renormalization of the bending rigidity of graphene ribbons clamped at one end. For ribbons of dimensions W ×L (with L ≥W ), the macroscopic bending rigidity κR determined from cantilever deformations is independent of the width when W <ℓth , where ℓth is a thermal length scale, as expected. When W >ℓth , however, this thermally renormalized bending rigidity begins to systematically increase, in agreement with the scaling theory, although in our simulations we were not quite able to reach the system sizes necessary to determine the fully developed power law dependence on W . When the ribbon length L >ℓp , where ℓp is the W -dependent thermally renormalized ribbon persistence length, we observe a scaling collapse and the beginnings of large scale random walk behavior.

  17. Ballistic heat conduction and mass disorder in one dimension.

    PubMed

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  18. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    NASA Astrophysics Data System (ADS)

    Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.

    2014-05-01

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.

  19. Solar potential scaling and the urban road network topology

    NASA Astrophysics Data System (ADS)

    Najem, Sara

    2017-01-01

    We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.

  20. Underscreening in concentrated electrolytes.

    PubMed

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  1. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  2. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    NASA Astrophysics Data System (ADS)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  3. Stability diagram for dense suspensions of model colloidal Al2O3 particles in shear flow.

    PubMed

    Hecht, Martin; Harting, Jens; Herrmann, Hans J

    2007-05-01

    In Al2O3 suspensions, depending on the experimental conditions, very different microstructures can be found, comprising fluidlike suspensions, a repulsive structure, and a clustered microstructure. For technical processing in ceramics, the knowledge of the microstructure is of importance, since it essentially determines the stability of a workpiece to be produced. To enlighten this topic, we investigate these suspensions under shear by means of simulations. We observe cluster formation on two different length scales: the distance of nearest neighbors and on the length scale of the system size. We find that the clustering behavior does not depend on the length scale of observation. If interparticle interactions are not attractive the particles form layers in the shear flow. The results are summarized in a stability diagram.

  4. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations

    NASA Astrophysics Data System (ADS)

    Krause, Marita; Irwin, Judith; Wiegert, Theresa; Miskolczi, Arpad; Damas-Segovia, Ancor; Beck, Rainer; Li, Jiang-Tao; Heald, George; Müller, Peter; Stein, Yelena; Rand, Richard J.; Heesen, Volker; Walterbos, Rene A. M.; Dettmar, Ralf-Jürgen; Vargas, Carlos J.; English, Jayanne; Murphy, Eric J.

    2018-03-01

    Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution. Methods: We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands. Results: The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density. Conclusions: The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.

  5. The dynamics of oceanic fronts. I - The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1980-01-01

    The establishment and maintenance of the mean hydrographic properties of large-scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near-surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density; full time dependent diffusion and Navier-Stokes equations are then used with constant eddy diffusion and viscosity coefficients, together with a constant Coriolis parameter. Scaling analysis reveals three independent scales of the problem including the radius of deformation of the inertial length, buoyancy length, and diffusive length scales. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on the Ekman number alone for problems of oceanic interest. It is concluded that the mean Gulf Stream dynamics can be interpreted in terms of a solution of the Navier-Stokes and diffusion equations, with the cross-stream circulation responsible for the maintenance of the front; this mechanism is suggested for the maintenance of the Gulf Stream dynamics.

  6. Classical continuum theory limits to determine the size-dependency of mechanical properties of GaN NWs

    NASA Astrophysics Data System (ADS)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Busani, Tito

    2017-12-01

    We used the stable strain gradient theory including acceleration gradients to investigate the classical and nonclassical mechanical properties of gallium nitride (GaN) nanowires (NWs). We predicted the static length scales, Young's modulus, and shear modulus of the GaN NWs from the experimental data. Combining these results with atomic simulations, we also found the dynamic length scale of the GaN NWs. Young's modulus, shear modulus, static, and dynamic length scales were found to be 318 GPa, 131 GPa, 8 nm, and 8.9 nm, respectively, usable for demonstrating the static and dynamic behaviors of GaN NWs having diameters from a few nm to bulk dimensions. Furthermore, the experimental data were analyzed with classical continuum theory (CCT) and compared with the available literature to illustrate the size-dependency of the mechanical properties of GaN NWs. This practice resolves the previous published discrepancies that happened due to the limitations of CCT used for determining the mechanical properties of GaN NWs and their size-dependency.

  7. The dynamics of oceanic fronts. Part 1: The Gulf Stream

    NASA Technical Reports Server (NTRS)

    Kao, T. W.

    1970-01-01

    The establishment and maintenance of the mean hydrographic properties of large scale density fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem starting with a near surface discharge of buoyant water with a prescribed density deficit into an ambient stationary fluid of uniform density. The full time dependent diffusion and Navier-Stokes equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three independent length scales of the problem, namely a radius of deformation or inertial length scale, Lo, a buoyance length scale, ho, and a diffusive length scale, hv. Two basic dimensionless parameters are then formed from these length scales, the thermal (or more precisely, the densimetric) Rossby number, Ro = Lo/ho and the Ekman number, E = hv/ho. The governing equations are then suitably scaled and the resulting normalized equations are shown to depend on E alone for problems of oceanic interest. Under this scaling, the solutions are similar for all Ro. It is also shown that 1/Ro is a measure of the frontal slope. The governing equations are solved numerically and the scaling analysis is confirmed. The solution indicates that an equilibrium state is established. The front can then be rendered stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasisteady state, and for small values of E, the main thermocline and the inclined isopycnics forming the front have evolved, together with the along-front jet. Conservation of potential vorticity is also obtained in the light water pool. The surface jet exhibits anticyclonic shear in the light water pool and cyclonic shear across the front.

  8. Length-scale dependent mechanical properties of Al-Cu eutectic alloy: Molecular dynamics based model and its experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.

    2014-05-28

    This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less

  9. Experiments on integral length scale control in atmospheric boundary layer wind tunnel

    NASA Astrophysics Data System (ADS)

    Varshney, Kapil; Poddar, Kamal

    2011-11-01

    Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.

  10. Scale and time dependence of serial correlations in word-length time series of written texts

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  11. Length-Scale-Dependent Phase Transformation of LiFePO4 : An In situ and Operando Study Using Micro-Raman Spectroscopy and XRD.

    PubMed

    Siddique, N A; Salehi, Amir; Wei, Zi; Liu, Dong; Sajjad, Syed D; Liu, Fuqiang

    2015-08-03

    The charge and discharge of lithium ion batteries are often accompanied by electrochemically driven phase-transformation processes. In this work, two in situ and operando methods, that is, micro-Raman spectroscopy and X-ray diffraction (XRD), have been combined to study the phase-transformation process in LiFePO4 at two distinct length scales, namely, particle-level scale (∼1 μm) and macroscopic scale (∼several cm). In situ Raman studies revealed a discrete mode of phase transformation at the particle level. Besides, the preferred electrochemical transport network, particularly the carbon content, was found to govern the sequence of phase transformation among particles. In contrast, at the macroscopic level, studies conducted at four different discharge rates showed a continuous but delayed phase transformation. These findings uncovered the intricate phase transformation in LiFePO4 and potentially offer valuable insights into optimizing the length-scale-dependent properties of battery materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.

  13. Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.

    PubMed

    Berkovits, Richard

    2012-04-27

    The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.

  14. Evolution over time of the Milky Way's disc shape

    NASA Astrophysics Data System (ADS)

    Amôres, E. B.; Robin, A. C.; Reylé, C.

    2017-06-01

    Context. Galactic structure studies can be used as a path to constrain the scenario of formation and evolution of our Galaxy. The dependence with the age of stellar population parameters would be linked with the history of star formation and dynamical evolution. Aims: We aim to investigate the structures of the outer Galaxy, such as the scale length, disc truncation, warp and flare of the thin disc and study their dependence with age by using 2MASS data and a population synthesis model (the so-called Besançon Galaxy Model). Methods: We have used a genetic algorithm to adjust the parameters on the observed colour-magnitude diagrams at longitudes 80° ≤ ℓ ≤ 280° for | b | ≤ 5.5°. We explored parameter degeneracies and uncertainties. Results: We identify a clear dependence of the thin disc scale length, warp and flare shapes with age. The scale length is found to vary between 3.8 kpc for the youngest to about 2 kpc for the oldest. The warp shows a complex structure, clearly asymmetrical with a node angle changing with age from approximately 165° for old stars to 195° for young stars. The outer disc is also flaring with a scale height that varies by a factor of two between the solar neighbourhood and a Galactocentric distance of 12 kpc. Conclusions: We conclude that the thin disc scale length is in good agreement with the inside-out formation scenario and that the outer disc is not in dynamical equilibrium. The warp deformation with time may provide some clues to its origin.

  15. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  16. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    PubMed

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.

  17. Mid-tropospheric Spectral Length-scale Analysis of Many Constituents from Aircraft, Satellite and Model Results During the 2013 SENEX Field Study.

    NASA Astrophysics Data System (ADS)

    McKeen, S. A.; Angevine, W. M.; Ahmadov, R.; Frost, G. J.; Kim, S. W.; Cui, Y.; McDonald, B.; Trainer, M.; Holloway, J. S.; Ryerson, T. B.; Peischl, J.; Gambacorta, A.; Barnet, C. D.; Smith, N.; Pierce, R. B.

    2016-12-01

    This study presents preliminary comparisons of satellite, aircraft, and model variance spectra for meteorological, thermodynamic and gas-phase species collected during the 2013 Southeastern Nexus Air Quality Experiment (SENEX). Fourier analysis of 8 constituents collected at 1 Hz by the NOAA W-P3 aircraft in the 25 to 200 km length-scale range exhibit properties consistent with previous scale dependence studies: when spectra are averaged over several 500 mb flight legs, very linear dependence is found on log-log plots of spectral density versus inverse length-scale. Derived slopes for wind speed, temperature, H2O, CO, CO2, CH4, NOy and O3 all fall within ±30% and close to the slope of -5/3 predicted from dimensional scaling theory of isotropic turbulence. Qualitative differences are seen when a similar analysis, without quality control, is applied to a preliminary set of NUCAPS satellite retrievals over the continental U.S. during SENEX. While 500mb water vapor and column integrated water show slopes close to the -5/3 value in the 200 to 1000 km length-scale range, other quantities show significantly shallower slopes, suggesting the need for rigorous quality control. Results from WRF-Chem regional air quality model simulations at 500mb show the model is unable to account for variance on length-scales less than 6ΔX, where ΔX is the model horizontal resolution (12km). Comparisons with satellite data in the 200 to 1000km range show slopes consistent with the -5/3 power law for species such as CO, CH4 and CO2 that do not undergo reinitialization, suggesting potential for future application.

  18. The electrostatic persistence length of polymers beyond the OSF limit.

    PubMed

    Everaers, R; Milchev, A; Yamakov, V

    2002-05-01

    We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.

  19. Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities

    NASA Astrophysics Data System (ADS)

    Doster, F.; Celia, M. A.; Nordbotten, J. M.

    2012-12-01

    Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.

  20. Role of medium heterogeneity and viscosity contrast in miscible flow regimes and mixing zone growth: A computational pore-scale approach

    NASA Astrophysics Data System (ADS)

    Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos

    2018-05-01

    Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.

  1. Transport of light, trace impurities in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.

    2012-10-01

    Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.

  2. Novel mechanisms for self-assembled pattern formation in nanoscopic metal films

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, R.; Trice, J.; Favazza, C.; Thomas, D.; Sureshkumar, R.

    2007-03-01

    Classical hydrodynamic theory of dewetting of spinodally unstable thin films (Vrij, Disc. farad. Soc. 1966) predicts a monotonic increase in patterning length scales with increasing film thickness. We verified this effect for nanoscopic Co metal films following melting by ns laser pulses for thickness regime h<=hc˜8,m (Favazza et al. Nanotechnology, 2006). However, a dramatic change is observed beyond this thickness hc, with length scales decreasing with increasing h. This novel behavior arises from strong thickness dependence of heating by ultrafast laser light resulting in thermocapillary effects, whose magnitude and sign are thickness dependent. We modified the classical theory, according to which the instability occurs when the stabilizing capillary force is overcome by destabilizing attractive long-range interactions, to include thermocapillary effects. The modified theory accurately predicts the experimentally observed trend. This result suggests that a variety of new length scales can be accessed by robust self-assembly via dewetting of metal films under ultrafast light.

  3. Radial distribution of dust, stars, gas, and star-formation rate in DustPedia⋆ face-on galaxies

    NASA Astrophysics Data System (ADS)

    Casasola, V.; Cassarà, L. P.; Bianchi, S.; Verstocken, S.; Xilouris, E.; Magrini, L.; Smith, M. W. L.; De Looze, I.; Galametz, M.; Madden, S. C.; Baes, M.; Clark, C.; Davies, J.; De Vis, P.; Evans, R.; Fritz, J.; Galliano, F.; Jones, A. P.; Mosenkov, A. V.; Viaene, S.; Ysard, N.

    2017-09-01

    Aims: The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. Methods: This study is performed by exploiting the multi-wavelength DustPedia database, from ultraviolet (UV) to sub-millimeter bands, in addition to molecular (12CO) and atomic (Hi) gas maps and metallicity abundance information available in the literature. We fitted the surface-brightness profiles of the tracers of dust and stars, the mass surface-density profiles of dust, stars, molecular gas, and total gas, and the SFR surface-density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (αCO) per galaxy by using dust- and gas-mass profiles. Results: Although each galaxy has its own peculiar behavior, we identified a common trend of the exponential scale-lengths versus wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec2 radius decrease from UV to 70 μm, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust-mass surface-density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 μm surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 μm scale-length tend to increase from earlier to later types, the scale-length at 70 μm tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 μm that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Our αCO determinations are in the range (0.3-9) M⊙ pc-2 (K km s-1)-1, almost invariant by using a fixed dust-to-gas ratio mass (DGR) or a DGR depending on metallicity gradient. DustPedia is a project funded by the EU under the heading "Exploitation of space science and exploration data". It has the primary goal of exploiting existing data in the Herschel Space Observatory and Planck Telescope databases.

  4. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  5. Persistence length of collagen molecules based on nonlocal viscoelastic model.

    PubMed

    Ghavanloo, Esmaeal

    2017-12-01

    Persistence length is one of the most interesting properties of a molecular chain, which is used to describe the stiffness of a molecule. The experimentally measured values of the persistence length of the collagen molecule are widely scattered from 14 to 180 nm. Therefore, an alternative approach is highly desirable to predict the persistence length of a molecule and also to explain the experimental results. In this paper, a nonlocal viscoelastic model is developed to obtain the persistence length of the collagen molecules in solvent. A new explicit formula is proposed for the persistence length of the molecule with the consideration of the small-scale effect, viscoelastic properties of the molecule, loading frequency, and viscosity of the solvent. The presented model indicates that there exists a range of molecule lengths in which the persistence length strongly depends on the frequency and spatial mode of applied loads, small-scale effect, and viscoelastic properties of the collagen.

  6. Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.

    2013-12-01

    Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].

  7. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  9. Stimulus-dependent modulation of spike burst length in cat striate cortical cells.

    PubMed

    DeBusk, B C; DeBruyn, E J; Snider, R K; Kabara, J F; Bonds, A B

    1997-07-01

    Burst activity, defined by groups of two or more spikes with intervals of < or = 8 ms, was analyzed in responses to drifting sinewave gratings elicited from striate cortical neurons in anesthetized cats. Bursting varied broadly across a population of 507 simple and complex cells. Half of this population had > or = 42% of their spikes contained in bursts. The fraction of spikes in bursts did not vary as a function of average firing rate and was stationary over time. Peaks in the interspike interval histograms were found at both 3-5 ms and 10-30 ms. In many cells the locations of these peaks were independent of firing rate, indicating a quantized control of firing behavior at two different time scales. The activity at the shorter time scale most likely results from intrinsic properties of the cell membrane, and that at the longer scale from recurrent network excitation. Burst frequency (bursts per s) and burst length (spikes per burst) both depended on firing rate. Burst frequency was essentially linear with firing rate, whereas burst length was a nonlinear function of firing rate and was also governed by stimulus orientation. At a given firing rate, burst length was greater for optimal orientations than for nonoptimal orientations. No organized orientation dependence was seen in bursts from lateral geniculate nucleus cells. Activation of cortical contrast gain control at low response amplitudes resulted in no burst length modulation, but burst shortening at optimal orientations was found in responses characterized by supersaturation. At a given firing rate, cortical burst length was shortened by microinjection of gamma-aminobutyric acid (GABA), and bursts became longer in the presence of N-methyl-bicuculline, a GABA(A) receptor blocker. These results are consistent with a model in which responses are reduced at nonoptimal orientations, at least in part, by burst shortening that is mediated by GABA. A similar mechanism contributes to response supersaturation at high contrasts via recruitment of inhibitory responses that are tuned to adjacent orientations. Burst length modulation can serve as a form of coding by supporting dynamic, stimulus-dependent reorganization of the effectiveness of individual network connections.

  10. Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.

  11. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE PAGES

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...

    2018-01-24

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  12. Shear localization and size-dependent strength of YCd 6 quasicrystal approximant at the micrometer length scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gyuho; Kong, Tai; Dusoe, Keith J.

    Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less

  13. Emergence of linear elasticity from the atomistic description of matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakir, Abdullah, E-mail: acakir@ntu.edu.sg; Pica Ciamarra, Massimo; Dipartimento di Scienze Fisiche, CNR–SPIN, Università di Napoli Federico II, I-80126 Napoli

    2016-08-07

    We investigate the emergence of the continuum elastic limit from the atomistic description of matter at zero temperature considering how locally defined elastic quantities depend on the coarse graining length scale. Results obtained numerically investigating different model systems are rationalized in a unifying picture according to which the continuum elastic limit emerges through a process determined by two system properties, the degree of disorder, and a length scale associated to the transverse low-frequency vibrational modes. The degree of disorder controls the emergence of long-range local shear stress and shear strain correlations, while the length scale influences the amplitude of themore » fluctuations of the local elastic constants close to the jamming transition.« less

  14. Persistence length of wormlike micelles composed of ionic surfactants: self-consistent-field predictions.

    PubMed

    Lauw, Y; Leermakers, F A M; Stuart, M A Cohen

    2007-07-19

    The persistence length of a wormlike micelle composed of ionic surfactants C(n)E(m)X(k) in an aqueous solvent is predicted by means of the self-consistent-field theory where C(n)E(m) is the conventional nonionic surfactant and X(k) is an additional sequence of k weakly charged (pH-dependent) segments. By considering a toroidal micelle at infinitesimal curvature, we evaluate the bending modulus of the wormlike micelle that corresponds to the total persistence length, consisting of an elastic/intrinsic and an electrostatic contribution. The total persistence length increases with pH and decreases with increasing background salt concentration. We estimate that the electrostatic persistence length l(p,e)(0) scales with respect to the Debye length kappa(-1) as l(p,e)(0) approximately kappa(-p) where p approximately 1.98 for wormlike micelles consisting of C(20)E(10)X(1) surfactants and p approximately 1.54 for wormlike micelles consisting of C(20)E(10)X(2) surfactants. The total persistence length l(p,t)(0) is a weak function of the head group length m but scales with the tail length n as l(p,t)(0) approximately n(x) where x approximately 2-2.6, depending on the corresponding head group length. Interestingly, l(p,t)(0) varies nonmonotonically with the number of charged groups k due to the opposing trends in the electrostatic and elastic bending rigidities upon variation of k.

  15. Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth

    2010-03-01

    The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.

  16. 2-D Density and Directional Analysis of Fault Systems in the Zagros Region (Iran) on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyed Naser; Baizidi, Chavare

    2018-04-01

    In this paper, 2-D spatial variation of the frequency and length density and frequency-length relation of large-scale faults in the Zagros region (Iran), as a typical fold-and-thrust belt, were examined. Moreover, the directional analysis of these faults as well as the scale dependence of the orientations was studied. For this purpose, a number of about 8000 faults with L ≥ 1.0 km were extracted from the geological maps covering the region, and then, the data sets were analyzed. The overall pattern of the frequency/length distribution of the total faults of the region acceptably fits with a power-law relation with exponent 1.40, with an obvious change in the gradient in L = 12.0 km. In addition, maps showing the spatial variation of fault densities over the region indicate that the maximum values of the frequency and length density of the faults are attributed to the northeastern part of the region and parallel to the suture zone, respectively, and the fault density increases towards the central parts of the belt. Moreover, the directional analysis of the fault trends gives a dominant preferred orientation trend of 300°-330° and the assessment of the scale dependence of the fault directions demonstrates that larger faults show higher degrees of preferred orientations. As a result, it is concluded that the evolutionary path of the faulting process in this region can be explained by increasing the number of faults rather than the growth in the fault lengths and also it seems that the regional-scale faults in this region are generated by a nearly steady-state tectonic stress regime.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  18. The influence of idealized surface heterogeneity on virtual turbulent flux measurements

    NASA Astrophysics Data System (ADS)

    De Roo, Frederik; Mauder, Matthias

    2018-04-01

    The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy partitioning on the tower location. For the hectometer scale, we do not notice such a clear dependence. Finally, we seek correlators for the energy balance ratio in the simulations. The correlation with the friction velocity is less pronounced than previously found, but this is likely due to our concentration on effectively strongly to freely convective conditions.

  19. The Thick Level-Set model for dynamic fragmentation

    DOE PAGES

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    2017-01-04

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  20. Cooperative and noncooperative magnetization reversal in alnicos

    DOE PAGES

    Skomski, Ralph; Ke, Liqin; Kramer, Matthew J.; ...

    2017-02-08

    Here, we investigate how magnetostatic interactions affect the coercivity of alnico-type magnets. Starting from exact micromagnetic relations, we also analyze two limits, namely cooperative reversal processes operative on short lengths scales and noncooperative reversal processes on long length scales. Furthermore, in alnicos, intrawire interactions are predominantly cooperative, whereas interwire effects are typically noncooperative. However, the transition between the regimes depends on feature size and hysteresis-loop shape, and interwire cooperative effects are largest for nearly rectangular loops. Our analysis revises the common shape-anisotropy interpretation of alnicos.

  1. Probing solvation decay length in order to characterize hydrophobicity-induced bead-bead attractive interactions in polymer chains.

    PubMed

    Das, Siddhartha; Chakraborty, Suman

    2011-08-01

    In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.

  2. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length.

    PubMed

    Algethami, Norah; Sadeghi, Hatef; Sangtarash, Sara; Lambert, Colin J

    2018-06-13

    High electrical conductance molecular nanowires are highly desirable components for future molecular-scale circuitry, but typically molecular wires act as tunnel barriers and their conductance decays exponentially with length. Here, we demonstrate that the conductance of fused-oligo-porphyrin nanowires can be either length independent or increase with length at room temperature. We show that this negative attenuation is an intrinsic property of fused-oligo-porphyrin nanowires, but its manifestation depends on the electrode material or anchor groups. This highly desirable, nonclassical behavior signals the quantum nature of transport through such wires. It arises because with increasing length the tendency for electrical conductance to decay is compensated by a decrease in their highest occupied molecular orbital-lowest unoccupied molecular orbital gap. Our study reveals the potential of these molecular wires as interconnects in future molecular-scale circuitry.

  3. Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model.

    PubMed

    Engel, Benjamin D; Ludington, William B; Marshall, Wallace F

    2009-10-05

    The assembly and maintenance of eukaryotic flagella are regulated by intraflagellar transport (IFT), the bidirectional traffic of IFT particles (recently renamed IFT trains) within the flagellum. We previously proposed the balance-point length control model, which predicted that the frequency of train transport should decrease as a function of flagellar length, thus modulating the length-dependent flagellar assembly rate. However, this model was challenged by the differential interference contrast microscopy observation that IFT frequency is length independent. Using total internal reflection fluorescence microscopy to quantify protein traffic during the regeneration of Chlamydomonas reinhardtii flagella, we determined that anterograde IFT trains in short flagella are composed of more kinesin-associated protein and IFT27 proteins than trains in long flagella. This length-dependent remodeling of train size is consistent with the kinetics of flagellar regeneration and supports a revised balance-point model of flagellar length control in which the size of anterograde IFT trains tunes the rate of flagellar assembly.

  4. Validating a Mentoring Relationship Quality Scale: Does Match Strength Predict Match Length?

    ERIC Educational Resources Information Center

    Rhodes, Jean E.; Schwartz, Sarah E. O.; Willis, Margaret M.; Wu, Max B.

    2017-01-01

    Youth mentoring relationships have significant potential for promoting positive youth development. Nonetheless, the benefits derived from such relationships depend considerably on the length and quality of the bonds that are created between mentors and youth. Although some attention has been paid to youth's experience of relationship quality, few…

  5. Rouse mode analysis of chain relaxation in homopolymer melts

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...

    2014-09-15

    We use molecular dynamics simulations of the Kremer–Grest (KG) bead–spring model of polymer chains of length between 10 and 500, and a closely related analogue that allows for chain crossing, to clearly delineate the effects of entanglements on the length-scale-dependent chain relaxation in polymer melts. We analyze the resulting trajectories using the Rouse modes of the chains and find that entanglements strongly affect these modes. The relaxation rates of the chains show two limiting effective monomeric frictions, with the local modes experiencing much lower effective friction than the longer modes. The monomeric relaxation rates of longer modes vary approximately inverselymore » with chain length due to kinetic confinement effects. The time-dependent relaxation of Rouse modes has a stretched exponential character with a minimum of stretching exponent in the vicinity of the entanglement chain length. None of these trends are found in models that allow for chain crossing. As a result, these facts, in combination, argue for the confined motion of chains for time scales between the entanglement time and their ultimate free diffusion.« less

  6. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.

    PubMed

    Han, Guebum; Hess, Cole; Eriten, Melih; Henak, Corinne R

    2018-04-26

    This paper studies uncoupled poroelastic (flow-dependent) and intrinsic viscoelastic (flow-independent) energy dissipation mechanisms via their dependence on characteristic lengths to understand the root of cartilage's broadband dissipation behavior. Phase shift and dynamic modulus were measured from dynamic microindentation tests conducted on hydrated cartilage at different contact radii, as well as on dehydrated cartilage. Cartilage weight and thickness were recorded during dehydration. Phase shifts revealed poroelastic- and viscoelastic-dominant dissipation regimes in hydrated cartilage. Specifically, phase shift at a relatively small radius was governed by poroviscoelasticity, while phase shift at a relatively large radius was dominantly governed by intrinsic viscoelasticity. The uncoupled dissipation mechanisms demonstrated that intrinsic viscoelastic dissipation provided sustained broadband dissipation for all length scales, and additional poroelastic dissipation increased total dissipation at small length scales. Dehydration decreased intrinsic viscoelastic dissipation of cartilage. The findings demonstrated a possibility to measure poroelastic and intrinsic viscoelastic properties of cartilage at similar microscale lengths. Also they encouraged development of broadband cartilage like-dampers and provided important design parameters to maximize their performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    NASA Astrophysics Data System (ADS)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  8. Wavepacket dynamics in one-dimensional system with long-range correlated disorder

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroaki S.

    2018-03-01

    We numerically investigate dynamical property in the one-dimensional tight-binding model with long-range correlated disorder having power spectrum 1 /fα (α: spectrum exponent) generated by Fourier filtering method. For relatively small α <αc (=2) time-dependence of mean square displacement (MSD) of the initially localized wavepacket shows ballistic spread and localizes as time elapses. It is shown that α-dependence of the dynamical localization length determined by the MSD exhibits a simple scaling law in the localization regime for the relatively weak disorder strength W. Furthermore, scaled MSD by the dynamical localization length almost obeys an universal function from the ballistic to the localization regime in the various combinations of the parameters α and W.

  9. The effect of macromolecular crowding on mobility of biomolecules, association kinetics and gene expression in living cells

    NASA Astrophysics Data System (ADS)

    Tabaka, Marcin; Kalwarczyk, Tomasz; Szymanski, Jedrzej; Hou, Sen; Hołyst, Robert

    2014-09-01

    We discuss a quantitative influence of macromolecular crowding on biological processes: motion, bimolecular reactions, and gene expression in prokaryotic and eukaryotic cells. We present scaling laws relating diffusion coefficient of an object moving in a cytoplasm of cells to a size of this object and degree of crowding. Such description leads to the notion of the length scale dependent viscosity characteristic for all living cells. We present an application of the length-scale dependent viscosity model to the description of motion in the cytoplasm of both eukaryotic and prokaryotic living cells. We compare the model with all recent data on diffusion of nanoscopic objects in HeLa, and E. coli cells. Additionally a description of the mobility of molecules in cell nucleus is presented. Finally we discuss the influence of crowding on the bimolecular association rates and gene expression in living cells.

  10. Nanoscopic length scale dependence of hydrogen bonded molecular associates’ dynamics in methanol

    PubMed Central

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2017-01-01

    In a recent paper [C. E. Bertrand et al., J. Chem. Phys. 145, 014502 (2016)], we have shown that the collective dynamics of methanol shows a fast relaxation process related to the standard density-fluctuation heat mode and a slow non-Fickian mode originating from the hydrogen bonded molecular associates. Here we report on the length scale dependence of this slow relaxation process. Using quasielastic neutron scattering and molecular dynamics simulations, we show that the dynamics of the slow process is affected by the structuring of the associates, which is accessible through polarized neutron diffraction experiments. Using a series of partially deuterated samples, the dynamics of the associates is investigated and is found to have a similar time scale to the lifetime of hydrogen bonding in the system. Both the structural relaxation and the dynamics of the associates are thermally activated by the breaking of hydrogen bonding. PMID:28527447

  11. Micro-scale and meso-scale architectural cues cooperate and compete to direct aligned tissue formation

    PubMed Central

    Gilchrist, Christopher L.; Ruch, David S.; Little, Dianne; Guilak, Farshid

    2014-01-01

    Tissue and biomaterial microenvironments provide architectural cues that direct important cell behaviors including cell shape, alignment, migration, and resulting tissue formation. These architectural features may be presented to cells across multiple length scales, from nanometers to millimeters in size. In this study, we examined how architectural cues at two distinctly different length scales, “micro-scale” cues on the order of ~1–2 μm, and “meso-scale” cues several orders of magnitude larger (>100 μm), interact to direct aligned neo-tissue formation. Utilizing a micro-photopatterning (μPP) model system to precisely arrange cell-adhesive patterns, we examined the effects of substrate architecture at these length scales on human mesenchymal stem cell (hMSC) organization, gene expression, and fibrillar collagen deposition. Both micro- and meso-scale architectures directed cell alignment and resulting tissue organization, and when combined, meso cues could enhance or compete against micro-scale cues. As meso boundary aspect ratios were increased, meso-scale cues overrode micro-scale cues and controlled tissue alignment, with a characteristic critical width (~500 μm) similar to boundary dimensions that exist in vivo in highly aligned tissues. Meso-scale cues acted via both lateral confinement (in a cell-density-dependent manner) and by permitting end-to-end cell arrangements that yielded greater fibrillar collagen deposition. Despite large differences in fibrillar collagen content and organization between μPP architectural conditions, these changes did not correspond with changes in gene expression of key matrix or tendon-related genes. These findings highlight the complex interplay between geometric cues at multiple length scales and may have implications for tissue engineering strategies, where scaffold designs that incorporate cues at multiple length scales could improve neo-tissue organization and resulting functional outcomes. PMID:25263687

  12. Chemical Reactions in Turbulent Mixing Flows.

    DTIC Science & Technology

    1986-06-15

    length from Reynolds and Schmidt numbers at high Reynolds number, 2. the linear dependence of flame length on the stoichiometric mixture ratio, and, 3...processes are unsteady and the observed large scale flame length fluctuations are the best evidence of the individual cascade. A more detailed examination...Damk~hler number. When the same ideas are used in a model of fuel jets burning in air, it explains (Broadwell 1982): 1. the independence of flame

  13. Micron-scale coherence in interphase chromatin dynamics

    PubMed Central

    Zidovska, Alexandra; Weitz, David A.; Mitchison, Timothy J.

    2013-01-01

    Chromatin structure and dynamics control all aspects of DNA biology yet are poorly understood, especially at large length scales. We developed an approach, displacement correlation spectroscopy based on time-resolved image correlation analysis, to map chromatin dynamics simultaneously across the whole nucleus in cultured human cells. This method revealed that chromatin movement was coherent across large regions (4–5 µm) for several seconds. Regions of coherent motion extended beyond the boundaries of single-chromosome territories, suggesting elastic coupling of motion over length scales much larger than those of genes. These large-scale, coupled motions were ATP dependent and unidirectional for several seconds, perhaps accounting for ATP-dependent directed movement of single genes. Perturbation of major nuclear ATPases such as DNA polymerase, RNA polymerase II, and topoisomerase II eliminated micron-scale coherence, while causing rapid, local movement to increase; i.e., local motions accelerated but became uncoupled from their neighbors. We observe similar trends in chromatin dynamics upon inducing a direct DNA damage; thus we hypothesize that this may be due to DNA damage responses that physically relax chromatin and block long-distance communication of forces. PMID:24019504

  14. Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; van Anders, Greg; Glotzer, Sharon

    Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.

  15. Diffusion and scaling during early embryonic pattern formation.

    PubMed

    Gregor, Thomas; Bialek, William; de Ruyter van Steveninck, Rob R; Tank, David W; Wieschaus, Eric F

    2005-12-20

    Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime.

  16. Spatial confinement of active microtubule networks induces large-scale rotational cytoplasmic flow

    PubMed Central

    Suzuki, Kazuya; Miyazaki, Makito; Takagi, Jun; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    Collective behaviors of motile units through hydrodynamic interactions induce directed fluid flow on a larger length scale than individual units. In cells, active cytoskeletal systems composed of polar filaments and molecular motors drive fluid flow, a process known as cytoplasmic streaming. The motor-driven elongation of microtubule bundles generates turbulent-like flow in purified systems; however, it remains unclear whether and how microtubule bundles induce large-scale directed flow like the cytoplasmic streaming observed in cells. Here, we adopted Xenopus egg extracts as a model system of the cytoplasm and found that microtubule bundle elongation induces directed flow for which the length scale and timescale depend on the existence of geometrical constraints. At the lower activity of dynein, kinesins bundle and slide microtubules, organizing extensile microtubule bundles. In bulk extracts, the extensile bundles connected with each other and formed a random network, and vortex flows with a length scale comparable to the bundle length continually emerged and persisted for 1 min at multiple places. When the extracts were encapsulated in droplets, the extensile bundles pushed the droplet boundary. This pushing force initiated symmetry breaking of the randomly oriented bundle network, leading to bundles aligning into a rotating vortex structure. This vortex induced rotational cytoplasmic flows on the length scale and timescale that were 10- to 100-fold longer than the vortex flows emerging in bulk extracts. Our results suggest that microtubule systems use not only hydrodynamic interactions but also mechanical interactions to induce large-scale temporally stable cytoplasmic flow. PMID:28265076

  17. Electron Profile Stiffness and Critical Gradient Length Studies in the Alcator C-Mod Tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Hatch, David R.; Liao, Kenneth T.; Zhao, Bingzhe; Phillips, Perry E.; Rowan, William L.; Cao, Norman; Ernst, Darin R.; Rice, John E.

    2017-10-01

    Electron temperature profile stiffness was investigated at Alcator C-Mod L-mode discharges. Electrons were heated by ion cyclotron range of frequencies (ICRF) through minority heating. The intent of the heating mechanism was to vary the heat flux and simultaneously, gradually change the local gradient. The electron temperature gradient scale length (LTe- 1 = | ∇Te |/Te) was accurately measured through a novel technique, using the high-resolution radiometer ECE diagnostic. The TRANSP power balance analysis (Q/QGB) and the measured scale length (a/LTe) result in critical scale length measurements at all major radius locations. These measurements suggest that the profiles are already at the critical values. Furthermore, the dependence of the stiffness on plasma rotation and magnetic shear will be discussed. In order to understand the underlying mechanism of turbulence for these discharges, simulations using the gyrokinetic code, GENE, were carried out. For linear runs at electron scales, it was found that the largest growth rates are very sensitive to a/LTe variation, which suggests the presence of ETG modes, while the sensitivity studies in the ion scales indicate ITG/TEM modes. Supported by USDoE awards DE-FG03-96ER54373 and DE-FC02-99ER54512.

  18. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database

    PubMed Central

    Coppard, Nicholas; Cooper, Jonathon M.; Delatycki, Martin B.; Dürr, Alexandra; Di Prospero, Nicholas A.; Giunti, Paola; Lynch, David R.; Schulz, J. B.; Rummey, Christian; Meier, Thomas

    2013-01-01

    The aim of this cross-sectional study was to analyse disease progression in Friedreich’s ataxia as measured by the International Cooperative Ataxia Rating Scale. Single ratings from 603 patients with Friedreich’s ataxia were analysed as a function of disease duration, age of onset and GAA repeat lengths. The relative contribution of items and subscales to the total score was studied as a function of disease progression. In addition, the scaling properties were assessed using standard statistical measures. Average total scale progression per year depends on the age of disease onset, the time since diagnosis and the GAA repeat length. The age of onset inversely correlates with increased GAA repeat length. For patients with an age of onset ≤14 years associated with a longer repeat length, the average yearly rate of decline was 2.5 ± 0.18 points in the total International Cooperative Ataxia Rating Scale for the first 20 years of disease duration, whereas patients with a later onset progress more slowly (1.8 ± 0.27 points/year). Ceiling effects in posture, gait and lower limb scale items lead to a reduced sensitivity of the scale in the severely affected population with a total score of >60 points. Psychometric scaling analysis shows generally favourable properties for the total scale, but the subscale grouping could be improved. This cross-sectional study provides a detailed characterization of the International Cooperative Ataxia Rating Scale. The analysis further provides rates of change separated for patients with early and late disease onset, which is driven by the GAA repeat length. Differences in the subscale dynamics merit consideration in the design of future clinical trials applying this scale as a neurological assessment instrument in Friedreich’s ataxia. PMID:23365101

  19. Size-dependent axisymmetric vibration of functionally graded circular plates in bifurcation/limit point instability

    NASA Astrophysics Data System (ADS)

    Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.

    2017-04-01

    In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.

  20. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2016-11-16

    Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.

  1. Toxicological Profiling of Highly Purified Single-Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and Escherichia Coli.

    PubMed

    Wang, Xiang; Lee, Jae-Hyeok; Li, Ruibin; Liao, Yu-Pei; Kang, Joohoon; Chang, Chong Hyun; Guiney, Linda M; Mirshafiee, Vahid; Li, Linjiang; Lu, Jianqin; Xia, Tian; Hersam, Mark C; Nel, André E

    2018-06-01

    Carbon nanotubes (CNTs) exhibit a number of physicochemical properties that contribute to adverse biological outcomes. However, it is difficult to define the independent contribution of individual properties without purified materials. A library of highly purified single-walled carbon nanotubes (SWCNTs) of different lengths is prepared from the same base material by density gradient ultracentrifugation, designated as short (318 nm), medium (789 nm), and long (1215 nm) SWCNTs. In vitro screening shows length-dependent interleukin-1β (IL-1β) production, in order of long > medium > short. However, there are no differences in transforming growth factor-β1 production in BEAS-2B cells. Oropharyngeal aspiration shows that all the SWCNTs induce profibrogenic effects in mouse lung at 21 d postexposure, but there are no differences between tube lengths. In contrast, these SWCNTs demonstrate length-dependent antibacterial effects on Escherichia coli, with the long SWCNT exerting stronger effects than the medium or short tubes. These effects are reduced by Pluronic F108 coating or supplementing with glucose. The data show length-dependent effects on proinflammatory response in macrophage cell line and antibacterial effects, but not on collagen deposition in the lung. These data demonstrate that over the length scale tested, the biological response to highly purified SWCNTs is dependent on the complexity of the nano/bio interface. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  3. Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes [Structural Relaxation and Dynamics of Ionic-Neutral Block Copolymer Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-06-21

    Structure–property relationships of ionic block copolymer (BCP) surfactant complexes are critical toward the progress of favorable engineering design of efficient charge-transport materials. In this paper, molecular dynamics simulations are used to understand the dynamics of charged-neutral BCP and surfactant complexes. The dynamics are examined for two different systems: charged-neutral double-hydrophilic and hydrophobic–hydrophilic block copolymers with oppositely charged surfactant moieties. The dynamics of the surfactant head, tails, and charges are studied for five different BCP volume fractions. We observe that the dynamics of the different species solely depend on the balance between electrostatic and entropic interactions between the charged species andmore » the neutral monomers. The favorable hydrophobic–hydrophobic interactions and the unfavorable hydrophobic–hydrophilic interactions determine the mobilities of the monomers. The dynamical properties of the charge species influence complex formation. Structural relaxations exhibit length-scale dependent behavior, with slower relaxation at the radius of gyration length-scale and faster relaxation at the segmental length-scale, consistent with previous results. The dynamical analysis correlates ion-exchange kinetics to the self-assembly behavior of the complexes.« less

  4. Ultrafast studies of shock induced chemistry-scaling down the size by turning up the heat

    NASA Astrophysics Data System (ADS)

    McGrane, Shawn

    2015-06-01

    We will discuss recent progress in measuring time dependent shock induced chemistry on picosecond time scales. Data on the shock induced chemistry of liquids observed through picosecond interferometric and spectroscopic measurements will be reconciled with shock induced chemistry observed on orders of magnitude larger time and length scales from plate impact experiments reported in the literature. While some materials exhibit chemistry consistent with simple thermal models, other materials, like nitromethane, seem to have more complex behavior. More detailed measurements of chemistry and temperature across a broad range of shock conditions, and therefore time and length scales, will be needed to achieve a real understanding of shock induced chemistry, and we will discuss efforts and opportunities in this direction.

  5. Supernova explosions in magnetized, primordial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Schleicher, D.

    2014-05-01

    The first supernova explosions are potentially relevant sources for the production of the first large-scale magnetic fields. For this reason, we present a set of high-resolution simulations studying the effect of supernova explosions on magnetized, primordial haloes. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependences of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 1051 erg and more violent pair instability supernovae with 1053 erg are able to disrupt haloes with masses up to about 106 and 107 M⊙, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales, the magnetic energy decreases at the cost of the energy on large scales resulting in a well-ordered magnetic field with a strength up to ˜10-8 G depending on the initial conditions. The coherence length of the magnetic field inferred from the spectra reaches values up to 250 pc in agreement with those obtained from autocorrelation functions. We find the coherence length to be as large as 50 per cent of the radius of the supernova bubble. Extrapolating this relation to later stages, we suggest that significantly strong magnetic fields with coherence lengths as large as 1.5 kpc could be created. We discuss possible implications of our results on processes like recollapse of the halo, first galaxy formation, and the magnetization of the intergalactic medium.

  6. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  7. Correlation-based regularization and gradient operators for (joint) inversion on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Jordi, Claudio; Doetsch, Joseph; Günther, Thomas; Schmelzbach, Cedric; Robertsson, Johan

    2017-04-01

    When working with unstructured meshes for geophysical inversions, special attention should be paid to the design of the operators that are used for regularizing the inverse problem and coupling of different property models in joint inversions. Regularization constraints for inversions on unstructured meshes are often defined in a rather ad-hoc manner and usually only involve the cell to which the operator is applied and its direct neighbours. Similarly, most structural coupling operators for joint inversion, such as the popular cross-gradients operator, are only defined in the direct neighbourhood of a cell. As a result, the regularization and coupling length scales and strength of these operators depend on the discretization as well as cell sizes and shape. Especially for unstructured meshes, where the cell sizes vary throughout the model domain, the dependency of the operator on the discretization may lead to artefacts. Designing operators that are based on a spatial correlation model allows to define correlation length scales over which an operator acts (called footprint), reducing the dependency on the discretization and the effects of variable cell sizes. Moreover, correlation-based operators can accommodate for expected anisotropy by using different length scales in horizontal and vertical directions. Correlation-based regularization operators also known as stochastic regularization operators have already been successfully applied to inversions on regular grids. Here, we formulate stochastic operators for unstructured meshes and apply them in 2D surface and 3D cross-well electrical resistivity tomography data inversion examples of layered media. Especially for the synthetic cross-well example, improved inversion results are achieved when stochastic regularization is used instead of a classical smoothness constraint. For the case of cross-gradients operators for joint inversion, the correlation model is used to define the footprint of the operator and weigh the contributions of the property values that are used to calculate the cross-gradients. In a first series of synthetic-data tests, we examined the mesh dependency of the cross-gradients operators. Compared to operators that are only defined in the direct neighbourhood of a cell, the dependency on the cell size of the cross-gradients calculation is markedly reduced when using operators with larger footprints. A second test with synthetic models focussed on the effect of small-scale variabilities of the parameter value on the cross-gradients calculation. Small-scale variabilities that are superimposed on a global trend of the property value can potentially degrade the cross-gradients calculation and destabilize joint inversion. We observe that the cross-gradients from operators with footprints larger than the length scale of the variabilities are less affected compared to operators with a small footprint. In joint inversions on unstructured meshes, we thus expect the correlation-based coupling operators to ensure robust coupling on a physically meaningful scale.

  8. Three-disk microswimmer in a supported fluid membrane

    NASA Astrophysics Data System (ADS)

    Ota, Yui; Hosaka, Yuto; Yasuda, Kento; Komura, Shigeyuki

    2018-05-01

    A model of three-disk micromachine swimming in a quasi-two-dimensional supported membrane is proposed. We calculate the average swimming velocity as a function of the disk size and the arm length. Due to the presence of the hydrodynamic screening length in the quasi-two-dimensional fluid, the geometric factor appearing in the average velocity exhibits three different asymptotic behaviors depending on the microswimmer size and the hydrodynamic screening length. This is in sharp contrast with a microswimmer in a three-dimensional bulk fluid that shows only a single scaling behavior. We also find that the maximum velocity is obtained when the disks are equal-sized, whereas it is minimized when the average arm lengths are identical. The intrinsic drag of the disks on the substrate does not alter the scaling behaviors of the geometric factor.

  9. Counting Magnetic Bipoles on the Sun by Polarity Inversion

    NASA Technical Reports Server (NTRS)

    Jones, Harrison P.

    2004-01-01

    This paper presents a simple and efficient algorithm for deriving images of polarity inversion from NSO/Kitt Peak magnetograms without use of contouring routines and shows by example how these maps depend upon the spatial scale for filtering the raw data. Smaller filtering scales produce many localized closed contours in mixed polarity regions while supergranular and larger filtering scales produce more global patterns. The apparent continuity of an inversion line depends on how the spatial filtering is accomplished, but its shape depends only on scale. The total length of the magnetic polarity inversion contours varies as a power law of the filter scale with fractal dimension of order 1.9. The amplitude but nut the exponent of this power-law relation varies with solar activity. The results are compared to similar analyses of areal distributions of bipolar magnetic regions.

  10. Ameba-like diffusion in two-dimensional polymer melts: how critical exponents determine the structural relaxation

    NASA Astrophysics Data System (ADS)

    Kreer, Torsten; Meyer, Hendrik; Baschnagel, Joerg

    2008-03-01

    By means of numerical investigations we demonstrate that the structural relaxation of linear polymers in two dimensional (space-filling) melts is characterized by ameba-like diffusion, where the chains relax via frictional dissipation at their interfacial contact lines. The perimeter length of the contact line determines a new length scale, which does not exist in three dimensions. We show how this length scale follows from the critical exponents, which hence characterize not only the static but also the dynamic properties of the melt. Our data is in agreement with recent theoretical predictions, concerning the time-dependence of single-monomer mean-square displacements and the scaling of concomitant relaxation times with the degree of polymerization. For the latter we demonstrate a density crossover-scaling as an additional test for ameba-like relaxation. We compare our results to the conceptually different Rouse model, which predicts numerically close exponents. Our data can clearly rule out the classical picture as the relevant relaxation mechanism in two-dimensional polymer melts.

  11. Effects of axisymmetric contractions on turbulence of various scales

    NASA Technical Reports Server (NTRS)

    Tan-Atichat, J.; Nagib, H. M.; Drubka, R. E.

    1980-01-01

    Digitally acquired and processed results from an experimental investigation of grid generated turbulence of various scales through and downstream of nine matched cubic contour contractions ranging in area ratio from 2 to 36, and in length to inlet diameter ratio from 0.25 to 1.50 are reported. An additional contraction with a fifth order contour was also utilized for studying the shape effect. Thirteen homogeneous and nearly isotropic test flow conditions with a range of turbulence intensities, length scales and Reynolds numbers were generated and used to examine the sensitivity of the contractions to upstream turbulence. The extent to which the turbulence is altered by the contraction depends on the incoming turbulence scales, the total strain experienced by the fluid, as well as the contraction ratio and the strain rate. Varying the turbulence integral scale influences the transverse turbulence components more than the streamwise component. In general, the larger the turbulence scale, the lesser the reduction in the turbulence intensity of the transverse components. Best agreement with rapid distortion theory was obtained for large scale turbulence, where viscous decay over the contraction length was negligible, or when a first order correction for viscous decay was applied to the results.

  12. Activity-dependent self-regulation of viscous length scales in biological systems

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar

    2018-05-01

    The cellular cortex, which is a highly viscous thin cytoplasmic layer just below the cell membrane, controls the cell's mechanical properties, which can be characterized by a hydrodynamic length scale ℓ . Cells actively regulate ℓ via the activity of force-generating molecules, such as myosin II. Here we develop a general theory for such systems through a coarse-grained hydrodynamic approach including activity in the static description of the system providing an experimentally accessible parameter and elucidate the detailed mechanism of how a living system can actively self-regulate its hydrodynamic length scale, controlling the rigidity of the system. Remarkably, we find that ℓ , as a function of activity, behaves universally and roughly inversely proportional to the activity of the system. Our theory rationalizes a number of experimental findings on diverse systems, and comparison of our theory with existing experimental data shows good agreement.

  13. A method for estimating 2D Wrinkle Ridge Strain from application of fault displacement scaling to the Yakima Folds, Washington

    NASA Astrophysics Data System (ADS)

    Mège, Daniel; Reidel, Stephen P.

    The Yakima folds on the central Columbia Plateau are a succession of thrusted anticlines thought to be analogs of planetary wrinkle ridges. They provide a unique opportunity to understand wrinkle ridge structure. Field data and length-displacement scaling are used to demonstrate a method for estimating two-dimensional horizontal contractional strain at wrinkle ridges. Strain is given as a function of ridge length, and depends on other parameters that can be inferred from the Yakima folds and fault population displacement studies. Because ridge length can be readily obtained from orbital imagery, the method can be applied to any wrinkle ridge population, and helps constrain quantitative tectonic models on other planets.

  14. Non-local damage rheology and size effect

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.

    2011-12-01

    We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.

  15. Beyond-laboratory-scale prediction for channeling flows through subsurface rock fractures with heterogeneous aperture distributions revealed by laboratory evaluation

    NASA Astrophysics Data System (ADS)

    Ishibashi, Takuya; Watanabe, Noriaki; Hirano, Nobuo; Okamoto, Atsushi; Tsuchiya, Noriyoshi

    2015-01-01

    The present study evaluates aperture distributions and fluid flow characteristics for variously sized laboratory-scale granite fractures under confining stress. As a significant result of the laboratory investigation, the contact area in fracture plane was found to be virtually independent of scale. By combining this characteristic with the self-affine fractal nature of fracture surfaces, a novel method for predicting fracture aperture distributions beyond laboratory scale is developed. Validity of this method is revealed through reproduction of the results of laboratory investigation and the maximum aperture-fracture length relations, which are reported in the literature, for natural fractures. The present study finally predicts conceivable scale dependencies of fluid flows through joints (fractures without shear displacement) and faults (fractures with shear displacement). Both joint and fault aperture distributions are characterized by a scale-independent contact area, a scale-dependent geometric mean, and a scale-independent geometric standard deviation of aperture. The contact areas for joints and faults are approximately 60% and 40%. Changes in the geometric means of joint and fault apertures (µm), em, joint and em, fault, with fracture length (m), l, are approximated by em, joint = 1 × 102 l0.1 and em, fault = 1 × 103 l0.7, whereas the geometric standard deviations of both joint and fault apertures are approximately 3. Fluid flows through both joints and faults are characterized by formations of preferential flow paths (i.e., channeling flows) with scale-independent flow areas of approximately 10%, whereas the joint and fault permeabilities (m2), kjoint and kfault, are scale dependent and are approximated as kjoint = 1 × 10-12 l0.2 and kfault = 1 × 10-8 l1.1.

  16. Physically based multiscale-viscoplastic model for metals and steel alloys: Theory and computation

    NASA Astrophysics Data System (ADS)

    Abed, Farid H.

    The main requirement of large deformation problems such as high-speed machining, impact, and various primarily metal forming, is to develop constitutive relations which are widely applicable and capable of accounting for complex paths of deformation. Achieving such desirable goals for material like metals and steel alloys involves a comprehensive study of their microstructures and experimental observations under different loading conditions. In general, metal structures display a strong rate- and temperature-dependence when deformed non-uniformly into the inelastic range. This effect has important implications for an increasing number of applications in structural and engineering mechanics. The mechanical behavior of these applications cannot be characterized by classical (rate-independent) continuum theories because they incorporate no 'material length scales'. It is therefore necessary to develop a rate-dependent (viscoplasticity) continuum theory bridging the gap between the classical continuum theories and the microstructure simulations. Physically based vicoplasticity models for different types of metals (body centered cubic, face centered cubic and hexagonal close-packed) and steel alloys are derived in this work for this purpose. We adopt a multi-scale, hierarchical thermodynamic consistent framework to construct the material constitutive relations for the rate-dependent behavior. The concept of thermal activation energy, dislocations interactions mechanisms and the role of dislocations dynamics in crystals are used in the derivation process taking into consideration the contribution of the plastic strain evolution of dislocation density to the flow stress of polycrystalline metals. Material length scales are implicitly introduced into the governing equations through material rate-dependency (viscosity). The proposed framework is implemented into the commercially well-known finite element software ABAQUS. The finite element simulations of material instability problems converge to meaningful results upon further refinement of the finite element mesh due to the successful incorporation of the material length scale in the model formulations. It is shown that the model predicted results compare very well with different experimental data over a wide range of temperatures (77K°-1000K°) and strain rates (10-3-10 4s-1). It is also concluded from this dissertation that the width of localization zone (shear band) exhibits tremendous changes with different initial temperatures (i.e., different initial viscosities and accordingly different length scales).

  17. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  18. Multiple-length-scale deformation analysis in a thermoplastic polyurethane

    PubMed Central

    Sui, Tan; Baimpas, Nikolaos; Dolbnya, Igor P.; Prisacariu, Cristina; Korsunsky, Alexander M.

    2015-01-01

    Thermoplastic polyurethane elastomers enjoy an exceptionally wide range of applications due to their remarkable versatility. These block co-polymers are used here as an example of a structurally inhomogeneous composite containing nano-scale gradients, whose internal strain differs depending on the length scale of consideration. Here we present a combined experimental and modelling approach to the hierarchical characterization of block co-polymer deformation. Synchrotron-based small- and wide-angle X-ray scattering and radiography are used for strain evaluation across the scales. Transmission electron microscopy image-based finite element modelling and fast Fourier transform analysis are used to develop a multi-phase numerical model that achieves agreement with the combined experimental data using a minimal number of adjustable structural parameters. The results highlight the importance of fuzzy interfaces, that is, regions of nanometre-scale structure and property gradients, in determining the mechanical properties of hierarchical composites across the scales. PMID:25758945

  19. Diffusion and scaling during early embryonic pattern formation

    PubMed Central

    Gregor, Thomas; Bialek, William; van Steveninck, Rob R. de Ruyter; Tank, David W.; Wieschaus, Eric F.

    2005-01-01

    Development of spatial patterns in multicellular organisms depends on gradients in the concentration of signaling molecules that control gene expression. In the Drosophila embryo, Bicoid (Bcd) morphogen controls cell fate along 70% of the anteroposterior axis but is translated from mRNA localized at the anterior pole. Gradients of Bcd and other morphogens are thought to arise through diffusion, but this basic assumption has never been rigorously tested in living embryos. Furthermore, because diffusion sets a relationship between length and time scales, it is hard to see how patterns of gene expression established by diffusion would scale proportionately as egg size changes during evolution. Here, we show that the motion of inert molecules through the embryo is well described by the diffusion equation on the relevant length and time scales, and that effective diffusion constants are essentially the same in closely related dipteran species with embryos of very different size. Nonetheless, patterns of gene expression in these different species scale with egg length. We show that this scaling can be traced back to scaling of the Bcd gradient itself. Our results, together with constraints imposed by the time scales of development, suggest that the mechanism for scaling is a species-specific adaptation of the Bcd lifetime. PMID:16352710

  20. Turbulent combustion in aluminum-air clouds for different scale explosion fields

    NASA Astrophysics Data System (ADS)

    Kuhl, Allen L.; Balakrishnan, Kaushik; Bell, John B.; Beckner, Vincent E.

    2017-01-01

    This paper explores "scaling issues" associated with Al particle combustion in explosions. The basic idea is the following: in this non-premixed combustion system, the global burning rate is controlled by rate of turbulent mixing of fuel (Al particles) with air. From similarity considerations, the turbulent mixing rates should scale with the explosion length and time scales. However, the induction time for ignition of Al particles depends on an Arrhenius function, which is independent of the explosion length and time. To study this, we have performed numerical simulations of turbulent combustion in unconfined Al-SDF (shock-dispersed-fuel) explosion fields at different scales. Three different charge masses were assumed: 1-g, 1-kg and 1-T Al-powder charges. We found that there are two combustion regimes: an ignition regime—where the burning rate decays as a power-law function of time, and a turbulent combustion regime—where the burning rate decays exponentially with time. This exponential dependence is typical of first order reactions and the more general concept of Life Functions that control the dynamics of evolutionary systems. Details of the combustion model are described. Results, including mean and rms profiles in combustion cloud and fuel consumption histories, are presented.

  1. Size dependence of spin-torque induced magnetic switching in CoFeB-based perpendicular magnetization tunnel junctions (invited)

    NASA Astrophysics Data System (ADS)

    Sun, J. Z.; Trouilloud, P. L.; Gajek, M. J.; Nowak, J.; Robertazzi, R. P.; Hu, G.; Abraham, D. W.; Gaidis, M. C.; Brown, S. L.; O'Sullivan, E. J.; Gallagher, W. J.; Worledge, D. C.

    2012-04-01

    CoFeB-based magnetic tunnel junctions with perpendicular magnetic anisotropy are used as a model system for studies of size dependence in spin-torque-induced magnetic switching. For integrated solid-state memory applications, it is important to understand the magnetic and electrical characteristics of these magnetic tunnel junctions as they scale with tunnel junction size. Size-dependent magnetic anisotropy energy, switching voltage, apparent damping, and anisotropy field are systematically compared for devices with different materials and fabrication treatments. Results reveal the presence of sub-volume thermal fluctuation and reversal, with a characteristic length-scale of the order of approximately 40 nm, depending on the strength of the perpendicular magnetic anisotropy and exchange stiffness. To have the best spin-torque switching efficiency and best stability against thermal activation, it is desirable to optimize the perpendicular anisotropy strength with the junction size for intended use. It also is important to ensure strong exchange-stiffness across the magnetic thin film. These combine to give an exchange length that is comparable or larger than the lateral device size for efficient spin-torque switching.

  2. Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.

    NASA Astrophysics Data System (ADS)

    Shindler, Joseph Daniel

    X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.

  3. Capillary origami: spontaneous wrapping of a droplet with an elastic sheet.

    PubMed

    Py, Charlotte; Reverdy, Paul; Doppler, Lionel; Bico, José; Roman, Benoît; Baroud, Charles N

    2007-04-13

    The interaction between elasticity and capillarity is used to produce three-dimensional structures through the wrapping of a liquid droplet by a planar sheet. The final encapsulated 3D shape is controlled by tailoring the initial geometry of the flat membrane. Balancing interfacial energy with elastic bending energy provides a critical length scale below which encapsulation cannot occur, which is verified experimentally. This length is found to depend on the thickness as h3/2, a scaling favorable to miniaturization which suggests a new way of mass production of 3D micro- or nanoscale objects.

  4. Sensitivity of the two-dimensional shearless mixing layer to the initial turbulent kinetic energy and integral length scale

    NASA Astrophysics Data System (ADS)

    Fathali, M.; Deshiri, M. Khoshnami

    2016-04-01

    The shearless mixing layer is generated from the interaction of two homogeneous isotropic turbulence (HIT) fields with different integral scales ℓ1 and ℓ2 and different turbulent kinetic energies E1 and E2. In this study, the sensitivity of temporal evolutions of two-dimensional, incompressible shearless mixing layers to the parametric variations of ℓ1/ℓ2 and E1/E2 is investigated. The sensitivity methodology is based on the nonintrusive approach; using direct numerical simulation and generalized polynomial chaos expansion. The analysis is carried out at Reℓ 1=90 for the high-energy HIT region and different integral length scale ratios 1 /4 ≤ℓ1/ℓ2≤4 and turbulent kinetic energy ratios 1 ≤E1/E2≤30 . It is found that the most influential parameter on the variability of the mixing layer evolution is the turbulent kinetic energy while variations of the integral length scale show a negligible influence on the flow field variability. A significant level of anisotropy and intermittency is observed in both large and small scales. In particular, it is found that large scales have higher levels of intermittency and sensitivity to the variations of ℓ1/ℓ2 and E1/E2 compared to the small scales. Reconstructed response surfaces of the flow field intermittency and the turbulent penetration depth show monotonic dependence on ℓ1/ℓ2 and E1/E2 . The mixing layer growth rate and the mixing efficiency both show sensitive dependence on the initial condition parameters. However, the probability density function of these quantities shows relatively small solution variations in response to the variations of the initial condition parameters.

  5. Critical transition in the constrained traveling salesman problem.

    PubMed

    Andrecut, M; Ali, M K

    2001-04-01

    We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.

  6. Nanoscale Roughness of Natural Fault Surfaces Controlled by Scale-Dependent Yield Strength

    NASA Astrophysics Data System (ADS)

    Thom, C. A.; Brodsky, E. E.; Carpick, R. W.; Pharr, G. M.; Oliver, W. C.; Goldsby, D. L.

    2017-09-01

    Many natural fault surfaces exhibit remarkably similar scale-dependent roughness, which may reflect the scale-dependent yield strength of rocks. Using atomic force microscopy (AFM), we show that a sample of the Corona Heights Fault exhibits isotropic surface roughness well-described by a power law, with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. The roughness data and a recently proposed theoretical framework predict that yield strength varies with length scale as λ-0.25+/-0.05. Nanoindentation tests on the Corona Heights sample and another fault sample whose topography was previously measured with AFM (the Yair Fault) reveal a scale-dependent yield stress with power-law exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08, respectively. These values are within one to two standard deviations of the predicted value, and provide experimental evidence that fault roughness is controlled by intrinsic material properties, which produces a characteristic surface geometry.

  7. Turbulent Channel Flow Measurements with a Nano-scale Thermal Anemometry Probe

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Witte, Brandon

    2014-11-01

    Using a Nano-scale Thermal Anemometry Probe (NSTAP), streamwise velocity was measured in a turbulent channel flow wind tunnel at Reynolds numbers ranging from Reτ = 500 to Reτ = 4000 . Use of these probes results in the a sensing-length-to-viscous-length-scale ratio of just 5 at the highest Reynolds number measured. Thus measured results can be considered free of spatial filtering effects. Point statistics are compared to recently published DNS and LDV data at similar Reynolds numbers and the results are found to be in good agreement. However, comparison of the measured spectra provide further evidence of aliasing at long wavelengths due to application of Taylor's frozen flow hypothesis, with increased aliasing evident with increasing Reynolds numbers. In addition to conventional point statistics, the dissipative scales of turbulence are investigated with focus on the wall-dependent scaling. Results support the existence of a universal pdf distribution of these scales once scaled to account for large-scale anisotropy. This research is supported by KSEF Award KSEF-2685-RDE-015.

  8. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  9. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  10. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE PAGES

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  11. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less

  12. Contact resistance and overlapping capacitance in flexible sub-micron long oxide thin-film transistors for above 100 MHz operation

    NASA Astrophysics Data System (ADS)

    Münzenrieder, Niko; Salvatore, Giovanni A.; Petti, Luisa; Zysset, Christoph; Büthe, Lars; Vogt, Christian; Cantarella, Giuseppe; Tröster, Gerhard

    2014-12-01

    In recent years new forms of electronic devices such as electronic papers, flexible displays, epidermal sensors, and smart textiles have become reality. Thin-film transistors (TFTs) are the basic blocks of the circuits used in such devices and need to operate above 100 MHz to efficiently treat signals in RF systems and address pixels in high resolution displays. Beyond the choice of the semiconductor, i.e., silicon, graphene, organics, or amorphous oxides, the junctionless nature of TFTs and its geometry imply some limitations which become evident and important in devices with scaled channel length. Furthermore, the mechanical instability of flexible substrates limits the feature size of flexible TFTs. Contact resistance and overlapping capacitance are two parasitic effects which limit the transit frequency of transistors. They are often considered independent, while a deeper analysis of TFTs geometry imposes to handle them together; in fact, they both depend on the overlapping length (LOV) between source/drain and the gate contacts. Here, we conduct a quantitative analysis based on a large number of flexible ultra-scaled IGZO TFTs. Devices with three different values of overlap length and channel length down to 0.5 μm are fabricated to experimentally investigate the scaling behavior of the transit frequency. Contact resistance and overlapping capacitance depend in opposite ways on LOV. These findings establish routes for the optimization of the dimension of source/drain contact pads and suggest design guidelines to achieve megahertz operation in flexible IGZO TFTs and circuits.

  13. Spatial patterns of frequent floods in Switzerland

    NASA Astrophysics Data System (ADS)

    Schneeberger, Klaus; Rössler, Ole; Weingartner, Rolf

    2017-04-01

    Information about the spatial characteristics of high and extreme streamflow is often needed for an accurate analysis of flood risk and effective co-ordination of flood related activities, such as flood defence planning. In this study we analyse the spatial dependence of frequent floods in Switzerland across different scales. Firstly, we determine the average length of high and extreme flow events for 56 runoff time series of Swiss rivers. Secondly, a dependence measure expressing the probability that streamflow peaks are as high as peaks at a conditional site is used to describe and map the spatial extend of joint occurrence of frequent floods across Switzerland. Thirdly, we apply a cluster analysis to identify groups of sites that are likely to react similarly in terms of joint occurrence of high flow events. The results indicate that a time interval with a length of 3 days seems to be most appropriate to characterise the average length of high streamflow events across spatial scales. In the main Swiss basins, high and extreme streamflows were found to be asymptotically independent. In contrast, at the meso-scale distinct flood regions, which react similarly in terms of occurrence of frequent flood, were found. The knowledge about these regions can help to optimise flood defence planning or to estimate regional flood risk properly.

  14. Electrophoresis of semiflexible heteropolymers and the ``hydrodynamic Kuhn length''

    NASA Astrophysics Data System (ADS)

    Chubynsky, Mykyta V.; Slater, Gary W.

    Semiflexible polymers, such as DNA, are rodlike for short lengths and coil-like for long lengths. For purely geometric properties, such as the end-to-end distance, the crossover between these two behaviors occurs when the polymer length is on the order of the Kuhn length. On the other hand, for the hydrodynamic friction coefficient it is easy to see by comparing the expressions for a rod and a coil that the crossover should occur at the polymer length, termed by us the hydrodynamic Kuhn length, which is larger than the ordinary Kuhn length by a logarithmic factor that can be quite significant. We show that for the problem of electrophoresis of a heteropolymer consisting of several blocks of (in general) different stiffnesses, both of these length scales can be important depending on the details of the problem.

  15. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.

    PubMed

    Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A

    2015-11-17

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

  16. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    PubMed Central

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.

    2015-01-01

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103

  17. A Technique for Mapping Characteristic Lengths to Preserve Energy Dissipated via Strain Softening in a Multiscale Analysis

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2014-01-01

    It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).

  18. EDITORIAL: Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, Technical University of Denmark, 21 25 Mark 2006

    NASA Astrophysics Data System (ADS)

    Tvergaard, Viggo

    2007-01-01

    This special issue constitutes the Proceedings of the IUTAM Symposium on Plasticity at the Micron Scale, held at the Technical University of Denmark, 21-25 May 2006. The purpose of this symposium was to gather a group of leading scientists working in areas of importance to length scale dependent plasticity. This includes work on phenomenological strain gradient plasticity models, studies making use of discrete dislocation models, and even atomic level models. Experimental investigations are central to all this, as all the models focus on developing an improved understanding of real observed phenomena. The opening lecture by Professor N A Fleck, Cambridge University, discussed experimental as well as theoretical approaches. Also, recent results for the surface roughness at grain boundaries were presented based on experiments and crystal plasticity modelling. A number of presentations focused on experiments for metals at a small length scale, e.g. using indenters or a small single crystal compression test. It was found that there are causes of the size effects other than the geometrically necessary dislocations related to strain gradients. Several lectures on scale dependent phenomenological plasticity theories discussed different methods of incorporating the characteristic material length. This included lower order plasticity theories as well as higher order theories, within standard plasticity models or crystal plasticity. Differences in the ways of incorporating higher order boundary conditions were the subject of much discussion. Various methods for discrete dislocation modelling of plastic deformation were used in some of the presentations to obtain a more detailed understanding of length scale effects in metals. This included large scale computations for dislocation dynamics as well as new statistical mechanics approaches to averaging of dislocation plasticity. Furthermore, at a somewhat larger length scale, applications of scale dependent plasticity to granular media and to cellular solids were discussed. The symposium consisted of thirty-six lectures, all of which were invited based on strong expertise in the area. Some of the lectures are not represented in this special issue, mainly because of prior commitments to publish elsewhere. The international Scientific Committee responsible for the symposium comprised the following: Professor V Tvergaard (Chairman) Denmark Professor A Benallal France Professor N A Fleck UK Professor L B Freund (IUTAM Representative) USA Professor E van der Giessen The Netherlands Professor J W Hutchinson USA Professor A Needleman USA Professor B Svendsen Germany The Committee gratefully acknowledges financial support for the symposium from the International Union of Theoretical and Applied Mechanics, from Novo Nordisk A/S and from the Villum Kann Rasmussen Foundation. In the organization of all parts of the symposium the enthusiastic participation of Dr C F Niordson and Dr P Redanz was invaluable. The smooth running of the symposium also owes much to the efforts and organizational skills of Bente Andersen.

  19. Scaling and modeling of turbulent suspension flows

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1989-01-01

    Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.

  20. Magnetic exchange coupling through superconductors: A trilayer study

    NASA Astrophysics Data System (ADS)

    Sá de Melo, C. A.

    2000-11-01

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.

  1. Flame speed and self-similar propagation of expanding turbulent premixed flames.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K

    2012-01-27

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  2. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  3. Length scale of the dendritic microstructure affecting tensile properties of Al-(Ag)-(Cu) alloys

    NASA Astrophysics Data System (ADS)

    Duarte, Roberto N.; Faria, Jonas D.; Brito, Crystopher; Veríssimo, Nathalia C.; Cheung, Noé; Garcia, Amauri

    2016-12-01

    The dependence of tensile properties on the length scale of the dendritic morphology of Al-Cu, Al-Ag and Al-Ag-Cu alloys is experimentally investigated. These alloys were directionally solidified (DS) under a wide range of cooling rates (Ṫ), permitting extensive microstructural scales to be examined. Experimental growth laws are proposed relating the primary dendritic arm spacing, λ1 to Ṫ and tensile properties to λ1. It is shown that the most significant effect of the scale of λ1 on the tensile properties is that of the ternary alloy, which is attributed to the more homogeneous distribution of the eutectic mixture for smaller λ1 and by the combined reinforcement roles of the intermetallics present in the ternary eutectic: Al2Cu and nonequilibrium Ag3Al.

  4. Scaling in Plateau-to-Plateau Transition: A Direct Connection of Quantum Hall Systems with the Anderson Localization Model

    NASA Astrophysics Data System (ADS)

    Li, Wanli; Vicente, C. L.; Xia, J. S.; Pan, W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.

    2009-05-01

    The quantum Hall-plateau transition was studied at temperatures down to 1 mK in a random alloy disordered high mobility two-dimensional electron gas. A perfect power-law scaling with κ=0.42 was observed from 1.2 K down to 12 mK. This perfect scaling terminates sharply at a saturation temperature of Ts˜10mK. The saturation is identified as a finite-size effect when the quantum phase coherence length (Lϕ∝T-p/2) reaches the sample size (W) of millimeter scale. From a size dependent study, Ts∝W-1 was observed and p=2 was obtained. The exponent of the localization length, determined directly from the measured κ and p, is ν=2.38, and the dynamic critical exponent z=1.

  5. Scaling and the frequency dependence of Nyquist plot maxima of the electrical impedance of the human thigh.

    PubMed

    Shiffman, Carl

    2017-11-30

    To define and elucidate the properties of reduced-variable Nyquist plots. Non-invasive measurements of the electrical impedance of the human thigh. A retrospective analysis of the electrical impedances of 154 normal subjects measured over the past decade shows that 'scaling' of the Nyquist plots for human thigh muscles is a property shared by healthy thigh musculature, irrespective of subject and the length of muscle segment. Here the term scaling signifies the near and sometimes 'perfect' coalescence of the separate X versus R plots into one 'reduced' Nyquist plot by the simple expedient of dividing R and X by X m , the value of X at the reactance maximum. To the extent allowed by noise levels one can say that there is one 'universal' reduced Nyquist plot for the thigh musculature of healthy subjects. There is one feature of the Nyquist curves which is not 'universal', however, namely the frequency f m at which the maximum in X is observed. That is found to vary from 10 to 100 kHz. depending on subject and segment length. Analysis shows, however, that the mean value of 1/f m is an accurately linear function of segment length, though there is a small subject-to-subject random element as well. Also, following the recovery of an otherwise healthy victim of ankle fracture demonstrates the clear superiority of measurements above about 800 kHz, where scaling is not observed, in contrast to measurements below about 400 kHz, where scaling is accurately obeyed. The ubiquity of 'scaling' casts new light on the interpretation of impedance results as they are used in electrical impedance myography and bioelectric impedance analysis.

  6. Scale-Dependent Stiffness and Internal Tension of a Model Brush Polymer

    NASA Astrophysics Data System (ADS)

    Berezney, John P.; Marciel, Amanda B.; Schroeder, Charles M.; Saleh, Omar A.

    2017-09-01

    Bottle-brush polymers exhibit closely grafted side chains that interact by steric repulsion, thereby causing stiffening of the main polymer chain. We use single-molecule elasticity measurements of model brush polymers to quantify this effect. We find that stiffening is only significant on long length scales, with the main chain retaining flexibility on short scales. From the elasticity data, we extract an estimate of the internal tension generated by side-chain repulsion; this estimate is consistent with the predictions of blob-based scaling theories.

  7. Adiabatic Coupling Constant of Nitrobenzene- n-Alkane Critical Mixtures. Evidence from Ultrasonic Spectra and Thermodynamic Data

    NASA Astrophysics Data System (ADS)

    Mirzaev, Sirojiddin Z.; Kaatze, Udo

    2016-09-01

    Ultrasonic spectra of mixtures of nitrobenzene with n-alkanes, from n-hexane to n-nonane, are analyzed. They feature up to two Debye-type relaxation terms with discrete relaxation times and, near the critical point, an additional relaxation term due to the fluctuations in the local concentration. The latter can be well represented by the dynamic scaling theory. Its amplitude parameter reveals the adiabatic coupling constant of the mixtures of critical composition. The dependence of this thermodynamic parameter upon the length of the n-alkanes corresponds to that of the slope in the pressure dependence of the critical temperature and is thus taken another confirmation of the dynamic scaling model. The change in the variation of the coupling constant and of several other mixture parameters with alkane length probably reflects a structural change in the nitrobenzene- n-alkane mixtures when the number of carbon atoms per alkane exceeds eight.

  8. Force encoding in muscle spindles during stretch of passive muscle

    PubMed Central

    Blum, Kyle P.; Zytnicki, Daniel

    2017-01-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position. PMID:28945740

  9. Force encoding in muscle spindles during stretch of passive muscle.

    PubMed

    Blum, Kyle P; Lamotte D'Incamps, Boris; Zytnicki, Daniel; Ting, Lena H

    2017-09-01

    Muscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e. electrically-quiescent, muscles, the instantaneous firing rates (IFRs) of muscle spindles are associated with characteristics of stretch such as length and velocity. However, even in passive muscle, there are history-dependent transients of muscle spindle firing that are not uniquely related to muscle length and velocity, nor reproduced by current muscle spindle models. These include acceleration-dependent initial bursts, increased dynamic response to stretch velocity if a muscle has been isometric, and rate relaxation, i.e., a decrease in tonic IFR when a muscle is held at a constant length after being stretched. We collected muscle spindle spike trains across a variety of muscle stretch kinematic conditions, including systematic changes in peak length, velocity, and acceleration. We demonstrate that muscle spindle primary afferents in passive muscle fire in direct relationship to muscle force-related variables, rather than length-related variables. Linear combinations of whole muscle-tendon force and the first time derivative of force (dF/dt) predict the entire time course of transient IFRs in muscle spindle Ia afferents during stretch (i.e., lengthening) of passive muscle, including the initial burst, the dynamic response to lengthening, and rate relaxation following lengthening. Similar to acceleration scaling found previously in postural responses to perturbations, initial burst amplitude scaled equally well to initial stretch acceleration or dF/dt, though later transients were only described by dF/dt. The transient increase in dF/dt at the onset of lengthening reflects muscle short-range stiffness due to cross-bridge dynamics. Our work demonstrates a critical role of muscle cross-bridge dynamics in history-dependent muscle spindle IFRs in passive muscle lengthening conditions relevant to the detection and sensorimotor response to mechanical perturbations to the body, and to previously-described history-dependence in perception of limb position.

  10. Continuum calculations of continental deformation in transcurrent environments

    NASA Technical Reports Server (NTRS)

    Sonder, L. J.; England, P. C.; Houseman, G. A.

    1986-01-01

    A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.

  11. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE PAGES

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.; ...

    2017-04-07

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  12. Early life history of the yellow perch, Perca flavescens (Mitchill), in the Red Lakes, Minnesota

    USGS Publications Warehouse

    Pycha, Richard L.; Smith, Lloyd L.

    1955-01-01

    The early life history of the yellow perch, an important commercial species in the Red Lakes, Minnesota, has been studied with special reference to length at scale formation, growth rate during first season of life, and food habits as they relate to growth and survival. Scales are fully imbricated in the area of 12th to 14th lateral line scales at 24 millimeters total length. There is a wide annual varition in first season's growth which is not correlated with growth in older fish. Body-scale relationship is rectilinear from 24 to 280 millimeters. Length-weight relationship during the first year is expressed by the equation W = 0.6198 × 10−5 L3.1251 which is very similar to that describing the relationship in later years. Stomach analysis indicates food is primarily plankton but in some seasons fish may be strongly dependent on bottom forms. Variations in food availability appear to be associated with changes in growth and may have a major influence on survival.

  13. In Vivo Protein Dynamics on the Nanometer Length Scale and Nanosecond Time Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anunciado, Divina B.; Nyugen, Vyncent P.; Hurst, Gregory B.

    Selectively labeled GroEL protein was produced in living deuterated bacterial cells to enhance its neutron scattering signal above that of the intracellular milieu. Quasi-elastic neutron scattering shows that the in-cell diffusion coefficient of GroEL was (4.7 ± 0.3) × 10 –12 m 2/s, a factor of 4 slower than its diffusion coefficient in buffer solution. Furthermore, for internal protein dynamics we see a relaxation time of (65 ± 6) ps, a factor of 2 slower compared to the protein in solution. Comparison to the literature suggests that the effective diffusivity of proteins depends on the length and time scale beingmore » probed. Retardation of in-cell diffusion compared to the buffer becomes more significant with the increasing probe length scale, suggesting that intracellular diffusion of biomolecules is nonuniform over the cellular volume. This approach outlined here enables investigation of protein dynamics within living cells to open up new lines of research using “in-cell neutron scattering” to study the dynamics of complex biomolecular systems.« less

  14. Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Majee, Arnab K.; Aksamija, Zlatan

    2016-06-01

    Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m 100 μ m due to the coupling between in-plane and flexural modes. This coupling leads to renormalization of ZA phonon dispersion in the long-wavelength range, preventing further divergence of thermal conductivity. We also uncover a strong dependence on sample width, which we attribute to the interplay between nonresistive normal and diffusive edge scattering in the Poisseuille flow regime. We conclude that normal processes play a crucial role in the length and width dependence of thermal transport in graphene in the hydrodynamic regime and dictate the relative in-plane (LA+TA) to out-of-plane (ZA) contribution to transport.

  15. Length scale dependence of the dynamic properties of hyaluronic acid solutions in the presence of salt.

    PubMed

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-02

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D(NSE) measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D(DLS). This behavior contrasts with neutral polymer solutions. With increasing salt content, D(DLS) approaches D(NSE), which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hückel length.

  16. Power and weight considerations in small, agile quadrotors

    NASA Astrophysics Data System (ADS)

    Mulgaonkar, Yash; Whitzer, Michael; Morgan, Brian; Kroninger, Christopher M.; Harrington, Aaron M.; Kumar, Vijay

    2014-06-01

    The development of autonomous Micro Aerial Vehicles (MAVs) is significantly constrained by their size, weight and power consumption. In this paper, we explore the energetics of quadrotor platforms and study the scaling of mass, inertia, lift and drag with their characteristic length. The effects of length scale on masses and inertias associated with various components are also investigated. Additionally, a study of Lithium Polymer battery performance is presented in terms of specific power and specific energy. Finally, we describe the power and energy consumption for different quadrotors and explore the dependence on size and mass for static hover tests as well as representative maneuvers.

  17. Temporal fluctuation scaling in populations and communities

    Treesearch

    Michael Kalyuzhny; Yishai Schreiber; Rachel Chocron; Curtis H. Flather; David A. Kessler; Nadav M. Shnerb

    2014-01-01

    Taylor's law, one of the most widely accepted generalizations in ecology, states that the variance of a population abundance time series scales as a power law of its mean. Here we reexamine this law and the empirical evidence presented in support of it. Specifically, we show that the exponent generally depends on the length of the time series, and its value...

  18. Electron Temperature Gradient Scale Measurements in ICRF Heated Plasmas at Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Houshmandyar, Saeid; Phillips, Perry E.; Rowan, William L.; Howard, Nathaniel T.; Greenwald, Martin

    2016-10-01

    It is generally believed that the temperature gradient is a driving mechanism for the turbulent transport in hot and magnetically confined plasmas. A feature of many anomalous transport models is the critical threshold value (LC) for the gradient scale length, above which both the turbulence and the heat transport increases. This threshold is also predicted by the recent multi-scale gyrokinetic simulations, which are focused on addressing the electron (and ion) heat transport in tokamaks. Recently, we have established an accurate technique (BT-jog) to directly measure the electron temperature gradient scale length (LTe =Te / ∇T) profile, using a high-spatial resolution radiometer-based electron cyclotron emission (ECE) diagnostic. For the work presented here, electrons are heated by ion cyclotron range of frequencies (ICRF) through minority heating in L-mode plasmas at different power levels, TRANSP runs determine the electron heat fluxes and the scale lengths are measured through the BT-jog technique. Furthermore, the experiment is extended for different plasma current and electron densities by which the parametric dependence of LC on magnetic shear, safety factor and density will be investigated. This work is supported by U.S. DoE OFES, under Award No. DE-FG03-96ER-54373.

  19. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 μm. Encouragingly, the length scale covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modifying mixing and instability growth through the adjustment of initial conditions in a high-energy-density counter-propagating shear experiment on OMEGA

    DOE PAGES

    Merritt, E. C.; Doss, F. W.; Loomis, E. N.; ...

    2015-06-24

    Counter-propagating shear experiments conducted at the OMEGA Laser Facility have been evaluating the effect of target initial conditions, specifically the characteristics of a tracer foil located at the shear boundary, on Kelvin-Helmholtz instability evolution and experiment transition toward nonlinearity and turbulence in the high-energy-density (HED) regime. Experiments are focused on both identifying and uncoupling the dependence of the model initial turbulent length scale in variable-density turbulence models of k-ϵ type on competing physical instability seed lengths as well as developing a path toward fully developed turbulent HED experiments. We present results from a series of experiments controllably and independently varyingmore » two initial types of scale lengths in the experiment: the thickness and surface roughness (surface perturbation scale spectrum) of a tracer layer at the shear interface. We show that decreasing the layer thickness and increasing the surface roughness both have the ability to increase the relative mixing in the system, and thus theoretically decrease the time required to begin transitioning to turbulence in the system. In addition, we also show that we can connect a change in observed mix width growth due to increased foil surface roughness to an analytically predicted change in model initial turbulent scale lengths.« less

  1. Insufficiency of the Young’s modulus for illustrating the mechanical behavior of GaN nanowires

    NASA Astrophysics Data System (ADS)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-01

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young’s modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young’s modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young’s moduli reported in recent literature, and we prove the insufficiency of the Young’s modulus for predicting the mechanical behavior of GaN NWs.

  2. Insufficiency of the Young's modulus for illustrating the mechanical behavior of GaN nanowires.

    PubMed

    Kouhpanji, Mohammad Reza Zamani; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-18

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young's modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young's modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young's moduli reported in recent literature, and we prove the insufficiency of the Young's modulus for predicting the mechanical behavior of GaN NWs.

  3. The topology of large-scale structure. I - Topology and the random phase hypothesis. [galactic formation models

    NASA Technical Reports Server (NTRS)

    Weinberg, David H.; Gott, J. Richard, III; Melott, Adrian L.

    1987-01-01

    Many models for the formation of galaxies and large-scale structure assume a spectrum of random phase (Gaussian), small-amplitude density fluctuations as initial conditions. In such scenarios, the topology of the galaxy distribution on large scales relates directly to the topology of the initial density fluctuations. Here a quantitative measure of topology - the genus of contours in a smoothed density distribution - is described and applied to numerical simulations of galaxy clustering, to a variety of three-dimensional toy models, and to a volume-limited sample of the CfA redshift survey. For random phase distributions the genus of density contours exhibits a universal dependence on threshold density. The clustering simulations show that a smoothing length of 2-3 times the mass correlation length is sufficient to recover the topology of the initial fluctuations from the evolved galaxy distribution. Cold dark matter and white noise models retain a random phase topology at shorter smoothing lengths, but massive neutrino models develop a cellular topology.

  4. Composition dependence of charge and magnetic length scales in mixed valence manganite thin films

    PubMed Central

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2016-01-01

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La1−yPry)1−xCaxMnO3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1−xCaxMnO3 films with x = 0.33 and 0.375, across the MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties. PMID:27461993

  5. Black holes from large N singlet models

    NASA Astrophysics Data System (ADS)

    Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico

    2018-03-01

    The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.

  6. The scaling of urban surface water abundance and impairment with city size

    NASA Astrophysics Data System (ADS)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  7. New theory of stellar convection without the mixing-length parameter: new stellar atmosphere model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2018-01-01

    Stellar convection is usually described by the mixing-length theory, which makes use of the mixing-length scale factor to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is proportional to the local pressure scale height of the star, and the proportionality factor (i.e. mixing-length parameter) is determined by comparing the stellar models to some calibrator, i.e. the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases and because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper [1] we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations expressed in a non-inertial reference frame co-moving with the convective elements. The motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  8. Vertical length scale selection for pancake vortices in strongly stratified viscous fluids

    NASA Astrophysics Data System (ADS)

    Godoy-Diana, Ramiro; Chomaz, Jean-Marc; Billant, Paul

    2004-04-01

    The evolution of pancake dipoles of different aspect ratio is studied in a stratified tank experiment. Two cases are reported here for values of the dipole initial aspect ratio alpha_0 = L_v/L_h (where L_v and L_h are vertical and horizontal length scales, respectively) of alpha_0 = 0.4 (case I) and alpha_0 = 1.2 (case II). In the first case, the usual decay scenario is observed where the dipole diffuses slowly with a growing thickness and a decaying circulation. In case II, we observed a regime where the thickness of the dipole decreases and the circulation in the horizontal mid-plane of the vortices remains constant. We show that this regime where the vertical length scale decreases can be explained by the shedding of two boundary layers at the top and bottom of the dipole that literally peel off vorticity layers. Horizontal advection and vertical diffusion cooperate in this regime and the decrease towards the viscous vertical length scale delta = L_hRe(-1/2) occurs on a time scale alpha_0 Re(1/2) T_A, T_A being the advection time L_h/U. From a scaling analysis of the equations for a stratified viscous fluid in the Boussinesq approximation, two dominant balances depending on the parameter R = ReF_h(2) are discussed, where F_h = U/NL_h is the horizontal Froude number and Re = UL_h/nu is the Reynolds number, U, N and nu being, respectively, the translation speed of the dipole, the Brunt Väisälä frequency and the kinematic viscosity. When R≫ 1 the vertical length scale is determined by buoyancy effects to be of order L_b = U/N. The experiments presented in this paper pertain to the case of small R, where viscous effects govern the selection of the vertical length scale. We show that if initially L_v ≤ delta, the flow diffuses on the vertical (case I), while if L_v ≫ delta (case II), vertically sheared horizontal advection decreases the vertical length scale down to delta. This viscous regime may explain results from experiments and numerical simulations on the late evolution of stratified flows where the decay is observed to be independent of the buoyancy frequency N.

  9. Graphene Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko

    2015-03-01

    Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794

  10. A theory of growing crystalline nanorods - Mode I

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-08-01

    Nanorods grow in two possible modes during physical vapor deposition (PVD). In mode I, monolayer surface steps dictate the diameter of nanorods. In mode II, multiple-layer surface steps dictate the diameter, which is the smallest possible under physical vapor deposition [5,10]. This paper reports closed-form theories of terrace lengths and nanorod diameter during the growth in mode I, as a function of deposition conditions. The accompanying lattice kinetic Monte Carlo simulations verify these theories. This study reveals that (1) quasi-steady growth exists for each set of nanorod growth conditions, and (2) the characteristic length scales, including terrace lengths and nanorod diameter at the quasi-steady state, depend on the deposition conditions - deposition rate F, substrate temperature T, and incidence angle θ - only as a function of l2D/tan θ, with l2 D = 2(v2 D/Fcosθ) 1/3 as a diffusion-limited length scale and v2D as the atomic diffusion jump rate over monolayer surface steps.

  11. Earthquake nucleation on faults with rate-and state-dependent strength

    USGS Publications Warehouse

    Dieterich, J.H.

    1992-01-01

    Dieterich, J.H., 1992. Earthquake nucleation on faults with rate- and state-dependent strength. In: T. Mikumo, K. Aki, M. Ohnaka, L.J. Ruff and P.K.P. Spudich (Editors), Earthquake Source Physics and Earthquake Precursors. Tectonophysics, 211: 115-134. Faults with rate- and state-dependent constitutive properties reproduce a range of observed fault slip phenomena including spontaneous nucleation of slip instabilities at stresses above some critical stress level and recovery of strength following slip instability. Calculations with a plane-strain fault model with spatially varying properties demonstrate that accelerating slip precedes instability and becomes localized to a fault patch. The dimensions of the fault patch follow scaling relations for the minimum critical length for unstable fault slip. The critical length is a function of normal stress, loading conditions and constitutive parameters which include Dc, the characteristic slip distance. If slip starts on a patch that exceeds the critical size, the length of the rapidly accelerating zone tends to shrink to the characteristic size as the time of instability approaches. Solutions have been obtained for a uniform, fixed-patch model that are in good agreement with results from the plane-strain model. Over a wide range of conditions, above the steady-state stress, the logarithm of the time to instability linearly decreases as the initial stress increases. Because nucleation patch length and premonitory displacement are proportional to Dc, the moment of premonitory slip scales by D3c. The scaling of Dc is currently an open question. Unless Dc for earthquake faults is significantly greater than that observed on laboratory faults, premonitory strain arising from the nucleation process for earthquakes may by too small to detect using current observation methods. Excluding the possibility that Dc in the nucleation zone controls the magnitude of the subsequent earthquake, then the source dimensions of the smallest earthquakes in a region provide an upper limit for the size of the nucleation patch. ?? 1992.

  12. Effective temperatures of red giants in the APOKASC catalogue and the mixing length calibration in stellar models

    NASA Astrophysics Data System (ADS)

    Salaris, M.; Cassisi, S.; Schiavon, R. P.; Pietrinferni, A.

    2018-04-01

    Red giants in the updated APOGEE-Kepler catalogue, with estimates of mass, chemical composition, surface gravity and effective temperature, have recently challenged stellar models computed under the standard assumption of solar calibrated mixing length. In this work, we critically reanalyse this sample of red giants, adopting our own stellar model calculations. Contrary to previous results, we find that the disagreement between the Teff scale of red giants and models with solar calibrated mixing length disappears when considering our models and the APOGEE-Kepler stars with scaled solar metal distribution. However, a discrepancy shows up when α-enhanced stars are included in the sample. We have found that assuming mass, chemical composition and effective temperature scale of the APOGEE-Kepler catalogue, stellar models generally underpredict the change of temperature of red giants caused by α-element enhancements at fixed [Fe/H]. A second important conclusion is that the choice of the outer boundary conditions employed in model calculations is critical. Effective temperature differences (metallicity dependent) between models with solar calibrated mixing length and observations appear for some choices of the boundary conditions, but this is not a general result.

  13. Measurement of Two-Plasmon-Decay Dependence on Plasma Density Scale Length

    NASA Astrophysics Data System (ADS)

    Haberberger, D.

    2013-10-01

    An accurate understanding of the plasma scale-length (Lq) conditions near quarter-critical density is important in quantifying the hot electrons generated by the two-plasmon-decay (TPD) instability in long-scale-length plasmas. A novel target platform was developed to vary the density scale length and an innovative diagnostic was implemented to measure the density profiles above 1021 cm-3 where TPD is expected to have the largest growth. A series of experiments was performed using the four UV (351-nm) beams on OMEGA EP that varied the Lq by changing the radius of curvature of the target while maintaining a constant Iq/Tq. The fraction of laser energy converted to hot electrons (fhot) was observed to increase rapidly from 0.005% to 1% by increasing the plasma scale length from 130 μm to 300 μm, corresponding to target diameters of 0.4 mm to 8 mm. A new diagnostic was developed based on refractometry using angular spectral filters to overcome the large phase accumulation in standard interferometric techniques. The angular filter refractometer measures the refraction angles of a 10-ps, 263-nm probe laser after propagating through the plasma. An angular spectral filter is used in the Fourier plane of the probe beam, where the refractive angles of the rays are mapped to space. The edges of the filter are present in the image plane and represent contours of constant refraction angle. These contours are used to infer the phase of the probe beam, which are used to calculate the plasma density profile. In long-scale-length plasmas, the diagnostic currently measures plasma densities from ~1019 cm-3 to ~2 × 1021 cm-3. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with D. H. Edgell, S. X. Hu, S. Ivancic, R. Boni, C. Dorrer, and D. H. Froula (Laboratory for Laser Energetics, U. of Rochester).

  14. Competition of mesoscales and crossover to theta-point tricriticality in near-critical polymer solutions.

    PubMed

    Anisimov, M A; Kostko, A F; Sengers, J V; Yudin, I K

    2005-10-22

    The approach to asymptotic critical behavior in polymer solutions is governed by a competition between the correlation length of critical fluctuations diverging at the critical point of phase separation and an additional mesoscopic length scale, the radius of gyration. In this paper we present a theory for crossover between two universal regimes: a regime with Ising (fluctuation-induced) asymptotic critical behavior, where the correlation length prevails, and a mean-field tricritical regime with theta-point behavior controlled by the mesoscopic polymer chain. The theory yields a universal scaled description of existing experimental phase-equilibria data and is in excellent agreement with our light-scattering experiments on polystyrene solutions in cyclohexane with polymer molecular weights ranging from 2 x 10(5) up to 11.4 x 10(6). The experiments demonstrate unambiguously that crossover to theta-point tricriticality is controlled by a competition of the two mesoscales. The critical amplitudes deduced from our experiments depend on the polymer molecular weight as predicted by de Gennes [Phys. Lett. 26A, 313 (1968)]. Experimental evidence for the presence of logarithmic corrections to mean-field tricritical theta-point behavior in the molecular-weight dependence of the critical parameters is also presented.

  15. Magnesite Dissolution Rates Across Scales: Role of Spatial Heterogeneity, Equilibrium Lengths, and Reactive Time Scales

    NASA Astrophysics Data System (ADS)

    Wen, H.; Li, L.

    2017-12-01

    This work develops a general rate law for magnesite dissolution in heterogeneous media under variable flow and length conditions, expanding the previous work under one particular flow and length conditions (Wen and Li, 2017). We aim to answer: 1) How does spatial heterogeneity influence the time and length scales to reach equilibrium? 2) How do relative timescales of advection, diffusion/dispersion, and reactions influence dissolution rates under variable flow and length conditions? We carried out 640 Monte-Carlo numerical experiments of magnesite dissolution within quartz matrix with heterogeneity characterized by permeability variance and correlation length under a range of length and flow velocity. A rate law Rhete = kAT(1-exp(τeq,m/τa))(1-exp(- Lβ))^α was developed. The former part is rates in equivalent homogeneous media kAT(1-exp(τeq,m/τa)), depending on rate constant k, magnesite surface area AT, and relative timescales of reactions τeq,m and advection τa. The latter term (1-exp(- Lβ))^α is the heterogeneity factor χ that quantifies the deviation of heterogeneous media from its homogeneous counterpart. The term has a scaling factor, called reactive transport number β=τa/(τad,r+τeq,m), for domain length L, and the geostatistical characteristics of heterogeneity α. The β quantifies the relative timescales of advection at the domain scale τa versus the advective-diffusive-dispersive transport time out of reactive zones τad,r and reaction time τeq,m. The χ is close to 1 and is insignificant under long residence time conditions (low flow velocity and / or long length) where the residence time is longer than the time needed for Mg to dissolve and transport out of reactive zones (τad,r+τeq,m) so that equilibrium is reached and homogenization occurs. In contrast, χ deviates from 1 and is significant only when β is small, which occurs at short length or fast flow where timescales of reactive transport in reactive zones are much longer than the global residence time so that reactive transport is the limiting step. These findings demonstrate that dissolution rates in heterogeneous media reach asymptotic values in homogeneous media at "sufficiently" long lengths. Wen, H. and Li, L. (2017) An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochimica et Cosmochimica Acta 210, 289-305.

  16. Scale effects in crystal plasticity

    NASA Astrophysics Data System (ADS)

    Padubidri Janardhanachar, Guruprasad

    The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.

  17. Magnetic exchange coupling through superconductors : a trilayer study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa de Melo, C. A. R.; Materials Science Division

    1997-09-08

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less

  18. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  19. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  20. Buckling and postbuckling of size-dependent cracked microbeams based on a modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Akbarzadeh Khorshidi, M.; Shariati, M.

    2017-07-01

    The elastic buckling analysis and the static postbuckling response of the Euler-Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.

  1. Wigner distribution function and kurtosis parameter of vortex beams propagating through turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Suo, Qiangbo; Han, Yiping; Cui, Zhiwei

    2017-09-01

    Based on the extended Huygens-Fresnel integral, the analytical expressions for the Wigner distribution function (WDF) and kurtosis parameter of partially coherent flat-topped vortex (PCFTV) beams propagating through atmospheric turbulence and free space are derived. The WDF and kurtosis parameter of PCFTV beams through turbulent atmosphere are discussed with numerical examples. The numerical results show that the beam quality depends on the structure constants, the inner scale turbulence, the outer scale turbulence, the spatial correlation length, the wave length and the beam order. PCFTV beams are less affected by turbulence than partially flat-topped coherent (PCFT) beams under the same conditions, and will be useful in free-space optical communications.

  2. Studies of Shock Wave Interactions with Homogeneous and Isotropic Turbulence

    NASA Technical Reports Server (NTRS)

    Briassulis, G.; Agui, J.; Watkins, C. B.; Andreopoulos, Y.

    1998-01-01

    A nearly homogeneous nearly isotropic compressible turbulent flow interacting with a normal shock wave has been studied experimentally in a large shock tube facility. Spatial resolution of the order of 8 Kolmogorov viscous length scales was achieved in the measurements of turbulence. A variety of turbulence generating grids provide a wide range of turbulence scales. Integral length scales were found to substantially decrease through the interaction with the shock wave in all investigated cases with flow Mach numbers ranging from 0.3 to 0.7 and shock Mach numbers from 1.2 to 1.6. The outcome of the interaction depends strongly on the state of compressibility of the incoming turbulence. The length scales in the lateral direction are amplified at small Mach numbers and attenuated at large Mach numbers. Even at large Mach numbers amplification of lateral length scales has been observed in the case of fine grids. In addition to the interaction with the shock the present work has documented substantial compressibility effects in the incoming homogeneous and isotropic turbulent flow. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A mechanism possibly responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid.

  3. Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.

    The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less

  4. On effects of topography in rotating flows

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Noir, Jerome; Jackson, Andrew

    2017-11-01

    Both, seismological studies and geodynamic arguments suggest that there is significant topography at the core mantle boundary (CMB). This leads to the question whether the topography of the CMB could influence the flow in the Earth's outer core. As a preliminary experiment, we investigate the effects of bottom topography in the so-called Spin-Up, where motion of a contained fluid is created by a sudden increase of rotation rate. Experiments are performed in a cylindrical container mounted on a rotating table and quantitative results are obtained with particle image velocimetry. Several horizontal length scales of topography (λ) are investigated, ranging from cases where λ is much smaller then the lateral extend of the experiment (R) to cases where λ is a fraction of R. We find that there is an optimal λ that creates maximum dissipation of kinetic energy. Depending on the length scale of the topography, kinetic energy is either dissipated in the boundary layer or in the bulk of the fluid. Two different phases of fluid motion are present: a starting flow in the from of solid rotation (phase I), which is later replaced by meso scale vortices on the length scale of bottom topography (phase II).

  5. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.

    PubMed

    Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A

    2014-09-01

    The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.

  6. Identifying the source of super-high energetic electrons in the presence of pre-plasma in laser–matter interaction at relativistic intensities

    DOE PAGES

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; ...

    2016-10-03

    The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser–matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling lawmore » is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.« less

  7. 2D scaling behavior of nanotextured GaN surfaces: A case study of hillocked and terraced surfaces

    NASA Astrophysics Data System (ADS)

    Mutta, Geeta Rani; Carapezzi, Stefania

    2018-07-01

    The 2D scaling properties of GaN surfaces have been studied by means of the 2D height-height correlation function (HHCF). The GaN layers under investigation presented exemplar morphologies, generated by distinct growth methods: a molecular beam epitaxy (MBE) grown surface decorated by hillocks and a metal organic vapor phase epitaxy (MOVPE) grown surface with terraced structure. The 2D statistical analysis of these surfaces has allowed assessing quantitatively the degree of morphological variability along all the different directions across each surface, their corresponding roughness exponents and correlation lengths. A scaling anisotropy as well as correlation length anisotropy has been detected for both hillocked and terraced surfaces. Especially, a marked dependence of correlation length from the direction across the terraced surface has been observed. Additionally, the terraced surfaces showed the lower root mean square (RMS) roughness value and at the same time, the lower roughness exponent value. This could appear as a contradiction, given that a low RMS value is associated to a smooth surface, and usually the roughness exponent is interpreted as a "measure" of the smoothness of the surface, the smoother the surface, the higher (approaching the unity) is the roughness exponent. Our case study is an experimental demonstration in which the roughness exponent should be, more appropriately, interpreted as a quantification of how the roughness changes with length scale.

  8. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Shirani, E.; Ferziger, J. H.; Reynolds, W. C.

    1981-01-01

    In order to calculate the velocity and scalar fields, the three dimensional, time-dependent equations of motion and the diffusion equation were solved numerically. The following cases were treated: isotropic, homogeneous turbulence with decay of a passive scalar; and homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction. The solutions were obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling. Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale, one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents were calculated. The results are compared with the available expermental results, and good agreement is obtained.

  9. Rupture dynamics along bimaterial interfaces: a parametric study of the coupling between interfacial sliding and normal traction perturbation

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Festa, Gaetano; Vilotte, Jean-Pierre

    2017-04-01

    Earthquake ruptures often develop along faults separating materials with dissimilar elastic properties. Due to the broken symmetry, the propagation of the rupture along the bimaterial interface is driven by the coupling between interfacial sliding and normal traction perturbations. We numerically investigate in-plane rupture growth along a planar interface, under slip weakening friction, separating two dissimilar isotropic linearly elastic half-spaces. We perform a parametric study of the classical Prakash-Clifton regularisation for different material contrasts. In particular mesh-dependence and regularisation-dependence of the numerical solutions are analysed in this parameter space. When regularisation involves a slip-rate dependent relaxation time, a characteristic sliding distance is identified below which numerical solutions no longer depend on the regularisation parameter, i.e. they are consistent solutions of the same physical problem. Such regularisation provides an adaptive high-frequency filter of the slip-induced normal traction perturbations, following the dynamic shrinking of the dissipation zone during the acceleration phase. In contrast, regularisation involving a constant relaxation time leads to numerical solutions that always depend on the regularisation parameter since it fails adapting to the shrinking of the process zone. Dynamic regularisation is further investigated using a non-local regularisation based on a relaxation time that depends on the dynamic length of the dissipation zone. Such reformulation is shown to provide similar results as the dynamic time scale regularisation proposed by Prakash-Clifton when slip rate is replaced by the maximum slip rate along the sliding interface. This leads to the identification of a dissipative length scale associated with the coupling between interfacial sliding and normal traction perturbations, together with a scaling law between the maximum slip rate and the dynamic size of the process zone during the rupture propagation. Dynamic time scale regularisation is show to provide mesh-independent and physically well-posed numerical solutions during the acceleration phase toward an asymptotic speed. When generalised Rayleigh wave does not exist, numerical solutions are shown to tend toward an asymptotic velocity higher than the slowest shear wave speed. When generalised Rayleigh wave speed exists, as numerical solutions tend toward this velocity, increasing spurious oscillations develop and solutions become unstable. In this regime regularisation dependent and unstable finite-size pulses may be generated. This instability is associated with the singular behaviour of the slip-induced normal traction perturbations, and of the slip rate at the rupture front, in relation with complete shrinking of the dissipation zone. This phase requires to be modelled either by more complex interface constitutive laws involving velocity-strengthening effects that may stabilize short wavelength interfacial propagating modes or by considering non-ideal interfaces that introduce a new length scale in the problem that may promote selection and stabilization of the slip pulses.

  10. Temporal and Latitudinal Variations of the Length-Scales and Relative Intensities of the Chromospheric Network

    NASA Astrophysics Data System (ADS)

    Raju, K. P.

    2018-05-01

    The Calcium K spectroheliograms of the Sun from Kodaikanal have a data span of about 100 years and covers over 9 solar cycles. The Ca line is a strong chromospheric line dominated by chromospheric network and plages which are good indicators of solar activity. Length-scales and relative intensities of the chromospheric network have been obtained in the solar latitudes from 50 degree N to 50 degree S from the spectroheliograms. The length-scale was obtained from the half-width of the two-dimensional autocorrelation of the latitude strip which gives a measure of the width of the network boundary. As reported earlier for the transition region extreme ultraviolet (EUV) network, relative intensity and width of the chromospheric network boundary are found to be dependent on the solar cycle. A varying phase difference has been noticed in the quantities in different solar latitudes. A cross-correlation analysis of the quantities from other latitudes with ±30 degree latitude revealed an interesting phase difference pattern indicating flux transfer. Evidence of equatorward flux transfer has been observed. The average equatorward flux transfer was estimated to be 5.8 ms-1. The possible reasons of the drift could be meridional circulation, torsional oscillations, or the bright point migration. Cross-correlation of intensity and length-scale from the same latitude showed increasing phase difference with increasing latitude. We have also obtained the cross correlation of the quantities across the equator to see the possible phase lags in the two hemispheres. Signatures of lags are seen in the length scales of southern hemisphere near the equatorial latitudes, but no such lags in the intensity are observed. The results have important implications on the flux transfer over the solar surface and hence on the solar activity and dynamo.

  11. Gradient Flow and Scale Setting on MILC HISQ Ensembles

    DOE PAGES

    Bazavov, A.; Bernard, C.; Brown, N.; ...

    2016-05-25

    We report on a scale determination with gradient-flow techniques on the N f = 2 + 1 + 1 HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from approximately 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales p √t 0/a and w 0/a and their tree-level improvements,√t 0;imp and w 0;imp, are computed on each ensemble using Symanzik ow and the cloverleaf definition of the energy density E. Using a combination of continuum chiral perturbation theory and a Taylor-series ansatz for the lattice-spacing and strong-coupling dependence,more » the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. We also determine the scales p t 0 = 0:1416( +8 -5) fm and w 0 = 0:1717( +12 -11) fm, where the errors are sums, in quadrature, of statistical and all systematic errors. The precision of w 0 and √t 0 is comparable to or more precise than the best previous estimates, respectively. We also find the continuum mass-dependence of w 0 that will be useful for estimating the scales of other ensembles. Furthermore, we estimate the integrated autocorrelation length of . For long flow times, the autocorrelation length of appears to be comparable to or smaller than that of the topological charge.« less

  12. Dynamics of microemulsions bridged with hydrophobically end-capped star polymers studied by neutron spin-echo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, I., E-mail: ingo.hoffmann@tu-berlin.de; Institut Max von Laue-Paul Langevin; Malo de Molina, Paula

    2014-01-21

    The mesoscopic dynamical properties of oil-in-water microemulsions (MEs) bridged with telechelic polymers of different number of arms and with different lengths of hydrophobic stickers were studied with neutron spin-echo (NSE) probing the dynamics in the size range of individual ME droplets. These results then were compared to those of dynamicic light scattering (DLS) which allow to investigate the dynamics on a much larger length scale. Studies were performed as a function of the polymer concentration, number of polymer arms, and length of the hydrophobic end-group. In general it is observed that the polymer bridging has a rather small influence onmore » the local dynamics, despite the fact that the polymer addition leads to an increase of viscosity by several orders of magnitude. In contrast to results from rheology and DLS, where the dynamics on much larger length and time scales are observed, NSE shows that the linear polymer is more efficient in arresting the motion of individual ME droplets. This finding can be explained by a simple simulation, merely by the fact that the interconnection of droplets becomes more efficient with a decreasing number of arms. This means that the dynamics observed on the short and on the longer length scale depend in an opposite way on the number of arms and hydrophobic stickers.« less

  13. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    NASA Astrophysics Data System (ADS)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.

  14. Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies

    NASA Astrophysics Data System (ADS)

    Majetich, Sara

    2009-03-01

    Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).

  15. Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface

    NASA Astrophysics Data System (ADS)

    Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta

    2015-12-01

    A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.

  16. Length-Scale Effects and Material Models at Numerical Simulations of Nanoindentation of A Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Avdjieva, T.; Altaparmakov, I.

    2014-06-01

    Some specially designed metallic alloys crystallize during process of rapid quenching which aims their amorphization. Nevertheless, change in their mechanical properties could be seen compared to these obtained during conventional technological regimes of cooling. That attracts the attention in this elaboration. Full 3-D numerical simulations of nanoindentation process of two material models are performed. The models reflect equivalent elastic and different plastic material properties. The plastic behaviour of the first one is subjected to yield criterion of Dracker-Prager and this of the second one to yield criterion of Mises. The reported numerical results depending on the nanoindentation scale length of 1000 nanometers, suggest different adequacy of the two yield criteria to the data obtained experimentally with a Zr-Al-Cu-Ni-Mo alloy. It could be speculated that the different effects developed depending on the indenter travel of 1000 nanometers and taken into account in the two yield criteria stand behind this fact and determinate three structural levels of plastic deformation.

  17. Rethinking the theoretical description of photoluminescence in compound semiconductors

    NASA Astrophysics Data System (ADS)

    Valkovskii, V.; Jandieri, K.; Gebhard, F.; Baranovskii, S. D.

    2018-02-01

    Semiconductor compounds, such as Ga(NAsP)/GaP or GaAsBi/GaAs, are in the focus of intensive research due to their unique features for optoelectronic devices. The optical spectra of compound semiconductors are strongly influenced by the random scattering potentials caused by compositional and structural disorder. The disorder potential is responsible for the red-shift (Stokes shift) of the photoluminescence (PL) peak and for the inhomogeneous broadening of the PL spectra. So far, the anomalous broadening of the PL spectra in Ga(NAsP)/GaP has been explained assuming two coexisting length scales of disorder. However, this interpretation appears in contradiction to the recently observed dependence of the PL linewidth on the excitation intensity. We suggest an alternative approach that describes the PL characteristics in the framework of a model with a single length scale of disorder. The price is the assumption of two types of localized states with different, temperature-dependent non-radiative recombination rates.

  18. Interaction of nanoparticles with lipid membranes: a multiscale perspective

    NASA Astrophysics Data System (ADS)

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-05-01

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon. Electronic supplementary information (ESI) available: All the experimental details, figures and tables. See DOI: 10.1039/c4nr00838c

  19. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  20. Are X-rays the key to integrated computational materials engineering?

    DOE PAGES

    Ice, Gene E.

    2015-11-01

    The ultimate dream of materials science is to predict materials behavior from composition and processing history. Owing to the growing power of computers, this long-time dream has recently found expression through worldwide excitement in a number of computation-based thrusts: integrated computational materials engineering, materials by design, computational materials design, three-dimensional materials physics and mesoscale physics. However, real materials have important crystallographic structures at multiple length scales, which evolve during processing and in service. Moreover, real materials properties can depend on the extreme tails in their structural and chemical distributions. This makes it critical to map structural distributions with sufficient resolutionmore » to resolve small structures and with sufficient statistics to capture the tails of distributions. For two-dimensional materials, there are high-resolution nondestructive probes of surface and near-surface structures with atomic or near-atomic resolution that can provide detailed structural, chemical and functional distributions over important length scales. Furthermore, there are no nondestructive three-dimensional probes with atomic resolution over the multiple length scales needed to understand most materials.« less

  1. Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul

    2013-10-01

    An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less

  2. A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.

    1986-01-01

    Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.

  3. [Geographic variation of seed morphological traits of Picea schrenkiana var. tianschanica in Tianshan Mountains, Xinjiang of Northwest China].

    PubMed

    Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi

    2012-06-01

    Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.

  4. Shape dependence of slip length on patterned hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Gu, Xiaokun; Chen, Min

    2011-08-01

    The effects of solid-liquid interfacial shape on the boundary velocity slip of patterned hydrophobic surfaces are investigated. The scaling law in literature is extended to demonstrate the role of such shape, indicating a decrease of the effective slip length with increasing interfacial roughness. A patterned surface with horizontally aligned carbon nanotube arrays reaches an effective slip length of 83 nm, by utilizing large intrinsic slippage of carbon nanotube while keeping away from the negative effects of interfacial curvature through the flow direction. The results emphasize the importance of avoiding the solid-liquid interfacial roughness in low-friction patterned surface design and manufacture.

  5. Mechanical biocompatibility of highly deformable biomedical materials.

    PubMed

    Mazza, Edoardo; Ehret, Alexander E

    2015-08-01

    Mismatch of mechanical properties between highly deformable biomedical materials and adjacent native tissue might lead to short and long term health impairment. The capability of implants to deform at the right level, i.e. similar to the macroscopic mechanical response of the surrounding biological materials, is often associated with dissimilar microstructural deformation mechanisms. This mismatch on smaller length scales might lead to micro-injuries, cell damage, inflammation, fibrosis or necrosis. Hence, the mechanical biocompatibility of soft implants depends not only on the properties and composition of the implant material, but also on its organization, distribution and motion at one or several length scales. The challenges related to the analysis and attainment of mechanical biocompatibility are illustrated with two examples: prosthetic meshes for hernia and pelvic repair and electrospun scaffolds for tissue engineering. For these material systems we describe existing methods for characterization and analysis of the non-linear response to uniaxial and multiaxial stress states, its time and history dependence, and the changes in deformation behavior associated with tissue in-growth and material resorption. We discuss the multi-scale deformation behavior of biomaterials and adjacent tissue, and indicate major interdisciplinary questions to be addressed in future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Telomere length in alcohol dependence: A role for impulsive choice and childhood maltreatment.

    PubMed

    Kang, Jee In; Hwang, Syung Shick; Choi, Jong Rak; Lee, Seung-Tae; Kim, Jieun; Hwang, In Sik; Kim, Hae Won; Kim, Chan-Hyung; Kim, Se Joo

    2017-09-01

    Telomere shortening, a marker of cellular aging, has been considered to be linked with psychosocial stress as well as with chronic alcohol consumption, possibly mediated by oxidative stress and inflammatory response. Recent findings suggested that early life adversity on telomere dynamics may be related to impulsive choice. To further our understanding of the association of impulsive choice and childhood trauma on telomere length, we examined whether delayed discounting and childhood trauma or their interaction is related to leukocyte telomere length, while controlling for multiple potential confounding variables, in patients with alcohol dependence who are considered to have higher impulsive choice and shorter telomere length. We recruited 253 male patients with chronic alcohol dependence. All participants performed the delay discounting task, and the area under curve was used as a measure of delay discounting. Steeper delay discounting represents more impulsive choices. The modified Parent-Child Conflict Tactics Scale was used to measure childhood maltreatment. In addition, confounding factors, including socio-demographic characteristics, the Alcohol Use Disorders Identification Test, the Buss-Perry Aggression Questionnaire, the Resilience Quotient, the Beck Depression Inventory, and the Beck Anxiety Inventory, were also assessed. Hierarchical regression analyses showed a significant main effect of delay discounting (β=0.161, t=2.640, p=0.009), and an interaction effect between delay discounting and childhood maltreatment on leukocyte telomere length (β=0.173, t=2.138, p=0.034). In subsequent analyses stratified by childhood maltreatment, patients with alcohol dependence and high childhood trauma showed a significant relationship between delay discounting and leukocyte telomere length (β=0.279, t=3.183, p=0.002), while those with low trauma showed no association between them. Our findings suggest that higher impulsive choice is associated with shorter telomere length, and childhood trauma may exert a moderating effect in the relationship between impulsive choice and telomere length. Copyright © 2017. Published by Elsevier Ltd.

  7. Relativity of Scales: Application to AN Endo-Perspective of Temporal Structures

    NASA Astrophysics Data System (ADS)

    Nottale, Laurent; Timar, Pierre

    The theory of scale relativity is an extension of the principle of relativity to scale transformations of the reference system, in a fractal geometry framework where coordinates become explicitly dependent on resolutions. Applied to an observer perspective, it means that the scales of length and of time, usually attributed to the observed object as being intrinsic to it, have actually no existence by themselves, since only the ratio between an external scale and an internal scale, which serves as unit, is meaningful. Oliver Sacks' observations on patients suffering from temporal and spatial distortions in Parkinson's and encephalitis lethargica disease offer a particularly relevant field of application for such a scale-relativistic view.

  8. Role of Thickness Confinement on Relaxations of the Fast Component in a Miscible A/B Blend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Peter; Sharma, Ravi P.; Dong, Ban Xuan

    Spatial compositional heterogeneity strongly influences the dynamics of the A and B components of bulk miscible blends. Its effects are especially apparent in mixtures, such as poly(vinyl methyl ether) (PVME)/polystyrene (PS), where there exist significant disparities between the component glass transition temperatures (Tgs) and relaxation times. The relaxation processes characterized by distinct temperature dependencies and relaxation rates manifest different local compositional environments for temperatures above and below the glass transition temperature of the miscible blend. This same behavior is shown to exist in miscible PS/PVME films as thin as 100 nm. Moreover, in thin films, the characteristic segmental relaxation timesmore » t of the PVME component of miscible PVME/PS blends confined between aluminum (Al) substrates decrease with increasing molecular weight M of the PS component. These relaxation rates are film thickness dependent, in films up to a few hundred nanometers in thickness. This is in remarkable contrast to homopolymer films, where thickness confinement effects are apparent only on length scales on the order of nanometers. These surprisingly large length scales and M dependence are associated with the preferential interfacial enrichment - wetting layer formation - of the PVME component at the external Al interfaces, which alters the local spatial blend composition within the interior of the film. The implications are that the dynamics of miscible thin film blends are dictated in part by component Tg differences, disparities in component relaxation rates, component-substrate interactions, and chain lengths (entropy of mixing).« less

  9. Sound radiation from a subsonic rotor subjected to turbulence

    NASA Technical Reports Server (NTRS)

    Sevik, M.

    1974-01-01

    The broadband sound radiated by a subsonic rotor subjected to turbulence in the approach stream has been analyzed. The power spectral density of the sound intensity has been found to depend on a characteristic time scale-namely, the integral scale of the turbulence divided by the axial flow velocity-as well as several length-scale ratios. These consist of the ratio of the integral scale to the acoustic wavelength, rotor radius, and blade chord. Due to the simplified model chosen, only a limited number of cascade parameters appear. Limited comparisons with experimental data indicate good agreement with predicted values.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  11. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers

    PubMed Central

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J.

    2013-01-01

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior. PMID:24062459

  12. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers.

    PubMed

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew J

    2013-10-08

    Existing models for the electronic properties of conjugated polymers do not capture the spatial arrangement of the disordered macromolecular chains over which charge transport occurs. Here, we present an analytical and computational description in which the morphology of individual polymer chains is dictated by well-known statistical models and the electronic coupling between units is determined using Marcus theory. The multiscale transport of charges in these materials (high mobility at short length scales, low mobility at long length scales) is naturally described with our framework. Additionally, the dependence of mobility with electric field and temperature is explained in terms of conformational variability and spatial correlation. Our model offers a predictive approach to connecting processing conditions with transport behavior.

  13. BMP4 density gradient in disk-shaped confinement

    NASA Astrophysics Data System (ADS)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.

  14. A limit on the variation of the speed of light arising from quantum gravity effects

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-10-28

    A cornerstone of Einstein's special relativity is Lorentz invariance—the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l Planck ≈ 1.62 x 10 -33 cm or E Planck = M Planckc 2 ≈ 1.22 x 10 19 GeV), at which quantum effects are expected to strongly affect the nature of space–time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale.more » A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in γ-ray burst (GRB) light-curves. In this paper, we report the detection of emission up to ~31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E Planck on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l Planck/1.2 on the length scale of the effect). Finally, our results disfavour quantum-gravity theories in which the quantum nature of space–time on a very small scale linearly alters the speed of light.« less

  15. A limit on the variation of the speed of light arising from quantum gravity effects.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Asano, K; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Bhat, P N; Bissaldi, E; Bloom, E D; Bonamente, E; Bonnell, J; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Briggs, M S; Brigida, M; Bruel, P; Burgess, J M; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chaplin, V; Charles, E; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Connaughton, V; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dingus, B L; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Fishman, G; Focke, W B; Foschini, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Gibby, L; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Granot, J; Greiner, J; Grenier, I A; Grondin, M-H; Grove, J E; Grupe, D; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hoversten, E A; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Kippen, R M; Knödlseder, J; Kocevski, D; Kouveliotou, C; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McBreen, S; McEnery, J E; McGlynn, S; Mészáros, P; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Moretti, E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paciesas, W S; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Petrosian, V; Piron, F; Porter, T A; Preece, R; Rainò, S; Ramirez-Ruiz, E; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Stamatikos, M; Stecker, F W; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Toma, K; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Uehara, T; Usher, T L; van der Horst, A J; Vasileiou, V; Vilchez, N; Vitale, V; von Kienlin, A; Waite, A P; Wang, P; Wilson-Hodge, C; Winer, B L; Wood, K S; Wu, X F; Yamazaki, R; Ylinen, T; Ziegler, M

    2009-11-19

    A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

  16. Time and length scales within a fire and implications for numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less

  17. Spectroscopic measurement of spin-dependent resonant tunneling through a 3D disorder: the case of MnAs/GaAs/MnAs junctions.

    PubMed

    Garcia, V; Jaffrès, H; George, J-M; Marangolo, M; Eddrief, M; Etgens, V H

    2006-12-15

    We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.

  18. Size effects in olivine control strength in low-temperature plasticity regime

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Thom, C.; Wallis, D.; Hansen, L. N.; Armstrong, D. E. J.; Goldsby, D. L.; Warren, J. M.; Wilkinson, A. J.

    2017-12-01

    The strength of the lithospheric mantle during deformation by low-temperature plasticity controls a range of geological phenomena, including lithospheric-scale strain localization, the evolution of friction on deep seismogenic faults, and the flexure of tectonic plates. However, constraints on the strength of olivine in this deformation regime are difficult to obtain from conventional rock-deformation experiments, and previous results vary considerably. We demonstrate via nanoindentation that the strength of olivine in the low-temperature plasticity regime is dependent on the length-scale of the test, with experiments on smaller volumes of material exhibiting larger yield stresses. This "size effect" has previously been explained in engineering materials as a result of the role of strain gradients and associated geometrically necessary dislocations in modifying plastic behavior. The Hall-Petch effect, in which a material with a small grain size exhibits a higher strength than one with a large grain size, is thought to arise from the same mechanism. The presence of a size effect resolves discrepancies among previous experimental measurements of olivine, which were either conducted using indentation methods or were conducted on polycrystalline samples with small grain sizes. An analysis of different low-temperature plasticity flow laws extrapolated to room temperature reveals a power-law relationship between length-scale (grain size for polycrystalline deformation and contact radius for indentation tests) and yield strength. This suggests that data from samples with large inherent length scales best represent the plastic strength of the coarse-grained lithospheric mantle. Additionally, the plastic deformation of nanometer- to micrometer-sized asperities on fault surfaces may control the evolution of fault roughness due to their size-dependent strength.

  19. Orientation and size-dependent mechanical modulation within individual secondary osteons in cortical bone tissue

    PubMed Central

    Carnelli, Davide; Vena, Pasquale; Dao, Ming; Ortiz, Christine; Contro, Roberto

    2013-01-01

    Anisotropy is one of the most peculiar aspects of cortical bone mechanics; however, its anisotropic mechanical behaviour should be treated only with strict relationship to the length scale of investigation. In this study, we focus on quantifying the orientation and size dependence of the spatial mechanical modulation in individual secondary osteons of bovine cortical bone using nanoindentation. Tests were performed on the same osteonal structure in the axial (along the long bone axis) and transverse (normal to the long bone axis) directions along arrays going radially out from the Haversian canal at four different maximum depths on three secondary osteons. Results clearly show a periodic pattern of stiffness with spatial distance across the osteon. The effect of length scale on lamellar bone anisotropy and the critical length at which homogenization of the mechanical properties occurs were determined. Further, a laminate-composite-based analytical model was applied to the stiffness trends obtained at the highest spatial resolution to evaluate the elastic constants for a sub-layer of mineralized collagen fibrils within an osteonal lamella on the basis of the spatial arrangement of the fibrils. The hierarchical arrangement of lamellar bone is found to be a major determinant for modulation of mechanical properties and anisotropic mechanical behaviour of the tissue. PMID:23389895

  20. Dark-field X-ray microscopy for multiscale structural characterization

    NASA Astrophysics Data System (ADS)

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof.

  1. Implication of Tsallis entropy in the Thomas–Fermi model for self-gravitating fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ourabah, Kamel; Tribeche, Mouloud, E-mail: mouloudtribeche@yahoo.fr

    The Thomas–Fermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the Fermi–Dirac distribution function, a generalized Thomas–Fermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans’ instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans’ wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: •Thomas–Fermi approach for self-gravitatingmore » fermions. •A generalized Thomas–Fermi equation is derived. •Nonextensivity preserves a scaling property of this equation. •Nonextensive approach to Jeans’ instability of self-gravitating fermions. •It is found that nonextensivity makes the Fermionic system unstable at shorter scales.« less

  2. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.

    Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less

  3. Quantifying Diapycnal Mixing in an Energetic Ocean

    NASA Astrophysics Data System (ADS)

    Ivey, Gregory N.; Bluteau, Cynthia E.; Jones, Nicole L.

    2018-01-01

    Turbulent diapycnal mixing controls global circulation and the distribution of tracers in the ocean. For turbulence in stratified shear flows, we introduce a new turbulent length scale Lρ dependent on χ. We show the flux Richardson number Rif is determined by the dimensionless ratio of three length scales: the Ozmidov scale LO, the Corrsin shear scale LS, and Lρ. This new model predicts that Rif varies from 0 to 0.5, which we test primarily against energetic field observations collected in 100 m of water on the Australian North West Shelf (NWS), in addition to laboratory observations. The field observations consisted of turbulence microstructure vertical profiles taken near moored temperature and velocity turbulence time series. Irrespective of the value of the gradient Richardson number Ri, both instruments yielded a median Rif=0.17, while the observed Rif ranged from 0.01 to 0.50, in agreement with the predicted range of Rif. Using a Prandtl mixing length model, we show that diapycnal mixing Kρ can be predicted from Lρ and the background vertical shear S. Using field and laboratory observations, we show that Lρ=0.3LE where LE is the Ellison length scale. The diapycnal diffusivity can thus be calculated from Kρ=0.09LES2. This prediction agrees very well with the diapycnal mixing estimates obtained from our moored turbulence instruments for observed diffusivities as large as 10-1 m2s-1. Moorings with relatively low sampling rates can thus provide long time series estimates of diapycnal mixing rates, significantly increasing the number of diapycnal mixing estimates in the ocean.

  4. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales

    DOE PAGES

    Schuster, Benjamin S.; Allan, Daniel B.; Kays, Joshua C.; ...

    2017-05-31

    Diffusion through biological gels is crucial for effective drug delivery using nanoparticles. Here, we demonstrate a new method to measure diffusivity over a large range of length scales – from tens of nanometers to tens of micrometers – using photoactivatable fluorescent nanoparticle probes. We have applied this method to investigate the length-scale dependent mobility of nanoparticles in fibrin gels and in sputum from patients with cystic fibrosis (CF). Nanoparticles composed of poly(lactic-co-glycolic acid), with polyethylene glycol coatings to resist bioadhesion, were internally labeled with caged rhodamine to make the particles photoactivatable. We activated particles within a region of sample usingmore » brief, targeted exposure to UV light, uncaging the rhodamine and causing the particles in that region to become fluorescent. We imaged the subsequent spatiotemporal evolution in fluorescence intensity and observed the collective particle diffusion over tens of minutes and tens of micrometers. We also performed complementary multiple particle tracking experiments on the same particles, extending significantly the range over which particle motion and its heterogeneity can be observed. In fibrin gels, both methods showed an immobile fraction of particles and a mobile fraction that diffused over all measured length scales. In the CF sputum, particle diffusion was spatially heterogeneous and locally anisotropic but nevertheless typically led to unbounded transport extending tens of micrometers within tens of minutes. Lastly, these findings provide insight into the mesoscale architecture of these gels and its role in setting their permeability on physiologically relevant length scales, pointing toward strategies for improving nanoparticle drug delivery.« less

  5. Brownian dynamics simulation of amphiphilic block copolymers with different tail lengths, comparison with theory and comicelles.

    PubMed

    Hafezi, Mohammad-Javad; Sharif, Farhad

    2015-11-01

    Study on the effect of amphiphilic copolymers structure on their self assembly is an interesting subject, with important applications in the area of drug delivery and biological system treatments. Brownian dynamics simulations were performed to study self-assembly of the linear amphiphilic block copolymers with the same hydrophilic head, but hydrophobic tails of different lengths. Critical micelle concentration (CMC), gyration radius distribution, micelle size distribution, density profiles of micelles, shape anisotropy, and dynamics of micellization were investigated as a function of tail length. Simulation results were compared with predictions from theory and simulation for mixed systems of block copolymers with long and short hydrophobic tail, reported in our previous work. Interestingly, the equilibrium structural and dynamic parameters of pure and mixed block copolymers were similarly dependant on the intrinsic/apparent hydrophobic block length. Log (CMC) was, however; proportional to the tail length and had a different behavior compared to the mixed system. The power law scaling relation of equilibrium structural parameters for amphiphilic block copolymers predicts the same dependence for similar hydrophobic tail lengths, but the power law prediction of CMC is different, which is due to its simplifying assumptions as discussed here. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes

    NASA Astrophysics Data System (ADS)

    Kempf, A.; Chatwin-Davies, A.; Martin, R. T. W.

    2013-02-01

    While a natural ultraviolet cutoff, presumably at the Planck length, is widely assumed to exist in nature, it is nontrivial to implement a minimum length scale covariantly. This is because the presence of a fixed minimum length needs to be reconciled with the ability of Lorentz transformations to contract lengths. In this paper, we implement a fully covariant Planck scale cutoff by cutting off the spectrum of the d'Alembertian. In this scenario, consistent with Lorentz contractions, wavelengths that are arbitrarily smaller than the Planck length continue to exist. However, the dynamics of modes of wavelengths that are significantly smaller than the Planck length possess a very small bandwidth. This has the effect of freezing the dynamics of such modes. While both wavelengths and bandwidths are frame dependent, Lorentz contraction and time dilation conspire to make the freezing of modes of trans-Planckian wavelengths covariant. In particular, we show that this ultraviolet cutoff can be implemented covariantly also in curved spacetimes. We focus on Friedmann Robertson Walker spacetimes and their much-discussed trans-Planckian question: The physical wavelength of each comoving mode was smaller than the Planck scale at sufficiently early times. What was the mode's dynamics then? Here, we show that in the presence of the covariant UV cutoff, the dynamical bandwidth of a comoving mode is essentially zero up until its physical wavelength starts exceeding the Planck length. In particular, we show that under general assumptions, the number of dynamical degrees of freedom of each comoving mode all the way up to some arbitrary finite time is actually finite. Our results also open the way to calculating the impact of this natural UV cutoff on inflationary predictions for the cosmic microwave background.

  7. Efimov effect for heteronuclear three-body systems at positive scattering length and finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya

    2017-09-08

    Here, we study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K– 87Rb mixture and make a prediction for 6Li– 87Rb. We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can evenmore » obliterate the recombination minima associated with the Efimov effect.« less

  8. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Smith, Stephen J.; Bandler, SImon R.; Chervenak, James A.; Clem, John R.

    2009-01-01

    We have found experimentally that the critical current of a square superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. The observed behavior has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. We have observed the proximity effect in these devices over extraordinarily long lengths exceeding 100 microns.

  9. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  10. A flow resistance model for assessing the impact of vegetation on flood routing mechanics

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Poggi, Davide; Ridolfi, Luca

    2011-08-01

    The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.

  11. A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages

    NASA Technical Reports Server (NTRS)

    Kundu, Prasun K.; Bell, Thomas L.

    2003-01-01

    A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.

  12. Spatiotemporal correlation structure of the Earth's surface temperature

    NASA Astrophysics Data System (ADS)

    Fredriksen, Hege-Beate; Rypdal, Kristoffer; Rypdal, Martin

    2015-04-01

    We investigate the spatiotemporal temperature variability for several gridded instrumental and climate model data sets. The temporal variability is analysed by estimating the power spectral density and studying the differences between local and global temperatures, land and sea, and among local temperature records at different locations. The spatiotemporal correlation structure is analysed through cross-spectra that allow us to compute frequency-dependent spatial autocorrelation functions (ACFs). Our results are then compared to theoretical spectra and frequency-dependent spatial ACFs derived from a fractional stochastic-diffusive energy balance model (FEBM). From the FEBM we expect both local and global temperatures to have a long-range persistent temporal behaviour, and the spectral exponent (β) is expected to increase by a factor of two when going from local to global scales. Our comparison of the average local spectrum and the global spectrum shows good agreement with this model, although the FEBM has so far only been studied for a pure land planet and a pure ocean planet, respectively, with no seasonal forcing. Hence it cannot capture the substantial variability among the local spectra, in particular between the spectra for land and sea, and for equatorial and non-equatorial temperatures. Both models and observation data show that land temperatures in general have a low persistence, while sea surface temperatures show a higher, and also more variable degree of persistence. Near the equator the spectra deviate from the power-law shape expected from the FEBM. Instead we observe large variability at time scales of a few years due to ENSO, and a flat spectrum at longer time scales, making the spectrum more reminiscent of that of a red noise process. From the frequency-dependent spatial ACFs we observe that the spatial correlation length increases with increasing time scale, which is also consistent with the FEBM. One consequence of this is that longer-lasting structures must also be wider in space. The spatial correlation length is also observed to be longer for land than for sea. The climate model simulations studied are mainly CMIP5 control runs of length 500-1000 yr. On time scales up to several centuries we do not observe that the difference between the local and global spectral exponents vanish. This also follows from the FEBM and shows that the dynamics is spatiotemporal (not just temporal) even on these time scales.

  13. Statistical characterization of Earth’s heterogeneities from seismic scattering

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, R.

    2009-12-01

    The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.

  14. Electron critical gradient scale length measurements of ICRF heated L-mode plasmas at Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.

    2018-04-01

    A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.

  15. The small length scale effect for a non-local cantilever beam: a paradox solved.

    PubMed

    Challamel, N; Wang, C M

    2008-08-27

    Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution.

  16. The small-scale dynamo: breaking universality at high Mach numbers

    NASA Astrophysics Data System (ADS)

    Schleicher, Dominik R. G.; Schober, Jennifer; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram

    2013-02-01

    The small-scale dynamo plays a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may, in particular, lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this paper, we explore whether in this large range of conditions, universal behavior can be expected. Our starting point is previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current amplification scale, backreactions occur and the growth is shifted to the next-larger scale. We employ a Fokker-Planck model to calculate the magnetic field amplification during the nonlinear regime, and find a resulting power-law growth that depends on the type of turbulence invoked. For Kolmogorov turbulence, we confirm previous results suggesting a linear growth of magnetic energy. For more general turbulent spectra, where the turbulent velocity scales with the characteristic length scale as uℓ∝ℓϑ, we find that the magnetic energy grows as (t/Ted)2ϑ/(1-ϑ), with t being the time coordinate and Ted the eddy-turnover time on the forcing scale of turbulence. For Burgers turbulence, ϑ = 1/2, quadratic rather than linear growth may thus be expected, as the spectral energy increases from smaller to larger scales more rapidly. The quadratic growth is due to the initially smaller growth rates obtained for Burgers turbulence. Similarly, we show that the characteristic length scale of the magnetic field grows as t1/(1-ϑ) in the general case, implying t3/2 for Kolmogorov and t2 for Burgers turbulence. Overall, we find that high Mach numbers, as typically associated with steep spectra of turbulence, may break the previously postulated universality, and introduce a dependence on the environment also in the nonlinear regime.

  17. Dynamo Scaling Laws for Uranus and Neptune: The Role of Convective Shell Thickness on Dipolarity

    NASA Astrophysics Data System (ADS)

    Stanley, Sabine; Yunsheng Tian, Bob

    2017-10-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet’s magnetic field is determined by the local Rossby number (Ro_l): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Ro_l <~ 0.1 produce dipolar dominated magnetic fields whereas dynamos with Ro_l >~ 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). When these scaling laws are applied to the planets, it appears that Uranus and Neptune should have dipole-dominated fields, contrary to observations. However, those scaling laws were derived using the specific convective shell thickness of the Earth’s core. Here we investigate the role of convective shell thickness on dynamo scaling laws. We find that the local Rossby number depends exponentially on the convective shell thickness. Including this new dependence on convective shell thickness, we find that the dynamo scaling laws now predict that Uranus and Neptune reside deeply in the multipolar regime, thereby resolving the previous contradiction with observations.

  18. Is the permeability of naturally fractured rocks scale dependent?

    NASA Astrophysics Data System (ADS)

    Azizmohammadi, Siroos; Matthäi, Stephan K.

    2017-09-01

    The equivalent permeability, keq of stratified fractured porous rocks and its anisotropy is important for hydrocarbon reservoir engineering, groundwater hydrology, and subsurface contaminant transport. However, it is difficult to constrain this tensor property as it is strongly influenced by infrequent large fractures. Boreholes miss them and their directional sampling bias affects the collected geostatistical data. Samples taken at any scale smaller than that of interest truncate distributions and this bias leads to an incorrect characterization and property upscaling. To better understand this sampling problem, we have investigated a collection of outcrop-data-based Discrete Fracture and Matrix (DFM) models with mechanically constrained fracture aperture distributions, trying to establish a useful Representative Elementary Volume (REV). Finite-element analysis and flow-based upscaling have been used to determine keq eigenvalues and anisotropy. While our results indicate a convergence toward a scale-invariant keq REV with increasing sample size, keq magnitude can have multi-modal distributions. REV size relates to the length of dilated fracture segments as opposed to overall fracture length. Tensor orientation and degree of anisotropy also converge with sample size. However, the REV for keq anisotropy is larger than that for keq magnitude. Across scales, tensor orientation varies spatially, reflecting inhomogeneity of the fracture patterns. Inhomogeneity is particularly pronounced where the ambient stress selectively activates late- as opposed to early (through-going) fractures. While we cannot detect any increase of keq with sample size as postulated in some earlier studies, our results highlight a strong keq anisotropy that influences scale dependence.

  19. Overland flow connectivity on planar patchy hillslopes - modified percolation theory approaches and combinatorial model of urns

    NASA Astrophysics Data System (ADS)

    Nezlobin, David; Pariente, Sarah; Lavee, Hanoch; Sachs, Eyal

    2017-04-01

    Source-sink systems are very common in hydrology; in particular, some land cover types often generate runoff (e.g. embedded rocks, bare soil) , while other obstruct it (e.g. vegetation, cracked soil). Surface runoff coefficients of patchy slopes/plots covered by runoff generating and obstructing covers (e.g., bare soil and vegetation) depend critically on the percentage cover (i.e. sources/sinks abundance) and decrease strongly with observation scale. The classic mathematical percolation theory provides a powerful apparatus for describing the runoff connectivity on patchy hillslopes, but it ignores strong effect of the overland flow directionality. To overcome this and other difficulties, modified percolation theory approaches can be considered, such as straight percolation (for the planar slopes), quasi-straight percolation and models with limited obstruction. These approaches may explain both the observed critical dependence of runoff coefficients on percentage cover and their scale decrease in systems with strong flow directionality (e.g. planar slopes). The contributing area increases sharply when the runoff generating percentage cover approaches the straight percolation threshold. This explains the strong increase of the surface runoff and erosion for relatively low values (normally less than 35%) of the obstructing cover (e.g., vegetation). Combinatorial models of urns with restricted occupancy can be applied for the analytic evaluation of meaningful straight percolation quantities, such as NOGA's (Non-Obstructed Generating Area) expected value and straight percolation probability. It is shown that the nature of the cover-related runoff scale decrease is combinatorial - the probability for the generated runoff to avoid obstruction in unit area decreases with scale for the non-trivial percentage cover values. The magnitude of the scale effect is found to be a skewed non-monotonous function of the percentage cover. It is shown that the cover-related scale effect becomes less prominent if the obstructing capacity decreases, as generally occurs during heavy rainfalls. The plot width have a moderate positive statistical effect on runoff and erosion coefficients, since wider patchy plots have, on average, a greater normalized contributing area and a higher probability to have runoff of a certain length. The effect of plot width depends by itself on the percentage cover, plot length, and compared width scales. The contributing area uncertainty brought about by cover spatial arrangement is examined, including its dependence on the percentage cover and scale. In general, modified percolation theory approaches and combinatorial models of urns with restricted occupancy may link between critical dependence of runoff on percentage cover, cover-related scale effect, and statistical uncertainty of the observed quantities.

  20. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  1. Large-amplitude jumps and non-Gaussian dynamics in highly concentrated hard sphere fluids.

    PubMed

    Saltzman, Erica J; Schweizer, Kenneth S

    2008-05-01

    Our microscopic stochastic nonlinear Langevin equation theory of activated dynamics has been employed to study the real-space van Hove function of dense hard sphere fluids and suspensions. At very short times, the van Hove function is a narrow Gaussian. At sufficiently high volume fractions, such that the entropic barrier to relaxation is greater than the thermal energy, its functional form evolves with time to include a rapidly decaying component at small displacements and a long-range exponential tail. The "jump" or decay length scale associated with the tail increases with time (or particle root-mean-square displacement) at fixed volume fraction, and with volume fraction at the mean alpha relaxation time. The jump length at the alpha relaxation time is predicted to be proportional to a measure of the decoupling of self-diffusion and structural relaxation. At long times corresponding to mean displacements of order a particle diameter, the volume fraction dependence of the decay length disappears. A good superposition of the exponential tail feature based on the jump length as a scaling variable is predicted at high volume fractions. Overall, the theoretical results are in good accord with recent simulations and experiments. The basic aspects of the theory are also compared with a classic jump model and a dynamically facilitated continuous time random-walk model. Decoupling of the time scales of different parts of the relaxation process predicted by the theory is qualitatively similar to facilitated dynamics models based on the concept of persistence and exchange times if the elementary event is assumed to be associated with transport on a length scale significantly smaller than the particle size.

  2. How congestion shapes cities: from mobility patterns to scaling

    PubMed Central

    Louf, Rémi; Barthelemy, Marc

    2014-01-01

    The recent availability of data for cities has allowed scientists to exhibit scalings which present themselves in the form of a power-law dependence on population of various socio-economical and structural indicators. We propose here a stochastic theory of urban growth which accounts for some of the observed scalings and we confirm these predictions on US and OECD empirical data. In particular, we show that the dependence on population size of the total number of miles driven daily, the total length of the road network, the total traffic delay, the total consumption of gasoline, the quantity of CO2 emitted and the relation between area and population of cities, are all governed by a single parameter which characterizes the sensitivity to congestion. Our results suggest that diseconomies associated with congestion scale superlinearly with population size, implying that –despite polycentrism– cities whose transportation infrastructure rely heavily on traffic sensitive modes are unsustainable. PMID:24990624

  3. Size, History-Dependent, Activation and Three-Dimensional Effects on the Work and Power Produced During Cyclic Muscle Contractions.

    PubMed

    Ross, Stephanie A; Ryan, David S; Dominguez, Sebastian; Nigam, Nilima; Wakeling, James M

    2018-05-03

    Muscles undergo cycles of length change and force development during locomotion, and these contribute to their work and power production to drive body motion. Muscle fibres are typically considered to be linear actuators whose stress depends on their length, velocity, and activation state, and whose properties can be scaled up to explain the function of whole muscles. However, experimental and modelling studies have shown that a muscle's stress additionally depends on inactive and passive tissues within the muscle, the muscle's size, and its previous contraction history. These effects have not been tested under common sets of contraction conditions, especially the cyclic contractions that are typical of locomotion. Here we evaluate the relative effects of size, history-dependent, activation and three-dimensional effects on the work and power produced during cyclic contractions of muscle models. Simulations of muscle contraction were optimized to generate high power outputs: this resulted in the muscle models being largely active during shortening, and inactive during lengthening. As such, the history-dependent effects were dominated by force depression during simulated active shortening rather than force enhancement during active stretch. Internal work must be done to deform the muscle tissue, and to accelerate the internal muscle mass, resulting in reduced power and work that can be done on an external load. The effect of the muscle mass affects the scaling of muscle properties, with the inertial costs of contraction being relatively greater at larger sizes and lower activation levels.

  4. Applications of dewetting in micro and nanotechnology.

    PubMed

    Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio

    2012-06-21

    Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.

  5. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  6. Discrimination of Single Base Pair Differences Among Individual DNA Molecules Using a Nanopore

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; DeGuzman, Veronica

    2003-01-01

    The protein toxin alpha-hemolysin form nanometer scale channels across lipid membranes. Our lab uses a single channel in an artificial lipid bilayer in a patch clamp device to capture and examine individual DNA molecules. This nanopore detector used with a support vector machine (SVM) can analyze DNA hairpin molecules on the millisecond time scale. We distinguish duplex stem length, base pair mismatches, loop length, and single base pair differences. The residual current fluxes also reveal structural molecular dynamics elements. DNA end-fraying (terminal base pair dissociation) can be observed as near full blockades, or spikes, in current. This technique can be used to investigate other biological processes dependent on DNA end-fraying, such as the processing of HIV DNA by HIV integrase.

  7. Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.

    2017-12-01

    Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical manifestation of a scale-dependent yield stress.

  8. Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1986-01-01

    Progress during the second year of a program of research on the modeling of the spatial distributions of cometary radicals is discussed herein in several major areas. New scale length laws for cometary C2 and CN were determined which explain that the previously-held apparent drop of the C2/CN ratio for large heliocentric distances does not exist and that there is no systematic variation. Monte Carlo particle trajectory model (MCPTM) analysis of sunward and anti-sunward brightness profiles of cometary C2 was completed. This analysis implies a lifetime of 31,000 seconds for the C2 parent and an ejection speed for C2 of approximately 0.5 km/sec upon dissociation from the parent. A systematic reanalysis of published C3 and OH data was begun. Preliminary results find a heliocentric distance dependence for C3 scale lengths with a much larger variation than for C2 and CN. Scale lengths for OH are generally somewhat larger than currently accepted values. The MCPTM was updated to include the coma temperature. Finally, the collaborative effort with the University of Arizona programs has yielded some preliminary CCD images of Comet P/Halley.

  9. Sub-second thermoplastic forming of bulk metallic glasses by ultrasonic beating

    PubMed Central

    Ma, Jiang; Liang, Xiong; Wu, Xiaoyu; Liu, Zhiyuan; Gong, Feng

    2015-01-01

    The work proposed a novel thermoplastic forming approach–the ultrasonic beating forming (UBF) method for bulk metallic glasses (BMGs) in present work. The rapid forming approach can finish the thermoplastic forming of BMGs in less than one second, avoiding the time-dependent crystallization and oxidation to the most extent. Besides, the UBF is also proved to be competent in the fabrication of structures with the length scale ranging from macro scale to nano scale. Our results propose a novel route for the thermoplastic forming of BMGs and have promising applications in the rapid fabrication of macro to nano scale products and devices. PMID:26644149

  10. SPM investigation of local aging effects in glassy polymers

    NASA Astrophysics Data System (ADS)

    Crider, Philip

    2005-03-01

    We investigate the cooperative and heterogeneous nature of glassy dynamics by nanometer-scale probing in a glassy polymer, Polyvinyl-Actetate (PVAc), with a Scanning Force Microscope (SFM). Using ultra-high-vacuum (UHV) Scanning Capacitive Force Microscopy techniques, nanometer-scale capacitive responses are probed. Dielectric relaxation near the glass transition is investigated, and scanning capabilities are utilized to analyze spatial response on a nanometer scale. The results of these studies may yield insight into the understanding of temperature-dependent cooperative length scales, local aging properties, and energy landscape properties of evolving dipole clusters on a mesoscopic scale. Results are used to test the validity and relevance of current models of glassy dynamics.

  11. Quantifying Interfacial pH Variation at Molecular Length Scales Using a Concurrent Non-Faradaic Reaction.

    PubMed

    Ryu, Jaeyune; Wuttig, Anna; Surendranath, Yogesh

    2018-05-15

    We quantify changes in the interfacial pH local to the electrochemical double layer during electrocatalysis, using a concurrent non-faradaic probe reaction. In the absence of electrocatalysis, nanostructured Pt/C surfaces mediate the reaction of H2 with cis-2-butene-1,4-diol to form a mixture of 1,4-butanediol and n-butanol with a selectivity that is linearly dependent on the bulk solution pH. We show that kinetic branching occurs from a common surface-bound intermediate, ensuring that this probe reaction is uniquely sensitive to the interfacial pH within molecular length scales of the surface. We use the pH-dependent selectivity of this reaction to track changes in interfacial pH during concurrent hydrogen oxidation electrocatalysis and find that the local pH can vary dramatically, > 3 units, relative to the bulk value even at modest current densities in well-buffered electrolytes. This work highlights the key role that interfacial pH variation plays in modulating inner-sphere electrocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less

  13. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length.

    PubMed

    Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran

    2018-03-29

    Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.

  14. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    NASA Technical Reports Server (NTRS)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  15. Experimental study on the formation of subaqueous barchan dunes in closed conduits

    NASA Astrophysics Data System (ADS)

    Alvarez, Carlos A.; Franklin, Erick

    2018-06-01

    The present paper reports the formation of subaqueous barchan dunes by analyzing the temporal evolution of their main geometrical characteristics (width W, length L and horn lengths Lh). After certain time, the dunes reach an equilibrium state and it is possible to study the relation between W versus L, and the dependence of the dune velocity on L. The barchan dunes were formed from spherical glass and zirconium beads. An initial conical heap of beads was placed on the bottom wall of a rectangular channel and it was entrained by a water turbulent flow. The evolution of the dunes was filmed with a CCD camera placed above the channel and mounted on a traveling system. Our results show that after a characteristic time the dune shape does not change and it travels with a roughly constant velocity. Once the equilibrium state is reach, W and L are measured, showing linear dependence. Furthermore, we show that the dune velocity Vd scales with the inverse of the dune length.

  16. Dependence of SOL widths on plasma current and density in NSTX H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Maingi, R.; Boedo, J. A.; Soukhanovskii, V.; NSTX Team

    2009-06-01

    The dependence of various SOL widths on the line-averaged density ( n) and plasma current ( Ip) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ( λq), measured by the IR camera, is virtually insensitive to n and has a strong negative dependence on Ip. This insensitivity of λq to n¯e is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ( λTe, λjsat, λne, and λpe, respectively) measured by the probe showed that λTe and λjsat have strong negative dependence on Ip, whereas λne and λpe revealed only a little or no dependence. The dependence of λTe on Ip is consistent with the scaling law in the literature, while λne and λpe dependence shows a different trend.

  17. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    PubMed

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized for the drain of harvested water. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effective Debye length in closed nanoscopic systems: a competition between two length scales.

    PubMed

    Tessier, Frédéric; Slater, Gary W

    2006-02-01

    The Poisson-Boltzmann equation (PBE) is widely employed in fields where the thermal motion of free ions is relevant, in particular in situations involving electrolytes in the vicinity of charged surfaces. The applications of this non-linear differential equation usually concern open systems (in osmotic equilibrium with an electrolyte reservoir, a semi-grand canonical ensemble), while solutions for closed systems (where the number of ions is fixed, a canonical ensemble) are either not appropriately distinguished from the former or are dismissed as a numerical calculation exercise. We consider herein the PBE for a confined, symmetric, univalent electrolyte and quantify how, in addition to the Debye length, its solution also depends on a second length scale, which embodies the contribution of ions by the surface (which may be significant in high surface-to-volume ratio micro- or nanofluidic capillaries). We thus establish that there are four distinct regimes for such systems, corresponding to the limits of the two parameters. We also show how the PBE in this case can be formulated in a familiar way by simply replacing the traditional Debye length by an effective Debye length, the value of which is obtained numerically from conservation conditions. But we also show that a simple expression for the value of the effective Debye length, obtained within a crude approximation, remains accurate even as the system size is reduced to nanoscopic dimensions, and well beyond the validity range typically associated with the solution of the PBE.

  19. Scattering of electromagnetic wave by the layer with one-dimensional random inhomogeneities

    NASA Astrophysics Data System (ADS)

    Kogan, Lev; Zaboronkova, Tatiana; Grigoriev, Gennadii., IV.

    A great deal of attention has been paid to the study of probability characteristics of electro-magnetic waves scattered by one-dimensional fluctuations of medium dielectric permittivity. However, the problem of a determination of a density of a probability and average intensity of the field inside the stochastically inhomogeneous medium with arbitrary extension of fluc-tuations has not been considered yet. It is the purpose of the present report to find and to analyze the indicated functions for the plane electromagnetic wave scattered by the layer with one-dimensional fluctuations of permittivity. We assumed that the length and the amplitude of individual fluctuations as well the interval between them are random quantities. All of indi-cated fluctuation parameters are supposed as independent random values possessing Gaussian distribution. We considered the stationary time cases both small-scale and large-scale rarefied inhomogeneities. Mathematically such problem can be reduced to the solution of integral Fred-holm equation of second kind for Hertz potential (U). Using the decomposition of the field into the series of multiply scattered waves we obtained the expression for a probability density of the field of the plane wave and determined the moments of the scattered field. We have shown that all odd moments of the centered field (U-¡U¿) are equal to zero and the even moments depend on the intensity. It was obtained that the probability density of the field possesses the Gaussian distribution. The average field is small compared with the standard fluctuation of scattered field for all considered cases of inhomogeneities. The value of average intensity of the field is an order of a standard of fluctuations of field intensity and drops with increases the inhomogeneities length in the case of small-scale inhomogeneities. The behavior of average intensity is more complicated in the case of large-scale medium inhomogeneities. The value of average intensity is the oscillating function versus the average fluctuations length if the standard of fluctuations of inhomogeneities length is greater then the wave length. When the standard of fluctuations of medium inhomogeneities extension is smaller then the wave length, the av-erage intensity value weakly depends from the average fluctuations extension. The obtained results may be used for analysis of the electromagnetic wave propagation into the media with the fluctuating parameters caused by such factors as leafs of trees, cumulus, internal gravity waves with a chaotic phase and etc. Acknowledgment: This work was supported by the Russian Foundation for Basic Research (projects 08-02-97026 and 09-05-00450).

  20. Testing universality of Efimov Physics based on a mass-imbalanced Li-Cs mixture

    NASA Astrophysics Data System (ADS)

    Johansen, Jacob; Desalvo, Brian; Patel, Krutik; Chin, Cheng

    2017-04-01

    Efimov states are notable for their universal geometric scaling and are observable in ultracold atomic systems employing magnetic Feshbach resonances. In addition to geometric scaling, which we observed previously by taking advantage of a reduced Efimov scaling constant in our mass imbalanced 6Li-133Cs system, an interesting pattern has emerged in Efimov measurements: while expected to be non-universal, the absolute positions of Efimov resonances appear to scale simply with van der Waals length. Theories attempting to explain this observation have predicted a dependence on the strength of the Feshbach resonance for narrow resonances, yet experiments attempting to probe this regime have so far been inconsistent with the predicted dependence. In this talk, we focus primarily on our recent measurements showing dependence on Feshbach resonance strength. We directly compare two Feshbach resonances, one broad and one very narrow, which are nearly identical with the exception of the resonance strength, and find a striking difference in the first Efimov resonance position. Our measurement makes significant strides toward resolving the discrepancy between experiment and theory which exists in the field today.

  1. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadlier, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.

    2009-01-01

    We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.

  2. Longitudinal Proximity Effects in Superconducting Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John E.; Smith, Stephen J.; Bandler, Simon R.; Chervenak, James A.; Clem, John R.

    2010-01-01

    We have found experimentally that the critical current of a square thin-film superconducting transition-edge sensor (TES) depends exponentially upon the side length L and the square root of the temperature T, a behavior that has a natural theoretical explanation in terms of longitudinal proximity effects if the TES is regarded as a weak link between superconducting leads. As a consequence, the effective transition temperature T(sub c) of the TES is current-dependent and at fixed current scales as 1/L(sup 2). We also have found that the critical current can show clear Fraunhofer-like oscillations in an applied magnetic field, similar to those found in Josephson junctions. We have observed the longitudinal proximity effect in these devices over extraordinarily long lengths up to 290 micrometers, 1450 times the mean-free path.

  3. Proceedings of the International Workshop on Computational Electronics (3rd), Held in Portland, Oregon on May 18-20, 1994

    DTIC Science & Technology

    1994-05-20

    bias ( power supply ) as the relaxation time, field dependence of the average and channel length were chosen. energy and velocity, amount of heat flux... power supply voltage has been scaled less aggressively than device geometries. In deep submi- cron MOSFETs, the number of hot carriers is expected to...special attention given to versus field relation. Each of the HD models is cast issues related to power supply scaling.- into a generalized form allowing

  4. A mechanical model of bacteriophage DNA ejection

    NASA Astrophysics Data System (ADS)

    Arun, Rahul; Ghosal, Sandip

    2017-08-01

    Single molecule experiments on bacteriophages show an exponential scaling for the dependence of mobility on the length of DNA within the capsid. It has been suggested that this could be due to the ;capstan mechanism; - the exponential amplification of friction forces that result when a rope is wound around a cylinder as in a ship's capstan. Here we describe a desktop experiment that illustrates the effect. Though our model phage is a million times larger, it exhibits the same scaling observed in single molecule experiments.

  5. Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold

    DTIC Science & Technology

    1988-09-01

    we estimated a theoretical slope of 1.27 A per CH2 unit and an intercept of 4 A. The dashed line represents the thickness expected for a monolayer...a scale of only a few hundred angstroms--well below the length scale expected theoretically to give rise to hysteresis.31 ,78 Figure 4 plots contact... photoionization cross-sections calculated by Scofield117 , corrected for the dependence of the escape depth on the kinetic energy of the electrons (assumed to have

  6. Multi-Scale Homogenization for 3D Multiphase Composites: Development of Robust Software Tools for Material/Structural Characterization Across Length Scales

    DTIC Science & Technology

    2013-11-01

    person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...position‐dependent  [ ]. Thanks  to  this  relation, eqs.  (1)  can be reduced to a single ( vectorial ) equation for the displacement  :     ⋅ 0. (3

  7. Synthesis and Characterization of Fluorescently Labeled Diblock Copolymers for Location-Specific Measurements of The Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.

  8. Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider.

    PubMed

    Foellmer, Matthias W; Fairbairn, Daphne J

    2005-02-01

    Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.

  9. Scale-dependent CMB power asymmetry from primordial speed of sound and a generalized δ N formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dong-Gang; Cai, Yi-Fu; Zhao, Wen

    2016-02-01

    We explore a plausible mechanism that the hemispherical power asymmetry in the CMB is produced by the spatial variation of the primordial sound speed parameter. We suggest that in a generalized approach of the δ N formalism the local e-folding number may depend on some other primordial parameters besides the initial values of inflaton. Here the δ N formalism is extended by considering the effects of a spatially varying sound speed parameter caused by a super-Hubble perturbation of a light field. Using this generalized δ N formalism, we systematically calculate the asymmetric primordial spectrum in the model of multi-speed inflation by taking intomore » account the constraints of primordial non-Gaussianities. We further discuss specific model constraints, and the corresponding asymmetry amplitudes are found to be scale-dependent, which can accommodate current observations of the power asymmetry at different length scales.« less

  10. Alcohol's Effects on Lipid Bilayer Properties

    PubMed Central

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  11. Length-dependent mechanical properties of gold nanowires

    NASA Astrophysics Data System (ADS)

    Han, Jing; Fang, Liang; Sun, Jiapeng; Han, Ying; Sun, Kun

    2012-12-01

    The well-known "size effect" is not only related to the diameter but also to the length of the small volume materials. It is unfortunate that the length effect on the mechanical behavior of nanowires is rarely explored in contrast to the intensive studies of the diameter effect. The present paper pays attention to the length-dependent mechanical properties of <111>-oriented single crystal gold nanowires employing the large-scale molecular dynamics simulation. It is discovered that the ultrashort Au nanowires exhibit a new deformation and failure regime-high elongation and high strength. The constrained dislocation nucleation and transient dislocation slipping are observed as the dominant mechanism for such unique combination of high strength and high elongation. A mechanical model based on image force theory is developed to provide an insight to dislocation nucleation and capture the yield strength and nucleation site of first partial dislocation indicated by simulation results. Increasing the length of the nanowires, the ductile-to-brittle transition is confirmed. And the new explanation is suggested in the predict model of this transition. Inspired by the superior properties, a new approach to strengthen and toughen nanowires-hard/soft/hard sandwich structured nanowires is suggested. A preliminary evidence from the molecular dynamics simulation corroborates the present opinion.

  12. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    NASA Astrophysics Data System (ADS)

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-01

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. But how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer ‘how far is far enough,’ we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25-2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation length ξ that falls at least as fast as {{τ }-1} . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.

  13. Dependence of flux-flow critical frequencies and generalized bundle sizes on distance of fluxoid traversal and fluxoid length in foil samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.D.; Joiner, W.C.H.

    1979-10-01

    Flux-flow noise power spectra taken on Pb/sub 80/In/sub 20/ foils as a function of the orientation of the magnetic field with respect to the sample surfaces are used to study changes in frequencies and bundle sizes as distances of fluxoid traversal and fluxoid lengths change. The results obtained for the frequency dependence of the noise spectra are entirely consistent with our model for flux motion interrupted by pinning centers, provided one makes the reasonable assumption that the distance between pinning centers which a fluxoid may encounter scales inversely with the fluxoid length. The importance of pinning centers in determining themore » noise characteristics is also demonstrated by the way in which subpulse distributions and generalized bundle sizes are altered by changes in the metallurgical structure of the sample. In unannealed samples the dependence of bundle size on magnetic field orientation is controlled by a structural anisotropy, and we find a correlation between large bundle size and the absence of short subpulse times. Annealing removes this anisotropy, and we find a stronger angular variation of bundle size than would be expected using present simplified models.« less

  14. Nearly constant ratio between the proton inertial scale and the spectrum break length scale in the plasma beta range from 0.2 to 1.4 in the solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Wang, X.; Tu, C. Y.; He, J.; Wang, L.

    2017-12-01

    The spectrum break at the ion scale of the solar wind magnetic fluctuations are considered to give important clue on the turbulence dissipation mechanism. Among several possible mechanisms, the most notable ones are the two mechanisms that related respectively with proton thermal gyro-radius and proton inertial length. However, no definite conclusion has been given for which one is more reasonable because the two parameters have similar values in the normal plasma beta range. Here we do a statistical study for the first time to see if the two mechanism predictions have different dependence on the solar wind velocity and on the plasma beta in the normal plasma beta range in the solar wind at 1 AU. From magnetic measurements by Wind, Ulysses and Messenger, we select 60 data sets with duration longer than 8 hours. We found that the ratio between the proton inertial scale and the spectrum break scale do not change considerably with both varying the solar wind speed from 300km/s to 800km/s and varying the plasma beta from 0.2 to 1.4. The average value of the ratio times 2pi is 0.46 ± 0.08. However, the ratio between the proton gyro-radius and the break scale changes clearly. This new result shows that the proton inertial scale could be a single factor that determines the break length scale and hence gives a strong evidence to support the dissipation mechanism related to it in the normal plasma beta range. The value of the constant ratio may relate with the dissipation mechanism, but it needs further theoretical study to give detailed explanation.

  15. Seagrass blade motion under waves and its impact on wave decay

    NASA Astrophysics Data System (ADS)

    Luhar, M.; Infantes, E.; Nepf, H.

    2017-05-01

    The hydrodynamic drag generated by seagrass meadows can dissipate wave-energy, causing wave decay. It is well known that this drag depends on the relative motion between the water and the seagrass blades, yet the impact of blade motion on drag and wave-energy dissipation remains to be fully characterized. In this experimental study, we examined the impact of blade motion on wave decay by concurrently recording blade posture during a wave cycle and measuring wave decay over a model seagrass meadow. We also identified a scaling law that predicts wave decay over the model meadow for a range of seagrass blade density, wave period, wave height, and water depth scaled from typical field conditions. Blade flexibility led to significantly lower drag and wave decay relative to theoretical predictions for rigid, upright blades. To quantify the impact of blade motion on wave decay, we employed an effective blade length, le, defined as the rigid blade length that leads to equivalent wave-energy dissipation. We estimated le directly from images of blade motion. Consistent with previous studies, these estimates showed that the effective blade length depends on the dimensionless Cauchy number, which describes the relative magnitude of the wave hydrodynamic drag and the restoring force due to blade rigidity. As the hydrodynamic forcing increases, the blades exhibit greater motion. Greater blade motion leads to smaller relative velocities, reducing drag, and wave-energy dissipation (i.e., smaller le).

  16. Influence of the Solar Cycle on Turbulence Properties and Cosmic-Ray Diffusion

    NASA Astrophysics Data System (ADS)

    Zhao, L.-L.; Adhikari, L.; Zank, G. P.; Hu, Q.; Feng, X. S.

    2018-04-01

    The solar cycle dependence of various turbulence quantities and cosmic-ray (CR) diffusion coefficients is investigated by using OMNI 1 minute resolution data over 22 years. We employ Elsässer variables z ± to calculate the magnetic field turbulence energy and correlation lengths for both the inwardly and outwardly directed interplanetary magnetic field (IMF). We present the temporal evolution of both large-scale solar wind (SW) plasma variables and small-scale magnetic fluctuations. Based on these observed quantities, we study the influence of solar activity on CR parallel and perpendicular diffusion using quasi-linear theory and nonlinear guiding center theory, respectively. We also evaluate the radial evolution of the CR diffusion coefficients by using the boundary conditions for different solar activity levels. We find that in the ecliptic plane at 1 au (1), the large-scale SW temperature T, velocity V sw, Alfvén speed V A , and IMF magnitude B 0 are positively related to solar activity; (2) the fluctuating magnetic energy density < {{z}+/- }2> , residual energy E D , and corresponding correlation functions all have an obvious solar cycle dependence. The residual energy E D is always negative, which indicates that the energy in magnetic fluctuations is larger than the energy in kinetic fluctuations, especially at solar maximum; (3) the correlation length λ for magnetic fluctuations does not show significant solar cycle variation; (4) the temporally varying shear source of turbulence, which is most important in the inner heliosphere, depends on the solar cycle; (5) small-scale fluctuations may not depend on the direction of the background magnetic field; and (6) high levels of SW fluctuations will increase CR perpendicular diffusion and decrease CR parallel diffusion, but this trend can be masked if the background IMF changes in concert with turbulence in response to solar activity. These results provide quantitative inputs for both turbulence transport models and CR diffusion models, and also provide valuable insight into the long-term modulation of CRs in the heliosphere.

  17. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches

    NASA Astrophysics Data System (ADS)

    Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; Kail, J.; Marchese, E.; Marcinkowski, P.; Okruszko, T.; Paillex, A.; Schirmer, M.; Stelmaszczyk, M.; Surian, N.

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  18. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches.

    PubMed

    Belletti, B; Nardi, L; Rinaldi, M; Poppe, M; Brabec, K; Bussettini, M; Comiti, F; Gielczewski, M; Golfieri, B; Hellsten, S; Kail, J; Marchese, E; Marcinkowski, P; Okruszko, T; Paillex, A; Schirmer, M; Stelmaszczyk, M; Surian, N

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  19. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    NASA Astrophysics Data System (ADS)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  20. Multi Scale Modeling of Continuous Aramid Fiber Reinforced Polymer Matrix Composites Used in Ballistic Protection Applications

    DTIC Science & Technology

    2014-11-16

    related to identification of the type and the extent of data generated at a finer length scale to the adjacent coarser length scale, as well as seamless ...data generated at a finer length scale to the adjacent coarser length scale, as well as seamless integration of different length scales into a unified...composite laminate consisting of 32 laminae and impacted (at a 0° obliquity angle and an incident velocity of 500 m/s) by a 0.30 caliber steel

  1. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments.

    PubMed

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; Himmel, Michael E; Tucker, Melvin; Makowski, Lee

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. These results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.

  2. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yan; Inouye, Hideyo; Yang, Lin

    2015-02-28

    Cellulose can work as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinctmore » length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Our results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.« less

  3. Planar Two-Plasmon-Decay Experiments at Polar-Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Collins, T. J. B.; Turnbull, D. P.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    Results from the first experiments at the National Ignition Facility (NIF) to probe two-plasmon -decay (TPD) hot-electron production at scale lengths relevant to polar-direct-drive (PDD) ignition are reported. The irradiation on one side of a planar CH foil generated a plasma at the quarter-critical surface with a predicted density gradient scale length of Ln ~ 600 μm , a measured electron temperature of Te ~ 3 . 5 to 4.0 keV, an overlapped laser intensity of I ~ 6 ×1014 W/cm2, and a predicted TPD threshold parameter of η ~ 4 . The hard x-ray spectrum and the Kα emission from a buried Mo layer were measured to infer the hot-electron temperature and the fraction of total laser energy converted to TPD hot electrons. Optical emission at ω/2 correlated with the time-dependent hard x-ray signal confirms that TPD is responsible for the hot-electron generation. The effect of laser beam angle of incidence on TPD hot-electron generation was assessed, and the data show that the beam angle of incidence did not have a strong effect. These results will be used to benchmark simulations of TPD hot-electron production at conditions relevant to PDD ignition-scale implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    DOE PAGES

    Zhang, Yan; Inouye, Hideyo; Yang, Lin; ...

    2015-02-28

    Cellulose is an attractive candidate as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose atmore » two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Lastly, these results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.« less

  5. Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems

    NASA Astrophysics Data System (ADS)

    Stanton, L. G.; Glosli, J. N.; Murillo, M. S.

    2018-04-01

    Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.

  6. Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.

    PubMed

    Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J

    2016-06-28

    We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.

  7. Multi-scale chromatin state annotation using a hierarchical hidden Markov model

    NASA Astrophysics Data System (ADS)

    Marco, Eugenio; Meuleman, Wouter; Huang, Jialiang; Glass, Kimberly; Pinello, Luca; Wang, Jianrong; Kellis, Manolis; Yuan, Guo-Cheng

    2017-04-01

    Chromatin-state analysis is widely applied in the studies of development and diseases. However, existing methods operate at a single length scale, and therefore cannot distinguish large domains from isolated elements of the same type. To overcome this limitation, we present a hierarchical hidden Markov model, diHMM, to systematically annotate chromatin states at multiple length scales. We apply diHMM to analyse a public ChIP-seq data set. diHMM not only accurately captures nucleosome-level information, but identifies domain-level states that vary in nucleosome-level state composition, spatial distribution and functionality. The domain-level states recapitulate known patterns such as super-enhancers, bivalent promoters and Polycomb repressed regions, and identify additional patterns whose biological functions are not yet characterized. By integrating chromatin-state information with gene expression and Hi-C data, we identify context-dependent functions of nucleosome-level states. Thus, diHMM provides a powerful tool for investigating the role of higher-order chromatin structure in gene regulation.

  8. The Development of Directional Decohesion Finite Elements for Multiscale Failure Analysis of Metallic Polycrystals

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.

  9. Some factors influencing radiation of sound from flow interaction with edges of finite surfaces

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Fox, H. L.; Chanaud, R. C.

    1976-01-01

    Edges of surfaces which are exposed to unsteady flow cause both strictly acoustic effects and hydrodynamic effects, in the form of generation of new hydrodynamic sources in the immediate vicinity of the edge. An analytical model is presented which develops the explicit sound-generation role of the velocity and Mach number of the eddy convection past the edge, and the importance of relative scale lengths of the turbulence, as well as the relative intensity of pressure fluctuations. The Mach number (velocity) effects show that the important paramater is the convection Mach number of the eddies. The effects of turbulence scale lengths, isotropy, and spatial density (separation) are shown to be important in determining the level and spectrum of edge sound radiated for the edge dipole mechanism. Experimental data is presented which provides support for the dipole edge noise model in terms of Mach number (velocity) scaling, parametric dependence on flow field parameter, directivity, and edge diffraction effects.

  10. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    PubMed Central

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.

    2016-01-01

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660

  11. Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; ...

    2016-03-16

    An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less

  12. Plot-scale effects on runoff and erosion along a slope degradation gradient

    NASA Astrophysics Data System (ADS)

    Moreno-de Las Heras, Mariano; Nicolau, José M.; Merino-MartíN, Luis; Wilcox, Bradford P.

    2010-04-01

    In Earth and ecological sciences, an important, crosscutting issue is the relationship between scale and the processes of runoff and erosion. In drylands, understanding this relationship is critical for understanding ecosystem functionality and degradation processes. Recent work has suggested that the effects of scale may differ depending on the extent of degradation. To test this hypothesis, runoff and sediment yield were monitored during a hydrological year on 20 plots of various lengths (1-15 m). These plots were located on a series of five reclaimed mining slopes in a Mediterranean-dry environment. The five slopes exhibited various degrees of vegetative cover and surface erosion. A general decrease of unit area runoff was observed with increasing plot scale for all slopes. Nevertheless, the amount of reinfiltrated runoff along each slope varied with the extent of degradation, being highest at the least degraded slope and vice versa. In other words, unit area runoff decreased the least on the most disturbed site as plot length increased. Unit area sediment yield declined with increasing plot length for the undisturbed and moderately disturbed sites, but it actually increased for the highly disturbed sites. The different scaling behavior of the most degraded slopes was especially clear under high-intensity rainfall conditions, when flow concentration favored rill erosion. Our results confirm that in drylands, the effects of scale on runoff and erosion change with the extent of degradation, resulting in a substantial loss of soil and water from disturbed systems, which could reinforce the degradation process through feedback mechanisms with vegetation.

  13. A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, Anne; Saur, Joachim, E-mail: schreiner@geo.uni-koeln.de

    In hydrodynamic turbulence, it is well established that the length of the dissipation scale depends on the energy cascade rate, i.e., the larger the energy input rate per unit mass, the more the turbulent fluctuations need to be driven to increasingly smaller scales to dissipate the larger energy flux. Observations of magnetic spectral energy densities indicate that this intuitive picture is not valid in solar wind turbulence. Dissipation seems to set in at the same length scale for different solar wind conditions independently of the energy flux. To investigate this difference in more detail, we present an analytic dissipation modelmore » for solar wind turbulence at electron scales, which we compare with observed spectral densities. Our model combines the energy transport from large to small scales and collisionless damping, which removes energy from the magnetic fluctuations in the kinetic regime. We assume wave–particle interactions of kinetic Alfvén waves (KAWs) to be the main damping process. Wave frequencies and damping rates of KAWs are obtained from the hot plasma dispersion relation. Our model assumes a critically balanced turbulence, where larger energy cascade rates excite larger parallel wavenumbers for a certain perpendicular wavenumber. If the dissipation is additionally wave driven such that the dissipation rate is proportional to the parallel wavenumber—as with KAWs—then an increase of the energy cascade rate is counterbalanced by an increased dissipation rate for the same perpendicular wavenumber, leading to a dissipation length independent of the energy cascade rate.« less

  14. A Model for Dissipation of Solar Wind Magnetic Turbulence by Kinetic Alfvén Waves at Electron Scales: Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Schreiner, Anne; Saur, Joachim

    2017-02-01

    In hydrodynamic turbulence, it is well established that the length of the dissipation scale depends on the energy cascade rate, I.e., the larger the energy input rate per unit mass, the more the turbulent fluctuations need to be driven to increasingly smaller scales to dissipate the larger energy flux. Observations of magnetic spectral energy densities indicate that this intuitive picture is not valid in solar wind turbulence. Dissipation seems to set in at the same length scale for different solar wind conditions independently of the energy flux. To investigate this difference in more detail, we present an analytic dissipation model for solar wind turbulence at electron scales, which we compare with observed spectral densities. Our model combines the energy transport from large to small scales and collisionless damping, which removes energy from the magnetic fluctuations in the kinetic regime. We assume wave-particle interactions of kinetic Alfvén waves (KAWs) to be the main damping process. Wave frequencies and damping rates of KAWs are obtained from the hot plasma dispersion relation. Our model assumes a critically balanced turbulence, where larger energy cascade rates excite larger parallel wavenumbers for a certain perpendicular wavenumber. If the dissipation is additionally wave driven such that the dissipation rate is proportional to the parallel wavenumber—as with KAWs—then an increase of the energy cascade rate is counterbalanced by an increased dissipation rate for the same perpendicular wavenumber, leading to a dissipation length independent of the energy cascade rate.

  15. Double dynamic scaling in human communication dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua

    2017-05-01

    In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.

  16. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  17. Scaling laws and fluctuations in the statistics of word frequencies

    NASA Astrophysics Data System (ADS)

    Gerlach, Martin; Altmann, Eduardo G.

    2014-11-01

    In this paper, we combine statistical analysis of written texts and simple stochastic models to explain the appearance of scaling laws in the statistics of word frequencies. The average vocabulary of an ensemble of fixed-length texts is known to scale sublinearly with the total number of words (Heaps’ law). Analyzing the fluctuations around this average in three large databases (Google-ngram, English Wikipedia, and a collection of scientific articles), we find that the standard deviation scales linearly with the average (Taylor's law), in contrast to the prediction of decaying fluctuations obtained using simple sampling arguments. We explain both scaling laws (Heaps’ and Taylor) by modeling the usage of words using a Poisson process with a fat-tailed distribution of word frequencies (Zipf's law) and topic-dependent frequencies of individual words (as in topic models). Considering topical variations lead to quenched averages, turn the vocabulary size a non-self-averaging quantity, and explain the empirical observations. For the numerous practical applications relying on estimations of vocabulary size, our results show that uncertainties remain large even for long texts. We show how to account for these uncertainties in measurements of lexical richness of texts with different lengths.

  18. Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels

    PubMed Central

    Song, Helen; Bringer, Michelle R.; Tice, Joshua D.; Gerdts, Cory J.; Ismagilov, Rustem F.

    2006-01-01

    This letter describes an experimental test of a simple argument that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel. Previously, scaling arguments for chaotic mixing have been described for a flow that reduces striation length by stretching, folding, and reorienting the fluid in a manner similar to that of the baker’s transformation. The experimentally observed flow patterns within droplets (or plugs) resembled the baker’s transformation. Therefore, the ideas described in the literature could be applied to mixing in droplets to obtain the scaling argument for the dependence of the mixing time, t~(aw/U)log(Pe), where w [m] is the cross-sectional dimension of the microchannel, a is the dimensionless length of the plug measured relative to w, U [m s−1] is the flow velocity, Pe is the Péclet number (Pe=wU/D), and D [m2s−1] is the diffusion coefficient of the reagent being mixed. Experiments were performed to confirm the scaling argument by varying the parameters w, U, and D. Under favorable conditions, submillisecond mixing has been demonstrated in this system. PMID:17940580

  19. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  20. Addressing scale dependence in roughness and morphometric statistics derived from point cloud data.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Wheaton, J. M.; Hensleigh, J.; Grams, P. E.; Welcker, C. W.; Anderson, K.; Kaplinski, M. A.

    2015-12-01

    The heights of natural surfaces can be measured with such spatial density that almost the entire spectrum of physical roughness scales can be characterized, down to the morphological form and grain scales. With an ability to measure 'microtopography' comes a demand for analytical/computational tools for spatially explicit statistical characterization of surface roughness. Detrended standard deviation of surface heights is a popular means to create continuous maps of roughness from point cloud data, using moving windows and reporting window-centered statistics of variations from a trend surface. If 'roughness' is the statistical variation in the distribution of relief of a surface, then 'texture' is the frequency of change and spatial arrangement of roughness. The variance in surface height as a function of frequency obeys a power law. In consequence, roughness is dependent on the window size through which it is examined, which has a number of potential disadvantages: 1) the choice of window size becomes crucial, and obstructs comparisons between data; 2) if windows are large relative to multiple roughness scales, it is harder to discriminate between those scales; 3) if roughness is not scaled by the texture length scale, information on the spacing and clustering of roughness `elements' can be lost; and 4) such practice is not amenable to models describing the scattering of light and sound from rough natural surfaces. We discuss the relationship between roughness and texture. Some useful parameters which scale vertical roughness to characteristic horizontal length scales are suggested, with examples of bathymetric point clouds obtained using multibeam from two contrasting riverbeds, namely those of the Colorado River in Grand Canyon, and the Snake River in Hells Canyon. Such work, aside from automated texture characterization and texture segmentation, roughness and grain size calculation, might also be useful for feature detection and classification from point clouds.

  1. The reality of artificial viscosity

    DOE PAGES

    Margolin, L. G.

    2018-02-24

    Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partitionmore » of total flux of conserved quantities into advective and diffusive components.« less

  2. The reality of artificial viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.

    Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partitionmore » of total flux of conserved quantities into advective and diffusive components.« less

  3. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT)

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.; Maltrud, Mathew E.; ...

    2015-08-01

    Isopycnal diffusivity due to stirring by mesoscale eddies in an idealized, wind-forced, eddying, midlatitude ocean basin is computed using Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Simulation is performed via LIGHT within the Model for Prediction across Scales Ocean (MPAS-O). Simulations are performed at 4-, 8-, 16-, and 32-km resolution, where the first Rossby radius of deformation (RRD) is approximately 30 km. Scalar and tensor diffusivities are estimated at each resolution based on 30 ensemble members using particle cluster statistics. Each ensemble member is composed of 303 665 particles distributed across five potential density surfaces. Diffusivity dependence upon modelmore » resolution, velocity spatial scale, and buoyancy surface is quantified and compared with mixing length theory. The spatial structure of diffusivity ranges over approximately two orders of magnitude with values of O(10 5) m 2 s –1 in the region of western boundary current separation to O(10 3) m 2 s –1 in the eastern region of the basin. Dominant mixing occurs at scales twice the size of the first RRD. Model resolution at scales finer than the RRD is necessary to obtain sufficient model fidelity at scales between one and four RRD to accurately represent mixing. Mixing length scaling with eddy kinetic energy and the Lagrangian time scale yield mixing efficiencies that typically range between 0.4 and 0.8. In conclusion, a reduced mixing length in the eastern region of the domain relative to the west suggests there are different mixing regimes outside the baroclinic jet region.« less

  4. Arms race between weevil rostrum length and camellia pericarp thickness: Geographical cline and theory.

    PubMed

    Iseki, Naoyuki; Sasaki, Akira; Toju, Hirokazu

    2011-09-21

    The geographical cline of the coevolving traits of weevil rostrum (mouthpart) length and camellia pericarp (fruit coat) thickness provides an opportunity to test the arms race theory of defense (pericarp thickness) and countermeasure (rostrum length) between antagonistically interacting species. By extending the previous model for the coevolution of quantitative traits to introduce nonlinear costs for exaggerated traits, the generation overlap, and density-dependent regulation in the host, we studied the evolutionarily stable (ES) pericarp thickness in the Japanese camellia (Camellia japonica) and the ES rostrum length in the camellia-weevil (Curculio camelliae). The joint monomorphic ES system has a robust outcome with nonlinear costs, and we analyzed how the traits of both species at evolutionary equilibrium depend on demographic parameters. If camellia demographic parameters vary latitudinally, data collected over the geographical scale of rostrum length and pericarp thickness should lie on an approximately linear curve with the slope less than that of the equiprobability line A/B of boring success, where A and B are coefficients for the logistic regression of boring success to pericarp thickness and rostrum length, respectively. This is a robust prediction as long as the cost of rostrum length is nonlinear (accelerating). As a result, boring success should be lower in populations with longer rostrum length, as reported in the weevil-camellia system (Toju, H., and Sota, T., 2006a. Imbalance of predator and prey armament: Geographic clines in phenotypic interface and natural selection. American Naturalist 167, 105-117). The nonlinearity (exponent) for the cost of rostrum length estimated from the geographical cline data for the weevil-camellia system was 2.2, suggesting nonlinearity between quadratic and cubic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry.

    PubMed

    Falk, Bryan G; Snow, Ray W; Reed, Robert N

    2017-01-01

    Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of 'true' body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.

  6. A validation of 11 body-condition indices in a giant snake species that exhibits positive allometry

    USGS Publications Warehouse

    Falk, Bryan; Snow, Ray W.; Reed, Robert N.

    2017-01-01

    Body condition is a gauge of the energy stores of an animal, and though it has important implications for fitness, survival, competition, and disease, it is difficult to measure directly. Instead, body condition is frequently estimated as a body condition index (BCI) using length and mass measurements. A desirable BCI should accurately reflect true body condition and be unbiased with respect to size (i.e., mean BCI estimates should not change across different length or mass ranges), and choosing the most-appropriate BCI is not straightforward. We evaluated 11 different BCIs in 248 Burmese pythons (Python bivittatus), organisms that, like other snakes, exhibit simple body plans well characterized by length and mass. We found that the length-mass relationship in Burmese pythons is positively allometric, where mass increases rapidly with respect to length, and this allowed us to explore the effects of allometry on BCI verification. We employed three alternative measures of ‘true’ body condition: percent fat, scaled fat, and residual fat. The latter two measures mostly accommodated allometry in true body condition, but percent fat did not. Our inferences of the best-performing BCIs depended heavily on our measure of true body condition, with most BCIs falling into one of two groups. The first group contained most BCIs based on ratios, and these were associated with percent fat and body length (i.e., were biased). The second group contained the scaled mass index and most of the BCIs based on linear regressions, and these were associated with both scaled and residual fat but not body length (i.e., were unbiased). Our results show that potential differences in measures of true body condition should be explored in BCI verification studies, particularly in organisms undergoing allometric growth. Furthermore, the caveats of each BCI and similarities to other BCIs are important to consider when determining which BCI is appropriate for any particular taxon.

  7. Cavitation in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Guan, Pengfei; Lu, Shuo; Spector, Michael J. B.; Valavala, Pavan K.; Falk, Michael L.

    2013-05-01

    Molecular dynamics simulations of cavitation in a Zr50Cu50 metallic glass exhibit a waiting time dependent cavitation rate. On short time scales nucleation rates and critical cavity sizes are commensurate with a classical theory of nucleation that accounts for both the plastic dissipation during cavitation and the cavity size dependence of the surface energy. All but one parameter, the Tolman length, can be extracted directly from independent calculations or estimated from physical principles. On longer time scales strain aging in the form of shear relaxations results in a systematic decrease of cavitation rate. The high cavitation rates that arise due to the suppression of the surface energy in small cavities provide a possible explanation for the quasibrittle fracture observed in metallic glasses.

  8. Caffeine and length dependence of staircase potentiation in skeletal muscle.

    PubMed

    Rassier, D E; Tubman, L A; MacIntosh, B R

    1998-01-01

    Skeletal muscle sensitivity to Ca2+ is greater at long lengths, and this results in an optimal length for twitch contractions that is longer than optimal length for tetanic contractions. Caffeine abolishes this length dependence of Ca2+ sensitivity. Muscle length (ML) also affects the degree of staircase potentiation. Since staircase potentiation is apparently caused by an increased Ca2+ sensitivity of the myofilaments, we tested the hypothesis that caffeine depresses the length dependence of staircase potentiation. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 10 s of 10-Hz stimulation were analyzed at seven different lengths to evaluate the length dependence of staircase potentiation. In the absence of caffeine, length dependence of Ca2+ sensitivity was observed, and the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased length (DT = 1.47 - 0.05 ML, r2 = 0.95, where DT is developed tension). Length dependence of Ca2+ sensitivity was decreased by caffeine when caffeine was administered in amounts estimated to result in 0.5 and 0.75 mM concentrations. Furthermore, the negative slope of the relationship between staircase potentiation and muscle length was diminished at the lower caffeine dose, and the slope was not different from zero after the higher dose (DT = 1.53 - 0.009 ML, r2 = 0.43). Our study shows that length dependence of Ca2+ sensitivity in intact skeletal muscle is diminished by caffeine. Caffeine also suppressed the length dependence of staircase potentiation, suggesting that the mechanism of this length dependence may be closely related to the mechanism for length dependence of Ca2+ sensitivity.

  9. Critical Fluctuations in Cortical Models Near Instability

    PubMed Central

    Aburn, Matthew J.; Holmes, C. A.; Roberts, James A.; Boonstra, Tjeerd W.; Breakspear, Michael

    2012-01-01

    Computational studies often proceed from the premise that cortical dynamics operate in a linearly stable domain, where fluctuations dissipate quickly and show only short memory. Studies of human electroencephalography (EEG), however, have shown significant autocorrelation at time lags on the scale of minutes, indicating the need to consider regimes where non-linearities influence the dynamics. Statistical properties such as increased autocorrelation length, increased variance, power law scaling, and bistable switching have been suggested as generic indicators of the approach to bifurcation in non-linear dynamical systems. We study temporal fluctuations in a widely-employed computational model (the Jansen–Rit model) of cortical activity, examining the statistical signatures that accompany bifurcations. Approaching supercritical Hopf bifurcations through tuning of the background excitatory input, we find a dramatic increase in the autocorrelation length that depends sensitively on the direction in phase space of the input fluctuations and hence on which neuronal subpopulation is stochastically perturbed. Similar dependence on the input direction is found in the distribution of fluctuation size and duration, which show power law scaling that extends over four orders of magnitude at the Hopf bifurcation. We conjecture that the alignment in phase space between the input noise vector and the center manifold of the Hopf bifurcation is directly linked to these changes. These results are consistent with the possibility of statistical indicators of linear instability being detectable in real EEG time series. However, even in a simple cortical model, we find that these indicators may not necessarily be visible even when bifurcations are present because their expression can depend sensitively on the neuronal pathway of incoming fluctuations. PMID:22952464

  10. Diffusion of isolated DNA molecules: dependence on length and topology.

    PubMed

    Robertson, Rae M; Laib, Stephan; Smith, Douglas E

    2006-05-09

    The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.

  11. Numerical Studies into Flow Profiles in Confined Lubricant

    NASA Astrophysics Data System (ADS)

    di Mare, Luca; Ponjavic, Aleks; Wong, Janet

    2013-03-01

    This paper documents a computational study of flow profiles in confined fluids. The study is motivated by experimental evidence for deviation from Couette flow found by one of the authors (JSW). The computational study examines several possible stress-strain relations. Since a linear profile is the only possible solution for a constant stress layer even in presence of a power law, the study introduces a functional dependence of the fluid viscosity on the distance from the wall. Based on this dependence, a family of scaling laws for the velocity profile near the wall is derived which matches the measured profiles. The existence of this scaling law requires the viscosity of the fluid to increase at least linearly away from the wall. This behaviour is explained at a microscopic level by considerations on the mobility of long molecules near a wall. This behaviour is reminiscent of the variation of eddy length scales in near-wall turbulence.

  12. Possible influence of the Kuramoto length in a photo-catalytic water splitting reaction revealed by Poisson-Nernst-Planck equations involving ionization in a weak electrolyte

    NASA Astrophysics Data System (ADS)

    Suzuki, Yohichi; Seki, Kazuhiko

    2018-03-01

    We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.

  13. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  14. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE PAGES

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; ...

    2018-01-11

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  15. Drivers of protogynous sex change differ across spatial scales.

    PubMed

    Taylor, Brett M

    2014-01-22

    The influence of social demography on sex change schedules in protogynous reef fishes is well established, yet effects across spatial scales (in particular, the magnitude of natural variation relative to size-selective fishing effects) are poorly understood. Here, I examine variation in timing of sex change for exploited parrotfishes across a range of environmental, anthropogenic and geographical factors. Results were highly dependent on spatial scale. Fishing pressure was the most influential factor determining length at sex change at the within-island scale where a wide range of anthropogenic pressure existed. Sex transition occurred at smaller sizes where fishing pressure was high. Among islands, however, differences were overwhelmingly predicted by reefal-scale structural features, a pattern evident for all species examined. For the most abundant species, Chlorurus spilurus, length at sex change increased at higher overall densities and greater female-to-male sex ratios at all islands except where targeted by fishermen; here the trend was reversed. This implies differing selective pressures on adult individuals can significantly alter sex change dynamics, highlighting the importance of social structure, demography and the selective forces structuring populations. Considerable life-history responses to exploitation were observed, but results suggest potential fishing effects on demography may be obscured by natural variation at biogeographic scales.

  16. A Two-Stage Procedure Toward the Efficient Implementation of PANS and Other Hybrid Turbulence Models

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Girimaji, Sharath S.

    2004-01-01

    The main objective of this article is to introduce and to show the implementation of a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS) and other hybrid models. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The first step is to solve the unsteady or steady Reynolds Averaged Navier-Stokes (URANS/RANS) equations. From this preprocessing step, the turbulence length-scale field is obtained. This is then used to compute the characteristic length-scale ratio between the turbulence scale and the grid spacing. Based on this ratio, we can assess the finest scale resolution that a given grid for a given flow can support. Along with other additional criteria, we are able to analytically identify the appropriate hybrid solver resolution for different regions of the flow. This procedure removes the grid dependency issue that affects the results produced by different hybrid procedures in solving unsteady flows. The formulation, implementation methodology, and validation example are presented. We implemented this capability in a production Computational Fluid Dynamics (CFD) code, PAB3D, for the simulation of unsteady flows.

  17. Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, Michael R.; ...

    2016-07-27

    Mixed-valence manganese oxides present striking properties like the colossal magnetoresistance, metal-insulator transition (MIT) that may result from coexistence of ferromagnetic, metallic and insulating phases. Percolation of such phase coexistence in the vicinity of MIT leads to first-order transition in these manganites. However the length scales over which the electronic and magnetic phases are separated across MIT which appears compelling for bulk systems has been elusive in (La 1-yPr y) 1-xCaxMnO 3 films. Here we show the in-plane length scale over which charge and magnetism are correlated in (La 0.4Pr 0.6) 1-xCaxMnO3 films with x = 0.33 and 0.375, across themore » MIT temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films across the MIT. We observed different charge-magnetic correlation length for two films which increases below the MIT. The different correlation length shown by two films may be responsible for different macroscopic (transport and magnetic) properties.« less

  18. Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines.

    PubMed

    Carl, Adrian; Bannuscher, Anne; von Klitzing, Regine

    2015-02-10

    Nanoparticles can be efficient foaming agents. Yet, the detailed mechanisms of foam stabilization by these particles remain unclear. In most cases, the foamability and foam stability of a system have to be determined empirically. We used a multiscale approach to reveal how the microscopic properties of the nanoparticle dispersion are translated into their foaming behavior at the macroscopic scale. As a model system we used silica nanoparticles that were hydrophobized by the in situ adsorption of short-chain alkylamines of chain length C5 to C8. We used fluorescence spectroscopy and electrophoretic mobility measurements to characterize the bulk behavior of the nanoparticles with adsorbed amines. The interfacial behavior was probed by compressing particle monolayers while monitoring the surface tension. The macroscopic foamability and foam stability were evaluated. There are strong correlations between the system properties at all length scales. The most prominent effects are observed at a critical bulk concentration of amines at which the nanoparticles start to aggregate due to hydrophobic interactions. Our study shows how the foam properties are related to the features of the bulk dispersions and to the ordering of particles at the air/water interface. The present results help to understand the surfactant concentration dependent stages of foaming behavior of in situ hydrophobized nanoparticles.

  19. Length scale effects and multiscale modeling of thermally induced phase transformation kinetics in NiTi SMA

    NASA Astrophysics Data System (ADS)

    Frantziskonis, George N.; Gur, Sourav

    2017-06-01

    Thermally induced phase transformation in NiTi shape memory alloys (SMAs) shows strong size and shape, collectively termed length scale effects, at the nano to micrometer scales, and that has important implications for the design and use of devices and structures at such scales. This paper, based on a recently developed multiscale model that utilizes molecular dynamics (MDs) simulations at small scales and MD-verified phase field (PhF) simulations at larger scales, reports results on specific length scale effects, i.e. length scale effects in martensite phase fraction (MPF) evolution, transformation temperatures (martensite and austenite start and finish) and in the thermally cyclic transformation between austenitic and martensitic phase. The multiscale study identifies saturation points for length scale effects and studies, for the first time, the length scale effect on the kinetics (i.e. developed internal strains) in the B19‧ phase during phase transformation. The major part of the work addresses small scale single crystals in specific orientations. However, the multiscale method is used in a unique and novel way to indirectly study length scale and grain size effects on evolution kinetics in polycrystalline NiTi, and to compare the simulation results to experiments. The interplay of the grain size and the length scale effect on the thermally induced MPF evolution is also shown in this present study. Finally, the multiscale coupling results are employed to improve phenomenological material models for NiTi SMA.

  20. Modeling size effects on the transformation behavior of shape memory alloy micropillars

    NASA Astrophysics Data System (ADS)

    Peraza Hernandez, Edwin A.; Lagoudas, Dimitris C.

    2015-07-01

    The size dependence of the thermomechanical response of shape memory alloys (SMAs) at the micro and nano-scales has gained increasing attention in the engineering community due to existing and potential uses of SMAs as solid-state actuators and components for energy dissipation in small scale devices. Particularly, their recent uses in microelectromechanical systems (MEMS) have made SMAs attractive options as active materials in small scale devices. One factor limiting further application, however, is the inability to effectively and efficiently model the observed size dependence of the SMA behavior for engineering applications. Therefore, in this work, a constitutive model for the size-dependent behavior of SMAs is proposed. Experimental observations are used to motivate the extension of an existing thermomechanical constitutive model for SMAs to account for the scale effects. It is proposed that such effects can be captured via characteristic length dependent material parameters in a power-law manner. The size dependence of the transformation behavior of NiFeGa micropillars is investigated in detail and used as model prediction cases. The constitutive model is implemented in a finite element framework and used to simulate and predict the response of SMA micropillars with different sizes. The results show a good agreement with experimental data. A parametric study performed using the calibrated model shows that the influence of micropillar aspect ratio and taper angle on the compression response is significantly smaller than that of the micropillar average diameter. It is concluded that the model is able to capture the size dependent transformation response of the SMA micropillars. In addition, the simplicity of the calibration and implementation of the proposed model make it practical for the design and numerical analysis of small scale SMA components that exhibit size dependent responses.

  1. BEYOND MIXING-LENGTH THEORY: A STEP TOWARD 321D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime

    2015-08-10

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier–Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier–Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets ofmore » solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier–Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.« less

  2. Beyond Mixing-length Theory: A Step Toward 321D

    NASA Astrophysics Data System (ADS)

    Arnett, W. David; Meakin, Casey; Viallet, Maxime; Campbell, Simon W.; Lattanzio, John C.; Mocák, Miroslav

    2015-08-01

    We examine the physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. Our 321D procedure is based on numerical solutions of the Navier-Stokes equations. These implicit large eddy simulations (ILES) are three-dimensional (3D), time-dependent, and turbulent, including the Kolmogorov cascade. We use the Reynolds-averaged Navier-Stokes (RANS) formulation to make concise the 3D simulation data, and use the 3D simulations to give closure for the RANS equations. We further analyze this data set with a simple analytical model, which is non-local and time-dependent, and which contains both MLT and the Lorenz convective roll as particular subsets of solutions. A characteristic length (the damping length) again emerges in the simulations; it is determined by an observed balance between (1) the large-scale driving, and (2) small-scale damping. The nature of mixing and convective boundaries is analyzed, including dynamic, thermal and compositional effects, and compared to a simple model. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear beyond the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects of composition gradients on flow can be comparable to thermal effects, and (4) convective boundaries in neutrino-cooled stages differ in nature from those in photon-cooled stages (different Péclet numbers). The algorithms are based upon ILES solutions to the Navier-Stokes equations, so that, unlike MLT, they do not require any calibration to astronomical systems in order to predict stellar properties. Implications for solar abundances, helioseismology, asteroseismology, nucleosynthesis yields, supernova progenitors and core collapse are indicated.

  3. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    PubMed

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  4. Multi-Scale Analysis for Characterizing Near-Field Constituent Concentrations in the Context of a Macro-Scale Semi-Lagrangian Numerical Model

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.

    2017-12-01

    The semi-Lagrangian numerical scheme employed by RBM, a model for simulating time-dependent, one-dimensional water quality constituents in advection-dominated rivers, is highly scalable both in time and space. Although the model has been used at length scales of 150 meters and time scales of three hours, the majority of applications have been at length scales of 1/16th degree latitude/longitude (about 5 km) or greater and time scales of one day. Applications of the method at these scales has proven successful for characterizing the impacts of climate change on water temperatures in global rivers and on the vulnerability of thermoelectric power plants to changes in cooling water temperatures in large river systems. However, local effects can be very important in terms of ecosystem impacts, particularly in the case of developing mixing zones for wastewater discharges with pollutant loadings limited by regulations imposed by the Federal Water Pollution Control Act (FWPCA). Mixing zone analyses have usually been decoupled from large-scale watershed influences by developing scenarios that represent critical scenarios for external processes associated with streamflow and weather conditions . By taking advantage of the particle-tracking characteristics of the numerical scheme, RBM can provide results at any point in time within the model domain. We develop a proof of concept for locations in the river network where local impacts such as mixing zones may be important. Simulated results from the semi-Lagrangian numerical scheme are treated as input to a finite difference model of the two-dimensional diffusion equation for water quality constituents such as water temperature or toxic substances. Simulations will provide time-dependent, two-dimensional constituent concentration in the near-field in response to long-term basin-wide processes. These results could provide decision support to water quality managers for evaluating mixing zone characteristics.

  5. Neutron Scattering Studies on Large Length Scale Sample Structures

    NASA Astrophysics Data System (ADS)

    Feng, Hao

    Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.

  6. A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters

    NASA Astrophysics Data System (ADS)

    Sadeghzadeh, Sadegh; Farshad Mir Saeed Ghazi, Seyyed

    2018-03-01

    Piezoelectric Nanogenerator (PENG) is one of the novel energy harvester systems that recently, has been a subject of interest for researchers. By the use of nanogenerators, it’s possible to harvest different forms of energy in the environment like mechanical vibrations and generate electricity. The structure of a PENG consists of vertical arrays of nanowires between two electrodes. In this paper, dynamic analysis of a PENG is studied numerically. The modified couple stress theory which includes one length scale material parameter is used to study the size-dependent behavior of PENGs. Then, by application of a complete form of linear hybrid piezoelectric—pyroelectric equations, and using the Euler-Bernoulli beam model, the equations of motion has been derived. Generalized Differential Quadrature (GDQ) method was employed to solve the equations of motion. The effect of damping ratio, temperature rise, excitation frequency and length scale parameter was studied. It was found that the PENG voltage maximizes at the resonant frequency of nanowire. The temperature rise has a significant effect on PENG’s efficiency. When temperature increases about 10 {{K}}, the maximum voltage increases about 26%. Increasing the damping ratio, the maximum voltage decreases gradually.

  7. Rubber friction: role of the flash temperature

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2006-08-01

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10-2 m s-1 the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s-1. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  8. Self-avoiding walks on scale-free networks

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.

    2005-01-01

    Several kinds of walks on complex networks are currently used to analyze search and navigation in different systems. Many analytical and computational results are known for random walks on such networks. Self-avoiding walks (SAW’s) are expected to be more suitable than unrestricted random walks to explore various kinds of real-life networks. Here we study long-range properties of random SAW’s on scale-free networks, characterized by a degree distribution P (k) ˜ k-γ . In the limit of large networks (system size N→∞ ), the average number sn of SAW’s starting from a generic site increases as μn , with μ= < k2 > / -1 . For finite N , sn is reduced due to the presence of loops in the network, which causes the emergence of attrition of the paths. For kinetic growth walks, the average maximum length increases as a power of the system size: ˜ Nα , with an exponent α increasing as the parameter γ is raised. We discuss the dependence of α on the minimum allowed degree in the network. A similar power-law dependence is found for the mean self-intersection length of nonreversal random walks. Simulation results support our approximate analytical calculations.

  9. Energy approach to brittle fracture in strain-gradient modelling.

    PubMed

    Placidi, Luca; Barchiesi, Emilio

    2018-02-01

    In this paper, we exploit some results in the theory of irreversible phenomena to address the study of quasi-static brittle fracture propagation in a two-dimensional isotropic continuum. The elastic strain energy density of the body has been assumed to be geometrically nonlinear and to depend on the strain gradient. Such generalized continua often arise in the description of microstructured media. These materials possess an intrinsic length scale, which determines the size of internal boundary layers. In particular, the non-locality conferred by this internal length scale avoids the concentration of deformations, which is usually observed when dealing with local models and which leads to mesh dependency. A scalar Lagrangian damage field, ranging from zero to one, is introduced to describe the internal state of structural degradation of the material. Standard Lamé and second-gradient elastic coefficients are all assumed to decrease as damage increases and to be locally zero if the value attained by damage is one. This last situation is associated with crack formation and/or propagation. Numerical solutions of the model are provided in the case of an obliquely notched rectangular specimen subjected to monotonous tensile and shear loading tests, and brittle fracture propagation is discussed.

  10. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    NASA Technical Reports Server (NTRS)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  11. Effect of Glycerol Water Binary Mixtures on the Structure and Dynamics of Protein Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Carri, Gustavo A.

    We have performed 20ns of fully atomistic molecular dynamics simulations of Hen Egg-White Lysozyme in 0, 10, 20, 30 and 100% by weight of glycerol in water to better understand the microscopic physics behind the bioprotection offered by glycerol to naturally occuring biological systems. The sovlent exposure of protein surface residues changes when glycerol is introduced. The dynamic behavior of the protein, as quantified by the Incoherent Intermediate Scattering Function, shows a non-monotonic dependence on glycerol content. The fluctuations of the protein residues with respect to each other were found to be similar in all water containing solvents; but differentmore » from the pure glycerol case. The increase in the number of protein glycerol hydrogen bonds in glycerol water binary mixtures explains the slowing down of protein dynamics as the glycerol content increases. We also explored the dynamic behavior of the hydration layer. We show that the short-length scale dynamics of this layer are insenstive to glycerol concentration. However, the long-length scale behavior shows a significant dependence on glycerol content. We also provide insights into the behavior of bound and mobile water molecules.« less

  12. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    PubMed

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.

  13. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media

    NASA Technical Reports Server (NTRS)

    Mair, R. W.; Sen, P. N.; Hurlimann, M. D.; Patz, S.; Cory, D. G.; Walsworth, R. L.

    2002-01-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Pade approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Pade interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Pade length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  14. The narrow pulse approximation and long length scale determination in xenon gas diffusion NMR studies of model porous media.

    PubMed

    Mair, R W; Sen, P N; Hürlimann, M D; Patz, S; Cory, D G; Walsworth, R L

    2002-06-01

    We report a systematic study of xenon gas diffusion NMR in simple model porous media, random packs of mono-sized glass beads, and focus on three specific areas peculiar to gas-phase diffusion. These topics are: (i) diffusion of spins on the order of the pore dimensions during the application of the diffusion encoding gradient pulses in a PGSE experiment (breakdown of the narrow pulse approximation and imperfect background gradient cancellation), (ii) the ability to derive long length scale structural information, and (iii) effects of finite sample size. We find that the time-dependent diffusion coefficient, D(t), of the imbibed xenon gas at short diffusion times in small beads is significantly affected by the gas pressure. In particular, as expected, we find smaller deviations between measured D(t) and theoretical predictions as the gas pressure is increased, resulting from reduced diffusion during the application of the gradient pulse. The deviations are then completely removed when water D(t) is observed in the same samples. The use of gas also allows us to probe D(t) over a wide range of length scales and observe the long time asymptotic limit which is proportional to the inverse tortuosity of the sample, as well as the diffusion distance where this limit takes effect (approximately 1-1.5 bead diameters). The Padé approximation can be used as a reference for expected xenon D(t) data between the short and the long time limits, allowing us to explore deviations from the expected behavior at intermediate times as a result of finite sample size effects. Finally, the application of the Padé interpolation between the long and the short time asymptotic limits yields a fitted length scale (the Padé length), which is found to be approximately 0.13b for all bead packs, where b is the bead diameter. c. 2002 Elsevier Sciences (USA).

  15. Neck linker length determines the degree of processivity in kinesin-1 and kinesin-2 motors.

    PubMed

    Shastry, Shankar; Hancock, William O

    2010-05-25

    Defining the mechanical and biochemical determinates of kinesin processivity is important for understanding how diverse kinesins are tuned for specific cellular functions. Because transmission of mechanical forces through the 14-18 amino acid neck linker domain underlies coordinated stepping, we investigated the role of neck linker length, charge, and structure in kinesin-1 and kinesin-2 motor behavior. For optimum comparison with kinesin-1, the KIF3A head and neck linker of kinesin-2 were fused to the kinesin-1 neck coil and rod. Extending the 14-residue kinesin-1 neck linker reduced processivity, and shortening the 17-residue kinesin-2 neck linker enhanced processivity. When a proline in the kinesin-2 neck linker was replaced, kinesin-1 and kinesin-2 run lengths scaled identically with neck linker length, despite moving at different speeds. In low-ionic-strength buffer, charge had a dominant effect on motor processivity, which resolves ongoing controversy regarding the effect of neck linker length on kinesin processivity. From stochastic simulations, the results are best explained by neck linker extension slowing strain-dependent detachment of the rear head along with diminishing strain-dependent inhibition of ATP binding. These results help delineate how interhead strain maximizes stepping and suggest that less processive kinesins are tuned to coordinate with other motors differently than the maximally processive kinesin-1. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Description of Hydration Water in Protein (Green Fluorescent Protein) Solution

    DOE PAGES

    Perticaroli, Stefania; Ehlers, Georg; Stanley, Christopher B.; ...

    2016-10-26

    The structurally and dynamically perturbed hydration shells that surround proteins and biomolecules have a substantial influence upon their function and stability. This makes the extent and degree of water perturbation of practical interest for general biological study and industrial formulation. Here, we present an experimental description of the dynamical perturbation of hydration water around green fluorescent protein in solution. Less than two shells (~5.5 Å) were perturbed, with dynamics a factor of 2–10 times slower than bulk water, depending on their distance from the protein surface and the probe length of the measurement. Furthermore, this dependence on probe length demonstratesmore » that hydration water undergoes subdiffusive motions (τ ∝ q –2.5 for the first hydration shell, τ ∝ q –2.3 for perturbed water in the second shell), an important difference with neat water, which demonstrates diffusive behavior (τ ∝ q –2). Our results help clarify the seemingly conflicting range of values reported for hydration water retardation as a logical consequence of the different length scales probed by the analytical techniques used.« less

  17. Cracking and adhesion at small scales: atomistic and continuum studies of flaw tolerant nanostructures

    NASA Astrophysics Data System (ADS)

    Buehler, Markus J.; Yao, Haimin; Gao, Huajian; Ji, Baohua

    2006-07-01

    Once the characteristic size of materials reaches nanoscale, the mechanical properties may change drastically and classical mechanisms of materials failure may cease to hold. In this paper, we focus on joint atomistic-continuum studies of failure and deformation of nanoscale materials. In the first part of the paper, we discuss the size dependence of brittle fracture. We illustrate that if the characteristic dimension of a material is below a critical length scale that can be on the order of several nanometres, the classical Griffith theory of fracture no longer holds. An important consequence of this finding is that materials with nano-substructures may become flaw-tolerant, as the stress concentration at crack tips disappears and failure always occurs at the theoretical strength of materials, regardless of defects. Our atomistic simulations complement recent continuum analysis (Gao et al 2003 Proc. Natl Acad. Sci. USA 100 5597-600) and reveal a smooth transition between Griffith modes of failure via crack propagation to uniform bond rupture at theoretical strength below a nanometre critical length. Our results may have consequences for understanding failure of many small-scale materials. In the second part of this paper, we focus on the size dependence of adhesion systems. We demonstrate that optimal adhesion can be achieved by either length scale reduction, or by optimization of the shape of the surface of the adhesion element. We find that whereas change in shape can lead to optimal adhesion strength, those systems are not robust against small deviations from the optimal shape. In contrast, reducing the dimensions of the adhesion system results in robust adhesion devices that fail at their theoretical strength, regardless of the presence of flaws. An important consequence of this finding is that even under the presence of surface roughness, optimal adhesion is possible provided the size of contact elements is sufficiently small. Our atomistic results corroborate earlier theoretical modelling at the continuum scale (Gao and Yao 2004 Proc. Natl Acad. Sci. USA 101 7851-6). We discuss the relevance of our studies with respect to nature's design of bone nanostructures and nanoscale adhesion elements in geckos.

  18. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics

    NASA Astrophysics Data System (ADS)

    Paillusson, Fabien; Blossey, Ralf

    2010-11-01

    Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.

  19. On the Da Vinci size effect in tensile strengths of nanowires: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zhao, Ziyu; Liu, Jinxing; Soh, Ai Kah

    2018-01-01

    In recent decades, size effects caused by grain size, strain gradient, typical defects etc., have been widely investigated. Nevertheless, the dependence of tensile strength on the specimen length, addressed by Da Vinci around 500 hundred years ago, has received rather limited attention, even though it is one unavoidable question to answer if people attempt to bring materials' amazing nano-scale strengths up to macro-level. Therefore, we make efforts to study tensile behaviors of copper nanowires with a common cross-section and various lengths by employing the molecular dynamics simulations. Surprisingly, a strong size effect of Da Vinci type indeed arises. We have shown the influences of lattice orientation, temperature and prescribed notch on such a Da Vinci size effect. Two different theoretical explanations are briefly proposed for a qualitative understanding. Finally, a simple scaling rule is summarized to cover the tendencies observed.

  20. Geometric scalings for the electrostatically driven helical plasma state

    NASA Astrophysics Data System (ADS)

    Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.

    2017-12-01

    A new plasma state has been investigated [Akcay et al., Phys. Plasmas 24, 052503 (2017)], with a uniform applied axial magnetic field in a periodic cylinder of length L = 2 π R , driven by helical electrodes. The drive is single helicity, depending on m θ + k z = m θ - n ζ , where ζ = z / R and k = - n / R . For strong ( m , n ) = ( 1 , 1 ) drive, the state was found to have a strong axial mean current density, with a mean-field safety factor q 0 ( r ) just above the pitch of the electrodes m / n = 1 in the interior. This state has possible applications to DC electrical transformers and tailoring of the current profile in tokamaks. We study two geometric issues of interest for these applications: (i) scaling of properties with the plasma length or aspect ratio and (ii) behavior for different helicities, specifically ( m , n ) = ( 1 , n ) for n > 1 and ( m , n ) = ( 2 , 1 ) .

  1. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE PAGES

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...

    2017-10-30

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  2. Local Orthorhombicity in the Magnetic C 4 Phase of the Hole-Doped Iron-Arsenide Superconductor Sr 1 - x Na x Fe 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming

    We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less

  3. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  4. Scaling behavior of nonisothermal phase separation.

    PubMed

    Rüllmann, Max; Alig, Ingo

    2004-04-22

    The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics

  5. Functional Connectivity of Precipitation Networks in the Brazilian Rainforest-Savanna Transition Zone

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2016-12-01

    In the Brazilian rainforest-savanna transition zone, vegetation change has the potential to significantly affect precipitation patterns. Deforestation, in particular, can affect precipitation patterns by increasing land surface albedo, increasing aerosol loading to the atmosphere, changing land surface roughness, and reducing transpiration. Understanding land surface-precipitation couplings in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching and agriculture, hydropower generation, and drinking water management. Simulations suggest complex, scale-dependent interactions between precipitation and land cover. For example, the size and distribution of deforested patches has been found to affect precipitation patterns. We take an empirical approach to ask: (1) what are the dominant spatial and temporal length scales of precipitation coupling in the Brazilian rainforest-savanna transition zone? (2) How do these length scales change over time? (3) How does the connectivity of precipitation change over time? The answers to these questions will help address fundamental questions about the impacts of deforestation on precipitation. We use rain gauge data from 1100 rain gauges intermittently covering the period 1980 - 2013, a period of intensive land cover change in the region. The dominant spatial and temporal length scales of precipitation coupling are resolved using transfer entropy, a metric from information theory. Connectivity of the emergent network of couplings is quantified using network statistics. Analyses using transfer entropy and network statistics reveal the spatial and temporal interdependencies of rainfall events occurring in different parts of the study domain.

  6. Discrete dislocation plasticity analysis of loading rate-dependent static friction.

    PubMed

    Song, H; Deshpande, V S; Van der Giessen, E

    2016-08-01

    From a microscopic point of view, the frictional force associated with the relative sliding of rough surfaces originates from deformation of the material in contact, by adhesion in the contact interface or both. We know that plastic deformation at the size scale of micrometres is not only dependent on the size of the contact, but also on the rate of deformation. Moreover, depending on its physical origin, adhesion can also be size and rate dependent, albeit different from plasticity. We present a two-dimensional model that incorporates both discrete dislocation plasticity inside a face-centred cubic crystal and adhesion in the interface to understand the rate dependence of friction caused by micrometre-size asperities. The friction strength is the outcome of the competition between adhesion and discrete dislocation plasticity. As a function of contact size, the friction strength contains two plateaus: at small contact length [Formula: see text], the onset of sliding is fully controlled by adhesion while for large contact length [Formula: see text], the friction strength approaches the size-independent plastic shear yield strength. The transition regime at intermediate contact size is a result of partial de-cohesion and size-dependent dislocation plasticity, and is determined by dislocation properties, interfacial properties as well as by the loading rate.

  7. Absorbing boundaries in numerical solutions of the time-dependent Schroedinger equation on a grid using exterior complex scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, F.; Ruiz, C.; Becker, A.

    We study the suppression of reflections in the numerical simulation of the time-dependent Schroedinger equation for strong-field problems on a grid using exterior complex scaling (ECS) as an absorbing boundary condition. It is shown that the ECS method can be applied in both the length and the velocity gauge as long as appropriate approximations are applied in the ECS transformation of the electron-field coupling. It is found that the ECS method improves the suppression of reflection as compared to the conventional masking function technique in typical simulations of atoms exposed to an intense laser pulse. Finally, we demonstrate the advantagemore » of the ECS technique to avoid unphysical artifacts in the evaluation of high harmonic spectra.« less

  8. Myosin filament activation in the heart is tuned to the mechanical task

    PubMed Central

    Reconditi, Massimo; Caremani, Marco; Pinzauti, Francesca; Powers, Joseph D.; Narayanan, Theyencheri; Stienen, Ger J. M.; Linari, Marco; Lombardi, Vincenzo

    2017-01-01

    The mammalian heart pumps blood through the vessels, maintaining the dynamic equilibrium in a circulatory system driven by two pumps in series. This vital function is based on the fine-tuning of cardiac performance by the Frank–Starling mechanism that relates the pressure exerted by the contracting ventricle (end systolic pressure) to its volume (end systolic volume). At the level of the sarcomere, the structural unit of the cardiac myocytes, the Frank–Starling mechanism consists of the increase in active force with the increase of sarcomere length (length-dependent activation). We combine sarcomere mechanics and micrometer–nanometer-scale X-ray diffraction from synchrotron light in intact ventricular trabeculae from the rat to measure the axial movement of the myosin motors during the diastole–systole cycle under sarcomere length control. We find that the number of myosin motors leaving the off, ATP hydrolysis-unavailable state characteristic of the diastole is adjusted to the sarcomere length-dependent systolic force. This mechanosensing-based regulation of the thick filament makes the energetic cost of the systole rapidly tuned to the mechanical task, revealing a prime aspect of the Frank–Starling mechanism. The regulation is putatively impaired by cardiomyopathy-causing mutations that affect the intramolecular and intermolecular interactions controlling the off state of the motors. PMID:28265101

  9. Isotope Mass Scaling of Turbulence and Transport

    NASA Astrophysics Data System (ADS)

    McKee, George; Yan, Zheng; Gohil, Punit; Luce, Tim; Rhodes, Terry

    2017-10-01

    The dependence of turbulence characteristics and transport scaling on the fuel ion mass has been investigated in a set of hydrogen (A = 1) and deuterium (A = 2) plasmas on DIII-D. Normalized energy confinement time (B *τE) is two times lower in hydrogen (H) plasmas compare to similar deuterium (D) plasmas. Dimensionless parameters other than ion mass (A) , including ρ*, q95, Te /Ti , βN, ν*, and Mach number were maintained nearly fixed. Matched profiles of electron density, electron and ion temperature, and toroidal rotation were well matched. The normalized turbulence amplitude (ñ / n) is approximately twice as large in H as in D, which may partially explain the increased transport and reduced energy confinement time. Radial correlation lengths of low-wavenumber density turbulence in hydrogen are similar to or slightly larger than correlation lengths in the deuterium plasmas and generally scale with the ion gyroradius, which were maintained nearly fixed in this dimensionless scan. Predicting energy confinement in D-T burning plasmas requires an understanding of the large and beneficial isotope scaling of transport. Supported by USDOE under DE-FG02-08ER54999 and DE-FC02-04ER54698.

  10. Unified force-level theory of multiscale transient localization and emergent elasticity in polymer solutions and melts

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    A unified, microscopic, theoretical understanding of polymer dynamics in concentrated liquids from segmental to macromolecular scales remains an open problem. We have formulated a statistical mechanical theory for this problem that explicitly accounts for intra- and inter-molecular forces at the Kuhn segment level. The theory is self-consistently closed at the level of a matrix of dynamical second moments of a tagged chain. Two distinct regimes of isotropic transient localization are predicted. In semidilute solutions, weak localization is predicted on a mesoscopic length scale between segment and chain scales which is a power law function of the invariant packing length. This is consistent with the breakdown of Rouse dynamics and the emergence of entanglements. The chain structural correlations in the dynamically arrested state are also computed. In dense melts, strong localization is predicted on a scale much smaller than the segment size which is weakly dependent on chain connectivity and signals the onset of glassy dynamics. Predictions of the dynamic plateau shear modulus are consistent with the known features of emergent rubbery and glassy elasticity. Generalizations to treat the effects of chemical crosslinking and physical bond formation in polymer gels are possible.

  11. The impact of different aperture distribution models and critical stress criteria on equivalent permeability in fractured rocks

    NASA Astrophysics Data System (ADS)

    Bisdom, Kevin; Bertotti, Giovanni; Nick, Hamidreza M.

    2016-05-01

    Predicting equivalent permeability in fractured reservoirs requires an understanding of the fracture network geometry and apertures. There are different methods for defining aperture, based on outcrop observations (power law scaling), fundamental mechanics (sublinear length-aperture scaling), and experiments (Barton-Bandis conductive shearing). Each method predicts heterogeneous apertures, even along single fractures (i.e., intrafracture variations), but most fractured reservoir models imply constant apertures for single fractures. We compare the relative differences in aperture and permeability predicted by three aperture methods, where permeability is modeled in explicit fracture networks with coupled fracture-matrix flow. Aperture varies along single fractures, and geomechanical relations are used to identify which fractures are critically stressed. The aperture models are applied to real-world large-scale fracture networks. (Sub)linear length scaling predicts the largest average aperture and equivalent permeability. Barton-Bandis aperture is smaller, predicting on average a sixfold increase compared to matrix permeability. Application of critical stress criteria results in a decrease in the fraction of open fractures. For the applied stress conditions, Coulomb predicts that 50% of the network is critically stressed, compared to 80% for Barton-Bandis peak shear. The impact of the fracture network on equivalent permeability depends on the matrix hydraulic properties, as in a low-permeable matrix, intrafracture connectivity, i.e., the opening along a single fracture, controls equivalent permeability, whereas for a more permeable matrix, absolute apertures have a larger impact. Quantification of fracture flow regimes using only the ratio of fracture versus matrix permeability is insufficient, as these regimes also depend on aperture variations within fractures.

  12. Driving force for hydrophobic interaction at different length scales.

    PubMed

    Zangi, Ronen

    2011-03-17

    We study by molecular dynamics simulations the driving force for the hydrophobic interaction between graphene sheets of different sizes down to the atomic scale. Similar to the prediction by Lum, Chandler, and Weeks for hard-sphere solvation [J. Phys. Chem. B 1999, 103, 4570-4577], we find the driving force to be length-scale dependent, despite the fact that our model systems do not exhibit dewetting. For small hydrophobic solutes, the association is purely entropic, while enthalpy favors dissociation. The latter is demonstrated to arise from the enhancement of hydrogen bonding between the water molecules around small hydrophobes. On the other hand, the attraction between large graphene sheets is dominated by enthalpy which mainly originates from direct solute-solute interactions. The crossover length is found to be inside the range of 0.3-1.5 nm(2) of the surface area of the hydrophobe that is eliminated in the association process. In the large-scale regime, different thermodynamic properties are scalable with this change of surface area. In particular, upon dimerization, a total and a water-induced stabilization of approximately 65 and 12 kJ/mol/nm(2) are obtained, respectively, and on average around one hydrogen bond is gained per 1 nm(2) of graphene sheet association. Furthermore, the potential of mean force between the sheets is also scalable except for interplate distances smaller than 0.64 nm which corresponds to the region around the barrier for removing the last layer of water. It turns out that, as the surface area increases, the relative height of the barrier for association decreases and the range of attraction increases. It is also shown that, around small hydrophobic solutes, the lifetime of the hydrogen bonds is longer than in the bulk, while around large hydrophobes it is the same. Nevertheless, the rearrangement of the hydrogen-bond network for both length-scale regimes is slower than in bulk water. © 2011 American Chemical Society

  13. Length dependence of staircase potentiation: interactions with caffeine and dantrolene sodium.

    PubMed

    Rassier, D E; MacIntosh, B R

    2000-04-01

    In skeletal muscle, there is a length dependence of staircase potentiation for which the mechanism is unclear. In this study we tested the hypothesis that abolition of this length dependence by caffeine is effected by a mechanism independent of enhanced Ca2+ release. To test this hypothesis we have used caffeine, which abolishes length dependence of potentiation, and dantrolene sodium, which inhibits Ca2+ release. In situ isometric twitch contractions of rat gastrocnemius muscle before and after 20 s of repetitive stimulation at 5 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. Potentiation was observed to be length dependent, with an increase in developed tension (DT) of 78 +/- 12, 51 +/- 5, and 34 +/- 9% (mean +/- SEM), at Lo - 10%, Lo, and Lo + 10%, respectively. Caffeine diminished the length dependence of activation and suppressed the length dependence of staircase potentiation, giving increases in DT of 65+/-13, 53 +/- 11, and 45 +/- 12% for Lo - 10%, Lo, and Lo + 10%, respectively. Dantrolene administered after caffeine did not reverse this effect. Dantrolene alone depressed the potentiation response, but did not affect the length dependence of staircase potentiation, with increases in DT of 58 +/- 17, 26 +/- 8, and 18 +/- 7%, respectively. This study confirms that there is a length dependence of staircase potentiation in mammalian skeletal muscle which is suppressed by caffeine. Since dantrolene did not alter this suppression of the length dependence of potentiation by caffeine, it is apparently not directly modulated by Ca2+ availability in the myoplasm.

  14. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    NASA Astrophysics Data System (ADS)

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  15. Mesoscopic length scale controls the rheology of dense suspensions.

    PubMed

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-03

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  16. Studies of interactions of a propagating shock wave with decaying grid turbulence: velocity and vorticity fields

    NASA Astrophysics Data System (ADS)

    Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis

    2005-02-01

    The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.

  17. Size-dependent regulation of dorsal-ventral patterning in the early Drosophila embryo

    PubMed Central

    Garcia, Mayra; Nahmad, Marcos; Reeves, Gregory T.; Stathopoulos, Angelike

    2013-01-01

    How natural variation in embryo size affects patterning of the Drosophila embryo dorsal-ventral (DV) axis is not known. Here we examined quantitatively the relationship between nuclear distribution of the Dorsal transcription factor, boundary positions for several target genes, and DV axis length. Data were obtained from embryos of a wild-type background as well as from mutant lines inbred to size select embryos of smaller or larger sizes. Our data show that the width of the nuclear Dorsal gradient correlates with DV axis length. In turn, for some genes expressed along the DV axis, the boundary positions correlate closely with nuclear Dorsal levels and with DV axis length; while the expression pattern of others is relatively constant and independent of the width of the Dorsal gradient. In particular, the patterns of snail (sna) and ventral nervous-system defective (vnd) correlate with nuclear Dorsal levels and exhibit scaling to DV length; while the pattern of intermediate neuroblasts defective (ind) remains relatively constant with respect to changes in Dorsal and DV length. However, in mutants that exhibit an abnormal expansion of the Dorsal gradient which fails to scale to DV length, only sna follows the Dorsal distribution and exhibits overexpansion; in contrast, vnd and ind do not overexpand suggesting some additional mechanism acts to refine the dorsal boundaries of these two genes. Thus, our results argue against the idea that the Dorsal gradient works as a global system of relative coordinates along the DV axis and suggest that individual targets respond to changes in embryo size in a gene-specific manner. PMID:23800450

  18. The role of plasma density scale length on the laser pulse propagation and scattering in relativistic regime

    NASA Astrophysics Data System (ADS)

    Pishdast, Masoud; Ghasemi, Seyed Abolfazl; Yazdanpanah, Jamal Aldin

    2017-10-01

    The role of plasma density scale length on two short and long laser pulse propagation and scattering in under dense plasma have been investigated in relativistic regime using 1 D PIC simulation. In our simulation, different density scale lengths and also two short and long pulse lengths with temporal pulse duration τL = 60 fs and τL = 300 fs , respectively have been used. It is found that laser pulse length and density scale length have considerable effects on the energetic electron generation. The analysis of total radiation spectrum reveals that, for short laser pulses and with reducing density scale length, more unstable electromagnetic modes grow and strong longitudinal electric field generates which leads to the generation of more energetic plasma particles. Meanwhile, the dominant scattering mechanism is Raman scattering and tends to Thomson scattering for longer laser pulse.

  19. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales

  20. Validity of the two-level model for Viterbi decoder gap-cycle performance

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Arnold, S.

    1990-01-01

    A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.

  1. Rayleigh-Taylor instability in an equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The Rayleigh-Taylor (RT) instability in an inhomogeneous pair-ion plasma has been analyzed. Considering two fluid model for two species of ions (positive and negative), we obtain the possibility of the existence of RT instability. The growth rate of the RT instability as usual depends on gravity and density gradient scale length. The results are discussed in context of pair-ion plasma experiments.

  2. Multi-Scale Simulations of Carbon Nanotubes: Mechanics and Electronics

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak

    2003-01-01

    Carbon Nanotube (CNT) is a tubular form of carbon with diameter as small as 1 nm. Length: few mn to microns. CNT is configurationally equivalent to a two dimensional graphene sheet rolled into a tube. CNT exhibits extraordinary mechanical properties; Young's modulus over 1 Tera Pascal, as stiff as diamond, and tensile strength approx. 200 GPa. CNT can be metallic or semiconducting, depending on chirality.

  3. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE PAGES

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; ...

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  4. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  5. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites

    NASA Astrophysics Data System (ADS)

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale.

  6. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations.

    PubMed

    Finner, Shari P; Kotsev, Mihail I; Miller, Mark A; van der Schoot, Paul

    2018-01-21

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which-in the absence of a field-is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  7. Continuum percolation of polydisperse rods in quadrupole fields: Theory and simulations

    NASA Astrophysics Data System (ADS)

    Finner, Shari P.; Kotsev, Mihail I.; Miller, Mark A.; van der Schoot, Paul

    2018-01-01

    We investigate percolation in mixtures of nanorods in the presence of external fields that align or disalign the particles with the field axis. Such conditions are found in the formulation and processing of nanocomposites, where the field may be electric, magnetic, or due to elongational flow. Our focus is on the effect of length polydispersity, which—in the absence of a field—is known to produce a percolation threshold that scales with the inverse weight average of the particle length. Using a model of non-interacting spherocylinders in conjunction with connectedness percolation theory, we show that a quadrupolar field always increases the percolation threshold and that the universal scaling with the inverse weight average no longer holds if the field couples to the particle length. Instead, the percolation threshold becomes a function of higher moments of the length distribution, where the order of the relevant moments crucially depends on the strength and type of field applied. The theoretical predictions compare well with the results of our Monte Carlo simulations, which eliminate finite size effects by exploiting the fact that the universal scaling of the wrapping probability function holds even in anisotropic systems. Theory and simulation demonstrate that the percolation threshold of a polydisperse mixture can be lower than that of the individual components, confirming recent work based on a mapping onto a Bethe lattice as well as earlier computer simulations involving dipole fields. Our work shows how the formulation of nanocomposites may be used to compensate for the adverse effects of aligning fields that are inevitable under practical manufacturing conditions.

  8. Scaling of cluster growth for coagulating active particles

    NASA Astrophysics Data System (ADS)

    Cremer, Peet; Löwen, Hartmut

    2014-02-01

    Cluster growth in a coagulating system of active particles (such as microswimmers in a solvent) is studied by theory and simulation. In contrast to passive systems, the net velocity of a cluster can have various scalings dependent on the propulsion mechanism and alignment of individual particles. Additionally, the persistence length of the cluster trajectory typically increases with size. As a consequence, a growing cluster collects neighboring particles in a very efficient way and thus amplifies its growth further. This results in unusual large growth exponents for the scaling of the cluster size with time and, for certain conditions, even leads to "explosive" cluster growth where the cluster becomes macroscopic in a finite amount of time.

  9. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A.; Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  10. Archaeal ammonia oxidizers respond to soil factors at smaller spatial scales than the overall archaeal community does in a high Arctic polar oasis.

    PubMed

    Banerjee, Samiran; Kennedy, Nabla; Richardson, Alan E; Egger, Keith N; Siciliano, Steven D

    2016-06-01

    Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.

  11. Thermodynamic scaling of dynamics in polymer melts: predictions from the generalized entropy theory.

    PubMed

    Xu, Wen-Sheng; Freed, Karl F

    2013-06-21

    Many glass-forming fluids exhibit a remarkable thermodynamic scaling in which dynamic properties, such as the viscosity, the relaxation time, and the diffusion constant, can be described under different thermodynamic conditions in terms of a unique scaling function of the ratio ρ(γ)∕T, where ρ is the density, T is the temperature, and γ is a material dependent constant. Interest in the scaling is also heightened because the exponent γ enters prominently into considerations of the relative contributions to the dynamics from pressure effects (e.g., activation barriers) vs. volume effects (e.g., free volume). Although this scaling is clearly of great practical use, a molecular understanding of the scaling remains elusive. Providing this molecular understanding would greatly enhance the utility of the empirically observed scaling in assisting the rational design of materials by describing how controllable molecular factors, such as monomer structures, interactions, flexibility, etc., influence the scaling exponent γ and, hence, the dynamics. Given the successes of the generalized entropy theory in elucidating the influence of molecular details on the universal properties of glass-forming polymers, this theory is extended here to investigate the thermodynamic scaling in polymer melts. The predictions of theory are in accord with the appearance of thermodynamic scaling for pressures not in excess of ~50 MPa. (The failure at higher pressures arises due to inherent limitations of a lattice model.) In line with arguments relating the magnitude of γ to the steepness of the repulsive part of the intermolecular potential, the abrupt, square-well nature of the lattice model interactions lead, as expected, to much larger values of the scaling exponent. Nevertheless, the theory is employed to study how individual molecular parameters affect the scaling exponent in order to extract a molecular understanding of the information content contained in the exponent. The chain rigidity, cohesive energy, chain length, and the side group length are all found to significantly affect the magnitude of the scaling exponent, and the computed trends agree well with available experiments. The variations of γ with these molecular parameters are explained by establishing a correlation between the computed molecular dependence of the scaling exponent and the fragility. Thus, the efficiency of packing the polymers is established as the universal physical mechanism determining both the fragility and the scaling exponent γ.

  12. Detection and extraction of orientation-and-scale-dependent information from two-dimensional GPR data with tuneable directional wavelet filters

    NASA Astrophysics Data System (ADS)

    Tzanis, Andreas

    2013-02-01

    The Ground Probing Radar (GPR) is a valuable tool for near surface geological, geotechnical, engineering, environmental, archaeological and other work. GPR images of the subsurface frequently contain geometric information (constant or variable-dip reflections) from various structures such as bedding, cracks, fractures, etc. Such features are frequently the target of the survey; however, they are usually not good reflectors and they are highly localized in time and in space. Their scale is therefore a factor significantly affecting their detectability. At the same time, the GPR method is very sensitive to broadband noise from buried small objects, electromagnetic anthropogenic activity and systemic factors, which frequently blurs the reflections from such targets. This paper introduces a method to de-noise GPR data and extract geometric information from scale-and-dip dependent structural features, based on one-dimensional B-Spline Wavelets, two-dimensional directional B-Spline Wavelet (BSW) Filters and two-dimensional Gabor Filters. A directional BSW Filter is built by sidewise arranging s identical one-dimensional wavelets of length L, tapering the s-parallel direction (span) with a suitable window function and rotating the resulting matrix to the desired orientation. The length L of the wavelet defines the temporal and spatial scale to be isolated and the span determines the length over which to smooth (spatial resolution). The Gabor Filter is generated by multiplying an elliptical Gaussian by a complex plane wave; at any orientation the temporal or spatial scale(s) to be isolated are determined by the wavelength. λ of the plane wave and the spatial resolution by the spatial aspect ratio γ, which specifies the ellipticity of the support of the Gabor function. At any orientation, both types of filter may be tuned at any frequency or spatial wavenumber by varying the length or the wavelength respectively. The filters can be applied directly to two-dimensional radargrams, in which case they abstract information about given scales at given orientations. Alternatively, they can be rotated to different orientations under adaptive control, so that they remain tuned at a given frequency or wavenumber and the resulting images can be stacked in the LS sense, so as to obtain a complete representation of the input data at a given temporal or spatial scale. In addition to isolating geometrical information for further scrutiny, the proposed filtering methods can be used to enhance the S/N ratio in a manner particularly suitable for GPR data, because the frequency response of the filters mimics the frequency characteristics of the source wavelet. Finally, signal attenuation and temporal localization are closely associated: low attenuation interfaces tend to produce reflections rich in high frequencies and fine-scale localization as a function of time. Conversely, high attenuation interfaces will produce reflections rich in low frequencies and broad localization. Accordingly, the temporal localization characteristics of the filters may be exploited to investigate the characteristics of signal propagation (hence material properties). The method is shown to be very effective in extracting fine to coarse scale information from noisy data and is demonstrated with applications to noisy GPR data from archaeometric and geotechnical surveys.

  13. Spatial Structure of a Braided River: Metric Resolution Hydrodynamic Modeling Reveals What SWOT Might See

    NASA Astrophysics Data System (ADS)

    Schubert, J.; Sanders, B. F.; Andreadis, K.

    2013-12-01

    The Surface Water and Ocean Topography (SWOT) mission, currently under study by NASA (National Aeronautics and Space Administration) and CNES (Centre National d'Etudes Spatiales), is designed to provide global spatial measurements of surface water properties at resolutions better than 10 m and with centimetric accuracy. The data produced by SWOT will include irregularly spaced point clouds of the water surface height, with point spacings from roughly 2-50 m depending on a point's location within SWOT's swath. This could offer unprecedented insight into the spatial structure of rivers. Features that may be resolved include backwater profiles behind dams, drawdown profiles, uniform flow sections, critical flow sections, and even riffle-pool flow structures. In the event that SWOT scans a river during a major flood, it becomes possible to delineate the limits of the flood as well as the spatial structure of the water surface elevation, yielding insight into the dynamic interaction of channels and flood plains. The Platte River in Nebraska, USA, is a braided river with a width and slope of approximately 100 m and 100 cm/km, respectively. A 1 m resolution Digital Terrain Model (DTM) of the river basin, based on airborne lidar collected during low-flow conditions, was used to parameterize a two-dimensional, variable resolution, unstructured grid, hydrodynamic model that uses 3 m resolution triangles in low flow channels and 10 m resolution triangles in the floodplain. Use of a fine resolution mesh guarantees that local variability in topography is resolved, and after applying the hydrodynamic model, the effects of topographic variability are expressed as variability in the water surface height, depth-averaged velocity and flow depth. Flow is modeled over a reach length of 10 km for multi-day durations to capture both frequent (diurnal variations associated with regulated flow) and infrequent (extreme flooding) flow phenomena. Model outputs reveal a number of interesting features, including a high degree of variability in the water depth and velocity and lesser variability in the free-surface profile and river discharge. Hydraulic control sections are also revealed, and shown to depend on flow stage. Reach-averaging of model output is applied to study the macro-scale balance of forces in this system, and the scales at which such a force balance is appropriate. We find that the reach-average slope exhibits a declining reach-length dependence with increasing reach length, up to reach lengths of 1 km. Hence, 1 km appears to be the minimum appropriate length for reach-averaging, and at this scale, a diffusive-wave momentum balance is a reasonable approximation suitable for emerging models of discharge estimation that rely only on SWOT-observable river properties (width, height, slope, etc.).

  14. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  15. Temperature effect on the small-to-large crossover lengthscale of hydrophobic hydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djikaev, Y. S., E-mail: idjikaev@buffalo.edu; Ruckenstein, E.

    2013-11-14

    The thermodynamics of hydration is expected to change gradually from entropic for small solutes to enthalpic for large ones. The small-to-large crossover lengthscale of hydrophobic hydration depends on the thermodynamic conditions of the solvent such as temperature, pressure, presence of additives, etc. We attempt to shed some light on the temperature dependence of the crossover lengthscale by using a probabilistic approach to water hydrogen bonding that allows one to obtain an analytic expression for the number of bonds per water molecule as a function of both its distance to a solute and solute radius. Incorporating that approach into the densitymore » functional theory, one can examine the solute size effects on its hydration over the entire small-to-large lengthscale range at a series of different temperatures. Knowing the dependence of the hydration free energy on the temperature and solute size, one can also obtain its enthalpic and entropic contributions as functions of both temperature and solute size. These functions can provide some interesting insight into the temperature dependence of the crossover lengthscale of hydrophobic hydration. The model was applied to the hydration of spherical particles of various radii in water in the temperature range from T = 293.15 K to T = 333.15 K. The model predictions for the temperature dependence of the hydration free energy of small hydrophobes are consistent with the experimental and simulational data on the hydration of simple molecular solutes. Three alternative definitions for the small-to-large crossover length-scale of hydrophobic hydration are proposed, and their temperature dependence is obtained. Depending on the definition and temperature, the small-to-large crossover in the hydration mechanism is predicted to occur for hydrophobes of radii from one to several nanometers. Independent of its definition, the crossover length-scale is predicted to decrease with increasing temperature.« less

  16. a Fractal Network Model for Fractured Porous Media

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung

    2016-04-01

    The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.

  17. Quantifying intermediate-frequency heterogeneities of SOFC electrodes using X-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epting, William K.; Mansley, Zachary; Menasche, David B.

    2017-03-03

    The electrodes in solid oxide fuel cells (SOFCs) consist of three phases interconnected in three dimensions. The volume needed to describe quantitatively such microstructures depends on several lengths scales, which are functions of materials properties and fabrication methods. This work focuses on quantifying the volume needed to represent “intermediate frequency” heterogeneities in electrodes of a commercial SOFC using X-ray computed tomography (CT) over two different length scales. Electrode volumes of 150 x 150 x 9 μm 3 were extracted from a synchrotron-based micro-CT data set, with 13 μm 3 voxels. 13.6 x 19.8 x 19.4 μm 3 of the cathodemore » and 26.3 x 24.8 x 15.7 μm 3 of the anode were extracted from laboratory nano-CT data sets, both with 65 3 nm 3 voxels. After comparing the variation across sub-regions for the greyscale values from the micro-CT, and for the phase fractions and triple phase boundary densities from the nano-CT, it was found that the sub-region length scales needed to yield statistically similar average values were an order of magnitude larger than those expected to capture the “high frequency” heterogeneity related to the discrete nature of the three phases in electrodes. In conclusion, the challenge of quantifying such electrodes using available experimental methods is discussed.« less

  18. Planar Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Froula, D. H.; Radha, P. B.; Michel, P. A.; Moody, J. D.; Masse, L.; Goyon, C.; Turnbull, D. P.; Barrios, M. A.; Bates, J. W.; Schmitt, A. J.

    2016-10-01

    The first experiments at the National Ignition Facility to probe laser-plasma interactions and the hot electron production at scale lengths relevant to direct-drive ignition are reported. The irradiation on one side of planar CH foils generated a plasma at the quarter-critical surface with predicted density scale lengths of Ln 600 μm, measured electron temperatures of Te 3.5 to 4.0 keV, and overlapped laser intensities of I 6 to 15 ×1014W/cm2. Optical emission from stimulated Raman scattering (SRS) and at ω/2 are correlated with the time-dependent hard x-ray signal. The fraction of laser energy converted to hot electrons increased from 0.5 % to 2.3 % as the laser intensity increased from 6 to 15 ×1014W/cm2, while the hot electron temperature was nearly constant around 40 to 50 keV. Only a sharp red-shifted feature is observed around ω/2, and both refracted and sidescattered SRS are detected, suggesting that multibeam SRS contributes to, and may even dominate, hot-electron production. These results imply a diminished presence of two-plasmon decay relative to SRS at these conditions, which has implications for hot-electron preheat mitigation strategies for direct-drive ignition. This work is supported by the DOE NNSA under Award Number DE-NA0001944.

  19. Modeling and analysis of sub-surface leakage current in nano-MOSFET under cutoff regime

    NASA Astrophysics Data System (ADS)

    Swami, Yashu; Rai, Sanjeev

    2017-02-01

    The high leakage current in nano-meter regimes is becoming a significant portion of power dissipation in nano-MOSFET circuits as threshold voltage, channel length, and gate oxide thickness are scaled down to nano-meter range. Precise leakage current valuation and meticulous modeling of the same at nano-meter technology scale is an increasingly a critical work in designing the low power nano-MOSFET circuits. We present a specific compact model for sub-threshold regime leakage current in bulk driven nano-MOSFETs. The proposed logical model is instigated and executed into the latest updated PTM bulk nano-MOSFET model and is found to be in decent accord with technology-CAD simulation data. This paper also reviews various transistor intrinsic leakage mechanisms for nano-MOSFET exclusively in weak inversion, like drain-induced barricade lowering (DIBL), gate-induced drain leakage (GIDL), gate oxide tunneling (GOT) leakage etc. The root cause of the sub-surface leakage current is mainly due to the nano-scale short channel length causing source-drain coupling even in sub-threshold domain. Consequences leading to carriers triumphing the barricade between the source and drain. The enhanced model effectively considers the following parameter dependence in the account for better-quality value-added results like drain-to-source bias (VDS), gate-to-source bias (VGS), channel length (LG), source/drain junction depth (Xj), bulk doping concentration (NBULK), and operating temperature (Top).

  20. Natural Covariant Planck Scale Cutoffs and the Cosmic Microwave Background Spectrum.

    PubMed

    Chatwin-Davies, Aidan; Kempf, Achim; Martin, Robert T W

    2017-07-21

    We calculate the impact of quantum gravity-motivated ultraviolet cutoffs on inflationary predictions for the cosmic microwave background spectrum. We model the ultraviolet cutoffs fully covariantly to avoid possible artifacts of covariance breaking. Imposing these covariant cutoffs results in the production of small, characteristically k-dependent oscillations in the spectrum. The size of the effect scales linearly with the ratio of the Planck to Hubble lengths during inflation. Consequently, the relative size of the effect could be as large as one part in 10^{5}; i.e., eventual observability may not be ruled out.

  1. Scale-dependent entrainment velocity and scale-independent net entrainment in a turbulent axisymmetric jet

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Mistry, Dhiren; Dawson, James; Marusic, Ivan

    2016-11-01

    The net entrainment in a jet is the product of the mean surface area (S ̲) and the mean entrainment velocity, V ̲ S ̲ , where, V ̲ = αUc with α the entrainment coefficient and Uc the mean centreline velocity. Instantaneously, however, entrainment velocity (v) at a point on the interface is the difference between the interface and the fluid velocities, and the total entrainment ∫ vds = VS , where S is the corrugated interface surface area and V the area averaged entrainment velocity. Using time-resolved multi-scale PIV/PLIF measurements of velocity and scalar in an axisymmetric jet at Re = 25000 , we evaluate V and S directly at the smallest resolved scales, and by filtering the data at different scales (Δ) we find their multi-scales counterparts, VΔ and SΔ. We show that V ̲ S ̲ =VΔ SΔ = V S , independent of the scale. Furthermore, S is found to have a fractal dimension D3 2 . 32 +/- 0 . 1 . Independently, we find that VΔ Δ 0 . 31 , indicating increasing entrainment velocity with increasing length scale. This is consistent with a constant net entrainment across scales, and suggests α as a scale-dependent quantity. Engineering and Physical Sciences Research Council (research Grant No. EP/I005879/1), David Crighton Fellowship from the DAMTP, Univ of Cambridge, and the Australian Research Council.

  2. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  3. On Multiscale Modeling: Preserving Energy Dissipation Across the Scales with Consistent Handshaking Methods

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.

    2013-01-01

    A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.

  4. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  5. Randomness versus specifics for word-frequency distributions

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyong; Minnhagen, Petter

    2016-02-01

    The text-length-dependence of real word-frequency distributions can be connected to the general properties of a random book. It is pointed out that this finding has strong implications, when deciding between two conceptually different views on word-frequency distributions, i.e. the specific 'Zipf's-view' and the non-specific 'Randomness-view', as is discussed. It is also noticed that the text-length transformation of a random book does have an exact scaling property precisely for the power-law index γ = 1, as opposed to the Zipf's exponent γ = 2 and the implication of this exact scaling property is discussed. However a real text has γ > 1 and as a consequence γ increases when shortening a real text. The connections to the predictions from the RGF (Random Group Formation) and to the infinite length-limit of a meta-book are also discussed. The difference between 'curve-fitting' and 'predicting' word-frequency distributions is stressed. It is pointed out that the question of randomness versus specifics for the distribution of outcomes in case of sufficiently complex systems has a much wider relevance than just the word-frequency example analyzed in the present work.

  6. GINGER simulations of short-pulse effects in the LEUTL FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.; Fawley, W.M.

    While the long-pulse, coasting beam model is often used in analysis and simulation of self-amplified spontaneous emission (SASE) free-electron lasers (FELs), many current SASE demonstration experiments employ relatively short electron bunches whose pulse length is on the order of the radiation slippage length. In particular, the low-energy undulator test line (LEUTL) FEL at the Advanced Photon Source has recently lased and nominally saturated in both visible and near-ultraviolet wavelength regions with a sub-ps pulse length that is somewhat shorter than the total slippage length in the 22-m undulator system. In this paper we explore several characteristics of the short pulsemore » regime for SASE FELs with the multidimensional, time-dependent simulation code GINGER, concentrating on making a direct comparison with the experimental results from LEUTL. Items of interest include the radiation gain length, pulse energy, saturation position, and spectral bandwidth. We address the importance of short-pulse effects when scaling the LEUTL results to proposed x-ray FELs and also briefly discuss the possible importance of coherent spontaneous emission at startup.« less

  7. Revisiting long-range dependence in annual precipitation

    NASA Astrophysics Data System (ADS)

    Iliopoulou, Theano; Papalexiou, Simon Michael; Markonis, Yannis; Koutsoyiannis, Demetris

    2018-01-01

    Long-range dependence (LRD), the so-called Hurst-Kolmogorov behaviour, is considered to be an intrinsic characteristic of most natural processes. This behaviour manifests itself by the prevalence of slowly decaying autocorrelation function and questions the Markov assumption, often habitually employed in time series analysis. Herein, we investigate the dependence structure of annual rainfall using a large set, comprising more than a thousand stations worldwide of length 100 years or more, as well as a smaller number of paleoclimatic reconstructions covering the last 12,000 years. Our findings suggest weak long-term persistence for instrumental data (average H = 0.59), which becomes stronger with scale, i.e. in the paleoclimatic reconstructions (average H = 0.75).

  8. Scaling range of power laws that originate from fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Grech, Dariusz; Mazur, Zygmunt

    2013-05-01

    We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.

  9. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less

  10. Does the Hall Effect Solve the Flux Pileup Saturation Problem?

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    It is well known that magnetic flux pileup can significantly speed up the rate of magnetic reconnection in high Lundquist number resistive MHD,allowing reconnection to proceed at a rate which is insensitive to the plasma resistivity over a wide range of Lundquist number. Hence, pileup is a possible solution to the Sweet-Parker time scale problem. Unfortunately, pileup tends to saturate above a critical value of the Lundquist number, S_c, where the value ofS_c depends on initial and boundary conditions, with Sweet-Parker scaling returning above S_c. It has been argued (see Dorelli and Bim [2003] and Dorelli [2003]) that the Hall effect can allow flux pileup to saturate (when the scale of the current sheet approaches ion inertial scale, di) before the reconnection rate begins to stall. However, the resulting saturated reconnection rate, while insensitive to the plasma resistivity, was found to depend strongly on the di. In this presentation, we revisit the problem of magnetic island coalescence (which is a well known example of flux pileup reconnection), addressing the dependence of the maximum coalescence rate on the ratio of di in the "large island" limit in which the following inequality is always satisfied: l_eta di lambda, where I_eta is the resistive diffusion length and lambda is the island wavelength.

  11. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  12. Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams

    NASA Astrophysics Data System (ADS)

    Hall, R. O., Jr.; Baker, M. A.; Rosi-Marshall, E. J.; Tank, J. L.; Newbold, J. D.

    2013-11-01

    Stream ecosystem processes such as nutrient cycling may vary with stream position in the network. Using a scaling approach, we examined the relationship between stream size and nutrient uptake length, which represents the mean distance that a dissolved solute travels prior to removal from the water column. Ammonium (NH4+) uptake length increased proportionally with stream size measured as specific discharge (discharge/stream width) with a scaling exponent = 1.01. In contrast, uptake lengths for nitrate (NO3-) and soluble reactive phosphorus (SRP) increased more rapidly than increases in specific discharge (scaling exponents = 1.19 for NO3- and 1.35 for SRP). Additionally, the ratio of inorganic nitrogen (N) uptake length to SRP uptake length declined with stream size; there was relatively lower demand for SRP compared to N as stream size increased. Finally, we related the scaling of uptake length with specific discharge to that of stream length using Hack's law and downstream hydraulic geometry. Ammonium uptake length increased less than proportionally with distance from the headwaters, suggesting a strong role for larger streams and rivers in regulating nutrient transport.

  13. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA

    USGS Publications Warehouse

    De Jager, Nathan R.; Rohweder, Jason J.

    2011-01-01

    Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale analyses, (2) allows for comparisons of the amount of forest habitat available to species with different habitat density and scale requirements, and (3) can be used as an index of the spatial continuity of habitat types that do not scale fractally.

  14. Shear banding leads to accelerated aging dynamics in a metallic glass

    NASA Astrophysics Data System (ADS)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; Shin, Jeremy; Maaß, Robert

    2018-01-01

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. Using site-specific x-ray photon correlation spectroscopy, we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretched exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. These insights highlight how a ubiquitous nanoscale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.

  15. The limitations of staggered grid finite differences in plasticity problems

    NASA Astrophysics Data System (ADS)

    Pranger, Casper; Herrendörfer, Robert; Le Pourhiet, Laetitia

    2017-04-01

    Most crustal-scale applications operate at grid sizes much larger than those at which plasticity occurs in nature. As a consequence, plastic shear bands often localize to the scale of one grid cell, and numerical ploys — like introducing an artificial length scale — are needed to counter this. If for whatever reasons (good or bad) this is not done, we find that problems may arise due to the fact that in the staggered grid finite difference discretization, unknowns like components of the stress tensor and velocity vector are located in physically different positions. This incurs frequent interpolation, reducing the accuracy of the discretization. For purely stress-dependent plasticity problems the adverse effects might be contained because the magnitude of the stress discontinuity across a plastic shear band is limited. However, we find that when rate-dependence of friction is added in the mix, things become ugly really fast and the already hard-to-solve and highly nonlinear problem of plasticity incurs an extra penalty.

  16. Particle dynamics in a viscously decaying cat's eye: The effect of finite Schmidt numbers

    NASA Astrophysics Data System (ADS)

    Newton, P. K.; Meiburg, Eckart

    1991-05-01

    The dynamics and mixing of passive marker particles for the model problem of a decaying cat's eye flow is studied. The flow field corresponds to Stuart's one-parameter family of solutions [J. Fluid Mech. 29, 417 (1967)]. It is time dependent as a result of viscosity, which is modeled by allowing the free parameter to depend on time according to the self-similar solution of the Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically simulated by a random walk model. While earlier work had shown that, for small values of time over Reynolds number t/Re≪1, the interval length characterizing the formation of lobes of fluid escaping from the cat's eye scales as Re-1/2, the present study shows that, for the case of diffusive effects and t/Pe≪1, the scaling follows Pe-1/4. A simple argument, taking into account streamline convergence and divergence in different parts of the flow field, explains the Pe-1/4 scaling.

  17. Scaling Theory of Polyelectrolyte Nanogels

    NASA Astrophysics Data System (ADS)

    Qu, Li-Jian

    2017-08-01

    The present paper develops the scaling theory of polyelectrolyte nanogels in dilute and semidilute solutions. The dependencies of the nanogel dimension on branching topology, charge fraction, subchain length, segment number, solution concentration are obtained. For a single polyelectrolyte nanogel in salt free solution, the nanogel may be swelled by the Coulombic repulsion (the so-called polyelectrolyte regime) or the osmotic counterion pressure (the so-called osmotic regime). Characteristics and boundaries between different regimes of a single polyelectrolyte nanogel are summarized. In dilute solution, the nanogels in polyelectrolyte regime will distribute orderly with the increase of concentration. While the nanogels in osmotic regime will always distribute randomly. Different concentration dependencies of the size of a nanogel in polyelectrolyte regime and in osmotic regime are also explored. Supported by China Earthquake Administration under Grant No. 20150112 and National Natural Science Foundation of China under Grant No. 21504014

  18. A study of microindentation hardness tests by mechanism-based strain gradient plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.; Xue, Z.; Gao, H.

    2000-08-01

    We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less

  19. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Mills, Aaron L.

    2003-01-01

    To better understand the distribution of soil microbial communities at multiple spatial scales, a survey was conducted to examine the spatial organization of community structure in a wheat field in eastern Virginia (USA). Nearly 200 soil samples were collected at a variety of separation distances ranging from 2.5 cm to 11 m. Whole-community DNA was extracted from each sample, and community structure was compared using amplified fragment length polymorphism (AFLP) DNA fingerprinting. Relative similarity was calculated between each pair of samples and compared using geostatistical variogram analysis to study autocorrelation as a function of separation distance. Spatial autocorrelation was found at scales ranging from 30 cm to more than 6 m, depending on the sampling extent considered. In some locations, up to four different correlation length scales were detected. The presence of nested scales of variability suggests that the environmental factors regulating the development of the communities in this soil may operate at different scales. Kriging was used to generate maps of the spatial organization of communities across the plot, and the results demonstrated that bacterial distributions can be highly structured, even within a habitat that appears relatively homogeneous at the plot and field scale. Different subsets of the microbial community were distributed differently across the plot, and this is thought to be due to the variable response of individual populations to spatial heterogeneity associated with soil properties. c2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  20. Universal scaling in the aging of the strong glass former SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.

    We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less

  1. Spatial dimensions of the electron diffusion region in anti-parallel magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuma; Nakamura, Rumi; Haseagwa, Hiroshi

    2016-03-01

    Spatial dimensions of the detailed structures of the electron diffusion region in anti-parallel magnetic reconnection were analyzed based on two-dimensional fully kinetic particle-in-cell simulations. The electron diffusion region in this study is defined as the region where the positive reconnection electric field is sustained by the electron inertial and non-gyrotropic pressure components. Past kinetic studies demonstrated that the dimensions of the whole electron diffusion region and the inner non-gyrotropic region are scaled by the electron inertial length de and the width of the electron meandering motion, respectively. In this study, we successfully obtained more precise scalings of the dimensions of these two regions than the previous studies by performing simulations with sufficiently small grid spacing (1/16-1/8 de) and a sufficient number of particles (800 particles cell-1 on average) under different conditions changing the ion-to-electron mass ratio, the background density and the electron βe (temperature). The obtained scalings are adequately supported by some theories considering spatial variations of field and plasma parameters within the diffusion region. In the reconnection inflow direction, the dimensions of both regions are proportional to de based on the background density. Both dimensions also depend on βe based on the background values, but the dependence in the inner region ( ˜ 0.375th power) is larger than the whole region (0.125th power) reflecting the orbits of meandering and accelerated electrons within the inner region. In the outflow direction, almost only the non-gyrotropic component sustains the positive reconnection electric field. The dimension of this single-scale diffusion region is proportional to the ion-electron hybrid inertial length (dide)1/2 based on the background density and weakly depends on the background βe with the 0.25th power. These firm scalings allow us to predict observable dimensions in real space which are indeed in reasonable agreement with past in situ spacecraft observations in the Earth's magnetotail and have important implications for future observations with higher resolutions such as the NASA Magnetospheric Multiscale (MMS) mission.

  2. Effects of cycle length and plot density on estimators for a national-scale forest monitoring sample design

    Treesearch

    Francis A. Roesch; Todd A. Schroeder; James T. Vogt

    2017-01-01

    The resilience of a National Forest Inventory and Monitoring sample design can sometimes depend upon the degree to which it can adapt to fluctuations in funding. If a budget reduction necessitates the observation of fewer plots per year, some practitioners weigh the problem as a tradeoff between reducing the total number of plots and measuring the original number of...

  3. Reliability and Validity of the World Health Organization Quality of Life: Brief Version (WHOQOL-BREF) in a Homeless Substance Dependent Veteran Population

    ERIC Educational Resources Information Center

    Garcia-Rea, Elizabeth A.; LePage, James P.

    2010-01-01

    With the high number of homeless, there is a critical need for rapid and accurate assessment of quality of life to assess program outcomes. The World Health Organization's WHOQOL-100 has demonstrated promise in accurately assessing quality-of-life in this population. However, its length may make large scale use impractical for working with a…

  4. Towards an optimal contact metal for CNTFETs.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Seifert, Gotthard; Mothes, Sven; Claus, Martin; Schröter, Michael; Cuniberti, Gianaurelio

    2016-05-21

    Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20-50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT-metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT-metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal-CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT-metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.

  5. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE PAGES

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    2017-04-01

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  6. Rubber friction: role of the flash temperature.

    PubMed

    Persson, B N J

    2006-08-16

    When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 10(-2) m s(-1) the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v>0.01 m s(-1). This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g. for tyre-road friction and in particular for ABS braking systems.

  7. Assessment of MELCOR condensation models with the presence of noncondensable gas in natural convection flow regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Dhongik S; Jo, HangJin; Corradini, Michael L

    Condensation of steam vapor is an important mode of energy removal from the reactor containment. The presence of noncondensable gas complicates the process and makes it difficult to model. MELCOR, one of the more widely used system codes for containment analyses, uses the heat and mass transfer analogy to model condensation heat transfer. To investigate previously reported nodalization-dependence in natural convection flow regime, MELCOR condensation model as well as other models are studied. The nodalization-dependence issue is resolved by using physical length from the actual geometry rather than node size of each control volume as the characteristic length scale formore » MELCOR containment analyses. At the transition to turbulent natural convection regime, the McAdams correlation for convective heat transfer produces a better prediction compared to the original MELCOR model. The McAdams correlation is implemented in MELCOR and the prediction is validated against a set of experiments on a scaled AP600 containment. The MELCOR with our implemented model produces improved predictions. For steam molar fractions in the gas mixture greater than about 0.58, the predictions are within the uncertainty margin of the measurements. The simulation results still underestimate the heat transfer from the gas-steam mixture, implying that conservative predictions are provided.« less

  8. Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi

    We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less

  9. Subcritical crack growth in fibrous materials

    NASA Astrophysics Data System (ADS)

    Santucci, S.; Cortet, P.-P.; Deschanel, S.; Vanel, L.; Ciliberto, S.

    2006-05-01

    We present experiments on the slow growth of a single crack in a fax paper sheet submitted to a constant force F. We find that statistically averaged crack growth curves can be described by only two parameters: the mean rupture time τ and a characteristic growth length ζ. We propose a model based on a thermally activated rupture process that takes into account the microstructure of cellulose fibers. The model is able to reproduce the shape of the growth curve, the dependence of ζ on F as well as the effect of temperature on the rupture time τ. We find that the length scale at which rupture occurs in this model is consistently close to the diameter of cellulose microfibrils.

  10. Interlayer tunneling in double-layer quantum hall pseudoferromagnets.

    PubMed

    Balents, L; Radzihovsky, L

    2001-02-26

    We show that the interlayer tunneling I-V in double-layer quantum Hall states displays a rich behavior which depends on the relative magnitude of sample size, voltage length scale, current screening, disorder, and thermal lengths. For weak tunneling, we predict a negative differential conductance of a power-law shape crossing over to a sharp zero-bias peak. An in-plane magnetic field splits this zero-bias peak, leading instead to a "derivative" feature at V(B)(B(parallel)) = 2 pi Planck's over 2 pi upsilon B(parallel)d/e phi(0), which gives a direct measurement of the dispersion of the Goldstone mode corresponding to the spontaneous symmetry breaking of the double-layer Hall state.

  11. Aspects of noncommutative (1+1)-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Nicolini, Piero

    2011-08-01

    We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length θ cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.

  12. Dependence of SOL widths on plasma parameters in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joon-Wook; Maingi, Rajesh; Boedo, Jose; Soukhanovskii, Vlad; Leblanc, Ben; Kaita, Robert

    2008-11-01

    The dependence of various upstream Scrape-Off Layer (SOL) widths on the line-averaged density (n e), plasma current (Ip), and power into the SOL (PSOL) for H-mode plasmas was investigated, using the mid-plane fast reciprocating probe and Thomson scattering diagnostics, in the National Spherical Torus Experiment (NSTX). The heat flux width (λq) at the divertor plate, measured by the IR camera, was also measured and compared with the upstream SOL widths. The edge density profile remains fixed during the H-mode, such that the separatrix density is constant even though n e is ramping. Thus λq, λTe, and λne are insensitive to n e. λTe and λjsat have strong negative dependence on Ip, whereas there was only a very weak change in λne when Ip was varied. These empirical results have been compared with scaling laws in the literature. The λTe dependence on Ip is consistent with an H-mode λTe scaling law, while the insensitivity of λne to n e is not consistent with the λne scaling law. Dependence of decay lengths on plasma parameters in a wide range of plasma conditions will be presented. This work was supported by the US Department of Energy, contract numbers DE-FG02-03ER54731, DE-AC02-76CH03073, DE-AC05-00OR22725, and DE-AC52-07NA27344.

  13. Experimental evidence for two thermodynamic length scales in neutralized polyacrylate gels

    NASA Astrophysics Data System (ADS)

    Horkay, Ferenc; Hecht, Anne-Marie; Grillo, Isabelle; Basser, Peter J.; Geissler, Erik

    2002-11-01

    The small angle neutron scattering (SANS) behavior of fully neutralized sodium polyacrylate gels is investigated in the presence of calcium ions. Analysis of the SANS response reveals the existence of three characteristic length scales, two of which are of thermodynamic origin, while the third length is associated with the frozen-in structural inhomogeneities. This latter contribution exhibits power law behavior with a slope of about -3.6, reflecting the presence of interfaces. The osmotically active component of the scattering signal is defined by two characteristic length scales, a correlation length ξ and a persistence length L.

  14. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    PubMed

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  15. Unravelling the physics of size-dependent dislocation-mediated plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.

    2015-01-01

    Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.

  16. A random spatial network model based on elementary postulates

    USGS Publications Warehouse

    Karlinger, Michael R.; Troutman, Brent M.

    1989-01-01

    A model for generating random spatial networks that is based on elementary postulates comparable to those of the random topology model is proposed. In contrast to the random topology model, this model ascribes a unique spatial specification to generated drainage networks, a distinguishing property of some network growth models. The simplicity of the postulates creates an opportunity for potential analytic investigations of the probabilistic structure of the drainage networks, while the spatial specification enables analyses of spatially dependent network properties. In the random topology model all drainage networks, conditioned on magnitude (number of first-order streams), are equally likely, whereas in this model all spanning trees of a grid, conditioned on area and drainage density, are equally likely. As a result, link lengths in the generated networks are not independent, as usually assumed in the random topology model. For a preliminary model evaluation, scale-dependent network characteristics, such as geometric diameter and link length properties, and topologic characteristics, such as bifurcation ratio, are computed for sets of drainage networks generated on square and rectangular grids. Statistics of the bifurcation and length ratios fall within the range of values reported for natural drainage networks, but geometric diameters tend to be relatively longer than those for natural networks.

  17. Scaling Effects on Materials Tribology: From Macro to Micro Scale.

    PubMed

    Stoyanov, Pantcho; Chromik, Richard R

    2017-05-18

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale.

  18. Scaling Effects on Materials Tribology: From Macro to Micro Scale

    PubMed Central

    Stoyanov, Pantcho; Chromik, Richard R.

    2017-01-01

    The tribological study of materials inherently involves the interaction of surface asperities at the micro to nanoscopic length scales. This is the case for large scale engineering applications with sliding contacts, where the real area of contact is made up of small contacting asperities that make up only a fraction of the apparent area of contact. This is why researchers have sought to create idealized experiments of single asperity contacts in the field of nanotribology. At the same time, small scale engineering structures known as micro- and nano-electromechanical systems (MEMS and NEMS) have been developed, where the apparent area of contact approaches the length scale of the asperities, meaning the real area of contact for these devices may be only a few asperities. This is essentially the field of microtribology, where the contact size and/or forces involved have pushed the nature of the interaction between two surfaces towards the regime where the scale of the interaction approaches that of the natural length scale of the features on the surface. This paper provides a review of microtribology with the purpose to understand how tribological processes are different at the smaller length scales compared to macrotribology. Studies of the interfacial phenomena at the macroscopic length scales (e.g., using in situ tribometry) will be discussed and correlated with new findings and methodologies at the micro-length scale. PMID:28772909

  19. Length scale effects of friction in particle compaction using atomistic simulations and a friction scaling model

    NASA Astrophysics Data System (ADS)

    Stone, T. W.; Horstemeyer, M. F.

    2012-09-01

    The objective of this study is to illustrate and quantify the length scale effects related to interparticle friction under compaction. Previous studies have shown as the length scale of a specimen decreases, the strength of a single crystal metal or ceramic increases. The question underlying this research effort continues the thought—If there is a length scale parameter related to the strength of a material, is there a length scale parameter related to friction? To explore the length scale effects of friction, molecular dynamics (MD) simulations using an embedded atom method potential were performed to analyze the compression of two spherical FCC nickel nanoparticles at different contact angles. In the MD model study, we applied a macroscopic plastic contact formulation to determine the normal plastic contact force at the particle interfaces and used the average shear stress from the MD simulations to determine the tangential contact forces. Combining this information with the Coulomb friction law, we quantified the MD interparticle coefficient of friction and showed good agreement with experimental studies and a Discrete Element Method prediction as a function of contact angle. Lastly, we compared our MD simulation friction values to the tribological predictions of Bhushan and Nosonovsky (BN), who developed a friction scaling model based on strain gradient plasticity and dislocation-assisted sliding that included a length scale parameter. The comparison revealed that the BN elastic friction scaling model did a much better job than the BN plastic scaling model of predicting the coefficient of friction values obtained from the MD simulations.

  20. Solution to certain problems in the failure of composite structures

    NASA Astrophysics Data System (ADS)

    Goodsell, Johnathan

    The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is extended to the determination of the intrinsic flaw length and the prediction of performance variability in the 10-degree off-axis specimen. The intrinsic flaw is defined as a fracture mechanics-type, through-thickness planar crack extending in the fiber direction from the failure initiation site of length, a. The distribution of intrinsic flaw lengths is postulated from multiple tests of 10-degree off-axis specimens by calculating the length of flaw that would cause fracture at each measured failure site and failure load given the fracture toughness of the material. The intrinsic flaw lengths on the homogeneous and micromechanical scales for unnotched (no hole) and specimens containing a centrally-located, through-thickness circular hole are compared. 8 hole-diameters ranging from 1.00--12.7 mm are considered. On the micromechanical scale, the intrinsic flaw ranges between approximately 10 and 100 microns in length, on the order of the relevant microstructural dimensions. The intrinsic flaw lengths on the homogeneous scale are determined to be an order of magnitude greater than that on the micromechanical scale. The effect of variation in the fiber volume fraction on the intrinsic flaw length is also considered. In the strength predictions for the specimens, the intrinsic flaw crack geometry and probability density function of intrinsic flaw lengths calculated from the unnotched specimens allow fracture mechanics predictions of strength variability. The strength prediction is dependent on the flaw density, the number of flaws per unit length along the free-edge. The flaw density is established by matching the predicted strength with the experimental strength. The distribution of intrinsic flaw lengths is used with the strength variability of the unnotched and of open-hole specimens to determine the flaw density at each hole-size. The flaw density is shown to be related to the fabrication machining speed suggesting machining damage as a mechanism for the hole-size dependence of the flaw density. (Abstract shortened by UMI.)

  1. Variability of interconnected wind plants: correlation length and its dependence on variability time scale

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Handschy, Mark A.

    2015-04-02

    The variability in wind-generated electricity complicates the integration of this electricity into the electrical grid. This challenge steepens as the percentage of renewably-generated electricity on the grid grows, but variability can be reduced by exploiting geographic diversity: correlations between wind farms decrease as the separation between wind farms increases. However, how far is far enough to reduce variability? Grid management requires balancing production on various timescales, and so consideration of correlations reflective of those timescales can guide the appropriate spatial scales of geographic diversity grid integration. To answer 'how far is far enough,' we investigate the universal behavior of geographic diversity by exploring wind-speed correlations using three extensive datasets spanning continents, durations and time resolution. First, one year of five-minute wind power generation data from 29 wind farms span 1270 km across Southeastern Australia (Australian Energy Market Operator). Second, 45 years of hourly 10 m wind-speeds from 117 stations span 5000 km across Canada (National Climate Data Archive of Environment Canada). Finally, four years of five-minute wind-speeds from 14 meteorological towers span 350 km of the Northwestern US (Bonneville Power Administration). After removing diurnal cycles and seasonal trends from all datasets, we investigate dependence of correlation length on time scale by digitally high-pass filtering the data on 0.25–2000 h timescales and calculating correlations between sites for each high-pass filter cut-off. Correlations fall to zero with increasing station separation distance, but the characteristic correlation length varies with the high-pass filter applied: the higher the cut-off frequency, the smaller the station separation required to achieve de-correlation. Remarkable similarities between these three datasets reveal behavior that, if universal, could be particularly useful for grid management. For high-pass filter time constants shorter than about τ = 38 h, all datasets exhibit a correlation lengthmore » $$\\xi $$ that falls at least as fast as $${{\\tau }^{-1}}$$ . Since the inter-site separation needed for statistical independence falls for shorter time scales, higher-rate fluctuations can be effectively smoothed by aggregating wind plants over areas smaller than otherwise estimated.« less

  2. Geometric structure and information change in phase transitions

    NASA Astrophysics Data System (ADS)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  3. Geometric structure and information change in phase transitions.

    PubMed

    Kim, Eun-Jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L, which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD| and D^{-1/2} in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  4. How much a galaxy knows about its large-scale environment?: An information theoretic perspective

    NASA Astrophysics Data System (ADS)

    Pandey, Biswajit; Sarkar, Suman

    2017-05-01

    The small-scale environment characterized by the local density is known to play a crucial role in deciding the galaxy properties but the role of large-scale environment on galaxy formation and evolution still remain a less clear issue. We propose an information theoretic framework to investigate the influence of large-scale environment on galaxy properties and apply it to the data from the Galaxy Zoo project that provides the visual morphological classifications of ˜1 million galaxies from the Sloan Digital Sky Survey. We find a non-zero mutual information between morphology and environment that decreases with increasing length-scales but persists throughout the entire length-scales probed. We estimate the conditional mutual information and the interaction information between morphology and environment by conditioning the environment on different length-scales and find a synergic interaction between them that operates up to at least a length-scales of ˜30 h-1 Mpc. Our analysis indicates that these interactions largely arise due to the mutual information shared between the environments on different length-scales.

  5. Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    PubMed

    Farmery, James H R; Smith, Mike L; Lynch, Andy G

    2018-01-22

    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype.

  6. An experimental investigation of reacting and nonreacting coaxial jet mixing in a laboratory rocket engine

    NASA Astrophysics Data System (ADS)

    Schumaker, Stephen Alexander

    Coaxial jets are commonly used as injectors in propulsion and combustion devices due to both the simplicity of their geometry and the rapid mixing they provide. In liquid rocket engines it is common to use coaxial jets in the context of airblast atomization. However, interest exists in developing rocket engines using a full flow staged combustion cycle. In such a configuration both propellants are injected in the gaseous phase. In addition, gaseous coaxial jets have been identified as an ideal test case for the validation of the next generation of injector modeling tools. For these reasons an understanding of the fundamental phenomena which govern mixing in gaseous coaxial jets and the effect of combustion on these phenomena in coaxial jet diffusion flames is needed. A study was performed to better understand the scaling of the stoichiometric mixing length in reacting and nonreacting coaxial jets with velocity ratios greater than one and density ratios less than one. A facility was developed that incorporates a single shear coaxial injector in a laboratory rocket engine capable of ten atmospheres. Optical access allows the use of flame luminosity and laser diagnostic techniques such as Planar Laser Induced Fluorescence (PLIF). Stoichiometric mixing lengths (LS), which are defined as the distance along the centerline where the stoichiometric condition occurs, were measured using PLIF. Acetone was seeded into the center jet to provide direct PLIF measurement of the average and instantaneous mixture fraction fields for a range of momentum flux ratios for the nonreacting cases. For the coaxial jet diffusion flames, LS was measured from OH radical contours. For nonreacting cases the use of a nondimensional momentum flux ratio was found to collapse the mixing length data. The flame lengths of coaxial jet diffusion flames were also found to scale with the momentum flux ratio but different scaling constants are required which depended on the chemistry of the reaction. The effective density ratio was measured which allowed the flame lengths to be collapsed to the nonreacting scaling relation. The equivalence principle of Tacina and Dahm was utilized to compare the theoretical and measured effective density ratios.

  7. Magnetic small-angle neutron scattering on bulk metallic glasses: A feasibility study for imaging displacement fields

    NASA Astrophysics Data System (ADS)

    Mettus, Denis; Deckarm, Michael; Leibner, Andreas; Birringer, Rainer; Stolpe, Moritz; Busch, Ralf; Honecker, Dirk; Kohlbrecher, Joachim; Hautle, Patrick; Niketic, Nemanja; Fernández, Jesús Rodríguez; Barquín, Luis Fernández; Michels, Andreas

    2017-12-01

    Magnetic-field-dependent small-angle neutron scattering (SANS) has been utilized to study the magnetic microstructure of bulk metallic glasses (BMGs). In particular, the magnetic scattering from soft magnetic Fe70Mo5Ni5P12.5B2.5C5 and hard magnetic (Nd60Fe30Al10) 92Ni8 alloys in the as-prepared, aged, and mechanically deformed state is compared. While the soft magnetic BMGs exhibit a large field-dependent SANS response with perturbations originating predominantly from spatially varying magnetic anisotropy fields, the SANS cross sections of the hard magnetic BMGs are only weakly dependent on the field, and their angular anisotropy indicates the presence of scattering contributions due to spatially dependent saturation magnetization. Moreover, we observe an unusual increase in the magnetization of the rare-earth-based alloy after deformation. Analysis of the SANS cross sections in terms of the correlation function of the spin misalignment reveals the existence of field-dependent anisotropic long-wavelength magnetization fluctuations on a scale of a few tens of nanometers. We also give a detailed account of how the SANS technique relates to unraveling displacement fields on a mesoscopic length scale in disordered magnetic materials.

  8. DNS study of dependence of bulk consumption velocity in a constant-density reacting flow on turbulence and mixture characteristics

    NASA Astrophysics Data System (ADS)

    Yu, Rixin; Lipatnikov, Andrei N.

    2017-06-01

    3D Direct Numerical Simulation (DNS) study of propagation of a single-reaction wave in forced, statistically stationary, homogeneous, isotropic, and constant-density turbulence was performed in order to evaluate both developing UTt and fully developed UTs bulk turbulent consumption velocities by independently varying a ratio of 0.5 ≤u'/SL≤ 90 of the r.m.s. turbulent velocity to the laminar wave speed and a ratio of 0.39 ≤L11/δF≤ 12.5 of the longitudinal integral length scale of the turbulence to the laminar wave thickness. Accordingly, the Damköhler D a =(L11SL ) /(u'δF ) and Karlovitz K a =δF/(SLτη ) numbers were varied from 0.01 to 24.7 and from 0.36 to 587, respectively. Here, τη is the Kolmogorov time scale. The obtained DNS data show that, at sufficiently low Da, the fully developed ratio of UTs/u' is mainly controlled by Da and scales as √{D a }. However, such a scaling should not be extrapolated to high Da. The higher Da (or the lower Ka), the less pronounced dependence of UTs/u' on a ratio of L11/δF. Moreover, scaling laws UT∝u'αSL1 -α(L11/δF ) β are substantially different for developing UTt and fully developed UTs, i.e., the scaling exponents α and, especially, β depend on the wave-development time. Furthermore, α and, especially, β depend on a method used to evaluate the developing UTt. Such effects can contribute to significant scatter of expressions for UT or ST as a function of {u', SL, L11, δF}, obtained by parameterizing various experimental databases.

  9. Interaction-induced backscattering in short quantum wires

    DOE PAGES

    Rieder, M. -T.; Micklitz, T.; Levchenko, A.; ...

    2014-10-06

    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here in this paper we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of amore » Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.« less

  10. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  11. Interactions between a fractal tree-like object and hydrodynamic turbulence: flow structure and characteristic mixing length

    NASA Astrophysics Data System (ADS)

    Meneveau, C. V.; Bai, K.; Katz, J.

    2011-12-01

    The vegetation canopy has a significant impact on various physical and biological processes such as forest microclimate, rainfall evaporation distribution and climate change. Most scaled laboratory experimental studies have used canopy element models that consist of rigid vertical strips or cylindrical rods that can be typically represented through only one or a few characteristic length scales, for example the diameter and height for cylindrical rods. However, most natural canopies and vegetation are highly multi-scale with branches and sub-branches, covering a wide range of length scales. Fractals provide a convenient idealization of multi-scale objects, since their multi-scale properties can be described in simple ways (Mandelbrot 1982). While fractal aspects of turbulence have been studied in several works in the past decades, research on turbulence generated by fractal objects started more recently. We present an experimental study of boundary layer flow over fractal tree-like objects. Detailed Particle-Image-Velocimetry (PIV) measurements are carried out in the near-wake of a fractal-like tree. The tree is a pre-fractal with five generations, with three branches and a scale reduction factor 1/2 at each generation. Its similarity fractal dimension (Mandelbrot 1982) is D ~ 1.58. Detailed mean velocity and turbulence stress profiles are documented, as well as their downstream development. We then turn attention to the turbulence mixing properties of the flow, specifically to the question whether a mixing length-scale can be identified in this flow, and if so, how it relates to the geometric length-scales in the pre-fractal object. Scatter plots of mean velocity gradient (shear) and Reynolds shear stress exhibit good linear relation at all locations in the flow. Therefore, in the transverse direction of the wake evolution, the Boussinesq eddy viscosity concept is appropriate to describe the mixing. We find that the measured mixing length increases with increasing streamwise locations. Conversely, the measured eddy viscosity and mixing length decrease with increasing elevation, which differs from eddy viscosity and mixing length behaviors of traditional boundary layers or canopies studied before. In order to find an appropriate length for the flow, several models based on the notion of superposition of scales are proposed and examined. One approach is based on spectral distributions. Another more practical approach is based on length-scale distributions evaluated using fractal geometry tools. These proposed models agree well with the measured mixing length. The results indicate that information about multi-scale clustering of branches as it occurs in fractals has to be incorporated into models of the mixing length for flows through canopies with multiple scales. The research is supported by National Science Foundation grant ATM-0621396 and AGS-1047550.

  12. Constitutive Modeling of Nanotube-Reinforced Polymer Composites

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    In this study, a technique is presented for developing constitutive models for polymer composite systems reinforced with single-walled carbon nanotubes (SWNT). Because the polymer molecules are on the same size scale as the nanotubes, the interaction at the polymer/nanotube interface is highly dependent on the local molecular structure and bonding. At these small length scales, the lattice structures of the nanotube and polymer chains cannot be considered continuous, and the bulk mechanical properties can no longer be determined through traditional micromechanical approaches that are formulated by using continuum mechanics. It is proposed herein that the nanotube, the local polymer near the nanotube, and the nanotube/polymer interface can be modeled as an effective continuum fiber using an equivalent-continuum modeling method. The effective fiber serves as a means for incorporating micromechanical analyses for the prediction of bulk mechanical properties of SWNT/polymer composites with various nanotube lengths, concentrations, and orientations. As an example, the proposed approach is used for the constitutive modeling of two SWNT/polyimide composite systems.

  13. Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment

    NASA Astrophysics Data System (ADS)

    Widmann, Martin; Bedia, Joaquin; Gutiérrez, Jose Manuel; Maraun, Douglas; Huth, Radan; Fischer, Andreas; Keller, Denise; Hertig, Elke; Vrac, Mathieu; Wibig, Joanna; Pagé, Christian; Cardoso, Rita M.; Soares, Pedro MM; Bosshard, Thomas; Casado, Maria Jesus; Ramos, Petra

    2016-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. Within VALUE a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods has been developed. In the first validation experiment the downscaling methods are validated in a setup with perfect predictors taken from the ERA-interim reanalysis for the period 1997 - 2008. This allows to investigate the isolated skill of downscaling methods without further error contributions from the large-scale predictors. One aspect of the validation is the representation of spatial variability. As part of the VALUE validation we have compared various properties of the spatial variability of downscaled daily temperature and precipitation with the corresponding properties in observations. We have used two test validation datasets, one European-wide set of 86 stations, and one higher-density network of 50 stations in Germany. Here we present results based on three approaches, namely the analysis of i.) correlation matrices, ii.) pairwise joint threshold exceedances, and iii.) regions of similar variability. We summarise the information contained in correlation matrices by calculating the dependence of the correlations on distance and deriving decorrelation lengths, as well as by determining the independent degrees of freedom. Probabilities for joint threshold exceedances and (where appropriate) non-exceedances are calculated for various user-relevant thresholds related for instance to extreme precipitation or frost and heat days. The dependence of these probabilities on distance is again characterised by calculating typical length scales that separate dependent from independent exceedances. Regionalisation is based on rotated Principal Component Analysis. The results indicate which downscaling methods are preferable if the dependency of variability at different locations is relevant for the user.

  14. Causes and implications of suppressed vesiculation and crystallization in phenocryst embayments

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Rust, A.

    2016-12-01

    Recent studies of crystal-hosted melt embayments have modeled water diffusion to estimate rates of magma ascent. Uncertainties in these calculations have been linked primarily to the assumed initial pressure. None of these studies, however, have addressed the conditions under which crystal-hosted clear glass channels form in samples dominated by crystal- and bubble-rich groundmass. Embayments are common in phenocrysts from the 1974 basaltic eruption of Fuego volcano. They are hosted by both plagioclase and olivine phenocrysts where rapid and spatially heterogeneous growth creates a local melt channel. Embayment shapes differ in the two phases, however, depending on the characteristic rapid growth morphologies. Embayment channels are typically 20-50 µm wide and may reach 100-200 µm in length. Interestingly, these length scales are similar to those of melt embayments in plagioclase within the dacitic Mount St. Helens. We suggest that these characteristic length scales are key to embayment preservation as clear glass. We explore two hypotheses: (1) that the space constraints of the embayment inhibit bubble nucleation and growth, or (2) that rapid decompression-driven crystal growth on all sides of the melt channel temporarily increases the melt temperature and water content (and therefore element diffusivity) above ambient. Support for the second hypothesis - that diffusion out of the melt channels is energetically more favorable than nucleation of new bubble and crystal phases - is suggested by observed diffusion profiles of melt components within the embayments. Understanding the origin of melt channels has important implications for diffusion-based studies of magma decompression. First, if the embayments are formed by rapid, syn-eruptive crystal growth, then the effective diffusion length scale must increase with time. Second, if local and temporary heating increase elemental diffusion rates, then characteristic diffusion time scales will be overestimated. By extension, we also note that similar conditions may characterize rapid growth of skeletal and hopper crystals.

  15. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    NASA Astrophysics Data System (ADS)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01409g

  16. The Changing Nature of the Chemical Bond

    NASA Astrophysics Data System (ADS)

    Angel, R. J.; Ross, N. L.; Zhao, J.

    2006-12-01

    It is commonly assumed that the relationship between bond strength and bond length for a particular pair of atoms is a simple and single-valued one for a given coordination environment; longer bonds are weaker. This is the basis of the concept of bond valence, for example. Indeed, in strongly-bonded oxide minerals, the range of bond lengths found for a given cation-anion polyhedron is so small that it was long thought that the polyhedral bulk moduli were essentially independent of structure type and thus the environment of the polyhedron. This view is incompatible with the discovery that the response of the perovskite structure to high pressures is controlled by the equipartition of bond-valence strain between the A and B cation sites within the structure [1]. The same appears to be true, within experimental uncertainties, for all framework structures with rigid-unit modes. In perovskites, this explicitly implies that the octahedral compressibility depends not only upon the octahedral cation, but also upon the compressibility of the cation-oxygen bonds of the extra-framework (nominally dodecahedral) site. Thus the octahedral compressibility of a B cation site must change as the A- site cation is changed, whether or not the B-O bond lengths change as a result of the substitution on the A site. The strength of bonds is thus dependent upon the crystal environment and not solely upon the bond length. The observation of a plateau effect in the variation of octahedral compressibilities in perovskite solid solutions suggests that the bond-valence matching principle is followed not just globally, but on a local scale as well. Such observations should allow the change with pressure of the excess thermodynamic properties of solid solutions to be directly related to the microscopic (atomic scale) evolution of the structure. [1] Zhao, Ross, & Angel (2004). Acta Cryst. B60:263

  17. Enstrophy Cascade in Decaying Two-Dimensional Quantum Turbulence

    NASA Astrophysics Data System (ADS)

    Reeves, Matthew T.; Billam, Thomas P.; Yu, Xiaoquan; Bradley, Ashton S.

    2017-11-01

    We report evidence for an enstrophy cascade in large-scale point-vortex simulations of decaying two-dimensional quantum turbulence. Devising a method to generate quantum vortex configurations with kinetic energy narrowly localized near a single length scale, the dynamics are found to be well characterized by a superfluid Reynolds number Res that depends only on the number of vortices and the initial kinetic energy scale. Under free evolution the vortices exhibit features of a classical enstrophy cascade, including a k-3 power-law kinetic energy spectrum, and constant enstrophy flux associated with inertial transport to small scales. Clear signatures of the cascade emerge for N ≳500 vortices. Simulating up to very large Reynolds numbers (N =32 768 vortices), additional features of the classical theory are observed: the Kraichnan-Batchelor constant is found to converge to C'≈1.6 , and the width of the k-3 range scales as Res1 /2 .

  18. Scaling theory of topological phase transitions

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2016-02-01

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  19. Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher

    NASA Astrophysics Data System (ADS)

    Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.

    2018-06-01

    The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.

  20. Modal analysis of passive flow control for the turbulent wake of a generic planar space launcher

    NASA Astrophysics Data System (ADS)

    Loosen, S.; Statnikov, V.; Meinke, M.; Schröder, W.

    2017-12-01

    The turbulent wake of a generic planar space launcher equipped with two passive flow control devices is simulated using a zonal RANS-LES method and analyzed by dynamic mode decomposition (DMD). In the first approach, the effect of a classical boat tail on the wake is examined. In the second concept, a flow control device consisting of semi-circular lobes integrated at the base shoulder of the main body is used. The objective of the two concepts is to reduce the reattachment length and thus the lever arm of the forces as well as to stabilize the separated shear layer. Using a boat tail, the reattachment length can be reduced by 50%. Furthermore, it is shown that the semi-circular lobes enhance the turbulent mixing and the shear layer growth rate. Hence, they significantly reduce the reattachment length by about 75%. The semi-circular lobes partially reduce undesired low-frequency pressure fluctuations on the nozzle surface. However, this reduction is achieved at the expense of an increase of high-frequency pressure fluctuations due to intensified small turbulent scales. The DMD analysis of the velocity field reveals that the large-scale coherent structures featuring a wave length of two step heights observed in the reference configuration without flow control can be suppressed by the lobes. The spanwise wave length of the coherent structures seems to depend on the geometry of the lobes, since all detected spatial DMD modes show a spanwise periodicity being equal to the distance between two lobes.

  1. Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory E.; Bradley, D. Nathan

    2010-03-01

    Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.

  2. Telomere Length in Aged Mayak PA Nuclear Workers Chronically Exposed to Internal Alpha and External Gamma Radiation.

    PubMed

    Scherthan, Harry; Sotnik, Natalia; Peper, Michel; Schrock, Gerrit; Azizova, Tamara; Abend, Michael

    2016-06-01

    Telomeres consist of GC-rich DNA repeats and the "shelterin" protein complex that together protect chromosome ends from fusion and degradation. Telomeres shorten with age due to incomplete end replication and upon exposure to environmental and intrinsic stressors. Exposure to ionizing radiation is known to modulate telomere length. However, the response of telomere length in humans chronically exposed to radiation is poorly understood. Here, we studied relative telomere length (RTL) by IQ-FISH to leukocyte nuclei in a group of 100 workers from the plutonium production facility at the Mayak Production Association (PA) who were chronically exposed to alpha-emitting ((239)Pu) radiation and/or gamma (photon) radiation, and 51 local residents serving as controls, with a similar mean age of about 80 years. We applied generalized linear statistical models adjusted for age at biosampling and the second exposure type on a linear scale and observed an age-dependent telomere length reduction. In those individuals with the lowest exposure, a significant reduction of about 20% RTL was observed, both for external gamma radiation (≤1 Gy) and internal alpha radiation (≤0.05-0.1 Gy to the red bone marrow). In highly exposed individuals (>0.1 Gy alpha, 1-1.5 Gy gamma), the RTL was similar to control. Stratification by gender revealed a significant (∼30%) telomere reduction in low-dose-exposed males, which was absent in females. While the gender differences in RTL may reflect different working conditions, lifestyle and/or telomere biology, absence of a dose response in the highly exposed individuals may reflect selection against cells with short telomeres or induction of telomere-protective effects. Our observations suggest that chronic systemic exposure to radiation leads to variable dose-dependent effects on telomere length.

  3. Linking topology of tethered polymer rings with applications to chromosome segregation and estimation of the knotting length.

    PubMed

    Marko, John F

    2009-05-01

    The Gauss linking number (Ca) of two flexible polymer rings which are tethered to one another is investigated. For ideal random walks, mean linking-squared varies with the square root of polymer length while for self-avoiding walks, linking-squared increases logarithmically with polymer length. The free-energy cost of linking of polymer rings is therefore strongly dependent on degree of self-avoidance, i.e., on intersegment excluded volume. Scaling arguments and numerical data are used to determine the free-energy cost of fixed linking number in both the fluctuation and large-Ca regimes; for ideal random walks, for |Ca|>N;{1/4} , the free energy of catenation is found to grow proportional, variant|Ca/N;{1/4}|;{4/3} . When excluded volume interactions between segments are present, the free energy rapidly approaches a linear dependence on Gauss linking (dF/dCa approximately 3.7k_{B}T) , suggestive of a novel "catenation condensation" effect. These results are used to show that condensation of long entangled polymers along their length, so as to increase excluded volume while decreasing number of statistical segments, can drive disentanglement if a mechanism is present to permit topology change. For chromosomal DNA molecules, lengthwise condensation is therefore an effective means to bias topoisomerases to eliminate catenations between replicated chromatids. The results for mean-square catenation are also used to provide a simple approximate estimate for the "knotting length," or number of segments required to have a knot along a single circular polymer, explaining why the knotting length ranges from approximately 300 for an ideal random walk to 10;{6} for a self-avoiding walk.

  4. Taming active turbulence with patterned soft interfaces.

    PubMed

    Guillamat, P; Ignés-Mullol, J; Sagués, F

    2017-09-15

    Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.Active nematics consist of self-driven components that develop orientational order and turbulent flow. Here Guillamat et al. investigate an active nematic constrained in a quasi-2D geometrical setup and show that there exists an intrinsic length scale that determines the geometry in all forcing regimes.

  5. Atomistic to Continuum Multiscale and Multiphysics Simulation of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Gur, Sourav

    Shape memory alloys (SMAs) are materials that show reversible, thermo-elastic, diffusionless, displacive (solid to solid) phase transformation, due to the application of temperature and/ or stress (/strain). Among different SMAs, NiTi is a popular one. NiTi shows reversible phase transformation, the shape memory effect (SME), where irreversible deformations are recovered upon heating, and superelasticity (SE), where large strains imposed at high enough temperatures are fully recovered. Phase transformation process in NiTi SMA is a very complex process that involves the competition between developed internal strain and phonon dispersion instability. In NiTi SMA, phase transformation occurs over a wide range of temperature and/ or stress (strain) which involves, evolution of different crystalline phases (cubic austenite i.e. B2, different monoclinic variant of martensite i.e. B19', and orthorhombic B19 or BCO structures). Further, it is observed from experimental and computational studies that the evolution kinetics and growth rate of different phases in NiTi SMA vary significantly over a wide spectrum of spatio-temporal scales, especially with length scales. At nano-meter length scale, phase transformation temperatures, critical transformation stress (or strain) and phase fraction evolution change significantly with sample or simulation cell size and grain size. Even, below a critical length scale, the phase transformation process stops. All these aspects make NiTi SMA very interesting to the science and engineering research community and in this context, the present focuses on the following aspects. At first this study address the stability, evolution and growth kinetics of different phases (B2 and variants of B19'), at different length scales, starting from the atomic level and ending at the continuum macroscopic level. The effects of simulation cell size, grain size, and presence of free surface and grain boundary on the phase transformation process (transformation temperature, phase fraction evolution kinetics due to temperature) are also demonstrated herein. Next, to couple and transfer the statistical information of length scale dependent phase transformation process, multiscale/ multiphysics methods are used. Here, the computational difficulty from the fact that the representative governing equations (i.e. different sub-methods such as molecular dynamics simulations, phase field simulations and continuum level constitutive/ material models) are only valid or can be implemented over a range of spatiotemporal scales. Therefore, in the present study, a wavelet based multiscale coupling method is used, where simulation results (phase fraction evolution kinetics) from different sub-methods are linked via concurrent multiscale coupling fashion. Finally, these multiscale/ multiphysics simulation results are used to develop/ modify the macro/ continuum scale thermo-mechanical constitutive relations for NiTi SMA. Finally, the improved material model is used to model new devices, such as thermal diodes and smart dampers.

  6. Evolution of scaling behaviors embedded in sentence series from A Story of the Stone

    PubMed Central

    Yang, Yue; Gu, Changgui; Xiao, Qin; Yang, Huijie

    2017-01-01

    The novel entitled A Story of the Stone provides us precise details of life and social structure of the 18th century China. Its writing lasted a long duration of about 10 years, in which the author’s habit may change significantly. It had been published anonymously up to the beginning of the 20th century, which left a mystery of the author’s attribution. In the present work we focus our attention on scaling behavior embedded in the sentence series from this novel, hope to find how the ideas are organized from single sentences to the whole text. Especially we are interested in the evolution of scale invariance to monitor the changes of the author’s language habit and to find some clues on the author’s attribution. The sentence series are separated into a total of 69 non-overlapping segments with a length of 500 sentences each. The correlation dependent balanced estimation of diffusion entropy (cBEDE) is employed to evaluate the scaling behaviors embedded in the short segments. It is found that the total, the part attributed currently to Xueqin Cao (X-part), and the other part attributed to E Gao (E-part), display scale invariance in a large scale up to 103 sentences, while their scaling exponents are almost identical. All the segments behave scale invariant in considerable wide scales, most of which reach one third of the length. In the curve of scaling exponent versus segment number, the X-part has rich patterns with averagely larger values, while the E-part has a U-shape with a significant low bottom. This finding is a new clue to support the attribution of the E-part to E Gao. PMID:28196096

  7. Evolution of scaling behaviors embedded in sentence series from A Story of the Stone.

    PubMed

    Yang, Yue; Gu, Changgui; Xiao, Qin; Yang, Huijie

    2017-01-01

    The novel entitled A Story of the Stone provides us precise details of life and social structure of the 18th century China. Its writing lasted a long duration of about 10 years, in which the author's habit may change significantly. It had been published anonymously up to the beginning of the 20th century, which left a mystery of the author's attribution. In the present work we focus our attention on scaling behavior embedded in the sentence series from this novel, hope to find how the ideas are organized from single sentences to the whole text. Especially we are interested in the evolution of scale invariance to monitor the changes of the author's language habit and to find some clues on the author's attribution. The sentence series are separated into a total of 69 non-overlapping segments with a length of 500 sentences each. The correlation dependent balanced estimation of diffusion entropy (cBEDE) is employed to evaluate the scaling behaviors embedded in the short segments. It is found that the total, the part attributed currently to Xueqin Cao (X-part), and the other part attributed to E Gao (E-part), display scale invariance in a large scale up to 103 sentences, while their scaling exponents are almost identical. All the segments behave scale invariant in considerable wide scales, most of which reach one third of the length. In the curve of scaling exponent versus segment number, the X-part has rich patterns with averagely larger values, while the E-part has a U-shape with a significant low bottom. This finding is a new clue to support the attribution of the E-part to E Gao.

  8. Exploration of the Structure of the High Temperature Phase of the Hexagonal RMnO3 System

    NASA Astrophysics Data System (ADS)

    Wu, T.; Tyson, T. A.; Zhang, H.; Yu, T.; Page, K.; Ghose, S.

    Temperature dependent structural studies of the high temperature phase of hexagonal RMnO3 systems have been conducted. Both long range and local structural probes have been utilized. Discussions of the appropriate space groups and local distortions relevant to length scale will be given. Ab initio MD simulations are used to interpret the observations. This work is supported by DOE Grant DE-FG02-07ER46402.

  9. Interaction of nanoparticles with lipid membranes: a multiscale perspective.

    PubMed

    Montis, Costanza; Maiolo, Daniele; Alessandri, Ivano; Bergese, Paolo; Berti, Debora

    2014-06-21

    Freestanding lipid bilayers were challenged with 15 nm Au nanospheres either coated by a citrate layer or passivated by a protein corona. The effect of Au nanospheres on the bilayer morphology, permeability and fluidity presents strong differences or similarities, depending on the observation length scale, from the colloidal to the molecular domains. These findings suggest that the interaction between nanoparticles and lipid membranes should be conveniently treated as a multiscale phenomenon.

  10. Multiple Quantum Phase Transitions in a two-dimensional superconductor

    NASA Astrophysics Data System (ADS)

    Bergeal, Nicolas; Biscaras, J.; Hurand, S.; Feuillet-Palma, C.; Lesueur, J.; Budhani, R. C.; Rastogi, A.; Caprara, S.; Grilli, M.

    2013-03-01

    We studied the magnetic field driven Quantum Phase Transition (QPT) in electrostatically gated superconducting LaTiO3/SrTiO3 interfaces. Through finite size scaling analysis, we showed that it belongs to the (2 +1)D XY model universality class. The system can be described as a disordered array of superconducting islands coupled by a two dimensional electron gas (2DEG). Depending on the 2DEG conductance tuned by the gate voltage, the QPT is single (corresponding to the long range phase coherence in the whole array) or double (one related to local phase coherence, the other one to the array). By retrieving the coherence length critical exponent ν, we showed that the QPT can be ``clean'' or ``dirty'' according to the Harris criteria, depending on whether the phase coherence length is smaller or larger than the island size. The overall behaviour is well described by a model of coupled superconducting puddles in the framework of the fermionic scenario of 2D superconducting QPT.

  11. Coupling of Carbon Nanotubes to Metallic Contacts

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Datta, S.; Xue, Yong-Xiang; Govindan, T. R. (Technical Monitor)

    1999-01-01

    The modeling of carbon nanotube-metal contacts is important from both basic and applied view points. For many applications, it is important to design contacts such that the transmission is dictated by intrinsic properties of the nanotube rather than by details of the contact. In this paper, we calculate the electron transmission probability from a nanotube to a free electron metal, which is side-contacted. If the metal-nanotube interface is sufficiently ordered, we find that k-vector conservation plays an important role in determining the coupling, with the physics depending on the area of contact, tube diameter, and chirality. The main results of this paper are: (1) conductance scales with contact length, a phenomena that has been observed in experiments and (2) in the case of uniform coupling between metal and nanotube, the threshold value of the metal Fermi wave vector (below which coupling is insignificant) depends on chirality. Disorder and small phase coherence length relax the need for k-vector conservation, thereby making the coupling stronger.

  12. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  13. Non-Gaussian Nature of Fracture and the Survival of Fat-Tail Exponents

    NASA Astrophysics Data System (ADS)

    Tallakstad, Ken Tore; Toussaint, Renaud; Santucci, Stephane; Måløy, Knut Jørgen

    2013-04-01

    We study the fluctuations of the global velocity Vl(t), computed at various length scales l, during the intermittent mode-I propagation of a crack front. The statistics converge to a non-Gaussian distribution, with an asymmetric shape and a fat tail. This breakdown of the central limit theorem (CLT) is due to the diverging variance of the underlying local crack front velocity distribution, displaying a power law tail. Indeed, by the application of a generalized CLT, the full shape of our experimental velocity distribution at large scale is shown to follow the stable Levy distribution, which preserves the power law tail exponent under upscaling. This study aims to demonstrate in general for crackling noise systems how one can infer the complete scale dependence of the activity—and extreme event distributions—by measuring only at a global scale.

  14. Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale

    NASA Astrophysics Data System (ADS)

    Leahy, Susannah M.; Russ, Garry R.; Abesamis, Rene A.

    2015-12-01

    Recent research has demonstrated that, despite a pelagic larval stage, many coral reef fishes disperse over relatively small distances, leading to well-connected populations on scales of 0-30 km. Although variation in key biological characteristics has been explored on the scale of 100-1000 s of km, it has rarely been explored at the scale relevant to actual larval dispersal and population connectivity on ecological timescales. In this study, we surveyed the habitat and collected specimens ( n = 447) of juvenile butterflyfish, Chaetodon vagabundus, at nine sites along an 80-km stretch of coastline in the central Philippines to identify variation in key life history parameters at a spatial scale relevant to population connectivity. Mean pelagic larval duration (PLD) was 24.03 d (SE = 0.16 d), and settlement size was estimated to be 20.54 mm total length (TL; SE = 0.61 mm). Both traits were spatially consistent, although this PLD is considerably shorter than that reported elsewhere. In contrast, post-settlement daily growth rates, calculated from otolith increment widths from 1 to 50 d post-settlement, varied strongly across the study region. Elevated growth rates were associated with rocky habitats that this species is known to recruit to, but were strongly negatively correlated with macroalgal cover and exhibited negative density dependence with conspecific juveniles. Larger animals had lower early (first 50 d post-settlement) growth rates than smaller animals, even after accounting for seasonal variation in growth rates. Both VBGF and Gompertz models provided good fits to post-settlement size-at-age data ( n = 447 fish), but the VBGF's estimate of asymptotic length ( L ∞ = 168 mm) was more consistent with field observations of maximum fish length. Our findings indicate that larval characteristics are consistent at the spatial scale at which populations are likely well connected, but that site-level biological differences develop post-settlement, most likely as a result of key differences in quality of recruitment habitat.

  15. Performance of Renormalization Group Algebraic Turbulence Model on Boundary Layer Transition Simulation

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.

    1994-01-01

    The RNG-based algebraic turbulence model, with a new method of solving the cubic equation and applying new length scales, is introduced. An analysis is made of the RNG length scale which was previously reported and the resulting eddy viscosity is compared with those from other algebraic turbulence models. Subsequently, a new length scale is introduced which actually uses the two previous RNG length scales in a systematic way to improve the model performance. The performance of the present RNG model is demonstrated by simulating the boundary layer flow over a flat plate and the flow over an airfoil.

  16. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    PubMed

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  17. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores

    NASA Astrophysics Data System (ADS)

    McMullen, Angus; de Haan, Hendrick W.; Tang, Jay X.; Stein, Derek

    2018-02-01

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  18. Minimal scales from an extended Hilbert space

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Nicolini, Piero

    2010-12-01

    We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.

  19. Arsenic distribution and valence state variation studied by fast hierarchical length-scale morphological, compositional, and speciation imaging at the Nanoscopium, Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Somogyi, Andrea; Medjoubi, Kadda; Sancho-Tomas, Maria; Visscher, P. T.; Baranton, Gil; Philippot, Pascal

    2017-09-01

    The understanding of real complex geological, environmental and geo-biological processes depends increasingly on in-depth non-invasive study of chemical composition and morphology. In this paper we used scanning hard X-ray nanoprobe techniques in order to study the elemental composition, morphology and As speciation in complex highly heterogeneous geological samples. Multivariate statistical analytical techniques, such as principal component analysis and clustering were used for data interpretation. These measurements revealed the quantitative and valance state inhomogeneity of As and its relation to the total compositional and morphological variation of the sample at sub-μm scales.

  20. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach

    NASA Astrophysics Data System (ADS)

    Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.

    2018-05-01

    Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.

  1. Incorporating Scale-Dependent Fracture Stiffness for Improved Reservoir Performance Prediction

    NASA Astrophysics Data System (ADS)

    Crawford, B. R.; Tsenn, M. C.; Homburg, J. M.; Stehle, R. C.; Freysteinson, J. A.; Reese, W. C.

    2017-12-01

    We present a novel technique for predicting dynamic fracture network response to production-driven changes in effective stress, with the potential for optimizing depletion planning and improving recovery prediction in stress-sensitive naturally fractured reservoirs. A key component of the method involves laboratory geomechanics testing of single fractures in order to develop a unique scaling relationship between fracture normal stiffness and initial mechanical aperture. Details of the workflow are as follows: tensile, opening mode fractures are created in a variety of low matrix permeability rocks with initial, unstressed apertures in the micrometer to millimeter range, as determined from image analyses of X-ray CT scans; subsequent hydrostatic compression of these fractured samples with synchronous radial strain and flow measurement indicates that both mechanical and hydraulic aperture reduction varies linearly with the natural logarithm of effective normal stress; these stress-sensitive single-fracture laboratory observations are then upscaled to networks with fracture populations displaying frequency-length and length-aperture scaling laws commonly exhibited by natural fracture arrays; functional relationships between reservoir pressure reduction and fracture network porosity, compressibility and directional permeabilities as generated by such discrete fracture network modeling are then exported to the reservoir simulator for improved naturally fractured reservoir performance prediction.

  2. Milky Way Mass Models and MOND

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2008-08-01

    Using the Tuorla-Heidelberg model for the mass distribution of the Milky Way, I determine the rotation curve predicted by MOND (modified Newtonian dynamics). The result is in good agreement with the observed terminal velocities interior to the solar radius and with estimates of the Galaxy's rotation curve exterior thereto. There are no fit parameters: given the mass distribution, MOND provides a good match to the rotation curve. The Tuorla-Heidelberg model does allow for a variety of exponential scale lengths; MOND prefers short scale lengths in the range 2.0 kpc lesssim Rdlesssim 2.5 kpc. The favored value of Rd depends somewhat on the choice of interpolation function. There is some preference for the "simple" interpolation function as found by Famaey & Binney. I introduce an interpolation function that shares the advantages of the simple function on galaxy scales while having a much smaller impact in the solar system. I also solve the inverse problem, inferring the surface mass density distribution of the Milky Way from the terminal velocities. The result is a Galaxy with "bumps and wiggles" in both its luminosity profile and rotation curve that are reminiscent of those frequently observed in external galaxies.

  3. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE PAGES

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; ...

    2016-05-04

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  4. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  5. Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions.

    PubMed

    Yamazaki, T; Aoki, Y; Blum, T; Lin, H W; Lin, M F; Ohta, S; Sasaki, S; Tweedie, R J; Zanotti, J M

    2008-05-02

    We present results for the nucleon axial charge g{A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16;{3} x 32 and 24;{3} x 64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_{pi} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{pi}=330 MeV. We also find a scaling with the single variable m{pi}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{A}=1.20(6)(4) at the physical pion mass, m_{pi}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V>or=(2.4 fm);{3}. We argue this is a dynamical quark effect.

  6. Border-Crossing Model for the Diffusive Coarsening of Wet Foams

    NASA Astrophysics Data System (ADS)

    Durian, Douglas; Schimming, Cody

    For dry foams, the transport of gas from small high-pressure bubbles to large low-pressure bubbles is dominated by diffusion across the thin soap films separating neighboring bubbles. For wetter foams, the film areas become smaller as the Plateau borders and vertices inflate with liquid. So-called ``border-blocking'' models can explain some features of wet-foam coarsening based on the presumption that the inflated borders totally block the gas flux; however, this approximation dramatically fails in the wet/unjamming limit where the bubbles become close-packed spheres. Here, we account for the ever-present border-crossing flux by a new length scale defined by the average gradient of gas concentration inside the borders. We argue that it is proportional to the geometric average of film and border thicknesses, and we verify this scaling and the numerical prefactor by numerical solution of the diffusion equation. Then we show how the dA / dt =K0 (n - 6) von Neumann law is modified by the appearance of terms that depend on bubble size and shape as well as the concentration gradient length scale. Finally, we use the modified von Neumann law to compute the growth rate of the average bubble, which is not constant.

  7. Shafranov shift bifurcation of turbulent transport in the high βp scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    McClenaghan, J.; Garofalo, A. M.; Staebler, G. M.; Qian, J.; Gong, X.; Ding, S. Y.

    2017-10-01

    The Shafranov shift stabilization of turbulence creates a bifurcation in transport leading to formation of a large radius internal transport barrier (ITB) in the high βp scenario on DIII-D. The high βp scenario exhibits high confinement at high βN and high bootstrap fraction in the absence of rapid rotation or negative central shear. Spontaneous formation of an ITB at fixed βN is examined. The energy confinement improves following formation of the ITB. The improvement is associated with a decrease in the minimum mid-radius characteristic turbulence parameter associated with the Shafranov shift: α - s , where α =q2 Rdβ / dρ is a measure of the Shafranov shift, and s is the magnetic shear. After ITB formation, α - s > 0 within region of ITB and α - s < 0 outside the ITB. Before ITB formation, α - s < 0 throughout the entire core. TGLF transport simulations show a bifurcation of the transport depending on the electron pressure gradient scale length. Before ITB formation, the experimental scale length is on the high-transport side of bifurcation. After ITB formation, experimental scale length is on the low-transport side of the bifurcation in the region of the ITB. Work supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences DE-FC02-04ER54698 (Cooperative Agreement #DE-SC0010685), and by the National Magnetic Confinement Fusion Program of China (No. 2015GB102002, 2015GB10.

  8. Scale-dependent behavior of the foredune: Implications for barrier island response to storms and sea-level rise

    NASA Astrophysics Data System (ADS)

    Houser, Chris; Wernette, Phil; Weymer, Bradley A.

    2018-02-01

    The impact of storm surge on a barrier island tends to be considered from a single cross-shore dimension, dependent on the relative elevations of the storm surge and dune crest. However, the foredune is rarely uniform and can exhibit considerable variation in height and width at a range of length scales. In this study, LiDAR data from barrier islands in Texas and Florida are used to explore how shoreline position and dune morphology vary alongshore, and to determine how this variability is altered or reinforced by storms and post-storm recovery. Wavelet analysis reveals that a power law can approximate historical shoreline change across all scales, but that storm-scale shoreline change ( 10 years) and dune height exhibit similar scale-dependent variations at swash and surf zone scales (< 1000 m). The in-phase nature of the relationship between dune height and storm-scale shoreline change indicates that areas of greater storm-scale shoreline retreat are associated with areas of smaller dunes. It is argued that the decoupling of storm-scale and historical shoreline change at swash and surf zone scales is also associated with the alongshore redistribution of sediment and the tendency of shorelines to evolve to a more diffusive (or straight) pattern with time. The wavelet analysis of the data for post-storm dune recovery is also characterized by red noise at the smallest scales characteristic of diffusive systems, suggesting that it is possible that small-scale variations in dune height can be repaired through alongshore recovery and expansion if there is sufficient time between storms. However, the time required for dune recovery exceeds the time between storms capable of eroding and overwashing the dune. Correlation between historical shoreline retreat and the variance of the dune at swash and surf zone scales suggests that the persistence of the dune is an important control on transgression through island migration or shoreline retreat with relative sea-level rise.

  9. From micro- to nano-scale molding of metals : size effect during molding of single crystal Al with rectangular strip punches.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, K.; Meng, W. J.; Mei, F.

    2011-02-01

    A single crystal Al specimen was molded at room temperature with long, rectangular, strip diamond punches. Quantitative molding response curves were obtained at a series of punch widths, ranging from 5 {micro}m to 550 nm. A significant size effect was observed, manifesting itself in terms of significantly increasing characteristic molding pressure as the punch width decreases to 1.5 {micro}m and below. A detailed comparison of the present strip punch molding results was made with Berkovich pyramidal indentation on the same single crystal Al specimen. The comparison reveals distinctly different dependence of the characteristic pressure on corresponding characteristic length. The presentmore » results show the feasibility of micro-/nano-scale compression molding as a micro-/nano-fabrication technique, and offer an experimental test case for size-dependent plasticity theories.« less

  10. Multiscale polar theory of microtubule and motor-protein assemblies

    DOE PAGES

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; ...

    2015-01-27

    Microtubules and motor proteins are building blocks of self-organized subcellular biological structures such as the mitotic spindle and the centrosomal microtubule array. These same ingredients can form new “bioactive” liquid-crystalline fluids that are intrinsically out of equilibrium and which display complex flows and defect dynamics. It is not yet well understood how microscopic activity, which involves polarity-dependent interactions between motor proteins and microtubules, yields such larger-scale dynamical structures. In our multiscale theory, Brownian dynamics simulations of polar microtubule ensembles driven by cross-linking motors allow us to study microscopic organization and stresses. Polarity sorting and cross-link relaxation emerge as two polar-specificmore » sources of active destabilizing stress. On larger length scales, our continuum Doi-Onsager theory captures the hydrodynamic flows generated by polarity-dependent active stresses. Finally, the results connect local polar structure to flow structures and defect dynamics.« less

  11. Empirical scaling of the length of the longest increasing subsequences of random walks

    NASA Astrophysics Data System (ADS)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  12. Adaptive-Grid Methods for Phase Field Models of Microstructure Development

    NASA Technical Reports Server (NTRS)

    Dantzig, Jonathan A.; Goldenfeld, Nigel

    2001-01-01

    Modeling solidification microstructures has become an area of intense study in recent years. The properties of large scale cast products, ranging from automobile engine blocks to aircraft components and other industrial applications, are strongly dependent on the physics that occur at the mesoscopic and microscopic length scales during solidification. The predominant morphology found in solidification microstructures is the dendrite, a tree-like pattern of solid around which solidification proceeds. The microscopic properties of cast products are determined by the length scales of these dendrites, and their associated segregation profiles. For this reason understanding the mechanisms for pattern selection in dendritic growth has attracted a great deal of interest from the experimental and theoretical communities. In particular, a great deal of research has been undertaken to understand such issues as dendrite morphology, shape and growth speed. Experiments on dendrite evolution in pure materials by Glicksman and coworkers on succinonitrile (SCN), and more recently pivalic acid (PVA), as well as other transparent analogs of metals, have provided tests of theories for dendritic growth, and have stimulated considerable theoretical progress. These experiments have clearly demonstrated that in certain parameter ranges the physics of the dendrite tip can be characterized by a steady value for the dendrite tip velocity, radius of curvature and shape. Away from the tip, the time-dependent dendrite exhibits a characteristic sidebranching as it propagates, which is not yet well understood. These experiments are performed by observing individual dendrites growing into an undercooled melt. The experiments are characterized by the dimensionless undercooling. Most experiments are performed at low undercooling.

  13. Coarse-graining to the meso and continuum scales with molecular-dynamics-like models

    NASA Astrophysics Data System (ADS)

    Plimpton, Steve

    Many engineering-scale problems that industry or the national labs try to address with particle-based simulations occur at length and time scales well beyond the most optimistic hopes of traditional coarse-graining methods for molecular dynamics (MD), which typically start at the atomic scale and build upward. However classical MD can be viewed as an engine for simulating particles at literally any length or time scale, depending on the models used for individual particles and their interactions. To illustrate I'll highlight several coarse-grained (CG) materials models, some of which are likely familiar to molecular-scale modelers, but others probably not. These include models for water droplet freezing on surfaces, dissipative particle dynamics (DPD) models of explosives where particles have internal state, CG models of nano or colloidal particles in solution, models for aspherical particles, Peridynamics models for fracture, and models of granular materials at the scale of industrial processing. All of these can be implemented as MD-style models for either soft or hard materials; in fact they are all part of our LAMMPS MD package, added either by our group or contributed by collaborators. Unlike most all-atom MD simulations, CG simulations at these scales often involve highly non-uniform particle densities. So I'll also discuss a load-balancing method we've implemented for these kinds of models, which can improve parallel efficiencies. From the physics point-of-view, these models may be viewed as non-traditional or ad hoc. But because they are MD-style simulations, there's an opportunity for physicists to add statistical mechanics rigor to individual models. Or, in keeping with a theme of this session, to devise methods that more accurately bridge models from one scale to the next.

  14. Magnetochromic sensing and size-dependent collective excitations in iron oxide nanoparticles

    DOE PAGES

    O'Neal, Kenneth R.; Patete, Jonathan M.; Chen, Peng; ...

    2017-03-10

    We combine optical and magneto-optical spectroscopies with complementary vibrational and magnetic property measurements to reveal finite length scale effects in nanoscale α–Fe 2O 3. Analysis of the d-to-d on-site excitations uncovers enhanced color contrast at particle sizes below approximately 75 nm due to size-induced changes in spin-charge coupling that are suppressed again below the superparamagnetic limit. These findings provide a general strategy for amplifying magnetochromism in α–Fe 2O 3 and other iron-containing nanomaterials that may be useful for advanced sensing applications. Lastly, we also unravel the size dependence of collective excitations in this iconic antiferromagnet.

  15. Ultrashort Nucleic Acid Duplexes Exhibit Long Wormlike Chain Behavior with Force-Dependent Edge Effects

    NASA Astrophysics Data System (ADS)

    Whitley, Kevin D.; Comstock, Matthew J.; Chemla, Yann R.

    2018-02-01

    Despite their importance in biology and use in nanotechnology, the elastic behavior of nucleic acids on "ultrashort" (<15 nt ) length scales remains poorly understood. Here, we use optical tweezers combined with fluorescence imaging to observe directly the hybridization of oligonucleotides (7-12 nt) to a complementary strand under tension and to measure the difference in end-to-end extension between the single-stranded and duplex states. Data are consistent with long-polymer models at low forces (<8 pN ) but smaller than predicted at higher forces (>8 pN ), the result of the sequence-dependent duplex edge effects.

  16. Magnetochromic sensing and size-dependent collective excitations in iron oxide nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Neal, Kenneth R.; Patete, Jonathan M.; Chen, Peng

    We combine optical and magneto-optical spectroscopies with complementary vibrational and magnetic property measurements to reveal finite length scale effects in nanoscale α–Fe 2O 3. Analysis of the d-to-d on-site excitations uncovers enhanced color contrast at particle sizes below approximately 75 nm due to size-induced changes in spin-charge coupling that are suppressed again below the superparamagnetic limit. These findings provide a general strategy for amplifying magnetochromism in α–Fe 2O 3 and other iron-containing nanomaterials that may be useful for advanced sensing applications. Lastly, we also unravel the size dependence of collective excitations in this iconic antiferromagnet.

  17. Nucleation-dependant chemical bonding paradigm: the effect of rare earth ions on the nucleation of urea in aqueous solution.

    PubMed

    Chen, Xiaoyan; Sun, Congting; Wu, Sixin; Xue, Dongfeng

    2017-03-29

    Rare earth ions can be used to construct a variety of novel structures and are favorable to chemical bonding regulation and design. In this study, the chemical bonding paradigm between rare earth ions (Ln 3+ ) and urea molecules in an aqueous solution can be tracked by the evolution of C[double bond, length as m-dash]O, NH 2 , and CN vibration bands during the urea nucleation stage. Rare earth ions such as La 3+ , Gd 3+ , and Lu 3+ can manipulate the nucleation time of urea via regulating the nucleation-dependant N-C[double bond, length as m-dash]OH-N hydrogen-bonding between urea molecules. Two types of chemical bondings between Ln 3+ and urea molecules have been confirmed, which are Ln 3+ O[double bond, length as m-dash]C-N and Ln 3+ NH 2 -C. Compared with Ln 3+ NH 2 -C, Ln 3+ prefers to coordinate with the O[double bond, length as m-dash]C bond in urea. With a higher concentration of rare earth ions in the solution, some N-C[double bond, length as m-dash]OH-N hydrogen bonds are broken as a consequence of the incorporation of Ln 3+ into the lattice, resulting in the decreased symmetry of local urea molecules in the crystalline nuclei and the consequent Ln 3+ concentration-dependent nucleation time of urea. Moreover, using the ionic electronegativity scale of Ln 3+ , the different effects of La 3+ , Gd 3+ , and Lu 3+ on urea nucleation can be further distinguished. The present study provides basic data for unrevealing the chemical bonding regulation role of rare earth ions in the formation of hydrogen bonded materials, which may give insight into the design and fabrication of novel materials utilizing rare earth ions to adjust the chemical bonding process.

  18. Tip vortices in the actuator line model

    NASA Astrophysics Data System (ADS)

    Martinez, Luis; Meneveau, Charles

    2017-11-01

    The actuator line model (ALM) is a widely used tool to represent the wind turbine blades in computational fluid dynamics without the need to resolve the full geometry of the blades. The ALM can be optimized to represent the `correct' aerodynamics of the blades by choosing an appropriate smearing length scale ɛ. This appropriate length scale creates a tip vortex which induces a downwash near the tip of the blade. A theoretical frame-work is used to establish a solution to the induced velocity created by a tip vortex as a function of the smearing length scale ɛ. A correction is presented which allows the use of a non-optimal smearing length scale but still provides the downwash which would be induced using the optimal length scale. Thanks to the National Science Foundation (NSF) who provided financial support for this research via Grants IGERT 0801471, IIA-1243482 (the WINDINSPIRE project) and ECCS-1230788.

  19. Monte Carlo Sampling in Fractal Landscapes

    NASA Astrophysics Data System (ADS)

    Leitão, Jorge C.; Lopes, J. M. Viana Parente; Altmann, Eduardo G.

    2013-05-01

    We design a random walk to explore fractal landscapes such as those describing chaotic transients in dynamical systems. We show that the random walk moves efficiently only when its step length depends on the height of the landscape via the largest Lyapunov exponent of the chaotic system. We propose a generalization of the Wang-Landau algorithm which constructs not only the density of states (transient time distribution) but also the correct step length. As a result, we obtain a flat-histogram Monte Carlo method which samples fractal landscapes in polynomial time, a dramatic improvement over the exponential scaling of traditional uniform-sampling methods. Our results are not limited by the dimensionality of the landscape and are confirmed numerically in chaotic systems with up to 30 dimensions.

  20. Correlated motion in the bulk of dense granular flows.

    PubMed

    Staron, Lydie

    2008-05-01

    Numerical simulations of two-dimensional stationary dense granular flows are performed. We check that the system obeys the h_{stop} phenomenology. Focusing on the spatial correlations of the instantaneous velocity fluctuations of the grains, we give evidence of the existence of correlated motion over several grain diameters in the bulk of the flow. Investigating the role of contact friction and restitution, we show that the associated typical length scale lambda is essentially independent of the grain properties. Moreover, we show that lambda is not controlled by the packing compacity. However, in agreement with previous experimental work, we observe that the correlation length decreases with the shear rate. Computing the flows inertia number I , we show a first-order dependence of lambda on I .

  1. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs

    NASA Astrophysics Data System (ADS)

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J. B.

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  2. Plasmodial vein networks of the slime mold Physarum polycephalum form regular graphs.

    PubMed

    Baumgarten, Werner; Ueda, Tetsuo; Hauser, Marcus J B

    2010-10-01

    The morphology of a typical developing biological transportation network, the vein network of the plasmodium of the myxomycete Physarum polycephalum is analyzed during its free extension. The network forms a classical, regular graph, and has exclusively nodes of degree 3. This contrasts to most real-world transportation networks which show small-world or scale-free properties. The complexity of the vein network arises from the weighting of the lengths, widths, and areas of the vein segments. The lengths and areas follow exponential distributions, while the widths are distributed log-normally. These functional dependencies are robust during the entire evolution of the network, even though the exponents change with time due to the coarsening of the vein network.

  3. Modeling of Ceiling Fire Spread and Thermal Radiation.

    DTIC Science & Technology

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  4. Natural Length Scales Shape Liquid Phase Continuity in Unsaturated Flows

    NASA Astrophysics Data System (ADS)

    Assouline, S.; Lehmann, P. G.; Or, D.

    2015-12-01

    Unsaturated flows supporting soil evaporation and internal drainage play an important role in various hydrologic and climatic processes manifested at a wide range of scales. We study inherent natural length scales that govern these flow processes and constrain the spatial range of their representation by continuum models. These inherent length scales reflect interactions between intrinsic porous medium properties that affect liquid phase continuity, and the interplay among forces that drive and resist unsaturated flow. We have defined an intrinsic length scale for hydraulic continuity based on pore size distribution that controls soil evaporation dynamics (i.e., stage 1 to stage 2 transition). This simple metric may be used to delineate upper bounds for regional evaporative losses or the depth of soil-atmosphere interactions (in the absence of plants). A similar length scale governs the dynamics of internal redistribution towards attainment of field capacity, again through its effect on hydraulic continuity in the draining porous medium. The study provides a framework for guiding numerical and mathematical models for capillary flows across different scales considering the necessary conditions for coexistence of stationarity (REV), hydraulic continuity and intrinsic capillary gradients.

  5. Locality and nonlocality in geomorphic transport laws: Implications of a particle-based model of hillslope evolution

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Bradley, D. N.

    2008-12-01

    Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the probability distribution of displacement length is thin- tailed (approximately exponential). At high relief, hillslopes become planar, average displacement length increases by an order of magnitude, and the displacement-length distribution becomes heavy-tailed (albeit truncated at the slope length). Across the spectrum of relief values, the relationship between mean flux and gradient resembles the family of nonlinear flux-gradient curves that has been used to model hillslope evolution. We compare the emergent morphology and transport statistics with linear, nonlinear, and fractional diffusion models of hillslope transport.

  6. Scale dependence of the alignment between strain rate and rotation in turbulent shear flow

    NASA Astrophysics Data System (ADS)

    Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.

    2016-10-01

    The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.

  7. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    NASA Astrophysics Data System (ADS)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  8. Failure analysis of fuel cell electrodes using three-dimensional multi-length scale X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.

    2016-10-01

    X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.

  9. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  10. Early stage aggregation of a coarse-grained model of polyglutamine

    NASA Astrophysics Data System (ADS)

    Haaga, Jason; Gunton, J. D.; Buckles, C. Nadia; Rickman, J. M.

    2018-01-01

    In this paper, we study the early stages of aggregation of a model of polyglutamine (polyQ) for different repeat lengths (number of glutamine amino acid groups in the chain). In particular, we use the Large-scale Atomic/Molecular Massively Parallel Simulator to study a generic coarse-grained model proposed by Bereau and Deserno. We focus on the primary nucleation mechanism involved and find that our results for the initial self-assembly process are consistent with the two-dimensional classical nucleation theory of Kashchiev and Auer. More specifically, we find that with decreasing supersaturation, the oligomer fibril (protofibril) transforms from a one-dimensional β sheet to two-, three-, and higher layer β sheets as the critical nucleus size increases. We also show that the results are consistent with several predictions of their theory, including the dependence of the critical nucleus size on the supersaturation. Our results for the time dependence of the mass aggregation are in reasonable agreement with an approximate analytical solution of the filament theory by Knowles and collaborators that corresponds to an additional secondary nucleation arising from filament fragmentation. Finally, we study the dependence of the critical nucleus size on the repeat length of polyQ. We find that for the larger length polyglutamine chain that we study, the critical nucleus is a monomer, in agreement with experiment and in contrast to the case for the smaller chain, for which the smallest critical nucleus size is four.

  11. The role of skin biopsy in differentiating small-fiber neuropathy from ganglionopathy.

    PubMed

    Provitera, V; Gibbons, C H; Wendelschafer-Crabb, G; Donadio, V; Vitale, D F; Loavenbruck, A; Stancanelli, A; Caporaso, G; Liguori, R; Wang, N; Santoro, L; Kennedy, W R; Nolano, M

    2018-06-01

    We aimed to test the clinical utility of the leg:thigh intraepidermal nerve-fiber (IENF) density ratio as a parameter to discriminate between length-dependent small-fiber neuropathy (SFN) and small-fiber sensory ganglionopathy (SFSG) in subjects with signs and symptoms of small-fiber pathology. We retrospectively evaluated thigh and leg IENF density in 314 subjects with small-fiber pathology (173 with distal symmetrical length-dependent SFN and 141 with non-length-dependent SFSG). A group of 288 healthy subjects was included as a control group. The leg:thigh IENF density ratio was calculated for all subjects. We used receiver operating characteristic curve analyses to assess the ability of this parameter to discriminate between length-dependent SFN and SFSG, and the decision curve analysis to estimate its net clinical benefit. In patients with neuropathy, the mean IENF density was 14.8 ± 6.8/mm at the thigh (14.0 ± 6.9/mm in length-dependent SFN and 15.9 ± 6.7/mm in patients with SFSG) and 7.5 ± 4.5/mm at the distal leg (5.4 ± 3.2/mm in patients with length-dependent SFN and 10.1 ± 4.6/mm in patients with SFSG). The leg:thigh IENF density ratio was significantly (P < 0.01) lower in patients with length-dependent SFN (0.44 ± 0.23) compared with patients with SFSG (0.68 ± 0.28). The area under the curve of the receiver operating characteristic analysis to discriminate between patients with length-dependent SFN and SFSG was 0.79. The decision curve analysis demonstrated the clinical utility of this parameter. The leg:thigh IENF ratio represents a valuable tool in the differential diagnosis between SFSG and length-dependent SFN. © 2018 EAN.

  12. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication.

    PubMed

    Pagani, Guido; Green, Micah J; Poulin, Philippe; Pasquali, Matteo

    2012-07-17

    Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.

  13. Turbulence scalings in pipe flows exhibiting polymer-induced drag reduction

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Markides, Christos

    2014-11-01

    Non-intrusive laser based diagnostics technique, namely Particle Image Velocimetry, was used to in detail characterise polymer induced drag reduction in a turbulent pipe flow. The effect of polymer additives was investigated in a pneumatically-driven flow facility featuring a horizontal pipe test section of inner diameter 25.3 mm and length 8 m. Three high molecular weight polymers (2, 4 and 8 MDa) at concentrations of 5 - 250 wppm were used at Reynolds numbers from 35000 to 210000. The PIV derived results show that the level of drag reduction scales with different normalised turbulence parameters, e.g. streamwise and spanwise velocity fluctuations, vorticity or Reynolds stresses. These scalings are dependent of the distance from the wall, however, are independent of the Reynolds numbers range investigated.

  14. Finite size scaling analysis on Nagel-Schreckenberg model for traffic flow

    NASA Astrophysics Data System (ADS)

    Balouchi, Ashkan; Browne, Dana

    2015-03-01

    The traffic flow problem as a many-particle non-equilibrium system has caught the interest of physicists for decades. Understanding the traffic flow properties and though obtaining the ability to control the transition from the free-flow phase to the jammed phase plays a critical role in the future world of urging self-driven cars technology. We have studied phase transitions in one-lane traffic flow through the mean velocity, distributions of car spacing, dynamic susceptibility and jam persistence -as candidates for an order parameter- using the Nagel-Schreckenberg model to simulate traffic flow. The length dependent transition has been observed for a range of maximum velocities greater than a certain value. Finite size scaling analysis indicates power-law scaling of these quantities at the onset of the jammed phase.

  15. Scaling ansatz for the ac magnetic response in two-dimensional spin ice

    NASA Astrophysics Data System (ADS)

    Otsuka, Hiromi; Takatsu, Hiroshi; Goto, Kazuki; Kadowaki, Hiroaki

    2014-10-01

    A theory for frequency-dependent magnetic susceptibility χ (ω ) is developed for thermally activated magnetic monopoles in a two-dimensional (2D) spin ice. By modeling the system in the vicinity of the ground-state manifold as a 2D Coulomb gas with an entropic interaction, and then as a 2D sine-Gordon model, we have shown that the susceptibility has a scaling form χ (ω ) /χ (0 ) =F (ω /ω1) , where the characteristic frequency ω1 is related to a charge correlation length between diffusively moving monopoles, and to the principal-breather excitation. The dynamical scaling is universal and applicable not only for kagome ice, but also for superfluid and superconducting films and generic 2D ices possibly including the artificial spin ice.

  16. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    PubMed Central

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-01-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494

  17. Weighted Non-linear Compact Schemes for the Direct Numerical Simulation of Compressible, Turbulent Flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Baeder, James D.

    2014-01-21

    A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less

  18. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds.

    PubMed

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J; Jain, Rakesh K; Nadkarni, Seemantini K

    2016-12-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g 2 (t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10 -9 ), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa - 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10 -7 ). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.

  19. Wave run-up on a high-energy dissipative beach

    USGS Publications Warehouse

    Ruggiero, P.; Holman, R.A.; Beach, R.A.

    2004-01-01

    Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.

  20. Understanding the length dependence of molecular junction thermopower.

    PubMed

    Karlström, Olov; Strange, Mikkel; Solomon, Gemma C

    2014-01-28

    Thermopower of molecular junctions is sensitive to details in the junction and may increase, decrease, or saturate with increasing chain length, depending on the system. Using McConnell's theory for exponentially suppressed transport together with a simple and easily interpretable tight binding model, we show how these different behaviors depend on the molecular backbone and its binding to the contacts. We distinguish between resonances from binding groups or undercoordinated electrode atoms, and those from the periodic backbone. It is demonstrated that while the former gives a length-independent contribution to the thermopower, possibly changing its sign, the latter determines its length dependence. This means that the question of which orbitals from the periodic chain that dominate the transport should not be inferred from the sign of the thermopower but from its length dependence. We find that the same molecular backbone can, in principle, show four qualitatively different thermopower trends depending on the binding group: It can be positive or negative for short chains, and it can either increase or decrease with length.

  1. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    NASA Astrophysics Data System (ADS)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation length corresponds to the size of amorphous domains bounded by excitations that remain frozen on the observation time scale, thus forming stripes when viewed in space and time. We elucidate properties of the striped phase and show that glasses of this type, traditionally prepared through cooling, can be considered a finite-size realization of the inactive phase formed by the s-ensemble in the space-time thermodynamic limit.

  2. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  3. From brittle to ductile: a structure dependent ductility of diamond nanothread.

    PubMed

    Zhan, Haifei; Zhang, Gang; Tan, Vincent B C; Cheng, Yuan; Bell, John M; Zhang, Yong-Wei; Gu, Yuantong

    2016-06-07

    As a potential building block for the next generation of devices/multifunctional materials that are spreading in almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for the creation of extremely strong three-dimensional nano-architectures.

  4. Comparison of fall prediction by the Hessisch Oldendorf Fall Risk Scale and the Fall Risk Scale by Huhn in neurological rehabilitation: an observational study.

    PubMed

    Hermann, Olena; Schmidt, Simone B; Boltzmann, Melanie; Rollnik, Jens D

    2018-05-01

    To calculate scale performance of the newly developed Hessisch Oldendorf Fall Risk Scale (HOSS) for classifying fallers and non-fallers in comparison with the Risk of Falling Scale by Huhn (FSH), a frequently used assessment tool. A prospective observational trail was conducted. The study was performed in a large specialized neurological rehabilitation facility. The study population ( n = 690) included neurological and neurosurgery patients during neurological rehabilitation with varying levels of disability. Around the half of the study patients were independent and dependent in the activities of daily living (ADL), respectively. Fall risk of each patient was assessed by HOSS and FSH within the first seven days after admission. Event of fall during rehabilitation was compared with HOSS and FSH scores as well as the according fall risk. Scale performance including sensitivity and specificity was calculated for both scales. A total of 107 (15.5%) patients experienced at least one fall. In general, fallers were characterized by an older age, a prolonged length of stay, and a lower Barthel Index (higher dependence in the ADL) on admission than non-fallers. The verification of fall prediction for both scales showed a sensitivity of 83% and a specificity of 64% for the HOSS scale, and a sensitivity of 98% with a specificity of 12% for the FSH scale, respectively. The HOSS shows an adequate sensitivity, a higher specificity and therefore a better scale performance than the FSH. Thus, the HOSS might be superior to existing assessments.

  5. The Role of Convective Shell Thickness on Dynamo Scaling Laws for Magnetic Field Morphology: Implications for the Ice Giants and Future Earth

    NASA Astrophysics Data System (ADS)

    Stanley, S.; Tian, B. Y.

    2016-12-01

    Previous dynamo scaling law studies (Christensen and Aubert, 2006) have demonstrated that the morphology of a planet's magnetic field is determined by the local Rossby number (Rol): a non-dimensional diagnostic variable that quantifies the ratio of inertial forces to Coriolis forces on the average length scale of the flow. Dynamos with Rol < 0.1 produce dipolar dominated magnetic fields whereas dynamos with Rol > 0.1 produce multipolar magnetic fields. Scaling studies have also determined the dependence of the local Rossby number on non-dimensional parameters governing the system - specifically the Ekman, Prandtl, magnetic Prandtl and flux-based Rayleigh numbers (Olson and Christensen, 2006). However, those studies focused on the specific convective shell thickness of the Earth's core and hence could not determine the influence of convective shell thickness on the local Rossby number. Aubert et al. (2009) investigated the role of convective shell thickness on dynamo scaling laws in order to investigate the palaeo-evolution of the geodynamo. Due to the focus of that study, they varied the ratio of the inner to outer core radii (rio) from 0 to 0.35 and found Rol scales with (1+rio). Here we consider a larger range of convective shell thicknesses and find an exponential dependence of rio on the local Rossby number. Our results are consistent with Aubert et al. (2009) for their small rio values. With this new scaling dependence on convective shell thickness, we find that Uranus and Neptune reside deeply in the multipolar regime, whereas without the dependence on rio, they resided near Rol =0.1; i.e. on the boundary between dipolar and multipolar fields and close to where Earth resides in the parameter space. We also find that Earth will reside more deeply in the multipolar regime, and hence not produce a stable dipolar field once the inner core has grown such that rio = 0.4.

  6. Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach

    PubMed Central

    Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad

    2013-01-01

    We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory with an assumption of free motion of the interstitial fluid within the porous ECM structure. Following a recent study (Heris, H.K., Miri, A.K., Tripathy, U., Barthelat, F., Mongeau, L., 2013. Journal of the Mechanical Behavior of Biomedical Materials), atomic force microscopy was used to perform creep loading and 50-nm sinusoidal oscillations on porcine vocal folds. The proposed model was calibrated by a finite element model to accurately predict the nanoscale viscoelastic moduli of ECM. A linear correlation was observed between the in-depth distribution of the viscoelastic moduli and that of hyaluronic acids in the vocal fold tissue. We conclude that hyaluronic acids may regulate the vocal fold viscoelasticity at nanoscale. The proposed methodology offers a characterization tool for biomaterials used in vocal fold augmentations. PMID:24317493

  7. Tuning Adsorption Duration To Control the Diffusion of a Nanoparticle in Adsorbing Polymers.

    PubMed

    Cao, Xue-Zheng; Merlitz, Holger; Wu, Chen-Xu

    2017-06-15

    Controlling the nanoparticle (NP) diffusion in polymers is a prerequisite to obtain polymer nanocomposites (PNCs) with desired dynamical and rheological properties and to achieve targeted delivery of nanomedicine in biological systems. Here we determine the suppression mechanism of direct NP-polymer attraction to hamper the NP mobility in adsorbing polymers and then quantify the dependence of the effective viscosity η eff felt by the NP on the adsorption duration τ ads of polymers on the NP using scaling theory analysis and molecular dynamics simulations. We propose and confirm that participation of adsorbed chains in the NP motion break up at time intervals beyond τ ads due to the rearrangement of polymer segments at the NP surface, which accounts for the onset of Fickian NP diffusion on a time scale of t ≈ τ ads . We develop a power law, η eff ∼ (τ ads ) ν , where ν is the scaling exponent of the dependence of polymer coil size on the chain length, which leads to a theoretical basis for the design of PNCs and nanomedicine with desired applications through tuning the polymer adsorption duration.

  8. Minimization of dependency length in written English.

    PubMed

    Temperley, David

    2007-11-01

    Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1-76; Gibson, E. 2000. The dependency locality theory: A distance-based theory of linguistic complexity. In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, Language, Brain (pp. 95-126). Cambridge, MA: MIT Press.] proposes that the processing complexity of a sentence is related to the length of its syntactic dependencies: longer dependencies are more difficult to process. The DLT is supported by a variety of phenomena in language comprehension. This raises the question: Does language production reflect a preference for shorter dependencies as well? I examine this question in a corpus study of written English, using the Wall Street Journal portion of the Penn Treebank. The DLT makes a number of predictions regarding the length of constituents in different contexts; these predictions were tested in a series of statistical tests. A number of findings support the theory: the greater length of subject noun phrases in inverted versus uninverted quotation constructions, the greater length of direct-object versus subject NPs, the greater length of postmodifying versus premodifying adverbial clauses, the greater length of relative-clause subjects within direct-object NPs versus subject NPs, the tendency towards "short-long" ordering of postmodifying adjuncts and coordinated conjuncts, and the shorter length of subject NPs (but not direct-object NPs) in clauses with premodifying adjuncts versus those without.

  9. Critical Nucleation Length for Accelerating Frictional Slip

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2017-11-01

    The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.

  10. Aging and visual length discrimination: sequential dependencies, biases, and the effects of multiple implicit standards.

    PubMed

    Norman, J Farley; Cheeseman, Jacob R; Baxter, Michael W; Thomason, Kelsey E; Adkins, Olivia C; Rogers, Connor E

    2014-05-01

    Younger (20-25 years of age) and older (61-79 years) adults were evaluated for their ability to visually discriminate length. Almost all experiments that have utilized the method of single stimuli to date have required participants to judge test stimuli relative to a single implicit standard (for a rare exception, see Morgan, On the scaling of size judgements by orientational cues, Vision Research, 1992, 32, 1433-1445). In the current experiments, we not only asked participants to judge lengths relative to a single implicit standard, but they also compared test stimuli to two different implicit standards within the same blocks of trials. We analyzed our participants' judgments to evaluate whether significant sequential dependencies occurred. We found that while individual younger and older adults possessed similar length difference thresholds and exhibited similar overall biases, the judgments of older adults within individual blocks of trials were more strongly biased (than younger adults) by preceding responses (i.e., their judgments on any given trial were more strongly affected by responses to previously viewed stimuli). In addition, the judgments of both younger and older adults were more strongly biased by preceding responses in the blocks of trials with multiple implicit standards. Overall, our results are consistent with the operation of the tracking mechanism described by Criterion-setting theory (Lages and Treisman, Spatial frequency discrimination: Visual long-term memory or criterion setting? Vision Research, 1998, 38, 557-572). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The stretch to stray on time: Resonant length of random walks in a transient

    NASA Astrophysics Data System (ADS)

    Falcke, Martin; Friedhoff, Victor Nicolai

    2018-05-01

    First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν = - N / ( N + 1 ) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.

  12. Dimensional threshold for fracture linkage and hooking

    NASA Astrophysics Data System (ADS)

    Lamarche, Juliette; Chabani, Arezki; Gauthier, Bertrand D. M.

    2018-03-01

    Fracture connectivity in rocks depends on spatial properties of the pattern including length, abundance and orientation. When fractures form a single-strike set, they hardly cross-cut each other and the connectivity is limited. Linkage probability increases with increasing fracture abundance and length as small fractures connect to each other to form longer ones. A process for parallel fracture linkage is the "hooking", where two converging fracture tips mutually deviate and then converge to connect due to the interaction of their crack-tip stresses. Quantifying the processes and conditions for fracture linkage in single-strike fracture sets is crucial to better predicting fluid flow in Naturally Fractured Reservoirs. For 1734 fractures in Permian shales of the Lodève Basin, SE France, we measured geometrical parameters in 2D, characterizing three stages of the hooking process: underlapping, overlapping and linkage. We deciphered the threshold values, shape ratios and limiting conditions to switch from one stage to another one. The hook set up depends on the spacing (S) and fracture length (Lh) with the relation S ≈ 0.15 Lh. Once the hooking is initiated, with the fracture deviation length (L) L ≈ 0.4 Lh, the fractures reaches the linkage stage only when the spacing is reduced to S ≈ 0.02 Lh and the convergence (C) is < 0.1 L. These conditions apply to multi-scale fractures with a shape ratio L/S = 10 and for fracture curvature of 10°-20°.

  13. Physical scales in the Wigner–Boltzmann equation

    PubMed Central

    Nedjalkov, M.; Selberherr, S.; Ferry, D.K.; Vasileska, D.; Dollfus, P.; Querlioz, D.; Dimov, I.; Schwaha, P.

    2013-01-01

    The Wigner–Boltzmann equation provides the Wigner single particle theory with interactions with bosonic degrees of freedom associated with harmonic oscillators, such as phonons in solids. Quantum evolution is an interplay of two transport modes, corresponding to the common coherent particle-potential processes, or to the decoherence causing scattering due to the oscillators. Which evolution mode will dominate depends on the scales of the involved physical quantities. A dimensionless formulation of the Wigner–Boltzmann equation is obtained, where these scales appear as dimensionless strength parameters. A notion called scaling theorem is derived, linking the strength parameters to the coupling with the oscillators. It is shown that an increase of this coupling is equivalent to a reduction of both the strength of the electric potential, and the coherence length. Secondly, the existence of classes of physically different, but mathematically equivalent setups of the Wigner–Boltzmann evolution is demonstrated. PMID:23504194

  14. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    PubMed

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    PubMed

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  16. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    PubMed Central

    Johnson, Jay R.; Wing, Simon

    2017-01-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194

  17. Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Zhu, Zong-Hong; Xu, Lixin; Alcaniz, J. S.

    2011-04-01

    Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r=ct=3/|Λ|. Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/rΛ2(t)=3/(c2tΛ2(t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ. We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled “Union2 compilation” which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015⩽z⩽1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.

  18. Similarity and Scale Invariance of Velocity and Temperature Structure Functions within and above Dense Canopies

    NASA Astrophysics Data System (ADS)

    Ghannam, K.; Katul, G. G.; Chamecki, M.

    2016-12-01

    The scale-wise properties of turbulent flow statistics are conventionally quantified using the structure function D_ss (r)= <〖(Δs)〗^2 > describing velocity (s=u) or scalar (s=c) concentration increments Δs=s(x+r)-s(x) at various scales or separation distances r, where <.> is Reynolds averaging over coordinates of statistical homogeneity. For locally homogeneous and isotropic turbulence, the structure function can unfold statistical invariance of the form D_ss (βr)=β^p D_ss (r) as has been demonstrated by Kolmogorov's theory for the inertial subrange in the absence of intermittency corrections. For scales larger than inertial, scale invariance need not hold though universal scaling properties can still emerge provided an appropriate length and velocity scales are identified. One recent study on the structure function of the streamwise velocity (s=u) in smooth and rough wall-bounded flows argued that a logarithmic scaling of the form D_ss/(u_*^2 )=A+B ln(r/l_ɛ ) exists at any height z above the wall (or roughness elements), with,l_ɛ,〖 u〗_*, A and B being a dissipation length scale, the friction velocity, and two similarity constants to be determined. Whether this scaling is valid across all atmospheric stability regimes in the roughness sublayer (RSL) and the possible co-existence of length scales other than l_ɛ that collapse D_ss (r) for velocity and temperature frames the scope of this work. Using year-round field measurements within and above an Amazonian canopy, the work here explores the aforementioned scaling for the streamwise (s=u) and vertical velocity (s=w) components, along with its extension to active scalars (s=T, the air temperature) inside canopies and in the RSL above canopies. While the premise is that a length scale such as l_ɛ may serve as a master closure length scale for turbulent momentum and heat flux budgets, the role of the vorticity thickness, the Obukhov length, the adjustment length scale, and height z are also explored for various scale (or r) regimes. Because the RSL blends D_ss (r) from its form inside the canopy to its form in the well-studied atmospheric surface layer, the scaling laws derived here offer a new perspective on the thickness of the RSL for momentum and scalars and its variations with atmospheric stability.

  19. Constant Stress Drop Fits Earthquake Surface Slip-Length Data

    NASA Astrophysics Data System (ADS)

    Shaw, B. E.

    2011-12-01

    Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.

  20. Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

    NASA Astrophysics Data System (ADS)

    Pal, Debashis; Chakraborty, Suman

    2015-05-01

    We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.

Top