Phase 1 Space Fission Propulsion Energy Source Design
NASA Technical Reports Server (NTRS)
Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Pedersen, Kevin; Martin, James; Dickens, Ricky; Salvail, Pat; Hrbud, Ivana; Carter, Robert; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and operated. Studies conducted in fiscal year 2001 (IISTP, 2001) show that fission electric propulsion (FEP) systems with a specific mass at or below 50 kg/kWjet could enhance or enable numerous robotic outer solar system missions of interest. At the required specific mass, it is possible to develop safe, affordable systems that meet mission requirements. To help select the system design to pursue, eight evaluation criteria were identified: system integration, safety, reliability, testability, specific mass, cost, schedule, and programmatic risk. A top-level comparison of four potential concepts was performed: a Testable, Passive, Redundant Reactor (TPRR), a Testable Multi-Cell In-Core Thermionic Reactor (TMCT), a Direct Gas Cooled Reactor (DGCR), and a Pumped Liquid Metal Reactor.(PLMR). Development of any of the four systems appears feasible. However, for power levels up to at least 500 kWt (enabling electric power levels of 125-175 kWe, given 25-35% power conversion efficiency) the TPRR has advantages related to several criteria and is competitive with respect to all. Hardware-based research and development has further increased confidence in the TPRR approach. Successful development and utilization of a "Phase I" fission electric propulsion system will enable advanced Phase 2 and Phase 3 systems capable of providing rapid, affordable access to any point in the solar system.
1983-11-01
compound operations, with status. (h) Pre-programmed CRC and double-precision multiply/divide algo- rithms. (i) Double length accumulator with full...IH1.25 _ - MICROCOP ’ RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A .4 ’* • • . - . .. •. . . . . . . . . . . . . . • - -. .• ,. o. . . .- "o
Two fundamental questions about protein evolution.
Penny, David; Zhong, Bojian
2015-12-01
Two basic questions are considered that approach protein evolution from different directions; the problems arising from using Markov models for the deeper divergences, and then the origin of proteins themselves. The real problem for the first question (going backwards in time) is that at deeper phylogenies the Markov models of sequence evolution must lose information exponentially at deeper divergences, and several testable methods are suggested that should help resolve these deeper divergences. For the second question (coming forwards in time) a problem is that most models for the origin of protein synthesis do not give a role for the very earliest stages of the process. From our knowledge of the importance of replication accuracy in limiting the length of a coding molecule, a testable hypothesis is proposed. The length of the code, the code itself, and tRNAs would all have prior roles in increasing the accuracy of RNA replication; thus proteins would have been formed only after the tRNAs and the length of the triplet code are already formed. Both questions lead to testable predictions. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Huang, Dan; Chen, Xuejuan; Gong, Qi; Yuan, Chaoqun; Ding, Hui; Bai, Jing; Zhu, Hui; Fu, Zhujun; Yu, Rongbin; Liu, Hu
2016-01-01
This survey was conducted to determine the testability, distribution and associations of ocular biometric parameters in Chinese preschool children. Ocular biometric examinations, including the axial length (AL) and corneal radius of curvature (CR), were conducted on 1,688 3-year-old subjects by using an IOLMaster in August 2015. Anthropometric parameters, including height and weight, were measured according to a standardized protocol, and body mass index (BMI) was calculated. The testability was 93.7% for the AL and 78.6% for the CR overall, and both measures improved with age. Girls performed slightly better in AL measurements (P = 0.08), and the difference in CR was statistically significant (P < 0.05). The AL distribution was normal in girls (P = 0.12), whereas it was not in boys (P < 0.05). For CR1, all subgroups presented normal distributions (P = 0.16 for boys; P = 0.20 for girls), but the distribution varied when the subgroups were combined (P < 0.05). CR2 presented a normal distribution (P = 0.11), whereas the AL/CR ratio was abnormal (P < 0.001). Boys exhibited a significantly longer AL, a greater CR and a greater AL/CR ratio than girls (all P < 0.001). PMID:27384307
NASA Technical Reports Server (NTRS)
Chen, Chung-Hsing
1992-01-01
In this thesis, a behavioral-level testability analysis approach is presented. This approach is based on analyzing the circuit behavioral description (similar to a C program) to estimate its testability by identifying controllable and observable circuit nodes. This information can be used by a test generator to gain better access to internal circuit nodes and to reduce its search space. The results of the testability analyzer can also be used to select test points or partial scan flip-flops in the early design phase. Based on selection criteria, a novel Synthesis for Testability approach call Test Statement Insertion (TSI) is proposed, which modifies the circuit behavioral description directly. Test Statement Insertion can also be used to modify circuit structural description to improve its testability. As a result, Synthesis for Testability methodology can be combined with an existing behavioral synthesis tool to produce more testable circuits.
Antenna Mechanism of Length Control of Actin Cables
Mohapatra, Lishibanya; Goode, Bruce L.; Kondev, Jane
2015-01-01
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This “antenna mechanism” involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control. PMID:26107518
Antenna Mechanism of Length Control of Actin Cables.
Mohapatra, Lishibanya; Goode, Bruce L; Kondev, Jane
2015-06-01
Actin cables are linear cytoskeletal structures that serve as tracks for myosin-based intracellular transport of vesicles and organelles in both yeast and mammalian cells. In a yeast cell undergoing budding, cables are in constant dynamic turnover yet some cables grow from the bud neck toward the back of the mother cell until their length roughly equals the diameter of the mother cell. This raises the question: how is the length of these cables controlled? Here we describe a novel molecular mechanism for cable length control inspired by recent experimental observations in cells. This "antenna mechanism" involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. We compute the probability distribution of cable lengths as a function of several experimentally tuneable parameters such as the formin-binding affinity of Smy1 and the concentration of myosin motors delivering Smy1. These results provide testable predictions of the antenna mechanism of actin-cable length control.
The Case of Nuclear Propulsion
NASA Technical Reports Server (NTRS)
Koroteev, Anatoly S.; Ponomarev-Stepnoi, Nicolai N.; Smetannikov, Vladimir P.; Gafarov, Albert A.; Houts, Mike; VanDyke, Melissa; Godfroy, Tom; Martin, James; Bragg-Sitton, Shannon; Dickens, Ricky
2003-01-01
Fission technology can enable rapid, affordable access to any point in the solar system. If fission propulsion systems are to be developed to their full potential; however, near-term customers must be identified and initial fission systems successfully developed, launched, and utilized. Successful utilization will simultaneously develop the infrastructure and experience necessary for developing even higher power and performance systems. To be successful, development programs must devise strategies for rapidly converting paper reactor concepts into actual flight hardware. One approach to accomplishing this is to design highly testable systems, and to structure the program to contain frequent, significant hardware milestones. This paper discusses ongoing efforts in Russia and the United States aimed at enabling near-term utilization of space fission systems.
The effect of catalyst length and downstream reactor distance on catalytic combustor performance
NASA Technical Reports Server (NTRS)
Anderson, D.
1980-01-01
A study was made to determine the effects on catalytic combustor performance which resulted from independently varying the length of a catalytic reactor and the length available for gas-phase reactions downstream of the catalyst. Monolithic combustion catalysts from three manufacturers were tested in a combustion test rig with no. 2 diesel fuel. Catalytic reactor lengths of 2.5 and 5.4 cm, and downstream gas-phase reaction distances of 7.3, 12.4, 17.5, and 22.5 cm were evaluated. Measurements of carbon monoxide, unburned hydrocarbons, nitrogen oxides, and pressure drop were made. The catalytic-reactor pressure drop was less than 1 percent of the upstream total pressure for all test configurations and test conditions. Nitrogen oxides and unburned hydrocarbons emissions were less than 0.25 g NO2/kg fuel and 0.6 g HC/kg fuel, respectively. The minimum operating temperature (defined as the adiabatic combustion temperature required to obtain carbon monoxide emissions below a reference level of 13.6 g CO/kg fuel) ranged from 1230 K to 1500 K for the various conditions and configurations tested. The minimum operating temperature decreased with increasing total (catalytic-reactor-plus-downstream-gas-phase-reactor-zone) residence time but was independent of the relative times spent in each region when the catalytic-reactor residence time was greater than or equal to 1.4 ms.
CANAL EMERGES FROM EAST SIDE OF MTR BUILDING. "EXTRA" LENGTH ...
CANAL EMERGES FROM EAST SIDE OF MTR BUILDING. "EXTRA" LENGTH WAS TO STORE SPENT FUEL THAT WOULD ACCUMULATE BEFORE THE CHEMICAL PROCESSING PLANT WAS READY TO PROCESS IT. INL NEGATIVE NO. 1659. Unknown Photographer, 3/9/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Architectural Analysis of Dynamically Reconfigurable Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly
2010-01-01
oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines
1989-09-01
Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer F ( Abstract In this...Projects Agency under contract number N00014-87-K-0825. Author Information Devadas : Department of Electrical Engineering and Computer Science, Room 36...MA 02139; (617) 253-0292. 0 * Boolean Minimization and Algebraic Factorization Procedures for Fully Testable Sequential Machines Siivas Devadas
Advanced Diagnostic and Prognostic Testbed (ADAPT) Testability Analysis Report
NASA Technical Reports Server (NTRS)
Ossenfort, John
2008-01-01
As system designs become more complex, determining the best locations to add sensors and test points for the purpose of testing and monitoring these designs becomes more difficult. Not only must the designer take into consideration all real and potential faults of the system, he or she must also find efficient ways of detecting and isolating those faults. Because sensors and cabling take up valuable space and weight on a system, and given constraints on bandwidth and power, it is even more difficult to add sensors into these complex designs after the design has been completed. As a result, a number of software tools have been developed to assist the system designer in proper placement of these sensors during the system design phase of a project. One of the key functions provided by many of these software programs is a testability analysis of the system essentially an evaluation of how observable the system behavior is using available tests. During the design phase, testability metrics can help guide the designer in improving the inherent testability of the design. This may include adding, removing, or modifying tests; breaking up feedback loops, or changing the system to reduce fault propagation. Given a set of test requirements, the analysis can also help to verify that the system will meet those requirements. Of course, a testability analysis requires that a software model of the physical system is available. For the analysis to be most effective in guiding system design, this model should ideally be constructed in parallel with these efforts. The purpose of this paper is to present the final testability results of the Advanced Diagnostic and Prognostic Testbed (ADAPT) after the system model was completed. The tool chosen to build the model and to perform the testability analysis with is the Testability Engineering and Maintenance System Designer (TEAMS-Designer). The TEAMS toolset is intended to be a solution to span all phases of the system, from design and development through health management and maintenance. TEAMS-Designer is the model-building and testability analysis software in that suite.
A Unified Approach to the Synthesis of Fully Testable Sequential Machines
1989-10-01
N A Unified Approach to the Synthesis of Fully Testable Sequential Machines Srinivas Devadas and Kurt Keutzer Abstract • In this paper we attempt to...research was supported in part by the Defense Advanced Research Projects Agency under contract N00014-87-K-0825. Author Information Devadas : Department...Fully Testable Sequential Maine(S P Sritiivas Devadas Departinent of Electrical Engineerinig anid Comivi Sciec Massachusetts Institute of Technology
Factors That Affect Software Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.
1991-01-01
Software faults that infrequently affect software's output are dangerous. When a software fault causes frequent software failures, testing is likely to reveal the fault before the software is releases; when the fault remains undetected during testing, it can cause disaster after the software is installed. A technique for predicting whether a particular piece of software is likely to reveal faults within itself during testing is found in [Voas91b]. A piece of software that is likely to reveal faults within itself during testing is said to have high testability. A piece of software that is not likely to reveal faults within itself during testing is said to have low testability. It is preferable to design software with higher testabilities from the outset, i.e., create software with as high of a degree of testability as possible to avoid the problems of having undetected faults that are associated with low testability. Information loss is a phenomenon that occurs during program execution that increases the likelihood that a fault will remain undetected. In this paper, I identify two brad classes of information loss, define them, and suggest ways of predicting the potential for information loss to occur. We do this in order to decrease the likelihood that faults will remain undetected during testing.
Extended Testability Analysis Tool
NASA Technical Reports Server (NTRS)
Melcher, Kevin; Maul, William A.; Fulton, Christopher
2012-01-01
The Extended Testability Analysis (ETA) Tool is a software application that supports fault management (FM) by performing testability analyses on the fault propagation model of a given system. Fault management includes the prevention of faults through robust design margins and quality assurance methods, or the mitigation of system failures. Fault management requires an understanding of the system design and operation, potential failure mechanisms within the system, and the propagation of those potential failures through the system. The purpose of the ETA Tool software is to process the testability analysis results from a commercial software program called TEAMS Designer in order to provide a detailed set of diagnostic assessment reports. The ETA Tool is a command-line process with several user-selectable report output options. The ETA Tool also extends the COTS testability analysis and enables variation studies with sensor sensitivity impacts on system diagnostics and component isolation using a single testability output. The ETA Tool can also provide extended analyses from a single set of testability output files. The following analysis reports are available to the user: (1) the Detectability Report provides a breakdown of how each tested failure mode was detected, (2) the Test Utilization Report identifies all the failure modes that each test detects, (3) the Failure Mode Isolation Report demonstrates the system s ability to discriminate between failure modes, (4) the Component Isolation Report demonstrates the system s ability to discriminate between failure modes relative to the components containing the failure modes, (5) the Sensor Sensor Sensitivity Analysis Report shows the diagnostic impact due to loss of sensor information, and (6) the Effect Mapping Report identifies failure modes that result in specified system-level effects.
Software Users Manual (SUM): Extended Testability Analysis (ETA) Tool
NASA Technical Reports Server (NTRS)
Maul, William A.; Fulton, Christopher E.
2011-01-01
This software user manual describes the implementation and use the Extended Testability Analysis (ETA) Tool. The ETA Tool is a software program that augments the analysis and reporting capabilities of a commercial-off-the-shelf (COTS) testability analysis software package called the Testability Engineering And Maintenance System (TEAMS) Designer. An initial diagnostic assessment is performed by the TEAMS Designer software using a qualitative, directed-graph model of the system being analyzed. The ETA Tool utilizes system design information captured within the diagnostic model and testability analysis output from the TEAMS Designer software to create a series of six reports for various system engineering needs. The ETA Tool allows the user to perform additional studies on the testability analysis results by determining the detection sensitivity to the loss of certain sensors or tests. The ETA Tool was developed to support design and development of the NASA Ares I Crew Launch Vehicle. The diagnostic analysis provided by the ETA Tool was proven to be valuable system engineering output that provided consistency in the verification of system engineering requirements. This software user manual provides a description of each output report generated by the ETA Tool. The manual also describes the example diagnostic model and supporting documentation - also provided with the ETA Tool software release package - that were used to generate the reports presented in the manual
Telescope-based cavity for negative ion beam neutralization in future fusion reactors.
Fiorucci, Donatella; Hreibi, Ali; Chaibi, Walid
2018-03-01
In future fusion reactors, heating system efficiency is of the utmost importance. Photo-neutralization substantially increases the neutral beam injector (NBI) efficiency with respect to the foreseen system in the International Thermonuclear Experimental Reactor (ITER) based on a gaseous target. In this paper, we propose a telescope-based configuration to be used in the NBI photo-neutralizer cavity of the demonstration power plant (DEMO) project. This configuration greatly reduces the total length of the cavity, which likely solves overcrowding issues in a fusion reactor environment. Brought to a tabletop experiment, this cavity configuration is tested: a 4 mm beam width is obtained within a ≃1.5 m length cavity. The equivalent cavity g factor is measured to be 0.038(3), thus confirming the cavity stability.
Correlations of catalytic combustor performance parameters
NASA Technical Reports Server (NTRS)
Bulzan, D. L.
1978-01-01
Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.
Method of operating a neutronic reactor
Woods, Wallace K.
1976-05-25
1. A method of operating a reactor having an active portion of a given length between a charging end and a discharging end, a first end region of the reactor extending from the charging end for one-quarter to one-third of said given length, a second end region extending from the discharging end for one-quarter to one-third of said given length, and a middle region extending between said end regions, said method comprising the steps of inserting end to end in the active region through the charging end a first group of bodies filling the middle region and a second group of bodies filling the first end region, irradiating the first and second groups of bodies while in the middle and first end regions, removing the first group from the reactor through the second end region, shifting the second group through the middle region to the second end region, inserting new first and second groups of bodies through the charging face into the middle and first end regions of the reactor, respectively, and irradiating the original second group and the new first and second groups while in the second end, middle, and first end regions, respectively, removing the original second group and the new first group from the reactor through the second end region, shifting the new second group through the middle region to the second end region, and irradiating the new second group again, whereby the first groups of bodies are irradiated only once and the second groups are irradiated twice.
LSI/VLSI design for testability analysis and general approach
NASA Technical Reports Server (NTRS)
Lam, A. Y.
1982-01-01
The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented.
Module generation for self-testing integrated systems
NASA Astrophysics Data System (ADS)
Vanriessen, Ronald Pieter
Hardware used for self test in VLSI (Very Large Scale Integrated) systems is reviewed, and an architecture to control the test hardware in an integrated system is presented. Because of the increase of test times, the use of self test techniques has become practically and economically viable for VLSI systems. Beside the reduction in test times and costs, self test also provides testing at operational speeds. Therefore, a suitable combination of scan path and macrospecific (self) tests is required to reduce test times and costs. An expert system that can be used in a silicon compilation environment is presented. The approach requires a minimum of testability knowledge from a system designer. A user friendly interface was described for specifying and modifying testability requirements by a testability expert. A reason directed backtracking mechanism is used to solve selection failures. Both the hierarchical testable architecture and the design for testability expert system are used in a self test compiler. The definition of a self test compiler was given. A self test compiler is a software tool that selects an appropriate test method for every macro in a design. The hardware to control a macro test will be included in the design automatically. As an example, the integration of the self-test compiler in a silicon compilation system PIRAMID was described. The design of a demonstrator circuit by self test compiler is described. This circuit consists of two self testable macros. Control of the self test hardware is carried out via the test access port of the boundary scan standard.
Refinement of Representation Theorems for Context-Free Languages
NASA Astrophysics Data System (ADS)
Fujioka, Kaoru
In this paper, we obtain some refinement of representation theorems for context-free languages by using Dyck languages, insertion systems, strictly locally testable languages, and morphisms. For instance, we improved the Chomsky-Schützenberger representation theorem and show that each context-free language L can be represented in the form L = h (D ∩ R), where D is a Dyck language, R is a strictly 3-testable language, and h is a morphism. A similar representation for context-free languages can be obtained, using insertion systems of weight (3, 0) and strictly 4-testable languages.
An empirical comparison of a dynamic software testability metric to static cyclomatic complexity
NASA Technical Reports Server (NTRS)
Voas, Jeffrey M.; Miller, Keith W.; Payne, Jeffrey E.
1993-01-01
This paper compares the dynamic testability prediction technique termed 'sensitivity analysis' to the static testability technique termed cyclomatic complexity. The application that we chose in this empirical study is a CASE generated version of a B-737 autoland system. For the B-737 system we analyzed, we isolated those functions that we predict are more prone to hide errors during system/reliability testing. We also analyzed the code with several other well-known static metrics. This paper compares and contrasts the results of sensitivity analysis to the results of the static metrics.
Electric cartridge-type heater for producing a given non-uniform axial power distribution
Clark, D.L.; Kress, T.S.
1975-10-14
An electric cartridge heater is provided to simulate a reactor fuel element for use in safety and thermal-hydraulic tests of model nuclear reactor systems. The electric heat-generating element of the cartridge heater consists of a specifically shaped strip of metal cut with variable width from a flat sheet of the element material. When spirally wrapped around a mandrel, the strip produces a coiled element of the desired length and diameter. The coiled element is particularly characterized by an electrical resistance that varies along its length due to variations in strip width. Thus, the cartridge heater is constructed such that it will produce a more realistic simulation of the actual nonuniform (approximately ''chopped'' cosine) power distribution of a reactor fuel element.
Testability analysis on a hydraulic system in a certain equipment based on simulation model
NASA Astrophysics Data System (ADS)
Zhang, Rui; Cong, Hua; Liu, Yuanhong; Feng, Fuzhou
2018-03-01
Aiming at the problem that the complicated structure and the shortage of fault statistics information in hydraulic systems, a multi value testability analysis method based on simulation model is proposed. Based on the simulation model of AMESim, this method injects the simulated faults and records variation of test parameters ,such as pressure, flow rate, at each test point compared with those under normal conditions .Thus a multi-value fault-test dependency matrix is established. Then the fault detection rate (FDR) and fault isolation rate (FIR) are calculated based on the dependency matrix. Finally the system of testability and fault diagnosis capability are analyzed and evaluated, which can only reach a lower 54%(FDR) and 23%(FIR). In order to improve testability performance of the system,. number and position of the test points are optimized on the system. Results show the proposed test placement scheme can be used to solve the problems that difficulty, inefficiency and high cost in the system maintenance.
Process of .sup.196 Hg enrichment
Grossman, Mark W.; Mellor, Charles E.
1993-01-01
A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).
Process of [sup 196]Hg enrichment
Grossman, M.W.; Mellor, C.E.
1993-04-27
A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).
Nondestrucive analysis of fuel pins
Stepan, I.E.; Allard, N.P.; Suter, C.R.
1972-11-03
Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.
Modelling toehold-mediated RNA strand displacement.
Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A
2015-03-10
We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.
1960-03-22
An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdarek, J.; Pecinka, L.
Leak-before-break (LBB) analysis of WWER type reactors in the Czech and Sloval Republics is summarized in this paper. Legislative bases, required procedures, and validation and verification of procedures are discussed. A list of significant issues identified during the application of LBB analysis is presented. The results of statistical evaluation of crack length characteristics are presented and compared for the WWER 440 Type 230 and 213 reactors and for the WWER 1000 Type 302, 320 and 338 reactors.
2007 Global Demilitarization Symposium and Exhibition
2007-05-17
system! Defines reactive properties ! www.biorex.se Heavy metals • Water soluble • Easily spread • Elements • Not degradable • Hazardous • In high or low...Activated sludge Oat by-products Juniper fibre Sawdust Agro-based fibres Seaweed Grape stalk fibres Marine algae Husk of black gram www.biorex.se Sorbent...Description Reactor Illustration 18 inch diameter reactor 120 inches high Single diameter throughout entire reactor length 19 resistance heaters Alloy 600
Developing Tools to Test the Thermo-Mechanical Models, Examples at Crustal and Upper Mantle Scale
NASA Astrophysics Data System (ADS)
Le Pourhiet, L.; Yamato, P.; Burov, E.; Gurnis, M.
2005-12-01
Testing geodynamical model is never an easy task. Depending on the spatio-temporal scale of the model, different testable predictions are needed and no magic reciepe exist. This contribution first presents different methods that have been used to test themo-mechanical modeling results at upper crustal, lithospheric and upper mantle scale using three geodynamical examples : the Gulf of Corinth (Greece), the Western Alps, and the Sierra Nevada. At short spatio-temporal scale (e.g. Gulf of Corinth). The resolution of the numerical models is usually sufficient to catch the timing and kinematics of the faults precisely enough to be tested by tectono-stratigraphic arguments. In active deforming area, microseismicity can be compared to the effective rheology and P and T axes of the focal mechanism can be compared with local orientation of the major component of the stress tensor. At lithospheric scale the resolution of the models doesn't permit anymore to constrain the models by direct observations (i.e. structural data from field or seismic reflection). Instead, synthetic P-T-t path may be computed and compared to natural ones in term of rate of exhumation for ancient orogens. Topography may also help but on continent it mainly depends on erosion laws that are complicated to constrain. Deeper in the mantle, the only available constrain are long wave length topographic data and tomographic "data". The major problem to overcome now at lithospheric and upper mantle scale, is that the so called "data" results actually from inverse models of the real data and that those inverse model are based on synthetic models. Post processing P and S wave velocities is not sufficient to be able to make testable prediction at upper mantle scale. Instead of that, direct wave propagations model must be computed. This allows checking if the differences between two models constitute a testable prediction or not. On longer term, we may be able to use those synthetic models to reduce the residue in the inversion of elastic wave arrival time
Generating Testable Questions in the Science Classroom: The BDC Model
ERIC Educational Resources Information Center
Tseng, ChingMei; Chen, Shu-Bi Shu-Bi; Chang, Wen-Hua
2015-01-01
Guiding students to generate testable scientific questions is essential in the inquiry classroom, but it is not easy. The purpose of the BDC ("Big Idea, Divergent Thinking, and Convergent Thinking") instructional model is to to scaffold students' inquiry learning. We illustrate the use of this model with an example lesson, designed…
Easily Testable PLA-Based Finite State Machines
1989-03-01
PLATYPUS (20]. Then, justifi- type 1, 4 and 5 can be guaranteed to be testable via cation paths are obtained from the STG using simple logic...next state lines is found, if such a vector par that is gnrt d y the trupt eexists, using PLATYPUS [20]. pair that is generated by the first corrupted
Eye Examination Testability in Children with Autism and in Typical Peers
Coulter, Rachel Anastasia; Bade, Annette; Tea, Yin; Fecho, Gregory; Amster, Deborah; Jenewein, Erin; Rodena, Jacqueline; Lyons, Kara Kelley; Mitchell, G. Lynn; Quint, Nicole; Dunbar, Sandra; Ricamato, Michele; Trocchio, Jennie; Kabat, Bonnie; Garcia, Chantel; Radik, Irina
2015-01-01
ABSTRACT Purpose To compare testability of vision and eye tests in an examination protocol of 9- to 17-year-old patients with autism spectrum disorder (ASD) to typically developing (TD) peers. Methods In a prospective pilot study, 61 children and adolescents (34 with ASD and 27 who were TD) aged 9 to 17 years completed an eye examination protocol including tests of visual acuity, refraction, convergence (eye teaming), stereoacuity (depth perception), ocular motility, and ocular health. Patients who required new refractive correction were retested after wearing their updated spectacle prescription for 1 month. The specialized protocol incorporated visual, sensory, and communication supports. A psychologist determined group status/eligibility using DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision) criteria by review of previous evaluations and parent responses on the Social Communication Questionnaire. Before the examination, parents provided information regarding patients’ sex, race, ethnicity, and, for ASD patients, verbal communication level (nonverbal, uses short words, verbal). Parents indicated whether the patient wore a refractive correction, whether the patient had ever had an eye examination, and the age at the last examination. Chi-square tests compared testability results for TD and ASD groups. Results Typically developing and ASD groups did not differ by age (p = 0.54), sex (p = 0.53), or ethnicity (p = 0.22). Testability was high on most tests (TD, 100%; ASD, 88 to 100%), except for intraocular pressure (IOP), which was reduced for both the ASD (71%) and the TD (89%) patients. Among ASD patients, IOP testability varied greatly with verbal communication level (p < 0.001). Although IOP measurements were completed on all verbal patients, only 37.5% of nonverbal and 44.4% of ASD patients who used short words were successful. Conclusions Patients with ASD can complete most vision and eye tests within an examination protocol. Testability of IOPs is reduced, particularly for nonverbal patients and patients who use short words to communicate. PMID:25415280
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
2016-09-01
This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less
Modelling deformation and fracture of Gilsocarbon graphite subject to service environments
NASA Astrophysics Data System (ADS)
Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.
2018-02-01
Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-01-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
Integral Fast Reactor fuel pin processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levinskas, D.
1993-03-01
This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves.
Liquid level, void fraction, and superheated steam sensor for nuclear reactor cores
Tokarz, Richard D.
1983-01-01
An apparatus for detecting nominal phase conditions of coolant in a reactor vessel comprising one or more lengths of tubing each leading from a location being monitored to a closed outer end exterior of the vessel. Temperature is sensed at the open end of each length of tubing. Pressure within the tubing is also sensed. Both measurements are directed to an analyzer which compares the measured temperature to the known saturated temperature of the coolant at the measured pressure. In this manner, the nominal phase conditions of the coolant are constantly monitored.
A Framework for Evidence-Based Licensure of Adaptive Autonomous Systems
2016-03-01
insights gleaned to DoD. The autonomy community has identified significant challenges associated with test, evaluation verification and validation of...licensure as a test, evaluation, verification , and validation (TEVV) framework that can address these challenges. IDA found that traditional...language requirements to testable (preferably machine testable) specifications • Design of architectures that treat development and verification of
Maestre, Juan P; Rovira, Roger; Gamisans, Xavier; Kinney, Kerry A; Kirisits, Mary Jo; Lafuente, Javier; Gabriel, David
2009-01-01
The diversity and spatial distribution of bacteria in a lab-scale biotrickling filter treating high loads of hydrogen sulfide (H(2)S) were investigated. Diversity and community structure were studied by terminal-restriction fragment length polymorphism (T-RFLP). A 16S rRNA gene clone library was established. Near Full-length 16S rRNA gene sequences were obtained, and clones were clustered into 24 operational taxonomic units (OTUs). Nearly 74% and 26% of the clones were affiliated with the phyla Proteobacteria and Bacteroidetes, respectively. Beta-, epsilon- and gamma-proteobacteria accounted for 15, 9 and 48%, respectively. Around 45% of the sequences retrieved were affiliated to bacteria of the sulfur cycle including Thiothrix spp., Thiobacillus spp. and Sulfurimonas denitrificans. Sequences related to Thiothrix lacustris accounted for a 38%. Rarefaction curve demonstrated that clone library constructed can be sufficient to describe the vast majority of the bacterial diversity of this reactor operating under strict conditions (2,000 ppm(v) of H(2)S). A spatial distribution of bacteria was found along the length of the reactor by means of the T-RFLP technique. Although aerobic species were predominant along the reactor, facultative anaerobes had a major relative abundance in the inlet part of the reactor, where the sulfide to oxygen ratio is higher.
Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.
Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung
2018-02-15
A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.
Avdoshenko, Stanislav M; Das, Atanu; Satija, Rohit; Papoian, Garegin A; Makarov, Dmitrii E
2017-03-21
A long time ago, Kuhn predicted that long polymers should approach a limit where their global motion is controlled by solvent friction alone, with ruggedness of their energy landscapes having no consequences for their dynamics. In contrast, internal friction effects are important for polymers of modest length. Internal friction in proteins, in particular, affects how fast they fold or find their binding targets and, as such, has attracted much recent attention. Here we explore the molecular origins of internal friction in unfolded proteins using atomistic simulations, coarse-grained models and analytic theory. We show that the characteristic internal friction timescale is directly proportional to the timescale of hindered dihedral rotations within the polypeptide chain, with a proportionality coefficient b that is independent of the chain length. Such chain length independence of b provides experimentally testable evidence that internal friction arises from concerted, crankshaft-like dihedral rearrangements. In accord with phenomenological models of internal friction, we find the global reconfiguration timescale of a polypeptide to be the sum of solvent friction and internal friction timescales. At the same time, the time evolution of inter-monomer distances within polypeptides deviates both from the predictions of those models and from a simple, one-dimensional diffusion model.
Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.
1994-01-01
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.
Hopkins, R.J.; Land, J.T.; Misvel, M.C.
1994-06-07
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.
Partial wetting gas-liquid segmented flow microreactor.
Kazemi Oskooei, S Ali; Sinton, David
2010-07-07
A microfluidic reactor strategy for reducing plug-to-plug transport in gas-liquid segmented flow microfluidic reactors is presented. The segmented flow is generated in a wetting portion of the chip that transitions downstream to a partially wetting reaction channel that serves to disconnect the liquid plugs. The resulting residence time distributions show little dependence on channel length, and over 60% narrowing in residence time distribution as compared to an otherwise similar reactor. This partial wetting strategy mitigates a central limitation (plug-to-plug dispersion) while preserving the many attractive features of gas-liquid segmented flow reactors.
Authors’ response: mirror neurons: tests and testability.
Catmur, Caroline; Press, Clare; Cook, Richard; Bird, Geoffrey; Heyes, Cecilia
2014-04-01
Commentators have tended to focus on the conceptual framework of our article, the contrast between genetic and associative accounts of mirror neurons, and to challenge it with additional possibilities rather than empirical data. This makes the empirically focused comments especially valuable. The mirror neuron debate is replete with ideas; what it needs now are system-level theories and careful experiments – tests and testability.
Hutter, E.
1983-08-15
A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.
Stewart, H.B.
1958-12-23
A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.
Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F
2007-02-01
Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.
Artificial Intelligence Applications to Testability.
1984-10-01
general software assistant; examining testability utilization of it should wait a few years until the software assistant is a well defined product ...ago. It provides a single host which satisfies the needs of developers, product developers, and end users . As shown in table 5.10-2, it also provides...follows a trend towards more user -oriented design approaches to interactive computer systems. The implicit goal in this trend is the
Różycki, Bartosz; Cazade, Pierre-André; O'Mahony, Shane; Thompson, Damien; Cieplak, Marek
2017-08-16
Cellulosomes are large multi-protein catalysts produced by various anaerobic microorganisms to efficiently degrade plant cell-wall polysaccharides down into simple sugars. X-ray and physicochemical structural characterisations show that cellulosomes are composed of numerous protein domains that are connected by unstructured polypeptide segments, yet the properties and possible roles of these 'linker' peptides are largely unknown. We have performed coarse-grained and all-atom molecular dynamics computer simulations of a number of cellulosomal linkers of different lengths and compositions. Our data demonstrates that the effective stiffness of the linker peptides, as quantified by the equilibrium fluctuations in the end-to-end distances, depends primarily on the length of the linker and less so on the specific amino acid sequence. The presence of excluded volume - provided by the domains that are connected - dampens the motion of the linker residues and reduces the effective stiffness of the linkers. Simultaneously, the presence of the linkers alters the conformations of the protein domains that are connected. We demonstrate that short, stiff linkers induce significant rearrangements in the folded domains of the mini-cellulosome composed of endoglucanase Cel8A in complex with scaffoldin ScafT (Cel8A-ScafT) of Clostridium thermocellum as well as in a two-cohesin system derived from the scaffoldin ScaB of Acetivibrio cellulolyticus. We give experimentally testable predictions on structural changes in protein domains that depend on the length of linkers.
Harris, Jenine K; Erwin, Paul C; Smith, Carson; Brownson, Ross C
2015-01-01
Evidence-based decision making (EBDM) is the process, in local health departments (LHDs) and other settings, of translating the best available scientific evidence into practice. Local health departments are more likely to be successful if they use evidence-based strategies. However, EBDM and use of evidence-based strategies by LHDs are not widespread. Drawing on diffusion of innovations theory, we sought to understand how LHD directors and program managers perceive the relative advantage, compatibility, simplicity, and testability of EBDM. Directors and managers of programs in chronic disease, environmental health, and infectious disease from LHDs nationwide completed a survey including demographic information and questions about diffusion attributes (advantage, compatibility, simplicity, and testability) related to EBDM. Bivariate inferential tests were used to compare responses between directors and managers and to examine associations between participant characteristics and diffusion attributes. Relative advantage and compatibility scores were high for directors and managers, whereas simplicity and testability scores were lower. Although health department directors and managers of programs in chronic disease generally had higher scores than other groups, there were few significant or large differences between directors and managers across the diffusion attributes. Larger jurisdiction population size was associated with higher relative advantage and compatibility scores for both directors and managers. Overall, directors and managers were in strong agreement on the relative advantage of an LHD using EBDM, with directors in stronger agreement than managers. Perceived relative advantage has been demonstrated to be the most important factor in the rate of innovation adoption, suggesting an opportunity for directors to speed EBDM adoption. However, lower average scores across all groups for simplicity and testability may be hindering EBDM adoption. Recommended strategies for increasing perceived EBDM simplicity and testability are provided.
Device and method for shortening reactor process tubes
Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.
A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Kaufman, H.B.; Weiss, A.A.
1959-08-18
A shadow control device for controlling a nuclear reactor is described. The device comprises a series of hollow neutron-absorbing elements arranged in groups, each element having a cavity for substantially housing an adjoining element and a longitudinal member for commonly supporting the groups of elements. Longitudinal actuation of the longitudinal member distributes the elements along its entire length in which position maximum worth is achieved.
Application of Canonical Effective Methods to Background-Independent Theories
NASA Astrophysics Data System (ADS)
Buyukcam, Umut
Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.
Aerosol reactor production of uniform submicron powders
NASA Technical Reports Server (NTRS)
Flagan, Richard C. (Inventor); Wu, Jin J. (Inventor)
1991-01-01
A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.
Aerosol reactor production of uniform submicron powders
Flagan, Richard C.; Wu, Jin J.
1991-02-19
A method of producing submicron nonagglomerated particles in a single stage reactor includes introducing a reactant or mixture of reactants at one end while varying the temperature along the reactor to initiate reactions at a low rate. As homogeneously small numbers of seed particles generated in the initial section of the reactor progress through the reactor, the reaction is gradually accelerated through programmed increases in temperature along the length of the reactor to promote particle growth by chemical vapor deposition while minimizing agglomerate formation by maintaining a sufficiently low number concentration of particles in the reactor such that coagulation is inhibited within the residence time of particles in the reactor. The maximum temperature and minimum residence time is defined by a combination of temperature and residence time that is necessary to bring the reaction to completion. In one embodiment, electronic grade silane and high purity nitrogen are introduced into the reactor and temperatures of approximately 770.degree. K. to 1550.degree. K. are employed. In another embodiment silane and ammonia are employed at temperatures from 750.degree. K. to 1800.degree. K.
Combustion synthesis continuous flow reactor
Maupin, G.D.; Chick, L.A.; Kurosky, R.P.
1998-01-06
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjon, A.; Iborra, J.L.; Gomez, J.L.
A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less
Combustion synthesis continuous flow reactor
Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.
1998-01-01
The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.
Testability Design Rating System: Testability Handbook. Volume 1
1992-02-01
4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory
Smart substrates: Making multi-chip modules smarter
NASA Astrophysics Data System (ADS)
Wunsch, T. F.; Treece, R. K.
1995-05-01
A novel multi-chip module (MCM) design and manufacturing methodology which utilizes active CMOS circuits in what is normally a passive substrate realizes the 'smart substrate' for use in highly testable, high reliability MCMS. The active devices are used to test the bare substrate, diagnose assembly errors or integrated circuit (IC) failures that require rework, and improve the testability of the final MCM assembly. A static random access memory (SRAM) MCM has been designed and fabricated in Sandia Microelectronics Development Laboratory in order to demonstrate the technical feasibility of this concept and to examine design and manufacturing issues which will ultimately determine the economic viability of this approach. The smart substrate memory MCM represents a first in MCM packaging. At the time the first modules were fabricated, no other company or MCM vendor had incorporated active devices in the substrate to improve manufacturability and testability, and thereby improve MCM reliability and reduce cost.
Design, fabrication, and testing of an external fuel (UO2), full-length thermionic converter
NASA Technical Reports Server (NTRS)
Schock, A.; Raab, B.
1971-01-01
The development of a full-length external-fuel thermionic converter for in-pile testing is described. The development program includes out-of-pile performance testing of the fully fueled-converter, using RF-induction heating, before its installation in the in-pile test capsule. The external-fuel converter is cylindrical in shape, and consists of an inner, centrally cooled collector, and an outer emitter surrounded by nuclear fuel. The term full-length denotes that the converter is long enough to extend over the full height of the reactor core. Thus, the converter is not a scaled-down test device, but a full-scale fuel element of the thermionic reactor. The external-fuel converter concept permits a number of different design options, particularly with respect to the fuel composition and shape, and the collector cooling arrangement. The converter described was developed for the Jet Propulsion Laboratory, and is based on their concept for a thermionic reactor with uninsulated collector cooling as previously described. The converter is double-ended, with through-flow cooling, and with ceramic seals and emitter and collector power take-offs at both ends. The design uses a revolver-shaped tungsten emitter body, with the central emitter hole surrounded by six peripheral fuel holes loaded with cylindrical UO2 pellets.
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
2015-11-04
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Stacked waveguide reactors with gradient embedded scatterers for high-capacity water cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahsan, Syed Saad; Gumus, Abdurrahman; Erickson, David
We present a compact water-cleaning reactor with stacked layers of waveguides containing gradient patterns of optical scatterers that enable uniform light distribution and augmented water-cleaning rates. Previous photocatalytic reactors using immersion, external, or distributive lamps suffer from poor light distribution that impedes scalability. Here, we use an external UV-source to direct photons into stacked waveguide reactors where we scatter the photons uniformly over the length of the waveguide to thin films of TiO 2-catalysts. In conclusion, we also show 4.5 times improvement in activity over uniform scatterer designs, demonstrate a degradation of 67% of the organic dye, and characterize themore » degradation rate constant.« less
Heat exchanger for reactor core and the like
Kaufman, Jay S.; Kissinger, John A.
1986-01-01
A compact bayonet tube type heat exchanger which finds particular application as an auxiliary heat exchanger for transfer of heat from a reactor gas coolant to a secondary fluid medium. The heat exchanger is supported within a vertical cavity in a reactor vessel intersected by a reactor coolant passage at its upper end and having a reactor coolant return duct spaced below the inlet passage. The heat exchanger includes a plurality of relatively short length bayonet type heat exchange tube assemblies adapted to pass a secondary fluid medium therethrough and supported by primary and secondary tube sheets which are releasibly supported in a manner to facilitate removal and inspection of the bayonet tube assemblies from an access area below the heat exchanger. Inner and outer shrouds extend circumferentially of the tube assemblies and cause the reactor coolant to flow downwardly internally of the shrouds over the tube bundle and exit through the lower end of the inner shroud for passage to the return duct in the reactor vessel.
Device and method for shortening reactor process tubes
Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.
1980-01-01
This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.
Systems aspects of a space nuclear reactor power system
NASA Technical Reports Server (NTRS)
Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Bloomfield, H.; Heller, J.
1988-01-01
Various system aspects of a 300-kW nuclear reactor power system for spacecraft have been investigated. Special attention is given to the cases of a reusable OTV and a space-based radar. It is demonstrated that the stowed length of the power system is important to mission design, and that orbital storage for months to years may be needed for missions involving orbital assembly.
Full-length U-xPu-10Zr (x = 0, 8, 19 wt.%) fast reactor fuel test in FFTF
NASA Astrophysics Data System (ADS)
Porter, D. L.; Tsai, Hanchung
2012-08-01
The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt.%) metallic fast reactor test with commercial-length (91.4-cm active fuel-column length) conducted to date. With few remaining test reactors, there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning-of-life (BOL) peak cladding temperature of the hottest pin was 608 °C, cooling to 522 °C at end-of-life (EOL). Selected fuel pins were examined non-destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta-gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3-cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ˜0.7 X/L axial location along the fuel column. This resulted from a higher production of rare-earth fission products at this location and a higher ΔT between fuel center and cladding than at core center, together providing more rare earths at the cladding and more FCCI. This behavior could actually help extend the life of a fuel pin in a "long pin" reactor design to a higher peak fuel burnup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag
2012-04-01
The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less
Chemical Reactions in Turbulent Mixing Flows
1990-11-15
our preliminary experiments suggest that for the range 20,000 < Re < 100.000 the flame length , at fixed stoichiometric mixture ratio, is decreasing...used to identify any changes in the slope of the initial section, the location of the knee which can serve as a definition of flame length , as well...be good. The mixture fraction is nearly the same in the two reactors at x/do = 50, which is nearly the flame length . The agreement aside, it is
NASA Astrophysics Data System (ADS)
Muharam, Y.; Zulkarnain, L. M.; Wirya, A. S.
2018-03-01
The increase in the dimethyl ether yield through methanol dehydration due to a recycle integration to a reaction-distillation system was studied in this research. A one-dimensional phenomenological model of a methanol dehydration reactor and a shortcut model of distillation columns were used to achieve the aim. Simulation results show that 10.7 moles/s of dimethyl ether is produced in a reaction-distillation system with the reactor length being 4 m, the reactor inlet pressure being 18 atm, the reactor inlet temperature being 533 K, the reactor inlet velocity being 0.408 m/s, and the distillation pressure being 8 atm. The methanol conversion is 90% and the dimethyl ether yield is 48%. The integration of the recycle stream to the system increases the dimethyl ether yield by 8%.
Lee, Joy L; DeCamp, Matthew; Dredze, Mark; Chisolm, Margaret S; Berger, Zackary D
2014-10-15
Twitter is home to many health professionals who send messages about a variety of health-related topics. Amid concerns about physicians posting inappropriate content online, more in-depth knowledge about these messages is needed to understand health professionals' behavior on Twitter. Our goal was to characterize the content of Twitter messages, specifically focusing on health professionals and their tweets relating to health. We performed an in-depth content analysis of 700 tweets. Qualitative content analysis was conducted on tweets by health users on Twitter. The primary objective was to describe the general type of content (ie, health-related versus non-health related) on Twitter authored by health professionals and further to describe health-related tweets on the basis of the type of statement made. Specific attention was given to whether a tweet was personal (as opposed to professional) or made a claim that users would expect to be supported by some level of medical evidence (ie, a "testable" claim). A secondary objective was to compare content types among different users, including patients, physicians, nurses, health care organizations, and others. Health-related users are posting a wide range of content on Twitter. Among health-related tweets, 53.2% (184/346) contained a testable claim. Of health-related tweets by providers, 17.6% (61/346) were personal in nature; 61% (59/96) made testable statements. While organizations and businesses use Twitter to promote their services and products, patient advocates are using this tool to share their personal experiences with health. Twitter users in health-related fields tweet about both testable claims and personal experiences. Future work should assess the relationship between testable tweets and the actual level of evidence supporting them, including how Twitter users-especially patients-interpret the content of tweets posted by health providers.
Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis
Buesser, B.; Gröhn, A.J.
2013-01-01
Aerosol reactors are utilized to manufacture nanoparticles in industrially relevant quantities. The development, understanding and scale-up of aerosol reactors can be facilitated with models and computer simulations. This review aims to provide an overview of recent developments of models and simulations and discuss their interconnection in a multiscale approach. A short introduction of the various aerosol reactor types and gas-phase particle dynamics is presented as a background for the later discussion of the models and simulations. Models are presented with decreasing time and length scales in sections on continuum, mesoscale, molecular dynamics and quantum mechanics models. PMID:23729992
Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M
2011-05-01
The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.
Advanced In-Pile Instrumentation for Materials Testing Reactors
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.
2014-08-01
The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.
Implementation of a quantum random number generator based on the optimal clustering of photocounts
NASA Astrophysics Data System (ADS)
Balygin, K. A.; Zaitsev, V. I.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.
2017-10-01
To implement quantum random number generators, it is fundamentally important to have a mathematically provable and experimentally testable process of measurements of a system from which an initial random sequence is generated. This makes sure that randomness indeed has a quantum nature. A quantum random number generator has been implemented with the use of the detection of quasi-single-photon radiation by a silicon photomultiplier (SiPM) matrix, which makes it possible to reliably reach the Poisson statistics of photocounts. The choice and use of the optimal clustering of photocounts for the initial sequence of photodetection events and a method of extraction of a random sequence of 0's and 1's, which is polynomial in the length of the sequence, have made it possible to reach a yield rate of 64 Mbit/s of the output certainly random sequence.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-03-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
Generation of OH Radical by Ultrasonic Irradiation in Batch and Circulatory Reactor
NASA Astrophysics Data System (ADS)
Fang, Yu; Shimizu, Sayaka; Yamamoto, Takuya; Komarov, Sergey
2018-03-01
Ultrasonic technology has been widely investigated in the past as one of the advance oxidation processes to treat wastewater, in this process acoustic cavitation causes generation of OH radical, which play a vital role in improving the treatment efficiency. In this study, OH radical formation rate was measured in batch and circulatory reactor by using Weissler reaction at various ultrasound output power. It is found that the generation rate in batch reactor is higher than that in circulatory reactor at the same output power. The generation rate tended to be slower when output power exceeds 137W. The optimum condition for circulatory reactor was found to be 137W output and 4L/min flow rate. Results of aluminum foil erosion test revealed a strong dependence of cavitation zone length on the ultrasound output power. This is assumed to be one of the reasons why the generation rate of HO radicals becomes slower at higher output power in circulatory reactor.
NASA Astrophysics Data System (ADS)
Myoga, Arata; Iwashita, Ryutaro; Unno, Noriyuki; Satake, Shin-ichi; Taniguchi, Jun; Yuki, Kazuhisa; Seki, Yohji
2018-06-01
Various water purification reactors were constructed using beads of TiO2-coated MEXFLON, which is a fluoropolymer exhibiting a refractive index identical to that of water. The performance of these reactors was evaluated in a recirculation experiment utilizing an aqueous solution of methylene blue. Reactor pipes (length = 150 mm, internal diameter = 10 mm) were made of a fluorinated ethylene polymer with a refractive index of 1.338 and contained 206-bead clusters. A UV lamp was used to irradiate eight reactor pipes surrounding it. The above-mentioned eight bead-packed pipes were connected both in series and in parallel, and the performances of these two reactor types were compared. A pseudo-first-order rate constant of 0.70 h- 1 was obtained for the series connection, whereas the corresponding value for the parallel connection was 1.5 times smaller, confirming the effectiveness of increasing the reaction surface by employing a larger number of beads.
Abu Bakar, Nurul Farhana; Chen, Ai-Hong
2014-02-01
Children with learning disabilities might have difficulties to communicate effectively and give reliable responses as required in various visual function testing procedures. The purpose of this study was to compare the testability of visual acuity using the modified Early Treatment Diabetic Retinopathy Study (ETDRS) and Cambridge Crowding Cards, stereo acuity using Lang Stereo test II and Butterfly stereo tests and colour perception using Colour Vision Test Made Easy (CVTME) and Ishihara's Test for Colour Deficiency (Ishihara Test) between children in mainstream classes and children with learning disabilities in special education classes in government primary schools. A total of 100 primary school children (50 children from mainstream classes and 50 children from special education classes) matched in age were recruited in this cross-sectional comparative study. The testability was determined by the percentage of children who were able to give reliable respond as required by the respective tests. 'Unable to test' was defined as inappropriate response or uncooperative despite best efforts of the screener. The testability of the modified ETDRS, Butterfly stereo test and Ishihara test for respective visual function tests were found lower among children in special education classes ( P < 0.001) but not in Cambridge Crowding Cards, Lang Stereo test II and CVTME. Non verbal or "matching" approaches were found to be more superior in testing visual functions in children with learning disabilities. Modifications of vision testing procedures are essential for children with learning disabilities.
Dries, Jan
2016-01-01
On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the 'nitrate knee' in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.
BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel
2015-09-01
BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on themore » formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.« less
Nuclear radiation problems, unmanned thermionic reactor ion propulsion spacecraft
NASA Technical Reports Server (NTRS)
Mondt, J. F.; Sawyer, C. D.; Nakashima, A.
1972-01-01
A nuclear thermionic reactor as the electric power source for an electric propulsion spacecraft introduces a nuclear radiation environment that affects the spacecraft configuration, the use and location of electrical insulators and the science experiments. The spacecraft is conceptually configured to minimize the nuclear shield weight by: (1) a large length to diameter spacecraft; (2) eliminating piping penetrations through the shield; and (3) using the mercury propellant as gamma shield. Since the alumina material is damaged by the high nuclear radiation environment in the reactor it is desirable to locate the alumina insulator outside the reflector or develop a more radiation resistant insulator.
Testability, Test Automation and Test Driven Development for the Trick Simulation Toolkit
NASA Technical Reports Server (NTRS)
Penn, John
2014-01-01
This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes the approach, and the significant benefits seen, such as fast, thorough and clear test feedback every time code is checked into the code repository. It also describes an approach that encourages development of code that is testable and adaptable.
Laser Boron Fusion Reactor With Picosecond Petawatt Block Ignition
NASA Astrophysics Data System (ADS)
Hora, Heinrich; Eliezer, Shalom; Wang, Jiaxiang; Korn, Georg; Nissim, Noaz; Xu, Yan-Xia; Lalousis, Paraskevas; Kirchhoff, Gotz J.; Miley, George H.
2018-05-01
For developing a laser boron fusion reactor driven by picosecond laser pulses of more than 30 petawatts power, advances are reported about computations for the plasma block generation by the dielectric explosion of the interaction. Further results are about the direct drive ignition mechanism by a single laser pulse without the problems of spherical irradiation. For the sufficiently large stopping lengths of the generated alpha particles in the plasma results from other projects can be used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin; Zhang, Yongfeng; Chakraborty, Pritam
2014-09-01
This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at themore » scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.« less
Abu Bakar, Nurul Farhana; Chen, Ai-Hong
2014-01-01
Context: Children with learning disabilities might have difficulties to communicate effectively and give reliable responses as required in various visual function testing procedures. Aims: The purpose of this study was to compare the testability of visual acuity using the modified Early Treatment Diabetic Retinopathy Study (ETDRS) and Cambridge Crowding Cards, stereo acuity using Lang Stereo test II and Butterfly stereo tests and colour perception using Colour Vision Test Made Easy (CVTME) and Ishihara's Test for Colour Deficiency (Ishihara Test) between children in mainstream classes and children with learning disabilities in special education classes in government primary schools. Materials and Methods: A total of 100 primary school children (50 children from mainstream classes and 50 children from special education classes) matched in age were recruited in this cross-sectional comparative study. The testability was determined by the percentage of children who were able to give reliable respond as required by the respective tests. ‘Unable to test’ was defined as inappropriate response or uncooperative despite best efforts of the screener. Results: The testability of the modified ETDRS, Butterfly stereo test and Ishihara test for respective visual function tests were found lower among children in special education classes (P < 0.001) but not in Cambridge Crowding Cards, Lang Stereo test II and CVTME. Conclusion: Non verbal or “matching” approaches were found to be more superior in testing visual functions in children with learning disabilities. Modifications of vision testing procedures are essential for children with learning disabilities. PMID:24008790
The Human Burst Suppression Electroencephalogram of Deep Hypothermia
Kumaraswamy, Vishakhadatta M.; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S.; Kilbride, Ronan; Brown, Emery N.; Purdon, Patrick L.
2015-01-01
Objective Deep hypothermia induces ‘burst suppression’ (BS), an electroencephalogram pattern with low-voltage ‘suppressions’ alternating with high-voltage ‘bursts’. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. Methods We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Results Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. Conclusions These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. Significance These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. PMID:25649968
The human burst suppression electroencephalogram of deep hypothermia.
Westover, M Brandon; Ching, Shinung; Kumaraswamy, Vishakhadatta M; Akeju, Seun Oluwaseun; Pierce, Eric; Cash, Sydney S; Kilbride, Ronan; Brown, Emery N; Purdon, Patrick L
2015-10-01
Deep hypothermia induces 'burst suppression' (BS), an electroencephalogram pattern with low-voltage 'suppressions' alternating with high-voltage 'bursts'. Current understanding of BS comes mainly from anesthesia studies, while hypothermia-induced BS has received little study. We set out to investigate the electroencephalogram changes induced by cooling the human brain through increasing depths of BS through isoelectricity. We recorded scalp electroencephalograms from eleven patients undergoing deep hypothermia during cardiac surgery with complete circulatory arrest, and analyzed these using methods of spectral analysis. Within patients, the depth of BS systematically depends on the depth of hypothermia, though responses vary between patients except at temperature extremes. With decreasing temperature, burst lengths increase, and burst amplitudes and lengths decrease, while the spectral content of bursts remains constant. These findings support an existing theoretical model in which the common mechanism of burst suppression across diverse etiologies is the cyclical diffuse depletion of metabolic resources, and suggest the new hypothesis of local micro-network dropout to explain decreasing burst amplitudes at lower temperatures. These results pave the way for accurate noninvasive tracking of brain metabolic state during surgical procedures under deep hypothermia, and suggest new testable predictions about the network mechanisms underlying burst suppression. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Multiscale Simulations of ALD in Cross Flow Reactors
Yanguas-Gil, Angel; Libera, Joseph A.; Elam, Jeffrey W.
2014-08-13
In this study, we have developed a multiscale simulation code that allows us to study the impact of surface chemistry on the coating of large area substrates with high surface area/high aspect-ratio features. Our code, based on open-source libraries, takes advantage of the ALD surface chemistry to achieve an extremely efficient two-way coupling between reactor and feature length scales, and it can provide simulated quartz crystal microbalance and mass spectrometry data at any point of the reactor. By combining experimental surface characterization with simple analysis of growth profiles in a tubular cross flow reactor, we are able to extract amore » minimal set of reactions to effectively model the surface chemistry, including the presence of spurious CVD, to evaluate the impact of surface chemistry on the coating of large, high surface area substrates.« less
Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle
NASA Astrophysics Data System (ADS)
Rouf; Su'ud, Zaki
2016-08-01
Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.
Gas phase oxidation downstream of a catalytic combustor
NASA Technical Reports Server (NTRS)
Tien, J. S.; Anderson, D. N.
1979-01-01
Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.
Chen, Pin-Chuan; Park, Daniel S.; You, Byoung-Hee; Kim, Namwon; Park, Taehyun; Soper, Steven A.; Nikitopoulos, Dimitris E.; Murphy, Michael C.
2010-01-01
Arrays of continuous flow thermal reactors were designed, configured, and fabricated in a 96-device (12 × 8) titer-plate format with overall dimensions of 120 mm × 96 mm, with each reactor confined to a 8 mm × 8 mm footprint. To demonstrate the potential, individual 20-cycle (740 nL) and 25-cycle (990 nL) reactors were used to perform the continuous flow polymerase chain reaction (CFPCR) for amplification of DNA fragments of different lengths. Since thermal isolation of the required temperature zones was essential for optimal biochemical reactions, three finite element models, executed with ANSYS (v. 11.0, Canonsburg, PA), were used to characterize the thermal performance and guide system design: (1) a single device to determine the dimensions of the thermal management structures; (2) a single CFPCR device within an 8 mm × 8 mm area to evaluate the integrity of the thermostatic zones; and (3) a single, straight microchannel representing a single loop of the spiral CFPCR device, accounting for all of the heat transfer modes, to determine whether the PCR cocktail was exposed to the proper temperature cycling. In prior work on larger footprint devices, simple grooves between temperature zones provided sufficient thermal resistance between zones. For the small footprint reactor array, 0.4 mm wide and 1.2 mm high fins were necessary within the groove to cool the PCR cocktail efficiently, with a temperature gradient of 15.8°C/mm, as it flowed from the denaturation zone to the renaturation zone. With temperature tolerance bands of ±2°C defined about the nominal temperatures, more than 72.5% of the microchannel length was located within the desired temperature bands. The residence time of the PCR cocktail in each temperature zone decreased and the transition times between zones increased at higher PCR cocktail flow velocities, leading to less time for the amplification reactions. Experiments demonstrated the performance of the CFPCR devices as a function of flow velocity, fragment length, and copy number. A 99 bp DNA fragment was successfully amplified at flow velocities from 1 mm/s to 3 mm/s, requiring from 8.16 minutes for 20 cycles (24.48 s/cycle) to 2.72 minutes for 20 cycles (8.16 s/cycle), respectively. Yield compared to the same amplification sequence performed using a bench top thermal cycler decreased nonlinearly from 73% (at 1 mm/s) to 13% (at 3 mm/s) with shorter residence time at the optimal temperatures for the reactions due to increased flow rate primarily responsible. Six different DNA fragments with lengths between 99 bp and 997 bp were successfully amplified at 1 mm/s. Repeatable, successful amplification of a 99 bp fragment was achieved with a minimum of 8000 copies of the DNA template. This is the first demonstration and characterization of continuous flow thermal reactors within the 8 mm × 8 mm footprint of a 96-well micro-titer plate and is the smallest continuous flow PCR to date. PMID:20871807
Variable flow control for a nuclear reactor control rod
Carleton, Richard D.; Bhattacharyya, Ajay
1978-01-01
A variable flow control for a control rod assembly of a nuclear reactor that depends on turbulent friction though an annulus. The annulus is formed by a piston attached to the control rod drive shaft and a housing or sleeve fitted to the enclosure housing the control rod. As the nuclear fuel is burned up and the need exists for increased reactivity, the control rods are withdrawn, which increases the length of the annulus and decreases the rate of coolant flow through the control rod assembly.
A two-step method for developing a control rod program for boiling water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taner, M.S.; Levine, S.H.; Hsiao, M.Y.
1992-01-01
This paper reports on a two-step method that is established for the generation of a long-term control rod program for boiling water reactors (BWRs). The new method assumes a time-variant target power distribution in core depletion. In the new method, the BWR control rod programming is divided into two steps. In step 1, a sequence of optimal, exposure-dependent Haling power distribution profiles is generated, utilizing the spectral shift concept. In step 2, a set of exposure-dependent control rod patterns is developed by using the Haling profiles generated at step 1 as a target. The new method is implemented in amore » computer program named OCTOPUS. The optimization procedure of OCTOPUS is based on the method of approximation programming, in which the SIMULATE-E code is used to determine the nucleonics characteristics of the reactor core state. In a test in cycle length over a time-invariant, target Haling power distribution case because of a moderate application of spectral shift. No thermal limits of the core were violated. The gain in cycle length could be increased further by broadening the extent of the spetral shift.« less
Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm
NASA Astrophysics Data System (ADS)
Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Tien-Dung, Vu; Kim-Trung, Nguyen
2017-09-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone. The optimal problem requires the maximization of a multivariable objective function which subjects to a number of equality constraints involving the solution of coupled differential equations and also inequality constraints. The solution of an optimization problem can be found through, among others, deterministic or stochastic approaches. The stochastic methods, such as evolutionary algorithm (EA), which is based on natural phenomenon, can overcome the drawbacks such as the requirement of the derivatives of the objective function and/or constraints, or being not efficient in non-differentiable or discontinuous problems. Genetic algorithm (GA) which is a class of EA, exceptionally simple, robust at numerical optimization and is more likely to find a true global optimum. In this study, the genetic algorithm is employed to find the optimum profit of the process. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results showed that the presented numerical method could be applied to model the ammonia synthesis reactor. The optimum economic profit obtained from this study are also compared to the results from the literature. It suggests that the process should be operated at higher temperature of feed gas in catalyst zone and the reactor length is slightly longer.
Khanitchaidecha, Wilawan; Shakya, Maneesha; Nakano, Yuichi; Tanaka, Yasuhiro; Kazama, Futaba
2012-01-01
Higher concentrations of ammonium (NH(4)-N) and iron (Fe) than a standard for drinking are typical characteristics of groundwater in the study area. To remove NH(4)-N and Fe, the drinking water supply system in this study consists of a series of treatment units (i.e., aeration and sedimentation, filtration, and chlorination); however, NH(4)-N in treated water is higher than a standard for drinking (i.e., <1.5 mg NH(4)-N/L). The objective of this study, therefore, is to develop an attached growth system containing a fiber carrier for reducing NH(4)-N concentration within a safe level in the treated water. To avoid the need of air supply for nitrification, groundwater was continuously dripped through the reactor. It made the system simple operation and energy efficient. Effects of reactor design (reactor length and carrier area) were studied to achieve a high NH(4)-N removal efficiency. In accordance with raw groundwater characteristics in the area, effects of low inorganic carbon (IC) and phosphate (PO(4)-P) and high Fe on the removal efficiency were also investigated. The results showed a significant increase in NH(4)-N removal efficiency with reactor length and carrier area. A low IC and PO(4)-P had no effect on NH(4)-N removal, whereas a high Fe decreased the efficiency significantly. The first 550 days operation of a pilot-scale reactor installed in the drinking water supply system showed a gradual increase in the efficiency, reaching to 95-100%, and stability in the performance even with increased flow rate from 210 to 860 L/day. The high efficiency of the present work was indicated because only less than 1 mg of NH(4)-N/L was left over in the treated water.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
Hutter, Ernest
1986-01-01
A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su'ud, Zaki, E-mail: szaki@fi.itba.c.id; Sekimoto, H., E-mail: hsekimot@gmail.com
2014-09-30
Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature canmore » be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.« less
Tailor, Vijay; Glaze, Selina; Unwin, Hilary; Bowman, Richard; Thompson, Graham; Dahlmann-Noor, Annegret
2016-10-01
Children and adults with neurological impairments are often not able to access conventional perimetry; however, information about the visual field is valuable. A new technology, saccadic vector optokinetic perimetry (SVOP), may have improved accessibility, but its accuracy has not been evaluated. We aimed to explore accessibility, testability and accuracy of SVOP in children with neurodisability or isolated visual pathway deficits. Cohort study; recruitment October 2013-May 2014, at children's eye clinics at a tertiary referral centre and a regional Child Development Centre; full orthoptic assessment, SVOP (central 30° of the visual field) and confrontation visual fields (CVF). Group 1: age 1-16 years, neurodisability (n=16), group 2: age 10-16 years, confirmed or suspected visual field defect (n=21); group 2 also completed Goldmann visual field testing (GVFT). Group 1: testability with a full 40-point test protocol is 12.5%; with reduced test protocols, testability is 100%, but plots may be clinically meaningless. Children (44%) and parents/carers (62.5%) find the test easy. SVOP and CVF agree in 50%. Group 2: testability is 62% for the 40-point protocol, and 90.5% for reduced protocols. Corneal changes in childhood glaucoma interfere with SVOP testing. All children and parents/carers find SVOP easy. Overall agreement with GVFT is 64.7%. While SVOP is highly accessible to children, many cannot complete a full 40-point test. Agreement with current standard tests is moderate to poor. Abnormal saccades cause an apparent non-specific visual field defect. In children with glaucoma or nystagmus SVOP calibration often fails. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Investigating the Effect of IMF Path Length on Pitch-angle Scattering of Strahl within 1 au
NASA Astrophysics Data System (ADS)
Graham, G. A.; Rae, I. J.; Owen, C. J.; Walsh, A. P.
2018-03-01
Strahl is the strongly field-aligned, beam-like population of electrons in the solar wind. Strahl width is observed to increase with distance from the Sun, and hence strahl electrons must be subject to in-transit scattering effects. Different energy relations have been both observed and modeled for both strahl width and the width increase with radial distance. Thus, there is much debate regarding what mechanism(s) scatter strahl. In this study, we use a novel method to investigate strahl evolution within 1 au by estimating the distance traveled by the strahl along the interplanetary magnetic field (IMF). We do this by implementing methods developed in previous studies, which make use of the onset of solar energetic particles at ∼1 au. Thus, we are able to obtain average strahl broadening in relation to electron energy and distance, while also taking into account the general effect of IMF topology and adiabatic focusing experienced by strahl. We find that average strahl width broadens with distance traveled along the IMF, which suggests that strahl width is related to the path length taken by the strahl from the Sun to 1 au. We also find that strahl pitch-angle width broadening per au along the IMF length increased with strahl energy, which suggests that the dominant strahl pitch-angle scattering mechanism likely has an inherent energy relation. Our pitch-angle broadening results provide a testable energy relation for the upcoming Parker Solar Probe and Solar Orbiter missions, which are both set to provide unprecedented new observations within 1 au.
Electron emission produced by photointeractions in a slab target
NASA Technical Reports Server (NTRS)
Thinger, B. E.; Dayton, J. A., Jr.
1973-01-01
The current density and energy spectrum of escaping electrons generated in a uniform plane slab target which is being irradiated by the gamma flux field of a nuclear reactor are calculated by using experimental gamma energy transfer coefficients, electron range and energy relations, and escape probability computations. The probability of escape and the average path length of escaping electrons are derived for an isotropic distribution of monoenergetic photons. The method of estimating the flux and energy distribution of electrons emerging from the surface is outlined, and a sample calculation is made for a 0.33-cm-thick tungsten target located next to the core of a nuclear reactor. The results are to be used as a guide in electron beam synthesis of reactor experiments.
Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.
2011-01-01
An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852
Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J
2012-02-01
An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. Copyright © 2011 Wiley Periodicals, Inc.
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons.
Westmark, Cara J
2016-01-01
Soy-based infant formulas have been consumed in the United States since 1909, and currently constitute a significant portion of the infant formula market. There are efforts underway to generate genetically modified soybeans that produce therapeutic agents of interest with the intent to deliver those agents in a soy-based infant formula platform. The threefold purpose of this review article is to first discuss the pros and cons of soy-based infant formulas, then present testable hypotheses to discern the suitability of a soy platform for drug delivery in babies, and finally start a discussion to inform public policy on this important area of infant nutrition.
Bayesian naturalness, simplicity, and testability applied to the B ‑ L MSSM GUT
NASA Astrophysics Data System (ADS)
Fundira, Panashe; Purves, Austin
2018-04-01
Recent years have seen increased use of Bayesian model comparison to quantify notions such as naturalness, simplicity, and testability, especially in the area of supersymmetric model building. After demonstrating that Bayesian model comparison can resolve a paradox that has been raised in the literature concerning the naturalness of the proton mass, we apply Bayesian model comparison to GUTs, an area to which it has not been applied before. We find that the GUTs are substantially favored over the nonunifying puzzle model. Of the GUTs we consider, the B ‑ L MSSM GUT is the most favored, but the MSSM GUT is almost equally favored.
Guimaraes, Sandra; Fernandes, Tiago; Costa, Patrício; Silva, Eduardo
2018-06-01
To determine a normative of tumbling E optotype and its feasibility for visual acuity (VA) assessment in children aged 3-4 years. A cross-sectional study of 1756 children who were invited to participate in a comprehensive non-invasive eye exam. Uncorrected monocular VA with crowded tumbling E with a comprehensive ophthalmological examination were assessed. Testability rates of the whole population and VA of the healthy children for different age subgroups, gender, school type and the order of testing in which the ophthalmological examination was performed were evaluated. The overall testability rate was 95% (92% and 98% for children aged 3 and 4 years, respectively). The mean VA of the first-day assessment (first-VA) and best-VA over 2 days' assessments was 0.14 logMAR (95% CI 0.14 to 0.15) (decimal=0.72, 95% CI 0.71 to 0.73) and 0.13 logMAR (95% CI 0.13 to 0.14) (decimal=0.74, 95% CI 0.73 to 0.74). Analysis with age showed differences between groups in first-VA (F(3,1146)=10.0; p<0.001; η2=0.026) and best-VA (F(3,1155)=8.8; p<0.001; η2=0.022). Our normative was very highly correlated with previous reported HOTV-Amblyopia-Treatment-Study (HOTV-ATS) (first-VA, r=0.97; best-VA, r=0.99), with 0.8 to 0.7 lines consistent overestimation for HOTV-ATS as described in literature. Overall false-positive referral was 1.3%, being specially low regarding anisometropias of ≥2 logMAR lines (0.17%). Interocular difference ≥1 line VA logMAR was not associated with age (p=0.195). This is the first normative for European Caucasian children with single crowded tumbling E in healthy eyes and the largest study comparing 3 and 4 years old testability. Testability rates are higher than found in literature with other optotypes, especially in children aged 3 years, where we found 5%-11% better testability rates. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennifer Lyons; Wade R. Marcum; Mark D. DeHart
2014-01-01
The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less
High aspect reactor vessel and method of use
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Sams, Clarence F. (Inventor); Schwarz, Ray P. (Inventor)
1992-01-01
An improved bio-reactor vessel and system useful for carrying out mammalian cell growth in suspension in a culture media are presented. The main goal of the invention is to grow and maintain cells under a homogeneous distribution under acceptable biochemical environment of gas partial pressures and nutrient levels without introducing direct agitation mechanisms or associated disruptive mechanical forces. The culture chamber rotates to maintain an even distribution of cells in suspension and minimizes the length of a gas diffusion path. The culture chamber design is presented and discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Rand, A.C. Jr.
1961-05-01
An unloading device for individual vertical fuel channels in a nuclear reactor is shown. The channels are arranged in parallel rows and underneath each is a separate supporting block on which the fuel in the channel rests. The blocks are raounted in contiguous rows on an array of parallel pairs of tracks over the bottom of the reactor. Oblong hollows in the blocks form a continuous passageway through the middle of the row of blocks on each pair of tracks. At the end of each passageway is a horizontal grappling rod with a T- or L extension at the end next to the reactor of a length to permit it to pass through the oblong passageway in one position, but when rotated ninety degrees the head will strike one of the longer sides of the oblong hollow of one of the blocks. The grappling rod is actuated by a controllable reciprocating and rotating device which extends it beyond any individual block desired, rotates it and retracts it far enough to permit the fuel in the vertical channel above the block to fall into a handling tank below the reactor.
NASA Astrophysics Data System (ADS)
Kadowaki, Kazunori; Suzuki, Yoshiaki; Ihori, Haruo; Kitani, Isamu
This paper presents experimental results of NO removal from a simulated exhausted-gas using a barrier type reactor with screw electrodes subjected to polarity-reversed voltage pulses. The polarity-reversed pulse was produced by direct grounding of a charged coaxial cable because a traveling wave voltage was negatively reflected at the grounding end with a change in its polarity and then it propagated to the plasma reactor at the opposite end. Influence of cable length on NO removal was studied for two kinds of cable connection, single-connected cable and parallel-connected cables. NO removal ratio for a 50m-long cable was lower than that for much shorter cables in both single and parallel connections when the applied voltage became high. Energy efficiency for NO removal also increased with decreasing the cable length. This was because excess discharges during the voltage oscillation caused by the large stored energy in the long cable resulted in reproduction of NO molecules. Energy efficiency was further improved by changing the discharge mode from dielectric barrier discharge (DBD) to surface discharge (SD). Energy efficiency was up to 110g/kWh with 55% NO removal ratio and 34g/kWh with 100% NO removal ratio by using a single 10m-long cable in SD mode.
A Reactor Development Scenario for the FuZE Sheared-Flow Stabilized Z-pinch
NASA Astrophysics Data System (ADS)
McLean, Harry S.; Higginson, D. P.; Schmidt, A.; Tummel, K. K.; Shumlak, U.; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Golingo, R. P.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.
2017-10-01
We present a conceptual design, scaling calculations, and development path for a pulsed fusion reactor based on a flow-stabilized Z-pinch. Experiments performed on the ZaP and ZaP-HD devices have largely demonstrated the basic physics of sheared-flow stabilization at pinch currents up to 100 kA. Initial experiments on the FuZE device, a high-power upgrade of ZaP, have achieved 20 usec of stability at pinch current 100-200 kA and pinch diameter few mm for a pinch length of 50 cm. Scaling calculations based on a quasi-steady-state power balance show that extending stable duration to 100 usec at a pinch current of 1.5 MA and pinch length of 50 cm, results in a reactor plant Q 5. Future performance milestones are proposed for pinch currents of: 300 kA, where Te and Ti are calculated to exceed 1-2 keV; 700 kA, where DT fusion power would be expected to exceed pinch input power; and 1 MA, where fusion energy per pulse exceeds input energy per pulse. This work funded by USDOE ARPA-E and performed under the auspices of Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-734770.
Self-Powered Neutron Detector Calibration Using a Large Vertical Irradiation Hole of HANARO
NASA Astrophysics Data System (ADS)
Kim, Myong-Seop; Park, Byung-Gun; Kang, Gi-Doo
2018-01-01
A calibration technology of the self-powered neutron detectors (SPNDs) using a large vertical irradiation hole of HANARO is developed. The 40 Rh-SPNDs are installed on the polycarbonate plastic support, and the gold wires with the same length as the effective length of the rhodium emitter of the SPND are also installed to measure the neutron flux on the SPND. They are irradiated at a low reactor power, and the SPND current is measured using the pico-ammeter. The external gamma-rays which affect the SPND current response are analyzed using the Monte Carlo simulation for various irradiation conditions in HANARO. It is confirmed that the effect of the external gamma-rays to the SPND current is dependent on the reactor characteristics, and that it is affected by materials around the detector. The current signals due to the external gamma-rays can be either positive or negative, in that the net flow of the current may be either in the same or the opposite direction as the neutron-induced current by the rhodium emitter. From the above procedure, the effective calibration methodology of multiple SPNDs using the large hole of HANARO is developed. It could be useful for the calibration experiment of the neutron detectors in the research reactors.
Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant
NASA Astrophysics Data System (ADS)
Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.
2017-03-01
The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.
Coolant monitoring apparatus for nuclear reactors
Tokarz, Richard D.
1983-01-01
A system for monitoring coolant conditions within a pressurized vessel. A length of tubing extends outward from the vessel from an open end containing a first line restriction at the location to be monitored. The flowing fluid is cooled and condensed before passing through a second line restriction. Measurement of pressure drop at the second line restriction gives an indication of fluid condition at the first line restriction. Multiple lengths of tubing with open ends at incremental elevations can measure coolant level within the vessel.
Soy-Based Therapeutic Baby Formulas: Testable Hypotheses Regarding the Pros and Cons
Westmark, Cara J.
2017-01-01
Soy-based infant formulas have been consumed in the United States since 1909, and currently constitute a significant portion of the infant formula market. There are efforts underway to generate genetically modified soybeans that produce therapeutic agents of interest with the intent to deliver those agents in a soy-based infant formula platform. The threefold purpose of this review article is to first discuss the pros and cons of soy-based infant formulas, then present testable hypotheses to discern the suitability of a soy platform for drug delivery in babies, and finally start a discussion to inform public policy on this important area of infant nutrition. PMID:28149839
Nanoelectronics and Plasma Processing---The Next 15 Years and Beyond
NASA Astrophysics Data System (ADS)
Lieberman, Michael A.
2006-10-01
The number of transistors per chip has doubled every 2 years since 1959, and this doubling will continue over the next 15 years as transistor sizes shrink. There has been a 25 million-fold decrease in cost for the same performance, and in 15 years a desktop computer will be hundreds of times more powerful than one today. Transistors now have 37 nm (120 atoms) gate lengths and 1.5 nm (5 atoms) gate oxide thicknesses. The smallest working transistor has a 5 nm (17 atoms) gate length, close to the limiting gate length, from simulations, of about 4 nm. Plasma discharges are used to fabricate hundreds of billions of these nano-size transistors on a silicon wafer. These discharges have evolved from a first generation of ``low density'' reactors capacitively driven by a single source, to a second generation of ``high density'' reactors (inductive and electron cyclotron resonance) having two rf power sources, in order to control independently the ion flux and ion bombarding energy to the substrate. A third generation of ``moderate density'' reactors, driven capacitively by one high and one low frequency rf source, is now widely used. Recently, triple frequency and combined dc/dual frequency discharges have been investigated, to further control processing characteristics, such as ion energy distributions, uniformity, and plasma etch selectivities. There are many interesting physics issues associated with these discharges, including stochastic heating of discharge electrons by dual frequency sheaths, nonlinear frequency interactions, powers supplied by the multi-frequency sources, and electromagnetic effects such as standing waves and skin effects. Beyond the 4 nm transistor limit lies a decade of further performance improvements for conventional nanoelectronics, and beyond that, a dimly-seen future of spintronics, single-electron transistors, cross-bar latches, and molecular electronics.
Nuclear reactor spacer grid and ductless core component
Christiansen, David W.; Karnesky, Richard A.
1989-01-01
The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.
Neutron transport analysis for nuclear reactor design
Vujic, Jasmina L.
1993-01-01
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values.
Neutron transport analysis for nuclear reactor design
Vujic, J.L.
1993-11-30
Replacing regular mesh-dependent ray tracing modules in a collision/transfer probability (CTP) code with a ray tracing module based upon combinatorial geometry of a modified geometrical module (GMC) provides a general geometry transfer theory code in two dimensions (2D) for analyzing nuclear reactor design and control. The primary modification of the GMC module involves generation of a fixed inner frame and a rotating outer frame, where the inner frame contains all reactor regions of interest, e.g., part of a reactor assembly, an assembly, or several assemblies, and the outer frame, with a set of parallel equidistant rays (lines) attached to it, rotates around the inner frame. The modified GMC module allows for determining for each parallel ray (line), the intersections with zone boundaries, the path length between the intersections, the total number of zones on a track, the zone and medium numbers, and the intersections with the outer surface, which parameters may be used in the CTP code to calculate collision/transfer probability and cross-section values. 28 figures.
Mitigating energy loss on distribution lines through the allocation of reactors
NASA Astrophysics Data System (ADS)
Miranda, T. M.; Romero, F.; Meffe, A.; Castilho Neto, J.; Abe, L. F. T.; Corradi, F. E.
2018-03-01
This paper presents a methodology for automatic reactors allocation on medium voltage distribution lines to reduce energy loss. In Brazil, some feeders are distinguished by their long lengths and very low load, which results in a high influence of the capacitance of the line on the circuit’s performance, requiring compensation through the installation of reactors. The automatic allocation is accomplished using an optimization meta-heuristic called Global Neighbourhood Algorithm. Given a set of reactor models and a circuit, it outputs an optimal solution in terms of reduction of energy loss. The algorithm is also able to verify if the voltage limits determined by the user are not being violated, besides checking for energy quality. The methodology was implemented in a software tool, which can also show the allocation graphically. A simulation with four real feeders is presented in the paper. The obtained results were able to reduce the energy loss significantly, from 50.56%, in the worst case, to 93.10%, in the best case.
Fluid dynamics of the shock wave reactor
NASA Astrophysics Data System (ADS)
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter dependence of shock recompression in ducts. Distinct variation of the flow Reynolds and Mach numbers and section height allow unique mapping of each of these parameter dependencies. Agreement with a new one-dimensional model is demonstrated, predicting an exponential pressure profile characterized by two key parameters, the maximum pressure recovery and a characteristic length scale. Transition from one to two-dimensional dependence of the length parameter is observed as the duct aspect ratio varies significantly from unity.
Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP
NASA Astrophysics Data System (ADS)
Thind, Harwinder
SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.
Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nietert, R.E.
1983-02-01
The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)
An approach to model reactor core nodalization for deterministic safety analysis
NASA Astrophysics Data System (ADS)
Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd
2016-01-01
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.
An approach to model reactor core nodalization for deterministic safety analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my; Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my
Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to bemore » employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.« less
Reliability/maintainability/testability design for dormancy
NASA Astrophysics Data System (ADS)
Seman, Robert M.; Etzl, Julius M.; Purnell, Arthur W.
1988-05-01
This document has been prepared as a tool for designers of dormant military equipment and systems. The purpose of this handbook is to provide design engineers with Reliability/Maintainability/Testability design guidelines for systems which spend significant portions of their life cycle in a dormant state. The dormant state is defined as a nonoperating mode where a system experiences very little or no electrical stress. The guidelines in this report present design criteria in the following categories: (1) Part Selection and Control; (2) Derating Practices; (3) Equipment/System Packaging; (4) Transportation and Handling; (5) Maintainability Design; (6) Testability Design; (7) Evaluation Methods for In-Plant and Field Evaluation; and (8) Product Performance Agreements. Whereever applicable, design guidelines for operating systems were included with the dormant design guidelines. This was done in an effort to produce design guidelines for a more complete life cycle. Although dormant systems spend significant portions of their life cycle in a nonoperating mode, the designer must design the system for the complete life cycle, including nonoperating as well as operating modes. The guidelines are primarily intended for use in the design of equipment composed of electronic parts and components. However, they can also be used for the design of systems which encompass both electronic and nonelectronic parts, as well as for the modification of existing systems.
Delay test generation for synchronous sequential circuits
NASA Astrophysics Data System (ADS)
Devadas, Srinivas
1989-05-01
We address the problem of generating tests for delay faults in non-scan synchronous sequential circuits. Delay test generation for sequential circuits is a considerably more difficult problem than delay testing of combinational circuits and has received much less attention. In this paper, we present a method for generating test sequences to detect delay faults in sequential circuits using the stuck-at fault sequential test generator STALLION. The method is complete in that it will generate a delay test sequence for a targeted fault given sufficient CPU time, if such a sequence exists. We term faults for which no delay test sequence exists, under out test methodology, sequentially delay redundant. We describe means of eliminating sequential delay redundancies in logic circuits. We present a partial-scan methodology for enhancing the testability of difficult-to-test of untestable sequential circuits, wherein a small number of flip-flops are selected and made controllable/observable. The selection process guarantees the elimination of all sequential delay redundancies. We show that an intimate relationship exists between state assignment and delay testability of a sequential machine. We describe a state assignment algorithm for the synthesis of sequential machines with maximal delay fault testability. Preliminary experimental results using the test generation, partial-scan and synthesis algorithm are presented.
On Heat Loading, Novel Divertors, and Fusion Reactors
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike
2006-10-01
A new magnetic divertor geometry has been proposed to solve reactor heat exhaust problems, which are far more severe for a reactor than for ITER. Using reactor-compatible coils to generate an extra X-point downstream from the main X-point, the new X-divertor (XD) is shown to greatly expand magnetic flux at the divertor plates. As a result, the heat is distributed over a larger area and the line length is greatly increased. The heat-flux limitations of a standard divertor (SD) force a high core radiation fraction (fRad) in most reactor designs that necessarily have a several times higher ratio of heating power to radius (P/R) than ITER. It is argued that such high values of fRad will probably have serious deleterious consequences on the core confinement and stability of a burning plasma. Operation with internal transport barriers (ITBs) does not appear to overcome this problem. By reducing the core fRad within an acceptable range, the X-divertor is shown to substantially lower the core confinement requirement for a fusion reactor. As a bonus, the XD also enables the use of liquid metals by reducing the MHD drag. A possible series of experiments for an efficient and attractive path to practical fusion power is suggested.
Long, E.; Ashley, J.W.
1958-12-16
A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.
The effect of impeller type on silica sol formation in laboratory scale agitated tank
NASA Astrophysics Data System (ADS)
Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul; Dewa, Restu Mulya; Machmudah, Siti; Widiyastuti, Winardi, Sugeng
2016-02-01
The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cation resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.
The effect of impeller type on silica sol formation in laboratory scale agitated tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurtono, Tantular; Suprana, Yayang Ade; Latif, Abdul
2016-02-08
The multiphase polymerization reaction of the silica sol formation produced from silicic acid and potassium hydroxide solutions in laboratory scale agitated tank was studied. The reactor is equipped with four segmental baffle and top entering impeller. The inside diameter of reactor is 9 cm, the baffle width is 0.9 cm, and the impeller position is 3 cm from tank bottom. The diameter of standard six blades Rushton and three blades marine propeller impellers are 5 cm. The silicic acid solution was made from 0.2 volume fraction of water glass (sodium silicate) solution in which the sodium ion was exchanged by hydrogen ion from cationmore » resin. The reactor initially filled with 286 ml silicic acid solution was operated in semi batch mode and the temperature was kept constant in 60 °C. The 3 ml/minute of 1 M potassium hydroxide solution was added into stirred tank and the solution was stirred. The impeller rotational speed was varied from 100 until 700 rpm. This titration was stopped if the solution in stirred tank had reached the pH of 10-The morphology of the silica particles in the silica sol product was analyzed by Scanning Electron Microscope (SEM). The size of silica particles in silica sol was measured based on the SEM image. The silica particle obtained in this research was amorphous particle and the shape was roughly cylinder. The flow field generated by different impeller gave significant effect on particle size and shape. The smallest geometric mean of length and diameter of particle (4.92 µm and 2.42 µm, respectively) was generated in reactor with marine propeller at 600 rpm. The reactor with Rushton impeller produced particle which the geometric mean of length and diameter of particle was 4.85 µm and 2.36 µm, respectively, at 150 rpm.« less
Stereoacuity of preschool children with and without vision disorders.
Ciner, Elise B; Ying, Gui-Shuang; Kulp, Marjean Taylor; Maguire, Maureen G; Quinn, Graham E; Orel-Bixler, Deborah; Cyert, Lynn A; Moore, Bruce; Huang, Jiayan
2014-03-01
To evaluate associations between stereoacuity and presence, type, and severity of vision disorders in Head Start preschool children and determine testability and levels of stereoacuity by age in children without vision disorders. Stereoacuity of children aged 3 to 5 years (n = 2898) participating in the Vision in Preschoolers (VIP) Study was evaluated using the Stereo Smile II test during a comprehensive vision examination. This test uses a two-alternative forced-choice paradigm with four stereoacuity levels (480 to 60 seconds of arc). Children were classified by the presence (n = 871) or absence (n = 2027) of VIP Study-targeted vision disorders (amblyopia, strabismus, significant refractive error, or unexplained reduced visual acuity), including type and severity. Median stereoacuity between groups and among severity levels of vision disorders was compared using Wilcoxon rank sum and Kruskal-Wallis tests. Testability and stereoacuity levels were determined for children without VIP Study-targeted disorders overall and by age. Children with VIP Study-targeted vision disorders had significantly worse median stereoacuity than that of children without vision disorders (120 vs. 60 seconds of arc, p < 0.001). Children with the most severe vision disorders had worse stereoacuity than that of children with milder disorders (median 480 vs. 120 seconds of arc, p < 0.001). Among children without vision disorders, testability was 99.6% overall, increasing with age to 100% for 5-year-olds (p = 0.002). Most of the children without vision disorders (88%) had stereoacuity at the two best disparities (60 or 120 seconds of arc); the percentage increasing with age (82% for 3-, 89% for 4-, and 92% for 5-year-olds; p < 0.001). The presence of any VIP Study-targeted vision disorder was associated with significantly worse stereoacuity in preschool children. Severe vision disorders were more likely associated with poorer stereopsis than milder or no vision disorders. Testability was excellent at all ages. These results support the validity of the Stereo Smile II for assessing random-dot stereoacuity in preschool children.
DeCamp, Matthew; Dredze, Mark; Chisolm, Margaret S; Berger, Zackary D
2014-01-01
Background Twitter is home to many health professionals who send messages about a variety of health-related topics. Amid concerns about physicians posting inappropriate content online, more in-depth knowledge about these messages is needed to understand health professionals’ behavior on Twitter. Objective Our goal was to characterize the content of Twitter messages, specifically focusing on health professionals and their tweets relating to health. Methods We performed an in-depth content analysis of 700 tweets. Qualitative content analysis was conducted on tweets by health users on Twitter. The primary objective was to describe the general type of content (ie, health-related versus non-health related) on Twitter authored by health professionals and further to describe health-related tweets on the basis of the type of statement made. Specific attention was given to whether a tweet was personal (as opposed to professional) or made a claim that users would expect to be supported by some level of medical evidence (ie, a “testable” claim). A secondary objective was to compare content types among different users, including patients, physicians, nurses, health care organizations, and others. Results Health-related users are posting a wide range of content on Twitter. Among health-related tweets, 53.2% (184/346) contained a testable claim. Of health-related tweets by providers, 17.6% (61/346) were personal in nature; 61% (59/96) made testable statements. While organizations and businesses use Twitter to promote their services and products, patient advocates are using this tool to share their personal experiences with health. Conclusions Twitter users in health-related fields tweet about both testable claims and personal experiences. Future work should assess the relationship between testable tweets and the actual level of evidence supporting them, including how Twitter users—especially patients—interpret the content of tweets posted by health providers. PMID:25591063
Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario
2007-01-01
The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.
Treshow, M.
1958-08-19
A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.
Aida, Azrina A.; Kuroda, Kyohei; Yamamoto, Masamitsu; Nakamura, Akinobu; Hatamoto, Masashi; Yamaguchi, Takashi
2015-01-01
We herein analyzed the diversity of microbes involved in anaerobic sulfur oxidation in an upflow anaerobic sludge blanket (UASB) reactor used for treating municipal sewage under low-temperature conditions. Anaerobic sulfur oxidation occurred in the absence of oxygen, with nitrite and nitrate as electron acceptors; however, reactor performance parameters demonstrated that anaerobic conditions were maintained. In order to gain insights into the underlying basis of anaerobic sulfur oxidation, the microbial diversity that exists in the UASB sludge was analyzed comprehensively to determine their identities and contribution to sulfur oxidation. Sludge samples were collected from the UASB reactor over a period of 2 years and used for bacterial 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and next-generation sequencing analyses. T-RFLP and sequencing results both showed that microbial community patterns changed markedly from day 537 onwards. Bacteria belonging to the genus Desulforhabdus within the phylum Proteobacteria and uncultured bacteria within the phylum Fusobacteria were the main groups observed during the period of anaerobic sulfur oxidation. Their abundance correlated with temperature, suggesting that these bacterial groups played roles in anaerobic sulfur oxidation in UASB reactors. PMID:25817585
Automated fuel pin loading system
Christiansen, David W.; Brown, William F.; Steffen, Jim M.
1985-01-01
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.
Automated fuel pin loading system
Christiansen, D.W.; Brown, W.F.; Steffen, J.M.
An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.
Comparison of actinide production in traveling wave and pressurized water reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, A.G.; Smith, T.A.; Deinert, M.R.
The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
Two-phase pressure drop reduction BWR assembly design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dix, G.E.; Crowther, R.L.; Colby, M.J.
1991-05-21
This patent describes an improved fuel assembly for a boiling water reactor. It comprises: a fuel channel; a lower tie plate; an upper tie plate; the lower tie plate and the upper tie plate defining a two-dimensional matrix; at least one water rod the fuel rods being partial length rods.
Aida, Azrina A; Hatamoto, Masashi; Yamamoto, Masamitsu; Ono, Shinya; Nakamura, Akinobu; Takahashi, Masanobu; Yamaguchi, Takashi
2014-11-01
A novel wastewater treatment system consisting of an up-flow anaerobic sludge blanket (UASB) reactor and a down-flow hanging sponge (DHS) reactor with sulfur-redox reaction was developed for treatment of municipal sewage under low-temperature conditions. In the UASB reactor, a novel phenomenon of anaerobic sulfur oxidation occurred in the absence of oxygen, nitrite and nitrate as electron acceptors. The microorganisms involved in anaerobic sulfur oxidation have not been elucidated. Therefore, in this study, we studied the microbial communities existing in the UASB reactor that probably enhanced anaerobic sulfur oxidation. Sludge samples collected from the UASB reactor before and after sulfur oxidation were used for cloning and terminal restriction fragment length polymorphism (T-RFLP) analysis of the 16S rRNA genes of the bacterial and archaeal domains. The microbial community structures of bacteria and archaea indicated that the genus Smithella and uncultured bacteria within the phylum Caldiserica were the dominant bacteria groups. Methanosaeta spp. was the dominant group of the domain archaea. The T-RFLP analysis, which was consistent with the cloning results, also yielded characteristic fingerprints for bacterial communities, whereas the archaeal community structure yielded stable microbial community. From these results, it can be presumed that these major bacteria groups, genus Smithella and uncultured bacteria within the phylum Caldiserica, probably play an important role in sulfur oxidation in UASB reactors. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Skelton, V; Greenway, G M; Haswell, S J; Styring, P; Morgan, D O; Warrington, B H; Wong, S Y
2001-01-01
The stereoselective control of chemical reactions has been achieved by applying electrical fields in a micro reactor generating controlled concentration gradients of the reagent streams. The chemistry based upon well-established Wittig synthesis was carried out in a micro reactor device fabricated in borosilicate glass using photolithographic and wet etching techniques. The selectivity of the cis (Z) to trans (E) isomeric ratio in the product synthesised was controlled by varying the applied voltages to the reagent reservoirs within the micro reactor. This subsequently altered the relative reagent concentrations within the device resulting in Z/E ratios in the range 0.57-5.21. By comparison, a traditional batch method based on the same reaction length, concentration, solvent and stoichiometry (i.e., 1.0:1.5:1.0 reagent ratios) gave a Z/E in the range 2.8-3.0. However, when the stoichiometric ratios were varied up to ten times as much, the Z/E ratios varied in accordance to the micro reactor i.e., when the aldehyde is in excess, the Z isomer predominates whereas when the aldehyde is in low concentrations, the E isomer is the more favourable form. Thus indicating that localised concentration gradients generated by careful flow control due to the diffusion limited non-turbulent mixing regime within a micro reactor, leads to the observed stereo selectivity for the cis and trans isomers.
Multimodal transport and dispersion of organelles in narrow tubular cells
NASA Astrophysics Data System (ADS)
Mogre, Saurabh S.; Koslover, Elena F.
2018-04-01
Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.
NASA Astrophysics Data System (ADS)
Fujii, Hirofumi; Hara, Kazuhiko; Hayashi, Kohei; Kakuno, Hidekazu; Kodama, Hideyo; Nagamine, Kanetada; Sato, Kazuyuki; Sato, Kotaro; Kim, Shin-Hong; Suzuki, Atsuto; Takahashi, Kazuki; Takasaki, Fumihiko
2017-05-01
We have developed a compact muon radiography detector to investigate the status of the nuclear debris in the Fukushima Daiichi Reactors. Our previous observation showed that a large portion of the Unit-1 Reactor fuel had fallen to floor level. The detector must be located underground to further investigate the status of the fallen debris. To investigate the performance of muon radiography in such a situation, we observed 2 m cubic iron blocks located on the surface of the ground through different lengths of ground soil. The iron blocks were imaged and their corresponding iron density was derived successfully.
Wang, Yong , Liu; Wei, [Richland, WA
2012-01-24
The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C.sub.5-C.sub.18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.
The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eccleston, G.W.; Menlove, H.O.; Abhold, M.
1998-12-31
The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less
Pressurized water nuclear reactor system with hot leg vortex mitigator
Lau, Louis K. S.
1990-01-01
A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.
Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng
2015-07-01
The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications
NASA Astrophysics Data System (ADS)
Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.
2018-03-01
A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, L.; Kim, B. K.; Was, G. S.
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
Evolution dependence of vanadium nitride nanoprecipitates on directionality of ion irradiation
Tan, L.; Kim, B. K.; Was, G. S.
2017-09-06
The influence of the directionality of Fe 2+ ion irradiation on the evolution of vanadium nitride platelet–shaped nanoprecipitates at 500 °C was investigated in this paper in a ferritic alloy using transmission electron microscopy. When the ion-irradiation direction was approximately aligned with the initial particle length, particles grew longer and sectioned into shorter lengths at higher doses, resulting in increased particle densities. As ion-irradiation direction deviated from particle-length direction, some particles sectioned lengthwise and then dissolved, resulting in decreased particle densities. Surviving particles were transformed into parallelograms with a different orientation relationship with the matrix. Finally, nanoprecipitate evolution dependence onmore » beam-nanoprecipitate orientation is a process that may be different from reactor irradiation.« less
On testing VLSI chips for the big Viterbi decoder
NASA Technical Reports Server (NTRS)
Hsu, I. S.
1989-01-01
A general technique that can be used in testing very large scale integrated (VLSI) chips for the Big Viterbi Decoder (BVD) system is described. The test technique is divided into functional testing and fault-coverage testing. The purpose of functional testing is to verify that the design works functionally. Functional test vectors are converted from outputs of software simulations which simulate the BVD functionally. Fault-coverage testing is used to detect and, in some cases, to locate faulty components caused by bad fabrication. This type of testing is useful in screening out bad chips. Finally, design for testability, which is included in the BVD VLSI chip design, is described in considerable detail. Both the observability and controllability of a VLSI chip are greatly enhanced by including the design for the testability feature.
Model-Based Testability Assessment and Directed Troubleshooting of Shuttle Wiring Systems
NASA Technical Reports Server (NTRS)
Deb, Somnath; Domagala, Chuck; Shrestha, Roshan; Malepati, Venkatesh; Cavanaugh, Kevin; Patterson-Hine, Ann; Sanderfer, Dwight; Cockrell, Jim; Norvig, Peter (Technical Monitor)
2000-01-01
We have recently completed a pilot study on the Space shuttle wiring system commissioned by the Wiring Integrity Research (WIRe) team at NASA Ames Research Center, As the space shuttle ages, it is experiencing wiring degradation problems including arcing, chaffing insulation breakdown and broken conductors. A systematic and comprehensive test process is required to thoroughly test and quality assure (QA) the wiring systems. The NASA WIRe team recognized the value of a formal model based analysis for risk-assessment and fault coverage analysis. However. wiring systems are complex and involve over 50,000 wire segments. Therefore, NASA commissioned this pilot study with Qualtech Systems. Inc. (QSI) to explore means of automatically extracting high fidelity multi-signal models from wiring information database for use with QSI's Testability Engineering and Maintenance System (TEAMS) tool.
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO,LL; SNYDER,PB; LEONARD,AW
2003-03-01
A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less
Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.
Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer
2014-03-01
The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.
Thomson, Wallace B.
2004-03-16
A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.
Higher-order Fourier analysis over finite fields and applications
NASA Astrophysics Data System (ADS)
Hatami, Pooya
Higher-order Fourier analysis is a powerful tool in the study of problems in additive and extremal combinatorics, for instance the study of arithmetic progressions in primes, where the traditional Fourier analysis comes short. In recent years, higher-order Fourier analysis has found multiple applications in computer science in fields such as property testing and coding theory. In this thesis, we develop new tools within this theory with several new applications such as a characterization theorem in algebraic property testing. One of our main contributions is a strong near-equidistribution result for regular collections of polynomials. The densities of small linear structures in subsets of Abelian groups can be expressed as certain analytic averages involving linear forms. Higher-order Fourier analysis examines such averages by approximating the indicator function of a subset by a function of bounded number of polynomials. Then, to approximate the average, it suffices to know the joint distribution of the polynomials applied to the linear forms. We prove a near-equidistribution theorem that describes these distributions for the group F(n/p) when p is a fixed prime. This fundamental fact was previously known only under various extra assumptions about the linear forms or the field size. We use this near-equidistribution theorem to settle a conjecture of Gowers and Wolf on the true complexity of systems of linear forms. Our next application is towards a characterization of testable algebraic properties. We prove that every locally characterized affine-invariant property of functions f : F(n/p) → R with n∈ N, is testable. In fact, we prove that any such property P is proximity-obliviously testable. More generally, we show that any affine-invariant property that is closed under subspace restrictions and has "bounded complexity" is testable. We also prove that any property that can be described as the property of decomposing into a known structure of low-degree polynomials is locally characterized and is, hence, testable. We discuss several notions of regularity which allow us to deduce algorithmic versions of various regularity lemmas for polynomials by Green and Tao and by Kaufman and Lovett. We show that our algorithmic regularity lemmas for polynomials imply algorithmic versions of several results relying on regularity, such as decoding Reed-Muller codes beyond the list decoding radius (for certain structured errors), and prescribed polynomial decompositions. Finally, motivated by the definition of Gowers norms, we investigate norms defined by different systems of linear forms. We give necessary conditions on the structure of systems of linear forms that define norms. We prove that such norms can be one of only two types, and assuming that |F p| is sufficiently large, they essentially are equivalent to either a Gowers norm or Lp norms.
Gas hydrate dissociation via in situ combustion of methane - lab studies and field tests
NASA Astrophysics Data System (ADS)
Luzi-Helbing, Manja; Schicks, Judith M.; Spangenberg, Erik; Giese, Ronny
2013-04-01
In general, three different methods for gas hydrate production are known: thermal stimulation, pressure reduction, and chemical stimulation. In the framework of the German joint project SUGAR (Submarine Gas Hydrate Reservoirs: exploration, extraction and transport) a countercurrent heat exchange reactor was developed at GFZ which has been designed to decompose gas hydrates in sediments via thermal stimulation. The heat is produced by the catalytic oxidation of methane. The advantage of this method is that the heat is generated in place i.e. within the borehole on the same level like the hydrate-bearing sediments. The system is closed which means that there is no contact between the products or catalyst and the environment. The power output and the temperature of the reactor are regulated via the volume flow of the feed gases air and methane. Therefore, the catalytic reaction runs temperature-controlled, autothermic and safe. So far, a lab-scale prototype of the reactor (outer diameter 40 mm, length 457 mm) was successfully tested in a large reservoir simulator (LARS) which was set up at GFZ. Pt, Pd and Ir on ZrO2 as carrier material turned out to be a robust and reliable catalyst. This work presents results of the latest reactor test for which LARS was filled with sand, and ca. 80 % of the pore space was saturated with methane hydrate. To form hydrates the pore pressure and the confining pressure were kept at 8 MPa and 12 MPa, respectively, and the temperature was set to 278 K. During the start sequence the reactor was ignited at room temperature with hydrogen. By the time the reactor temperature reached ca. 523 K (ca. 15 min after hydrogen ignition) the fuel flow was changed to methane. After 9 hours all temperature sensors which are spatially distributed in LARS showed a temperature above the equilibrium temperature of 282 K at 8 MPa. All in all, the reactor was run for 12 h at 723 K. The data analysis showed that 15 % of the methane gas released from hydrates would have to be used for the catalytic combustion of methane. However, only a part of the hydrate-bound methane gas could be produced during the experiment. The residual gas remained in the pore space. Currently the pilot-scale reactor is developed to a borehole tool with an outer diameter of 90 mm and ca. 5 m length. The first field test is planned for summer 2013 at the continental deep drilling KTB in Windischeschenbach, Germany. In future, we aim for a field test in hydrate-bearing sediments.
The effects of stainless steel radial reflector on core reactivity for small modular reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr
Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less
Linking short-term responses to ecologically-relevant outcomes
Opportunity to participate in the conduct of collaborative integrative lab, field and modelling efforts to characterize molecular-to-organismal level responses and make quantitative testable predictions of population level outcomes
NASA Astrophysics Data System (ADS)
Enayati, Hooman; Braun, Minel J.; Chandy, Abhilash J.
2018-02-01
This paper presents an investigation of flow and heat transfer in a large diameter (6.25 in) cylindrical enclosure heated laterally and containing a porous block that simulates the basket of nutrients used in a crystal growth reactor. The numerical model entails the use of a commercially available computational engine provided by ANSYS FLUENT, and based on a two-dimensional (2D) axisymmetric Reynolds-averaged Navier Stokes (RANS) equations. The porous medium is simulated using the Brinkman-extended model accounting for the Darcy and Forchheimer induced pressure drops. The porous 'plug' effects are analyzed as both its permeability/inertial resistance and locations in the reactor are changed on a parametric basis, while the Rayleigh number (Ra = gβΔTL3/να) is kept constant at 1.98 × 109. Additionally, the effect of different ratios of the hot to the cold zone lengths are investigated as a part of the current effort. For all cases, the velocity and temperature distributions in the reactor are analyzed together with the flow patterns in, and around the porous block. A comprehensive discussion is provided with regard to the effects of the position of the porous block and its permeability on both the immediately adjacent, and far flows. The consequences on the temperature distribution in the enclosure, when the ratio of the length of the hot-to-cold zones is changed, are also analyzed.
Built-in self-test (BIST) techniques for millimeter wave CMOS transceivers
NASA Astrophysics Data System (ADS)
Mahzabeen, Tabassum
The seamless integration of complementary metal oxide semiconductor (CMOS) transceivers with a digital CMOS process enhances on-chip testability, thus reducing production and testing costs. Built in self testability also improves yield by offering on-chip compensation. This work focuses on built in self test techniques for CMOS based millimeter wave (mm-wave) transceivers. Built-in-self-test (BIST) using the loopback method is one cost-effective method for testing these transceivers. Since the loopback switch is always present during the normal operation of the transceiver, the requirement of the switch is different than for a conventional switch. The switch needs to have high isolation and high impedance during its OFF period. Two 80 GHz single pole single throw (SPST) switches have been designed, fabricated in standard CMOS process, and measured to connect the loopback path for BIST applications. The loopback switches in this work provide the required criteria for loopback BIST. A stand alone 80 GHz low noise amplifier (LNA) and the same LNA integrated with one of the loopback switches have been fabricated, and measured to observe the difference in performance when the loopback switch is present. Besides the loopback switch, substrate leakage also forms a path between the transmitter and receiver. Substrate leakage has been characterized as a function of distance between the transmitter and receiver for consideration in using the BIST method. A BIST algorithm has been developed to estimate the process variation in device sizes by probing a low frequency ring oscillator to estimate the device variation and map this variation to the 80 GHz LNA. Probing a low frequency circuit is cheaper compared to the probing of a millimeter wave circuit and reduces the testing costs. The performance of the LNA degrades due to variation in device size. Once the shift in the device size is being estimated (from the ring oscillator's shifted frequency), the LNA's performance can be recovered using several methods; for example, using tunable transmission line lengths in the amplifier or using a variable supply voltage. This concept of estimating process variation has been demonstrated in Agilent Design System (ADS).
Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine
NASA Astrophysics Data System (ADS)
Widargo, Reza; Anghaie, Samim
1999-01-01
The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight ratio.
Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, C.L.; Hesson, G.M.; Pilger, J.P.
1993-09-01
This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuelmore » bundle is cooled.« less
Monitoring the startup of a wet detention pond equipped with sand filters and sorption filters.
Vollertsen, J; Lange, K H; Pedersen, J; Hallager, P; Bruus, A; Laustsen, A; Bundesen, V W; Brix, H; Nielsen, A H; Nielsen, N H; Wium-Andersen, T; Hvitved-Jacobsen, T
2009-01-01
The startup of a wet retention pond designed for extended stormwater treatment was monitored by more than one year of continual measurement of hydraulic parameters, nutrients and quality parameters in the pond itself (pH, temperature, dissolved oxygen, turbidity). The data revealed that photosynthesis played an important role for dissolved oxygen and pH for most of the year. Another important observation was that the pond behaved more like a completely mixed reactor than like a plug flow reactor--even though the length to width ratio was as high as 4.5:1. The pond was equipped with sand filters and sorption filters whereby very good nutrient removal efficiencies were achieved.
A SEU-Hard Flip-Flop for Antifuse FPGAs
NASA Technical Reports Server (NTRS)
Katz, R.; Wang, J. J.; McCollum, J.; Cronquist, B.; Chan, R.; Yu, D.; Kleyner, I.; Day, John H. (Technical Monitor)
2001-01-01
A single event upset (SEU)-hardened flip-flop has been designed and developed for antifuse Field Programmable Gate Array (FPGA) application. Design and application issues, testability, test methods, simulation, and results are discussed.
The changing features of the body-mind problem.
Agassi, Joseph
2007-01-01
The body-mind problem invites scientific study, since mental events are repeated and repeatable and invite testable explanations. They seemed troublesome because of the classical theory of substance that failed to solve its own central problems. These are soluble with the aid of the theory of the laws of nature, particularly in its emergentist version [Bunge, M., 1980. The Body-mind Problem, Pergamon, Oxford] that invites refutable explanations [Popper, K.R., 1959. The Logic of Scientific Discovery, Hutchinson, London]. The view of mental properties as emergent is a modification of the two chief classical views, materialism and dualism. As this view invites testable explanations of events of the inner world, it is better than the quasi-behaviorist view of self-awareness as computer-style self-monitoring [Minsky, M., Laske, O., 1992. A conversation with Marvin Minsky. AI Magazine 13 (3), 31-45].
Testability of evolutionary game dynamics based on experimental economics data
NASA Astrophysics Data System (ADS)
Wang, Yijia; Chen, Xiaojie; Wang, Zhijian
2017-11-01
Understanding the dynamic processes of a real game system requires an appropriate dynamics model, and rigorously testing a dynamics model is nontrivial. In our methodological research, we develop an approach to testing the validity of game dynamics models that considers the dynamic patterns of angular momentum and speed as measurement variables. Using Rock-Paper-Scissors (RPS) games as an example, we illustrate the geometric patterns in the experiment data. We then derive the related theoretical patterns from a series of typical dynamics models. By testing the goodness-of-fit between the experimental and theoretical patterns, we show that the validity of these models can be evaluated quantitatively. Our approach establishes a link between dynamics models and experimental systems, which is, to the best of our knowledge, the most effective and rigorous strategy for ascertaining the testability of evolutionary game dynamics models.
Design for testability and diagnosis at the system-level
NASA Technical Reports Server (NTRS)
Simpson, William R.; Sheppard, John W.
1993-01-01
The growing complexity of full-scale systems has surpassed the capabilities of most simulation software to provide detailed models or gate-level failure analyses. The process of system-level diagnosis approaches the fault-isolation problem in a manner that differs significantly from the traditional and exhaustive failure mode search. System-level diagnosis is based on a functional representation of the system. For example, one can exercise one portion of a radar algorithm (the Fast Fourier Transform (FFT) function) by injecting several standard input patterns and comparing the results to standardized output results. An anomalous output would point to one of several items (including the FFT circuit) without specifying the gate or failure mode. For system-level repair, identifying an anomalous chip is sufficient. We describe here an information theoretic and dependency modeling approach that discards much of the detailed physical knowledge about the system and analyzes its information flow and functional interrelationships. The approach relies on group and flow associations and, as such, is hierarchical. Its hierarchical nature allows the approach to be applicable to any level of complexity and to any repair level. This approach has been incorporated in a product called STAMP (System Testability and Maintenance Program) which was developed and refined through more than 10 years of field-level applications to complex system diagnosis. The results have been outstanding, even spectacular in some cases. In this paper we describe system-level testability, system-level diagnoses, and the STAMP analysis approach, as well as a few STAMP applications.
Fouty, Nicholas J.; Carrasco, Juan C.; Lima, Fernando V.
2017-01-01
Due to the recent increase of natural gas production in the U.S., utilizing natural gas for higher-value chemicals has become imperative. Direct methane aromatization (DMA) is a promising process used to convert methane to benzene, but it is limited by low conversion of methane and rapid catalyst deactivation by coking. Past work has shown that membrane separation of the hydrogen produced in the DMA reactions can dramatically increase the methane conversion by shifting the equilibrium toward the products, but it also increases coke production. Oxygen introduction into the system has been shown to inhibit this coke production while not inhibiting the benzene production. This paper introduces a novel mathematical model and design to employ both methods in a multifunctional membrane reactor to push the DMA process into further viability. Multifunctional membrane reactors, in this case, are reactors where two different separations occur using two differently selective membranes, on which no systems studies have been found. The proposed multifunctional membrane design incorporates a hydrogen-selective membrane on the outer wall of the reaction zone, and an inner tube filled with airflow surrounded by an oxygen-selective membrane in the middle of the reactor. The design is shown to increase conversion via hydrogen removal by around 100%, and decrease coke production via oxygen addition by 10% when compared to a tubular reactor without any membranes. Optimization studies are performed to determine the best reactor design based on methane conversion, along with coke and benzene production. The obtained optimal design considers a small reactor (length = 25 cm, diameter of reaction tube = 0.7 cm) to subvert coke production and consumption of the product benzene as well as a high permeance (0.01 mol/s·m2·atm1/4) through the hydrogen-permeable membrane. This modeling and design approach sets the stage for guiding further development of multifunctional membrane reactor models and designs for natural gas utilization and other chemical reaction systems. PMID:28850068
Dynamics of microbial communities in untreated and autoclaved food waste anaerobic digesters.
Blasco, Lucia; Kahala, Minna; Tampio, Elina; Ervasti, Satu; Paavola, Teija; Rintala, Jukka; Joutsjoki, Vesa
2014-10-01
This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sources, Sinks, and Model Accuracy
Spatial demographic models are a necessary tool for understanding how to manage landscapes sustainably for animal populations. These models, therefore, must offer precise and testable predications about animal population dynamics and how animal demographic parameters respond to ...
Advanced applications of cosmic-ray muon radiography
NASA Astrophysics Data System (ADS)
Perry, John
The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged with this technique: aluminum, concrete, steel, lead, and uranium. Provided that there is sufficient mass, U-235 could be differentiated from U-238 through muon induced fission.
Sampling solution traces for the problem of sorting permutations by signed reversals
2012-01-01
Background Traditional algorithms to solve the problem of sorting by signed reversals output just one optimal solution while the space of all optimal solutions can be huge. A so-called trace represents a group of solutions which share the same set of reversals that must be applied to sort the original permutation following a partial ordering. By using traces, we therefore can represent the set of optimal solutions in a more compact way. Algorithms for enumerating the complete set of traces of solutions were developed. However, due to their exponential complexity, their practical use is limited to small permutations. A partial enumeration of traces is a sampling of the complete set of traces and can be an alternative for the study of distinct evolutionary scenarios of big permutations. Ideally, the sampling should be done uniformly from the space of all optimal solutions. This is however conjectured to be ♯P-complete. Results We propose and evaluate three algorithms for producing a sampling of the complete set of traces that instead can be shown in practice to preserve some of the characteristics of the space of all solutions. The first algorithm (RA) performs the construction of traces through a random selection of reversals on the list of optimal 1-sequences. The second algorithm (DFALT) consists in a slight modification of an algorithm that performs the complete enumeration of traces. Finally, the third algorithm (SWA) is based on a sliding window strategy to improve the enumeration of traces. All proposed algorithms were able to enumerate traces for permutations with up to 200 elements. Conclusions We analysed the distribution of the enumerated traces with respect to their height and average reversal length. Various works indicate that the reversal length can be an important aspect in genome rearrangements. The algorithms RA and SWA show a tendency to lose traces with high average reversal length. Such traces are however rare, and qualitatively our results show that, for testable-sized permutations, the algorithms DFALT and SWA produce distributions which approximate the reversal length distributions observed with a complete enumeration of the set of traces. PMID:22704580
Opportunities for Materials Science and Biological Research at the OPAL Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, S. J.
Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research,more » radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.« less
Novel electrode structure in a DBD reactor applied to the degradation of phenol in aqueous solution
NASA Astrophysics Data System (ADS)
Mercado-Cabrera, Antonio; Peña-Eguiluz, Rosendo; López-Callejas, Régulo; Jaramillo-Sierra, Bethsabet; Valencia-Alvarado, Raúl; Rodríguez-Méndez, Benjamín; Muñoz-Castro, Arturo E.
2017-07-01
Phenol degradation experimental results are presented in a similar wastewater aqueous solution using a non-thermal plasma reactor in a coaxial dielectric barrier discharge. The novelty of the work is that one of the electrodes of the reactor has the shape of a hollow screw which shows an enhanced efficiency compared with a traditional smooth structure. The experimentation was carried out with gas mixtures of 90% Ar-10% O2, 80% Ar-20% O2 and 0% Ar-100% O2. After one hour of treatment the removal efficiency was 76%, 92%, and 97%, respectively, assessed with a gas chromatographic mass spectrometry technique. For both reactors used, the ozone concentration was measured. The screw electrode required less energy, for all gas mixtures, than the smooth electrode, to maintain the same ozone concentration. On the other hand, it was also observed that in both electrodes the electrical conductivity of the solution changed slightly from ˜0.0115 S m-1 up to ˜0.0430 S m-1 after one hour of treatment. The advantages of using the hollow screw electrode structure compared with the smooth electrode were: (1) lower typical power consumption, (2) the generation of a uniform plasma throughout the reactor benefiting the phenol degradation, (3) a relatively lower temperature of the aqueous solution during the process, and (4) the plasma generation length is larger.
Corrosion evaluation of N reactor pressure tube 1756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larrick, A.P.
1967-10-26
N Reactor Zircaloy-2 pressure tube No. 1756 and its associated ASTM A234 steel nozzles were examined for corrosion and hydrogen content after approximately 300 days exposure in-reactor. Visual examination showed tight, adherent, dull black oxides in the pressure tube except for scratching in the bottom due to sliding of fuel and fuel spacers through the tube during charge- discharge operations. Several fretted areas up to $sup 3$/$sub 8$ inch wide by $sup 1$/$sub 2$ inch long by up to 13 mils deep were observed at the downstream end--these pits were caused by vibration of the fuel spacers against the pressuremore » tube. Hydrogen levels were fairly constant along the tube length with an average of about 19 +- 6 ppm except at one location. At approximately 30 inches from the front end of the tube a sharp peak to a maximum of 58 ppm hydrogen occurred. The reason for the peak is unknown. (auth)« less
CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, Sandor; Legradi, Gabor; Aszodi, Attila
2006-07-01
From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960more » mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)« less
Gandhi, Varun; Roberts, Philip J W; Stoesser, Thorsten; Wright, Harold; Kim, Jae-Hong
2011-07-01
Three-dimensional laser-induced fluorescence (3DLIF) was applied to visualize and quantitatively analyze mixing in a lab-scale UV reactor consisting of one lamp sleeve placed perpendicular to flow. The recirculation zone and the von Karman vortex shedding that commonly occur in flows around bluff bodies were successfully visualized. Multiple flow paths were analyzed by injecting the dye at various heights with respect to the lamp sleeve. A major difference in these pathways was the amount of dye that traveled close to the sleeve, i.e., a zone of higher residence time and higher UV exposure. Paths away from the center height had higher velocities and hence minimal influence by the presence of sleeve. Approach length was also characterized in order to increase the probability of microbes entering the region around the UV lamp. The 3DLIF technique developed in this study is expected to provide new insight on UV dose delivery useful for the design and optimization of UV reactors. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Larson, V. R.; Gunn, S. V.; Lee, J. C.
1975-01-01
The paper describes a helium heater to be used to conduct non-nuclear demonstration tests of the complete power conversion loop for a direct-cycle gas-cooled nuclear reactor power plant. Requirements for the heater include: heating the helium to a 1500 F temperature, operating at a 1000 psia helium pressure, providing a thermal response capability and helium volume similar to that of the nuclear reactor, and a total heater system helium pressure drop of not more than 15 psi. The unique compact heater system design proposed consists of 18 heater modules; air preheaters, compressors, and compressor drive systems; an integral control system; piping; and auxiliary equipment. The heater modules incorporate the dual-concentric-tube 'Variflux' heat exchanger design which provides a controlled heat flux along the entire length of the tube element. The heater design as proposed will meet all system requirements. The heater uses pressurized combustion (50 psia) to provide intensive heat transfer, and to minimize furnace volume and heat storage mass.
Interpretation of the Near-IR Spectra of the Kuiper Belt Object
NASA Technical Reports Server (NTRS)
Eluszkiewicz, Janusz; Cady-Pereira, Karen; Brown, Michael E.; Stansberry, John A.
2007-01-01
Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.
Work-Centered Technology Development (WTD)
2005-03-01
theoretical, testable, inductive, and repeatable foundations of science. o Theoretical foundations include notions such as statistical versus analytical...Human Factors and Ergonomics Society, 263-267. 179 Eggleston, R. G. (2005). Coursebook : Work-Centered Design (WCD). AFRL/HECS WCD course training
Writing testable software requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knirk, D.
1997-11-01
This tutorial identifies common problems in analyzing requirements in the problem and constructing a written specification of what the software is to do. It deals with two main problem areas: identifying and describing problem requirements, and analyzing and describing behavior specifications.
All pure bipartite entangled states can be self-tested
Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio
2017-01-01
Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states. PMID:28548093
All pure bipartite entangled states can be self-tested
NASA Astrophysics Data System (ADS)
Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio
2017-05-01
Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.
All pure bipartite entangled states can be self-tested.
Coladangelo, Andrea; Goh, Koon Tong; Scarani, Valerio
2017-05-26
Quantum technologies promise advantages over their classical counterparts in the fields of computation, security and sensing. It is thus desirable that classical users are able to obtain guarantees on quantum devices, even without any knowledge of their inner workings. That such classical certification is possible at all is remarkable: it is a consequence of the violation of Bell inequalities by entangled quantum systems. Device-independent self-testing refers to the most complete such certification: it enables a classical user to uniquely identify the quantum state shared by uncharacterized devices by simply inspecting the correlations of measurement outcomes. Self-testing was first demonstrated for the singlet state and a few other examples of self-testable states were reported in recent years. Here, we address the long-standing open question of whether every pure bipartite entangled state is self-testable. We answer it affirmatively by providing explicit self-testing correlations for all such states.
Lee, Sun Hee; Kim, Jae Hee; Chung, Chung-Wook; Kim, Do Young; Rhee, Young Ha
2018-04-01
Analysis of mixed microbial populations responsible for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) under periodic substrate feeding in a sequencing batch reactor (SBR) was conducted. Regardless of activated sludge samples and the different MCL alkanoic acids used as the sole external carbon substrate, denaturing gradient gel electrophoresis analysis indicated that Pseudomonas aeruginosa was the dominant bacterium enriched during the SBR process. Several P. aeruginosa strains were isolated from the enriched activated sludge samples. The isolates were subdivided into two groups, one that produced only MCL-PHAs and another that produced both MCL- and short-chain-length PHAs. The SBR periodic feeding experiments with five representative MCL-PHA-producing Pseudomonas species revealed that P. aeruginosa has an advantage over other species that enables it to become dominant in the bacterial community.
Mesoscale modeling of solute precipitation and radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less
NASA Astrophysics Data System (ADS)
Bushuev, A. V.; Kozhin, A. F.; Aleeva, T. B.; Zubarev, V. N.; Petrova, E. V.; Smirnov, V. E.
2016-12-01
An active neutron method for measuring the residual mass of 235U in spent fuel assemblies (FAs) of the IRT MEPhI research reactor is presented. The special measuring stand design and uniform irradiation of the fuel with neutrons along the entire length of the active part of the FA provide high accuracy of determination of the residual 235U content. AmLi neutron sources yield a higher effect/background ratio than other types of sources and do not induce the fission of 238U. The proposed method of transfer of the isotope source in accordance with a given algorithm may be used in experiments where the studied object needs to be irradiated with a uniform fluence.
Sze, Morgan C.; Schindler, Harvey D.
1982-01-01
Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.
Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian
2018-03-15
The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.
Sang, Nguyen Nhu; Soda, Satoshi; Inoue, Daisuke; Sei, Kazunari; Ike, Michihiko
2009-10-01
Performance and microbial population dynamics in landfill bioreactors were investigated in laboratory experiments. Three reactors were operated without aeration (control reactor, CR), with cyclic 6-h aeration and 6-h non-aeration (intermittently aerated reactor, IAR), and with continuous aeration (continuously aerated reactor, CAR). Each reactor was loaded with high-organic solid waste. The performance of IAR was highest among the reactors up to day 90. The respective solid weight, organic matter content, and waste volume on day 90 in the CR, IAR, and CAR were 50.9, 39.1, and 47.5%; 46.5, 29.3 and 35.0%; and 69, 38, and 53% of the initial values. Organic carbon and nitrogen compounds in leachate in the IAR and the CAR showed significant decreases in comparison to those in the CR. The most probable number (MPN) values of fungal 18S rDNA in the CAR and the IAR were higher than those in the CR. Terminal restriction fragment length polymorphism analysis showed that unique and diverse eubacterial and archaeal communities were formed in the IAR. The intermittent aeration strategy was favorable for initiation of solubilization of organic matter by the aerobic fungal populations and the reduction of the acid formation phase. Then the anaerobic H(2)-producing bacteria Clostridium became dominant in the IAR. Sulfate-reducing bacteria, which cannot use acetate/sulfate but which instead use various organics/sulfate as the electron donor/acceptor were also dominant in the IAR. Consequently, Methanosarcinales, which are acetate-utilizing methanogens, became the dominant archaea in the IAR, where high methane production was observed.
Pediatric Amblyopia Risk Investigation Study (PARIS).
Savage, Howard I; Lee, Hester H; Zaetta, Deneen; Olszowy, Ronald; Hamburger, Ellie; Weissman, Mark; Frick, Kevin
2005-12-01
To assess the learning curve, testability, and reliability of vision screening modalities administered by pediatric health extenders. Prospective masked clinical trial. Two hundred subjects aged 3 to 6 underwent timed screening for amblyopia by physician extenders, including LEA visual acuity (LEA), stereopsis (RDE), and noncycloplegic autorefraction (NCAR). Patients returned for a comprehensive diagnostic eye examination performed by an ophthalmologist or optometrist. Average screening time was 5.4 +/- 1.6 minutes (LEA), 1.9 +/- 0.9 minutes (RDE), and 1.7 +/- 1.0 minutes (NCAR). Test time for NCAR and RDE fell by 40% during the study period. Overall testability was 92% (LEA), 96% (RDE), and 94% (NCAR). Testability among 3-year-olds was 73% (LEA), 96% (RDE), and 89% (NCAR). Reliability of LEA was moderate (r = .59). Reliability of NCAR was high for astigmatism (Cyl) (r = .89), moderate for spherical equivalent (SE) (r = .66), and low for anisometropia (ANISO) (r = .38). Correlation of cycloplegic autorefraction (CAR) with gold standard cycloplegic retinoscopic refraction (CRR) was very high for SE (.85), CYL (.77), and moderate for ANISO (.48). With NCAR, physician extenders can quickly and reliably detect astigmatism and spherical refractive error in one-third the time it takes to obtain visual acuity. LEA has a lower initial cost, but is time consuming, moderately reliable, and more difficult for 3-year-olds. Shorter examination time and higher reliability may make NCAR a more efficient screening tool for refractive amblyopia in younger children. Future study is needed to determine the sensitivity and specificity of NCAR and other screening methods in detecting amblyopia and amblyopia risk factors.
Spallina, Vincenzo; Melchiori, Tommaso; Gallucci, Fausto; van Sint Annaland, Martin
2015-03-18
The integration of mixed ionic electronic conducting (MIEC) membranes for air separation in a small-to-medium scale unit for H2 production (in the range of 650-850 Nm3/h) via auto-thermal reforming of methane has been investigated in the present study. Membranes based on mixed ionic electronic conducting oxides such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) give sufficiently high oxygen fluxes at temperatures above 800 °C with high purity (higher than 99%). Experimental results of membrane permeation tests are presented and used for the reactor design with a detailed reactor model. The assessment of the H2 plant has been carried out for different operating conditions and reactor geometry and an energy analysis has been carried out with the flowsheeting software Aspen Plus, including also the turbomachines required for a proper thermal integration. A micro-gas turbine is integrated in the system in order to supply part of the electricity required in the system. The analysis of the system shows that the reforming efficiency is in the range of 62%-70% in the case where the temperature at the auto-thermal reforming membrane reactor (ATR-MR) is equal to 900 °C. When the electric consumption and the thermal export are included the efficiency of the plant approaches 74%-78%. The design of the reactor has been carried out using a reactor model linked to the Aspen flowsheet and the results show that with a larger reactor volume the performance of the system can be improved, especially because of the reduced electric consumption. From this analysis it has been found that for a production of about 790 Nm3/h pure H2, a reactor with a diameter of 1 m and length of 1.8 m with about 1500 membranes of 2 cm diameter is required.
KAnalyze: a fast versatile pipelined K-mer toolkit
Audano, Peter; Vannberg, Fredrik
2014-01-01
Motivation: Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. Results: As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. Availability and implementation: KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/ Contact: fredrik.vannberg@biology.gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24642064
KAnalyze: a fast versatile pipelined k-mer toolkit.
Audano, Peter; Vannberg, Fredrik
2014-07-15
Converting nucleotide sequences into short overlapping fragments of uniform length, k-mers, is a common step in many bioinformatics applications. While existing software packages count k-mers, few are optimized for speed, offer an application programming interface (API), a graphical interface or contain features that make it extensible and maintainable. We designed KAnalyze to compete with the fastest k-mer counters, to produce reliable output and to support future development efforts through well-architected, documented and testable code. Currently, KAnalyze can output k-mer counts in a sorted tab-delimited file or stream k-mers as they are read. KAnalyze can process large datasets with 2 GB of memory. This project is implemented in Java 7, and the command line interface (CLI) is designed to integrate into pipelines written in any language. As a k-mer counter, KAnalyze outperforms Jellyfish, DSK and a pipeline built on Perl and Linux utilities. Through extensive unit and system testing, we have verified that KAnalyze produces the correct k-mer counts over multiple datasets and k-mer sizes. KAnalyze is available on SourceForge: https://sourceforge.net/projects/kanalyze/. © The Author 2014. Published by Oxford University Press.
Encoding dependence in Bayesian causal networks
USDA-ARS?s Scientific Manuscript database
Bayesian networks (BNs) represent complex, uncertain spatio-temporal dynamics by propagation of conditional probabilities between identifiable states with a testable causal interaction model. Typically, they assume random variables are discrete in time and space with a static network structure that ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup
In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less
Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.
Continuous lactic acid fermentation using a plastic composite support biofilm reactor.
Cotton, J C; Pometto, A L; Gvozdenovic-Jeremic, J
2001-12-01
An immobilized-cell biofilm reactor was used for the continuous production of lactic acid by Lactobacillus casei subsp. rhamnosus (ATCC 11443). At Iowa State University, a unique plastic composite support (PCS) that stimulates biofilm formation has been developed. The optimized PCS blend for Lactobacillus contains 50% (wt/wt) agricultural products [35% (wt/wt) ground soy hulls, 5% (wt/wt) soy flour, 5% (wt/wt) yeast extract, 5% (wt/wt) dried bovine albumin, and mineral salts] and 50% (wt/wt) polypropylene (PP) produced by high-temperature extrusion. The PCS tubes have a wall thickness of 3.5 mm, outer diameter of 10.5 mm, and were cut into 10-cm lengths. Six PCS tubes, three rows of two parallel tubes, were bound in a grid fashion to the agitator shaft of a 1.2-1 vessel for a New Brunswick Bioflo 3000 fermentor. PCS stimulates biofilm formation, supplies nutrients to attached and suspended cells, and increases lactic acid production. Biofilm thickness on the PCS tubes was controlled by the agitation speed. The PCS biofilm reactor and PP control reactor achieved optimal average production rates of 9.0 and 5.8 g l(-1) h(-1), respectively, at 0.4 h(-1) dilution rate and 125-rpm agitation with yields of approximately 70%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. L. Davis; D. L. Knudson; J. L. Rempe
New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. Such materials can undergo significant dimensional and physical changes during high temperature irradiations. In order to accurately predict these changes, real-time data must be obtained under prototypic irradiation conditions for model development and validation. To provide such data, researchers at the Idaho National Laboratory (INL) High Temperature Test Laboratory (HTTL) are developing several instrumented test rigs to obtain data real-time from specimens irradiated in well-controlled pressurized water reactor (PWR) coolant conditions in the Advanced Test Reactor (ATR). This paper reports the status ofmore » INL efforts to develop and evaluate prototype test rigs that rely on Linear Variable Differential Transformers (LVDTs) in laboratory settings. Although similar LVDT-based test rigs have been deployed in lower flux Materials Testing Reactors (MTRs), this effort is unique because it relies on robust LVDTs that can withstand higher temperatures and higher fluxes than often found in other MTR irradiations. Specifically, the test rigs are designed for detecting changes in length and diameter of specimens irradiated in ATR PWR loops. Once implemented, these test rigs will provide ATR users with unique capabilities that are sorely needed to obtain measurements such as elongation caused by thermal expansion and/or creep loading and diameter changes associated with fuel and cladding swelling, pellet-clad interaction, and crud buildup.« less
Aerssens, Matthieu; Descamps, Frédéric; Gusarov, Andrei; Mégret, Patrice; Moreau, Philippe; Wuilpart, Marc
2015-07-01
In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.
An economical bioreactor for evaluating biogas potential of particulate biomass.
Wilkie, Ann C; Smith, P H; Bordeaux, F M
2004-03-01
An economical bioreactor designed for evaluating the biogas potential of particulate biomass is described. The bioreactor uses a simple stirring apparatus, called the Bordeaux stirrer, to enable gas-tight mixing of fermentation cultures. The apparatus consists of a low-rpm motor connected to a bent steel stir rod, which is placed in a length of flexible plastic tubing inserted through a rubber stopper in a gas-tight manner. This stirrer is suitable for providing intermittent or continuous mixing in bench-scale anaerobic cultures containing particulate biomass. The reactor system may be operated as a batch-fed or semi-continuously fed digester. This communication documents the advantages of the stirring apparatus, describes the details of reactor fabrication and operation, and outlines the type of experimental work for which the bioreactor is suitable.
Axially staggered seed-blanket reactor-fuel-module construction. [LWBR
Cowell, G.K.; DiGuiseppe, C.P.
1982-10-28
A heterogeneous nuclear reactor of the seed-blanket type is provided wherein the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements.
Fraas, A.P.; Tudor, J.J.
1963-08-01
An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)
Comparison study of toroidal-field divertors for a compact reversed-field pinch reactor
NASA Astrophysics Data System (ADS)
Bathke, C. G.; Krakowski, R. A.; Miller, R. L.
Two divertor configurations for the Compact Reversed-Field Pinch Reactor (CRFPR) based on diverting the minority (toroidal) field have been reported. A critical factor in evaluating the performance of both poloidally symmetric and bundle divertor configurations is the accurate determination of the divertor connection length and the monitoring of magnetic islands introduced by the divertors, the latter being a three-dimensional effect. To this end the poloidal-field, toroidal-field, and divertor coils and the plasma currents are simulated in three dimensions for field-line trackings in both the divertor channel and the plasma-edge regions. The results of this analysis indicate a clear preference for the poloidally symmetric toroidal-field divertor. Design modifications to the limiter-based CRFPR design that accommodate this divertor are presented.
High temperature durable catalyst development
NASA Technical Reports Server (NTRS)
Snow, G. C.; Tong, H.
1981-01-01
A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.
Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L
2013-12-01
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Best-estimate coupled RELAP/CONTAIN analysis of inadvertent BWR ADS valve opening transient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Muftuoglu, A.K.
1993-01-01
Noncondensible gases may become dissolved in boiling water reactor (BWR) water-level instrumentation during normal operations. Any dissolved noncondensible gases inside these water columns may come out of solution during rapid depressurization events and displace water from the reference leg piping, resulting in a false high level. Significant errors in water-level indication are not expected to occur until the reactor pressure vessel (RPV) pressure has dropped below [approximately]450 psig. These water level errors may cause a delay or failure in emergency core cooling system (ECCS) actuation. The RPV water level is monitored using the pressure of a water column having amore » varying height (reactor water level) that is compared to the pressure of a water column maintained at a constant height (reference level). The reference legs have small-diameter pipes with varying lengths that provide a constant head of water and are located outside the drywell. The amount of noncondensible gases dissolved in each reference leg is very dependent on the amount of leakage from the reference leg and its geometry and interaction of the reactor coolant system with the containment, i.e., torus or suppression pool, and reactor building. If a rapid depressurization causes an erroneously high water level, preventing automatic ECCS actuation, it becomes important to determine if there would be other adequate indications for operator response. In the postulated inadvertent opening of all seven automatic depressurization system (ADS) valves, the ECCS signal on high drywell pressure would be circumvented because the ADS valves discharge directly into the suppression pool. A best-estimate analysis of such an inadvertent opening of all ADS valves would have to consider the thermal-hydraulic coupling between the pool, drywell, reactor building, and RPV.« less
Sensitivity of the DANSS detector to short range neutrino oscillations
NASA Astrophysics Data System (ADS)
Danilov, Mikhail; DANSS Collaboration
2016-04-01
DANSS is a highly segmented 1 m3 plastic scintillator detector. Its 2500 scintillator strips have a Gd loaded reflective cover. Light is collected with 3 wave length shifting fibers per strip and read out with 50 PMTs and 2500 SiPMs. The DANSS will be installed under the industrial 3 GWth reactor of the Kalinin Nuclear Power Plant at distances varying from 9.7 m to 12.2 m from the reactor core. PMTs and SiPMs collect about 30 photo electrons per MeV distributed approximately equally between two types of the readout. Light collection non-uniformity across and along the strip is about ±13% from maximum to minimum. The resulting energy resolution is modest, σ / E = 15% at 5 MeV. This leads to a smearing of the oscillation pattern comparable with the smearing due to the large size of the reactor core. Nevertheless because of the large counting rate (˜10000/day), small background (< 1%) and good control of systematic uncertainties due to frequent changes of positions, the DANSS is quite sensitive to reactor antineutrino oscillations to hypothetical sterile neutrinos with a mass in eV ballpark suggested recently to explain a so-called reactor anomaly. DANSS will have an elaborated calibration system. The high granularity of the detector allows calibration of every strip with about 40 thousand cosmic muons every day. The expected systematic effects do not reduce much the sensitivity region. Tests of the detector prototype DANSSino demonstrated that in spite of a small size (4% of DANSS), it is quite sensitive to reactor antineutrinos, detecting about 70 Inverse Beta Decay events per day with the signal-to-background ratio of about unity. The prototype tests have demonstrated feasibility to reach the design performance of the DANSS detector.
Automated Testability Decision Tool
1991-09-01
Vol. 16,1968, pp. 538-558. Bertsekas, D. P., "Constraints Optimization and Lagrange Multiplier Methods," Academic Press, New York. McLeavey , D.W... McLeavey , J.A., "Parallel Optimization Methods in Standby Reliability, " University of Connecticut, School of Business Administration, Bureau of Business
ERIC Educational Resources Information Center
Niaz, Mansoor
1991-01-01
Discusses differences between the epistemic and the psychological subject, the relationship between the epistemic subject and the ideal gas law, the development of general cognitive operations, and the empirical testability of Piaget's epistemic subject. (PR)
Small Town in Mass Society Revisited.
ERIC Educational Resources Information Center
Young, Frank W.
1996-01-01
A 1958 New York community study dramatized the thesis that macro forces (urbanization, industrialization, bureaucratization) have undermined all small communities' autonomy. Such "oppositional case studies" succeed when they render the dominant view immediately obsolete, have plausible origins, are testable, and generate new research.…
Simulated nuclear reactor fuel assembly
Berta, V.T.
1993-04-06
An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.
Development and Deployment Assessment of a Melt-Down Proof Modular Micro Reactor (MDP-MMR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman I.; Venneri, Francesco
The objective of this project is to perform feasibility assessment and technology gap analysis and establish a development roadmap for an innovative and highly compact Micro Modular Reactor (MMR) concept that integrates power production, power conversion and electricity generation in a single unit. The MMR is envisioned to use fully ceramic micro-encapsulated (FCM) fuel, a particularly robust form of TRISO fuel, and to be gas-cooled (e.g., He or CO 2) and capable of generating power in the range of 10 to 40 MW-thermal. It is designed to be absolutely melt-down proof (MDP) under all circumstances including complete loss of coolantmore » scenarios with no possible release of radioactive material, to be factory produced, to have a cycle length of greater than 20 years, and to be highly proliferation resistant. In addition, it will be transportable, retrievable and suitable for use in remote areas. As such, the MDP-MMR will represent a versatile reactor concept that is suitable for use in various applications including electricity generation, process heat utilization and propulsion.« less
NASA Technical Reports Server (NTRS)
2005-01-01
This feature length DVD documentary, reviews the history of the Plum Brook Nuclear Reactor from the initial settlers of the area, through its use as a munitions facility during the second World War to the development of the nuclear facility and its use as one of the first nuclear test reactors built in the United States, and the only one built by NASA. It concludes with the beginning of the decommissioning of the facility. There is a brief review of the reactor design, and its workings. Through discussions with the NASA engineers and operators of the facility, the film reviews the work done to advance the knowledge of the effects of radiation, the properties of radiated materials, and the work to advance the state of the art in nuclear propulsion. The film shows footage of public tours, and shows actual footage of the facility in operation, and after its shutdown in 1973. The DVD was narrated by Kate Mulgrew, who leads the viewer through the history of the facility to its eventual ongoing decommissioning, and return to the state of pastoral uses.
Optimization of an auto-thermal ammonia synthesis reactor using cyclic coordinate method
NASA Astrophysics Data System (ADS)
A-N Nguyen, T.; Nguyen, T.-A.; Vu, T.-D.; Nguyen, K.-T.; K-T Dao, T.; P-H Huynh, K.
2017-06-01
The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone, the initial nitrogen proportion. The optimal problem requires the maximization of an objective function which is multivariable function and subject to a number of equality constraints involving the solution of coupled differential equations and also inequality constraint. The cyclic coordinate search was applied to solve the multivariable-optimization problem. In each coordinate, the golden section method was applied to find the maximum value. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results obtained from this study are also compared to the results from the literature.
Simulated nuclear reactor fuel assembly
Berta, Victor T.
1993-01-01
An apparatus for electrically simulating a nuclear reactor fuel assembly. It includes a heater assembly having a top end and a bottom end and a plurality of concentric heater tubes having electrical circuitry connected to a power source, and radially spaced from each other. An outer target tube and an inner target tube is concentric with the heater tubes and with each other, and the outer target tube surrounds and is radially spaced from the heater tubes. The inner target tube is surrounded by and radially spaced from the heater tubes and outer target tube. The top of the assembly is generally open to allow for the electrical power connection to the heater tubes, and the bottom of the assembly includes means for completing the electrical circuitry in the heater tubes to provide electrical resistance heating to simulate the power profile in a nuclear reactor. The embedded conductor elements in each heater tube is split into two halves for a substantial portion of its length and provided with electrical isolation such that each half of the conductor is joined at one end and is not joined at the other end.
Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples
NASA Astrophysics Data System (ADS)
Mozetic, Miran; Cvelbar, Uros
2009-08-01
The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 × 1021 m-3. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O2 molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.
Study for requirement of advanced long life small modular fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tak, Taewoo, E-mail: ttwispy@unist.ac.kr; Choe, Jiwon, E-mail: chi91023@unist.ac.kr; Jeong, Yongjin, E-mail: yjjeong09@unist.ac.kr
2016-01-22
To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolantmore » material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.« less
Study for requirement of advanced long life small modular fast reactor
NASA Astrophysics Data System (ADS)
Tak, Taewoo; Choe, Jiwon; Jeong, Yongjin; Lee, Deokjung; Kim, T. K.
2016-01-01
To develop an advanced long-life SMR core concept, the feasibility of the long-life breed-and-burn core concept has been assessed and the preliminary selection on the reactor design requirement such as fuel form, coolant material has been performed. With the simplified cigar-type geometry of 8m-tall CANDLE reactor concept, it has demonstrated the strengths of breed-and-burn strategy. There is a saturation region in the graph for the multiplication factors, which means that a steady breeding is being proceeded along the axial direction. The propagation behavior of the CANDLE core can be also confirmed through the evolution of the axial power profile. Coolant material is expected to have low melting point, density, viscosity and absorption cross section and a high boiling point, specific heat, and thermal conductivity. In this respect, sodium is preferable material for a coolant of this nuclear power plant system. The metallic fuel has harder spectrum compared to the oxide and carbide fuel, which is favorable to increase the breeding and extend the cycle length.
Short initial length quench on CICC of ITER TF coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.
Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of themore » voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.« less
Method for culturing mammalian cells in a horizontally rotated bioreactor
NASA Technical Reports Server (NTRS)
Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor); Trinh, Tinh T. (Inventor)
1992-01-01
A bio-reactor system where cell growth microcarrier beads are suspended in a zero head space fluid medium by rotation about a horizontal axis and where the fluid is continuously oxygenated from a tubular membrane which rotates on a shaft together with rotation of the culture vessel. The oxygen is continuously throughput through the membrane and disbursed into the fluid medium along the length of the membrane.
Cognitive Scientists Prefer Theories and Testable Principles with Teeth
ERIC Educational Resources Information Center
Graesser, Arthur C.
2009-01-01
Alexander, Schallert, and Reynolds (2009/this issue) proposed a definition and landscape of learning that included 9 principles and 4 dimensions ("what," "who," "where," "when"). This commentary reflects on the utility of this definition and 4-dimensional landscape from the standpoint of educational…
A systems framework for identifying candidate microbial assemblages for disease management
USDA-ARS?s Scientific Manuscript database
Network models of soil and plant microbiomes present new opportunities for enhancing disease management, but also challenges for interpretation. We present a framework for interpreting microbiome networks, illustrating how the observed structure of networks can be used to generate testable hypothese...
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
2016-11-08
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
Perceptual Decision-Making as Probabilistic Inference by Neural Sampling.
Haefner, Ralf M; Berkes, Pietro; Fiser, József
2016-05-04
We address two main challenges facing systems neuroscience today: understanding the nature and function of cortical feedback between sensory areas and of correlated variability. Starting from the old idea of perception as probabilistic inference, we show how to use knowledge of the psychophysical task to make testable predictions for the influence of feedback signals on early sensory representations. Applying our framework to a two-alternative forced choice task paradigm, we can explain multiple empirical findings that have been hard to account for by the traditional feedforward model of sensory processing, including the task dependence of neural response correlations and the diverging time courses of choice probabilities and psychophysical kernels. Our model makes new predictions and characterizes a component of correlated variability that represents task-related information rather than performance-degrading noise. It demonstrates a normative way to integrate sensory and cognitive components into physiologically testable models of perceptual decision-making. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vesselinova, Neda; Alexandrov, Boian; Wall, Michael E.
We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time coursesmore » in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability.« less
Hu, Xiao-Min; Chen, Jiang-Shan; Liu, Bi-Heng; Guo, Yu; Huang, Yun-Feng; Zhou, Zong-Quan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-10-21
The physical impact and the testability of the Kochen-Specker (KS) theorem is debated because of the fact that perfect compatibility in a single quantum system cannot be achieved in practical experiments with finite precision. Here, we follow the proposal of A. Cabello and M. T. Cunha [Phys. Rev. Lett. 106, 190401 (2011)], and present a compatibility-loophole-free experimental violation of an inequality of noncontextual theories by two spatially separated entangled qutrits. A maximally entangled qutrit-qutrit state with a fidelity as high as 0.975±0.001 is prepared and distributed to separated spaces, and these two photons are then measured locally, providing the compatibility requirement. The results show that the inequality for noncontextual theory is violated by 31 standard deviations. Our experiments pave the way to close the debate about the testability of the KS theorem. In addition, the method to generate high-fidelity and high-dimension entangled states will provide significant advantages in high-dimension quantum encoding and quantum communication.
What is a delusion? Epistemological dimensions.
Leeser, J; O'Donohue, W
1999-11-01
Although the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1994) clearly indicates delusions have an epistemic dimension, it fails to accurately identify the epistemic properties of delusions. The authors explicate the regulative causes of belief revision for rational agents and argue that delusions are unresponsive to these. They argue that delusions are (a) protected beliefs made unfalsifiable either in principle or because the agent refuses to admit anything as a potential falsifier; (b) the protected belief is not typically considered a "properly basic" belief; (c) the belief is not of the variety of protected scientific beliefs; (d) in response to an apparent falsification, the subject posits not a simple, testable explanation for the inconsistency but one that is more complicated, less testable, and provides no new corroborations; (e) the subject has a strong emotional attachment to the belief; and (f) the belief is typically supported by (or originates from) trivial occurrences that are interpreted by the subject as highly unusual, significant, having personal reference, or some combination of these.
Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Martin, James J.; Schmidt, George R.; Godfroy, Thomas J.; Bryhan, A.J.
2010-01-01
The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =$9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =$12,000k over a period of 36 mo.
ERIC Educational Resources Information Center
Barth, Lorna
2007-01-01
By changing the venue from festival to a required academic exposition, the traditional science fair was transformed into a "Science Expo" wherein students were guided away from cookbook experiments toward developing a question about their environment into a testable and measurable experiment. The revamped "Science Expo" became a night for students…
Leveraging Rigorous Local Evaluations to Understand Contradictory Findings
ERIC Educational Resources Information Center
Boulay, Beth; Martin, Carlos; Zief, Susan; Granger, Robert
2013-01-01
Contradictory findings from "well-implemented" rigorous evaluations invite researchers to identify the differences that might explain the contradictions, helping to generate testable hypotheses for new research. This panel will examine efforts to ensure that the large number of local evaluations being conducted as part of four…
Changing Perspectives on Basic Research in Adult Learning and Memory
ERIC Educational Resources Information Center
Hultsch, David F.
1977-01-01
It is argued that wheather the course of cognitive development is characterized by growth, stability, or decline is less a matter of the metamodel on which the theories and data are based. Such metamodels are representations of reality that are not empirically testable. (Author)
Adolescent Pregnancy and Its Delay.
ERIC Educational Resources Information Center
Bell, Lloyd H.
This paper examines some probable reasons for the black adolescent male's contribution to increased pregnancy in the black community. Using a situation analysis, it presents the following testable suppositions: (1) black males' fear of retribution for impregnating a girl has diminished, leading to increased sexual intercourse and ultimately to…
The Process of Mentoring Pregnant Adolescents: An Exploratory Study.
ERIC Educational Resources Information Center
Blinn-Pike, Lynn; Kuschel, Diane; McDaniel, Annette; Mingus, Suzanne; Mutti, Megan Poole
1998-01-01
The process that occurs in relationships between volunteer adult mentors and pregnant adolescent "mentees" is described empirically; testable hypotheses based on findings concerning the mentor role are proposed. Case records from 20 mentors are analyzed; findings regarding mentors' roles are discussed. Criteria for conceptualizing quasi-parenting…
SLSF in-reactor local fault safety experiment P4. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, D. H.; Holland, J. W.; Braid, T. H.
The Sodium Loop Safety Facility (SLSF), a major facility in the US fast-reactor safety program, has been used to simulate a variety of sodium-cooled fast reactor accidents. SLSF experiment P4 was conducted to investigate the behavior of a "worse-than-case" local fault configuration. Objectives of this experiment were to eject molten fuel into a 37-pin bundle of full-length Fast-Test-Reactor-type fuel pins form heat-generating fuel canisters, to characterize the severity of any molten fuel-coolant interaction, and to demonstrate that any resulting blockage could either be tolerated during continued power operation or detected by global monitors to prevent fuel failure propagation. The designmore » goal for molten fuel release was 10 to 30 g. Explusion of molten fuel from fuel canisters caused failure of adjacent pins and a partial flow channel blockage in the fuel bundle during full-power operation. Molten fuel and fuel debris also lodged against the inner surface of the test subassembly hex-can wall. The total fuel disruption of 310 g evaluated from posttest examination data was in excellent agreement with results from the SLSF delayed neutron detection system, but exceeded the target molten fuel release by an order of magnitude. This report contains a summary description of the SLSF in-reactor loop and support systems and the experiment operations. results of the detailed macro- and microexamination of disrupted fuel and metal and results from the analysis of the on-line experimental data are described, as are the interpretations and conclusions drawn from the posttest evaluations. 60 refs., 74 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradin, Michael; Anderson, M.; Muci, M.
This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintainmore » similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.« less
Moon, Ji-Won; Phelps, Tommy J.; Fitzgerald Jr, Curtis L.; ...
2016-04-27
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale ( ≤24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of meso-scale experiments were performed using 100-l and 900-l reactors. Pasteurization and N 2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot-plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2 nm average crystallite size (ACS) and yields of ~0.5g L -1, similar to small-scale batches.more » The 900-L pilot plant reactor produced ~ 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98% of the buffer chemical costs. In conclusion, the final NP products were characterized using XRD, ICP-OES, FTIR, DLS, and C/N analyses, which confirmed the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.« less
Moon, Ji-Won; Phelps, Tommy J; Fitzgerald, Curtis L; Lind, Randall F; Elkins, James G; Jang, Gyoung Gug; Joshi, Pooran C; Kidder, Michelle; Armstrong, Beth L; Watkins, Thomas R; Ivanov, Ilia N; Graham, David E
2016-09-01
The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (≤ 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible ~2-nm average crystallite size (ACS) and yields of ~0.5 g L(-1), similar to the small-scale batches. The 900-L pilot plant reactor produced ~320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with ~120 nm thickness over 0.5 m width × 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS.
Scrubbing intensification for sulphur and ammonia compounds removal.
Couvert, A; Sanchez, C; Laplanche, A; Renner, C
2008-02-01
Operating conditions were optimised in a new compact scrubber in order to remove odorous sulphur (H(2)S and CH(3)SH) and ammonia compounds. The influence of the superficial gas and liquid velocities, pH, contactor length, inlet concentrations (sulphur compounds, ammonia, chlorine), and the mixing effects was characterised. Whereas abatement increased with velocities, pH and the chlorine concentration, an increase of inlet CH(3)SH concentration drove to a worse efficiency of process. Moreover, the contactor length and the presence of another pollutant in the gas phase only played a role on the methylmercaptan removal. Finally, the reactive consumptions were estimated at the outlet of the reactor. The chlorination by-product quantification permitted to understand the under-stoichiometry.
Laser-induced incandescence of titania nanoparticles synthesized in a flame
NASA Astrophysics Data System (ADS)
Cignoli, F.; Bellomunno, C.; Maffi, S.; Zizak, G.
2009-09-01
Laser induced incandescence experiments were carried out in a flame reactor during titania nanoparticle synthesis. The structure of the reactor employed allowed for a rather smooth particle growth along the flame axis, with limited mixing of different size particles. Particle incandescence was excited by the 4th harmonic of a Nd:YAG laser. The radiation emitted from the particles was recorded in time and checked by spectral analysis. Results were compared with measurements from transmission electron microscopy of samples taken at the same locations probed by incandescence. This was done covering a portion of the flame length within which a particle size growth of a factor of about four was detected . The incandescence decay time was found to increase monotonically with particle size. The attainment of a process control tool in nanoparticle flame synthesis appears to be realistic.
Experimental evidence of a double layer in a large volume helicon reactor.
Sutherland, O; Charles, C; Plihon, N; Boswell, R W
2005-11-11
The self-consistently generated current-free electric double layer (DL) is shown to scale up with the source tube diameter and appears not to be affected by rf driving frequency and changes in reactor geometry. This Letter presents the first simultaneous measurements of local plasma potential and beam energy as a function of axial position. The DL is shown to be no more than 5 mm thick (20 D lengths) and positioned just downstream of the maximum in the magnetic field gradient. Furthermore, its position relative to the magnetic field is observed to be invariant as the magnetic field is translated axially. Measurements of the potential drop across the DL are presented for pressures down to 0.09 mTorr and the DL strength (phiDL/T(e)) is determined to be between 5 and 7.
Nitrifying biomass characterization and monitoring during bioaugmentation in a membrane bioreactor.
D'Anteo, Sibilla; Mannucci, Alberto; Meliani, Matteo; Verni, Franco; Petroni, Giulio; Munz, Giulio; Lubello, Claudio; Mori, Gualtiero; Vannini, Claudia
2015-01-01
A membrane bioreactor (MBR), fed with domestic wastewater, was bioaugmented with nitrifying biomass selected in a side-stream MBR fed with a synthetic high nitrogen-loaded influent. Microbial communities evolution was monitored and comparatively analysed through an extensive bio-molecular investigation (16S rRNA gene library construction and terminal-restriction fragment length polymorphism techniques) followed by statistical analyses. As expected, a highly specialized nitrifying biomass was selected in the side-stream reactor fed with high-strength ammonia synthetic wastewater. The bioaugmentation process caused an increase of nitrifying bacteria of the genera Nitrosomonas (up to more than 30%) and Nitrobacter in the inoculated MBR reactor. The overall structure of the microbial community changed in the mainstream MBR as a result of bioaugmentation. The effect of bioaugmentation in the shift of the microbial community was also verified through statistical analysis.
In-pile tests at Karlsruhe of LWR fuel-rod behavior during the heatup phase of a LOCA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karb, E.H.
1980-01-01
In order to investigate the influence of a nuclar environment on the mechanisms of fuel-rod failure, in-pile tests simulating the heatup phase of a loss-of-coolant accident in a pressurized-water reactor are being conducted with irradiated and unirradiated short-length single rods in the FR2 reactor at Kernforschungszentrum karlsruhe (Karlsruhe Nuclear Reasearch Center), Federal Republic of Germany, within the Project Nuclear Safety. With nearly 70% of the scheduled tests completed, no such influences have been found. The in-pile burst and deformation data are in good agreement with results from nonnuclear tests with electrically heated fuel-rod simulators. The phenomenon of pellet disintegration, whichmore » has been observed in all tests with previously irradiated rods, needs further investigation.« less
Sánchez, F; Rey, H; Viedma, A; Nicolás-Pérez, F; Kaiser, A S; Martínez, M
2018-08-01
Due to the aeration system, biological reactors are the most energy-consuming facilities of convectional WWTPs. Many biological reactors work under intermittent aeration regime; the optimization of the aeration process (air diffuser layout, air flow rate per diffuser, aeration length …) is necessary to ensure an efficient performance; satisfying the effluent requirements with the minimum energy consumption. This work develops a CFD modelling of an activated sludge reactor (ASR) which works under intermittent aeration regime. The model considers the fluid dynamic and biological processes within the ASR. The biological simulation, which is transient, takes into account the intermittent aeration regime. The CFD modelling is employed for the selection of the aeration system of an ASR. Two different aeration configurations are simulated. The model evaluates the aeration power consumption necessary to satisfy the effluent requirements. An improvement of 2.8% in terms of energy consumption is achieved by modifying the air diffuser layout. An analysis of the influence of the air flow rate per diffuser on the ASR performance is carried out. The results show a reduction of 14.5% in the energy consumption of the aeration system when the air flow rate per diffuser is reduced. The model provides an insight into the aeration inefficiencies produced within ASRs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982
Bassani, Ilaria; Kougias, Panagiotis G; Treu, Laura; Angelidaki, Irini
2015-10-20
This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher efficiency of CH4 production and CO2 conversion was recorded. The consequent increase of pH did not inhibit the process indicating adaptation of microorganisms to higher pH levels. The effects of H2 on the microbial community were studied using high-throughput Illumina random sequences and full-length 16S rRNA genes extracted from the total sequences. The relative abundance of archaeal community markedly increased upon H2 addition with Methanoculleus as dominant genus. The increase of hydrogenotrophic methanogens and syntrophic Desulfovibrio and the decrease of aceticlastic methanogens indicate a H2-mediated shift toward the hydrogenotrophic pathway enhancing biogas upgrading. Moreover, Thermoanaerobacteraceae were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens in absence of aceticlastic methanogenesis.
NASA Astrophysics Data System (ADS)
Vershinin, N. O.; Sokolova, I. V.; Tchaikovskaya, O. N.
2013-09-01
We present the results of tests of a compact flow-through reactor for neutralization of a broad class of persistent toxic compounds. As the toxicant we used the herbicide 2,4-dichlorophenoxyacetic acid, and we used exciplex lamps with different emission wave lengths (λ ~ 222 nm and 172 nm). We show the experimental decrease in the amount of organic compounds vs. irradiation time as obtained from the absorption spectra.
NASA Technical Reports Server (NTRS)
Creagh, J. W. R.; Smith, J. R.
1973-01-01
Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.
Seshan, Hari; Goyal, Manish K; Falk, Michael W; Wuertz, Stefan
2014-04-15
The relationship between microbial community structure and function has been examined in detail in natural and engineered environments, but little work has been done on using microbial community information to predict function. We processed microbial community and operational data from controlled experiments with bench-scale bioreactor systems to predict reactor process performance. Four membrane-operated sequencing batch reactors treating synthetic wastewater were operated in two experiments to test the effects of (i) the toxic compound 3-chloroaniline (3-CA) and (ii) bioaugmentation targeting 3-CA degradation, on the sludge microbial community in the reactors. In the first experiment, two reactors were treated with 3-CA and two reactors were operated as controls without 3-CA input. In the second experiment, all four reactors were additionally bioaugmented with a Pseudomonas putida strain carrying a plasmid with a portion of the pathway for 3-CA degradation. Molecular data were generated from terminal restriction fragment length polymorphism (T-RFLP) analysis targeting the 16S rRNA and amoA genes from the sludge community. The electropherograms resulting from these T-RFs were used to calculate diversity indices - community richness, dynamics and evenness - for the domain Bacteria as well as for ammonia-oxidizing bacteria in each reactor over time. These diversity indices were then used to train and test a support vector regression (SVR) model to predict reactor performance based on input microbial community indices and operational data. Considering the diversity indices over time and across replicate reactors as discrete values, it was found that, although bioaugmentation with a bacterial strain harboring a subset of genes involved in the degradation of 3-CA did not bring about 3-CA degradation, it significantly affected the community as measured through all three diversity indices in both the general bacterial community and the ammonia-oxidizer community (α = 0.5). The impact of bioaugmentation was also seen qualitatively in the variation of community richness and evenness over time in each reactor, with overall community richness falling in the case of bioaugmented reactors subjected to 3-CA and community evenness remaining lower and more stable in the bioaugmented reactors as opposed to the unbioaugmented reactors. Using diversity indices, 3-CA input, bioaugmentation and time as input variables, the SVR model successfully predicted reactor performance in terms of the removal of broad-range contaminants like COD, ammonia and nitrate as well as specific contaminants like 3-CA. This work was the first to demonstrate that (i) bioaugmentation, even when unsuccessful, can produce a change in community structure and (ii) microbial community information can be used to reliably predict process performance. However, T-RFLP may not result in the most accurate representation of the microbial community itself, and a much more powerful prediction tool can potentially be developed using more sophisticated molecular methods. Copyright © 2014 Elsevier Ltd. All rights reserved.
Software reliability through fault-avoidance and fault-tolerance
NASA Technical Reports Server (NTRS)
Vouk, Mladen A.; Mcallister, David F.
1992-01-01
Accomplishments in the following research areas are summarized: structure based testing, reliability growth, and design testability with risk evaluation; reliability growth models and software risk management; and evaluation of consensus voting, consensus recovery block, and acceptance voting. Four papers generated during the reporting period are included as appendices.
From Cookbook to Experimental Design
ERIC Educational Resources Information Center
Flannagan, Jenny Sue; McMillan, Rachel
2009-01-01
Developing expertise, whether from cook to chef or from student to scientist, occurs over time and requires encouragement, guidance, and support. One key goal of an elementary science program should be to move students toward expertise in their ability to design investigative questions. The ability to design a testable question is difficult for…
Mentoring: A Typology of Costs for Higher Education Faculty
ERIC Educational Resources Information Center
Lunsford, Laura G.; Baker, Vicki; Griffin, Kimberly A.; Johnson, W. Brad
2013-01-01
In this theoretical paper, we apply a social exchange framework to understand mentors' negative experiences. We propose a typology of costs, categorized according to psychosocial and career mentoring functions. Our typology generates testable research propositions. Psychosocial costs of mentoring are burnout, anger, and grief or loss. Career…
Instructional Design: Science, Technology, Both, Neither
ERIC Educational Resources Information Center
Gropper, George L.
2017-01-01
What would it take for instructional design to qualify as a bona fide applied discipline? First and foremost, a fundamental requirement is a testable and tested theoretical base. Untested rationales until verified remain in limbo. Secondly, the discipline's applied prescriptions must be demonstrably traceable to the theoretical base once it is…
ERIC Educational Resources Information Center
Tweney, Ryan D.
Drawing parallels with critical thinking and creative thinking, this document describes some ways that scientific thinking is utilized. Cognitive approaches to scientific thinking are discussed, and it is argued that all science involves an attempt to construct a testable mental model of some aspect of reality. The role of mental models is…
ERIC Educational Resources Information Center
Wallace, Robert B.
1994-01-01
Health survey research assesses health of individuals in population. Measures include prevalence/incidence of diseases, signs/symptoms, functional states, and health services utilization. Although assessing individual biologic robustness can be problematic, testable approaches do exist. Characteristics of health of populations/communities, not…
Equilibration: Developing the Hard Core of the Piagetian Research Program.
ERIC Educational Resources Information Center
Rowell, J.A.
1983-01-01
Argues that the status of the concept of equilibration is classified by considering Piagetian theory as a research program in the sense elaborated in 1974 by Lakatos. A pilot study was made to examine the precision and testability of equilibration in Piaget's 1977 model.(Author/RH)
Links between Parents' Epistemological Stance and Children's Evidence Talk
ERIC Educational Resources Information Center
Luce, Megan R.; Callanan, Maureen A.; Smilovic, Sarah
2013-01-01
Recent experimental research highlights young children's selectivity in learning from others. Little is known, however, about the patterns of information that children actually encounter in conversations with adults. This study investigated variation in parents' tendency to focus on testable evidence as a way to answer science-related questions…
The Simple Theory of Public Library Services.
ERIC Educational Resources Information Center
Newhouse, Joseph P.
A simple normative theory applicable to public library services was developed as a tool to aid libraries in answering the question: which books should be bought by the library? Although developed for normative purposes, the theory generates testable predictions. It is relevant to measuring benefits from services which are provided publicly because…
NASA Astrophysics Data System (ADS)
Sabater, Bartolomé; Marín, Dolores
2018-03-01
The minimum rate principle is applied to the chemical reaction in a steady-state open cell system where, under constant supply of the glucose precursor, reference to time or to glucose consumption does not affect the conclusions.
Tracking the "Lizardman": Writing Rotten to Write Well.
ERIC Educational Resources Information Center
Polette, Keith
1995-01-01
Suggests that students can improve their writing by being instructed on how to write badly. Applies the criteria of testability, tunnel-vision, excessive vagueness, flying in the face of established fact, and hazy authority to tabloid newspaper stories. Discusses how students can write their own "rotten" tabloid stories by taking these…
Researching the Study Abroad Experience
ERIC Educational Resources Information Center
McLeod, Mark; Wainwright, Philip
2009-01-01
The authors propose a paradigm for rigorous scientific assessment of study abroad programs, with the focus being on how study abroad experiences affect psychological constructs as opposed to looking solely at study-abroad-related outcomes. Social learning theory is used as a possible theoretical basis for making testable hypotheses and guiding…
Toward a Testable Developmental Model of Pedophilia: The Development of Erotic Age Preference.
ERIC Educational Resources Information Center
Freund, Kurt; Kuban, Michael
1993-01-01
Analysis of retrospective self-reports about childhood curiosity to see persons in the nude, with heterosexual and homosexual pedophiles, gynephiles, and androphiles, suggests that establishment of erotic sex preference proceeded that of age preference, and a greater proportion of pedophiles than gynephiles or androphiles remembered childhood…
NASA Astrophysics Data System (ADS)
Augustine, Starrlight; Rosa, Sara; Kooijman, Sebastiaan A. L. M.; Carlotti, François; Poggiale, Jean-Christophe
2014-11-01
Parameters for the standard Dynamic Energy Budget (DEB) model were estimated for the purple mauve stinger, Pelagia noctiluca, using literature data. Overall, the model predictions are in good agreement with data covering the full life-cycle. The parameter set we obtain suggests that P. noctiluca is well adapted to survive long periods of starvation since the predicted maximum reserve capacity is extremely high. Moreover we predict that the reproductive output of larger individuals is relatively insensitive to changes in food level while wet mass and length are. Furthermore, the parameters imply that even if food were scarce (ingestion levels only 14% of the maximum for a given size) an individual would still mature and be able to reproduce. We present detailed model predictions for embryo development and discuss the developmental energetics of the species such as the fact that the metabolism of ephyrae accelerates for several days after birth. Finally we explore a number of concrete testable model predictions which will help to guide future research. The application of DEB theory to the collected data allowed us to conclude that P. noctiluca combines maximizing allocation to reproduction with rather extreme capabilities to survive starvation. The combination of these properties might explain why P. noctiluca is a rapidly growing concern to fisheries and tourism.
Multiscale Modeling in the Clinic: Drug Design and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clancy, Colleen E.; An, Gary; Cannon, William R.
A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions tomore » guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.« less
Is titin a 'winding filament'? A new twist on muscle contraction.
Nishikawa, Kiisa C; Monroy, Jenna A; Uyeno, Theodore E; Yeo, Sang Hoon; Pai, Dinesh K; Lindstedt, Stan L
2012-03-07
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Is titin a ‘winding filament’? A new twist on muscle contraction
Nishikawa, Kiisa C.; Monroy, Jenna A.; Uyeno, Theodore E.; Yeo, Sang Hoon; Pai, Dinesh K.; Lindstedt, Stan L.
2012-01-01
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca2+-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a ‘winding filament’ mechanism for titin's role in active muscle. First, we hypothesize that Ca2+-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction. PMID:21900329
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remy, L.; Cheymol, G.; Gusarov, A.
2015-07-01
In the framework of the development by CEA and SCK.CEN of a Fabry Perot Sensor (FPS) able to measure dimensional changes in Material Testing Reactor (MTR), the first goal of the SAKE 1 (Smirnof extention - Additional Key-tests on Elongation of glass fibres) irradiation was to measure the linear compaction of single mode fibres under high fast neutron fluence. Indeed, the compaction of the fibre which forms one side of the Fabry Perot cavity, may in particular cause a noticeable measurement error. An accurate quantification of this effect is then required to predict the radiation-induced drift and optimize the sensormore » design. To achieve this, an innovative approach was used. Approximately seventy uncoated fibre tips (length: 30 to 50 mm) have been prepared from several different fibre samples and were installed in the SCK.CEN BR2 reactor (Mol Belgium). After 22 days of irradiation a total fast (E > 1 MeV) fluence of 3 to 5x10{sup 19} n{sub fast}/cm{sup 2}, depending on the sample location, was accumulated. The temperature during irradiation was 291 deg. C, which is not far from the condition of the intended FPS use. A precise measurement of each fibre tip length was made before the irradiation and compared to the post irradiation measurement highlighting a decrease of the fibres' length corresponding to about 0.25% of linear compaction. The amplitude of the changes is independent of the capsule, which could mean that the compaction effect saturates even at the lowest considered fluence. In the prospect of performing distributed temperature measurement in MTR, several fibre Bragg gratings written using a femtosecond laser have been also irradiated. All the gratings were written in radiation hardened fibres, and underwent an additional treatment with a procedure enhancing their resistance to ionizing radiations. A special mounting made it possible to test the reflection and the transmission of the gratings on fibre samples cut down to 30 to 50 mm. The comparison of measurements made before and after the irradiation, at the same temperature, allowed us to measure the loss in reflectivity as well as the Bragg wavelength drift. The results are quite promising for some of the investigated gratings. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. Glagolenko; D. Wachs; N. Woolstenhulme
2010-10-01
Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily duemore » to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.« less
Alternative Fuel Research in Fischer-Tropsch Synthesis
NASA Technical Reports Server (NTRS)
Surgenor, Angela D.; Klettlinger, Jennifer L.; Yen, Chia H.; Nakley, Leah M.
2011-01-01
NASA Glenn Research Center has recently constructed an Alternative Fuels Laboratory which is solely being used to perform Fischer-Tropsch (F-T) reactor studies, novel catalyst development and thermal stability experiments. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch synthesis. The purpose of this test facility is to conduct bench scale Fischer-Tropsch (F-T) catalyst screening experiments while focusing on reducing energy inputs, reducing CO2 emissions and increasing product yields within the F-T process. Fischer-Tropsch synthesis is considered a gas to liquid process which reacts syn-gas (a gaseous mixture of hydrogen and carbon monoxide), over the surface of a catalyst material which is then converted into liquids of various hydrocarbon chain length and product distributions1. These hydrocarbons can then be further processed into higher quality liquid fuels such as gasoline and diesel. The experiments performed in this laboratory will enable the investigation of F-T reaction kinetics to focus on newly formulated catalysts, improved process conditions and enhanced catalyst activation methods. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor used solely for cobalt catalyst activation.
New opportunities in quasi elastic neutron scattering spectroscopy
NASA Astrophysics Data System (ADS)
Mezei, F.; Russina, M.
2001-07-01
The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.
NASA Astrophysics Data System (ADS)
Kwon, Young Joo; Choi, Jong Won
This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, W.R.; Lee, J.C.; Larsen, E.W.
1991-11-01
An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technologymore » retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.« less
The slightly-enriched spectral shift control reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, W.R.; Lee, J.C.; Larsen, E.W.
1991-11-01
An advanced converter reactor design utilizing mechanical spectral shift control rods in a conventional pressurized water reactor configuration is under investigation. The design is based on the principle that a harder spectrum during the early part of the fuel cycle will result in large neutron captures in fertile {sup 238}U, which can then be burned in situ in a softer spectrum later in the cycle. Preliminary design calculations performed during FY 89 showed that the slightly-enriched spectral shift reactor design offers the benefit of substantially increased fuel resource utilization with the proven safety characteristics of the pressurized water reactor technologymore » retained. Optimization of the fuel design and development of fuel management strategies were carried out in FY 90, along with effort to develop and validate neutronic methodology for tight-lattice configurations with hard spectra. During FY 91, the final year of the grant, the final Slightly-Enriched Spectral Shift Reactor (SESSR) design was determined, and reference design analyses were performed for the assemblies as well as the global core configuration, both at the beginning of cycle (BOC) and with depletion. The final SESSR design results in approximately a 20% increase in the utilization of uranium resources, based on equilibrium fuel cycle analyses. Acceptable pin power peaking is obtained with the final core design, with assembly peaking factors equal to less than 1.04 for spectral shift control rods both inserted and withdrawn, and global peaking factors at BOC predicted to be 1.4. In addition, a negative Moderation Temperature Coefficient (MTC) is maintained for BOC, which is difficult to achieve with conventional advanced converter designs based on a closed fuel cycle. The SESSR design avoids the need for burnable poison absorber, although they could be added if desired to increase the cycle length while maintaining a negative MTC.« less
Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan
2017-08-01
The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Wen-Tao; Dai, Ji; Liu, Rulong; Chen, Guang-Hao
2015-12-15
Our previous study has confirmed the feasibility of using seawater as an economical precipitant for urine phosphorus (P) precipitation. However, we still understand very little about the ureolysis in the Seawater-based Urine Phosphorus Recovery (SUPR) system despite its being a crucial step for urine P recovery. In this study, batch experiments were conducted to investigate the kinetics of microbial ureolysis in the seawater-urine system. Indigenous bacteria from urine and seawater exhibited relatively low ureolytic activity, but they adapted quickly to the urine-seawater mixture during batch cultivation. During cultivation, both the abundance and specific ureolysis rate of the indigenous bacteria were greatly enhanced as confirmed by a biomass-dependent Michaelis-Menten model. The period for fully ureolysis was decreased from 180 h to 2.5 h after four cycles of cultivation. Based on the successful cultivation, a lab-scale SUPR reactor was set up to verify the fast ureolysis and efficient P recovery in the SUPR system. Nearly complete urine P removal was achieved in the reactor in 6 h without adding any chemicals. Terminal Restriction Fragment Length Polymorphism (TRFLP) analysis revealed that the predominant groups of bacteria in the SUPR reactor likely originated from seawater rather than urine. Moreover, batch tests confirmed the high ureolysis rates and high phosphorus removal efficiency induced by cultivated bacteria in the SUPR reactor under seawater-to-urine mixing ratios ranging from 1:1 to 9:1. This study has proved that the enrichment of indigenous bacteria in the SUPR system can lead to sufficient ureolytic activity for phosphate precipitation, thus providing an efficient and economical method for urine P recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.
SHARP pre-release v1.0 - Current Status and Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.; Rahaman, Ronald O.
The NEAMS Reactor Product Line effort aims to develop an integrated multiphysics simulation capability for the design and analysis of future generations of nuclear power plants. The Reactor Product Line code suite’s multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. In this report, building on a several previous report issued in September 2014, we describe our continued efforts to integrate thermal/hydraulics, neutronics, and structural mechanics modeling codes to perform coupled analysis of a representativemore » fast sodium-cooled reactor core in preparation for a unified release of the toolkit. The work reported in the current document covers the software engineering aspects of managing the entire stack of components in the SHARP toolkit and the continuous integration efforts ongoing to prepare a release candidate for interested reactor analysis users. Here we report on the continued integration effort of PROTEUS/Nek5000 and Diablo into the NEAMS framework and the software processes that enable users to utilize the capabilities without losing scientific productivity. Due to the complexity of the individual modules and their necessary/optional dependency library chain, we focus on the configuration and build aspects for the SHARP toolkit, which includes capability to autodownload dependencies and configure/install with optimal flags in an architecture-aware fashion. Such complexity is untenable without strong software engineering processes such as source management, source control, change reviews, unit tests, integration tests and continuous test suites. Details on these processes are provided in the report as a building step for a SHARP user guide that will accompany the first release, expected by Mar 2016.« less
Computational Modeling as a Design Tool in Microelectronics Manufacturing
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya; Arnold, James O. (Technical Monitor)
1997-01-01
Plans to introduce pilot lines or fabs for 300 mm processing are in progress. The IC technology is simultaneously moving towards 0.25/0.18 micron. The convergence of these two trends places unprecedented stringent demands on processes and equipments. More than ever, computational modeling is called upon to play a complementary role in equipment and process design. The pace in hardware/process development needs a matching pace in software development: an aggressive move towards developing "virtual reactors" is desirable and essential to reduce design cycle and costs. This goal has three elements: reactor scale model, feature level model, and database of physical/chemical properties. With these elements coupled, the complete model should function as a design aid in a CAD environment. This talk would aim at the description of various elements. At the reactor level, continuum, DSMC(or particle) and hybrid models will be discussed and compared using examples of plasma and thermal process simulations. In microtopography evolution, approaches such as level set methods compete with conventional geometric models. Regardless of the approach, the reliance on empricism is to be eliminated through coupling to reactor model and computational surface science. This coupling poses challenging issues of orders of magnitude variation in length and time scales. Finally, database development has fallen behind; current situation is rapidly aggravated by the ever newer chemistries emerging to meet process metrics. The virtual reactor would be a useless concept without an accompanying reliable database that consists of: thermal reaction pathways and rate constants, electron-molecule cross sections, thermochemical properties, transport properties, and finally, surface data on the interaction of radicals, atoms and ions with various surfaces. Large scale computational chemistry efforts are critical as experiments alone cannot meet database needs due to the difficulties associated with such controlled experiments and costs.
Monitoring pH and electric conductivity in an EBPR sequencing batch reactor.
Serralta, J; Borrás, L; Blanco, C; Barat, R; Seco, A
2004-01-01
This paper presents laboratory-scale experimentation carried out to study enhanced biological phosphorus removal. Two anaerobic aerobic (A/O) sequencing batch reactors (SBR) have been operated during more than one year to investigate the information provided by monitoring pH and electric conductivity under stationary and transient conditions. Continuous measurements of these parameters allow detecting the end of anaerobic phosphorus release, of aerobic phosphorus uptake and of initial denitrification, as well as incomplete acetic acid uptake. These results suggest the possibility of using pH and electric conductivity as control parameters to determine the length of both anaerobic and aerobic phases in an A/O SBR. More valuable information provided by monitoring pH and electric conductivity is the relation between the amount of phosphorus released and the conductivity increase observed during the anaerobic stages and which group of bacteria (heterotrophic or polyphosphate accumulating) is carrying out the denitrification process.
A THEORY OF WORK ADJUSTMENT. MINNESOTA STUDIES IN VOCATIONAL REHABILITATION, 15.
ERIC Educational Resources Information Center
DAWIS, RENE V.; AND OTHERS
A THEORY OF WORK ADJUSTMENT WHICH MAY CONTRIBUTE TO THE DEVELOPMENT OF A SCIENCE OF THE PSYCHOLOGY OF OCCUPATIONAL BEHAVIOR IS PROPOSED. IT BUILDS ON THE BASIC PSYCHOLOGICAL CONCEPTS OF STIMULUS, RESPONSE, AND REINFORCEMENT, AND PROVIDES A RESEARCH PARADIGM FOR GENERATING TESTABLE HYPOTHESES. IT WAS DERIVED FROM EARLY RESEARCH EFFORTS OF THE…
ERIC Educational Resources Information Center
Maul, Andrew
2015-01-01
Briggs and Peck [in "Using Learning Progressions to Design Vertical Scales That Support Coherent Inferences about Student Growth"] call for greater care in the conceptualization of the target attributes of students, or "what it is that is growing from grade to grade." In particular, they argue that learning progressions can…
Performance Models of Testability.
1984-08-01
4.1.17 Cost of Isolating Component/Part (CPI) 5J Cost of isolating components or parts at the depot is at CPI - n1 (HDC)(TPI)(NPI) where TPI = average...testing component N Deec N a aiur Yes(PFD D)S Cos ofi oaig op nn -- Cost ofcmpnn rmva n relaemn Exece Cost of omponn reatmovae anda
There's No Such Thing as Value-Free Science.
ERIC Educational Resources Information Center
Makosky, Vivian Parker
This paper is based on the view that, although scientists rely on research values such as predictive accuracy and testability, scientific research is still subject to the unscientific values, attitudes, and emotions of the scientists. It is noted that undergraduate students are likely not to think critically about the science they encounter. A…
Modules, Theories, or Islands of Expertise? Domain Specificity in Socialization
ERIC Educational Resources Information Center
Gelman, Susan A.
2010-01-01
The domain-specific approach to socialization processes presented by J. E. Grusec and M. Davidov (this issue) provides a compelling framework for integrating and interpreting a large and disparate body of research findings, and it generates a wealth of testable new hypotheses. At the same time, it introduces core theoretical questions regarding…
Phases in the Adoption of Educational Innovations in Teacher Training Institutions.
ERIC Educational Resources Information Center
Hall, Gene E.
An attempt has been made to categorize phenomena observed as 20 teacher training institutions have adopted innovations and to extrapolate from these findings key concepts and principles that could form the basis for developing empirically testable hypotheses and could be of some immediate utility to those involved in innovation adoption. The…
Twelve testable hypotheses on the geobiology of weathering
S.L. Brantley; J.P. Megonigal; F.N. Scatena; Z. Balogh-Brunstad; R.T. Barnes; M.A. Bruns; P. van Cappelen; K. Dontsova; H.E. Hartnett; A.S. Hartshorn; A. Heimsath; E. Herndon; L. Jin; C.K. Keller; J.R. Leake; W.H. McDowell; F.C. Meinzer; T.J. Mozdzer; S. Petsch; J. Pett-Ridge; K.S. Pretziger; P.A. Raymond; C.S. Riebe; K. Shumaker; A. Sutton-Grier; R. Walter; K. Yoo
2011-01-01
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networks, thereby...
ERIC Educational Resources Information Center
Kirch, Susan A.; Stetsenko, Anna
2012-01-01
What do people mean when they say they "know" something in science? It usually means they did an investigation and expended considerable intellectual effort to build a useful explanatory model. It means they are confident about an explanation, believe others should trust what they say, and believe that their claim is testable. It means they can…
On Testability of Missing Data Mechanisms in Incomplete Data Sets
ERIC Educational Resources Information Center
Raykov, Tenko
2011-01-01
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
ERIC Educational Resources Information Center
Martin-Dunlop, Catherine S.
2013-01-01
This study investigated prospective elementary teachers' understandings of the nature of science and explored associations with their guided-inquiry science learning environment. Over 500 female students completed the Nature of Scientific Knowledge Survey (NSKS), although only four scales were analyzed-Creative, Testable, Amoral, and Unified. The…
Forensic Impact of the Child Sexual Abuse Medical Examination.
ERIC Educational Resources Information Center
Myers, John E. B.
1998-01-01
This commentary on an article (EC 619 279) about research issues at the interface of medicine and law concerning medical evaluation for child sexual abuse focuses on empirically testable questions: (1) the medical history--its accuracy, interviewing issues, and elicitation and preservation of verbal evidence of abuse; and, (2) expert testimony.…
Two New Empirically Derived Reasons To Use the Assessment of Basic Learning Abilities.
ERIC Educational Resources Information Center
Richards, David F.; Williams, W. Larry; Follette, William C.
2002-01-01
Scores on the Assessment of Basic Learning Abilities (ABLA), Vineland Adaptive Behavior Scales, and the Wechsler Intelligences Scale-Revised (WAIS-R) were obtained for 30 adults with mental retardation. Correlations between the Vineland domains and ABLA were all significant. No participants performing below ABLA Level 6 were testable on the…
A Cognitive Approach to Brailling Errors
ERIC Educational Resources Information Center
Wells-Jensen, Sheri; Schwartz, Aaron; Gosche, Bradley
2007-01-01
This article analyzes a corpus of 1,600 brailling errors made by one expert braillist. It presents a testable model of braille writing and shows that the subject braillist stores standard braille contractions as part of the orthographic representation of words, rather than imposing contractions on a serially ordered string of letters. (Contains 1…
USDA-ARS?s Scientific Manuscript database
Progress in studying the biology of Trichinella spp. was greatly advanced with the publication and analysis of the draft genome sequence of T. spiralis. Those data provide a basis for constructing testable hypothesis concerning parasite physiology, immunology, and genetics. They also provide tools...
Thinking about Evolution: Combinatorial Play as a Strategy for Exercising Scientific Creativity
ERIC Educational Resources Information Center
Wingate, Richard J. T.
2011-01-01
An enduring focus in education on how scientists formulate experiments and "do science" in the laboratory has excluded a vital element of scientific practice: the creative and imaginative thinking that generates models and testable hypotheses. In this case study, final-year biomedical sciences university students were invited to create and justify…
Purposeful Instruction: Mixing up the "I," "We," and "You"
ERIC Educational Resources Information Center
Grant, Maria; Lapp, Diane; Fisher, Douglas; Johnson, Kelly; Frey, Nancy
2012-01-01
This article discusses the flexible nature of the gradual release of responsibility (GRR) as a frame for inquiry-based science instruction. Given the mandate for the use of text-supported learning (Common Core Standards), the GRR can be used to allow students to learn as scientists as they collaboratively develop testable questions and experiments…
The use of models to predict potential contamination aboard orbital vehicles
NASA Technical Reports Server (NTRS)
Boraas, Martin E.; Seale, Dianne B.
1989-01-01
A model of fungal growth on air-exposed, nonnutritive solid surfaces, developed for utilization aboard orbital vehicles is presented. A unique feature of this testable model is that the development of a fungal mycelium can facilitate its own growth by condensation of water vapor from its environment directly onto fungal hyphae. The fungal growth rate is limited by the rate of supply of volatile nutrients and fungal biomass is limited by either the supply of nonvolatile nutrients or by metabolic loss processes. The model discussed is structurally simple, but its dynamics can be quite complex. Biofilm accumulation can vary from a simple linear increase to sustained exponential growth, depending on the values of the environmental variable and model parameters. The results of the model are consistent with data from aquatic biofilm studies, insofar as the two types of systems are comparable. It is shown that the model presented is experimentally testable and provides a platform for the interpretation of observational data that may be directly relevant to the question of growth of organisms aboard the proposed Space Station.
What can we learn from a two-brain approach to verbal interaction?
Schoot, Lotte; Hagoort, Peter; Segaert, Katrien
2016-09-01
Verbal interaction is one of the most frequent social interactions humans encounter on a daily basis. In the current paper, we zoom in on what the multi-brain approach has contributed, and can contribute in the future, to our understanding of the neural mechanisms supporting verbal interaction. Indeed, since verbal interaction can only exist between individuals, it seems intuitive to focus analyses on inter-individual neural markers, i.e. between-brain neural coupling. To date, however, there is a severe lack of theoretically-driven, testable hypotheses about what between-brain neural coupling actually reflects. In this paper, we develop a testable hypothesis in which between-pair variation in between-brain neural coupling is of key importance. Based on theoretical frameworks and empirical data, we argue that the level of between-brain neural coupling reflects speaker-listener alignment at different levels of linguistic and extra-linguistic representation. We discuss the possibility that between-brain neural coupling could inform us about the highest level of inter-speaker alignment: mutual understanding. Copyright © 2016 Elsevier Ltd. All rights reserved.
Active processes make mixed lipid membranes either flat or crumpled
NASA Astrophysics Data System (ADS)
Banerjee, Tirthankar; Basu, Abhik
2018-01-01
Whether live cell membranes show miscibility phase transitions (MPTs), and if so, how they fluctuate near the transitions remain outstanding unresolved issues in physics and biology alike. Motivated by these questions we construct a generic hydrodynamic theory for lipid membranes that are active, due for instance, to the molecular motors in the surrounding cytoskeleton, or active protein components in the membrane itself. We use this to uncover a direct correspondence between membrane fluctuations and MPTs. Several testable predictions are made: (i) generic active stiffening with orientational long range order (flat membrane) or softening with crumpling of the membrane, controlled by the active tension and (ii) for mixed lipid membranes, capturing the nature of putative MPTs by measuring the membrane conformation fluctuations. Possibilities of both first and second order MPTs in mixed active membranes are argued for. Near second order MPTs, active stiffening (softening) manifests as a super-stiff (super-soft) membrane. Our predictions are testable in a variety of in vitro systems, e.g. live cytoskeletal extracts deposited on liposomes and lipid membranes containing active proteins embedded in a passive fluid.
Nunes Ferraz Júnior, Antônio Djalma; Etchebehere, Claudia; Zaiat, Marcelo
2015-08-01
Bio-hydrogen production from sugarcane vinasse in anaerobic up-flow packed-bed reactors (APBR) was evaluated. Four types of support materials, expanded clay (EC), charcoal (Ch), porous ceramic (PC), and low-density polyethylene (LDP) were tested as support for biomass attachment. APBR (working volume - 2.3 L) were operated in parallel at a hydraulic retention time of 24 h, an organic loading rate of 36.2 kg-COD m(-3) d(-1), at 25 °C. Maximum volumetric hydrogen production values of 509.5, 404, 81.4 and 10.3 mL-H2 d(-1) L(-1)reactor and maximum yields of 3.2, 2.6, 0.4 and 0.05 mol-H2 mol(-1) carbohydrates total, were observed during the monitoring of the reactors filled with LDP, EC, Ch and PC, respectively. Thus, indicating the strong influence of the support material on H2 production. LDP was the most appropriate material for hydrogen production among the materials evaluated. 16S rRNA gene by Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis and scanning electron microscopy confirmed the selection of different microbial populations. 454-pyrosequencing performed on samples from APBR filled with LDP revealed the presence of hydrogen-producing organisms (Clostridium and Pectinatus), lactic acid bacteria and non-fermentative organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Online testable concept maps: benefits for learning about the pathogenesis of disease.
Ho, Veronica; Kumar, Rakesh K; Velan, Gary
2014-07-01
Concept maps have been used to promote meaningful learning and critical thinking. Although these are crucially important in all disciplines, evidence for the benefits of concept mapping for learning in medicine is limited. We performed a randomised crossover study to assess the benefits of online testable concept maps for learning in pathology by volunteer junior medical students. Participants (n = 65) were randomly allocated to either of two groups with equivalent mean prior academic performance, in which they were given access to either online maps or existing online resources for a 2-week block on renal disease. Groups then crossed over for a 2-week block on hepatic disease. Outcomes were assessed using timed online quizzes, which included questions unrelated to topics in the pathogenesis maps as an internal control. Questionnaires were administered to evaluate students' acceptance of the maps. In both blocks, the group with access to pathogenesis maps achieved significantly higher average scores than the control group on quiz questions related to topics covered by the maps (Block 1: p < 0.001, Cohen's d = 0.9; Block 2: p = 0.008, Cohen's d = 0.7). However, mean scores on unrelated questions did not differ significantly between the groups. In a third block on pancreatic disease, both groups received pathogenesis maps and collectively performed significantly better on quiz topics related to the maps than on unrelated topics (p < 0.01, Cohen's d = 0.5). Regression analysis revealed that access to pathogenesis maps was the dominant contributor to variance in performance on map-related quiz questions. Responses to questionnaire items on pathogenesis maps were overwhelmingly positive in both groups. These results indicate that online testable pathogenesis maps are well accepted and can improve learning of concepts in pathology by medical students. © 2014 John Wiley & Sons Ltd.
Color Vision Deficiency in Preschool Children
Xie, John Z.; Tarczy-Hornoch, Kristina; Lin, Jesse; Cotter, Susan A.; Torres, Mina; Varma, Rohit
2016-01-01
Purpose To determine the sex- and ethnicity-specific prevalence of color vision deficiency (CVD) in black, Asian, Hispanic, and non-Hispanic white preschool children. Design Population-based, cross-sectional study. Participants The Multi-Ethnic Pediatric Eye Disease Study is a population-based evaluation of the prevalence of vision disorders in children in Southern California. A total of 5960 subjects 30 to 72 months of age were recruited for the study, of whom 4177 were able to complete color vision testing (1265 black, 812 Asian, 1280 Hispanic, and 820 non-Hispanic white). Methods Color vision testing was performed using Color Vision Testing Made Easy color plates (Home Vision Care, Gulf Breeze, FL), and diagnostic confirmatory testing was performed using the Waggoner HRR Diagnostic Test color plates (Home Vision Care). Main Outcome Measures Testability of color vision in preschool children between 30 and 72 months of age and prevalence of CVD stratified by age, sex, and ethnicity. Results Testability was 17% in children younger than 37 months of age, increasing to 57% in children 37 to 48 months of age, 89% in children 49 to 60 months of age, and 98% in children 61 to 72 months of age. The prevalence of CVD among boys was 1.4% for black, 3.1% for Asian, 2.6% for Hispanic, and 5.6% for non-Hispanic white children; the prevalence in girls was 0.0% to 0.5% for all ethnicities. The ethnic difference in CVD was statistically significant between black and non-Hispanic white children (P = 0.0003) and between Hispanic and non-Hispanic white children (P = 0.02). In boys, most CVD cases were either deutan (51%) or protan (34%); 32% were classified as mild, 15% as moderate, and 41% as severe. Conclusions Testability for CVD in preschool children is high by 4 years of age. The prevalence of CVD in preschool boys varies by ethnicity, with the highest prevalence in non-Hispanic white and lowest in black children. PMID:24702753
NASA Astrophysics Data System (ADS)
Schicks, Judith Maria; Spangenberg, Erik; Giese, Ronny; Heeschen, Katja; Priegnitz, Mike; Luzi-Helbing, Manja; Thaler, Jan; Abendroth, Sven; Klump, Jens
2014-05-01
In situ combustion is a well-known method used for exploitation of unconventional oil deposits such as heavy oil/bitumen reservoirs where the required heat is produced directly within the oil reservoir by combustion of a small percentage of the oil. A new application of in situ combustion for the production of methane from hydrate-bearing sediments was tested at pilot plant scale within the first phase of the German national gas hydrate project SUGAR. The applied method of in situ combustion was a flameless, catalytic oxidation of CH4 in a counter-current heat-exchange reactor with no direct contact between the catalytic reaction zone and the reservoir. The catalyst permitted a flameless combustion of CH4 with air to CO2 and H2O below the auto-ignition temperature of CH4 in air (868 K) and outside the flammability limits. This led to a double secured application of the reactor. The relatively low reaction temperature allowed the use of cost-effective standard materials for the reactor and prevented NOx formation. Preliminary results were promising and showed that only 15% of the produced CH4 was needed to be catalytically burned to provide enough heat to dissociate the hydrates in the environment and release CH4. The location of the heat source right within the hydrate-bearing sediment is a major advantage for the gas production from natural gas hydrates as the heat is generated where it is needed without loss of energy due to transportation. As part of the second period of the SUGAR project the reactor prototype of the first project phase was developed further to a borehole tool. The dimensions of this counter-current heat-exchange reactor are about 540 cm in length and 9 cm in diameter. It is designed for applications up to depths of 2500 m. A functionality test and a pressure test of the reactor were successfully carried out in October 2013 at the continental deep drilling site (KTB) in Windischeschenbach, Germany, in 600 m depth and 2000 m depth, respectively. In this study we present technical details of the reactor, the catalyst and potential fields of application beside the production of natural gas from hydrate bearing sediments.
Square lattice honeycomb reactor for space power and propulsion
NASA Astrophysics Data System (ADS)
Gouw, Reza; Anghaie, Samim
2000-01-01
The most recent nuclear design study at the Innovative Nuclear Space Power and Propulsion Institute (INSPI) is the Moderated Square-Lattice Honeycomb (M-SLHC) reactor design utilizing the solid solution of ternary carbide fuels. The reactor is fueled with solid solution of 93% enriched (U,Zr,Nb)C. The square-lattice honeycomb design provides high strength and is amenable to the processing complexities of these ultrahigh temperature fuels. The optimum core configuration requires a balance between high specific impulse and thrust level performance, and maintaining the temperature and strength limits of the fuel. The M-SLHC design is based on a cylindrical core that has critical radius and length of 37 cm and 50 cm, respectively. This design utilized zirconium hydrate to act as moderator. The fuel sub-assemblies are designed as cylindrical tubes with 12 cm in diameter and 10 cm in length. Five fuel subassemblies are stacked up axially to form one complete fuel assembly. These fuel assemblies are then arranged in the circular arrangement to form two fuel regions. The first fuel region consists of six fuel assemblies, and 18 fuel assemblies for the second fuel region. A 10-cm radial beryllium reflector in addition to 10-cm top axial beryllium reflector is used to reduce neutron leakage from the system. To perform nuclear design analysis of the M-SLHC design, a series of neutron transport and diffusion codes are used. To optimize the system design, five axial regions are specified. In each axial region, temperature and fuel density are varied. The axial and radial power distributions for the system are calculated, as well as the axial and radial flux distributions. Temperature coefficients of the system are also calculated. A water submersion accident scenario is also analyzed for these systems. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel, which provides a relatively high thrust to weight ratio. .
Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Zediak, C.S.; Jester, W.A.
1997-12-01
This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plelnevaux, C.
The computer program DIFF, in Fortran for the IBM 7090, for calculating the neutron diffusion coefficients and attenuation areas (L/sup 2/) necessary for multigroup diffusion calculations for reactor shielding is described. Diffusion coefficients and values of the inverse attenuation length are given for a six group calculation for several interesting shielding materials. (D.C.W.)
Automated closure system for nuclear reactor fuel assemblies
Christiansen, David W.; Brown, William F.
1985-01-01
A welder for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.
Fabrication of fuel pin assemblies, phase 3
NASA Technical Reports Server (NTRS)
Keeton, A. R.; Stemann, L. G.
1972-01-01
Five full size and eight reduced length fuel pins were fabricated for irradiation testing to evaluate design concepts for a fast spectrum lithium cooled compact space power reactor. These assemblies consisted of uranium mononitride fuel pellets encased in a T-111 (Ta-8W-2Hf) clad with a tungsten barrier separating fuel and clad. Fabrication procedures were fully qualified by process development and assembly qualification tests. Detailed specifications and procedures were written for the fabrication and assembly of prototype fuel pins.
Further Development of Crack Growth Detection Techniques for US Test and Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov
One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less
Pre-Service Teacher Scientific Behavior: Comparative Study of Paired Science Project Assignments
ERIC Educational Resources Information Center
Bulunuz, Mizrap; Tapan Broutin, Menekse Seden; Bulunuz, Nermin
2016-01-01
Problem Statement: University students usually lack the skills to rigorously define a multi-dimensional real-life problem and its limitations in an explicit, clear and testable way, which prevents them from forming a reliable method, obtaining relevant results and making balanced judgments to solve a problem. Purpose of the Study: The study…
1981-03-31
logic testing element and a concomitant testability criterion ideally suited to dynamic circuit applications and appro- priate for automatic computer...making connections automatically . PF is an experimental feature which provides users with only four different chip sizes (full, half, quarter, and eighth...initial solution is found constructively which is improved by pair-wise swapping. Results show, however, that the constructive initial sorter , which
ERIC Educational Resources Information Center
Nauta, Margaret M.
2010-01-01
This article celebrates the 50th anniversary of the introduction of John L. Holland's (1959) theory of vocational personalities and work environments by describing the theory's development and evolution, its instrumentation, and its current status. Hallmarks of Holland's theory are its empirical testability and its user-friendliness. By…
Steering Performance, Tactical Vehicles
2015-07-29
5 4.1 General Vehicle and Test Characterization ........................... 5 4.2 Weave Test...able to be driven in a straight line without steer input (i.e., “ hands free”). If the vehicle pulls in either direction, the alignment should be...Evaluation Center (AEC) prior to using military personnel as test participants. 4. TEST PROCEDURES. 4.1 General Vehicle and Test
Binding and Scope Dependencies with "Floating Quantifiers" in Japanese
ERIC Educational Resources Information Center
Mukai, Emi
2012-01-01
The primary concern of this thesis is how we can achieve rigorous testability when we set the properties of the Computational System (hypothesized to be at the center of the language faculty) as our object of inquiry and informant judgments as a tool to construct and/or evaluate our hypotheses concerning the properties of the Computational System.…
The Many Methods to Measure Testability: A Horror Story.
1988-04-01
it seems overly simplistic to assign only one "magic number" as a viable design goal. Different design technologies such as digital, analog, machanical ...FAILURE RATE 1 1 BASIC TEST PROGRAM 1 1 ATLAS TEST PROGRAM 1 1 EDIF FILE 1 1 TEST STRATEGY FLOWCHART 1 1 RTOK FREQUENCY 1 1 DIAGNOSIS AVERAGE COST 1 1
The Social Basis of Math Teaching and Learning. Final Report.
ERIC Educational Resources Information Center
Orvik, James M.; Van Veldhuizen, Philip A.
This study was designed to identify a set of research questions and testable hypothesis to aid in planning long-range research. Five mathematics teachers were selected. These instructors enrolled in a special project-related seminar, video-taped sessions of their own mathematics classes, and kept field journals. The group met once a week to…
ERIC Educational Resources Information Center
Hunter, Lora Rose; Schmidt, Norman B.
2010-01-01
In this review, the extant literature concerning anxiety psychopathology in African American adults is summarized to develop a testable, explanatory framework with implications for future research. The model was designed to account for purported lower rates of anxiety disorders in African Americans compared to European Americans, along with other…
ERIC Educational Resources Information Center
Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.
2011-01-01
An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…
ERIC Educational Resources Information Center
Duncan-Wiles, Daphne S.
2012-01-01
With the recent addition of engineering to most K-12 testable state standards, efficient and comprehensive instruments are needed to assess changes in student knowledge and perceptions of engineering. In this study, I developed the Students' Awareness and Perceptions of Learning Engineering (STAPLE) instrument to quantitatively measure fourth…
Wichita's Hispanics: Tensions, Concerns, and the Migrant Stream.
ERIC Educational Resources Information Center
Johnson, Kenneth F.; And Others
In an attempt to formulate a set of testable propositions about the dynamics of Hispanic life that will be valuable pedagogically and as a basis for public policy formation, this study assesses the impact of Hispanic Americans on Wichita, Kansas. Chapter 1 identifies the Hispanic origins of Kansas' 63,339 Hispanics who represent 2.7% of the…
Improving Health Care for Assisted Living Residents
ERIC Educational Resources Information Center
Kane, Robert L.; Mach, John R., Jr.
2007-01-01
Purpose: The purpose of this article is to explore how medical care is delivered to older people in assisted living (AL) settings and to suggest ways for improving it. Design and Methods: We present a review of the limited research available on health care for older AL residents and on building testable models of better ways to organize primary…
2008-12-01
1979; Wasserman and Faust, 1994). SNA thus relies heavily on graph theory to make predictions about network structure and thus social behavior...becomes a tool for increasing the specificity of theory , thinking through the theoretical implications, and generating testable predictions. In...to summarize Construct and its roots in constructural sociological theory . We discover that the (LPM) provides a mathematical bridge between
ERIC Educational Resources Information Center
Holden, Richard J.; Karsh, Ben-Tzion
2009-01-01
Primary objective: much research and practice related to the design and implementation of information technology in health care has been atheoretical. It is argued that using extant theory to develop testable models of health information technology (HIT) benefits both research and practice. Methods and procedures: several theories of motivation,…
Interpreting clinical trial results by deductive reasoning: In search of improved trial design.
Kurbel, Sven; Mihaljević, Slobodan
2017-10-01
Clinical trial results are often interpreted by inductive reasoning, in a trial design-limited manner, directed toward modifications of the current clinical practice. Deductive reasoning is an alternative in which results of relevant trials are combined in indisputable premises that lead to a conclusion easily testable in future trials. © 2017 WILEY Periodicals, Inc.
The part of cognitive science that is philosophy.
Dennett, Daniel C
2009-04-01
There is much good work for philosophers to do in cognitive science if they adopt the constructive attitude that prevails in science, work toward testable hypotheses, and take on the task of clarifying the relationship between the scientific concepts and the everyday concepts with which we conduct our moral lives. Copyright © 2009 Cognitive Science Society, Inc.
A Progress Report on a Thinking Laboratory for Deaf Children.
ERIC Educational Resources Information Center
Wolff, Sydney
A study was undertaken at the West Virginia School for the Deaf to test the assumption that the modes of thought of deaf children could be improved, and that improvement in concept formation would result in improvement in testable areas. Sixteen primary school children of approximately equal ability were selected and paired to form the control and…
Westinghouse Small Modular Reactor nuclear steam supply system design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Memmott, M. J.; Harkness, A. W.; Van Wyk, J.
2012-07-01
The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development andmore » integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)« less
CANDU in-reactor quantitative visual-based inspection techniques
NASA Astrophysics Data System (ADS)
Rochefort, P. A.
2009-02-01
This paper describes two separate visual-based inspection procedures used at CANDU nuclear power generating stations. The techniques are quantitative in nature and are delivered and operated in highly radioactive environments with access that is restrictive, and in one case is submerged. Visual-based inspections at stations are typically qualitative in nature. For example a video system will be used to search for a missing component, inspect for a broken fixture, or locate areas of excessive corrosion in a pipe. In contrast, the methods described here are used to measure characteristic component dimensions that in one case ensure ongoing safe operation of the reactor and in the other support reactor refurbishment. CANDU reactors are Pressurized Heavy Water Reactors (PHWR). The reactor vessel is a horizontal cylindrical low-pressure calandria tank approximately 6 m in diameter and length, containing heavy water as a neutron moderator. Inside the calandria, 380 horizontal fuel channels (FC) are supported at each end by integral end-shields. Each FC holds 12 fuel bundles. The heavy water primary heat transport water flows through the FC pressure tube, removing the heat from the fuel bundles and delivering it to the steam generator. The general design of the reactor governs both the type of measurements that are required and the methods to perform the measurements. The first inspection procedure is a method to remotely measure the gap between FC and other in-core horizontal components. The technique involves delivering vertically a module with a high-radiation-resistant camera and lighting into the core of a shutdown but fuelled reactor. The measurement is done using a line-of-sight technique between the components. Compensation for image perspective and viewing elevation to the measurement is required. The second inspection procedure measures flaws within the reactor's end shield FC calandria tube rolled joint area. The FC calandria tube (the outer shell of the FC) is sealed by rolling its ends into the rolled joint area. During reactor refurbishment, the original FC calandria tubes are removed, potentially scratching the rolled joint area and, thereby, compromising the seal with the new FC calandria tube. The procedure involves delivering an inspection module having a radiation-resistant camera, standard lighting, and a structured lighting projector. The surface is inspected by rotating the module within the rolled joint area. If a flaw is detected, its depth and width are gauged from the profile variation of the structured lighting in a captured image. As well, the diameter profile of the area is measured from the analysis of a series of captured circumferential images of the structured lighting profiles on the surface.
Impact of minor actinide recycling on sustainable fuel cycle options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, F.; Kim, T. K.; Taiwo, T. A.
The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less
Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.
Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying
2013-08-01
Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.
Deuterium-tritium experiments on the Tokamak Fusion Test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosea, J.; Adler, J.H.; Alling, P.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less
Spheromak reactor with poloidal flux-amplifying transformer
Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki
1987-01-01
An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, M.D.; Lombardo, N.J.; Heard, F.J.
1988-04-01
Calculations were performed to determine core heatup, core damage, and subsequent hydrogen production of a hypothetical loss-of-cooling accident at the Department of Energy's N Reactor. The thermal transient response of the reactor core was solved using the TRUMP-BD computer program. Estimates of whole-core thermal damage and hydrogen production were made by weighting the results of multiple half-length pressure tube simulations at various power levels. The Baker-Just and Wilson parabolic rate equations for the metal-water chemical reactions modeled the key phenomena of chemical energy and hydrogen evolution. Unlimited steam was assumed available for continuous oxidation of exposed Zircaloy-2 surfaces and formore » uranium metal with fuel cladding beyond the failure temperature (1038 C). Intact fuel geometry was modeled. Maximum fuel temperatures (1181 C) in the cooled central regions of the core were predicted to occur one-half hour into the accident scenario. Maximum fuel temperatures of 1447 C occurred in the core GSCS-regions at the end of the 10-h transient. After 10-h 26% of the fuel inventory was predicted to have failed. Peak hydrogen evolution equaled 42 g/s, while 10-h integrated hydrogen evolution equaled 167 kg. 12 refs., 12 figs., 2 tabs.« less
Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas
NASA Astrophysics Data System (ADS)
Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong
2016-05-01
In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)
Pretest analysis of Semiscale Mod-3 baseline test S-07-8 and S-07-9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fineman, C.P.; Steiner, J.L.; Snider, D.M.
This document contains a pretest analysis of the Semiscale Mod-3 system thermal-hydraulic response for the second and third integral tests in Test Series 7 (Tests S-07-8 and S-07-9). Test Series 7 is the first test series to be conducted with the Semiscale Mod-3 system. The design of the Mod-3 system includes an improved representation of certain portions of a pressurized water reactor (PWR) when compared to the previously operated Semiscale Mod-1 system. The improvements include a new vessel which contains a full length (3.66 m) core, a full length upper plenum and upper head, and an external downcomer. An activemore » pump and active steam generator scaled to their pressurized water reactor (PWR) counterparts have been added to the broken loop. The upper head design includes the capability to simulate emergency core coolant (ECC) injection into this region. Test Series 7 is divided into three groups of tests that emphasize the evaluation of the Mod-3 system performance during different phases of the loss-of-coolant experiment (LOCE) transient. The last test group, which includes Tests S-07-8 and S-07-9, will be used to evaluate the integral behavior of the system. The previous two test groups were used to evaluate the blowdown behavior and the reflood behavior of the system. 3 refs., 35 figs., 12 tabs.« less
Rubio; Fernandez; Perez; Camacho; Grima
1999-01-05
A model is developed for prediction of axial concentration profiles of dissolved oxygen and carbon dioxide in tubular photobioreactors used for culturing microalgae. Experimental data are used to verify the model for continuous outdoor culture of Porphyridium cruentum grown in a 200-L reactor with 100-m long tubular solar receiver. The culture was carried out at a dilution rate of 0.05 h-1 applied only during a 10-h daylight period. The quasi-steady state biomass concentration achieved was 3.0 g. L-1, corresponding to a biomass productivity of 1.5 g. L-1. d-1. The model could predict the dissolved oxygen level in both gas disengagement zone of the reactor and at the end of the loop, the exhaust gas composition, the amount of carbon dioxide injected, and the pH of the culture at each hour. In predicting the various parameters, the model took into account the length of the solar receiver tube, the rate of photosynthesis, the velocity of flow, the degree of mixing, and gas-liquid mass transfer. Because the model simulated the system behavior as a function of tube length and operational variables (superficial gas velocity in the riser, composition of carbon dioxide in the gas injected in the solar receiver and its injection rate), it could potentially be applied to rational design and scale-up of photobioreactors. Copyright 1999 John Wiley & Sons, Inc.
Forced-Unfolding and Force-Quench Refolding of RNA Hairpins
Hyeon, Changbong; Thirumalai, D.
2006-01-01
Nanomanipulation of individual RNA molecules, using laser optical tweezers, has made it possible to infer the major features of their energy landscape. Time-dependent mechanical unfolding trajectories, measured at a constant stretching force (fS) of simple RNA structures (hairpins and three-helix junctions) sandwiched between RNA/DNA hybrid handles show that they unfold in a reversible all-or-none manner. To provide a molecular interpretation of the experiments we use a general coarse-grained off-lattice Gō-like model, in which each nucleotide is represented using three interaction sites. Using the coarse-grained model we have explored forced-unfolding of RNA hairpin as a function of fS and the loading rate (rf). The simulations and theoretical analysis have been done both with and without the handles that are explicitly modeled by semiflexible polymer chains. The mechanisms and timescales for denaturation by temperature jump and mechanical unfolding are vastly different. The directed perturbation of the native state by fS results in a sequential unfolding of the hairpin starting from their ends, whereas thermal denaturation occurs stochastically. From the dependence of the unfolding rates on rf and fS we show that the position of the unfolding transition state is not a constant but moves dramatically as either rf or fS is changed. The transition-state movements are interpreted by adopting the Hammond postulate for forced-unfolding. Forced-unfolding simulations of RNA, with handles attached to the two ends, show that the value of the unfolding force increases (especially at high pulling speeds) as the length of the handles increases. The pathways for refolding of RNA from stretched initial conformation, upon quenching fS to the quench force fQ, are highly heterogeneous. The refolding times, upon force-quench, are at least an order-of-magnitude greater than those obtained by temperature-quench. The long fQ-dependent refolding times starting from fully stretched states are analyzed using a model that accounts for the microscopic steps in the rate-limiting step, which involves the trans to gauche transitions of the dihedral angles in the GAAA tetraloop. The simulations with explicit molecular model for the handles show that the dynamics of force-quench refolding is strongly dependent on the interplay of their contour length and persistence length and the RNA persistence length. Using the generality of our results, we also make a number of precise experimentally testable predictions. PMID:16473903
Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Katz, R. F.
2010-12-01
The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.
NASA Astrophysics Data System (ADS)
Deng, G. Z.; Xu, J. C.; Liu, X.; Liu, X. J.; Liu, J. B.; Zhang, H.; Liu, S. C.; Chen, L.; Yan, N.; Feng, W.; Liu, H.; Xia, T. Y.; Zhang, B.; Shao, L. M.; Ming, T. F.; Xu, G. S.; Guo, H. Y.; Xu, X. Q.; Gao, X.; Wang, L.
2018-04-01
A comprehensive work of the effects of plasma current and heating schemes on divertor power footprint widths is carried out in the experimental advanced superconducting tokamak (EAST). The divertor power footprint widths, i.e., the scrape-off layer heat flux decay length λ q and the heat spreading S, are crucial physical and engineering parameters for fusion reactors. Strong inverse scaling of λ q and S with plasma current have been demonstrated for both neutral beam (NB) and lower hybrid wave (LHW) heated L-mode and H-mode plasmas at the inner divertor target. For plasmas heated by the combination of the two kinds of auxiliary heating schemes (NB and LHW), the divertor power widths tend to be larger in plasmas with higher ratio of LHW power. Comparison between experimental heat flux profiles at outer mid-plane (OMP) and divertor target for NB heated and LHW heated L-mode plasmas reveals that the magnetic topology changes induced by LHW may be the main reason to the wider divertor power widths in LHW heated discharges. The effect of heating schemes on divertor peak heat flux has also been investigated, and it is found that LHW heated discharges tend to have a lower divertor peak heat flux compared with NB heated discharges under similar input power. All these findings seem to suggest that plasmas with LHW auxiliary heating scheme are better heat exhaust scenarios for fusion reactors and should be the priorities for the design of next-step fusion reactors like China Fusion Engineering Test Reactor.
NASA Astrophysics Data System (ADS)
Boravelli, Sai Chandra Teja
This thesis mainly focuses on design and process development of a downdraft biomass gasification processes. The objective is to develop a gasifier and process of gasification for a continuous steady state process. A lab scale downdraft gasifier was designed to develop the process and obtain optimum operating procedure. Sustainable and dependable sources such as biomass are potential sources of renewable energy and have a reasonable motivation to be used in developing a small scale energy production plant for countries such as Canada where wood stocks are more reliable sources than fossil fuels. This thesis addresses the process of thermal conversion of biomass gasification process in a downdraft reactor. Downdraft biomass gasifiers are relatively cheap and easy to operate because of their design. We constructed a simple biomass gasifier to study the steady state process for different sizes of the reactor. The experimental part of this investigation look at how operating conditions such as feed rate, air flow, the length of the bed, the vibration of the reactor, height and density of syngas flame in combustion flare changes for different sizes of the reactor. These experimental results also compare the trends of tar, char and syngas production for wood pellets in a steady state process. This study also includes biomass gasification process for different wood feedstocks. It compares how shape, size and moisture content of different feedstocks makes a difference in operating conditions for the gasification process. For this, Six Sigma DMAIC techniques were used to analyze and understand how each feedstock makes a significant impact on the process.
Taxes in a Labor Supply Model with Joint Wage-Hours Determination.
ERIC Educational Resources Information Center
Rosen, Harvey S.
1976-01-01
Payroll and progressive income taxes play an enormous role in the American fiscal system. The purpose of this study is to present some econometric evidence on the effects of taxes on married women, a group of growing importance in the American labor force. A testable model of labor supply is developed which permits statistical estimation of a…
ERIC Educational Resources Information Center
Nunez, Rafael
2012-01-01
"The Journal of the Learning Sciences" has devoted this special issue to the study of embodied cognition (as it applies to mathematics), a topic that for several decades has gained attention in the cognitive sciences and in mathematics education, in particular. In this commentary, the author aims to address crucial questions in embodied…
ERIC Educational Resources Information Center
Booker, Lucille M.
2012-01-01
Political discourse is an observable, measurable, and testable manifestation of political worldviews. However, when worldviews collide, notions of truth and of lies are put to the test. The challenge for researchers is how to establish confidence in their analysis. Despite the growing interest in deception research from a diversity of fields and…
Predictors of Organizational-Level Testability Attributes
1987-05-01
A. Elizabeth Gilreath Brian A. Kelley 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (YearB, M RSnt, Day) 15.PAGECOUNT ’Final JFROM A TO 6... BRU count. These counts are "described in subsections 6,.2.1.1 and 6.2.1.2. and are further subdivided in Figure 6-4. 6.2.1.1 Functional Cross
Surface fire effects on conifer and hardwood crowns--applications of an integral plume model
Matthew Dickinson; Anthony Bova; Kathleen Kavanagh; Antoine Randolph; Lawrence Band
2009-01-01
An integral plume model was applied to the problems of tree death from canopy injury in dormant-season hardwoods and branch embolism in Douglas fir (Pseudotsuga menziesii) crowns. Our purpose was to generate testable hypotheses. We used the integral plume models to relate crown injury to bole injury and to explore the effects of variation in fire...
Analytical Procedures for Testability.
1983-01-01
Beat Internal Classifications", AD: A018516. "A System of Computer Aided Diagnosis with Blood Serum Chemistry Tests and Bayesian Statistics", AD: 786284...6 LIST OF TALS .. 1. Truth Table ......................................... 49 2. Covering Problem .............................. 93 3. Primary and...quential classification procedure in a coronary care ward is evaluated. In the toxicology field "A System of Computer Aided Diagnosis with Blood Serum
E-learning platform for automated testing of electronic circuits using signature analysis method
NASA Astrophysics Data System (ADS)
Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel
2016-12-01
Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.
Objections to routine clinical outcomes measurement in mental health services: any evidence so far?
MacDonald, Alastair J D; Trauer, Tom
2010-12-01
Routine clinical outcomes measurement (RCOM) is gaining importance in mental health services. To examine whether criticisms published in advance of the development of RCOM have been borne out by data now available from such a programme. This was an observational study of routine ratings using HoNOS65+ at inception/admission and again at discharge in an old age psychiatry service from 1997 to 2008. Testable hypotheses were generated from each criticism amenable to empirical examination. Inter-rater reliability estimates were applied to observed differences between scores between community and ward patients using resampling. Five thousand one hundred eighty community inceptions and 862 admissions had HoNOS65+ ratings at referral/admission and discharge. We could find no evidence of gaming (artificially worse scores at inception and better at discharge), selection, attrition or detection bias, and ratings were consistent with diagnosis and level of service. Anticipated low levels of inter-rater reliability did not vitiate differences between levels of service. Although only hypotheses testable from within RCOM data were examined, and only 46% of eligible episodes had complete outcomes data, no evidence of the alleged biases were found. RCOM seems valid and practical in mental health services.
Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation.
Arabi, K; Sawan, M A
1999-06-01
An advanced stimulator for neuromuscular stimulation of spinal cord injured patients has been developed. The stimulator is externally controlled and powered by a single encoded radio frequency carrier and has four independently controlled bipolar stimulation channels. It offers a wide range of reprogrammability and flexibility, and can be used in many neuromuscular electrical stimulation applications. The implant system is adaptable to patient's needs and to future developments in stimulation algorithms by reprogramming the stimulator. The stimulator is capable of generating a wide range of stimulation waveforms and stimulation patterns and therefore is very suitable for selective nerve stimulation techniques. The reliability of the implant has been increased by using a forward error detection and correction communication protocol and by designing the chip for structural testability based on scan test approach. Implemented testability scheme makes it possible to verify the complete functionality of the implant before and after implantation. The stimulators architecture is designed to be modular and therefore its different blocks can be reused as standard building blocks in the design and implementation of other neuromuscular prostheses. Design for low-power techniques have also been employed to reduce power consumption of the electronic circuitry.
Lift and drag in three-dimensional steady viscous and compressible flow
NASA Astrophysics Data System (ADS)
Liu, L. Q.; Wu, J. Z.; Su, W. D.; Kang, L. L.
2017-11-01
In a recent paper, Liu, Zhu, and Wu ["Lift and drag in two-dimensional steady viscous and compressible flow," J. Fluid Mech. 784, 304-341 (2015)] present a force theory for a body in a two-dimensional, viscous, compressible, and steady flow. In this companion paper, we do the same for three-dimensional flows. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flows originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the unified force theorem, which states that the forces are always determined by the vector circulation Γϕ of longitudinal velocity and the scalar inflow Qψ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the testable unified force formula. After that, a general principle to increase the lift-drag ratio is proposed.
Reilly, John J; Wells, Jonathan C K
2005-12-01
The WHO recommends exclusive breast-feeding for the first 6 months of life. At present, <2 % of mothers who breast-feed in the UK do so exclusively for 6 months. We propose the testable hypothesis that this is because many mothers do not provide sufficient breast milk to feed a 6-month-old baby adequately. We review recent evidence on energy requirements during infancy, and energy transfer from mother to baby, and consider the adequacy of exclusive breast-feeding to age 6 months for mothers and babies in the developed world. Evidence from our recent systematic review suggests that mean metabolisable energy intake in exclusively breast-fed infants at 6 months is 2.2-2.4 MJ/d (525-574 kcal/d), and mean energy requirement approximately 2.6-2.7 MJ/d (632-649 kcal/d), leading to a gap between the energy provided by milk and energy needs by 6 months for many babies. Our hypothesis is consistent with other evidence, and with evolutionary considerations, and we briefly review this other evidence. The hypothesis would be testable in a longitudinal study of infant energy balance using stable-isotope techniques, which are both practical and valid.
Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3
NASA Astrophysics Data System (ADS)
Boyd, P. T.; Smale, A. P.
2001-05-01
The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.
Kohrs, F; Heyer, R; Bissinger, T; Kottler, R; Schallert, K; Püttker, S; Behne, A; Rapp, E; Benndorf, D; Reichl, U
2017-08-01
Complex microbial communities are the functional core of anaerobic digestion processes taking place in biogas plants (BGP). So far, however, a comprehensive characterization of the microbiomes involved in methane formation is technically challenging. As an alternative, enriched communities from laboratory-scale experiments can be investigated that have a reduced number of organisms and are easier to characterize by state of the art mass spectrometric-based (MS) metaproteomic workflows. Six parallel laboratory digesters were inoculated with sludge from a full-scale BGP to study the development of enriched microbial communities under defined conditions. During the first three month of cultivation, all reactors (R1-R6) were functionally comparable regarding biogas productions (375-625 NL L reactor volume -1 d -1 ), methane yields (50-60%), pH values (7.1-7.3), and volatile fatty acids (VFA, <5 mM). Nevertheless, a clear impact of the temperature (R3, R4) and ammonia (R5, R6) shifts was observed for the respective reactors. In both reactors operated under thermophilic regime, acetic and propionic acid (10-20 mM) began to accumulate. While R4 recovered quickly from acidification, the levels of VFA remained to be high in R3 resulting in low pH values of 6.5-6.9. The digesters R5 and R6 operated under the high ammonia regime (>1 gNH 3 L -1 ) showed an increase to pH 7.5-8.0, accumulation of acetate (>10 mM), and decreasing biogas production (<125 NL L reactor volume -1 d -1 ). Tandem MS (MS/MS)-based proteotyping allowed the identification of taxonomic abundances and biological processes. Although all reactors showed similar performances, proteotyping and terminal restriction fragment length polymorphisms (T-RFLP) fingerprinting revealed significant differences in the composition of individual microbial communities, indicating multiple steady-states. Furthermore, cellulolytic enzymes and cellulosomal proteins of Clostridium thermocellum were identified to be specific markers for the thermophilic reactors (R3, R4). Metaproteins found in R3 indicated hydrogenothrophic methanogenesis, whereas metaproteins of acetoclastic methanogenesis were identified in R4. This suggests not only an individual evolution of microbial communities even for the case that BGPs are started at the same initial conditions under well controlled environmental conditions, but also a high compositional variance of microbiomes under extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuel Cycle System Analysis Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven J. Piet; Brent W. Dixon; Dirk Gombert
2009-06-01
This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some ofmore » the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.« less
Reversal of OFI and CHF in Research Reactors Operating at 1 to 50 Bar. Version 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalimullah, M.; Olson, A. P.; Dionne, B.
2014-02-28
The conditions at which the critical heat flux (CHF) and the heat flux at the onset of Ledinegg flow instability (OFI) are equal, are determined for a coolant channel with uniform heat flux as a function of five independent parameters: the channel exit pressure (P), heated length (Lh) , heated diameter (Dh), inlet temperature (Tin), and mass flux (G). A diagram is made by plotting the mass flux and heat flux at the OFI-CHF intersection (reversal from CHF > OFI to CHF < OFI as G increases) as a function of P (1 to 50 bar), for 36 combinations ofmore » the remaining three parameters (Lh , Dh , Tin): Lh = 0.28, 0.61, 1.18 m; Dh = 3, 4, 6, 8 mm; Tin = 30, 50, 70 °C. The use of the diagram to scope whether a research reactor is OFI-limited (below the curve) or CHF-limited based on the five parameters of its coolant channel is described. Justification for application of the diagram to research reactors with axially non-uniform heat flux is provided. Due to its limitations (uncertainties not included), the diagram cannot replace the detailed thermal-hydraulic analysis required for a reactor safety analysis. In order to make the OFI-CHF intersection diagram, two world-class CHF prediction methods (the Hall-Mudawar correlation and the extended Groeneveld 2006 table) are compared for 216 combinations of the five independent parameters. The two widely used OFI correlations (the Saha- Zuber and the Whittle-Forgan with η = 32.5) are also compared for the same combinations of the five parameters. The extended Groeneveld table and the Whittle-Forgan OFI correlation are selected for use in making the diagram. Using the above five design parameters, a research reactor can be represented by a point on the reversal diagram, and the diagram can be used to scope, without a thermal-hydraulic calculation, whether the OFI will occur before the CHF, or the CHF will occur before the OFI when the reactor power is increased keeping the five parameters fixed.« less
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Behavior of U 3Si 2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso
2016-09-01
As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Losmore » Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.« less
Yudow, B.D.
1986-02-24
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Yudow, Bernard D.
1987-01-01
A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.
Axially staggered seed-blanket reactor fuel module construction
Cowell, Gary K.; DiGuiseppe, Carl P.
1985-01-01
A heterogeneous nuclear reactor of the seed-blanket type is provided wher the fissile (seed) and fertile (blanket) nuclear fuels are segregated axially within each fuel element such that fissile and fertile regions occur in an alternating pattern along the length of the fuel element. Further, different axial stacking patterns are used for the fuel elements of at least two module types such that when modules of different types are positioned adjacent to one another, the fertile regions of the modules are offset or staggered. Thus, when a module of one type is surrounded by modules of the second type the fertile regions thereof will be surrounded on all sides by fissile material. This provides enhanced neutron communication both radially and axially, thereby resulting in greater power oscillation stability than other axial arrangements. The arrangements of the fissile and fertile regions in an alternating axial manner minimizes the radial power peaking factors and provides a more optional thermal-hydraulic design than is afforded by radial arrangements.
Fixed bed pyrolysis of biomass solid waste for bio-oil
NASA Astrophysics Data System (ADS)
Islam, Mohammad Nurul; Ali, Mohamed Hairol Md; Haziq, Miftah
2017-08-01
Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed stainless steel pyrolysis reactor of 50 mm diameter and 50 cm length. The biomass solid feedstock is prepared prior to pyrolysis. The reactor bed is heated by means of a cylindrical heater of biomass source. A temperature of 500°C is maintained with an apperent vapor residence time of 3-5 sec. The products obtained are liquid bio-oil, solid char and gases. The liquid product yield is found to be 30% by weight of solid biomass feedstock while the solid product yield is found to be 35% by weight of solid biomass feedtock, the rest is gas. The bio-oil is a single-phase brownish color liquid of acrid smell. The heating value of the oil is determined to be 25 MJ/kg. The density and pH value are found to be 1.125 kg/m3 and 3.78 respectively.
CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR
King, L.D.P.
1960-07-01
A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.
Yoon, Hye Young; Lee, Si Young
2017-11-01
In this study, a laboratory model to reproduce dental unit waterline (DUWL) biofilms was developed using a CDC biofilm reactor (CBR). Bacteria obtained from DUWLs were filtered and cultured in Reasoner's 2A (R2A) for 10 days, and were subsequently stored at -70°C. This stock was cultivated on R2A in batch mode. After culturing for five days, the bacteria were inoculated into the CBR. Biofilms were grown on polyurethane tubing for four days. Biofilm accumulation and thickness was 1.3 × 10 5 CFU cm -2 and 10-14 μm respectively, after four days. Bacteria in the biofilms included cocci and rods of short and medium lengths. In addition, 38 bacterial genera were detected in biofilms. In this study, the suitability and reproducibility of the CBR model for DUWL biofilm formation were demonstrated. The model provides a foundation for the development of bacterial control methods for DUWLs.
Key metrics for HFIR HEU and LEU models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R.; Chandler, David
This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less
First steps towards a constructal Microbial Fuel Cell.
Lepage, Guillaume; Perrier, Gérard; Ramousse, Julien; Merlin, Gérard
2014-06-01
In order to reach real operating conditions with consequent organic charge flow, a multi-channel reactor for Microbial Fuel Cells is designed. The feed-through double chamber reactor is a two-dimensional system with four parallel channels and Reticulated Vitreous Carbon as electrodes. Based on thermodynamical calculations, the constructal-inspired distributor is optimized with the aim to reduce entropy generation along the distributing path. In the case of negligible singular pressure drops, the Hess-Murray law links the lengths and the hydraulic diameters of the successive reducing ducts leading to one given working channel. The determination of generated entropy in the channels of our constructal MFC is based on the global hydraulic resistance caused by both regular and singular pressure drops. Polarization, power and Electrochemical Impedance Spectroscopy show the robustness and the efficiency of the cell, and therefore the potential of the constructal approach. Routes towards improvements are suggested in terms of design evolutions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Design of snowflake-diverted equilibria of CFETR
NASA Astrophysics Data System (ADS)
Hang, LI; Xiang, GAO; Guoqiang, LI; Zhengping, LUO; Damao, YAO; Yong, GUO
2018-03-01
The Chinese Fusion Engineering Test Reactor (CFETR) represents the next generation of full superconducting fusion reactors in China. Recently, CFETR was redesigned with a larger size and will be operated in two phases. To reduce the heat flux on the target plate, a snowflake (SF) divertor configuration is proposed. In this paper we show that by adding two dedicated poloidal field (PF) coils, the SF configuration can be achieved in both phases. The equilibria were calculated by TEQ code for a range of self-inductances l i3. The coil currents were calculated at some fiducial points in the flattop phase. The results indicate that the PF coil system has the ability to maintain a long flattop phase in 7.5 and 10 MA inductive scenarios for the single null divertor (SND) and SF divertor configurations. The properties of the SF configuration were also analyzed. The connection length and flux expansion of the SF divertor were both increased significantly over the SND.
VARIABLE AREA CONTROL ROD FOR NUCLEAR REACTOR
Huston, N.E.
1960-05-01
A control rod is described which permits continual variation of its absorbing strength uniformly along the length of the rod. The rod is fail safe and is fully inserted into the core but changes in its absorbing strength do not produce axial flux distortion. The control device comprises a sheet containing a material having a high thermal-neutron absorption cross section. A pair of shafts engage the sheet along the longitudinal axis of the shafts and gears associated with the shafts permit winding and unwinding of the sheet around the shafts.
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.
Characterization of the ITER model negative ion source during long pulse operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemsworth, R.S.; Boilson, D.; Crowley, B.
2006-03-15
It is foreseen to operate the neutral beam system of the International Thermonuclear Experimental Reactor (ITER) for pulse lengths extending up to 1 h. The performance of the KAMABOKO III negative ion source, which is a model of the source designed for ITER, is being studied on the MANTIS test bed at Cadarache. This article reports the latest results from the characterization of the ion source, in particular electron energy distribution measurements and the comparison between positive ion and negative ion extraction from the source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyniers, G.C.; Froment, G.F.; Kopinke, F.D.
1994-11-01
An extensive experimental program has been carried out in a pilot unit for the thermal cracking of hydrocarbons. On the basis of the experimental information and the insight in the mechanisms for coke formation in pyrolysis reactors, a mathematical model describing the coke formation has been derived. This model has been incorporated in the existing simulation tools at the Laboratorium voor Petrochemische Techniek, and the run length of an industrial naphtha cracking furnace has been accurately simulated. In this way the coking model has been validated.
Inverse energy cascades in three-dimensional turbulence
NASA Technical Reports Server (NTRS)
Hossain, Murshed
1991-01-01
Fully three-dimensional magnetohydrodynamic (MHD) turbulence at large kinetic and low magnetic Reynolds numbers is considered in the presence of a strong uniform magnetic field. It is shown by numerical simulation of a model of MHD that the energy inverse cascades to longer length scales when the interaction parameter is large. While the steady-state dynamics of the driven problem is three-dimensional in character, the behavior has resemblance to two-dimensional hydrodynamics. These results have implications in turbulence theory, MHD power generator, planetary dynamos, and fusion reactor blanket design.
Tuberculosis among prison staff in Rio Grande do Sul.
Busatto, Caroline; Nunes, Luciana de Souza; Valim, Andréia Rosane de Moura; Valença, Mariana Soares; Krug, Suzane Frantz; Becker, Daniela; Allgayer, Manuela Filter; Possuelo, Lia Gonçalves
2017-04-01
to evaluate the risk of infection and illness caused by Mycobacterium tuberculosis among health care and security staff in prisons in two regions of Rio Grande do Sul (RS). cross-sectional study involving prison staff. An interview and sputum smear microscopy and culture were performed. Latent infection was evaluated according to the result of the tuberculin test (TT), self-referred. among staff who had a TT, 10 (83.3%) in the central region and 2 (16.7%) in the southern region were considered reactors. Length of employment among prison officers who reacted to TT was 15.3 years, and among health care workers, 4.1 years (p = 0.01). No cases of active tuberculosis (TB) were identified. prevalence of latent TB was 27.9%. Length of employment between different professional categories and their working regions was considered a risk factor for latent TB.
Thermal Aspects of Using Alternative Nuclear Fuels in Supercritical Water-Cooled Reactors
NASA Astrophysics Data System (ADS)
Grande, Lisa Christine
A SuperCritical Water-cooled Nuclear Reactor (SCWR) is a Generation IV concept currently being developed worldwide. Unique to this reactor type is the use of light-water coolant above its critical point. The current research presents a thermal-hydraulic analysis of a single fuel channel within a Pressure Tube (PT)-type SCWR with a single-reheat cycle. Since this reactor is in its early design phase many fuel-channel components are being investigated in various combinations. Analysis inputs are: steam cycle, Axial Heat Flux Profile (AHFP), fuel-bundle geometry, and thermophysical properties of reactor coolant, fuel sheath and fuel. Uniform and non-uniform AHFPs for average channel power were applied to a variety of alternative fuels (mixed oxide, thorium dioxide, uranium dicarbide, uranium nitride and uranium carbide) enclosed in an Inconel-600 43-element bundle. The results depict bulk-fluid, outer-sheath and fuel-centreline temperature profiles together with the Heat Transfer Coefficient (HTC) profiles along the heated length of fuel channel. The objective is to identify the best options in terms of fuel, sheath material and AHFPS in which the outer-sheath and fuel-centreline temperatures will be below the accepted temperature limits of 850°C and 1850°C respectively. The 43-element Inconel-600 fuel bundle is suitable for SCWR use as the sheath-temperature design limit of 850°C was maintained for all analyzed cases at average channel power. Thoria, UC2, UN and UC fuels for all AHFPs are acceptable since the maximum fuel-centreline temperature does not exceed the industry accepted limit of 1850°C. Conversely, the fuel-centreline temperature limit was exceeded for MOX at all AHFPs, and UO2 for both cosine and downstream-skewed cosine AHFPs. Therefore, fuel-bundle modifications are required for UO2 and MOX to be feasible nuclear fuels for SCWRs.
Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Emory Ming-Yue
2006-01-01
Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less
Fıxed bed slow pyrolysıs of bıomass solıd waste for bıo-char
NASA Astrophysics Data System (ADS)
Islam, M. N.; Ali, M. H.; Ahmad, I.
2017-06-01
Biomass solid waste in the form of rice husk particle is pyrolyzed in a fixed bed pyrolysis reactor. The reactor is made of stainless steel with dimensions of 76 mm in diameter and 90 cm in length. Rice husk is collected locally from Brunei-Muara district of Brunei Darussalam which is processed for pyrolysis. The particles are selected in the millimeter range. It is oven-dried at 105°C for 6 hours after being air-dried prior to pyrolysis. The reactor bed is heated by means of saw-dust in a biomass source heater. A temperature range of 390-410°C is maintained with an apperent vapor residence time of 30 min. Nitrogen gas is passed through the reactor system to make the atmosphere inert. A water-cooled condenser is used to derive bio-oil from the condensable vapors. The system is subjected to pyrolysis for a running time of 60 min. The products obtained are solid bio-char, liquid bio-oil and pyrolytic bio-gases. The solid char yield is found to be 45 by weight of solid biomass feedstock and the liquid product yield is found to be 29 by weight of solid biomass feedstock. The rest is gas flared into the atmosphere. The bio-char is retained in the reactor and collected at the end of the experimental run. The bio-char is found to be black in color retaining its original shape. The bio-char product is subjected to energy analysis for its higher heating value (HHV) by means of an oxygen bomb calorimeter. It is found to be 20.3 MJ/kg. The density of the bio-char is found to be 238.5 kg/m3 with an energy density of 4.85 GJ/m3.
The (virtual) conceptual necessity of quantum probabilities in cognitive psychology.
Blutner, Reinhard; beim Graben, Peter
2013-06-01
We propose a way in which Pothos & Busemeyer (P&B) could strengthen their position. Taking a dynamic stance, we consider cognitive tests as functions that transfer a given input state into the state after testing. Under very general conditions, it can be shown that testable properties in cognition form an orthomodular lattice. Gleason's theorem then yields the conceptual necessity of quantum probabilities (QP).
The Systems Test Architect: Enabling The Leap From Testable To Tested
2016-09-01
engineering process requires an interdisciplinary approach, involving both technical and managerial disciplines applied to the synthesis and integration...relationship between the technical and managerial aspects of systems engineering. TP-2003-020-01 describes measurement as having the following...it is evident that DOD makes great strides to tackle both the managerial and technical aspects of test and evaluation within the systems
Active Diagnosis of Navy Machinery Rev 2.0
2016-10-01
electrical distribution and potable water supply systems. Because of these dependencies, ship auxiliary system failures can cause combat load failure...buildup generally causes a pipe to disconnect from a junction, causing water to leak . This limits the faults that are testable, since many of the faults...pipes, junctions, pumps, flow meters, thermal loads, check valve, and water tank. Each agent is responsible for maintaining its constraints locally
Silicon Wafer Advanced Packaging (SWAP). Multichip Module (MCM) Foundry Study. Version 2
1991-04-08
Next Layer Dielectric Spacing - Additional Metal Thickness Impact on Dielectric Uniformity/Adhiesion. The first step in .!Ie EPerimental design would be... design CAM - computer aided manufacturing CAE - computer aided engineering CALCE - computer aided life cycle engineering center CARMA - computer aided...expansion 5 j- CVD - chemical vapor deposition J . ..- j DA - design automation J , DEC - Digital Equipment Corporation --- DFT - design for testability
Structural Genomics of Bacterial Virulence Factors
2006-05-01
positioned in the unit cell by Molecular Replacement (Protein Data Bank ( PDB ) ID code 1acc)6 using MOLREP, and refined with REFMAC version 5.0 (ref. 24...increase our understanding of the molecular mechanisms of pathogenicity, putting us in a stronger position to anticipate and react to emerging...term, the accumulated structural information will generate important and testable hypotheses that will increase our understanding of the molecular
Testability/Diagnostics Design Encyclopedia
1990-09-01
weapon system that is pushing the state of the art and produced In limited numbers, with questionable historical data on their operation, one can...designs with questionable basis and justification. Unfortunately, this process has not been transformed from an art to a rigorous methodology...REQUIREMENT #2.1 - On-the-job training - Formal school training o O-Level data acquieitlonico01ectlon system (and data management) o Requirements to
Rapid Communication: Quasi-gedanken experiment challenging the no-signalling theorem
NASA Astrophysics Data System (ADS)
Kalamidas, Demetrios A.
2018-01-01
Kennedy ( Philos. Sci. 62, 4 (1995)) has argued that the various quantum mechanical no-signalling proofs formulated thus far share a common mathematical framework, are circular in nature, and do not preclude the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis, we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.
Retrieval as a Fast Route to Memory Consolidation.
Antony, James W; Ferreira, Catarina S; Norman, Kenneth A; Wimber, Maria
2017-08-01
Retrieval-mediated learning is a powerful way to make memories last, but its neurocognitive mechanisms remain unclear. We propose that retrieval acts as a rapid consolidation event, supporting the creation of adaptive hippocampal-neocortical representations via the 'online' reactivation of associative information. We describe parallels between online retrieval and offline consolidation and offer testable predictions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Maestripieri, Dario
2005-01-01
Comparative behavioral research is important for a number of reasons and can contribute to the understanding of human behavior and development in many different ways. Research with animal models of human behavior and development can be a source not only of general principles and testable hypotheses but also of empirical information that may be…
1982-10-01
e.g., providing voters in TMR systems and detection-switching requirements in standby-sparing sys- tems. The application of mathematical thoery of...and time redundancy required for error detection and correction, are interrelated. Mathematical modeling, when applied to fault tolerant systems, can...9 1.1 Some Fundamental Principles............................. 11 1.2 Mathematical Theory of
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Neeley, James R.; Jones, James V.; Bramon, Christopher J.; Inman, Sharon K.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle in development and is scheduled for its first mission in 2018.SLS has many of the same logistics challenges as any other large scale program. However, SLS also faces unique challenges related to testability. This presentation will address the SLS challenges for diagnostics and fault isolation, along with the analyses and decisions to mitigate risk..
A Survey of Reliability, Maintainability, Supportability, and Testability Software Tools
1991-04-01
designs in terms of their contributions toward forced mission termination and vehicle or function loss . Includes the ability to treat failure modes of...ABSTRACT: Inputs: MTBFs, MTTRs, support equipment costs, equipment weights and costs, available targets, military occupational specialty skill level and...US Army CECOM NAME: SPARECOST ABSTRACT: Calculates expected number of failures and performs spares holding optimization based on cost, weight , or
Models of cooperative dynamics from biomolecules to magnets
NASA Astrophysics Data System (ADS)
Mobley, David Lowell
This work details application of computer models to several biological systems (prion diseases and Alzheimer's disease) and a magnetic system. These share some common themes, which are discussed. Here, simple lattice-based models are applied to aggregation of misfolded protein in prion diseases like Mad Cow disease. These can explain key features of the diseases. The modeling is based on aggregation being essential in establishing the time-course of infectivity. Growth of initial aggregates is assumed to dominate the experimentally observed lag phase. Subsequent fission, regrowth, and fission set apart the exponential doubling phase in disease progression. We explore several possible modes of growth for 2-D aggregates and suggest the model providing the best explanation for the experimental data. We develop testable predictions from this model. Like prion disease, Alzheimer's disease (AD) is an amyloid disease characterized by large aggregates in the brain. However, evidence increasingly points away from these as the toxic agent and towards oligomers of the Abeta peptide. We explore one possible toxicity mechanism---insertion of Abeta into cell membranes and formation of harmful ion channels. We find that mutations in this peptide which cause familial Alzheimer's disease (FAD) also affect the insertion of this peptide into membranes in a fairly consistent way, suggesting that this toxicity mechanism may be relevant biologically. We find a particular inserted configuration which may be especially harmful and develop testable predictions to verify whether or not this is the case. Nucleation is an essential feature of our models for prion disease, in that it protects normal, healthy individuals from getting prion disease. Nucleation is important in many other areas, and we modify our lattice-based nucleation model to apply to a hysteretic magnetic system where nucleation has been suggested to be important. From a simple model, we find qualitative agreement with experiment, and make testable experimental predictions concerning time-dependence and temperature-dependence of the major hysteresis loop and reversal curves which have been experimentally verified. We argue why this model may be suitable for systems like these and explain implications for Ising-like models. We suggest implications for future modeling work. Finally, we present suggestions for future work in all three areas.
Colquhoun, Heather L; Carroll, Kelly; Eva, Kevin W; Grimshaw, Jeremy M; Ivers, Noah; Michie, Susan; Sales, Anne; Brehaut, Jamie C
2017-09-29
Audit and feedback (A&F) is a common strategy for helping health providers to implement evidence into practice. Despite being extensively studied, health care A&F interventions remain variably effective, with overall effect sizes that have not improved since 2003. Contributing to this stagnation is the fact that most health care A&F interventions have largely been designed without being informed by theoretical understanding from the behavioral and social sciences. To determine if the trend can be improved, the objective of this study was to develop a list of testable, theory-informed hypotheses about how to design more effective A&F interventions. Using purposive sampling, semi-structured 60-90-min telephone interviews were conducted with experts in theories related to A&F from a range of fields (e.g., cognitive, health and organizational psychology, medical decision-making, economics). Guided by detailed descriptions of A&F interventions from the health care literature, interviewees described how they would approach the problem of designing improved A&F interventions. Specific, theory-informed hypotheses about the conditions for effective design and delivery of A&F interventions were elicited from the interviews. The resulting hypotheses were assigned by three coders working independently into themes, and categories of themes, in an iterative process. We conducted 28 interviews and identified 313 theory-informed hypotheses, which were placed into 30 themes. The 30 themes included hypotheses related to the following five categories: A&F recipient (seven themes), content of the A&F (ten themes), process of delivery of the A&F (six themes), behavior that was the focus of the A&F (three themes), and other (four themes). We have identified a set of testable, theory-informed hypotheses from a broad range of behavioral and social science that suggest conditions for more effective A&F interventions. This work demonstrates the breadth of perspectives about A&F from non-healthcare-specific disciplines in a way that yields testable hypotheses for healthcare A&F interventions. These results will serve as the foundation for further work seeking to set research priorities among the A&F research community.
Color vision deficiency in preschool children: the multi-ethnic pediatric eye disease study.
Xie, John Z; Tarczy-Hornoch, Kristina; Lin, Jesse; Cotter, Susan A; Torres, Mina; Varma, Rohit
2014-07-01
To determine the sex- and ethnicity-specific prevalence of color vision deficiency (CVD) in black, Asian, Hispanic, and non-Hispanic white preschool children. Population-based, cross-sectional study. The Multi-Ethnic Pediatric Eye Disease Study is a population-based evaluation of the prevalence of vision disorders in children in Southern California. A total of 5960 subjects 30 to 72 months of age were recruited for the study, of whom 4177 were able to complete color vision testing (1265 black, 812 Asian, 1280 Hispanic, and 820 non-Hispanic white). Color vision testing was performed using Color Vision Testing Made Easy color plates (Home Vision Care, Gulf Breeze, FL), and diagnostic confirmatory testing was performed using the Waggoner HRR Diagnostic Test color plates (Home Vision Care). Testability of color vision in preschool children between 30 and 72 months of age and prevalence of CVD stratified by age, sex, and ethnicity. Testability was 17% in children younger than 37 months of age, increasing to 57% in children 37 to 48 months of age, 89% in children 49 to 60 months of age, and 98% in children 61 to 72 months of age. The prevalence of CVD among boys was 1.4% for black, 3.1% for Asian, 2.6% for Hispanic, and 5.6% for non-Hispanic white children; the prevalence in girls was 0.0% to 0.5% for all ethnicities. The ethnic difference in CVD was statistically significant between black and non-Hispanic white children (P = 0.0003) and between Hispanic and non-Hispanic white children (P = 0.02). In boys, most CVD cases were either deutan (51%) or protan (34%); 32% were classified as mild, 15% as moderate, and 41% as severe. Testability for CVD in preschool children is high by 4 years of age. The prevalence of CVD in preschool boys varies by ethnicity, with the highest prevalence in non-Hispanic white and lowest in black children. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Exploring Operational Test and Evaluation of Unmanned Aircraft Systems: A Qualitative Case Study
NASA Astrophysics Data System (ADS)
Saliceti, Jose A.
The purpose of this qualitative case study was to explore and identify strategies that may potentially remedy operational test and evaluation procedures used to evaluate Unmanned Aircraft Systems (UAS) technology. The sample for analysis consisted of organizations testing and evaluating UASs (e.g., U.S. Air Force, U.S. Navy, U.S. Army, U.S. Marine Corps, U.S. Coast Guard, and Customs Border Protection). A purposeful sampling technique was used to select 15 subject matter experts in the field of operational test and evaluation of UASs. A questionnaire was provided to participants to construct a descriptive and robust research. Analysis of responses revealed themes related to each research question. Findings revealed operational testers utilized requirements documents to extrapolate measures for testing UAS technology and develop critical operational issues. The requirements documents were (a) developed without the contribution of stakeholders and operational testers, (b) developed with vague or unrealistic measures, and (c) developed without a systematic method to derive requirements from mission tasks. Four approaches are recommended to develop testable operational requirements and assist operational testers: (a) use a mission task analysis tool to derive requirements for mission essential tasks for the system, (b) exercise collaboration among stakeholders and testers to ensure testable operational requirements based on mission tasks, (c) ensure testable measures are used in requirements documents, and (d) create a repository list of critical operational issues by mission areas. The preparation of operational test and evaluation processes for UAS technology is not uniform across testers. The processes in place are not standardized, thus test plan preparation and reporting are different among participants. A standard method to prepare and report UAS technology should be used when preparing and reporting on UAS technology. Using a systematic process, such as mission-based test design, resonated among participants as an analytical method to link UAS mission tasks and measures of performance to the capabilities of the system under test when developing operational test plans. Further research should examine system engineering designs for system requirements traceability matrix of mission tasks and subtasks while using an analysis tool that adequately evaluates UASs with an acceptable level of confidence in the results.
NASA Astrophysics Data System (ADS)
Qu, Zhechao; Schmidt, Florian M.
2015-04-01
The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 µm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/ 1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7 × 10-5 cm-1 Hz-1/2, the system is applicable down to an H2O concentration of 0.1 % at 1,000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded laboratory-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to real time in situ measurements of H2O concentration and temperature time histories (0.25-s time resolution) in the hot gases 2-11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1,200 and 1,600 K and H2O concentrations up to 40 % were detected above the biofuels.
Catalytic ignition model in a monolithic reactor with in-depth reaction
NASA Technical Reports Server (NTRS)
Tien, Ta-Ching; Tien, James S.
1990-01-01
Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.
Contribution to an effective design method for stationary reaction-diffusion patterns.
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-06-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
Jin, Tao; Yan, Qingmei
2010-01-01
Using ammonia monooxygenase α-subunit (amoA) gene and 16S rRNA gene, the community structure and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in a nitrogen-removing reactor, which was operated for five phases, were characterized and quantified by cloning, terminal restriction fragment length polymorphism (T-RFLP), and quantitative polymerase chain reaction (qPCR). The results suggested that the dominant AOB in the reactor fell to the genus Nitrosomonas, while the dominant AOA belonged to Crenarchaeotal Group I.1a in phylum Crenarchaeota. Real-time PCR results demonstrated that the levels of AOB amoA varied from 2.9 × 103 to 2.3 × 105 copies per nanogram DNA, greatly (about 60 times) higher than those of AOA, which ranged from 1.7 × 102 to 3.8 × 103 copies per nanogram DNA. This indicated the possible leading role of AOB in the nitrification process in this study. T-RFLP results showed that the AOB community structure significantly shifted in different phases while AOA only showed one major peak for all the phases. The analyses also suggested that the AOB community was more sensitive than that of AOA to operational conditions, such as ammonia loading and dissolved oxygen. PMID:20405121
Kinetics of Death of Bacterial Spores at Elevated Temperatures
Wang, Daniel I-C.; Scharer, Jeno; Humphrey, Arthur E.
1964-01-01
The kinetics of death of Bacillus stearothermophilus spores (FS 7954) suspended in phosphate buffer (pH 7) were studied over a temperature range of 127.2 to 143.8 C and exposure times of 0.203 to 4.150 sec. These short exposure were achieved by use of a tubular flow reactor in which a suspension of spores was injected into a hot flowing stream at the entrance of the reactor. Thermal equilibria of the suspension with the hot stream was achieved within 0.0006 sec. After flow through a fixed length of reactor, the stream containing the spores was cooled by flash vaporization and then assayed for viable count. The death rate data were fitted by a logarithmic expression. However, logarithmic death rate was only approximated in the tail or high-kill regions of exposure. Death rate constants obtained from this portion of the data were found to correlate by Arrhenius as well as Absolute Reaction Rate Theory relationships. Thermal-death time curves were found to correlate the data rather poorly. The activation energy and frequency constant for an Arrhenius relationship fit of the data were found to be 83.6 kcal/gmole and 1047.2 min-1, respectively. The standard enthalpy and entropy changes for an Absolute Reaction Rate Theory relationship fit of the data were found to be 84.4 kcal/gmole and 157 cal/gmole-K, respectively. PMID:14215978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Floyd E.; Hu, Lin-wen; Wilson, Erik
The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings onmore » avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Morlang, G.M.
1996-06-01
The use of neutron radiography for visualization of fluid flow through flow visualization modules has been very successful. Current experiments at the Penn State Breazeale Reactor serve to verify the mixing and transport of soluble boron under natural flow conditions as would be experienced in a pressurized water reactor. Different flow geometries have been modeled including holes, slots, and baffles. Flow modules are constructed of aluminum box material 1 1/2 inches by 4 inches in varying lengths. An experimental flow system was built which pumps fluid to a head tank and natural circulation flow occurs from the head tank throughmore » the flow visualization module to be radiographed. The entire flow system is mounted on a portable assembly to allow placement of the flow visualization module in front of the neutron beam port. A neutron-transparent fluorinert fluid is used to simulate water at different densities. Boron is modeled by gadolinium oxide powder as a tracer element, which is placed in a mixing assembly and injected into the system by remote operated electric valve, once the reactor is at power. The entire sequence is recorded on real-time video. Still photographs are made frame-by-frame from the video tape. Computers are used to digitally enhance the video and still photographs. The data obtained from the enhancement will be used for verification of simple geometry predictions using the TRAC and RELAP thermal-hydraulic codes. A detailed model of a reactor vessel inlet plenum, downcomer region, flow distribution area and core inlet is being constructed to model the AP600 plenum. Successive radiography experiments of each section of the model under identical conditions will provide a complete vessel/core model for comparison with the thermal-hydraulic codes.« less
DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terry J. Mazanec
2008-09-30
The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrovic, Bojan; Maldonado, Ivan
2016-04-14
The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed onmore » December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.« less
Lochmatter, Samuel; Maillard, Julien; Holliger, Christof
2014-01-01
This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970
Apparatus and method for classifying fuel pellets for nuclear reactor
Wilks, Robert S.; Sternheim, Eliezer; Breakey, Gerald A.; Sturges, Jr., Robert H.; Taleff, Alexander; Castner, Raymond P.
1984-01-01
Control for the operation of a mechanical handling and gauging system for nuclear fuel pellets. The pellets are inspected for diameters, lengths, surface flaws and weights in successive stations. The control includes, a computer for commanding the operation of the system and its electronics and for storing and processing the complex data derived at the required high rate. In measuring the diameter, the computer enables the measurement of a calibration pellet, stores that calibration data and computes and stores diameter-correction factors and their addresses along a pellet. To each diameter measurement a correction factor is applied at the appropriate address. The computer commands verification that all critical parts of the system and control are set for inspection and that each pellet is positioned for inspection. During each cycle of inspection, the measurement operation proceeds normally irrespective of whether or not a pellet is present in each station. If a pellet is not positioned in a station, a measurement is recorded, but the recorded measurement indicates maloperation. In measuring diameter and length a light pattern including successive shadows of slices transverse for diameter or longitudinal for length are projected on a photodiode array. The light pattern is scanned electronically by a train of pulses. The pulses are counted during the scan of the lighted diodes. For evaluation of diameter the maximum diameter count and the number of slices for which the diameter exceeds a predetermined minimum is determined. For acceptance, the maximum must be less than a maximum level and the minimum must exceed a set number. For evaluation of length, the maximum length is determined. For acceptance, the length must be within maximum and minimum limits.
What is wrong with intelligent design?
Sober, Elliott
2007-03-01
This article reviews two standard criticisms of creationism/intelligent design (ID)): it is unfalsifiable, and it is refuted by the many imperfect adaptations found in nature. Problems with both criticisms are discussed. A conception of testability is described that avoids the defects in Karl Popper's falsifiability criterion. Although ID comes in multiple forms, which call for different criticisms, it emerges that ID fails to constitute a serious alternative to evolutionary theory.
Integrating principles and multidisciplinary projects in design education
NASA Technical Reports Server (NTRS)
Nevill, Gale E., Jr.
1992-01-01
The critical need to improve engineering design education in the U.S. is presented and a number of actions to achieve that end are discussed. The importance of teaching undergraduates the latest methods and principles through the means of team design in multidisciplinary projects leading to a testable product is emphasized. Desirable training for design instructors is described and techniques for selecting and managing projects that teach effectively are discussed.
Report on phase 1 of the Microprocessor Seminar. [and associated large scale integration
NASA Technical Reports Server (NTRS)
1977-01-01
Proceedings of a seminar on microprocessors and associated large scale integrated (LSI) circuits are presented. The potential for commonality of device requirements, candidate processes and mechanisms for qualifying candidate LSI technologies for high reliability applications, and specifications for testing and testability were among the topics discussed. Various programs and tentative plans of the participating organizations in the development of high reliability LSI circuits are given.
It takes two to talk: a second-person neuroscience approach to language learning.
Syal, Supriya; Anderson, Adam K
2013-08-01
Language is a social act. We have previously argued that language remains embedded in sociality because the motivation to communicate exists only within a social context. Schilbach et al. underscore the importance of studying linguistic behavior from within the motivated, socially interactive frame in which it is learnt and used, as well as provide testable hypotheses for a participatory, second-person neuroscience approach to language learning.
Are some BL Lac objects artefacts of gravitational lensing?
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Vietri, M.
1985-01-01
It is proposed here that a significant fraction of BL Lac objects are optically violently variable quasars whose continuum emission has been greatly amplified, relative to the line emission, by pointlike gravitational lenses in intervening galaxies. Several anomalous physical and statistical properties of BL Lacs can be understood on the basis of this model, which is immediately testable on the basis of absorption line studies and by direct imaging.
Empirical approaches to the study of language evolution.
Fitch, W Tecumseh
2017-02-01
The study of language evolution, and human cognitive evolution more generally, has often been ridiculed as unscientific, but in fact it differs little from many other disciplines that investigate past events, such as geology or cosmology. Well-crafted models of language evolution make numerous testable hypotheses, and if the principles of strong inference (simultaneous testing of multiple plausible hypotheses) are adopted, there is an increasing amount of relevant data allowing empirical evaluation of such models. The articles in this special issue provide a concise overview of current models of language evolution, emphasizing the testable predictions that they make, along with overviews of the many sources of data available to test them (emphasizing comparative, neural, and genetic data). The key challenge facing the study of language evolution is not a lack of data, but rather a weak commitment to hypothesis-testing approaches and strong inference, exacerbated by the broad and highly interdisciplinary nature of the relevant data. This introduction offers an overview of the field, and a summary of what needed to evolve to provide our species with language-ready brains. It then briefly discusses different contemporary models of language evolution, followed by an overview of different sources of data to test these models. I conclude with my own multistage model of how different components of language could have evolved.
Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert L.
1993-01-01
The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.
Are there two processes in reasoning? The dimensionality of inductive and deductive inferences.
Stephens, Rachel G; Dunn, John C; Hayes, Brett K
2018-03-01
Single-process accounts of reasoning propose that the same cognitive mechanisms underlie inductive and deductive inferences. In contrast, dual-process accounts propose that these inferences depend upon 2 qualitatively different mechanisms. To distinguish between these accounts, we derived a set of single-process and dual-process models based on an overarching signal detection framework. We then used signed difference analysis to test each model against data from an argument evaluation task, in which induction and deduction judgments are elicited for sets of valid and invalid arguments. Three data sets were analyzed: data from Singmann and Klauer (2011), a database of argument evaluation studies, and the results of an experiment designed to test model predictions. Of the large set of testable models, we found that almost all could be rejected, including all 2-dimensional models. The only testable model able to account for all 3 data sets was a model with 1 dimension of argument strength and independent decision criteria for induction and deduction judgments. We conclude that despite the popularity of dual-process accounts, current results from the argument evaluation task are best explained by a single-process account that incorporates separate decision thresholds for inductive and deductive inferences. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Moses Lake Fishery Restoration Project : FY 1999 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None given
2000-12-01
The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie,more » bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.« less
Phenoscape: Identifying Candidate Genes for Evolutionary Phenotypes
Edmunds, Richard C.; Su, Baofeng; Balhoff, James P.; Eames, B. Frank; Dahdul, Wasila M.; Lapp, Hilmar; Lundberg, John G.; Vision, Todd J.; Dunham, Rex A.; Mabee, Paula M.; Westerfield, Monte
2016-01-01
Phenotypes resulting from mutations in genetic model organisms can help reveal candidate genes for evolutionarily important phenotypic changes in related taxa. Although testing candidate gene hypotheses experimentally in nonmodel organisms is typically difficult, ontology-driven information systems can help generate testable hypotheses about developmental processes in experimentally tractable organisms. Here, we tested candidate gene hypotheses suggested by expert use of the Phenoscape Knowledgebase, specifically looking for genes that are candidates responsible for evolutionarily interesting phenotypes in the ostariophysan fishes that bear resemblance to mutant phenotypes in zebrafish. For this, we searched ZFIN for genetic perturbations that result in either loss of basihyal element or loss of scales phenotypes, because these are the ancestral phenotypes observed in catfishes (Siluriformes). We tested the identified candidate genes by examining their endogenous expression patterns in the channel catfish, Ictalurus punctatus. The experimental results were consistent with the hypotheses that these features evolved through disruption in developmental pathways at, or upstream of, brpf1 and eda/edar for the ancestral losses of basihyal element and scales, respectively. These results demonstrate that ontological annotations of the phenotypic effects of genetic alterations in model organisms, when aggregated within a knowledgebase, can be used effectively to generate testable, and useful, hypotheses about evolutionary changes in morphology. PMID:26500251
Feldstein Ewing, Sarah W.; Filbey, Francesca M.; Hendershot, Christian S.; McEachern, Amber D.; Hutchison, Kent E.
2011-01-01
Objective: Despite the prevalence and profound consequences of alcohol use disorders, psychosocial alcohol interventions have widely varying outcomes. The range of behavior following psychosocial alcohol treatment indicates the need to gain a better understanding of active ingredients and how they may operate. Although this is an area of great interest, at this time there is a limited understanding of how in-session behaviors may catalyze changes in the brain and subsequent alcohol use behavior. Thus, in this review, we aim to identify the neurobiological routes through which psychosocial alcohol interventions may lead to post-session behavior change as well as offer an approach to conceptualize and evaluate these translational relationships. Method: PubMed and PsycINFO searches identified studies that successfully integrated functional magnetic resonance imaging and psychosocial interventions. Results: Based on this research, we identified potential neurobiological substrates through which behavioral alcohol interventions may initiate and sustain behavior change. In addition, we proposed a testable model linking within-session active ingredients to outside-of-session behavior change. Conclusions: Through this review, we present a testable translational model. Additionally, we illustrate how the proposed model can help facilitate empirical evaluations of psychotherapeutic factors and their underlying neural mechanisms, both in the context of motivational interviewing and in the treatment of alcohol use disorders. PMID:22051204
A bioinformatics expert system linking functional data to anatomical outcomes in limb regeneration
Lobo, Daniel; Feldman, Erica B.; Shah, Michelle; Malone, Taylor J.
2014-01-01
Abstract Amphibians and molting arthropods have the remarkable capacity to regenerate amputated limbs, as described by an extensive literature of experimental cuts, amputations, grafts, and molecular techniques. Despite a rich history of experimental effort, no comprehensive mechanistic model exists that can account for the pattern regulation observed in these experiments. While bioinformatics algorithms have revolutionized the study of signaling pathways, no such tools have heretofore been available to assist scientists in formulating testable models of large‐scale morphogenesis that match published data in the limb regeneration field. Major barriers to preventing an algorithmic approach are the lack of formal descriptions for experimental regenerative information and a repository to centralize storage and mining of functional data on limb regeneration. Establishing a new bioinformatics of shape would significantly accelerate the discovery of key insights into the mechanisms that implement complex regeneration. Here, we describe a novel mathematical ontology for limb regeneration to unambiguously encode phenotype, manipulation, and experiment data. Based on this formalism, we present the first centralized formal database of published limb regeneration experiments together with a user‐friendly expert system tool to facilitate its access and mining. These resources are freely available for the community and will assist both human biologists and artificial intelligence systems to discover testable, mechanistic models of limb regeneration. PMID:25729585
Zhou, Shaona; Han, Jing; Koenig, Kathleen; Raplinger, Amy; Pi, Yuan; Li, Dan; Xiao, Hua; Fu, Zhao; Bao, Lei
2016-03-01
Scientific reasoning is an important component under the cognitive strand of the 21st century skills and is highly emphasized in the new science education standards. This study focuses on the assessment of student reasoning in control of variables (COV), which is a core sub-skill of scientific reasoning. The main research question is to investigate the extent to which the existence of experimental data in questions impacts student reasoning and performance. This study also explores the effects of task contexts on student reasoning as well as students' abilities to distinguish between testability and causal influences of variables in COV experiments. Data were collected with students from both USA and China. Students received randomly one of two test versions, one with experimental data and one without. The results show that students from both populations (1) perform better when experimental data are not provided, (2) perform better in physics contexts than in real-life contexts, and (3) students have a tendency to equate non-influential variables to non-testable variables. In addition, based on the analysis of both quantitative and qualitative data, a possible progression of developmental levels of student reasoning in control of variables is proposed, which can be used to inform future development of assessment and instruction.
NASA Space Flight Vehicle Fault Isolation Challenges
NASA Technical Reports Server (NTRS)
Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine
2016-01-01
The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.
Zhou, Shaona; Han, Jing; Koenig, Kathleen; Raplinger, Amy; Pi, Yuan; Li, Dan; Xiao, Hua; Fu, Zhao
2015-01-01
Scientific reasoning is an important component under the cognitive strand of the 21st century skills and is highly emphasized in the new science education standards. This study focuses on the assessment of student reasoning in control of variables (COV), which is a core sub-skill of scientific reasoning. The main research question is to investigate the extent to which the existence of experimental data in questions impacts student reasoning and performance. This study also explores the effects of task contexts on student reasoning as well as students’ abilities to distinguish between testability and causal influences of variables in COV experiments. Data were collected with students from both USA and China. Students received randomly one of two test versions, one with experimental data and one without. The results show that students from both populations (1) perform better when experimental data are not provided, (2) perform better in physics contexts than in real-life contexts, and (3) students have a tendency to equate non-influential variables to non-testable variables. In addition, based on the analysis of both quantitative and qualitative data, a possible progression of developmental levels of student reasoning in control of variables is proposed, which can be used to inform future development of assessment and instruction. PMID:26949425
Testability and epistemic shifts in modern cosmology
NASA Astrophysics Data System (ADS)
Kragh, Helge
2014-05-01
During the last decade new developments in theoretical and speculative cosmology have reopened the old discussion of cosmology's scientific status and the more general question of the demarcation between science and non-science. The multiverse hypothesis, in particular, is central to this discussion and controversial because it seems to disagree with methodological and epistemic standards traditionally accepted in the physical sciences. But what are these standards and how sacrosanct are they? Does anthropic multiverse cosmology rest on evaluation criteria that conflict with and go beyond those ordinarily accepted, so that it constitutes an "epistemic shift" in fundamental physics? The paper offers a brief characterization of the modern multiverse and also refers to a few earlier attempts to introduce epistemic shifts in the science of the universe. It further discusses the several meanings of testability, addresses the question of falsifiability as a sine qua non for a theory being scientific, and briefly compares the situation in cosmology with the one in systematic biology. Multiverse theory is not generally falsifiable, which has led to proposals from some physicists to overrule not only Popperian standards but also other evaluation criteria of a philosophical nature. However, this is hardly possible and nor is it possible to get rid of explicit philosophical considerations in some other aspects of cosmological research, however advanced it becomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, E.
When the University of Missouri Research Reactor (MURR) was designed in the 1960s the potential for fuel element burnout by a phenomenon referred to at that time as 'autocatalytic vapor binding' was of serious concern. This type of burnout was observed to occur at power levels considerably lower than those that were known to cause critical heat flux. The conversion of the MURR from HEU fuel to LEU fuel will probably require significant design changes, such as changes in coolant channel thicknesses, that could affect the thermal-hydraulic behavior of the reactor core. Therefore, the redesign of the MURR to accommodatemore » an LEU core must address the same issues of fuel element burnout that were of concern in the 1960s. The Advanced Test Reactor (ATR) was designed at about the same time as the MURR and had similar concerns with regard to fuel element burnout. These concerns were addressed in the ATR by two groups of thermal-hydraulic tests that employed electrically heated simulated fuel channels. The Croft (1964), Reference 1, tests were performed at ANL. The Waters (1966), Reference 2, tests were performed at Hanford Laboratories in Richland Washington. Since fuel element surface temperatures rise rapidly as burnout conditions are approached, channel surface temperatures were carefully monitored in these experiments. For self-protection, the experimental facilities were designed to cut off the electric power when rapidly increasing surface temperatures were detected. In both the ATR reactor and in the tests with electrically heated channels, the heated length of the fuel plate was 48 inches, which is about twice that of the MURR. Whittle and Forgan (1967) independently conducted tests with electrically heated rectangular channels that were similar to the tests by Croft and by Walters. In the Whittle and Forgan tests the heated length of the channel varied among the tests and was between 16 and 24 inches. Both Waters and Whittle and Forgan show that the cause of the fuel element burnout is due to a form of flow instability. Whittle and Forgan provide a formula that predicts when this flow instability will occur. This formula is included in the PLTEMP/ANL code.Error! Reference source not found. Olson has shown that the PLTEMP/ANL code accurately predicts the powers at which flow instability occurs in the Whittle and Forgan experiments. He also considered the electrically heated tests performed in the ANS Thermal-Hydraulic Test Loop at ORNL and report by M. Siman-Tov et al. The purpose of this memorandum is to demonstrate that the PLTEMP/ANL code accurately predicts the Croft and the Waters tests. This demonstration should provide sufficient confidence that the PLTEMP/ANL code can adequately predict the onset of flow instability for the converted MURR. The MURR core uses light water as a coolant, has a 24-inch active fuel length, downward flow in the core, and an average core velocity of about 7 m/s. The inlet temperature is about 50 C and the peak outlet is about 20 C higher than the inlet for reactor operation at 10 MW. The core pressures range from about 4 to about 5 bar. The peak heat flux is about 110 W/cm{sup 2}. Section 2 describes the mechanism that causes flow instability. Section 3 describes the Whittle and Forgan formula for flow instability. Section 4 briefly describes both the Croft and the Waters experiments. Section 5 describes the PLTEMP/ANL models. Section 6 compares the PLTEMP/ANL predictions based on the Whittle and Forgan formula with the Croft measurements. Section 7 does the same for the Waters measurements. Section 8 provides the range of parameters for the Whittle and Forgan tests. Section 9 discusses the results and provides conclusions. In conclusion, although there is no single test that by itself closely matches the limiting conditions in the MURR, the preponderance of measured data and the ability of the Whittle and Forgan correlation, as implemented in PLTEMP/ANL, to predict the onset of flow instability for these tests leads one to the conclusion that the same method should be able to predict the onset of flow instability in the MURR reasonably well.« less
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.; ...
2017-02-17
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
Heat and moisture flow in concrete as a function of temperature
NASA Technical Reports Server (NTRS)
Hundt, J.
1978-01-01
Due to temperature, reactors in operation cause heat and moisture flows in the thick walled prestressed pressure vessels. These flows were studied in three beams of concrete made with crushed limestone aggregate, and in three beams made of crushed gravel/sand aggregate. The flow phenomena were related to the structural development of the concrete by determining the amount of non-evaporatable water, the total porosity, and the pore size distribution. Local temperature and moisture conditions also influenced the technical properties. Compressive strength, changes in length due to shrinkage and contraction, thermal expansion, and thermal conductivity were determined.
Paget, J.A.
1963-05-14
A structure for monitoring the structural continuity of a control rod foi a neutron reactor is presented. A electric conductor readily breakable under mechanical stress is fastened along the length of the control rod at a plurality of positions and forms a closed circuit with remote electrical components responsive to an open circuit. A portion of the conductor between the control rod and said components is helically wound to allow free and normally unrestricted movement of the segment of conductor secured to the control rod relative to the remote components. Any break in the circuit is indicative of control rod breakage. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Richard M.; Aalseth, C. E.; Brandenberger, J. M.
Here, this paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50 × 39Ar in P10 standard is 3.6% (k=2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.L.; Rausch, W.N.; Hesson, G.M.
The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.
Divertor for use in fusion reactors
Christensen, Uffe R.
1979-01-01
A poloidal divertor for a toroidal plasma column ring having a set of poloidal coils co-axial with the plasma ring for providing a space for a thick shielding blanket close to the plasma along the entire length of the plasma ring cross section and all the way around the axis of rotation of the plasma ring. The poloidal coils of this invention also provide a stagnation point on the inside of the toroidal plasma column ring, gently curving field lines for vertical stability, an initial plasma current, and the shaping of the field lines of a separatrix up and around the shielding blanket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Almer, Jonathan D.; Yang, Yong
2016-01-01
This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materialsmore » subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were complemented and benchmarked by ex situ characterization using advanced electron microscopy, atom probe tomography (APT) and micro/nano-indentation. The report presented in situ tensile test results on neutron-irradiated pure Fe, Fe-9Cr model alloy, 316 SS and CASS CF-8. These in situ experiments demonstrate the broad applications of the new capability in understanding several outstanding issues related to irradiated materials.« less
Amulya, K; Jukuri, Srinivas; Venkata Mohan, S
2015-01-01
Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Automated one-step DNA sequencing based on nanoliter reaction volumes and capillary electrophoresis.
Pang, H M; Yeung, E S
2000-08-01
An integrated system with a nano-reactor for cycle-sequencing reaction coupled to on-line purification and capillary gel electrophoresis has been demonstrated. Fifty nanoliters of reagent solution, which includes dye-labeled terminators, polymerase, BSA and template, was aspirated and mixed with the template inside the nano-reactor followed by cycle-sequencing reaction. The reaction products were then purified by a size-exclusion chromatographic column operated at 50 degrees C followed by room temperature on-line injection of the DNA fragments into a capillary for gel electrophoresis. Over 450 bases of DNA can be separated and identified. As little as 25 nl reagent solution can be used for the cycle-sequencing reaction with a slightly shorter read length. Significant savings on reagent cost is achieved because the remaining stock solution can be reused without contamination. The steps of cycle sequencing, on-line purification, injection, DNA separation, capillary regeneration, gel-filling and fluidic manipulation were performed with complete automation. This system can be readily multiplexed for high-throughput DNA sequencing or PCR analysis directly from templates or even biological materials.
The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS
Ward, Andrew; Downar, Thomas J.; Xu, Y.; ...
2015-04-22
The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less
NASA Technical Reports Server (NTRS)
Perry, J. L.; Tomes, K. M.; Tatara, J. D.
2005-01-01
Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.
Clearing of ventilating emissions in low temperature environment of plasma
NASA Astrophysics Data System (ADS)
Mansurov, R. Sh; Rafalskaya, T. A.
2017-11-01
The method of high-temperature processing of streams of the ventilating air which is a subject clearing from organic pollutions is developed. Data about its efficiency, including on a number of economic parameters are obtained. Results of work are recommended for use, first of all, by development clearing plasma-thermal reactors (CPTR) for clearing air, especially from toxic substances, and also for large technological clearing installations, containing organic ventilating emissions (OVE). It is created experimental CPTR. Laws of the expiration of a plasma jet in stream of OVE limited by cylindrical walls, water-cooled channel are experimentally investigated. Dependences of a trajectory and long-range the plasma jet blown radially in stream of OVE are received. Heat exchange of stream of OVE with walls of CPTR after blowing a plasma jet is experimentally investigated; dependences of distribution of temperatures on length of a reactor and a thermal stream in a wall of channel of CPTR are received. Are investigated chemical compound of OVE after plasma-thermal clearing, some experimental data by formation of oxides of nitrogen and mono-oxide of carbon during clearing are received.
Kim, Hakchan; Kim, Jaai; Shin, Seung Gu; Hwang, Seokhwan; Lee, Changsoo
2016-05-01
This study investigated the simultaneous effects of hydraulic retention time (HRT) and pH on the continuous production of VFAs from food waste leachate using response surface analysis. The response surface approximations (R(2)=0.895, p<0.05) revealed that pH has a dominant effect on the specific VFA production (PTVFA) within the explored space (1-4-day HRT, pH 4.5-6.5). The estimated maximum PTVFA was 0.26g total VFAs/g CODf at 2.14-day HRT and pH 6.44, and the approximation was experimentally validated by running triplicate reactors under the estimated optimum conditions. The mixture of the filtrates recovered from these reactors was tested as a denitrification carbon source and demonstrated superior performance in terms of reaction rate and lag length relative to other chemicals, including acetate and methanol. The overall results provide helpful information for better design and control of continuous fermentation for producing waste-derived VFAs, an alternative carbon source for denitrification. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inter-Universal Quantum Entanglement
NASA Astrophysics Data System (ADS)
Robles-Pérez, S. J.; González-Díaz, P. F.
2015-01-01
The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.
Creation of a Mouse with Stress-Induced Dystonia: Control of an ATPase Chaperone
2013-04-01
was successful, and a mouse with the desired dystonic symptoms was obtained. It has two mutations , one a dominantly inherited gene with 100...the hallmark of dystonia. 15. SUBJECT TERMS Dystonia, genetically modified mice, stress, gene mutations , animal model of disease. 16...there are a variety of hypotheses that should be testable if there were a realistic animal model. Mice with mutations in genes known to cause dystonia
Effectiveness of spacecraft testing programs
NASA Technical Reports Server (NTRS)
Krausz, A.
1980-01-01
The need for testing under simulated mission operational conditions is discussed and the results of such tests are reviewed from the point of view of the user. A brief overview of the usal test sequences for high reliability long life spacecraft is presented and the effectiveness of the testing program is analyzed in terms of the defects which are discovered by such tests. The need for automation, innovative mechanical test procedures, and design for testability is discussed.
Zee-Babu type model with U (1 )Lμ-Lτ gauge symmetry
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We extend the Zee-Babu model, introducing local U (1 )Lμ-Lτ symmetry with several singly charged bosons. We find a predictive neutrino mass texture in a simple hypothesis in which mixings among singly charged bosons are negligible. Also, lepton-flavor violations are less constrained compared with the original model. Then, we explore the testability of the model, focusing on doubly charged boson physics at the LHC and the International Linear Collider.
Xylella genomics and bacterial pathogenicity to plants.
Dow, J M; Daniels, M J
2000-12-01
Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.
An evolutionary scenario for the origin of flowers.
Frohlich, Michael W
2003-07-01
The Mostly Male theory is the first to use evidence from gene phylogenies, genetics, modern plant morphology and fossils to explain the evolutionary origin of flowers. It proposes that flower organization derives more from the male structures of ancestral gymnosperms than from female structures. The theory arose from a hypothesis-based study. Such studies are the most likely to generate testable evolutionary scenarios, which should be the ultimate goal of evo-devo.
A collider observable QCD axion
Dimopoulos, Savas; Hook, Anson; Huang, Junwu; ...
2016-11-09
Here, we present a model where the QCD axion is at the TeV scale and visible at a collider via its decays. Conformal dynamics and strong CP considerations account for the axion coupling strongly enough to the standard model to be produced as well as the coincidence between the weak scale and the axion mass. The model predicts additional pseudoscalar color octets whose properties are completely determined by the axion properties rendering the theory testable.
Soviet Economic Policy Towards Eastern Europe
1988-11-01
high. Without specifying the determinants of Soviet demand for "allegiance" in more detail, the model is not testable; we cannot predict how subsidy...trade inside (Czechoslovakia, Bulgaria). These countries are behaving as predicted by the model . If this hypothesis is true, the pattern of subsidies...also compares the sum of per capita subsidies by country between 1970 and 1982 with the sum of subsidies predicted by the model . Because of the poor
All biology is computational biology.
Markowetz, Florian
2017-03-01
Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.
Park, C H; Okos, M R; Wankat, P C
1990-06-20
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.
Finding the chemistry in biomass pyrolysis: Millisecond chemical kinetics and visualization
NASA Astrophysics Data System (ADS)
Krumm, Christoph
Biomass pyrolysis is a promising thermochemical method for producing fuels and chemicals from renewable sources. Development of a fundamental understanding of biomass pyrolysis chemistry is difficult due to the multi-scale and multi-phase nature of the process; biomass length scales span 11 orders of magnitude and pyrolysis phenomena include solid, liquid, and gas phase chemistry in addition to heat and mass transfer. These complexities have a significant effect on chemical product distributions and lead to variability between reactor technologies. A major challenge in the study of biomass pyrolysis is the development of kinetic models capable of describing hundreds of millisecond-scale reactions of biomass into lower molecular weight products. In this work, a novel technique for studying biomass pyrolysis provides the first- ever experimental determination of kinetics and rates of formation of the primary products from cellulose pyrolysis, providing insight into the millisecond-scale chemical reaction mechanisms. These findings highlight the importance of heat and mass transport limitations for cellulose pyrolysis chemistry and are used to identify the length scales at which transport limitations become relevant during pyrolysis. Through this technique, a transition is identified, known as the reactive melting point, between low and high temperature depolymerization. The transition between two mechanisms of cellulose decompositions unifies the mechanisms that govern low temperature char formation, intermediate pyrolysis conditions, and high temperature gas formation. The conditions under which biomass undergoes pyrolysis, including modes of heat transfer, have been shown to significantly affect the distribution of biorenewable chemical and fuel products. High-speed photography is used to observe the liftoff of initially crystalline cellulose particles when impinged on a heated surface, known as the Leidenfrost effect for room-temperature liquids. Order-of-magnitude changes in the lifetime of cellulose particles are observed as a result of changing modes in heat transfer as cellulose intermediate liquid droplets wet and de-wet polished ceramic surfaces. Introduction of surface macroporosity is shown to completely inhibit the cellulose Leidenfrost effect, providing avenues for surface modification and reactor design to control particle heat transfer in industrial pyrolysis applications. Cellulosic particles on surfaces consisting of microstructured, asymmetric ratchets were observed to spontaneously move orthogonal to ratchet wells above the cellulose reactive Leidenfrost temperature (>750 °C). Evaluation of the accelerating particles supported the mechanism of propelling viscous forces (50-200 nN) from rectified pyrolysis vapors, thus providing the first example of biomass conveyors with no moving parts driven by high temperature for biofuel reactors. Combined knowledge of pyrolysis chemistry, kinetics, and heat and mass transport effects direct the design of the next generation pyrolysis reactors for tuning bio- oil quality and design of improved catalytic upgrading technology.
Informed maintenance for next generation space transportation systems
NASA Astrophysics Data System (ADS)
Fox, Jack J.
2001-02-01
Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives-maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2nd Generation Reusable Launch Vehicle Program. .
Informed maintenance for next generation reusable launch systems
NASA Astrophysics Data System (ADS)
Fox, Jack J.; Gormley, Thomas J.
2001-03-01
Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives - maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2 nd Generation Reusable Launch Vehicle Program.
NASA Astrophysics Data System (ADS)
Chakdar, Shreyashi
The Standard Model of particle physics is assumed to be a low-energy effective theory with new physics theoretically motivated to be around TeV scale. The thesis presents theories with new physics beyond the Standard Model in the TeV scale testable in the colliders. Work done in chapters 2, 3 and 5 in this thesis present some models incorporating different approaches of enlarging the Standard Model gauge group to a grand unified symmetry with each model presenting its unique signatures in the colliders. The study on leptoquarks gauge bosons in reference to TopSU(5) model in chapter 2 showed that their discovery mass range extends up to 1.5 TeV at 14 TeV LHC with luminosity of 100 fb--1. On the other hand, in chapter 3 we studied the collider phenomenology of TeV scale mirror fermions in Left-Right Mirror model finding that the reaches for the mirror quarks goes upto 750 GeV at the 14 TeV LHC with 300 fb--1 luminosity. In chapter 4 we have enlarged the bosonic symmetry to fermi-bose symmetry e.g. supersymmetry and have shown that SUSY with non-universalities in gaugino or scalar masses within high scale SUGRA set up can still be accessible at LHC with 14 TeV. In chapter 5, we performed a study in respect to the e+e-- collider and find that precise measurements of the higgs boson mass splittings up to ˜ 100 MeV may be possible with high luminosity in the International Linear Collider (ILC). In chapter 6 we have shown that the experimental data on neutrino masses and mixings are consistent with the proposed 4/5 parameter Dirac neutrino models yielding a solution for the neutrino masses with inverted mass hierarchy and large CP violating phase delta and thus can be tested experimentally. Chapter 7 of the thesis incorporates a warm dark matter candidate in context of two Higgs doublet model. The model has several testable consequences at colliders with the charged scalar and pseudoscalar being in few hundred GeV mass range. This thesis presents an endeavor to study beyond standard model physics at the TeV scale with testable signals in the Colliders.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
NASA Astrophysics Data System (ADS)
Putro, Sapto; Adityarini, Devi; Chiang, R. T.
2018-05-01
The impact of ozonized water treatment on ‘Srikandi’ tilapia was assessed using ozone reactor with an airflow velocity of 1.5 L / min at a voltage of 10 kV, which leads to that the dissolved oxygen (DO) content increases from 0.99 to 11.11 mg / L. The ozonized water treatment was divided into five groups based on the length of treatment period: 5 minutes as group I, 10 minutes as group II, 15 minutes as group III, 20 minutes as group IV and 0 minute (Reference case). The fish growth rate was measured in terms of length and weight per seven days for 30 days. The result indicated that the fastest growth rate of ‘Srikandi’ tilapia occured at the group III (length growth: 7.82 cm; weight growth: 7.72 g in 30 days). The fastest Specific Growth Rate (SGR) of the fish occured at the group II (1.281%), and the fastest Relative Growth Rate (RGR) of the fish occurs at the group III (4.538%). The oxygen content, temperature, salinity to match the growth of Tilapia ‘Srikandi’ are vital elements in Tilapia farming management. These results are considered to be useful to increase the production rate of ‘Srikandi’ tilapia farming.
Sadeghi Ghuchani, Mostafa
2018-02-08
This comment argues against the view that cancer cells produce less entropy than normal cells as stated in a recent paper by Marín and Sabater. The basic principle of estimation of entropy production rate in a living cell is discussed, emphasizing the fact that entropy production depends on both the amount of heat exchange during the metabolism and the entropy difference between products and substrates.
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Almost periodic cellular neural networks with neutral-type proportional delays
NASA Astrophysics Data System (ADS)
Xiao, Songlin
2018-03-01
This paper presents a new result on the existence, uniqueness and generalised exponential stability of almost periodic solutions for cellular neural networks with neutral-type proportional delays and D operator. Based on some novel differential inequality techniques, a testable condition is derived to ensure that all the state trajectories of the system converge to an almost periodic solution with a positive exponential convergence rate. The effectiveness of the obtained result is illustrated by a numerical example.
NASA Astrophysics Data System (ADS)
Sadeghi Ghuchani, Mostafa
2018-03-01
This comment argues against the view that cancer cells produce less entropy than normal cells as stated in a recent paper by Marín and Sabater. The basic principle of estimation of entropy production rate in a living cell is discussed, emphasizing the fact that entropy production depends on both the amount of heat exchange during the metabolism and the entropy difference between products and substrates.
Using Dynamic Sensitivity Analysis to Assess Testability
NASA Technical Reports Server (NTRS)
Voas, Jeffrey; Morell, Larry; Miller, Keith
1990-01-01
This paper discusses sensitivity analysis and its relationship to random black box testing. Sensitivity analysis estimates the impact that a programming fault at a particular location would have on the program's input/output behavior. Locations that are relatively \\"insensitive" to faults can render random black box testing unlikely to uncover programming faults. Therefore, sensitivity analysis gives new insight when interpreting random black box testing results. Although sensitivity analysis is computationally intensive, it requires no oracle and no human intervention.
Earthquake Forecasting System in Italy
NASA Astrophysics Data System (ADS)
Falcone, G.; Marzocchi, W.; Murru, M.; Taroni, M.; Faenza, L.
2017-12-01
In Italy, after the 2009 L'Aquila earthquake, a procedure was developed for gathering and disseminating authoritative information about the time dependence of seismic hazard to help communities prepare for a potentially destructive earthquake. The most striking time dependency of the earthquake occurrence process is the time clustering, which is particularly pronounced in time windows of days and weeks. The Operational Earthquake Forecasting (OEF) system that is developed at the Seismic Hazard Center (Centro di Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is the authoritative source of seismic hazard information for Italian Civil Protection. The philosophy of the system rests on a few basic concepts: transparency, reproducibility, and testability. In particular, the transparent, reproducible, and testable earthquake forecasting system developed at CPS is based on ensemble modeling and on a rigorous testing phase. Such phase is carried out according to the guidance proposed by the Collaboratory for the Study of Earthquake Predictability (CSEP, international infrastructure aimed at evaluating quantitatively earthquake prediction and forecast models through purely prospective and reproducible experiments). In the OEF system, the two most popular short-term models were used: the Epidemic-Type Aftershock Sequences (ETAS) and the Short-Term Earthquake Probabilities (STEP). Here, we report the results from OEF's 24hour earthquake forecasting during the main phases of the 2016-2017 sequence occurred in Central Apennines (Italy).
Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo
2016-07-15
Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Broadening conceptions of learning in medical education: the message from teamworking.
Bleakley, Alan
2006-02-01
There is a mismatch between the broad range of learning theories offered in the wider education literature and a relatively narrow range of theories privileged in the medical education literature. The latter are usually described under the heading of 'adult learning theory'. This paper critically addresses the limitations of the current dominant learning theories informing medical education. An argument is made that such theories, which address how an individual learns, fail to explain how learning occurs in dynamic, complex and unstable systems such as fluid clinical teams. Models of learning that take into account distributed knowing, learning through time as well as space, and the complexity of a learning environment including relationships between persons and artefacts, are more powerful in explaining and predicting how learning occurs in clinical teams. Learning theories may be privileged for ideological reasons, such as medicine's concern with autonomy. Where an increasing amount of medical education occurs in workplace contexts, sociocultural learning theories offer a best-fit exploration and explanation of such learning. We need to continue to develop testable models of learning that inform safe work practice. One type of learning theory will not inform all practice contexts and we need to think about a range of fit-for-purpose theories that are testable in practice. Exciting current developments include dynamicist models of learning drawing on complexity theory.
A Handheld Open-Field Infant Keratometer (An American Ophthalmological Society Thesis)
Miller, Joseph M.
2010-01-01
Purpose: To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). Methods: The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results: Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. Conclusion: The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation. PMID:21212850
A handheld open-field infant keratometer (an american ophthalmological society thesis).
Miller, Joseph M
2010-12-01
To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation.
Cowden, Tracy L; Cummings, Greta G
2012-07-01
We describe a theoretical model of staff nurses' intentions to stay in their current positions. The global nursing shortage and high nursing turnover rate demand evidence-based retention strategies. Inconsistent study outcomes indicate a need for testable theoretical models of intent to stay that build on previously published models, are reflective of current empirical research and identify causal relationships between model concepts. Two systematic reviews of electronic databases of English language published articles between 1985-2011. This complex, testable model expands on previous models and includes nurses' affective and cognitive responses to work and their effects on nurses' intent to stay. The concepts of desire to stay, job satisfaction, joy at work, and moral distress are included in the model to capture the emotional response of nurses to their work environments. The influence of leadership is integrated within the model. A causal understanding of clinical nurses' intent to stay and the effects of leadership on the development of that intention will facilitate the development of effective retention strategies internationally. Testing theoretical models is necessary to confirm previous research outcomes and to identify plausible sequences of the development of behavioral intentions. Increased understanding of the causal influences on nurses' intent to stay should lead to strategies that may result in higher retention rates and numbers of nurses willing to work in the health sector. © 2012 Blackwell Publishing Ltd.
Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, C.P.
TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core.
Thermal expansion method for lining tantalum alloy tubing with tungsten
NASA Technical Reports Server (NTRS)
Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.
1973-01-01
A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.
Heat transfer in the coolant channel of a heat-exchanger system based on fluctuation theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz-Guilera, A.; Rodriguez, M.A.; Rubi, J.M.
1988-11-01
We present a model to study the heat transfer in the coolant channel of a heat-exchanger system. Such a model introduces thermal fluctuations as well as external noises due to different mechanisms of heat interchange. A unified treatment of both kinds of noise is carried out. The stationary mean value of the channel temperature is studied, obtaining effective transport coefficients which affect the stability of the system. The effects of the different noises are visualized in a correlation length obtained from the temperature correlation function. The model has practical implications in the field of nuclear-reactor noise theory.
Low-pressure hydrogen plasmas explored using a global model
NASA Astrophysics Data System (ADS)
Samuell, Cameron M.; Corr, Cormac S.
2016-02-01
Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.
Khan, Mohiuddin Md Taimur; Takizawa, Satoshi; Lewandowski, Zbigniew; Habibur Rahman, M; Komatsu, Kazuhiro; Nelson, Sara E; Kurisu, Futoshi; Camper, Anne K; Katayama, Hiroyuki; Ohgaki, Shinichiro
2013-02-01
The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Winands, G. J. J.; Liu, Z.; Pemen, A. J. M.; van Heesch, E. J. M.; Yan, K.; van Veldhuizen, E. M.
2006-07-01
In this paper a large-scale pulsed corona system is described in which pulse parameters such as pulse rise-time, peak voltage, pulse width and energy per pulse can be varied. The chemical efficiency of the system is determined by measuring ozone production. The temporal and spatial development of the discharge streamers is recorded using an ICCD camera with a shortest exposure time of 5 ns. The camera can be triggered at any moment starting from the time the voltage pulse arrives on the reactor, with an accuracy of less than 1 ns. Measurements were performed on an industrial size wire-plate reactor. The influence of pulse parameters like pulse voltage, DC bias voltage, rise-time and pulse repetition rate on plasma generation was monitored. It was observed that for higher peak voltages, an increase could be seen in the primary streamer velocity, the growth of the primary streamer diameter, the light intensity and the number of streamers per unit length of corona wire. No significant separate influence of DC bias voltage level was observed as long as the total reactor voltage (pulse + DC bias) remained constant and the DC bias voltage remained below the DC corona onset. For those situations in which the plasma appearance changed (e.g. different streamer velocity, diameter, intensity), a change in ozone production was also observed. The best chemical yields were obtained for low voltage (55 kV), low energetic pulses (0.4 J/pulse): 60 g (kWh)-1. For high voltage (86 kV), high energetic pulses (2.3 J/pulse) the yield decreased to approximately 45 g (kWh)-1, still a high value for ozone production in ambient air (RH 42%). The pulse repetition rate has no influence on plasma generation and on chemical efficiency up to 400 pulses per second.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
The Rome Laboratory Reliability Engineer’s Toolkit
1993-04-01
34Testability Programs for Electronic Systems and Equipment" DODD 5000.1 "Defense Acquistion " DODI 5000.2 "Defense Acquisition Management Policies and...these paths have an equivalent failure rate of zero so that only the remaining serial elements need to be translated. 5. The requirement process...X6) X A2+B2+XAXB One standby off-line unit with n active on- line units required for success. Off-line spare assumed to have a failure rate of zero
The dynamics of hurricane balls
NASA Astrophysics Data System (ADS)
Andersen, W. L.; Werner, Steven
2015-09-01
We examine the theory of the hurricane balls toy. This toy consists of two steel balls, welded together that are sent spinning on a horizontal surface somewhat like a top. Unlike a top, at high frequency the symmetry axis approaches a limiting inclination that is not perpendicular to the surface. We calculate (and experimentally verify) the limiting inclinations for three toy geometries. We find that at high frequencies, hurricane balls provide an easily realized and testable example of the Poinsot theory of freely rotating symmetrical bodies.
The Mars Science Laboratory Entry, Descent, and Landing Flight Software
NASA Technical Reports Server (NTRS)
Gostelow, Kim P.
2013-01-01
This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.
Brain Organization and Psychodynamics
Peled, Avi; Geva, Amir B.
1999-01-01
Any attempt to link brain neural activity and psychodynamic concepts requires a tremendous conceptual leap. Such a leap may be facilitated if a common language between brain and mind can be devised. System theory proposes formulations that may aid in reconceptualizing psychodynamic descriptions in terms of neural organizations in the brain. Once adopted, these formulations can help to generate testable predictions about brain–psychodynamic relations and thus significantly affect the future of psychotherapy. (The Journal of Psychotherapy Practice and Research 1999; 8:24–39) PMID:9888105
A Quantitative Geochemical Target for Modeling the Formation of the Earth and Moon
NASA Technical Reports Server (NTRS)
Boyce, Jeremy W.; Barnes, Jessica J.; McCubbin, Francis M.
2017-01-01
The past decade has been one of geochemical, isotopic, and computational advances that are bringing the laboratory measurements and computational modeling neighborhoods of the Earth-Moon community to ever closer proximity. We are now however in the position to become even better neighbors: modelers can generate testable hypthotheses for geochemists; and geochemists can provide quantitive targets for modelers. Here we present a robust example of the latter based on Cl isotope measurements of mare basalts.
2017-01-01
A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's ‘fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms. PMID:28839927
Gardner, Andy
2017-10-06
A central feature of Darwin's theory of natural selection is that it explains the purpose of biological adaptation. Here, I: emphasize the scientific importance of understanding what adaptations are for, in terms of facilitating the derivation of empirically testable predictions; discuss the population genetical basis for Darwin's theory of the purpose of adaptation, with reference to Fisher's 'fundamental theorem of natural selection'; and show that a deeper understanding of the purpose of adaptation is achieved in the context of social evolution, with reference to inclusive fitness and superorganisms.
The Role of Metaphysical Naturalism in Science
NASA Astrophysics Data System (ADS)
Mahner, Martin
2012-10-01
This paper defends the view that metaphysical naturalism is a constitutive ontological principle of science in that the general empirical methods of science, such as observation, measurement and experiment, and thus the very production of empirical evidence, presuppose a no-supernature principle. It examines the consequences of metaphysical naturalism for the testability of supernatural claims, and it argues that explanations involving supernatural entities are pseudo-explanatory due to the many semantic and ontological problems of supernatural concepts. The paper also addresses the controversy about metaphysical versus methodological naturalism.
The Demographic Transition: Causes and Consequences
Galor, Oded
2013-01-01
This paper develops the theoretical foundations and the testable implications of the various mechanisms that have been proposed as possible triggers for the demographic transition. Moreover, it examines the empirical validity of each of the theories and their significance for the understanding of the transition from stagnation to growth. The analysis suggests that the rise in the demand for human capital in the process of development was the main trigger for the decline in fertility and the transition to modern growth PMID:25089157
Dayside auroral arcs and convection
NASA Technical Reports Server (NTRS)
Reiff, P. H.; Burch, J. L.; Heelis, R. A.
1978-01-01
Recent Defense Meteorological Satellite Program and International Satellite for Ionospheric Studies dayside auroral observations show two striking features: a lack of visible auroral arcs near noon and occasional fan shaped arcs radiating away from noon on both the morning and afternoon sides of the auroral oval. A simple model which includes these two features is developed by reference to the dayside convection pattern of Heelis et al. (1976). The model may be testable in the near future with simultaneous convection, current and auroral light data.
Causal Reasoning on Biological Networks: Interpreting Transcriptional Changes
NASA Astrophysics Data System (ADS)
Chindelevitch, Leonid; Ziemek, Daniel; Enayetallah, Ahmed; Randhawa, Ranjit; Sidders, Ben; Brockel, Christoph; Huang, Enoch
Over the past decade gene expression data sets have been generated at an increasing pace. In addition to ever increasing data generation, the biomedical literature is growing exponentially. The PubMed database (Sayers et al., 2010) comprises more than 20 million citations as of October 2010. The goal of our method is the prediction of putative upstream regulators of observed expression changes based on a set of over 400,000 causal relationships. The resulting putative regulators constitute directly testable hypotheses for follow-up.
Technology advances and market forces: Their impact on high performance architectures
NASA Technical Reports Server (NTRS)
Best, D. R.
1978-01-01
Reasonable projections into future supercomputer architectures and technology require an analysis of the computer industry market environment, the current capabilities and trends within the component industry, and the research activities on computer architecture in the industrial and academic communities. Management, programmer, architect, and user must cooperate to increase the efficiency of supercomputer development efforts. Care must be taken to match the funding, compiler, architecture and application with greater attention to testability, maintainability, reliability, and usability than supercomputer development programs of the past.
Harrison, Luke; Loui, Psyche
2014-01-01
Music has a unique power to elicit moments of intense emotional and psychophysiological response. These moments – termed “chills,” “thrills”, “frissons,” etc. – are subjects of introspection and philosophical debate, as well as scientific study in music perception and cognition. The present article integrates the existing multidisciplinary literature in an attempt to define a comprehensive, testable, and ecologically valid model of transcendent psychophysiological moments in music. PMID:25101043
The Labor Market and the Second Economy in the Soviet Union
1991-01-01
model . WHO WORKS "ON THE LEFT"? 15 (The non-second economy income (V) is in turn composed of official first economy income , pilferage from the first...demands. In other words, the model assumes that the family "pools" all unearned income regardless of source. This is one of the few testable assumptions...of the neoclassical model .16 In the labor supply model in this paper, we have assumed that all first economy income , for both husband and wife, is
Scaling properties of multitension domain wall networks
NASA Astrophysics Data System (ADS)
Oliveira, M. F.; Martins, C. J. A. P.
2015-02-01
We study the asymptotic scaling properties of domain wall networks with three different tensions in various cosmological epochs. We discuss the conditions under which a scale-invariant evolution of the network (which is well established for simpler walls) still applies and also consider the limiting case where defects are locally planar and the curvature is concentrated in the junctions. We present detailed quantitative predictions for scaling densities in various contexts, which should be testable by means of future high-resolution numerical simulations.
White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host
Verant, Michelle L.; Meteyer, Carol U.; Speakman, John R.; Cryan, Paul M.; Lorch, Jeffrey M.; Blehert, David S.
2014-01-01
Integrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.
Beyond Critical Exponents in Neuronal Avalanches
NASA Astrophysics Data System (ADS)
Friedman, Nir; Butler, Tom; Deville, Robert; Beggs, John; Dahmen, Karin
2011-03-01
Neurons form a complex network in the brain, where they interact with one another by firing electrical signals. Neurons firing can trigger other neurons to fire, potentially causing avalanches of activity in the network. In many cases these avalanches have been found to be scale independent, similar to critical phenomena in diverse systems such as magnets and earthquakes. We discuss models for neuronal activity that allow for the extraction of testable, statistical predictions. We compare these models to experimental results, and go beyond critical exponents.
NASA Astrophysics Data System (ADS)
Wieder, William R.; Knowles, John F.; Blanken, Peter D.; Swenson, Sean C.; Suding, Katharine N.
2017-04-01
Abiotic factors structure plant community composition and ecosystem function across many different spatial scales. Often, such variation is considered at regional or global scales, but here we ask whether ecosystem-scale simulations can be used to better understand landscape-level variation that might be particularly important in complex terrain, such as high-elevation mountains. We performed ecosystem-scale simulations by using the Community Land Model (CLM) version 4.5 to better understand how the increased length of growing seasons may impact carbon, water, and energy fluxes in an alpine tundra landscape. The model was forced with meteorological data and validated with observations from the Niwot Ridge Long Term Ecological Research Program site. Our results demonstrate that CLM is capable of reproducing the observed carbon, water, and energy fluxes for discrete vegetation patches across this heterogeneous ecosystem. We subsequently accelerated snowmelt and increased spring and summer air temperatures in order to simulate potential effects of climate change in this region. We found that vegetation communities that were characterized by different snow accumulation dynamics showed divergent biogeochemical responses to a longer growing season. Contrary to expectations, wet meadow ecosystems showed the strongest decreases in plant productivity under extended summer scenarios because of disruptions in hydrologic connectivity. These findings illustrate how Earth system models such as CLM can be used to generate testable hypotheses about the shifting nature of energy, water, and nutrient limitations across space and through time in heterogeneous landscapes; these hypotheses may ultimately guide further experimental work and model development.