Science.gov

Sample records for lep beam energy

  1. The control system for the LEP beam dump

    NASA Astrophysics Data System (ADS)

    Carlier, E.; Aimar, A.; Bretin, J. L.; Marchand, A.; Mertens, V.; Verhagen, H.

    1994-12-01

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit.

  2. Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP

    NASA Astrophysics Data System (ADS)

    ALEPH Collaboration; DELPHI Collaboration; L3 Collaboration; OPAL Collaboration; LEP Electroweak Working Group 1

    2013-11-01

    Electroweak measurements performed with data taken at the electron-positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb-1 collected by the four LEP experiments ALEPH, DELPHI, L3 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV.

  3. Leptin action via LepR-b Tyr1077 contributes to the control of energy balance and female reproduction

    PubMed Central

    Patterson, Christa M.; Villanueva, Eneida C.; Greenwald-Yarnell, Megan; Rajala, Michael; Gonzalez, Ian E.; Saini, Natinder; Jones, Justin; Myers, Martin G.

    2012-01-01

    Leptin action in the brain signals the repletion of adipose energy stores, suppressing feeding and permitting energy expenditure on a variety of processes, including reproduction. Leptin binding to its receptor (LepR-b) promotes the tyrosine phosphorylation of three sites on LepR-b, each of which mediates distinct downstream signals. While the signals mediated by LepR-b Tyr1138 and Tyr985 control important aspects of energy homeostasis and LepR-b signal attenuation, respectively, the role of the remaining LepR-b phosphorylation site (Tyr1077) in leptin action has not been studied. To examine the function of Tyr1077, we generated a “knock-in” mouse model expressing LepR-b F1077, which is mutant for LepR-b Tyr1077. Mice expressing LepR-b F1077 demonstrate modestly increased body weight and adiposity. Furthermore, females display impairments in estrous cycling. Our results suggest that signaling by LepR-b Tyr1077 plays a modest role in the control of metabolism by leptin, and is an important link between body adiposity and the reproductive axis. PMID:24024119

  4. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  5. Beam-energy inequality in the beam-beam interaction

    SciTech Connect

    Krishnagopal, S.; Siemann, R. )

    1990-03-01

    Conditions for energy transparency,'' unequal-energy beams having the same beam-beam behavior, are derived for round beams from a Hamiltonian model of the beam-beam interaction. These conditions are equal fractional betatron tunes, equal synchrotron tunes, equal beam-beam strength parameters, equal nominal sizes, equal {beta}{sup *}'s and equal bunch lengths. With these conditions the only way to compensate for unequal energies is with the number of particles per bunch.

  6. Beamed energy propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, James M.

    1992-01-01

    Beamed energy concepts offer an alternative for an advanced propulsion system. The use of a remote power source reduces the weight of the propulsion system in flight and this, combined with the high performance, provides significant payload gains. Within the context of this study's baseline scenario, two beamed energy propulsion concepts are potentially attractive: solar thermal propulsion and laser thermal propulsion. The conceived beamed energy propulsion devices generally provide low thrust (tens of pounds to hundreds of pounds); therefore, they are typically suggested for cargo transportation. For the baseline scenario, these propulsion system can provide propulsion between the following nodes: (1) low Earth orbit to geosynchronous Earth orbit; (2) low Earth orbit to low lunar orbit; (3) low lunar orbit to low Mars orbit--only solar thermal; and (4) lunar surface to low lunar orbit--only laser thermal.

  7. Measurement of the electron structure function F2e at LEP energies

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Gonçalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Slominski, W.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Szwed, J.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomé, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2014-10-01

    The hadronic part of the electron structure function F2e has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √{ s} = 91.2- 209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.

  8. Low energy antiproton beams

    NASA Astrophysics Data System (ADS)

    Klapisch, R.

    1992-04-01

    It was the invention of stochastic cooling by S. Van Meer that has allowed antiproton beams to become a powerful tool for the physicist. As a byproduct of the high energy proton-antiproton collider, a versatile low-energy facility, LEAR has been operating at CERN since 1984. The facility and its characteristics will be described as well as examples of its use for studying fundamental properties of the antiproton and for topics in atomic, nuclear and particle Physics.

  9. Meeting LEP

    SciTech Connect

    2006-05-23

    Le DG J.Adams fait l'introduction et présente les deux autres orateurs. Pierre Darriulat qui fait un doscours sur la physique à l'occasion du LEP, Wolfgang Schnell, qui parle du projet de la machine LEP et le DG lui-même contribue avec quelques réflexions. Présentation des dias

  10. High Energy Accelerator and Colliding Beam User Group: Progress report, March 1, 1988--February 28, 1989

    SciTech Connect

    Not Available

    1988-09-01

    This report discusses work carried out by the High Energy Accelerator and Colliding Beam User Group at the University of Maryland. Particular topics discussed are: OPAL experiment at LEP; deep inelastic muon interactions; B physics with the CLEO detector at CESR; further results from JADE; and search for ''small'' violation of the Pauli principle. (LSP)

  11. CRYSTALLINE BEAMS AT HIGH ENERGIES.

    SciTech Connect

    WEI, J.; OKAMOTO, H.; YURI, Y.; SESSLER, A.; MACHIDA, S.

    2006-06-23

    Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, crystalline beams can only be formed at energies below the transition energy ({gamma}{sub T}) of the accelerators [2]. In this paper, we investigate the formation of crystals in a high-{gamma}{sub T} lattice that also satisfies the maintenance condition for a crystalline beam [3].

  12. Low-Energy Plasma Spray (LEPS) Deposition of Hydroxyapatite/Poly-ɛ-Caprolactone Biocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Garcia-Alonso, Diana; Parco, Maria; Stokes, Joseph; Looney, Lisa

    2012-01-01

    Thermal spraying is widely employed to deposit hydroxyapatite (HA) and HA-based biocomposites on hip and dental implants. For thick HA coatings (>150 μm), problems are generally associated with the build-up of residual stresses and lack of control of coating crystallinity. HA/polymer composite coatings are especially interesting to improve the pure HA coatings' mechanical properties. For instance, the polymer may help in releasing the residual stresses in the thick HA coatings. In addition, the selection of a bioresorbable polymer may enhance the coatings' biological behavior. However, there are major challenges associated with spraying ceramic and polymeric materials together because of their very different thermal properties. In this study, pure HA and HA/poly-ɛ-caprolactone (PCL) thick coatings were deposited without significant thermal degradation by low-energy plasma spraying (LEPS). PCL has never been processed by thermal spraying, and its processing is a major achievement of this study. The influence of selected process parameters on microstructure, composition, and mechanical properties of HA and HA/PCL coatings was studied using statistical design of experiments (DOE). The HA deposition rate was significantly increased by the addition of PCL. The average porosity of biocomposite coatings was slightly increased, while retaining or even improving in some cases their fracture toughness and microhardness. Surface roughness of biocomposites was enhanced compared with HA pure coatings. Cell culture experiments showed that murine osteoblast-like cells attach and proliferate well on HA/PCL biocomposite deposits.

  13. High Energy Polarized e+e- Beams

    NASA Astrophysics Data System (ADS)

    Shatunov, Yu.; Koop, I.; Otboev, A.; Mane, S.

    2016-02-01

    Recently, the wide discussion about Higgs-factory design again returns to problem of high energy polarized electrons and positrons. It’s good known the radiative beam polarization at LEP-collider. It was obtained after spin resonance suppression at Z0 pick, but didn’t appear at energies above 70 GeV due to an enhancement of unavoidable depolarization effects. We examine in this paper various ideas for radiative polarization at TLEP/FCC-ee and formulate some estimates for the polarization buildup time and the asymptotic polarization. Using wigglers, a useful degree of polarization (for energy calibration), with a time constant of about 1 h, may be possible up to the threshold of W pair production. At higher energies such as the threshold of Higgs production, attaining a useful level of polarization may be difficult in a planar ring. With Siberian Snakes, wigglers and some imagination, polarization of reasonable magnitude, with a reasonable time constant (of not more than about 1 h), may be achievable at very high energies.

  14. Meeting LEP

    ScienceCinema

    None

    2016-07-12

    Le DG J.Adams fait l'introduction et présente les deux autres orateurs. Pierre Darriulat qui fait un doscours sur la physique à l'occasion du LEP, Wolfgang Schnell, qui parle du projet de la machine LEP et le DG lui-même contribue avec quelques réflexions. Présentation des dias

  15. Development of a Low Energy Particle Electron Spectrum Analyzer (LEP-ESA) onboard the ICI-2 sounding rocket

    NASA Astrophysics Data System (ADS)

    Harada, M.; Saito, Y.; Yokota, S.; Saito, M.; Asamura, K.; Kasahara, S.

    2008-12-01

    Strong HF radar backscatter echoes are well-known characteristics of the polar cusp region by the ground- based observation of HF radar in the polar ionosphere. The gradient drift instability is regarded as a dominant mode for producing backscatter targets. According to Moen et al. [2002], decameter scale measurement that cannot be achieved by ground-based and satellite observations is required to understand the generation mechanism. Norwegian sounding rocket experiment ICI-2(Investigation of Cusp Irregularities) is proposed in order to single out the mechanism(s) running cusp ionospheric plasma unstable and facilitate backscatter targets for HF radars. The ICI-2 rocket will be launched into cusp ionosphere from Svalbard, Norway in Nov/Dec 2008. We are responsible for developing a low energy particle electron spectrum analyzer (LEP-ESA) that is one of the science payloads onboard the ICI-2 sounding rocket. LEP-ESA covers the energy range between 10eV and 10keV. We designed LEP-ESA to achieve high spatial resolution of ~10m/energy spectrum (16 energy steps). We have confirmed the performance of LEP-ESA by experiments as well as numerical simulations. In order to realize the high spatial resolution, high time resolution is required. For the purpose of high time resolution measurement of low energy electrons we have newly developed an electron detector that consists of Z-stack MCPs (Micro Channel Pates) and 64-channel multi-anode. An ASIC (Application Specific Integrated Circuit) with 64-channel fast preamplifiers and counters are installed on the backside of the anode. Since the detected electrons are independently counted by 64 separated anodes, multi-anode can achieve the higher time resolution than any other position sensitive anodes. One of the most severe problems in using a multi- anode is the size of the required electronics that becomes unacceptably large for the sounding rocket / satellite instrument when the number of the channels is large. By using the

  16. LEP and CEBAF polarimeters: Revision

    SciTech Connect

    Burkert, V.; Rossmanith, R.; Placidi, M.

    1988-01-01

    This paper gives an overview on high energy electron (positron) polarimeters by describing in more detail the plans for the LEP polarimeter and the CEBAF polarimeters. Both LEP and CEBAF will have laser polarimeters. In addition CEBAF will be equipped with a M/o/ller polarimeter (for currents below 1..mu..A). 4 refs., 10 figs.

  17. Inauguration LEP

    ScienceCinema

    None

    2016-07-12

    Le DG H.Schopper salue le président de la république française, F.Mitterand, le président de la confédaration suisse P.Aubert, ainsi que les ministres et représentants du gouvernement des 12 états membres pour la célébration et inauguration du LEP.

  18. Inauguration LEP

    ScienceCinema

    None

    2016-07-12

    Le DG C.Rubbia remercie son prédécesseur H.Schopper pour sa contribution pour la réalisation du LEP. En présence du président de la Confédération Suisse, Mons. Délamuraz et du président français Mons.Mitterand plusieurs discours sont donnés et les délégations invités pour un déjeuner.

  19. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  20. High energy beam lifetime analysis

    SciTech Connect

    Howell, R.H.; Sterne, P.A.; Hartley, J.; Cowan, T.E.

    1997-05-01

    We have developed a positron lifetime defect analysis capability based on a 3 MeV electrostatic accelerator. The high energy beam lifetime spectrometer is operational with a 60 mCi {sup 22}Na source providing a current of 7 10{sup 5} positrons per second. Lifetime data are derived from a thin plastic transmission detector providing an implantation time and a BaF{sub 2} detector to determine the annihilation time. Positron lifetime analysis is performed with a 3 MeV positron beam on thick sample specimens at counting rates in excess of 2000 per second. The instrument is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for in situ measurements.

  1. Beam characteristics of energy-matched flattening filter free beams

    SciTech Connect

    Paynter, D.; Weston, S. J.; Cosgrove, V. P.; Evans, J. A.; Thwaites, D. I.

    2014-05-15

    Purpose: Flattening filter free (FFF) linear accelerators can increase treatment efficiency and plan quality. There are multiple methods of defining a FFF beam. The Elekta control system supports tuning of the delivered FFF beam energy to enable matching of the percentage depth-dose (PDD) of the flattened beam at 10 cm depth. This is compared to FFF beams where the linac control parameters are identical to those for the flattened beam. All beams were delivered on an Elekta Synergy accelerator with an Agility multi-leaf collimator installed and compared to the standard, flattened beam. The aim of this study is to compare “matched” FFF beams to both “unmatched” FFF beams and flattened beams to determine the benefits of matching beams. Methods: For the three modes of operation 6 MV flattened, 6 MV matched FFF, 6 MV unmatched FFF, 10 MV flattened, 10 MV matched FFF, and 10 MV unmatched FFF beam profiles were obtained using a plotting tank and were measured in steps of 0.1 mm in the penumbral region. Beam penumbra was defined as the distance between the 80% and 20% of the normalized dose when the inflection points of the unflattened and flattened profiles were normalized with the central axis dose of the flattened field set as 100%. PDD data was obtained at field sizes ranging from 3 cm × 3 cm to 40 cm × 40 cm. Radiation protection measurements were additionally performed to determine the head leakage and environmental monitoring through the maze and primary barriers. Results: No significant change is made to the beam penumbra for FFF beams with and without PDD matching, the maximum change in penumbra for a 10 cm × 10 cm field was within the experimental error of the study. The changes in the profile shape with increasing field size are most significant for the matched FFF beam, and both FFF beams showed less profile shape variation with increasing depth when compared to flattened beams, due to consistency in beam energy spectra across the radiation field

  2. Confined energy distribution for charged particle beams

    DOEpatents

    Jason, Andrew J.; Blind, Barbara

    1990-01-01

    A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

  3. Intermediate energy neutron beams from the MURR.

    PubMed

    Brugger, R M; Herleth, W H

    1990-01-01

    Several reactors in the United States are potential candidates to deliver beams of intermediate energy neutrons for NCT. At this time, moderators, as compared to filters, appear to be the more effective means of tailoring the flux of these reactors. The objective is to sufficiently reduce the flux of fast neutrons while producing enough intermediate energy neutrons for treatments. At the University of Missouri Research Reactor (MURR), the code MCNP has recently been used to calculate doses in a phantom. First, "ideal" beams of 1, 35, and 1000 eV neutrons were analyzed to determine doses and advantage depths in the phantom. Second, a high quality beam that had been designed to fit in the thermal column of the MURR, was reanalyzed. MCNP calculations of the dose in phantom in this beam confirmed previous calculations and showed that this beam would be a nearly ideal one with neutrons of the desired energy and also a high neutron current. However, installation of this beam will require a significant modification of the thermal column of the MURR. Therefore, a second beam that is less difficult to build and install, but of lower neutron current, has been designed to fit in MURR port F. This beam is designed using inexpensive A1, S, and Pb. The doses calculated in the phantom placed in this beam show that it will be satisfactory for sample tests, animal tests, and possible initial patient trials. Producing this beam will require only modest modifications of the existing tube.

  4. Energy-beam-driven rapid fabrication system

    DOEpatents

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  5. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  6. Beam Energy Calibration with Meson Production

    NASA Astrophysics Data System (ADS)

    Razen, B.; Betigeri, M. G.; Bojowald, J.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Hawash, M.; Igel, S.; Ilieva, I.; Jahn, R.; Jarczyk, L.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, B. J.; Lippert, G.; Machner, H.; Magiera, A.; Maier, R.; Nann, H.; Plendl, H. S.; Protic, D.; Razen, B.; von Rossen, P.; Roy, B.; Siudak, R.; Smyrski, J.; Strzalkowski, A.; Tsenov, R.; Zolnierczuk, P. A.

    1998-11-01

    The magnetic spectrometer BIG KARL is used to get energy calibration fix-points for the external beam of COSY-Juelich. These fixpoints were obtained by measuring the meson-production reaction pp → dπ+ close to threshold and at the beam momentum, where the forward pions and the backward deuterons have the same momentum.

  7. Tay Physics at LEP

    NASA Astrophysics Data System (ADS)

    Sobie, Randall J.

    2003-02-01

    Although it has been a number of years since the end of LEP-I, there have recently been a number of new results involving high precision measurements of the properties of the tau lepton. In particular we will discuss the results that are unique to LEP such as the tau polarization. In addition, we will discuss the recent measurements of the topological branching ratios and the leptonic decay modes where LEP has an advantage over the B-Factories due to the reduced background from hadronic events.

  8. Energy spectrum control for modulated proton beams

    SciTech Connect

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  9. Measurement of the W boson mass and width in e+e- collisions at LEP

    NASA Astrophysics Data System (ADS)

    Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Sloan, T.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Müller, A.-S.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2006-08-01

    The mass of the W boson is determined from the direct reconstruction of W decays in WW→qq¯qq¯ and WW→ℓνqq¯ events in e+e- collisions at LEP. The data sample corresponds to an integrated luminosity of 683 pb-1 collected with the ALEPH detector at centre-of-mass energies up to 209 GeV. To minimise any effect from colour reconnection a new procedure is adopted in which low energy particles are not considered in the mass determination from the qq¯qq¯ channel. The combined result from all channels is m_{text{W}}=80.440 ±0.043{text{(stat.)}} ±0.024{text{(syst.)}} ±0.009{text{(FSI)}} ±0.009{text{(LEP)}} text{GeV/}c^2, where FSI represents the possible effects of final state interactions in the qq¯qq¯ channel and LEP indicates the uncertainty in the beam energy. From two-parameter fits to the W mass and width, the W width is found to be Γ_{text{W}} = 2.14 ±0.09{text{(stat.)}} ±0.04{text{(syst.)}} ±0.05{text{(FSI)}} ±0.01{text{(LEP)}} text{GeV}.

  10. Moving core beam energy absorber and converter

    DOEpatents

    Degtiarenko, Pavel V.

    2012-12-18

    A method and apparatus for the prevention of overheating of laser or particle beam impact zones through the use of a moving-in-the-coolant-flow arrangement for the energy absorbing core of the device. Moving of the core spreads the energy deposition in it in 1, 2, or 3 dimensions, thus increasing the effective cooling area of the device.

  11. Energy Flow Analysis of Coupled Beams

    NASA Astrophysics Data System (ADS)

    Cho, P. E.; Bernhard, R. J.

    1998-04-01

    Energy flow analysis (EFA) is an analytical tool for prediction of the frequency-averaged vibrational response of built-up structures at high audible frequencies. The procedure is based on two developments; first, the derivation of the partial differential equations that govern the propagation of energy-related quantities in simple structural elements such as rods, beams, plates, and acoustic cavities; and second, the derivation of coupling relationships in terms of energy-related quantities that describe the transfer of energy for various joints (e.g., beam-to-beam, rod-to-beam, plate-to-plate, structure-to-acoustic field coupling). In this investigation, the energy flow coupling relationships at these joints for rods and beams are derived. EFA is used to predict the frequency-averaged vibrational response of a frame structure with a three-dimensional joint, where four wave types propagate in the structure. The predicted results of EFA are shown to be a good approximation of the frequency-averaged “exact” energetics, which are computed from classical displacement solutions.

  12. Low energy beam transport system developments

    SciTech Connect

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup −} beams up to 60 mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100 mA) proton beam transport. Preservation of low emittances (~0.15 π mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1 m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup −} beams, but such gas densities cause unacceptably high H{sup −} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup −} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  13. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  14. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    SciTech Connect

    Ren, Haitao Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-15

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  15. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB

    NASA Astrophysics Data System (ADS)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M.; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  16. Discovery of a novel functional leptin protein (LEP) in zebra finches: evidence for the existence of an authentic avian leptin gene predominantly expressed in the brain and pituitary.

    PubMed

    Huang, Guian; Li, Juan; Wang, Hongning; Lan, Xinyu; Wang, Yajun

    2014-09-01

    Leptin (LEP) is reported to play important roles in controlling energy balance in vertebrates, including birds. However, it remains an open question whether an authentic "LEP gene" exists and functions in birds. Here, we identified and characterized a LEP gene (zebra finch LEP [zbLEP]) encoding a 172-amino acid precursor in zebra finches. Despite zbLEP showing limited amino acid sequence identity (26%-29%) to human and mouse LEPs, synteny analysis proved that zbLEP is orthologous to mammalian LEP. Using a pAH32 luciferase reporter system and Western blot analysis, we demonstrated that the recombinant zbLEP protein could potently activate finch and chicken LEP receptors (zbLEPR; cLEPR) expressed in human embryonic kidney 293 cells and enhance signal transducer and activator of transcription 3 phosphorylation, further indicating that zbLEP is a functional ligand for avian LEPRs. Interestingly, quantitative real-time RT-PCR revealed that zbLEP mRNA is expressed nearly exclusively in the pituitary and various brain regions but undetectable in adipose tissue and liver, whereas zbLEPR mRNA is widely expressed in adult finch tissues examined with abundant expression noted in pituitary, implying that unlike mammalian LEP, finch LEP may not act as an adipocyte-derived signal to control energy balance. As in finches, a LEP highly homologous to zbLEP was also identified in budgerigar genome. Strikingly, finch and budgerigar LEPs show little homology with chicken LEP (cLEP) previously reported, suggesting that the so-called cLEP is incorrect. Collectively, our data provide convincing evidence for the existence of an authentic functional LEP in avian species and suggest an important role of brain- and pituitary-derived LEP played in vertebrates.

  17. LEPS2 : the second Laser-Electron Photon facility at SPring-8

    NASA Astrophysics Data System (ADS)

    Yosoi, M.

    2011-10-01

    A new project to construct the second beamline for the laser-electron photon beam at SPring-8 (LEPS2) has started. Based on the LEPS experience, the project aims to improve the intensity of the photon beam and to expand the detector acceptance by adopting the BNL-E949 detector, which is a hermetic detector in a large 1 T solenoid magnet. The central region of tracking chambers will be upgraded for the LEPS2. A new LEPS2 experimental building has just been constructed outside the experimental hall of the storage ring. The present status of the development of a frozen-spin polarized HD target is also reported.

  18. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  19. Beamed-Energy Propulsion (BEP) Study

    NASA Technical Reports Server (NTRS)

    George, Patrick; Beach, Raymond

    2012-01-01

    The scope of this study was to (1) review and analyze the state-of-art in beamed-energy propulsion (BEP) by identifying potential game-changing applications, (2) formulate a roadmap of technology development, and (3) identify key near-term technology demonstrations to rapidly advance elements of BEP technology to Technology Readiness Level (TRL) 6. The two major areas of interest were launching payloads and space propulsion. More generally, the study was requested and structured to address basic mission feasibility. The attraction of beamed-energy propulsion (BEP) is the potential for high specific impulse while removing the power-generation mass. The rapid advancements in high-energy beamed-power systems and optics over the past 20 years warranted a fresh look at the technology. For launching payloads, the study concluded that using BEP to propel vehicles into space is technically feasible if a commitment to develop new technologies and large investments can be made over long periods of time. From a commercial competitive standpoint, if an advantage of beamed energy for Earth-to-orbit (ETO) is to be found, it will rest with smaller, frequently launched payloads. For space propulsion, the study concluded that using beamed energy to propel vehicles from low Earth orbit to geosynchronous Earth orbit (LEO-GEO) and into deep space is definitely feasible and showed distinct advantages and greater potential over current propulsion technologies. However, this conclusion also assumes that upfront infrastructure investments and commitments to critical technologies will be made over long periods of time. The chief issue, similar to that for payloads, is high infrastructure costs.

  20. Involving LEP Parents.

    ERIC Educational Resources Information Center

    Garate, Dama; And Others

    Four community liaisons for public school programs for limited- English-proficient (LEP) populations discuss briefly aspects of parent involvement. Dama Garate describes the populations served by the Trinity-Arlington Project in the Arlington (Virginia) Public Schools and suggests issues to be considered in parent involvement efforts. Pirun Sen of…

  1. SU-E-T-635: Quantitative Study On Beam Flatness Variation with Beam Energy Change

    SciTech Connect

    Li, J S; Eldib, A; Ma, C; Lin, M

    2014-06-15

    Purpose: Beam flatness check has been proposed for beam energy check for photon beams with flattering filters. In this work, beam flatness change with beam energy was investigated quantitatively using the Monte Carlo method and its significance was compared with depth dose curve change. Methods: Monte Carlo simulations for a linear accelerator with flattering filter were performed with different initial electron energies for photon beams of 6MV and 10MV. Dose calculations in a water phantom were then perform with the phase space files obtained from the simulations. The beam flatness was calculated based on the dose profile at 10 cm depth for all the beams with different initial electron energies. The percentage depth dose (PDD) curves were also analyzed. The dose at 10cm depth (D10) and the ratio of the dose at 10cm and 20cm depth (D10/D20) and their change with the beam energy were calculated and compared with the beam flatness variation. Results: It was found that the beam flatness variation with beam energy change was more significant than the change of D10 and the ratio between D10 and D20 for both 6MV and 10MV beams. Half MeV difference on the initial electron beam energy brought in at least 20% variation on the beam flatness but only half percent change on the ratio of D10 and D20. The change of D10 or D20 alone is even less significant. Conclusion: The beam energy impact on PDD is less significant than that on the beam flatness. If the PDD is used for checking the beam energy, uncertainties of the measurement could possibly disguise its change. Beam flatness changes more significantly with beam energy and therefore it can be used for monitoring the energy change for photon beams with flattering filters. However, other factors which may affect the beam flatness should be watched as well.

  2. Space Experiments to Advance Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Johansen, Donald G.

    2010-05-01

    High power microwave sources are now available and usable, with modification, or beamed energy propulsion experiments in space. As output windows and vacuum seals are not needed space is a natural environment for high power vacuum tubes. Application to space therefore improves reliability and performance but complicates testing and qualification. Low power communications satellite devices (TWT, etc) have already been through the adapt-to-space design cycle and this history is a useful pathway for high power devices such as gyrotrons. In this paper, space experiments are described for low earth orbit (LEO) and lunar environment. These experiments are precursors to space application for beamed energy propulsion using high power microwaves. Power generation and storage using cryogenic systems are important elements of BEP systems and also have an important role as part of BEP experiments in the space environment.

  3. An Exploration Perspective of Beamed Energy Propulsion

    NASA Technical Reports Server (NTRS)

    Cole, John W.

    2007-01-01

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  4. An Exploration Perspective of Beamed Energy Propulsion

    SciTech Connect

    Cole, John

    2008-04-28

    The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

  5. Neutralizer options for high energy H/sup -/ beams

    SciTech Connect

    Fink, J.H.

    1986-10-01

    A neutralizer converts a negative ion beam into a neutral beam, but it also increases the beamline cost, weight and size while reducing its output power, efficiency and possibly the reliability of the entire system. In addition it scatters the newly formed neutrals, altering the beam current density distribution, causing the beam divergence to get larger and the brightness to go down. In the following, the role of neutralizers for hydrogen ion beams is reviewed, and the problems encountered over a range of beam energies are discussed. Consideration is given to enhancing the goals of the neutral beam application, be they the highest neutral fraction, optimum overall efficiency or maximum beam brightness, etc.

  6. LEP — EDRN Public Portal

    Cancer.gov

    Leptin (LEP) is secreted by white adipocytes and plays a major role in the regulation of body weight. This protein, which acts through the leptin receptor, functions as part of a signaling pathway that can inhibit food intake and/or regulate energy expenditure to maintain constancy of the adipose mass. Leptin has also been implicated in the regulation of reproduction, glucose homeostasis, bone formation, wound healing and the immune system. Leptin has several endocrine functions and is also involved in the regulation of immune and inflammatory responses, hematopoiesis, angiogenesis and wound healing. Mutations in the leptin gene and/or its regulatory regions cause severe obesity and morbid obesity with hypogonadism. The leptin gene has also been linked to type 2 diabetes mellitus development.

  7. Beam lifetime and limitations during low-energy RHIC operation

    SciTech Connect

    Fedotov, A.V.; Bai, M.; Blaskiewicz, M.; Fischer, W.; Kayran, D.; Montag, C.; Satogata, T.; Tepikian, S.; Wang, G.

    2011-03-28

    The low-energy physics program at the Relativistic Heavy Ion Collider (RHIC), motivated by a search for the QCD phase transition critical point, requires operation at low energies. At these energies, large nonlinear magnetic field errors and large beam sizes produce low beam lifetimes. A variety of beam dynamics effects such as Intrabeam Scattering (IBS), space charge and beam-beam forces also contribute. All these effects are important to understand beam lifetime limitations in RHIC at low energies. During the low-energy RHIC physics run in May-June 2010 at beam {gamma} = 6.1 and {gamma} = 4.1, gold beam lifetimes were measured for various values of space-charge tune shifts, transverse acceptance limitation by collimators, synchrotron tunes and RF voltage. This paper summarizes our observations and initial findings.

  8. Use of incomplete energy recovery for the energy compression of large energy spread charged particle beams

    DOEpatents

    Douglas, David R.; Benson, Stephen V.

    2007-01-23

    A method of energy recovery for RF-base linear charged particle accelerators that allows energy recovery without large relative momentum spread of the particle beam involving first accelerating a waveform particle beam having a crest and a centroid with an injection energy E.sub.o with the centroid of the particle beam at a phase offset f.sub.o from the crest of the accelerating waveform to an energy E.sub.full and then recovering the beam energy centroid a phase f.sub.o+Df relative to the crest of the waveform particle beam such that (E.sub.full-E.sub.o)(1+cos(f.sub.o+Df))>dE/2 wherein dE=the full energy spread, dE/2=the full energy half spread and Df=the wave form phase distance.

  9. Tau polarisation at LEP

    NASA Astrophysics Data System (ADS)

    Alemany, Ricard

    1999-04-01

    The measurements of the tau polarisation at LEP I are reviewed. Special emphasis is given to the new preliminary results presented at this conference. The ALEPH collaboration has studied the polarisation as a function of the polar angle using a new method based on the tau direction reconstruction and fully exploiting the angular correlations. A second traditional approach, based on the single tau decays has been also developed. The DELPHI collaboration has also studied the full data sample using an individual tau decay method and an inclusive hadronic selection. The results from the four experiments are presented with discussion of the compatibility among the methods and experiments.

  10. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  11. Ion beam energy spectrum calculation via dosimetry data deconvolution.

    SciTech Connect

    Harper-Slaboszewicz, Victor Jozef; Sharp, Andrew Clinton

    2010-10-01

    The energy spectrum of a H{sup +} beam generated within the HERMES III accelerator is calculated from dosimetry data to refine future experiments. Multiple layers of radiochromic film are exposed to the beam. A graphic user interface was written in MATLAB to align the film images and calculate the beam's dose depth profile. Singular value regularization is used to stabilize the unfolding and provide the H{sup +} beam's energy spectrum. The beam was found to have major contributions from 1 MeV and 8.5 MeV protons. The HERMES III accelerator is typically used as a pulsed photon source to experimentally obtain photon impulse response of systems due to high energy photons. A series of experiments were performed to explore the use of Hermes III to generate an intense pulsed proton beam. Knowing the beam energy spectrum allows for greater precision in experiment predictions and beam model verification.

  12. Longitudinal Density Modulation and Energy Conversion in Intense Beams

    SciTech Connect

    Harris, J; Neumann, J; Tian, K; O'Shea, P

    2006-02-17

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may under some circumstances be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams, and discusses three recent experiments related to the dynamics of density-modulated electron beams.

  13. Energy Beam Highways Through the Skies

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.

    1996-01-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  14. Energy Beam Highways Through the Skies

    SciTech Connect

    Myrabo, L.N.

    1996-02-01

    The emergence of Energy Beam Flight Transportation Systems could dramatically change the way one travels in the 21st Century. A framework for formulating `Highways of Light` and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent `motors` -- instead of the traditional autonomous `engines` with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., `Acorn`, `Toy Top`, and `Disc.` Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the `emerging technologies` that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.

  15. Impact of Laser Beam Speckle Structure on Crossed Beam Energy Transfer via Beam Deflections and Ponderomotive Self-Focusing

    NASA Astrophysics Data System (ADS)

    Raj, G.; Hüller, S.

    2017-02-01

    The role of laser speckle structure (hot spots) and its ponderomotive self-focusing (PSF), in crossed beam energy transfer (CBET), of smoothed laser beams is investigated in an inhomogeneous expanding plasma. Numerical simulations using the code harmony in two spatial dimensions, demonstrate how self-focusing of laser hot spots in crossed beams can significantly affect the transfer of energy from one beam to the other in addition to the stimulated Brillouin scattering (SBS) process. It is shown that for sufficiently intense laser beams, when the laser hot spots exceed the criterion for self-focusing in a plasma with flow, the angular spread of transmitted light beams increases considerably with the intensity, which arises in particular, in expanding plasma where significant beam deflection is observed. It is shown for the first time that besides SBS, the contribution of speckle structure, PSF, and deflections of the intense hot spots in multiple speckle beams to CBET, therefore matters.

  16. Inclusive D*-meson production in two-photon collisions at LEP

    NASA Astrophysics Data System (ADS)

    Sokolov, A. A.

    2002-06-01

    The inclusive production of D*+ is measured by DELPHI in photon-photon collisions at LEP-II energies. The measured cross sections are compatible with the QCD calculations having the contributions from the resolved processes sensitive to the gluon density in photon. The total cross section of the charm quark production in two-photon collisions at LEP-II energies is estimated.

  17. Low energy beam transport for facility for rare isotope beams driver linear particle accelerator.

    PubMed

    Sun, L T; Leitner, D; Machicoane, G; Pozdeyev, E; Smirnov, V; Vorozhtsov, S B; Winklehner, D; Zhao, Q

    2012-02-01

    The driver linac for the facility for rare isotope beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research. The linac will be capable of accelerating a uranium beam to an energy of up to 200 Mev∕u and delivering it to a fragmentation target with a maximum power of 400 kW. Stable ion beams will be produced by a high performance electron cyclotron resonance ion source operating at 28 GHz. The ion source will be located on a high voltage platform to reach an initial beam energy of 12 keV∕u. After extraction, the ion beam will be transported vertically down to the linac tunnel in a low energy beam transport (LEBT) system and injected into a radio frequency quadrupole (RFQ) operating at a frequency of 80.5 MHz. To meet the beam power requirements, simultaneous acceleration of two-charge states will be used for heavier ions (≥Xe). This paper presents the layout of the FRIB LEBT and the beam dynamics in the LEBT. In particular, simulation and design of the beam line section before charge state selection will be detailed. The need to use an achromatic design for the charge state selection system and the advantage of an ion beam collimation system to limit the emittance of the beam injected into the RFQ will be discussed in this paper.

  18. Bose-Einstein Fermi-Dirac Correlations at Lep and Hera

    NASA Astrophysics Data System (ADS)

    Aracena, I.

    2005-04-01

    Bose-Einstein (BEC) and Fermi-Dirac Correlations (FDC) have been studied in hadronic decays from data collected by the LEP and HERA collaborations. Multidimensional analyses of BEC in charged pion pairs have been published by the LEP experiments and the ZEUS experiment at HERA, all showing an elongated shape of the pion emission region. In fully hadronic WW decays at LEP2 energies, BEC between pions stemming from different Ws (inter-W BEC) cannot be excluded a priori. Recent results of inter-W BEC analyses by the LEP collaborations are given.

  19. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  20. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    SciTech Connect

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  1. Quantitative low-energy ion beam characterization by beam profiling and imaging via scintillation screens

    NASA Astrophysics Data System (ADS)

    Germer, S.; Pietag, F.; Polak, J.; Arnold, T.

    2016-11-01

    This study presents the imaging and characterization of low-current ion beams in the neutralized state monitored via single crystal YAG:Ce (Y3Al5O12) scintillators. To validate the presented beam diagnostic tool, Faraday cup measurements and test etchings were performed. Argon ions with a typical energy of 1.0 keV were emitted from an inductively coupled radio-frequency (13.56 MHz) ion beam source with total currents of some mA. Different beam properties, such as, lateral ion current density, beam divergence angle, and current density in pulsed ion beams have been studied to obtain information about the spatial beam profile and the material removal rate distribution. We observed excellent imaging properties with the scintillation screen and achieved a detailed characterization of the neutralized ion beam. A strong correlation between the scintillator light output, the ion current density, and the material removal rate could be observed.

  2. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  3. Optimization of accelerated charged particle beam for ADS energy production

    NASA Astrophysics Data System (ADS)

    Baldin, A. A.; Berlev, A. I.; Paraipan, M.; Tyutyunnikov, S. I.

    2017-01-01

    A comparative analysis and optimization of energy efficiency for proton and ion beams in ADS systems is performed via simulation using a GEANT4 code with account for energy consumption for different accelerator types. It is demonstrated that for light nuclei, beginning from 7Li, with energies above 1 GeV/nucleon, ion beams are considerably (several times) more efficient than the 1-3 GeV proton beam. The possibility of achieving energy deposition equivalent to 1 GeV protons in a quasi-infinite uranium target with higher efficiency (and twice as small accelerator size) in the case of acceleration of light ions is substantiated.

  4. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  5. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  6. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    SciTech Connect

    Jang, Hyojae Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-15

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  7. Beam energy scan with asymmetric collision at RHIC

    SciTech Connect

    Liu, C.; Alessi, J.; Beebe, E.; Blaskiewicz, M.; Brennan, J. M.; Brown, K. A.; Bruno, D.; Butler, J.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Fischer, W.; Gardner, C. J.; Gassner, D. M.; Gu, X.; Hao, Y.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Jamilkowski, J.; Laster, J. S.; Litvinenko, V.; Luo, Y.; Mapes, M.; Marr, G. J.; Marusic, A.; McIntyre, G.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pinayev, I.; Ranjbar, V.; Raparia, D.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Sandberg, J.; Schoefer, V.; Severino, F.; Shrey, T.; Smith, K.; Tepikian, S.; Than, Y.; thieberger, P.; Tuozzolo, J.; Wang, G.; Wu, Q.; Zaltsman, A.; Zeno, K.; Zhang, S.; Zhang, W.

    2016-11-15

    A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.

  8. Piezoelectric energy harvester having planform-tapered interdigitated beams

    DOEpatents

    Kellogg, Rick A.; Sumali, Hartono

    2011-05-24

    Embodiments of energy harvesters have a plurality of piezoelectric planform-tapered, interdigitated cantilevered beams anchored to a common frame. The plurality of beams can be arranged as two or more sets of beams with each set sharing a common sense mass affixed to their free ends. Each set thus defined being capable of motion independent of any other set of beams. Each beam can comprise a unimorph or bimorph piezoelectric configuration bonded to a conductive or non-conductive supporting layer and provided with electrical contacts to the active piezoelectric elements for collecting strain induced charge (i.e. energy). The beams are planform tapered along the entirety or a portion of their length thereby increasing the effective stress level and power output of each piezoelectric element, and are interdigitated by sets to increase the power output per unit volume of a harvester thus produced.

  9. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  10. Linac4 low energy beam measurements with negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Scrivens, R.; Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-01

    Linac4, a 160 MeV normal-conducting H- linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H- beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  11. Linac4 low energy beam measurements with negative hydrogen ions

    SciTech Connect

    Scrivens, R. Bellodi, G.; Crettiez, O.; Dimov, V.; Gerard, D.; Granemann Souza, E.; Guida, R.; Hansen, J.; Lallement, J.-B.; Lettry, J.; Lombardi, A.; Midttun, Ø.; Pasquino, C.; Raich, U.; Riffaud, B.; Roncarolo, F.; Valerio-Lizarraga, C. A.; Wallner, J.; Yarmohammadi Satri, M.; Zickler, T.

    2014-02-15

    Linac4, a 160 MeV normal-conducting H{sup −} linear accelerator, is the first step in the upgrade of the beam intensity available from the LHC proton injectors at CERN. The Linac4 Low Energy Beam Transport (LEBT) line from the pulsed 2 MHz RF driven ion source, to the 352 MHz RFQ (Radiofrequency Quadrupole) has been built and installed at a test stand, and has been used to transport and match to the RFQ a pulsed 14 mA H{sup −} beam at 45 keV. A temporary slit-and-grid emittance measurement system has been put in place to characterize the beam delivered to the RFQ. In this paper a description of the LEBT and its beam diagnostics is given, and the results of beam emittance measurements and beam transmission measurements through the RFQ are compared with the expectation from simulations.

  12. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  13. Beam dynamics limits for low-energy RHIC operation

    SciTech Connect

    Fedotov,A.V.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pozdeyev, E.; Satogata, T.

    2008-08-25

    There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can be improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Here we summarize dynamic effects limiting beam lifetime and possible improvement with electron cooling.

  14. Variable-Energy Ion Beams For Modification Of Surfaces

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Hecht, Michael H.; Orient, Otto J.

    1989-01-01

    Beam of low-energy negative oxygen ions used to grow layer of silicon dioxide on silicon. Beam unique both in purity, contains no molecular oxygen or other charged species, and in low energy, which is insufficient to damage silicon by physically displacing atoms. Low-energy growth accomplished with help of ion-beam apparatus. Directs electrons into crosswise stream of gas, generating stream of negative ions. Pair of charged plates separates ions from accompanying electrons and diverts ion beam to target - silicon substrate. Diameter of beam at target 0.5 to 0.75 cm. Promises useful device to study oxidation of semiconductors and, in certain applications, to replace conventional oxidation processes.

  15. Australian Science and Technology with Relevance to Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Froning, H. David

    2008-04-01

    Although Australia has no Beamed Energy Propulsion programs at the present time, it is accomplishing significant scientific and technological activity that is of potential relevance to Beamed Energy Propulsion (BEP). These activities include: continual upgrading and enhancement of the Woomera Test Facility, Which is ideal for development and test of high power laser or microwave systems and the flight vehicles they would propel; collaborative development and test, with the US and UK of hypersonic missiles that embody many features needed by beam-propelled flight vehicles; hypersonic air breathing propulsion systems that embody inlet-engine-nozzle features needed for beam-riding agility by air breathing craft; and research on specially conditioned EM fields that could reduce beamed energy lost during atmospheric propagation.

  16. Radiochromic film dosimetry of a low energy proton beam.

    PubMed

    Piermattei, A; Miceli, R; Azario, L; Fidanzio, A; delle Canne, S; De Angelis, C; Onori, S; Pacilio, M; Petetti, E; Raffaele, L; Sabini, M G

    2000-07-01

    In this work some dosimetric characteristics of MD-55-2 GafChromic films were studied in a low energy proton beam (21.5 MeV) directly in a water phantom. The nonlinearity of the optical density was quantified by a factor P(lin). A correction factor P(en), that accounts for optical density dependence on the energy, was empirically determined. The effects of detector thickness in depth dose measurements and of the film orientation with respect to beam direction were investigated. The results show that the MD-55-2 films provide dose measurements with the films positioned perpendicularly to the proton beam. A dosimetric formalizm is proposed to determine the dose to water at depth d, with films oriented perpendicularly to the beam axis. This formalism uses a calibration factor of the radiochromic film determined directly on the proton beam at a reference depth in water, and the P(lin) factor, that takes into account the nonlinearity of the calibration curve and the P(en) factor that, in turn takes into account the change of proton beam energy in water. The MD-55-2 films with their high spatial resolution and the quasiwater equivalent material are attractive, positioned perpendicularly along the beam axis, for the absolute dose determination of very small beam sizes and modulated proton beams.

  17. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  18. A compact, versatile low-energy electron beam ion source.

    PubMed

    Zschornack, G; König, J; Schmidt, M; Thorn, A

    2014-02-01

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  19. Energy Spread of the Proton Beam in the Fermilab Booster at its Injection Energy

    SciTech Connect

    Bhat, C. M.; Chase, B. E.; Chaurize, S. J.; Garcia, F. G.; Seiya, K.; Pellico, W. A.; Sullivan, T. M.; Triplett, A. K.

    2015-04-27

    We have measured the energy spread of the Booster beam at its injection energy of 400 MeV by three different methods: (1) creating a notch of about 40 nsec wide in the beam immediately after multiple turn injection and measuring the slippage time required for high and low momentum particles for a grazing touch in line-charge distribution, (2) injecting partial turn beam and letting it to debunch, and (3) comparing the beam profile monitor data with predictions from MAD simulations for the 400 MeV injection beam line. The measurements are repeated under varieties of conditions of rf systems in the ring and in the beam transfer line.

  20. Bulk defect analysis with a high-energy positron beam

    SciTech Connect

    Hartley, J. H.; Howell, R. H.; Sterne, P. A.

    1998-09-23

    A program using a positron beam to probe defects in bulk materials has been developed at Lawrence Livermore National Laboratory. Positron annihilation lifetime spectroscopy (PALS) provides non-destructive analysis of average defect size and concentration. A 3 MeV positron beam is supplied by Sodium-22 at the terminal of a Pelletron accelerator. The high-energy beam allows large (greater than or equal to 1 cm2) engineering samples to be measured in air or even sealed in an independent environment. A description of the beam-PALS system will be presented along with a summary of recent measuremen

  1. Method and apparatus for varying accelerator beam output energy

    DOEpatents

    Young, Lloyd M.

    1998-01-01

    A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.

  2. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  3. Experimental investigation of fatigue in a cantilever energy harvesting beam

    NASA Astrophysics Data System (ADS)

    Avvari, Panduranga Vittal; Yang, Yaowen; Liu, Peiwen; Soh, Chee Kiong

    2015-03-01

    Over the last decade, cantilever energy harvesters gained immense popularity owing to the simplicity of the design and piezoelectric energy harvesting (PEH) using the cantilever design has undergone considerable evolution. The major drawback of a vibrating cantilever beam is its vulnerability to fatigue over a period of time. This article brings forth an experimental investigation into the phenomenon of fatigue of a PEH cantilever beam. As there has been very little literature reported in this area, an effort has been made to scrutinize the damage due to fatigue in a linear vibrating cantilever PEH beam consisting of an aluminum substrate with a piezoelectric macro-fiber composite (MFC) patch attached near the root of the beam and a tip mass attached to the beam. The beam was subjected to transverse vibrations and the behavior of the open circuit voltage was recorded with passing time. Moreover, electro-mechanical admittance readings were obtained periodically using the same MFC patch as a Structural health monitoring (SHM) sensor to assess the health of the PEH beam. The results show that with passing time the PEH beam underwent fatigue in both the substrate and MFC, which is observed in a complimentary trend in the voltage and admittance readings. The claim is further supported using the variation of root mean square deviation (RMSD) of the real part of admittance (conductance) readings. Thus, this study concludes that the fatigue issue should be addressed in the design of PEH for long term vibration energy harvesting.

  4. Diagnostics for ion beam driven high energy density physics experiments.

    PubMed

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  5. Uncorrelated Energy Spread and Longitudinal Emittance of a Photoinjector Beam

    SciTech Connect

    Huang, Z; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Stupakov, G.; Wu, J.; /SLAC

    2005-05-25

    Longitudinal phase space properties of a photoinjector beam are important in many areas of high-brightness beam applications such as bunch compression, transverse-to-longitudinal emittance exchange, and high-gain free-electron lasers. In this paper, we discuss both the rf and the space charge contributions to the uncorrelated energy spread of the beam generated from a laser-driven rf gun. We compare analytical expressions for the uncorrelated energy spread and the longitudinal emittance with numerical simulations and recent experimental results.

  6. Laser-based profile and energy monitor for H beams

    SciTech Connect

    Connolly,R.; Alessi, J.; Bellavia, S.; Dawson, C.; Degen, C.; Meng, W.; Raparia, D.; Russo, T.; Tsoupas, N.

    2008-09-29

    A beam profile and energy monitor for H{sup -} beams based on laser photoneutralization was built at Brookhaven National Laboratory (BNL)* for use on the High Intensity Neutrino Source (HMS) at Fermilab. An H{sup -} ion has a first ionization potential of 0.75eV and can be neutralized by light from a Nd:YAG laser ({lambda}=1064nm). To measure beam profiles, a narrow laser beam is stepped across the ion beam, removing electrons from the portion of the H{sup -} beam intercepted by the laser. These electrons are channeled into a Faraday cup by a curved axial magnetic field. To measure the energy distribution of the electrons, the laser position is fixed and the voltage on a screen in front of the Faraday cup is raised in small steps. We present a model which reproduces the measured energy spectrum from calculated beam energy and space-charge fields. Measurements are reported from experiments in the BNL linac MEBT at 750keV.

  7. Heavy quark physics from LEP

    SciTech Connect

    Dornan, P.J.

    1997-01-01

    A review of some of the latest results on heavy flavor physics from the LEP Collaborations is presented. The emphasis is on B physics, particularly new results and those where discrepancies is given of the many techniques which have been developed to permit these analyses.

  8. Colour Reconnection at LEP2

    NASA Astrophysics Data System (ADS)

    Abreu, P.

    2002-03-01

    The preliminary results on the search of colour reconnection effects (CR) from the four experiments at LEP, Aleph, Delphi, L3 and Opal, are reviewed. Extreme models are excluded by studies of standard variables, and on going studies of a method first suggested by L3, the particle flow method1, are yet inconclusive.

  9. Energy measurement of electron beams by Compton scattering

    NASA Technical Reports Server (NTRS)

    Keppel, Cynthia

    1995-01-01

    A method has been proposed to utilize the well-known Compton scattering process as a tool to measure the centroid energy of a high energy electron beam at the 0.01% level. It is suggested to use the Compton scattering of an infrared laser off the electron beam, and then to measure the energy of the scattered gamma-rays very precisely using solid-state detectors. The technique proposed is applicable for electron beams with energies from 200 MeV to 16 GeV using presently available lasers. This technique was judged to be the most viable of all those proposed for beam energy measurements at the nearby Continuous Electron Beam Accelerator Facility (CEBAF). Plans for a prototype test of the technique are underway, where the main issues are the possible photon backgrounds associated with an electron accelerator and the electron and laser beam stabilities and diagnostics. The bulk of my ASEE summer research has been spent utilizing the expertise of the staff at the Aerospace Electronics Systems Division at LaRC to assist in the design of the test. Investigations were made regarding window and mirror transmission and radiation damage issues, remote movement of elements in ultra-high vacuum conditions, etc. The prototype test of the proposed laser backscattering method is planned for this December.

  10. Energy harvesting from controlled buckling of piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Ansari, M. H.; Karami, M. Amin

    2015-11-01

    A piezoelectric vibration energy harvester is presented that can generate electricity from the weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which buckles when the device is stepped on. The energy harvester can have a horizontal or vertical configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the vertical weight is transferred to a horizontal axial force through a scissor-like mechanism. Buckling of the beam results in significant stresses and, thus, large power production. However, if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial deformation is constrained to limit the deformations of the beam. In this paper, the energy harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to each mode shape are calculated. The electro-mechanical coupling and the geometric nonlinearities are included in the model. The design criteria for the device are discussed. It is demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens of milliwatts of power from passing car traffic. The proposed device could also be implemented in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free vibrations each time the weight is applied to or removed from the energy harvester. The frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The device is, thus, both efficient and insensitive to the frequency of the force excitations.

  11. Design study of low-energy beam transport for multi-charge beams at RAON

    NASA Astrophysics Data System (ADS)

    Bahng, Jungbae; Qiang, Ji; Kim, Eun-San

    2015-12-01

    The Rare isotope Accelerator Of Newness (RAON) at the Rare Isotope Science Project (RISP) is being designed to simultaneously accelerate beams with multiple charge states. It includes a driver superconducting (SC) linac for producing 200 MeV/u and 400 kW continuous wave (CW) heavy ion beams from protons to uranium. The RAON consists of a few electron cyclotron resonance ion sources, a low-energy beam transport (LEBT) system, a CW 81.25 MHz, 500 keV/u radio frequency quadrupole (RFQ) accelerator, a medium-energy beam transport system, the SC linac, and a charge-stripper system. The LEBT system for the RISP accelerator facility consists of a high-voltage platform, two 90° dipoles, a multi-harmonic buncher (MHB), solenoids, electrostatic quadrupoles, a velocity equalizer, and a diagnostic system. The ECR ion sources are located on a high-voltage platform to reach an initial beam energy of 10 keV/u. After extraction, the ion beam is transported through the LEBT system to the RFQ accelerator. The generated charge states are selected by an achromatic bending system and then bunched by the MHB in the LEBT system. The MHB is used to achieve a small longitudinal emittance in the RFQ by generating a sawtooth wave with three harmonics. In this paper, we present the results and issues of the beam dynamics of the LEBT system.

  12. Ion energy distribution functions of low energy beams formed by wire extraction electrodes

    SciTech Connect

    Tokumura, S.; Kasuya, T.; Vasquez, M. Jr.; Maeno, S.; Wada, M.

    2012-02-15

    The two-electrode extractor system made of 0.1 mm diameter tungsten wires separated by 0.7 mm has formed an argon ion beam with 50 V extraction potential. Energy spreads of the extracted beams were typically less than 2 eV when the beam current density was low. The beam intensity rapidly decreased as the distance between the extractor and the beam detector increased, indicating space charge limited transport of the beam. Problems associated with the emittance measurements are also discussed.

  13. Low electron beam energy CIVA analysis of passivated ICs

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Dodd, B.A.; Henderson, C.L.

    1994-08-01

    Low Energy Charge-Induced Voltage Alteration (LECIVA) is a new scanning electron microscopy technique developed to localize open conductors in passivated ICs. LECIVA takes advantage of recent experimental work showing that the dielectric surface equilibrium voltage has an electron flux density dependence at low electron beam energies ({le}1.0 keV). The equilibrium voltage changes from positive to negative as the electron flux density is increased. Like Charge-Induced Voltage Alteration (CIVA), LECIVA images are produced from the voltage fluctuations of a constant current power supply as an electron beam is scanned over the IC surface. LECIVA image contrast is generated only by the electrically open part of a conductor, yielding, the same high selectivity demonstrated by CIVA. Because LECIVA is performed at low beam energies, radiation damage by the primary electrons and x-rays to MOS structures is far less than that caused by CIVA. LECIVA may also be performed on commercial electron beam test systems that do not have high primary electron beam energy capabilities. The physics of LECIVA signal generation are described. LECIVA imaging examples illustrate its utility on both a standard scanning electron microscope (SEM) and a commercial electron beam test system.

  14. High energy accelerator and colliding beam user group: Progress report, March 1, 1987-February 29, 1988

    SciTech Connect

    Not Available

    1987-09-01

    Progress is reported on the OPAL experiment at LEP, including construction and assembly of the hadron calorimeter and development of OPAL software. Progress on the JADE experiment, which examines e/sup +/e/sup -/ interactions at PETRA, and of the PLUTO collaboration are also discussed. Experiments at Fermilab are reported, including deep inelastic muon scattering at TeV II, the D0 experiment at TeV I, and hadron jet physics. Neutrino-electron elastic scattering and a search for point-sources of ultra-high energy cosmic rays are reported. Other activities discussed include polarization in electron storage rings, participation in studies for the SSC and LEP 200, neutron-antineutron oscillations, and the work of the electronics support group. High energy physics computer experience is also discussed. 158 refs. (LEW)

  15. Beam dynamics simulations of post low energy beam transport section in RAON heavy ion accelerator

    SciTech Connect

    Jin, Hyunchang Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok

    2016-02-15

    RAON (Rare isotope Accelerator Of Newness) heavy ion accelerator of the rare isotope science project in Daejeon, Korea, has been designed to accelerate multiple-charge-state beams to be used for various science programs. In the RAON accelerator, the rare isotope beams which are generated by an isotope separation on-line system with a wide range of nuclei and charges will be transported through the post Low Energy Beam Transport (LEBT) section to the Radio Frequency Quadrupole (RFQ). In order to transport many kinds of rare isotope beams stably to the RFQ, the post LEBT should be devised to satisfy the requirement of the RFQ at the end of post LEBT, simultaneously with the twiss parameters small. We will present the recent lattice design of the post LEBT in the RAON accelerator and the results of the beam dynamics simulations from it. In addition, the error analysis and correction in the post LEBT will be also described.

  16. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A.

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are rzonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory,'' and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  17. Simulating Intense Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Friedman, A

    2001-02-20

    The Heavy Ion Fusion (HIF) program's goal is the development of the body of knowledge needed for Inertial Fusion Energy (IFE) to realize its promise. The intense ion beams that will drive HIF targets are nonneutral plasmas and exhibit collective, nonlinear dynamics which must be understood using the kinetic models of plasma physics. This beam physics is both rich and subtle: a wide range in spatial and temporal scales is involved, and effects associated with both instabilities and non-ideal processes must be understood. Ion beams have a ''long memory'', and initialization of a beam at mid-system with an idealized particle distribution introduces uncertainties; thus, it will be crucial to develop, and to extensively use, an integrated and detailed ''source-to-target'' HIF beam simulation capability. We begin with an overview of major issues.

  18. A fast chopper for medium energy beams

    SciTech Connect

    Madrak, R.; Wildman, D.

    2014-10-30

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  19. Crossed-beam energy transfer in direct-drive implosions

    SciTech Connect

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S; Stoeckl, C

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  20. Effects of energy spectrum on dose distribution calculations for high energy electron beams.

    PubMed

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities.

  1. Effects of energy spectrum on dose distribution calculations for high energy electron beams

    PubMed Central

    Toutaoui, Abdelkader; Khelassi-Toutaoui, Nadia; Brahimi, Zakia; Chami, Ahmed Chafik

    2009-01-01

    In an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams. The coefficients of the linear combination describe the energy spectrum of the clinical electron beam, and are chosen to provide the best-fit between the calculated and measured central axis depth dose, in water. The energy spectrum is determined by the constrained least square method. The angular distribution of the clinical electron beam is determined by in-air penumbra measurements. The predictions of this algorithm agree very well with the measurements in the region near the surface, and the discrepancies between the measured and calculated dose distributions, behind 3D heterogeneities, are reduced to less than 10%. We have demonstrated a new algorithm for 3D electron beam dose calculations, which takes into account the energy spectra. Results indicate that the use of this algorithm leads to a better modeling of dose distributions downstream, from complex heterogeneities. PMID:20126560

  2. Flexible energy harvesting from hard piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Delnavaz, Aidin; Voix, Jérémie

    2016-11-01

    This paper presents design, multiphysics finite element modeling and experimental validation of a new miniaturized PZT generator that integrates a bulk piezoelectric ceramic onto a flexible platform for energy harvesting from the human body pressing force. In spite of its flexibility, the mechanical structure of the proposed device is simple to fabricate and efficient for the energy conversion. The finite element model involves both mechanical and piezoelectric parts of the device coupled with the electrical circuit model. The energy harvester prototype was fabricated and tested under the low frequency periodic pressing force during 10 seconds. The experimental results show that several nano joules of electrical energy is stored in a capacitor that is quite significant given the size of the device. The finite element model is validated by observing a good agreement between experimental and simulation results. the validated model could be used for optimizing the device for energy harvesting from earcanal deformations.

  3. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  4. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  5. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  6. Pin diode calibration - beam overlap monitoring for low energy cooling

    SciTech Connect

    Drees, A.; Montag, C.; Thieberger, P.

    2015-09-30

    We were trying to address the question whether or not the Pin Diodes, currently installed approximately 1 meter downstream of the RHIC primary collimators, are suitable to monitor a recombination signal from the future RHIC low energy cooling section. A maximized recombination signal, with the Au+78 ions being lost on the collimator, will indicate optimal Au-electron beam overlap as well as velocity matching of the electron beam in the cooling section.

  7. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  8. Beamed-Energy Propulsion (BEP): Considerations for Beaming High Energy-Density Electromagnetic Waves Through the Atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    2015-01-01

    A study to determine the feasibility of employing beamed electromagnetic energy for vehicle propulsion within and outside the Earth's atmosphere was co-funded by NASA and the Defense Advanced Research Projects Agency that began in June 2010 and culminated in a Summary Presentation in April 2011. A detailed report entitled "Beamed-Energy Propulsion (BEP) Study" appeared in February 2012 as NASA/TM-2012-217014. Of the very many nuances of this subject that were addressed in this report, the effects of transferring the required high energy-density electromagnetic fields through the atmosphere were discussed. However, due to the limitations of the length of the report, only a summary of the results of the detailed analyses were able to be included. It is the intent of the present work to make available the complete analytical modeling work that was done for the BEP project with regard to electromagnetic wave propagation issues. In particular, the present technical memorandum contains two documents that were prepared in 2011. The first one, entitled "Effects of Beaming Energy Through the Atmosphere" contains an overview of the analysis of the nonlinear problem inherent with the transfer of large amounts of energy through the atmosphere that gives rise to thermally-induced changes in the refractive index; application is then made to specific beamed propulsion scenarios. A brief portion of this report appeared as Appendix G of the 2012 Technical Memorandum. The second report, entitled "An Analytical Assessment of the Thermal Blooming Effects on the Propagation of Optical and Millimeter- Wave Focused Beam Waves For Power Beaming Applications" was written in October 2010 (not previously published), provides a more detailed treatment of the propagation problem and its effect on the overall characteristics of the beam such as its deflection as well as its radius. Comparisons are then made for power beaming using the disparate electromagnetic wavelengths of 1.06 microns and 2

  9. Physics of W bosons at LEP

    NASA Astrophysics Data System (ADS)

    Mele, Salvatore

    2004-12-01

    The high-energy and high-luminosity data-taking campaigns of the LEP e+e- collider provided the four collaborations, ALEPH, DELPHI, L3 and OPAL, with about 50000 W-boson pairs and about a thousand singly produced W bosons. This unique data sample has an unprecedented reach in probing some aspects of the Standard Model of the electroweak interactions, and this article reviews several achievements in the understanding of W-boson physics at LEP. The measurements of the cross-sections for W-boson production are discussed, together with their implication on the existence of the coupling between Z and W bosons. The precision measurements of the magnitude of triple gauge-boson couplings are presented. The obervation of the longitudinal helicity component of the W-boson spin, related to the mechanism of electroweak symmetry breaking, is described together with the techniques used to probe the CP and CPT symmetries in the W-boson system. A discussion on the intricacies of the measurment of the mass of the W boson, whose knowledge is indispensable to test the internal consistency of the Standard Model and estimate the mass of the Higgs boson, concludes this review.

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  11. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  12. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  13. Surface modification using low energy ground state ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1990-01-01

    A method of effecting modifications at the surfaces of materials using low energy ion beams of known quantum state, purity, flux, and energy is presented. The ion beam is obtained by bombarding ion-generating molecules with electrons which are also at low energy. The electrons used to bombard the ion generating molecules are separated from the ions thus obtained and the ion beam is directed at the material surface to be modified. Depending on the type of ion generating molecules used, different ions can be obtained for different types of surface modifications such as oxidation and diamond film formation. One area of application is in the manufacture of semiconductor devices from semiconductor wafers.

  14. Dual energy scanning beam X-radiography

    NASA Astrophysics Data System (ADS)

    Wojcik, Randolph Frank

    Dual energy X-radiography is a method first developed in the mid-1970's by which one uses the information contained in the energy spectrum of the transmitted X-ray flux through an object. With this information one can distinguish the types of materials present in a radiograph and thus allow a computer to subtract them from the image enhancing the contrast of the remaining materials. Using this method, one can see details, which would have been hidden by overlying structures of other materials such as seen in radiographs of parts, made up of mixtures of metals and composites. There is also great interest in this technique for medical imaging of the chest where images of the organs are significantly improved by subtracting the bones. However, even with the enhanced capabilities realized with this technique, the majority of X-radiography systems only measures the bulk transmitted X-ray intensity and ignores the information contained in the energy spectrum. This is due to the added expense, time requirements, and registration problems incurred using standard radiographic methods to obtain dual energy radiographs. This dissertation describes a novel method which overcomes these problems and allows one to perform inexpensive, near real time, single shot dual energy X-radiography. The work of this thesis resulted in US patent #5,742,660.

  15. Crossed Beam Energy Transfer in the NIF ICF Target Design

    SciTech Connect

    Williams, E A; Hinkel, D E; Hittinger, J A

    2003-08-27

    In the National Ignition Facility (NIF) ICF point design, the cylindrical hohlraum target is illuminated by multiple laser beams through two laser entrance holes on the ends. According to simulations by LASNEX and HYDRA plasma created inside the hohlraum will stream out of the LEH, accelerate to supersonic speeds and then fan out radially. Inside the hohlraum, flows are subsonic. Forward Brillouin scattering can transfer energy between pairs of laser beams (0 and 1) if the following frequency matching condition is satisfied: {omega}{sub 0} - {omega}{sub 1} = (k{sub 0} - k{sub 1}) {center_dot} V + |k{sub 0} - k{sub 1}| c{sub s} (1) where {omega}{sub 0.1} and k{sub 0.1} are the frequencies and wave-numbers of the two laser beams, V is the plasma flow velocity and c{sub s} is the local ion sound speed. In the nominal case of equal frequency beams, this requires the component of the plasma flow velocity transverse to the bisector of the beam directions to be sonic, with the resulting transfer being to the downstream beam. In the NIF beam geometry, this is from the outer to inner cones of beams. The physics of this transfer is the same as in beam bending; the difference being that in the case of beam bending the effect is to redistribute power to the downstream side of the single beam. Were significant power transfer to occur in the point design, the delicately tuned implosion symmetry would be spoiled. To directly compensate for the transfer, the incident beam powers would have to be adjusted. The greatest vulnerability in the point design thus occurs at 15.2ns, when the inner beams are at their peak power and are at their nominal design power limit. In this situation, some other means of symmetry control would be required, such as re-pointing. At 15.2ns, the envelope focal intensities of the outer and inner beams are approximately 10{sup 15} and 6.7 10{sup 14} W/cm{sup 2} respectively. There is little absorption or diffractive spreading of the beams in the crossing

  16. A surface energy spectral study on the bone heterogeneity and beam obliquity using the flattened and unflattened photon beams

    PubMed Central

    Chow, James C.L.; Owrangi, Amir M.

    2016-01-01

    Aim Using flattened and unflattened photon beams, this study investigated the spectral variations of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity. Background Surface dose enhancement is a dosimetric concern when using unflattened photon beam in radiotherapy. It is because the unflattened photon beam contains more low-energy photons which are removed by the flattening filter of the flattened photon beam. Materials and methods We used a water and bone heterogeneity phantom to study the distributions of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 cm × 10 cm) produced by a Varian TrueBEAM linear accelerator. These elements were calculated at the phantom surfaces using Monte Carlo simulations. The photon energy and energy fluence calculations were repeated with the beam angle turned from 0° to 15°, 30° and 45° in the water and bone phantom. Results Spectral results at the phantom surfaces showed that the unflattened photon beams contained more photons concentrated mainly in the low-energy range (0–2 MeV) than the flattened beams associated with a flattening filter. With a bone layer of 1 cm under the phantom surface and within the build-up region of the 6 MV photon beam, it is found that both the flattened and unflattened beams had slightly less photons in the energy range <0.4 MeV compared to the water phantom. This shows that the presence of the bone decreased the low-energy photon backscatters to the phantom surface. When both the flattened and unflattened photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased. This indicates that both photon beams became more hardened or penetrate when the beam angle increased. In the presence of bone, the mean energies of both photon beams increased. This is due to the absorption of low-energy photons by the bone, resulting in more beam hardening. Conclusions This study

  17. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  18. The Beamed Energy Technology Working Group, Programs and Goals

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A brief description of the Beamed Energy Technology Program will be given. Its relationship to the overall Advanced Technology Program at Marshall Space Flight Center will be discussed. A summary description of the known potential benefits and technical issues remaining in the development of a viable system will be presented along with program plans for a NASA Research Announcement in FY03 to begin development of relevant technologies and systems concepts. The results of workshop activity by the Beamed Energy Technology Working Group will be provided.

  19. Range and Energy Straggling in Ion Beam Transport

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tai, Hsiang

    2000-01-01

    A first-order approximation to the range and energy straggling of ion beams is given as a normal distribution for which the standard deviation is estimated from the fluctuations in energy loss events. The standard deviation is calculated by assuming scattering from free electrons with a long range cutoff parameter that depends on the mean excitation energy of the medium. The present formalism is derived by extrapolating Payne's formalism to low energy by systematic energy scaling and to greater depths of penetration by a second-order perturbation. Limited comparisons are made with experimental data.

  20. Molecular Beam Studies of Low Energy Reactions.

    DTIC Science & Technology

    1983-03-31

    COMPLETING PORN . REPORT NUMBER 1 2. GOVT ACCESSION NO. S. RECIPIENT’S CATALOG NUMBER A D A Oaq J- 4. TITLE (And Subtitle) . TYPE OF REPORT & PERIOD COVERED...Gatlinburg, Tenn . in 1981. 2+ c) Studies were made of the charge transfer reaction Ar + Ar 4 2+ Ar + Ar at relative energies from 2 to 1000 eV. Reasons for

  1. Energy gain and spectral tailoring of ion beams using ultra-high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Swantusch, Marco; Cerchez, Mirela; Spickermann, Sven; Auorand, Bastian; Wowra, Thomas; Boeker, Juergen; Willi, Oswald

    2015-11-01

    The field of laser driven ion acceleration over the past decade has produced a huge amount of research. Nowadays, several multi-beam facilities with high rep rate system, e.g. ELI, are being developed across the world for different kinds of experiments. The study of interaction dynamics of multiple beams possessing ultra-high intensity and ultra-short pulse duration is of vital importance. Here, we present the first experimental results on ion acceleration using two ultra-high intensity beams. Thanks to the unique capability of Arcturus laser at HHU Düsseldorf, two almost identical, independent beams in laser parameters such as intensity (>1020 W/cm2), pulse duration (30 fs) and contrast (>1010), could be accessed. Both beams are focused onto a 5 μm thin Ti target. While ensuring spatial overlap of the two beams, at relative temporal delay of ~ 50 ps (optimum delay), the proton and carbon ion energies were enhanced by factor of 1.5. Moreover, strong modulation in C4+ions near the high energy cut-off is observed later than the optimum delay for the proton enhancement. This offers controlled tailoring of the spectral content of heavy ions.

  2. On the Field-Aligned Beam Thermal Energy

    NASA Astrophysics Data System (ADS)

    Meziane, K.; Hamza, A. M.; Wilber, M.; Mazelle, C.; Lee, M. A.

    2013-11-01

    The parallel and perpendicular reduced distribution functions of field-aligned beams (FABs) observed upstream of the Earth's bow shock using the Cluster spacecrafts are examined. A previous study revealed that FABs, observed in oblique shock geometries, exhibit reduced distribution functions with high-energy tails. A selection of FABs with weak-energy tails are considered, and the associated reduced distributions are fit with Maxwellians. First, we have found that the FABs full width at half maximum (FWHM), σ∥ and σ⊥ derived from the fit, are linearly correlated with the solar wind speed (or equivalently to solar wind temperature). Moreover, the parallel beam σ∥ has a very weak dependence upon the beam parallel speed which reflects the shock geometry; we have found that σ∥˜0.23Vsw. In contrast, we have found that the perpendicular beam σ⊥, in the range of beam speeds investigated, depends on the shock geometry. These new results indicate that the parallel σ∥ is essentially controlled by the solar wind while the shock geometry plays, along with the solar wind, a role in the perpendicular σ⊥. These results also put some strong constraints on theoretical models as far as field-aligned beam production mechanisms are concerned. One potential explanation for the significant perpendicular broadening of the FAB distribution reported in this study could be the presence of kinetic Alfvèn (or/and whistler) turbulence at the shock.

  3. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  4. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  5. Beamed Energy Propulsion: Research Status And Needs--Part 1

    SciTech Connect

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.

  6. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    SciTech Connect

    Pollock, Bradley Bolt

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  7. Measurement of the tau lepton polarisation at LEP2

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Dedovich, D.; Ricca, G. Della; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Santo, M. C. Espirito; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R. Mc; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2008-01-01

    A first measurement of the average polarisation Pτ of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value Pτ = - 0.164 ± 0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.

  8. Measurement of the tau lepton polarisation at LEP2

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Dedovich, D.; Ricca, G. Della; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Santo, M. C. Espirito; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Nulty, R. Mc; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2008-01-01

    A first measurement of the average polarisation P of tau leptons produced in e+e- annihilation at energies significantly above the Z resonance is presented. The polarisation is determined from the kinematic spectra of tau hadronic decays. The measured value P=-0.164±0.125 is consistent with the Standard Model prediction for the mean LEP energy of 197 GeV.

  9. ECR Based Low Energy Ion Beam Facility at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Taki, G. S.; Chakraborty, D. K.; Ghosh, Subhash; Majhi, S.; Pal, Gautam; Mallik, C.; Bhandari, R. K.; Krishna, J. B. M.; Dey, K.; Sinha, A. K.

    2012-11-01

    A low energy heavy ion irradiation/implantation facility has been developed at VECC, Kolkata for materials science and atomic physics research, utilizing indigenously developed 6.4 GHz ECR ion source. The facility provides high charge state ion beams of N, O, Ne, Ar, S, Kr, Xe, Fe, Ti, Hf etc. up to a few micro amperes to an energy of 10 keV per charge state.The beam energy can be further enhanced by floating the target at a negative potential (up to 25 kV). The ion beam is focused to a spot of about 2 mm diameter on the target using a set of glaser lenses. A x-y scanner is used to scan the beam over a target area of 10 mm x 10 mm to obtain uniform implantation. The recently commissioned multi facility sample chamber has provision for mounting multiple samples on indigenously developed disposable beam viewers for insitu beam viewing during implantation. The ionization chamber of ECR source is mainly pumped by ECR plasma. An additional pumping speed has been provided through extraction hole and pumping slots to obtain low base pressure. In the ion source, base pressure of 1x10-7 Torr in injector stage and ~5x10-8 Torr in extraction chamber have been routinely obtained. The ultra-high vacuum multi facility experimental chamber is generally kept at ~ 1x10-7 Torr during implantation on the targets. This facility is a unique tool for studying fundamental and technologically important problems of materials science and atomic physics research. High ion flux available from this machine is suitable for generating high defect densities i.e. high value of displacement-per-atom (dpa). Recently this facility has been used for studies like "Tunability of dielectric constant of conducting polymer Polyaniline (PANI) by low energy Ar9+ irradiation" and "Fe10+ implantation in ZnO for synthesis of dilute magnetic semiconductor".

  10. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    NASA Astrophysics Data System (ADS)

    Coopersmith, Jonathan

    2010-05-01

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  11. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  12. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  13. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2013-01-01

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  14. Solar Power Satellites: Creating the Market for Beamed Energy Propulsion

    SciTech Connect

    Coopersmith, Jonathan

    2010-05-06

    Beamed energy advocates must investigate the potential of major markets like space based solar satellites and space-based nuclear waste disposal. For BEP to succeed, its proponents must work with these possible users to generate interest and resources needed to develop BEP.

  15. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1989-09-01

    This report discusses the following topics: OPAL experiment at LEP; Deep inelastic muon interactions at TeV II; D{phi} experiment; Physics with the CLEO detector at CESR; CYGNUS experiment; {nu}{sub e}e elastic scattering experiment; Further results from JADE; Theory of polarization in electron storage rings; and Rare kaon decay experiments at Brookhaven National Laboratory.

  16. Extraction design and low energy beam transport optimization of space charge dominated multispecies ion beam sources

    NASA Astrophysics Data System (ADS)

    Delferrière, O.; De Menezes, D.

    2004-05-01

    In all accelerator projects, the low energy part of the accelerator has to be carefully optimized to match the beam characteristic requirements of the higher energy parts. Since 1994 with the beginning of the Injector of Protons for High Intensity (IPHI) project and Source of Light Ions with High Intensities (SILHI) electron cyclotron resonance (ECR) ion source development at CEA/Saclay, we are using a set of two-dimensional (2D) codes for extraction system optimization (AXCEL, OPERA-2D) and beam transport (MULTIPART). The 95 keV SILHI extraction system optimization has largely increased the extracted current, and improved the beam line transmission. From these good results, a 130 mA D+ extraction system for the International Fusion Material Irradiation Facility project has been designed in the same way as SILHI one. We are also now involved in the SPIRAL 2 project for the building of a 40 keV D+ ECR ion source, continuously tunable from 0.1 to 5 mA, for which a special four-electrode extraction system has been studied. In this article we will describe the 2D design process and present the different extraction geometries and beam characteristics. Simulation results of SILHI H+ beam emittance will be compared with experimental measurements.

  17. Vibration piezoelectric energy harvester with multi-beam

    SciTech Connect

    Cui, Yan Zhang, Qunying Yao, Minglei; Dong, Weijie; Gao, Shiqiao

    2015-04-15

    This work presents a novel vibration piezoelectric energy harvester, which is a micro piezoelectric cantilever with multi-beam. The characteristics of the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film were measured; XRD (X-ray diffraction) pattern and AFM (Atomic Force Microscope) image of the PZT thin film were measured, and show that the PZT (Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3}) thin film is highly (110) crystal oriented; the leakage current is maintained in nA magnitude, the residual polarisation Pr is 37.037 μC/cm{sup 2}, the coercive field voltage Ec is 27.083 kV/cm, and the piezoelectric constant d{sub 33} is 28 pC/N. In order to test the dynamic performance of the energy harvester, a new measuring system was set up. The maximum output voltage of the single beam of the multi-beam can achieve 80.78 mV under an acceleration of 1 g at 260 Hz of frequency; the maximum output voltage of the single beam of the multi-beam is almost 20 mV at 1400 Hz frequency. .

  18. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  19. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  20. An energy-based beam hardening model in tomography.

    PubMed

    Van de Casteele, E; Van Dyck, D; Sijbers, J; Raman, E

    2002-12-07

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (microCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages.

  1. SHEEBA: A spatial high energy electron beam analyzer

    NASA Astrophysics Data System (ADS)

    Galimberti, Marco; Giulietti, Antonio; Giulietti, Danilo; Gizzi, Leonida A.

    2005-05-01

    Electron bunches with large energy and angle spread are not easy to be analyzed with conventional spectrometers. In this article, a device for the detection of high energy electrons is presented. This detector, based on the traces left by electrons on a stack of dosimetric films, together with an original numerical algorithm for traces deconvolution, is able to characterize both angularly and spectrally (up to some mega-electron-volts) a broad-spectrum electron bunch. A numerical test was successfully performed with a virtual electron beam, which was in turn reconstructed using a Montecarlo code (based on the CERN library GEANT4). Due to its simplicity and small size, the spatial high energy electron beam analyzer (SHEEBA) detector is particularly suitable to be used in laser plasma acceleration experiments.

  2. Beam-energy-spread minimization using cell-timing optimization

    NASA Astrophysics Data System (ADS)

    Rose, C. R.; Ekdahl, C.; Schulze, M.

    2012-04-01

    Beam energy spread, and related beam motion, increase the difficulty in tuning for multipulse radiographic experiments at the dual-axis radiographic hydrodynamic test facility’s axis-II linear induction accelerator (LIA). In this article, we describe an optimization method to reduce the energy spread by adjusting the timing of the cell voltages (both unloaded and loaded), either advancing or retarding, such that the injector voltage and summed cell voltages in the LIA result in a flatter energy profile. We developed a nonlinear optimization routine which accepts as inputs the 74 cell-voltage, injector voltage, and beam current waveforms. It optimizes cell timing per user-selected groups of cells and outputs timing adjustments, one for each of the selected groups. To verify the theory, we acquired and present data for both unloaded and loaded cell-timing optimizations. For the unloaded cells, the preoptimization baseline energy spread was reduced by 34% and 31% for two shots as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline.

  3. Spheromak Energy Transport Studies via Neutral Beam Injection

    SciTech Connect

    McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

    2008-02-11

    Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

  4. Curing Composite Materials Using Lower-Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  5. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  6. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  7. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-12-31

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design.

  8. Noninterceptive beam energy measurements in line D of the Los Alamos Meson Physics Facility

    SciTech Connect

    Gilpatrick, J.D.; Carter, H.; Plum, M.; Power, J.F.; Rose, C.R.; Shurter, R.B.

    1995-05-05

    Several members of the Accelerator and Operations Technology (AOT) division beam-diagnostics team performed time-of-flight (TOF) beam-energy measurements in line D of the Los Alamos Meson Physics Facility (LAMPF) using developmental beam time. These measurements provided information for a final design of an on-line beam energy measurement. The following paper discusses these measurements and how they apply to the final beam energy measurement design. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  9. High-energy tritium beams as current drivers in tokamak reactors

    SciTech Connect

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  10. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  11. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  12. Phase Rotation of Muon Beams for Producing Intense Low-Energy Muon Beams

    SciTech Connect

    Neuffer, D.; Bao, Y.; Hansen, G.

    2016-01-01

    Low-energy muon beams are useful for rare decay searches, which provide access to new physics that cannot be addressed at high-energy colliders. However, muons are produced within a broad energy spread unmatched to the low-energy required. In this paper we outline a phase rotation method to significantly increase the intensity of low-energy muons. The muons are produced from a short pulsed proton driver, and develop a time-momentum correlation in a drift space following production. A series of rf cavities is used to bunch the muons and phase-energy rotate the bunches to a momentum of around 100 MeV/c. Then another group of rf cavities is used to decelerate the muon bunches to low-energy. This obtains ~0.1 muon per 8 GeV proton, which is significantly higher than currently planned Mu2e experiments, and would enable a next generation of rare decay searches, and other intense muon beam applications.

  13. Beamed Energy Propulsion: Research Status And Needs--Part 2

    SciTech Connect

    Birkan, Mitat

    2008-04-28

    One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.

  14. Optimized treatment planning using intensity and energy modulated proton and very-high energy electron beams

    NASA Astrophysics Data System (ADS)

    Yeboah, Collins

    2002-09-01

    Intensity and energy modulated radiotherapy dose planning with protons and very-high energy (50--250 MeV) electron beams has been investigated. A general-purpose inverse treatment planning (ITP) system that can be applied to any combination of proton, electron and photon radiation modalities in therapy has been developed. The new ITP program uses a very fast proton dose calculation engine and employs one of the most efficient optimization algorithms currently available. First, the ITP program was employed to investigate intensity-modulated proton therapy (IMPT) dose optimization for prostate cancer. The second application was to evaluate the potential of intensity-modulated very-high energy electron therapy (VHEET) for dose conformation. For an active proton beam delivery system the required energy resolution to reasonably implement energy modulation was found to be a function of the incident beams' energy spread and became coarser with increasing energy spread. For passive proton beam delivery systems the selection of the required depth resolution for inverse planning may not be critical as long as the depth resolution chosen is at least equal to FWHM/2 of the primary beam Bragg peak. In the study of the number of beam ports selected for IMPT treatment of the prostate, it was found that a maximum of three to four beams is required. Using proton beams for inverse planning of the prostate instead of photon beams gave the same or better target coverage while reducing the sensitive structure dose and normal tissue integral dose by up to 30% and 28% of the prescribed target dose, respectively. In evaluating the potential of VHEET beams for dose conformation, it was found that electron energies greater than 100 MeV are preferable for VHEET treatment of the prostate and that implementation of energy modulation in addition to intensity modulation has only a modest effect on the final dose distribution. VHEET treatment employing approximately nine beams was sufficient to

  15. Advanced Energy Conversion Concept for Beamed-Energy Propulsion.

    DTIC Science & Technology

    1987-08-21

    geometry ................ 9 Figure HA Methods for incorporating variable geometry In radlally-eymmetric supersonic inlets...41 Figure 11. EB thrust vector geometry for rotating ine source(s) ... ........... 42 Ire 11-19. Energy deposition mode - bottom view...coniguration . ..... ................... 106 Figure V.2. LSD wave Laraglan view ..... ....................... 105 Figure V-.& Cylindrical blad wave geometry

  16. Radiation damage in zircon by high-energy electron beams

    SciTech Connect

    Jiang Nan; Spence, John C. H.

    2009-06-15

    Radiation damage induced by high-energy (200 keV) electron irradiation in zircon has been studied thoroughly using imaging, diffraction, and electron energy-loss spectroscopy techniques in transmission electron microscopy. Both structural and compositional changes during the damage were measured using the above techniques in real time. It was found that the damage was mainly caused by the preferential sputtering of O. The loss of O occurred initially within small sporadic regions with dimension of several nanometers, resulting in the direct transformation of zircon into Zr{sub x}Si{sub y}. These isolated patches gradually connect each other and eventually cover the whole area of the electron beam. These differ from the previous observations either in the self-irradiated natural and synthetic zircon or in ion-beam irradiated thin zircon specimen.

  17. Bulk Materials Analysis Using High-Energy Positron Beams

    SciTech Connect

    Glade, S C; Asoka-Kumar, P; Nieh, T G; Sterne, P A; Wirth, B D; Dauskardt, R H; Flores, K M; Suh, D; Odette, G R

    2002-11-11

    This article reviews some recent materials analysis results using high-energy positron beams at Lawrence Livermore National Laboratory. We are combining positron lifetime and orbital electron momentum spectroscopic methods to provide electron number densities and electron momentum distributions around positron annihilation sites. Topics covered include: correlation of positron annihilation characteristics with structural and mechanical properties of bulk metallic glasses, compositional studies of embrittling features in nuclear reactor pressure vessel steel, pore characterization in Zeolites, and positron annihilation characteristics in alkali halides.

  18. Beam energy dependence of azimuthal anisotropy at RHIC-PHENIX

    SciTech Connect

    Taranenko, A.

    2012-05-15

    Recent PHENIX measurements of the elliptic ({upsilon}{sub 2}) and hexadecapole ({upsilon}{sub 4}) Fourier flow coefficients for charged hadrons as a function of transverse momentum (p{sub T}), collision centrality and particle species are presented and compared with results from the PHOBOS and STAR Collaborations respectively. The status of extensions to future PHENIX measurements at lower beam energies is also discussed.

  19. Intensity Modulated Radiotherapy with High Energy Photon and Hadron Beams

    NASA Astrophysics Data System (ADS)

    Oelfke, U.

    2004-07-01

    This short contribution will briefly describe the basic concepts of intensity modulated radiation therapy with high energy photons (IMRT) and charged particle beams (IMPT). Dose delivery and optimization strategies like the `Inverse Planning' approach will be explained for both radiation modalities and their potential advantages are demonstrated for characteristic clinical examples. Finally, future development like image guided radiotherapy (IGRT) and adaptive radiation therapy, based on functional imaging methods, will be introduced.

  20. High energy accelerator and colliding beam user group

    SciTech Connect

    Not Available

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  1. Retarding field energy analyzer for high energy pulsed electron beam measurements

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Rovey, Joshua L.; Zhao, Wansheng

    2017-01-01

    A retarding field energy analyzer (RFEA) designed specifically for high energy pulsed electron beam measurements is described in this work. By proper design of the entrance grid, attenuation grid, and beam collector, this RFEA is capable of determining the time-resolved energy distribution of high energy pulsed electron beams normally generated under "soft vacuum" environment. The performance of the RFEA is validated by multiple tests of the leakage current, attenuation coefficient, and response time. The test results show that the retarding potential in the RFEA can go up to the same voltage as the electron beam source, which is 20 kV for the maximum in this work. Additionally, an attenuation coefficient of 4.2 is obtained in the RFEA while the percent difference of the rise time of the electron beam pulse before and after attenuation is lower than 10%. When compared with a reference source, the percent difference of the RFEA response time is less than 10% for fall times greater than 35 ns. Finally, the test results of the 10 kV pseudospark-based pulsed electron beam currents collected under varying retarding potentials are presented in this paper.

  2. Upgrade of beam energy measurement system at BEPC-II

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Yong; Cai, Xiao; Mo, Xiao-Hu; Guo, Di-Zhou; Wang, Jian-Li; Liu, Bai-Qi; Achasov, M. N.; Krasnov, A. A.; Muchnoi, N. Yu.; Pyata, E. E.; Mamoshkina, E. V.; Harris, F. A.

    2016-07-01

    The beam energy measurement system is of great importance for both BEPC-II accelerator and BES-III detector. The system is based on measuring the energies of Compton back-scattered photons. In order to meet the requirements of data taking and improve the measurement accuracy, the system has continued to be upgraded, which involves the updating of laser and optics subsystems, replacement of a view-port of the laser to the vacuum insertion subsystem, the use of an electric cooling system for a high purity germanium detector, and improvement of the data acquisition and processing subsystem. The upgrade system guarantees the smooth and efficient measurement of beam energy at BEPC-II and enables accurate offline energy values for further physics analysis at BES-III. Supported in part by National Natural Science Foundation of China (NSFC)(11375206, 10775142, 10825524, 11125525, 11235011), the Ministry of Science and Technology of China (2015CB856700, 2015CB856705), State key laboratory of particle and detection and electronics; and the CAS Center for Excellence in Particle Physics (CCEPP); the RFBR grant(14-02-00129-a), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, part of this work related to the design of ZnSe viewports is supported by the Russian Science Foundation (14-50-00080)

  3. Beam dynamics and error study of the medium energy beam transport line in the Korea Heavy-Ion Medical Accelerator

    NASA Astrophysics Data System (ADS)

    Kim, Chanmi; Kim, Eun-San; Hahn, Garam

    2016-11-01

    The Korea Heavy Ion Medical Accelerator consists of an injector and a synchrotron for an ion medical accelerator that is the first carbon-ion therapy system in Korea. The medium energy beam transport(MEBT) line connects the interdigital H-mode drift tube linac and the synchrotron. We investigated the beam conditions after the charge stripper by using the LISE++ and the SRIM codes. The beam was stripped from C4+ into C6+ by using the charge stripper. We investigated the performance of a de-buncher in optimizing the energy spread and the beam distribution in z-dW/W (direction of beam progress-beam and energy) phase. We obtained the results of the tracking simulation and the error analysis by using the TRACK code. Possible misalignments and rotations of the magnets were considered in the simulations. States of the beam were examined when errors occurred in the magnets by the applying analytic fringe field model in TRACK code. The condition for the beam orbit was optimized by using correctors and profile monitors to correct the orbit. In this paper, we focus on the beam dynamics and the error studies dedicated to the MEBT beam line and show the optimized beam parameters for the MEBT.

  4. Recherche de leptons lourds au LEP 2

    NASA Astrophysics Data System (ADS)

    Tafirout, Reda

    En 1989, la mise en opération de la première phase du LEP (le LEP 1), au CERN, a une Energie correspondant a la résonance du boson Z0, a permis d'étudier et de confirmer avec une grande précision le Modèle Standard des interactions électrofaibles. Malgré le succès remarquable de ce modèle à décrire toutes les données expérimentales recueillies jusqu'à ce jour en physique des hautes énergies, ce dernier laisse plusieurs questions sans réponse. Il n'explique pas entre autres pourquoi il n'y a que trois familles de particules dont le neutrino associé est léger et la hiérarchie des masses observées des fermions reste une énigme. Ici, nous nous intéressons à l'existence éventuelle de nouveaux fermions, tels que prédits par des extensions du Modèle Standard. Ces nouveaux fermions ont été recherches au LEP 1, mais en vain, et une limite inférieure sur leur masse d'environ MZ/2 a pu être imposée. La deuxième phase du LEP (le LEP 2) qui a débuté dans l'automne 1995 avec une énergie disponible de √s = 130, et 136 GeV, puis dans l'été 1996 a √s = 161 GeV a permis d'améliorer ces limites. Nous présentons ici la recherche de leptons lourds, neutres (N) et chargés (L+/-), effectuée à partir des données recueillies dans l'automne 1996 avec le détecteur de la collaboration OPAL au LEP 2, à des énergies au centre de masse de √s = 170 et 172 GeV. La luminosité totale intégrée fut de 10.3 pb-1. Un nouveau générateur, EXOTIC, conçu et développé a cette fin, a été utilise pour la simulation des échantillons d'événements Monte Carlo qui ont servi à comparer les données obtenues avec les prédictions théoriques. Plus spécifiquement, nous avons recherché le processus e+e- --> NN où N, pouvant être de type Dirac ou Majorana, se désintègre en un lepton léger standard (e, μ, ou τ) et un boson W+/- virtuel (W+/-*). Pour un N de type Dirac, une limite inférieure sur la masse à 95% de niveau de confiance est obtenue

  5. A scaled experiment to study energy dissipation process during longitudinal compression of charged particle beams

    NASA Astrophysics Data System (ADS)

    Sakai, Y.; Nakajima, M.; Hasegawa, J.; Kikuchi, T.; Horioka, K.

    2016-03-01

    Beam behavior during longitudinal bunch compression of charged particles was investigated using a compact simulator device based on electron beams. Beam current waveforms and bunch compression ratios were measured as a function of the initial beam current. We found that the current waveform became blunt and the compression ratio degraded at higher beam currents. These results indicate that space-charge fields dissipate the kinetic energy of beam particles.

  6. Study on astrophysical reactions using low-energy RI beams

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hidetoshi

    2009-10-01

    In recent years, low-energy RI beams can be produced in a good intensity and they have been used for studying many astrophysical reactions. One of the facilities producing low-energy RI beams is CRIB (CNS Radio-Isotope Beam separator) [1,2], an RI-beam separator of Center for Nuclear Study, University of Tokyo. Taking CRIB as an example, recent improvements on the RI-beam production and experimental results on astrophysical studies are presented. Several experimental approaches have been taken for the studies on astrophysical reactions.The feature of each method are discussed based on real measurements performed at CRIB. One is the direct method, applied for measurements of reactions such as (α,p) [3]. Another is the measurement of proton/alpha resonance scattering using the thick target method in inverse kinematics, by which we can obtain information on the resonances relevant in astrophysical reactions [4,5]. A recent fruitful result was from a measurement of proton resonance scattering using a ^7Be beam [5]. The energy level structure of ^8B, revealed by the experiment, is especially of interest as it is related with the ^7Be(p,γ) ^8B reaction, responsible for the production of ^8B neutrinos in the sun. We successfully determined parameters of resonances in ^8B below 6.7 MeV, which may affect the ^7Be(p,γ)^8B reaction rate at the solar temparature. Indirect methods, such as ANC and the Trojan Horse Method, were also used in some of the measurements.[4pt] [1] S. Kubono et al., Eur. Phys. J. A13 (2002) 217.[0pt] [2] Y. Yanagisawa et al., Nucl. Instrum. Meth. Phys. Res., Sect. A 539 (2005) 74.[0pt] [3] M. Notani et al., Nucl. Phys. A 764 (2004) 113c.[0pt] [4] T. Teranishi et al., Phys. Lett. B 650 (2007) 129.[0pt] [5] H. Yamaguchi et al., Phys. Lett. B 672 (2009) 230.

  7. Probing the Big Bang with LEP

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1990-01-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis, and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is approximately 6 percent of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting than the favorite non-baryonic dark matter candidates of a few years ago.

  8. Probing the Big Bang with LEP

    SciTech Connect

    Schramm, D.N. Fermi National Accelerator Lab., Batavia, IL )

    1990-06-01

    It is shown that LEP probes the Big Bang in two significant ways: (1) nucleosynthesis and (2) dark matter constraints. In the first case, LEP verifies the cosmological standard model prediction on the number of neutrino types, thus strengthening the conclusion that the cosmological baryon density is {approximately}6% of the critical value. In the second case, LEP shows that the remaining non-baryonic cosmological matter must be somewhat more massive and/or more weakly interacting that the favorite non-baryonic dark matter candidates of a few years ago. 59 refs., 4 figs., 2 tabs.

  9. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  10. An Energy Saving System for a Beam Pumping Unit

    PubMed Central

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-01-01

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402

  11. An Energy Saving System for a Beam Pumping Unit.

    PubMed

    Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An

    2016-05-13

    Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance.

  12. Producing titanium-niobium alloy by high energy beam

    SciTech Connect

    Sharkeev, Yu. P.; Golkovski, M. G.; Glukhov, I. A. Eroshenko, A. Yu. Fortuna, S. V.

    2016-01-15

    The research is involved in producing a Ti-Nb alloy surface layer on titanium substrate by high energy beam method, as well as in examining their structures and mechanical properties. Applying electron-beam cladding it was possible to produce a Ti-Nb alloy surface layer of several millimeters, where the niobium concentration was up to 40% at. and the structure itself could be related to martensite quenching structure. At the same time, a significant microhardness increase of 3200-3400 MPa was observed, which, in its turn, is connected with the formation of martensite structure. Cladding material of Ti-Nb composition could be the source in producing alloys of homogeneous microhardness and desired concentration of alloying niobium element.

  13. Energy-selective filtration of dental x-ray beams

    SciTech Connect

    Gelskey, D.E.; Baker, C.G.

    1981-11-01

    Samarium is known for its ability to filter simultaneously low- and high-energy x-ray photons from an x-ray beam that are not useful in producing a diagnostic radiograph. This study was undertaken to determine the optimum thickness of samarium required to minimize patient exposure and exposure time. The results indicate that use of a filter thickness of 0.16 mm. minimized patient radiation exposure and permitted the use of an exposure time sufficiently short to minimize motion unsharpness. The incorporation of a 0.16 mm. samarium filter in the x-ray beam reduced exposure by about 40 percent as compared to a 2.5 mm. aluminum filter; the exposure time must be increased approximately twice to obtain optical densities equivalent to those produced with aluminum filtration.

  14. Effective parameters in beam acoustic metamaterials based on energy band structures

    NASA Astrophysics Data System (ADS)

    Jing, Li; Wu, Jiu Hui; Guan, Dong; Hou, Mingming; Kuan, Lu; Shen, Li

    2016-07-01

    We present a method to calculate the effective material parameters of beam acoustic metamaterials. The effective material parameters of a periodic beam are calculated as an example. The dispersion relations and energy band structures of this beam are calculated. Subsequently, the effective material parameters of the beam are investigated by using the energy band structures. Then, the modal analysis and transmission properties of the beams with finite cells are simulated in order to confirm the correctness of effective approximation. The results show that the periodic beam can be equivalent to the homogeneous beam with dynamic effective material parameters in passband.

  15. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    NASA Astrophysics Data System (ADS)

    Mahinay, C. L. S.; Wada, M.; Ramos, H. J.

    2015-02-01

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  16. Emittance and Energy Measurements of Low-Energy Electron Beam Using Optical Transition Radiation Techniques

    NASA Astrophysics Data System (ADS)

    Sakamoto, Fumito; Iijima, Hokuto; Dobashi, Katsuhiro; Imai, Takayuki; Ueda, Toru; Watanabe, Takahiro; Uesaka, Mitsuru

    2005-03-01

    Emittance and energy of an electron beam in the range of 8 to 22 MeV were measured via optical transition radiation (OTR) techniques. The beam divergence effect on observations of the far-field OTR image at low energies was studied by means of numerical analysis. The numerical analysis indicates that if the beam divergence is under 1.5 mrad, a simultaneous single-shot measurement of emittance and energy is possible. The results of the single-shot experiment agree with independent measurements conducted using the quadrupole scan method and an electron spectrometer. The experiments were performed with an S-band linac at the Nuclear Engineering Research Laboratory, The University of Tokyo (UTNL).

  17. Feasibility of a 90° electric sector energy analyzer for low energy ion beam characterization

    SciTech Connect

    Mahinay, C. L. S. Ramos, H. J.; Wada, M.

    2015-02-15

    A simple formula to calculate refocusing by locating the output slit at a specific distance away from the exit of 90° ion deflecting electric sector is given. Numerical analysis is also performed to calculate the ion beam trajectories for different values of the initial angular deviation of the beam. To validate the theory, a compact (90 mm × 5.5 mm × 32 mm) 90° sector ESA is fabricated which can fit through the inner diameter of a conflat 70 vacuum flange. Experimental results show that the dependence of resolution upon the distance between the sector exit and the Faraday cup agrees with the theory. The fabricated 90° sector electrostatic energy analyzer was then used to measure the space resolved ion energy distribution functions of an ion beam with the energy as low as 600 eV.

  18. Remote Electric Power Transfer Between Spacecrafts by Infrared Beamed Energy

    NASA Astrophysics Data System (ADS)

    Chertok, Boris E.; Evdokimov, Roman A.; Legostaev, Victor P.; Lopota, Vitaliy A.; Sokolov, Boris A.; Tugaenko, Vjacheslav Yu.

    2011-11-01

    High efficient wireless electric energy transmission (WET) technology between spacecrafts by laser channel is proposed. WET systems could be used for remote power supplying of different consumers in space. First of all, there are autonomous technology modules for microgravity experiments, micro and nano satellites, different equipment for explorations of planetary surfaces, space transport vehicles with electric rocket propulsion systems. The main components of the WET technology consist of radiation sources on the base of semiconductor IR laser diodes; systems for narrow laser beam creation; special photovoltaic receivers for conversion of monochromatic IR radiation with high energy density to electric power. The multistage space experiment for WET technology testing is described. During this experiment energy will be transmitted from International Space Station to another spacecrafts like cargo transport vehicles (Progress or/and ATV) and micro satellites.

  19. The STAR beam energy scan phase II physics and upgrades

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming; STAR Collaboration

    2016-09-01

    The second phase of the Beam Energy Scan at RHIC will occur in 2019-2020 and will explore with precision measurements in the part of the QCD phase diagram where baryon densities are high. The program will examine energy regime of interest and turn the trends observed in phase-I into conclusions. This will be discussed in context of some of the key measurements, kurtosis of net-protons that could pinpoint the position of a critical point, measurements of directed flow of baryons vs. energy that might prove a softening of the EOS , and chiral restoration in the di-lepton channel. The measurements will be possible with an order of magnitude better statistics thanks to the electron cooling upgrade of RHIC, and the addition of the iTPC, Event Plane, and endcap TOF upgrades to STAR. Office of Nuclear Physics within the U.S. DOE Office of Science.

  20. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  1. Beamed energy for space craft propulsion - Conceptual status and development potential

    NASA Technical Reports Server (NTRS)

    Sercel, Joel C.; Frisbee, Robert H.

    1987-01-01

    This paper outlines the results of a brief study that sought to identify and characterize beamed energy spacecraft propulsion concepts that may have positive impact on the economics of space industrialization. It is argued that the technology of beamed energy propulsion systems may significantly improve the prospects for near-term colonization of outer space. It is tentatively concluded that, for space industrialization purposes, the most attractive near-term beamed energy propulsion systems are based on microwave technology. This conclusion is reached based on consideration of the common features that exist between beamed microwave propulsion and the Solar Power Satellite (SPS) concept. Laser power beaming also continues to be an attractive option for spacecraft propulsion due to the reduced diffraction-induced beam spread afforded by laser radiation wavelengths. The conceptual status and development potential of a variety of beamed energy propulsion concepts are presented. Several alternative space transportation system concepts based on beamed energy propulsion are described.

  2. Beamed Energy Propulsion by Means of Target Ablation

    NASA Astrophysics Data System (ADS)

    Rosenberg, Benjamin A.

    2004-03-01

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  3. Beamed Energy Propulsion by Means of Target Ablation

    SciTech Connect

    Rosenberg, Benjamin A.

    2004-03-30

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

  4. Replacement of chemical rocket launchers by beamed energy propulsion.

    PubMed

    Fukunari, Masafumi; Arnault, Anthony; Yamaguchi, Toshikazu; Komurasaki, Kimiya

    2014-11-01

    Microwave Rocket is a beamed energy propulsion system that is expected to reach space at drastically lower cost. This cost reduction is estimated by replacing the first-stage engine and solid rocket boosters of the Japanese H-IIB rocket with Microwave Rocket, using a recently developed thrust model in which thrust is generated through repetitively pulsed microwave detonation with a reed-valve air-breathing system. Results show that Microwave Rocket trajectory, in terms of velocity versus altitude, can be designed similarly to the current H-IIB first stage trajectory. Moreover, the payload ratio can be increased by 450%, resulting in launch-cost reduction of 74%.

  5. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  6. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  7. Crossed-Beam Energy Transfer in Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.

    2011-10-01

    Direct-drive-implosion experiments on OMEGA have revealed the importance of crossed-beam energy transfer (CBET), which is caused by stimulated Brillouin scattering. The CBET reduces the laser absorption in a target corona by ~10% to 20% and, therefore, decreases the implosion performance. The signature of CBET is observed in time-resolved, reflected-light spectra as a suppression of red-shifted light during the main laser pulse. Simulations without CBET typically predict an earlier bang time and overestimate the laser absorption in high-compression, low-adiabat implosions. Simulations using a CBET model and a nonlocal heat-transport model explain well the scattered-light and bang-timing measurements. This talk will summarize the possible mitigation strategies for CBET required for robust ignition designs. CBET most effectively scatters incoming light that interacts with outgoing light originated from laser beam edges. This makes it possible to mitigate CBET by reducing the beam diameter with respect to the target diameter. Implosion experiments using large 1400- μm-diam plastic shells and in-focus and defocus laser beams have demonstrated the reduction of CBET in implosions with a smaller ratio of the beam-to-target diameters. Simulations predict the optimum range of this ratio to be 0.7 to 0.8. Another mitigation strategy involves splitting the incident light into two or more colors. This reduces CBET by shifting and suppressing the coupling resonances. The reduction in scattered light caused by CBET is predicted to be up to a factor of 2 when incident light colors are separated by δλ > 6 Ã. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. In collaboration with W. Seka, D. H. Edgell, D. H. Froula, V. N. Goncharov, R. S. Craxton, R. L. McCrory, A. V. Maximov, D. D. Meyerhofer, J. F. Myatt, T. C. Sangster, A. Shvydky, S. Skupsky, and C. Stoeckl. I. V. Igumenshchevet

  8. Designing of the low energy beam lines with achromatic condition in the RAON accelerator

    NASA Astrophysics Data System (ADS)

    Jin, Hyunchang; Jang, Ji-Ho; Jeon, Dong-O.

    2017-01-01

    The RAON accelerator has been built to create and accelerate stable heavy-ion beams and rare isotope beams. The stable heavy-ion beams are generated by the superconducting electron cyclotron resonance ion source and accelerated by the low energy superconducting linac SCL1. The beams accelerated by the SCL1 are re-accelerated by the high energy superconducting linac SCL2 for the generation of rare isotope beams by using the in-flight fragmentation system or are put to use in the low energy experimental halls, which include the neutron science facility and the KOrea Broad acceptance Recoil spectrometer and Apparatus after having passed through the low energy beam lines which have long deflecting sections. At the end of each beam line in the low energy experimental halls, the beams should meet the targets of the two facilities with the specific requirements satisfied. Namely, if the beam is to be sent safely and accurately to the targets and simultaneously, satisfy the requirements, an achromatic lattice design needs to be applied in each beam line. In this paper, we will present the lattice design of the low energy beam lines and describe the results of the beam dynamics simulations. In addition, the correction of the beam orbit, which is distorted by machine imperfections, will be discussed.

  9. Degradation of bimorph piezoelectric bending beams in energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Pillatsch, P.; Xiao, B. L.; Shashoua, N.; Gramling, H. M.; Yeatman, E. M.; Wright, P. K.

    2017-03-01

    Piezoelectric energy harvesting is an attractive alternative to battery powering for wireless sensor networks. However, in order for it to be a viable long term solution the fatigue life needs to be assessed. Many vibration harvesting devices employ bimorph piezoelectric bending beams as transduction elements to convert mechanical to electrical energy. This paper introduces two degradation studies performed under symmetrical and asymmetrical sinusoidal loading. It is shown that besides a loss in output power, the most dramatic effect of degradation is a shift in resonance frequency which is highly detrimental to resonant harvester designs. In addition, micro-cracking was shown to occur predominantly in piezoelectric layers under tensile stress. This opens the opportunity for increased life time through compressive operation or pre-loading of piezoceramic layers.

  10. Evaluating the Impact of Test Accommodations on Test Scores of LEP Students & Non-LEP Students.

    ERIC Educational Resources Information Center

    Hafner, Anne L.

    Using a quasi-experimental analysis of variance (ANOVA) design, this project examined the effects of the use of accommodations with students of limited English proficiency (LEP) and non-LEP students and whether the use of accommodations affected the validity of test score interpretations. Major accommodations examined were extra time, and extra…

  11. Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons.

    PubMed

    Bekshaev, Aleksandr; Soskin, Marat

    2006-07-15

    Paraxial beams whose transverse structure rotates upon free propagation (spiral beams) can be treated as analogs of azimuthons recently found in nonlinear media [Phys. Rev. Lett.95, 203904 (2005)]. These linear azimuthons have essentially a nonlocalized character and can possess an almost arbitrary rotation rate independent of the angular momentum of the beam. Such beams can be assimilated into fluent mechanical bodies with intrinsic mass flows determined by transverse energy redistribution over the beam cross section.

  12. High energy electron beam processing experiments with induction accelerators

    NASA Astrophysics Data System (ADS)

    Goodman, D. L.; Birx, D. L.; Dave, V. R.

    1995-05-01

    Induction accelerators are capable of producing very high electron beam power for processing at energies of 1-10 MeV. A high energy electron beam (HEEB) material processing system based on all-solid-state induction accelerator technology is in operation at Science Research Laboratory. The system delivers 50 ns 500 A current pulses at 1.5 MeV and is capable of operating at high power (500 kW) and high (˜ 5 kHz) repetition rate. HEEB processing with induction accelerators is useful for a wide variety of applications including the joining of high temperature materials, powder metallurgical fabrication, treatment of organic-contaminated wastewater and the curing of polymer matrix composites. High temperature HEEB experiments at SRL have demonstrated the brazing of carbon-carbon composites to metallic substrates and the melting and sintering of powders for graded-alloy fabrication. Other experiments have demonstrated efficient destruction of low-concentration organic contaminants in water and low temperature free-radical cross-linking of fiber-reinforced composites with acrylated resin matrices.

  13. Electromechanical decoupled model for cantilever-beam piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Tan, T.; Yan, Z.; Hajj, M.

    2016-09-01

    Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

  14. Future Physics Opportunities in Beam Energy Scan at RHIC

    NASA Astrophysics Data System (ADS)

    Xu, Nu

    2015-10-01

    In the first phase of the beam energy scan program (BES-I) at RHIC, we have collected data from Au +Au collisions at the center of mass energy range from 7.7 GeV to 39 GeV, corresponding to the baryonic chemical potential of 420 MeV to 120 MeV, respectively. We have observed the disappearance of the suppression of leading hadrons at large pT, break down of the quark scaling in the identified particle elliptic flow, the net-proton directed flow slope dv1/dy shows a minimum with negative sign, and a non-monotonical behavior of the net-proton correlation function (the fourth order) at the energy less than 20 GeV. All of these observations indicate that the property of the medium at high baryon density is dramatically different from that created at the RHIC top energy where the baryon density is small and partonic interactions are dominant. In this talk I will first review what we have learned in RHIC BES-I. Then I will discuss the opportunities in the future bean energy scan program in order to address key questions regarding the QCD phase structure including the illusive critical point. I will stress that adequate detector upgrades, focused at the large baryon density region, are essential for the physics program.

  15. Influence of a biased beam dump on H sup minus beam neutralization measurements with a four-grid energy analyzer

    SciTech Connect

    Sherman, J.; Pitcher, E.; Allison, P. )

    1990-01-01

    A four-grid energy analyzer diagnostic has been developed for the study of H{sup {minus}} beam space-charge compensation, and first measurements have been reported previously. Biased beam-dump measurements were undertaken to clarify the origin of electron currents measured in the FGA because they far exceeded predictions based on H{sup {minus}}-beam ionization and stripping processes. This experiment partially explains the anomalously large radial electron current. The FGA observations for negative beam-dump bias suggest electron ionization of the background gas is an additional mechanism for producing positive ions.

  16. Correlations between polarisation states of W particles in the reaction e - e +→ W - W + at LEP2 energies 189-209 GeV

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2009-10-01

    In a study of the reaction e - e +→ W - W + with the DELPHI detector, the probabilities of the two W particles occurring in the joint polarisation states transverse-transverse ( TT), longitudinal-transverse plus transverse-longitudinal ( LT) and longitudinal-longitudinal ( LL) have been determined using the final states WW{rightarrow}lν qbar{q} ( l= e, μ). The two-particle joint polarisation probabilities, i.e. the spin density matrix elements ρ TT , ρ LT , ρ LL , are measured as functions of the W - production angle, θ _{W-}, at an average reaction energy of 198.2 GeV. Averaged over all \\cosθ_{W-}, the following joint probabilities are obtained: bar{ρ}_{TT}=(67±8)%, bar{ρ}_{LT}=(30±8)%, bar{ρ}_{LL}=(3±7)%. These results are in agreement with the Standard Model predictions of 63.0%, 28.9% and 8.1%, respectively. The related polarisation cross-sections σ TT , σ LT and σ LL are also presented.

  17. Increasing beam power and energy with the SBS forward energy transfer instability

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; London, R. A.; Dunlop, W. H.; Michel, P. A.; Williams, E. A.; Fournier, K. B.; Landen, O. L.; MacGowan, B. J.

    2012-10-01

    The understanding of the exchange of forward going power and energy between two crossing beams in a plasma [1] is now sufficiently developed that it can be used to enable access to new experimental configurations. The existing models of the process allow the design of beam combiners that will produce higher energy in individual beams for new applications in ignition and HED physics. For example the Energy Partitioning and Energy Coupling (EPEC) [2] program is simulating nuclear events in various environments by delivering energy to the center of a chamber through a narrow tube that allows minimal perturbation of the surrounding region. We will describe the design of gas filled targets that will allow a 2x to 5x increase in the energy in a single NIF quad to enable higher yield events to be simulated in EPEC. These designs as well as advanced ignition target designs will require models with improved precision to predict their performance accurately. We will also compare the predictions of existing and emerging models of wave saturation [3] with the existing experimental data to determine the uncertainty in the models.[4pt] [1] P. Michel Physics of Plasmas 2010.[0pt] [2] K. Fournier, these proceedings[0pt] [3] P. Michel, E. Williams, these proceedings.

  18. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  19. Inclusive J/psi production in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    Chapkine, Mikhail

    2002-06-01

    Inclusive J/psi production in photon-photon collisions has been observed by the DELPHI collaboration at LEP II beam energies. A clean signal from the reaction gamma][gamma [right arrow] J/psi + X is seen. Number of observed events, N(J/psi [right arrow] mu]+[mu-) = 36 plus-or-minus 7 for the integrated luminosity 617 pb-1, yielding a cross section of sigma](J/[psi [right arrow] mu]+[mu-) = 25.2 plus-or-minus 10.2 pb. Based on a study of the event shapes of different types of gamma][gamma processes in the PYTHIA program, we conclude that (74plus-or-minus22)% of the observed J/psi events are due to the 'resolved' photons, the dominant contribution of which is evidently a single color-octet gluon within the photon.

  20. Study of inclusive J/ψ production in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Bellunato, T.; Belous, K.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carimalo, C.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, Ch.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Keranen, R.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Kurowska, J.; Laforge, B.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nygren, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwanda, C.; Schwering, B.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Terranova, F.; Timmermans, J.; Tinti, N.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zoller, Ph.; Zupan, M.; Delphi Collaboration

    2003-07-01

    Inclusive J/ψ production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction γγ→J/ψ+X is seen. The number of observed N(J/ψ→μ+μ-) events is 36±7 for an integrated luminosity of 617 pb-1, yielding a cross-section of σ(J/ψ+X)=45±9(stat)±17(syst) pb. Based on a study of the event shapes of different types of γγ processes in the PYTHIA program, we conclude that (74±22)% of the observed J/ψ events are due to 'resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.

  1. Study of inclusive /J/ψ production in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Bellunato, T.; Belous, K.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carimalo, C.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gele, D.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, Ch.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Keranen, R.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Kurowska, J.; Laforge, B.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nygren, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, I.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwanda, C.; Schwering, B.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Terranova, F.; Timmermans, J.; Tinti, N.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zoller, Ph.; Zupan, M.

    2003-07-01

    Inclusive /J/ψ production in photon-photon collisions has been observed at LEP II beam energies. A clear signal from the reaction /γγ-->J/ψ+X is seen. The number of observed N(J/ψ-->μ+μ-) events is /36+/-7 for an integrated luminosity of 617 pb-1, yielding a cross-section of /σ(J/ψ+X)=45+/-9(stat)+/-17(syst) pb. Based on a study of the event shapes of different types of /γγ processes in the PYTHIA program, we conclude that /(74+/-22)% of the observed /J/ψ events are due to `resolved' photons, the dominant contribution of which is most probably due to the gluon content of the photon.

  2. Inverse planning of energy-modulated electron beams in radiotherapy

    SciTech Connect

    Gentry, John R. . E-mail: gentryj@gmh.org; Steeves, Richard; Paliwal, Bhudatt A.

    2006-01-01

    The use of megavoltage electron beams often poses a clinical challenge in that the planning target volume (PTV) is anterior to other radiosensitive structures and has variable depth. To ensure that skin as well as the deepest extent of the PTV receives the prescribed dose entails prescribing to a point beyond the depth of peak dose for a single electron energy. This causes dose inhomogeneities and heightened potential for tissue fibrosis, scarring, and possible soft tissue necrosis. Use of bolus on the skin improves the entrant dose at the cost of decreasing the therapeutic depth that can be treated. Selection of a higher energy to improve dose homogeneity results in increased dose to structures beyond the PTV, as well as enlargement of the volume receiving heightened dose. Measured electron data from a linear accelerator was used as input to create an inverse planning tool employing energy and intensity modulation using bolus (e-IMRT{sup TM}). Using tools readily available in a radiotherapy department, the applications of energy and intensity modulation on the central axis makes it possible to remove hot spots of 115% or more over the depths clinically encountered. The e-IMRT{sup TM} algorithm enables the development of patient-specific dose distributions with user-defined positions of peak dose, range, and reduced dose to points beyond the prescription point.

  3. Future of the Beam Energy Scan program at RHIC

    SciTech Connect

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; Kabana, S.

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of the QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.

  4. Future of the Beam Energy Scan program at RHIC

    DOE PAGES

    Odyniec, Grazyna; Bravina, L.; Foka, Y.; ...

    2015-05-29

    The first exploratory phase of a very successful Beam Energy Scan Program at RHIC was completed in 2014 with Au+Au collisions at energies ranging from 7 to 39 GeV. Data sets taken earlier extended the upper limit of energy range to the √sNN of 200 GeV. This provided an initial look into the uncharted territory of the QCD phase diagram, which is considered to be the single most important graph of our field. The main results from BES phase I, although effected by large statistical errors (steeply increasing with decreasing energy), suggest that the highest potential for discovery of themore » QCD Critical Point lies bellow √sNN 20 GeV. Here, we discuss the plans and the preparation for phase II of the BES program, with an order of magnitude larger statistics, which is planned for 2018-2019. The BES II will focus on Au+Au collisions at √sNN from 20 to 7 GeV in collider mode, and from √sNN 7 to 3.5 GeV in the fixed target mode, which will be run concurrently with the collider mode operation.« less

  5. Constraining the Symmetry Energy Using Radioactive Ion Beams

    NASA Astrophysics Data System (ADS)

    Stiefel, Krystin; Kohley, Zachary; Morrissey, Dave; Thoennessen, Michael; MoNA Collaboration

    2016-09-01

    Calculations from the constrained molecular dynamics (CoMD) model have shown that the N/Z ratio of the residue fragments and neutron emissions from projectile fragmentation reactions is sensitive to the form of the symmetry energy, a term in the nuclear equation of state. In order to constrain the symmetry energy using the N/Z ratio observable, an experiment was performed using the MoNA-LISA and Sweeper magnet arrangement at the NSCL. Beams of 30S and 40S impinged on 9Be targets and the heavy residue fragments were measured in coincidence with fast neutrons. Comparison of the new experimental data with theoretical models should provide a constraint on the form of the symmetry energy. Some of the data from this experiment will be presented and discussed. This work is partially supported by the National Science Foundation under Grant No. PHY-1102511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  6. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  7. Generalized energy-aperture product limit for multi-beam and spotlight SARs

    SciTech Connect

    Karr, T.J.

    1995-12-21

    The SAR energy-aperture product limit is extended to multi-beam SARS, Spotlight and moving spotlight SARS. This fundamental limit bounds the tradeoff between energy and antenna size. The kinematic relations between design variables such as platform speed, pulse repetition frequency, beam width and area rate are analyzed in a unified framework applicable to a wide variety of SARs including strip maps, spotlights, vermer arrays and multi-beam SARS, both scanning and swept-beam. Then the energy-aperture product limit is derived from the signal-to noise requirement and the kinematic constraints. The derivation clarifies impact of multiple beams and spotlighting on SAR performance.

  8. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  9. Beam Line Design and Beam Physics Study of Energy Recovery Linac Free Electron Laser at Peking University

    SciTech Connect

    Wang, Guimei

    2011-12-31

    Energy recovering linac (ERL) offers an attractive alternative for generating intense beams of charged particles by approaching the operational efficiency of a storage ring while maintaining the superior beam quality typical of a linear accelerator. In ERLs, the decelerated beam cancels the beam loading effects of the accelerated beam with high repetition rate. Therefore, ERLs can, in principle, accelerate very high average currents with only modest amounts of RF power. So the efficiency of RF power to beam is much higher. Furthermore, the energy of beam to dump is lower, so it will reduce dump radiation. With the successful experiments in large maximum-to-injection energy ratio up to 51:1 and high power FEL up to 14kW, the use of ERL, especially combining with superconducting RF technology, provides a potentially powerful new paradigm for generation of the charged particle beams used in MW FEL, synchrotron radiation sources, high-energy electron cooling devices and so on. The 3+1/2 DC-SC photo injector and two 9cell TESLA superconducting cavity for IR SASE FEL in PKU provides a good platform to achieve high average FEL with Energy Recovery. The work of this thesis is on Beam line design and Beam dynamics study of Energy Recovery Linac Free Electron Laser for Peking University. It is the upgrade of PKU facility, which is under construction. With ERL, this facility can work in CW mode, so it can operate high average beam current without RF power constraint in main linac and generate high average FEL power. Moreover, it provides a test facility to study the key technology in ERL. System parameters are optimized for PKU ERL-FEL. The oscillation FEL output power is studied with different bunch charge, transverse emittance, bunch length and energy spread. The theory of optimal RF power and Q{sub ext} with ERL and without ERL is analyzed and applied to PKU injector and linac including microphonic effect. pace charge effect in the injector and merger is studied for beam

  10. Method and apparatus for splitting a beam of energy. [optical communication

    NASA Technical Reports Server (NTRS)

    Leeb, W. R. (Inventor)

    1978-01-01

    A wedge shaped beam splitting device is described which has a first surface for splitting an incident beam energy into an externally reflected beam and an internally transmitted beam, a second surface spaced from the first surface splits the internally transmitted beam into an externally transmitted beam and into an internally reflected beam, and intersects the first surface at an angle that impinges the internally transmitted beam on the second surface at an angle of incidence that is less than the minimum angle necessary for substantially total internal reflection and impinges the internally reflected beam on the first surface at an angle of incidence that exceeds the minimum angle necessary for substantially total internal reflection. The device may also be used as a beam combiner.

  11. Use of off-axis injection as an alternative to geometrically merging beams in an energy-recovering linac

    DOEpatents

    Douglas, David R [York County, VA

    2012-01-10

    A method of using off-axis particle beam injection in energy-recovering linear accelerators that increases operational efficiency while eliminating the need to merge the high energy re-circulating beam with an injected low energy beam. In this arrangement, the high energy re-circulating beam and the low energy beam are manipulated such that they are within a predetermined distance from one another and then the two immerged beams are injected into the linac and propagated through the system. The configuration permits injection without geometric beam merging as well as decelerated beam extraction without the use of typical beamline elements.

  12. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner.

    PubMed

    Rosenow, U F; Islam, M K; Gaballa, H; Rashid, H

    1991-01-01

    An energy constancy checking method is presented which involves a specially designed wedge-shaped solid phantom in combination with a multiple channel ionization chamber array known as the Thebes device. Once the phantom/beam scanner combination is set up, measurements for all electron energies can be made and evaluated without re-entering the treatment room. This is also valid for the readjustment of beam energies which are found to deviate from required settings. The immediate presentation of the measurements is in the form of crossplots which resemble depth dose profiles. The evaluation of the measured data can be performed using a hand-held calculator, but processing of the measured signals through a PC-type computer is advisable. The method is insensitive to usual fluctuations in beam flatness. The sensitivity and reproducibility of the method are more than adequate. The method may also be used in modified form for photon beams.

  13. Modulator considerations for beam chopping in the low energy beam transport at the SSC Laboratory

    SciTech Connect

    Anderson, D.; Pappas, G.

    1991-06-01

    Beam chopping in the low energy transport line at the Superconducting Super Collider Laboratory is accomplished using an electrostatic deflection system. LINAC requirements dictate the design of two modulators operating at 10 Hz with rise and fall times (as measured from approximately 10--99%) of {approximately}100 ns. Design of the first pulser, normally at 10 kV and pulsed to ground potential, utilizes a transformer-coupled diode-clamped solid state circuit to achieve the 2--35 {mu}s pulse width range required. The second pulser, which pulses from ground to approximately 7 kV, relies on a series vacuum tube circuit. The current designs, as well as recent test results and other circuit topologies considered, will be presented. 6 refs.

  14. Energy deposition studies for the LBNE beam absorber

    SciTech Connect

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-29

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility, that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system – all with corresponding radiation shielding – was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options.

  15. Low-energy Coulomb excitation of Sr,9896 beams

    NASA Astrophysics Data System (ADS)

    Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.

    2016-11-01

    The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.

  16. Chaotic control of a piezomagnetoelastic beam for improved energy harvesting

    NASA Astrophysics Data System (ADS)

    Geiyer, Daniel; Kauffman, Jeffrey L.

    2015-04-01

    Linear cantilevered piezoelectric energy harvesters do not typically operate efficiently through a large span of excitation frequencies. Beam theory dictates optimum displacement at resonance excitation; however, typical environments evolve and vary over time with no clear dominant frequency. Nonlinear, non-resonant harvesting techniques have been implemented, but none so far have embraced chaotic behavior as a desirable property of the system. This work aims to benefit from chaotic phenomena by stabilizing high energy periodic orbits located within a chaotic attractor to improve operating bandwidth. Delay coordinate embedding is used to reconstruct the system states from a single time series measurement of displacement. Orbit selection, local linearization, and control perturbation are all computed from the single time series independent of an explicit system model. Although chaos in non-autonomous systems is typically associated with harmonic inputs, chaotic attractor motion can also exist throughout other excitation sources. Accelerometer data from inside a commercial vehicle and a stochastic excitation signal are used to illustrate the existence of chaos in dynamic environments, allowing such environments to be likely candidates for the proposed bandwidth improving energy harvesting technique.

  17. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  18. Low energy ion beam assisted growth of metal multilayers

    NASA Astrophysics Data System (ADS)

    Quan, Junjie

    energy, ion species, ion fluence, and ion incidence angle has been investigated during low energy ion assisted vapor deposition of Cu/Co mutilayers. Key mechanisms of atomic reconstruction in the low energy regime have been identified and investigated in detail using a molecular statics method. By changing the ion energy or modifying the time lag between metal and ion deposition, these simulations identified three different approaches for controlling the atomic assembly of multilayer: (i) simultaneous, (ii) modulated energy and (iii) sequential ion assistance. Each has been shown capable of enabling significant interfacial structure control during the growth of metallic multilayers. A biased target ion beam deposition (BTIBD) system was designed and constructed to provide growth environments similar to those that resulted in the best simulated film structures. The BTIBD system has been successfully employed to deposit a variety of multilayers. Experimental investigations of low energy ion assisted growth of a representative spin valve (Ta/NiFe/Co/Cu/Co/FeMn/Cu) multilayer and a model Ta/Cu film indicate significantly improved interfacial structures when oblique, low energy, argon ion assistance was used. These results are fully consistent with the simulations and confirm that a BTIBD approach to multilayer deposition results in substantially improved films compared to those synthesized by traditional ion beam assisted deposition approaches where less effective control of atomic self assembly is possible.

  19. Search for doubly charged Higgs bosons at LEP2

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2003-01-01

    A search for pair-produced doubly charged Higgs bosons has been performed using the data collected by the DELPHI detector at LEP at centre-of-mass energies between 189 and 209 GeV. No excess is observed in the data with respect to the Standard Model background. A lower limit for the mass of 97.3 GeV/c2 at the 95% confidence level has been set for doubly charged Higgs bosons in left-right symmetric models for any value of the Yukawa coupling between the Higgs bosons and the /τ leptons.

  20. Search for doubly charged Higgs bosons at LEP2

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2003-01-01

    A search for pair-produced doubly charged Higgs bosons has been performed using the data collected by the DELPHI detector at LEP at centre-of-mass energies between 189 and 209 GeV. No excess is observed in the data with respect to the Standard Model background. A lower limit for the mass of 97.3 GeV/c2 at the 95% confidence level has been set for doubly charged Higgs bosons in left-right symmetric models for any value of the Yukawa coupling between the Higgs bosons and the τ leptons.

  1. APD performance in a luminosity monitor at LEP

    NASA Astrophysics Data System (ADS)

    Bartolomé, E.; Boix, G.; Casado, M. P.; Chmeissani, M.; Clemente, S.; Fernández, E.; Garrido, L.; Lorenz, E.; Martínez, M.; Merino, G.; Riu, I.; Sánchez, F.; Wright, A.

    2000-03-01

    Avalanche Photo-Diodes (APDs) are being used as optical readout elements in a sampling electromagnetic calorimeter made of alternate layers of tungsten and plastic scintillators. The calorimeter serves as a small-angle luminosity monitor in the stray magnetic field of the ALEPH detector at LEP (CERN). Its scintillators are coupled both to APDs and conventional PMTs simultaneously via wavelength shifter fibres. In this paper we present results on the overall performance of the APDs, including gain and stability versus time and energy, based on the direct comparison of the two photosensitive devices.

  2. Scheme for Low Energy Beam Transport with a Non-Neutralized Section

    SciTech Connect

    Shemyakin, A.; Prost, L.

    2015-04-23

    A typical Low Energy Beam Transport (LEBT) design relies on dynamics with nearly complete beam space charge neutralization over the entire length of the LEBT. This paper argues that, for a beam with modest perveance and uniform current density distribution when generated at the source, a downstream portion of the LEBT can be un-neutralized without significant emittance growth.

  3. How to measure energy of LEReC electron beam with magnetic spectrometer

    SciTech Connect

    Seletskiy, S.

    2016-04-11

    For successful cooling the energies of RHIC ion beam and LEReC electron beam must be matched with 10-4 accuracy. While the energy of ions will be known with required accuracy, e-beam energy can have as large initial offset as 5%. The final setting of e-beam energy will be performed by observing either Schottky spectrum or recombination signal from debunched ions co-traveling with the e-beam. Yet, to start observing such signals one has to set absolute energy of electron beam with accuracy better than 10-2, preferably better than 5∙10-3. The aim of this exercise is to determine whether and how such accuracy can be reached by utilizing LEReC 180° bend as a spectrometer.

  4. Beam structure and transverse emittance studies of high-energy ion beams

    NASA Astrophysics Data System (ADS)

    Saadatmand, K.; Johnson, K. F.; Schneider, J. D.

    1991-05-01

    A visual diagnostic technique was developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position).

  5. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  6. Low-energy run of Fermilab Electron Cooler's beam generation system

    SciTech Connect

    Prost, Lionel; Shemyakin, Alexander; Fedotov, Alexei; Kewisch, Jorg; /Brookhaven

    2010-08-01

    As a part of a feasibility study of using the Fermilab Electron Cooler for a low-energy Relativistic Heavy Ion Collider (RHIC) run at Brookhaven National Laboratory (BNL), the cooler operation at 1.6 MeV electron beam energy was tested in a short beam line configuration. The main result of the study is that the cooler beam generation system is suitable for BNL needs. In a striking difference with running 4.3 MeV beam, no unprovoked beam recirculation interruptions were observed.

  7. Energy Dissipation Capacity of Reinforced Concrete Beams Strengthened with CFRP Strips

    NASA Astrophysics Data System (ADS)

    Hong, Sungnam; Park, Sun-Kyu

    2016-05-01

    Cyclic loading tests were performed to investigate the energy dissipation capacities of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) strips. Four RC beams were manufactured and three-point loaded. Responses of the strengthened beams to the cyclic loadings were measured, including deflections at the center of their span and strains of the CFRP strips and reinforcing steel rebars. Based on test results, the energy dissipation capacity of the strengthened beams were evaluated in comparison with that of an unstrengthened control beam.

  8. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  9. Energy-absorbing-beam design for composite aircraft subfloors

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Kellas, Sotiris

    1993-01-01

    Data have been presented from the design support testing of composite energy absorbing (EA) aircraft subfloor structures. The focus of the current study is the design and testing of subfloor structural concepts that would limit the loads transmitted to occupants to less than 20 g at crush speeds of approximately 30 fps. The EA composite subfloor is being designed to replace an existing noncrashworthy metallic subfloor in a composite aircraft prior to a full-scale crash test. A sandwich spar construction of a sine wave beam was chosen for evaluation and was found to have excellent energy absorbing characteristics. The design objective of obtaining sustained crushing loads of the spar between 200-300 lbf/inch were achieved for potentially limiting occupants loads to around 20 g's. Stroke efficiency of up to 79 percent of the initial spar height under desired sustained crushing loads was obtained which is far greater than the level provided by metal structure. Additionally, a substantial residual spar stiffness was retained after impact, and the flange integrity, which is critical for seat retention, was maintained after crushing of the spars.

  10. Experimental study of magnetically confined hollow electron beams in the Tevatron as collimators for intense high-energy hadron beams

    SciTech Connect

    Stancari, G.; Annala, G.; Shiltsev, V.; Still, D.; Valishev, A.; Vorobiev, L.; /Fermilab

    2011-03-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable losses. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and tested at Fermilab for this purpose. It was installed in one of the Tevatron electron lenses in the summer of 2010. We present the results of the first experimental tests of the hollow-beam collimation concept on 980-GeV antiproton bunches in the Tevatron.

  11. Surface modification of structural materials by low-energy high-current pulsed electron beam treatment

    SciTech Connect

    Panin, A. V. E-mail: kms@ms.tsc.ru; Kazachenok, M. S. E-mail: kms@ms.tsc.ru; Sinyakova, E. A.; Borodovitsina, O. M.; Ivanov, Yu. F.; Leontieva-Smirnova, M. V.

    2014-11-14

    Microstructure formation in surface layers of pure titanium and ferritic-martensitic steel subjected to electron beam treatment is studied. It is shown that low energy high-current pulsed electron beam irradiation leads to the martensite structure within the surface layer of pure titanium. Contrary, the columnar ferrite grains grow during solidification of ferritic-martensitic steel. The effect of electron beam energy density on the surface morphology and microstructure of the irradiated metals is demonstrated.

  12. A New Beginning for LEP Students?

    ERIC Educational Resources Information Center

    Ariza, Maria J.

    New Beginning is a transitional program for limited-English-proficient (LEP) secondary school students in Dade County, Florida whose prior school experience was interrupted or limited. The program currently serves 102 students in four schools. Most participants are Hispanic or Haitian. Students are selected by district-wide criteria and grouped in…

  13. Determination of electron energy, spectral width, and beam divergence at the exit window for clinical megavoltage x-ray beams.

    PubMed

    Sawkey, D L; Faddegon, B A

    2009-03-01

    Monte Carlo simulations of x-ray beams typically take parameters of the electron beam in the accelerating waveguide to be free parameters. In this paper, a methodology is proposed and implemented to determine the energy, spectral width, and beam divergence of the electron source. All treatment head components were removed from the beam path, leaving only the exit window. With the x-ray target and flattener out of the beam, uncertainties in physical characteristics and relative position of the target and flattening filter, and in spot size, did not contribute to uncertainty in the energy. Beam current was lowered to reduce recombination effects. The measured dose distributions were compared with Monte Carlo simulation of the electron beam through the treatment head to extract the electron source characteristics. For the nominal 6 and 18 MV x-ray beams, the energies were 6.51 +/- 0.15 and 13.9 +/- 0.2 MeV, respectively, with the uncertainties resulting from uncertainties in the detector position in the measurement and in the stopping power in the simulations. Gaussian spectral distributions were used, with full widths at half maximum ranging from 20 +/- 4% at 6 MV to 13 +/- 4% at 18 MV required to match the fall-off portion of the percent-depth ionization curve. Profiles at the depth of maximum dose from simulations that used the manufacturer-specified exit window geometry and no beam divergence were 2-3 cm narrower than measured profiles. Two simulation configurations yielding the measured profile width were the manufacturer-specified exit window thickness with electron source divergences of 3.3 degrees at 6 MV and 1.8 degrees at 18 MV and an exit window 40% thicker than the manufacturer's specification with no beam divergence. With the x-ray target in place (and no flattener), comparison of measured to simulated profiles sets upper limits on the electron source divergences of 0.2 degrees at 6 MV and 0.1 degrees at 18 MV. A method of determining source

  14. Characteristics of low-energy ion beams extracted from a wire electrode geometry.

    PubMed

    Vasquez, M; Tokumura, S; Kasuya, T; Maeno, S; Wada, M

    2012-02-01

    Beams of argon ions with energies less than 50 eV were extracted from an ion source through a wire electrode extractor geometry. A retarding potential energy analyzer (RPEA) was constructed in order to characterize the extracted ion beams. The single aperture RPEA was used to determine the ion energy distribution function, the mean ion energy and the ion beam energy spread. The multi-cusp hot cathode ion source was capable of producing a low electron temperature gas discharge to form quiescent plasmas from which ion beam energy as low as 5 eV was realized. At 50 V extraction potential and 0.1 A discharge current, the ion beam current density was around 0.37 mA/cm(2) with an energy spread of 3.6 V or 6.5% of the mean ion energy. The maximum ion beam current density extracted from the source was 0.57 mA/cm(2) for a 50 eV ion beam and 1.78 mA/cm(2) for a 100 eV ion beam.

  15. A Feasibility Study of 50 nm Resolution with Low Energy Electron Beam Proximity Projection Lithography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masaki; Savas, T. A.

    2002-01-01

    Patterns of 50 nm lines and spaces were demonstrated by low energy electron beam proximity lithography using 47-nm-thick poly methyl methacrylate (PMMA) and stencil masks fabricated by achromatic interference lithography (AIL). The result indicates the validity of the resolution analysis previously reported and the resolution capabilities of low energy electron beam proximity projection lithography (LEEPL) as a 50 nm node technology.

  16. A new criterion to describe crossed-beam energy transfer in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Trines, R.; Schmitz, H.; Alves, E. P.; Fiuza, F.; Vieira, J.; Silva, L. O.; Bingham, R.

    2016-10-01

    Crossed-beam energy transfer (CBET) between laser beams in underdense plasma is ubiquitous in both direct-drive and indirect-drive inertial confinement fusion. To understand the impact of this process on the final shape of the laser beams involved, as well as their imprint on either hohlraum walls or target surface, a detailed spatial and temporal description of the crossing beams is needed. We have developed an analytical model and derived new criteria describing both the spatial structure and temporal evolution of the beams after crossing. Numerical simulations have been carried out justifying the analytical model and confirming the criteria. The impact of our results on present and future multi-beam experiments in laser fusion and high-energy-density physics, in particular the ``bursty'' nature of beams predicted to occur in NIF experiments, will be discussed.

  17. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions.

    PubMed

    Valerio-Lizarraga, Cristhian A; Lallement, Jean-Baptiste; Leon-Monzon, Ildefonso; Lettry, Jacques; Midttun, Øystein; Scrivens, Richard

    2014-02-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H(-) beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Dependence of the electron-cloud instability on the beam energy.

    PubMed

    Rumolo, G; Arduini, G; Métral, E; Shaposhnikova, E; Benedetto, E; Calaga, R; Papotti, G; Salvant, B

    2008-04-11

    The electron cloud (EC) can be formed in the beam pipe of a circular accelerator if the secondary emission yield (SEY) of the inner surface is larger than 1, and it can detrimentally affect the circulating beam. Understanding the underlying physics and defining the scaling laws of this effect is indispensable to steer the upgrade plans of the existing machines and the design of new ones. The single bunch EC instability (ECI) is shown to be strongly affected by the transverse beam size. Transversely, smaller beams going through an electron cloud generate higher electron peak densities and lower the intensity threshold to make the beam unstable. In particular, since higher energy beams have smaller transverse sizes (for equal normalized transverse emittances), the scaling of the ECI threshold with the beam energy turns out to be surprisingly unfavorable.

  19. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    SciTech Connect

    Anferov, V; Derenchuk, V; Moore, R; Schreuder, A

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.

  20. Observation of the muon inner bremsstrahlung at LEP1

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2008-10-01

    Muon bremsstrahlung photons converted in front of the DELPHI main tracker (TPC) in dimuon events at LEP1 were studied in two photon kinematic ranges: 0.2< E γ ≤1 GeV and transverse momentum with respect to the parent muon p T <40 MeV/ c, and 1< E γ ≤10 GeV and p T <80 MeV/ c. A good agreement of the observed photon rate with predictions from QED for the muon inner bremsstrahlung was found, contrary to the anomalous soft photon excess that has been observed recently in hadronic Z 0 decays. The obtained ratios of the observed signal to the predicted level of the muon bremsstrahlung are 1.06±0.12±0.07 in the photon energy range 0.2< E γ ≤1 GeV and 1.04±0.09±0.12 in the photon energy range 1< E γ ≤10 GeV. The bremsstrahlung dead cone is observed for the first time in the direct photon production at LEP.

  1. SU-E-T-796: Variation of Surface Photon Energy Spectra On Bone Heterogeneity and Beam Obliquity Between Flattened and Unflattened Beam

    SciTech Connect

    Chow, J; Owrangi, A; Grigorov, G

    2015-06-15

    Purpose: This study investigates the spectra of surface photon energy and energy fluence in the bone heterogeneity and beam obliquity using flattened and unflattened photon beams. The spectra were calculated in a bone and water phantom using Monte Carlo simulation (the EGSnrc code). Methods: Spectra of energy, energy fluence and mean energy of the 6 MV flattened and unflattened photon beams (field size = 10 × 10 cm{sup 2}) produced by a Varian TrueBEAM linear accelerator were calculated at the surfaces of a bone and water phantom using Monte Carlo simulations. The spectral calculations were repeated with the beam angles turned from 0° to 15°, 30° and 45° in the phantoms. Results: It is found that the unflattened photon beams contained more photons in the low-energy range of 0 – 2 MeV than the flattened beams with a flattening filter. Compared to the water phantom, both the flattened and unflattened beams had slightly less photons in the energy range < 0.4 MeV when a bone layer of 1 cm is present under the phantom surface. This shows that the presence of the bone decreased the low-energy photons backscattered to the phantom surface. When the photon beams were rotated from 0° to 45°, the number of photon and mean photon energy increased with the beam angle. This is because both the flattened and unflattened beams became more hardened when the beam angle increased. With the bone heterogeneity, the mean energies of both photon beams increased correspondingly. This is due to the absorption of low-energy photons by the bone, resulting in more significant beam hardening. Conclusion: The photon spectral information is important in studies on the patient’s surface dose enhancement when using unflattened photon beams in radiotherapy.

  2. Executive Summary of the Workshop on Polarization and Beam Energy Measurements at the ILC

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Blair, G.; Brachmann, A.; Clarke, J.; Deacon, L.; Duginov, V.; Ghalumyan, A.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Lyapin, A.; Marchesini, I.; Melikian, R.; Monig, K.; Moeit, K.C.; /Bonn U. /Cockcroft Inst. Accel. Sci. Tech. /DESY /DESY, Zeuthen /Royal Holloway, U. of London /SLAC /Daresbury /Dubna, JINR /Yerevan Phys. Inst /Oxford U., JAI /Iowa State U. /Durham U., IPPP /Michigan U. /University Coll. London /Novosibirsk, IYF /Minsk, Inst. Phys. /Oregon U.

    2008-07-25

    This note summarizes the results of the 'Workshop on Polarization and Beam Energy Measurements at the ILC', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (1) physics requirements, (2) polarized sources and low energy polarimetry, (3) BDS polarimeters, (4) BDS energy spectrometers, and (5) physics-based measurements of beam polarization and beam energy from collider data. Discussions focused on the current ILC baseline program as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarization of P{sub e{sup -}} {approx}> 80% and positron polarization of P{sub e{sup +}} {approx}> 30% are part of the baseline configuration of the machine. Energy and polarization measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.

  3. Low-energy plasma focus device as an electron beam source.

    PubMed

    Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow

    2014-01-01

    A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.

  4. Optimization of photon beam energy in aperture-based inverse planning.

    PubMed

    St-Hilaire, Jason; Sévigny, Caroline; Beaulieu, Frédéric; Gingras, Luc; Tremblay, Daniel; Beaulieu, Luc

    2009-09-03

    Optimal choice of beam energy in radiation therapy is easy in many well-documented cases, but less obvious in some others. Low-energy beams may provide better conformity around the target than their high-energy counterparts due to reduced lateral scatter, but they also contribute to overdosage of peripheral normal tissue. Beam energy was added as an optimization parameter in an automatic aperture-based inverse planning system. We have investigated two sites (prostate and lung), representative of deep-seated and moderately deep-seated tumors. For each case and different numbers of beam incidences, four plans were optimized: 6 MV, 23 MV, and mixed energy plans with one or two energies per incidence. Each plan was scored with a dose-volume cost function. Cost function values, number of segments, monitor units, dose-volume parameters and isodose distributions were compared. For the prostate and lung cases, energy mixing improved plans in terms of cost function values, with a more important reduction for a small number of beam incidences. Use of high energy allows better peripheral tissue sparing, while keeping similar target coverage and sensitive structures avoidance. Low energy contribution to monitor units usually increased with the number of beam incidences. Thus, for deep-seated and moderately deep-seated tumors, energy optimization can produce interesting plans with less peripheral dose and monitor units than for low energy alone.

  5. Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy

    SciTech Connect

    Takabayashi, Y.

    2010-06-23

    We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

  6. Beam losses and beam halos in accelerators for new energy sources

    SciTech Connect

    Jameson, R.A.

    1995-12-31

    Large particle accelerators are proposed as drivers for new ways to produce electricity from nuclear fusion and fission reactions. The accelerators must be designed to deliver large particle beam currents to a target facility with very little beam spill along the accelerator itself, in order that accelerator maintenance can be accomplished without remote manipulators. Typically, particle loss is preceded by the formation of a tenuous halo of particles around the central beam core, caused by beam dynamics effects, often coupled with the slight imperfections inevitable in a practical design. If the halo becomes large enough, particles may be scraped off along the accelerator. The tolerance for beam spill in different applications is discussed, halo mechanisms and recent work to explore and understand their dynamics are reviewed, and possible directions for future investigation are outlined. 17 refs., 10 figs.

  7. Comparative dosimetric characterization for different types of detectors in high-energy electron beams

    NASA Astrophysics Data System (ADS)

    Lee, Chang Yeol; Kim, Woo Chul; Kim, Hun Jeong; Huh, Hyun Do; Park, Seungwoo; Choi, Sang Hyoun; Kim, Kum Bae; Min, Chul Kee; Kim, Seong Hoon; Shin, Dong Oh

    2017-02-01

    The purpose of this study is to perform a comparison and on analysis of measured dose factor values by using various commercially available high-energy electron beam detectors to measure dose profiles and energy property data. By analyzing the high-energy electron beam data from each detector, we determined the optimal detector for measuring electron beams in clinical applications. The dose linearity, dose-rate dependence, percentage depth dose, and dose profile of each detector were measured to evaluate the dosimetry characteristics of high-energy electron beams. The dose profile and the energy characteristics of high-energy electron beams were found to be different when measured by different detectors. Through comparison with other detectors based on the analyzed data, the microdiamond detector was found to have outstanding dose linearity, a low dose-rate dependency, and a small effective volume. Thus, this detector has outstanding spatial resolution and is the optimal detector for measuring electron beams. Radiation therapy results can be improved and related medical accidents can be prevented by using the procedure developed in this research in clinical practice for all beam detectors when measuring the electron beam dose.

  8. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    SciTech Connect

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  9. An ion beam deceleration lens for ultra-low-energy ion bombardment of naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Prakrajang, K.; Thongkumkoon, P.; Suwannakachorn, D.; Yu, L. D.

    2013-07-01

    Study of low-energy ion bombardment effect on biological living materials is of significance. High-energy ion beam irradiation of biological materials such as organs and cells has no doubt biological effects. However, ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range. To investigate effects from very-low-energy ion bombardment on biological materials, an ion beam deceleration lens is necessary for uniform ion energy lower than keV. A deceleration lens was designed and constructed based on study of the beam optics using the SIMION program. The lens consisted of six electrodes, able to focus and decelerate primary ion beam, with the last one being a long tube to obtain a parallel uniform exiting beam. The deceleration lens was installed to our 30-kV bioengineering-specialized ion beam line. The final decelerated-ion energy was measured using a simple electrostatic field to bend the beam to range from 10 eV to 1 keV controlled by the lens parameters and the primary beam condition. In a preliminary test, nitrogen ion beam at 60 eV decelerated from a primary 20-keV beam bombarded naked plasmid DNA. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks. The study demonstrated that the ion bombardment with energy as low as several-tens eV was possible to break DNA strands and thus potential to cause genetic modification of biological cells.

  10. International Atomic Energy Agency intercomparison of ion beam analysis software

    NASA Astrophysics Data System (ADS)

    Barradas, N. P.; Arstila, K.; Battistig, G.; Bianconi, M.; Dytlewski, N.; Jeynes, C.; Kótai, E.; Lulli, G.; Mayer, M.; Rauhala, E.; Szilágyi, E.; Thompson, M.

    2007-09-01

    Ion beam analysis (IBA) includes a group of techniques for the determination of elemental concentration depth profiles of thin film materials. Often the final results rely on simulations, fits and calculations, made by dedicated codes written for specific techniques. Here we evaluate numerical codes dedicated to the analysis of Rutherford backscattering spectrometry, non-Rutherford elastic backscattering spectrometry, elastic recoil detection analysis and non-resonant nuclear reaction analysis data. Several software packages have been presented and made available to the community. New codes regularly appear, and old codes continue to be used and occasionally updated and expanded. However, those codes have to date not been validated, or even compared to each other. Consequently, IBA practitioners use codes whose validity, correctness and accuracy have never been validated beyond the authors' efforts. In this work, we present the results of an IBA software intercomparison exercise, where seven different packages participated. These were DEPTH, GISA, DataFurnace (NDF), RBX, RUMP, SIMNRA (all analytical codes) and MCERD (a Monte Carlo code). In a first step, a series of simulations were defined, testing different capabilities of the codes, for fixed conditions. In a second step, a set of real experimental data were analysed. The main conclusion is that the codes perform well within the limits of their design, and that the largest differences in the results obtained are due to differences in the fundamental databases used (stopping power and scattering cross section). In particular, spectra can be calculated including Rutherford cross sections with screening, energy resolution convolutions including energy straggling, and pileup effects, with agreement between the codes available at the 0.1% level. This same agreement is also available for the non-RBS techniques. This agreement is not limited to calculation of spectra from particular structures with predetermined

  11. Damage evaluation in metal structures subjected to high energy deposition due to particle beams

    NASA Astrophysics Data System (ADS)

    Scapin, Martina; Peroni, Lorenzo; Dallocchio, Alessandro

    2011-07-01

    The unprecedented energy intensities of modern hadron accelerators yield special problems with the materials that are placed close to or into the high intensity beams. The energy stored in a single beam of LHC particle accelerator is equivalent to about 80 kg of TNT explosive, stored in a transverse beam area with a typical value of 0.2 mm×0.2 mm. The materials placed close to the beam are used at, or even beyond, their damage limits. However, it is very difficult to predict structural efficiency and robustness accurately: beam-induced damage for high energy and high intensity occurs in a regime where practical experience does not exist. The interaction between high energy particle beams and metals induces a sudden non uniform temperature increase. This provokes a dynamic response of the structure entailing thermal stress waves and thermally induced vibrations or even the failure of the component. This study is performed in order to estimate the damage on a copper component due to the impact with a 7 TeV proton beam generated by LHC. The case study represents an accidental case consequent to an abnormal release of the beam: the energy delivered on the component is calculated using the FLUKA code and then used as input in the numerical simulations, that are carried out via the FEM code LS-DYNA.

  12. A new beam loss detector for low-energy proton and heavy-ion accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Zhengzheng; Crisp, Jenna; Russo, Tom; Webber, Robert; Zhang, Yan

    2014-12-01

    The Facility for Rare Isotope Beams (FRIB) to be constructed at Michigan State University shall deliver a continuous, 400 kW heavy ion beam to the isotope production target. This beam is capable of inflicting serious damage on accelerator components, e.g. superconducting RF accelerating cavities. A Beam Loss Monitoring (BLM) System is essential for detecting beam loss with sufficient sensitivity and promptness to inform the machine protection system (MPS) and operations personnel of impending dangerous losses. Radiation transport simulations reveal shortcomings in the use of ionization chambers for the detection of beam losses in low-energy, heavy-ion accelerators. Radiation cross-talk effects due to the folded geometry of the FRIB LINAC pose further complications to locating specific points of beam loss. We propose a newly developed device, named the Loss Monitor Ring (LMR1

  13. Multi-layered controllable stiffness beams for morphing: energy, actuation force, and material strain considerations

    NASA Astrophysics Data System (ADS)

    Murray, Gabriel; Gandhi, Farhan

    2010-04-01

    Morphing aerospace structures could benefit from the ability of structural elements to transition from a stiff load-bearing state to a relatively compliant state that can undergo large deformation at low actuation cost. The present paper focuses on multi-layered beams with controllable flexural stiffness—comprising polymer layers affixed to the surfaces of a base beam and cover layers, in turn, affixed to the surfaces of the polymer layers. Heating the polymer through the glass transition reduces its shear modulus, decouples the cover layers from the base beam and reduces the overall flexural stiffness. Although the stiffness and actuation force required to bend the beam reduce, the energy required to heat the polymer layer must also be considered. Results show that for beams with low slenderness ratios, relatively thick polymer layers, and cover layers whose extensional stiffness is high, the decoupling of the cover layers through softening of the polymer layers can result in flexural stiffness reductions of over 95%. The energy savings are also highest for these configurations, and will increase as the deformation of the beam increases. The decoupling of the cover layers from the base beam through the softening of the polymer reduces the axial strains in the cover layers significantly; otherwise material failure would prevent large deformation. Results show that when the polymer layer is stiff, the cover layers are the dominant contributors to the total energy in the beam, and the energy in the polymer layers is predominantly axial strain energy. When the polymer layers are softened the energy in the cover layers is a small contributor to the total energy which is dominated by energy in the base beam and shear strain energy in the polymer layer.

  14. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  15. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    SciTech Connect

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  16. Inert doublet model and LEP II limits

    SciTech Connect

    Lundstroem, Erik; Gustafsson, Michael; Edsjoe, Joakim

    2009-02-01

    The inert doublet model is a minimal extension of the standard model introducing an additional SU(2) doublet with new scalar particles that could be produced at accelerators. While there exists no LEP II analysis dedicated for these inert scalars, the absence of a signal within searches for supersymmetric neutralinos can be used to constrain the inert doublet model. This translation however requires some care because of the different properties of the inert scalars and the neutralinos. We investigate what restrictions an existing DELPHI Collaboration study of neutralino pair production can put on the inert scalars and discuss the result in connection with dark matter. We find that although an important part of the inert doublet model parameter space can be excluded by the LEP II data, the lightest inert particle still constitutes a valid dark matter candidate.

  17. Nuclear Astrophysics and Structure Studies Using Low-energy RI Beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Hashimoto, T.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kubono, S.

    2010-05-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Using the RI beams at CRIB, Many measurements on proton and alpha resonance scatterings, (alpha,p) reactions, and others were peformed in recent years, mainly for studying astrophysical reactions and exotic nuclear structure. Among them, the results on the {sup 7}Be+p and {sup 7}Li+alpha resonance scatterings are presented.

  18. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    SciTech Connect

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.; Penco, Giuseppe

    2008-07-11

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.

  19. High-Brightness High-Energy Electron Beams from a Laser Wakefield Accelerator via Energy Chirp Control

    NASA Astrophysics Data System (ADS)

    Wang, W. T.; Li, W. T.; Liu, J. S.; Zhang, Z. J.; Qi, R.; Yu, C. H.; Liu, J. Q.; Fang, M.; Qin, Z. Y.; Wang, C.; Xu, Y.; Wu, F. X.; Leng, Y. X.; Li, R. X.; Xu, Z. Z.

    2016-09-01

    By designing a structured gas density profile between the dual-stage gas jets to manipulate electron seeding and energy chirp reversal for compressing the energy spread, we have experimentally produced high-brightness high-energy electron beams from a cascaded laser wakefield accelerator with peak energies in the range of 200-600 MeV, 0.4%-1.2% rms energy spread, 10-80 pC charge, and ˜0.2 mrad rms divergence. The maximum six-dimensional brightness B6 D ,n is estimated as ˜6.5 ×1 015 A /m2/0.1 % , which is very close to the typical brightness of e beams from state-of-the-art linac drivers. These high-brightness high-energy e beams may lead to the realization of compact monoenergetic gamma-ray and intense coherent x-ray radiation sources.

  20. Measuring the photon fragmentation function at LEP

    NASA Astrophysics Data System (ADS)

    Glover, E. W. N.; Morgan, A. G.

    1994-06-01

    Using an algorithm that treats photons and hadrons democratically, we discuss how the quark to photon fragmentation function, D q →γ, might be measured in ‘photon’ + jet events at LEP. Simple analytic results are given at lowest order. The possibility of determining the gluon to photon fragmentation function, D g →γ, in ‘photon’ + 2 jet events is also discussed, however, the prospects for doing so seem bleak.

  1. Control of energy sweep and transverse beam motion in induction linacs

    NASA Astrophysics Data System (ADS)

    Turner, W. C.

    1991-05-01

    Recent interest in the electron induction accelerator has focussed on its application as a driver for high power radiation sources; free electron laser (FEL), relativistic klystron (RK) and cyclotron autoresonance maser (CARM). In the microwave regime where many successful experiments have been carried out, typical beam parameters are: beam energy 1 to 10 MeV, current 1 to 3 kA and pulse width 50 nsec. Radiation source applications impose conditions on electron beam quality, as characterized by three parameters; energy sweep, transverse beam motion and brightness. These conditions must be maintained for the full pulse duration to assure high efficiency conversion of beam power to radiation. The microwave FEL that has been analyzed in the greatest detail requires energy sweep less than (+ or -) 1 pct., transverse beam motion less than (+ or -) 1 mm and brightness approx. 1 x 10(exp 8)A/sq m sq rad. In the visible region the requirements on these parameters become roughly an order of magnitude more strigent. With the ETAII accelerator at LLNL the requirements were achieved for energy sweep, transverse beam motion and brightness. The recent data and the advances that have made the improved beam quality possible are discussed. The most important advances are: understanding of focussing magnetic field errors and improvements in alignment of the magnetic axis, a redesign of the high voltage pulse distribution system between the magnetic compression modulators and the accelerator cells, and exploitation of a beam tuning algorithm for minimizing transverse beam motion. The prospects are briefly described for increasing the pulse repetition frequency to the range of 5 kHz and a delayed feedback method of regulating beam energy over very long pulse bursts, thus making average power megawatt level microwave sources at 140 GHz and above a possibility.

  2. Non-Gaussian beam dynamics in low energy antiproton storage rings

    NASA Astrophysics Data System (ADS)

    Resta-López, J.; Hunt, J. R.; Welsch, C. P.

    2016-10-01

    In low energy antiproton facilities, where electron cooling is fundamental, the cooling forces together with heating phenomena causing emittance blow-up, such as Intra Beam Scattering (IBS), result in highly non-Gaussian beam distributions. In these cases, a precise simulation of IBS effects is essential to realistically evaluate the long term beam evolution, taking into account the non-Gaussian characteristics of the beam. Here, we analyse the beam dynamics in the Extra Low ENergy Antiproton ring (ELENA), which is a new small synchrotron currently being constructed at CERN to decelerate antiprotons to energies as low as 100 keV. Simulations are performed using the code BETACOOL, comparing different models of IBS.

  3. Two beam energy exchange in hybrid liquid crystal cells with photorefractive field controlled boundary conditions

    NASA Astrophysics Data System (ADS)

    Reshetnyak, V. Yu.; Pinkevych, I. P.; Subota, S. I.; Evans, D. R.

    2016-09-01

    We develop a theory describing energy gain when two light beams intersect in a hybrid nematic liquid crystal (LC) cell with photorefractive crystalline substrates. A periodic space-charge field induced by interfering light beams in the photorefractive substrates penetrates into the LC layer and reorients the director. We account for two main mechanisms of the LC director reorientation: the interaction of the photorefractive field with the LC flexopolarization and the director easy axis at the cell boundaries. It is shown that the resulting director grating is a sum of two in-phase gratings: the flexoelectric effect driven grating and the boundary-driven grating. Each light beam diffracts from the induced gratings leading to an energy exchange between beams. We evaluate the signal beam gain coefficient and analyze its dependence on the director anchoring energy and the magnitude of the director easy axis modulation.

  4. Observation of resonant energy transfer between identical-frequency laser beams

    SciTech Connect

    Afeyan, B. B.; Cohen, B. I.; Estabrook, K. G.; Glenzer, S. H.; Joshi, C.; Kirkwood, R. K.; Moody, J. D.; Wharton, K. B.

    1998-12-09

    Enhanced transmission of a low intensity laser beam is observed when crossed with an identical-frequency beam in a plasma with a flow velocity near the ion sound speed. The time history of the enhancement and the dependence on the flow velocity strongly suggest that this is due to energy transfer between the beams via a resonant ion wave with zero frequency in the laboratory frame. The maximum energy transfer has been observed when the beams cross in a region with Mach 1 flow. The addition of frequency modulation on the crossing beams is seen to reduce the energy transfer by a factor of two. Implications for indirect-drive fusion schemes are discussed.

  5. The production of low-energy neutral oxygen beams by grazing-incidence neutralization

    NASA Technical Reports Server (NTRS)

    Albridge, R. G.; Haglund, R. F.; Tolk, N. H.; Daech, A. F.

    1987-01-01

    The Vanderbilt University neutral oxygen facility produces beams of low-energy neutral oxygen atoms by means of grazing-incidence collisions between ion beams and metal surfaces. Residual ions are reflected by applied electric fields. This method can utilize initial ion beams of either O(+) or O2(+) since a very large percentage of molecular oxygen ions are dissociated when they undergo grazing-incidence neutralization. The method of neutralization is applicable to low-energy beams and to all ions. Particular emphasis is on O and N2 beams for simulation of the low Earth orbit space environment. Since the beam is a pure O-neutral beam and since measurements of the interaction of the beam with solid surfaces are made spectroscopically, absolute reaction rates can be determined. The technique permits the beams to be used in conjunction with electron and photon irradiation for studies of synergistic effects. Comparisons of optical spectra of Kapton excited by 2.5-keV O, O(+), and O2(+) show significant differences. Optical spectra of Kapton excited by neutral oxygen beams of less than 1 keV have been recorded.

  6. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    PubMed

    M Alabdoaburas, Mohamad; Mege, Jean-Pierre; Chavaudra, Jean; Vũ Bezin, Jérémi; Veres, Atilla; De Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  7. Real-Time Variation of the Injected Neutral Beam Energy on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Scoville, J. T.; Crowley, B. J.; Pace, D. C.; Rauch, J. M.

    2016-10-01

    A powerful new technique for smoothly controlling the time evolution of injected energy from neutral beams has recently been implemented on the DIII-D tokamak. Upgrades to the high voltage circuitry of the neutral beams and to the tokamak's Plasma Control System have enabled the first-ever continuous variation of beam voltage during plasma shots. This avoids the perturbative effects of pulse modulation, which was the previously employed method for changing the injected beam power. The new technique allows much finer control of the injected energy, with beam voltage able to be varied smoothly over a 20 kV range (within the 45-85 kV beam operating space) in 0.5 sec. This capability enables fundamentally new experiments that require precise control of beam ion phase space, including the minimization of undesirable energetic ion instabilities and scans across low torque regimes at fixed power. We present a description of the beam system modifications and initial results from plasma experiments using the new variable beam energy capability on the DIII-D tokamak. Work supported by U.S. DOE under DE-FC02-04ER54698.

  8. Influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration

    NASA Astrophysics Data System (ADS)

    Deng, Jinping; Ji, Xiaoling

    2014-05-01

    By using the four-dimensional (4D) computer code of the time-dependent propagation of laser beams through atmospheric turbulence, the influence of atmospheric turbulence on the energy focusability of Gaussian beams with spherical aberration is studied in detail, where the mean-squared beam width, the power in the bucket (PIB), the β parameter and the energy Strehl ratio are taken as the characteristic parameters. It is shown that turbulence results in beam spreading, and the effect of spherical aberration on the beam spreading decreases due to turbulence. Gaussian beams with negative spherical aberration are more affected by turbulence than those with positive spherical aberration. For the negative spherical aberration case, the focus position moves to the source plane due to turbulence. It is mentioned that the influence of turbulence on the energy focusability defined by a certain energy (i.e. PIB = 63%) is very heavy when the negative spherical aberration is very heavy. On the other hand, the influence of turbulence on the energy focusability defined by the energy within a given bucket radius (i.e. mean-squared beam width) is heaviest when a certain negative spherical aberration coefficient is adopted.

  9. Determination of Endpoint Energy and Bremsstrahlung Spectra for High-Energy Radiation-Therapy Beams

    NASA Astrophysics Data System (ADS)

    Landry, Danny Joe

    Few attempts have been made to experimentally determine thick-target bremsstrahlung spectra of megavoltage therapy beams. For spectral studies using the Compton scattering technique, sodium iodine (NaI) detectors with relatively poor energy resolution have been used. Other experimental techniques for determining spectra are generally not suited for a clinical environment with the inherent time and space constraints. To gather more spectral information than previously obtained in the region near the endpoint energy, the use of a high-resolution intrinsic-germanium (Ge) detector was proposed. A response function matrix was determined from experimentally obtained pulse height distributions on the multichannel analyzer. The distributions were for nine various monoenergetic sources between 280 adn 1525 keV. The response function was used to convert the measured pulse height distributions to photon flux spectra using an iterative approximation technique with a computer. Photon flux spectra from the Sagittaire Linear Accelerator were obtained at average-electron endpoint energies of 15, 20, and 25 MeV. Two spectra were measured at the 25 MeV setting; one spectrum was measured along the central axis and one spectrum at 4(DEGREES) off axis. Photon spectra were also obtained for a Van de Graaff generator at the nominal endpoint energies of 2.2, 2.35, and 2.5 MeV. The results for both the linac and the Van de Graaff generator were compared with theoretical spectra and previously measured spectra where available. Also, photon spectra from a Theratron-80 (('60)Co) unit were determined for three field sizes and for a 10 x 10 cm. field with a lucite tray or a 45(DEGREES) wedge in the beam. The resulting spectra were compared to previously measured ('60)Co spectra.

  10. The beam energy feedback system for Beijing electron positron collider II linac.

    PubMed

    Wang, S; Iqbal, M; Chi, Y; Liu, R; Huang, X

    2017-03-01

    A beam-energy feedback system has been developed for the injection linac to meet the beam quality needed for the Beijing electron positron collider II storage ring. This paper describes the implementation and commissioning of this system in detail. The system consists of an energy measurement unit, application software, and an actuator unit. A non-intersecting beam energy monitor was developed to allow real-time online energy adjustment. The beam energy adjustment is achieved by adjusting the output microwave phase of the RF power source station. The phase control mechanism has also been modified, and a new control method taking the return difference of the phase shifter into account is used to improve the system's performance. This system achieves the design aim and can adjust the beam center energy with a rate of 2 Hz. With the energy feedback system, the stability of the injection rate is better; the fluctuation range is reduced from 20 mA/min to 10 mA/min, while the stability of the beam center energy is maintained within ±0.1%.

  11. Cross-beam energy transfer to a single f-20 beam: simulations of previous and upcoming experiments

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Turnbull, David; Kirkwood, Robert; Michel, Pierre; Wilks, Scott; Berger, Richard; Hinkel, Denise; Moody, John; Langer, Steve; Langdon, Bruce; Strozzi, David

    2016-10-01

    Motivated by materials research applications, cross-beam energy transfer can be used to transfer energy from one or more quads of beamlets at the NIF, which have an effective f-number of 8, to a single f-20 beam. Using plasma comprised of a preheated C5H12 gasbag, a preliminary experiment at the NIF demonstrated amplification of a 750 J f-20 beam by a factor of 2 in both power and energy. A witness plate providing gated x-ray images was used to obtain total energies and transmitted spot intensities for the pump quad, seed beamlet, and a calibration quad. These experimental diagnostics offer the opportunity to perform quantitative comparisons with simulations. We use the laser-plasma interaction code pF3D to simulate the energy transfer process, using plasma conditions obtained from the plasma hydrodynamics code HYDRA. Our simulations of the completed single-pump quad experiment recover the measured seed amplification and transmitted spot power distributions. We also show simulation results for the upcoming two-pump quad experiment.

  12. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    SciTech Connect

    Prost, L. R.

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  13. Electron beam guiding by grooved SiO{sub 2} parallel plates without energy loss

    SciTech Connect

    Xue, Yingli; Yu, Deyang Liu, Junliang; Zhang, Mingwu; Yang, Bian; Zhang, Yuezhao; Cai, Xiaohong

    2015-12-21

    Using a pair of grooved SiO{sub 2} parallel plates, stably guided electron beams were obtained without energy loss at 800–2000 eV. This shows that the transmitted electrons are guided by a self-organized repulsive electric field, paving the way for a self-adaptive manipulation of electron beams.

  14. Performance Studies of the Vibration Wire Monitor on the Test Stand with Low Energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Okabe, Kota; Yoshimoto, Masahiro; Kinsho, Michikazu

    In the high intensity proton accelerator as the Japan Proton Accelerator Research Complex (J-PARC) accelerators, serious radiation and residual dose is induced by a small beam loss such a beam halo. Therefore, diagnostics of the beam halo formation is one of the most important issues to control the beam loss. For the beam halo monitor, the vibration wire monitor (VWM) has a potential for investigating the beam halo and weak beam scanning. The VWM has a wide dynamic range, high resolution and the VWM is not susceptible to secondary electrons and electric noises. We have studied the VWM features as a new beam-halo monitor on the test stand with low energy electron gun. The frequency shift of the irradiated vibration wire was confirmed about wire material and the electron beam profile measured by using the VWM was consistent with the results of the Faraday cup measurement. Also we calculated a temperature distribution on the vibration wire which is irradiated by the electron beam with the numerical simulation. The simulations have been fairly successful in reproducing the transient of the irradiated vibration wire frequency measured by test stand experiments. In this paper, we will report a result of performance evaluation for the VWM on the test stands and discuss the VWM for beam halo diagnostic

  15. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  16. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question.

    PubMed

    Yang, X; Brunetti, E; Gil, D Reboredo; Welsh, G H; Li, F Y; Cipiccia, S; Ersfeld, B; Grant, D W; Grant, P A; Islam, M R; Tooley, M P; Vieux, G; Wiggins, S M; Sheng, Z M; Jaroszynski, D A

    2017-03-10

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

  17. High-flux source of low-energy neutral beams using reflection of ions from metals

    NASA Technical Reports Server (NTRS)

    Cuthbertson, John W.; Motley, Robert W.; Langer, William D.

    1992-01-01

    Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.

  18. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    PubMed Central

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  19. Studies of slow-positron production using low-energy primary electron beams.

    SciTech Connect

    Lessner, E.

    1999-04-20

    Slow-positron beams produced from negative-work-function solid-state moderators have found numerous applications in condensed matter physics. There are potential advantages in using low-energy primary electron beams for positron production, including reduced radiation damage to single-crystal moderators and reduced activation of nearby components. We present numerical calculations of positron yields and other beam parameters for various target-moderator configurations using the Argonne Wakefield Accelerator (AWA) [1] and Advanced Photon Source (APS) [2] electron linacs [3] as examples of sources for the primary electron beams. The status of experiments at these facilities is reviewed.

  20. Precision shape modification of nanodevices with a low-energy electron beam

    DOEpatents

    Zettl, Alex; Yuzvinsky, Thomas David; Fennimore, Adam

    2010-03-09

    Methods of shape modifying a nanodevice by contacting it with a low-energy focused electron beam are disclosed here. In one embodiment, a nanodevice may be permanently reformed to a different geometry through an application of a deforming force and a low-energy focused electron beam. With the addition of an assist gas, material may be removed from the nanodevice through application of the low-energy focused electron beam. The independent methods of shape modification and material removal may be used either individually or simultaneously. Precision cuts with accuracies as high as 10 nm may be achieved through the use of precision low-energy Scanning Electron Microscope scan beams. These methods may be used in an automated system to produce nanodevices of very precise dimensions. These methods may be used to produce nanodevices of carbon-based, silicon-based, or other compositions by varying the assist gas.

  1. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  2. Chromaticity of the lattice and beam stability in energy-recovery linacs

    SciTech Connect

    Litvinenko, V.N.

    2011-12-23

    Energy recovery linacs (ERLs) are an emerging generation of accelerators promising to revolutionize the fields of high-energy physics and photon sciences. These accelerators combine the advantages of linear accelerators with that of storage rings, and hold the promise of delivering electron beams of unprecedented power and quality. Use of superconducting radio-frequency (SRF) cavities converts ERLs into nearly perfect 'perpetuum mobile' accelerators, wherein the beam is accelerated to a desirable energy, used, and then gives the energy back to the RF field. One potential weakness of these devices is transverse beam break-up instability that could severely limit the available beam current. In this paper, I present a method of suppressing these dangerous effects using a natural phenomenon in the accelerators, viz., the chromaticity of the transverse motion.

  3. Extraction characteristics of a low-energy ion beam system with a remote plasma chamber

    SciTech Connect

    Vasquez, M. R.; Wada, M.

    2016-02-15

    Low-energy argon beams were extracted from a dual-chamber ion source system. The first chamber is a quartz cylinder where dense inductively coupled plasmas were produced using 13.56 MHz radio frequency (rf) power. The discharge was driven into an adjacent chamber which acts as a reservoir for ion beam extraction using a dual-electrode extractor configuration. Extraction of ions from the second chamber with energies in the 100 eV range was achieved while minimizing fluctuations induced by the rf signal. A custom-built retarding potential analyzer was used to analyze the effectiveness of ion beam transport using the remote plasma chamber. Well-defined beams were extracted between 60 and 100 V extraction potentials at 50–100 W rf powers. An increase in rf power resulted in an increase in average ion energy, increase in ion current density while the energy spread remains constant.

  4. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  5. The effect of energy deposition on pattern resolution in electron beam lithography

    NASA Astrophysics Data System (ADS)

    Raghunathan, Ananthan

    Electron beam lithography is one of the most important tools for nanofabrication. Electron beam lithography has consistently been able to offer higher resolution, typically better than 10 nm or so, compared to other techniques. In this work the contribution of electron-substrate interaction to pattern resolution is investigated. In electron beam lithography the incident beam is scattered in the resist-substrate stack by a combination of elastic and inelastic events which is described by the point spread function. Using a Vistec VB300 Gaussian beam lithography tool operating at 100 keV the experimental point spread function is investigated by a technique called point exposure distribution measurements. The experimental results indicate that the scattering in the sub-100 nm range shows several orders of the magnitude difference with that obtained via Monte Carlo simulations. In high energy electron beam lithography where forward scattering in small, contribution of secondary electrons generated by the primary beam must be taken into account. The chemical change leading to resist exposure is through bond scission, which is typically a low energy event between 3 -- 5 eV. Compared to the primary beam, the secondary electrons have a significantly higher probability of scission due to their lower energy. These secondary electrons are also generated with large emission angles and can travel several nanometers, leading to an increase in observed line widths compared to the size of the beam. An analytical model developed here, that considers the energy deposited by the secondary electrons, is able to predict the dependence of dose on observed diameter to within a reasonable accuracy. This technique used in conjunction with the knowledge of resist contrast is also indicative of pattern resolution limits in high energy electron beam lithography. It is also found that for negative resists, backscatter effects and resist contrast significantly degrade the resolution for large

  6. The Structure of LepA, the Ribosomal Back Translocase

    SciTech Connect

    Evans,R.; Blaha, G.; Bailey, S.; Steitz, T.

    2008-01-01

    LepA is a highly conserved elongation factor that promotes the back translocation of tRNAs on the ribosome during the elongation cycle. We have determined the crystal structure of LepA from Escherichia coli at 2.8- Angstroms resolution. The high degree of sequence identity between LepA and EF-G is reflected in the structural similarity between the individual homologous domains of LepA and EF-G. However, the orientation of domains III and V in LepA differs from their orientations in EF-G. LepA also contains a C-terminal domain (CTD) not found in EF-G that has a previously unobserved protein fold. The high structural similarity between LepA and EF-G enabled us to derive a homology model for LepA bound to the ribosome using a 7.3- Angstroms cryo-EM structure of a complex between EF-G and the 70S ribosome. In this model, the very electrostatically positive CTD of LepA is placed in the direct vicinity of the A site of the large ribosomal subunit, suggesting a possible interaction between the CTD and the back translocated tRNA or 23S rRNA.

  7. Efficient Optical Energy Harvesting in Self-Accelerating Beams

    PubMed Central

    Bongiovanni, Domenico; Hu, Yi; Wetzel, Benjamin; Robles, Raul A.; Mendoza González, Gregorio; Marti-Panameño, Erwin A.; Chen, Zhigang; Morandotti, Roberto

    2015-01-01

    We report the experimental observation of energetically confined self-accelerating optical beams propagating along various convex trajectories. We show that, under an appropriate transverse compression of their spatial spectra, these self-accelerating beams can exhibit a dramatic enhancement of their peak intensity and a significant decrease of their transverse expansion, yet retaining both the expected acceleration profile and the intrinsic self-healing properties. We found our experimental results to be in excellent agreement with the numerical simulations. We expect further applications in such contexts where power budget and optimal spatial confinement can be important limiting factors. PMID:26299360

  8. Search for single top quark production via contact interactions at LEP2

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Oliveira, O.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2011-02-01

    Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb-1. No evidence for a signal was found. Limits on the energy scale Λ, were set for scalar-, vector- and tensor-like coupling scenarios.

  9. Study of rare decays of the b quark with the DELPHI detector at LEP

    NASA Astrophysics Data System (ADS)

    Battaglia, Marco

    The b quark is the heaviest fermion producing bound hadronic states. The study of their production and decays provides important data for the understanding of the processes responsible for the weak decays of fundamental fermions. In addition, due to the small value of the | Vcb| element, suppressed and rare b-->u and b-->s, d transitions are not completely obliterated by the CKM favoured b-->c decays. This makes B hadrons an ideal laboratory for the study of rare decay processes. The sensitivity of these decays to the Standard Model structure, through suppressions proportional to the square of the elements in the quark mixing matrix and through loops that may reveal contributions of new particles, opens a new window on precision tests of the Standard Model and also on possible new physics beyond it. The DELPHI detector, equipped with a precise silicon vertex tracker surrounding the beam interaction region and with Ping Imaging CHerenkov (RICH) detectors providing efficient hadron identification, at the LEP e +e- collider, is well suited for precise studies of B decays. This thesis presents the results of the analysis of the date, collected with DELPHI at centre-of-mass energies around the Z0 pole from 1990 to 1995 for the studies of rare decays of beauty hadrons. These studies have promoted the development of new techniques for the topological reconstruction of the B decay chain and for hadron identification based on the response of the RICH detectors. Rare decays of the b quarks have been studied in several decay processes. Tree level b-->u transitions have been studied mainly in the semileptonic b-->uln channel. A new technique that discriminate them from the favoured b-->c transitions based on the reconstructed mass of the hadronic system recoiling against the lepton has been developed and applied. Evidence for the decay has been obtained and its rate has been used to extract an accurate determination of the |Vub| element in the quark mixing matrix. Hadronic

  10. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    NASA Astrophysics Data System (ADS)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  11. High-energy-density electron beam generation in ultra intense laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Liu, Jianxun; Ma, Yanyun; Yang, Xiaohu; Zhao, Jun; Yu, Tongpu; Shao, Fuqiu; Zhuo, Hongbin; Gan, Longfei; Zhang, Guobo; Zhao, Yuan; Yang, Jingkang

    2017-01-01

    By using a two-dimensional particle-in-cell simulation, we demonstrate a scheme for high-energy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum (Al) target. With the laser having a peak intensity of 4 × 1023 W cm‑2, a high quality electron beam with a maximum density of 117nc and a kinetic energy density up to 8.79 × 1018 J m‑3 is generated. The temperature of the electron beam can be 416 MeV, and the beam divergence is only 7.25°. As the laser peak intensity increases (e.g., 1024 W cm‑2), both the beam energy density (3.56 × 1019 J m‑3) and the temperature (545 MeV) are increased, and the beam collimation is well controlled. The maximum density of the electron beam can even reach 180nc. Such beams should have potential applications in the areas of antiparticle generation, laboratory astrophysics, etc. This work is financially supported by the National Natural Science Foundation of China (Nos. 11475260, 11305264, 11622547, 91230205, and 11474360), the National Basic Research Program of China (No. 2013CBA01504), and the Research Project of NUDT (No. JC14-02-02).

  12. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    NASA Astrophysics Data System (ADS)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  13. A cryogenically cooled, ultra-high-energy-resolution, trap-based positron beam

    SciTech Connect

    Natisin, M. R. Danielson, J. R.; Surko, C. M.

    2016-01-11

    A technique is described to produce a pulsed, magnetically guided positron beam with significantly improved beam characteristics over those available previously. A pulsed, room-temperature positron beam from a buffer gas trap is used as input to a trap that captures the positrons, compresses them both radially and axially, and cools them to 50 K on a cryogenic CO buffer gas before ejecting them as a pulsed beam. The total energy spread of the beam formed using this technique is 6.9 ± 0.7 meV FWHM, which is a factor of ∼5 better than the previous state-of-the-art, while simultaneously having sub-microsecond temporal resolution and millimeter spatial resolution. Possible further improvements in beam quality are discussed.

  14. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  15. Beam-Flattener Design for High Energy Radiographic Inspection

    NASA Technical Reports Server (NTRS)

    Grandin, Robert; Rudolphi, Thomas

    2009-01-01

    This report documents the work done to develop a beam flattener for use in the inspection of rocket motors at ATK Space Systems Utah facilities. The following pages provide a brief introduction to the necessity of this project, comprehensive description of the design methodology, and experimentally-based conclusions regarding project success.

  16. Status of the PXIE Low Energy Beam Transport Line

    SciTech Connect

    Prost, Lionel; Andrews, Richard; Chen, Alex; Hanna, Bruce; Scarpine, Victor; Shemyakin, Alexander; Steimel, Jim; D'Arcy, Richard

    2014-07-01

    A CW-compatible, pulsed H- superconducting RF linac (a.k.a. PIP-II) is envisaged as a possible path for upgrading Fermilab’s injection complex [1]. To validate the concept of the front-end of such machine, a test accelerator (a.k.a. PXIE) [2] is under construction. The warm part of this accelerator comprises a 10 mA DC, 30 keV H- ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a MEBT that feeds the first cryomodule. In addition to operating in the nominal CW mode, the LEBT should be able to produce a pulsed beam for both PXIE commissioning and modelling of the front-end nominal operation in the pulsed mode. Concurrently, it needs to provide effective means of inhibiting beam as part of the overall machine protection system. A peculiar feature of the present LEBT design is the capability of using the ~1m-long section immediately preceding the RFQ in two regimes of beam transport dynamics: neutralized and space charge dominated. This paper introduces the PXIE LEBT, reports on the status of the ion source and LEBT installation, and presents the first beam measurements.

  17. Hysteresis effects in the formation of a neutralizing beam plasma at low ion energy

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2013-11-01

    In this paper, the PEGASES II thruster prototype is used as an ion source generating low-energy (<300\\ \\text{eV}) positive Ar ion beam, extracted without an external neutralizer. The ions are extracted and accelerated from the source using a two-grid system. The extracted positive ion beam current is measured on a large beam target that can be translated along the acceleration axis. The ion beam current shows a stepwise transition from a low-current to a high-current extraction regime with hysteresis. The hysteresis region depends strongly upon the beam target position. Langmuir probe measurements in the plume show high plasma potentials and low plasma densities in the low-current mode, while the plasma potential drops and the density increases in the high-current mode. The ion energy distribution functions of the beam are measured for different regimes of ion extraction. The ion beam extracted in the high-current mode is indicated by the presence of an additional low-energy peak corresponding to ions from an ion-beam plasma created in the downstream chamber, as well as 10-20 times higher intensity of the primary ion beam peak. The hysteresis behavior is explained by the formation of a downstream neutralizing beam plasma, that depends on the target position and pressure in agreement with a Paschen-like breakdown by secondary electrons. The obtained results are of high relevance for further development of the PEGASES thruster, as well as for improving existing neutralizer-free concepts of the broad-beam ion sources.

  18. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams.

    PubMed

    Naseri, Alireza; Mesbahi, Asghar

    2010-09-22

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature.

  19. Studies on Nuclear Astrophysics and Exotic Structure at the Low-Energy RI Beam Facility CRIB

    NASA Astrophysics Data System (ADS)

    Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Nakao, T.; Wakabayashi, Y.; Hashimoto, T.; Teranishi, T.; Kubono, S.; Cherubini, S.; Mazzocco, M.; Signorini, C.; Gulino, M.; Di Pietro, A.; Figuera, P.; La Cognata, M.; Lattuada, M.; Spitaleri, C.; Torresi, D.; Lee, P. S.; Lee, C. S.; Komatsubara, T.; Iwasa, N.; Okoda, Y.; Pierroutsakou, D.; Parascandolo, C.; La Commara, M.; Strano, E.; Boiano, C.; Boiano, A.; Manea, C.; Sánchez-Benítez, A. M.; Miyatake, H.; Watanabe, Y. X.; Ishiyama, H.; Jeong, S. C.; Imai, N.; Hirayama, Y.; Kimura, S.; Mukai, M.; Kim, Y. H.; Lin, C. J.; Jia, H. M.; Yan, L.; Yang, Y. Y.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.

    Studies on nuclear astrophysics, resonant structure, and nuclear reaction are going on at CRIB (CNS Radioactive Ion Beam separator), a low-energy RI beam separator operated by Center for Nuclear Study (CNS), the University of Tokyo. Two major methods used at CRIB to study nuclear reactions of astrophysical relevance are the resonant scattering, and direct measurements of (α,p) reactions using a thick-gas target. Several experiments for decay measurements and reaction mechanism are also performed using low-energy RI beams at CRIB. Some of the results from recent experiments at CRIB are discussed.

  20. Experimental analysis of energy harvesting from self-induced flutter of a composite beam

    SciTech Connect

    Zakaria, Mohamed Y. Al-Haik, Mohammad Y.; Hajj, Muhammad R.

    2015-07-13

    Previous attempts to harvest energy from aeroelastic vibrations have been based on attaching a beam to a moving wing or structure. Here, we exploit self-excited oscillations of a fluttering composite beam to harvest energy using piezoelectric transduction. Details of the beam properties and experimental setup are presented. The effects of preset angle of attack, wind speed, and load resistance on the levels of harvested power are determined. The results point to a complex relation between the aerodynamic loading and its impact on the static deflection and amplitudes of the limit cycle oscillations on one hand and the load resistance and level of power harvested on the other hand.

  1. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  2. Scintillating screens sensitivity and resolution studies for low energy, low intensity beam diagnostics

    SciTech Connect

    Harasimowicz, Janusz; Welsch, Carsten P.; Cosentino, Luigi; Finocchiaro, Paolo; Pappalardo, Alfio

    2010-10-15

    In order to investigate the limits of scintillating screens for beam profile monitoring in the ultra-low energy, ultra-low intensity regime, CsI:Tl, YAG:Ce, and a Tb glass-based scintillating fiber optic plate (SFOP) were tested. The screens response to 200 and 50 keV proton beams with intensities ranging from a few picoampere down to the subfemtoampere region was examined. In the following paper, the sensitivity and resolution studies are presented in detail for CsI:Tl and the SFOP, the two most sensitive screens. In addition, a possible use of scintillators for ultra-low energy antiproton beam monitoring is discussed.

  3. Effects of a dielectric material in an ion source on the ion beam current density and ion beam energy

    SciTech Connect

    Fujiwara, Y. Sakakita, H.; Nakamiya, A.; Hirano, Y.; Kiyama, S.

    2016-02-15

    To understand a strong focusing phenomenon that occurs in a low-energy hydrogen ion beam, the electron temperature, the electron density, and the space potential in an ion source with cusped magnetic fields are measured before and after the transition to the focusing state using an electrostatic probe. The experimental results show that no significant changes are observed before or after the transition. However, we found unique phenomena that are characterized by the position of the electrostatic probe in the ion source chamber. Specifically, the extracted ion beam current density and energy are obviously enhanced in the case where the electrostatic probe, which is covered by a dielectric material, is placed close to an acceleration electrode.

  4. Characterization of a Fricke dosimeter at high energy photon and electron beams used in radiotherapy.

    PubMed

    Moussous, O; Khoudri, S; Benguerba, M

    2011-12-01

    The dosimetric features of the Fricke dosimeter in clinical linear accelerator beams are considered. Experimental data were obtained using various nominal energies 6 and 18 MV, 12 and 15 MeV, including the (60)Co γ-ray beam. The calibration of the dosimeters was performed using the ionization chamber as a reference dosimeter. Some general characteristics of Fricke dosimeter such as energy dependence, optical density (OD)-dose relationship, reproducibility, accuracy, dose rate dependence were analyzed. The Fricke solution shows linearity in OD-dose relationship, energy independence and a good reproducibility over the energy range investigated. The Fricke dosimeter was found to be suitable for carrying out absorbed dose to water measurements in the calibration of high energy electron and photon beams.

  5. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofeng

    2016-12-01

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019-2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  6. Beam-dynamics driven design of the LHeC energy-recovery linac

    NASA Astrophysics Data System (ADS)

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-01

    The LHeC is envisioned as a natural upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multipass superconducting energy-recovery linac (ERL) operating in a continuous wave mode. The unprecedently high energy of the multipass ERL combined with a stringent emittance dilution budget poses new challenges for the beam optics. Here, we investigate the performances of a novel arc architecture based on a flexible momentum compaction lattice that mitigates the effects of synchrotron radiation while containing the bunch lengthening. Extensive beam-dynamics investigations have been performed with placet2, a recently developed tracking code for recirculating machines. They include the first end-to-end tracking and a simulation of the machine operation with a continuous beam. This paper briefly describes the Conceptual Design Report lattice, with an emphasis on possible and proposed improvements that emerged from the beam-dynamics studies. The detector bypass section has been integrated in the lattice, and its design choices are presented here. The stable operation of the ERL with a current up to ˜150 mA in the linacs has been validated in the presence of single- and multibunch wakefields, synchrotron radiation, and beam-beam effects.

  7. Analytical model of ionization and energy deposition by proton beams in subcellular compartments

    NASA Astrophysics Data System (ADS)

    de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.

    2014-04-01

    We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.

  8. B and D spectroscopy at LEP

    SciTech Connect

    Muheim, Franz

    1999-02-17

    Results from the four LEP experiments ALEPH, DELPHI, L3, and OPAL on the spectroscopy of B and charmed mesons are presented. The predictions of Heavy Quark Effective Theory (HQET) for the masses and the widths of excited L=1 B mesons are supported by a new measurement from L3. A few B{sub c}{sup +} candidate events have masses consistent with the recent CDF observation and the predictions. New results on D** production and B{yields}D**l{nu} are also presented. The evidence for a D*{sup '} meson reported recently by DELPHI is not supported by OPAL and CLEO.

  9. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  10. High and low energy gamma beam dump designs for the gamma beam delivery system at ELI-NP

    NASA Astrophysics Data System (ADS)

    Yasin, Zafar; Matei, Catalin; Ur, Calin A.; Mitu, Iani-Octavian; Udup, Emil; Petcu, Cristian

    2016-03-01

    The Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is under construction in Magurele, Bucharest, Romania. The facility will use two 10 PW lasers and a high intensity, narrow bandwidth gamma beam for stand-alone and combined laser-gamma experiments. The accurate estimation of particle doses and their restriction within the limits for both personel and general public is very important in the design phase of any nuclear facility. In the present work, Monte Carlo simulations are performed using FLUKA and MCNPX to design 19.4 and 4 MeV gamma beam dumps along with shielding of experimental areas. Dose rate contour plots from both FLUKA and MCNPX along with numerical values of doses in experimental area E8 of the facility are performed. The calculated doses are within the permissible limits. Furthermore, a reasonable agreement between both codes enhances our confidence in using one or both of them for future calculations in beam dump designs, radiation shielding, radioactive inventory, and other calculations releated to radiation protection. Residual dose rates and residual activity calculations are also performed for high-energy beam dump and their effect is negligible in comparison to contributions from prompt radiation.

  11. One dimensional heavy ion beam transport: Energy independent model. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Farhat, Hamidullah

    1990-01-01

    Attempts are made to model the transport problem for heavy ion beams in various targets, employing the current level of understanding of the physics of high-charge and energy (HZE) particle interaction with matter are made. An energy independent transport model, with the most simplified assumptions and proper parameters is presented. The first and essential assumption in this case (energy independent transport) is the high energy characterization of the incident beam. The energy independent equation is solved and application is made to high energy neon (NE-20) and iron (FE-56) beams in water. The numerical solutions is given and compared to a numerical solution to determine the accuracy of the model. The lower limit energy for neon and iron to be high energy beams is calculated due to Barkas and Burger theory by LBLFRG computer program. The calculated values in the density range of interest (50 g/sq cm) of water are: 833.43 MeV/nuc for neon and 1597.68 MeV/nuc for iron. The analytical solutions of the energy independent transport equation gives the flux of different collision terms. The fluxes of individual collision terms are given and the total fluxes are shown in graphs relative to different thicknesses of water. The values for fluxes are calculated by the ANASTP computer code.

  12. Appropriate Measures and Consistent Standard for High Energy Laser Beam Quality (Postprint)

    DTIC Science & Technology

    2006-08-01

    may be distributed to individuals. “Appropriate measures and consistent standard for high energy laser beam quality” Dr. T. Sean Ross (AFRL/DELO... High Power Solid State Laser Branch b Air Force Research Laboratory, Directed Energy Directorate, Laser Division, Tactical Systems Branch Ross...e2 must be used. If the power or energy measured in the small area around the focal spot is Ps and the total laser output power or energy is P, the

  13. Method and apparatus for measuring the momentum, energy, power, and power density profile of intense particle beams

    DOEpatents

    Gammel, George M.; Kugel, Henry W.

    1992-10-06

    A method and apparatus for determining the power, momentum, energy, and power density profile of high momentum mass flow. Small probe projectiles of appropriate size, shape and composition are propelled through an intense particle beam at equal intervals along an axis perpendicular to the beam direction. Probe projectiles are deflected by collisions with beam particles. The net beam-induced deflection of each projectile is measured after it passes through the intense particle beam into an array of suitable detectors.

  14. Electron-Excited X-Ray Microanalysis at Low Beam Energy: Almost Always an Adventure!

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2016-08-01

    Scanning electron microscopy with energy-dispersive spectrometry has been applied to the analysis of various materials at low-incident beam energies, E 0≤5 keV, using peak fitting and following the measured standards/matrix corrections protocol embedded in the National Institute of Standards and Technology Desktop Spectrum Analyzer-II analytical software engine. Low beam energy analysis provides improved spatial resolution laterally and in-depth. The lower beam energy restricts the atomic shells that can be ionized, reducing the number of X-ray peak families available to the analyst. At E 0=5 keV, all elements of the periodic table except H and He can be measured. As the beam energy is reduced below 5 keV, elements become inaccessible due to lack of excitation of useful characteristic X-ray peaks. The shallow sampling depth of low beam energy microanalysis makes the technique more sensitive to surface compositional modification due to formation of oxides and other reaction layers. Accurate and precise analysis is possible with the use of appropriate standards and by accumulating high count spectra of unknowns and standards (>1 million counts integrated from 0.1 keV to E 0).

  15. SU-E-T-359: Measurement of Various Metrics to Determine Changes in Megavoltage Photon Beam Energy

    SciTech Connect

    Gao, S; Balter, P; Rose, M; Simon, W

    2014-06-01

    Purpose: To examine the relationship between photon beam energy and various metrics for energy on the flattened and flattening filter free (FFF) beams generated by the Varian TrueBeam. Methods: Energy changes were accomplished by adjusting the bending magnet current ±10% from the nominal value for the 4, 6, 8, and 10 MV flattened and 6 and 10 MV FFF beams. Profiles were measured for a 30×30 cm{sup 2} field using a 2D ionization chamber array and a 3D water Scanner which was also used to measure PDDs. For flattened beams we compared several energy metrics; PDD at 10 cm depth in water (PDD(10)); the variation over the central 80% of the field (Flat); and the average of the highest reading along each diagonal divided by the CAX value, diagonal normalized flatness (FDN). For FFF beams we examined PDD(10), FDN, and the width of a chosen isodose level in a 30×30 cm{sup 2} field (W(d%)). Results: Changes in PDD(10) were nearly linear with changes in energy for both flattened and FFF beams as were changes in FDN. Changes in W(d%) were also nearly linear with energy for the FFF beams. PDD(10) was not as sensitive to changes in energy compared to the other metrics for either flattened or FFF beams. Flat was not as sensitive to changes in energy compared to FDN for flattened beams and its behavior depends on depth. FDN was the metric that had the highest sensitivity to the changes in energy for flattened beams while W(d%) was the metric that had highest sensitivity to the changes in energy for FFF beams. Conclusions: The metric FDN was found to be most sensitive to energy changes for flattened beams, while the W(d%) was most sensitive to energy changes for FFF beams.

  16. Observations on LEP with a view to SSC

    SciTech Connect

    Toohig, T.E.

    1984-11-23

    From 24-29 October 1984 a visit was made to the LEP project at CERN with a view to extracting from the LEP planning and experience what might be useful in planning an SSC. With a circumference of 26.7 km, in a reasonably densely-populated area outside the boundaries of the CERN site, LEP already faces most of the problems of environment, public relations, maintenance and operation that will be faced by an SSC project. Information is presented under the headings of: (1) radiation protection; (2) heating, ventilation, and airconditioning; (3) electrical power distribution; (4) LEP experiments/UA1, UA2; (5) civil; (6) infrastructure installation; (7) survey; (8) safety; and (9) LEP controls. Each report lists the CERN individuals who generously provided their insights and help.

  17. Permanent-magnet energy spectrometer for electron beams from radiotherapy accelerators

    SciTech Connect

    McLaughlin, David J.; Shikhaliev, Polad M.; Matthews, Kenneth L.; Hogstrom, Kenneth R. Carver, Robert L.; Gibbons, John P.; Clarke, Taylor; Henderson, Alexander; Liang, Edison P.

    2015-09-15

    Purpose: The purpose of this work was to adapt a lightweight, permanent magnet electron energy spectrometer for the measurement of energy spectra of therapeutic electron beams. Methods: An irradiation geometry and measurement technique were developed for an approximately 0.54-T, permanent dipole magnet spectrometer to produce suitable latent images on computed radiography (CR) phosphor strips. Dual-pinhole electron collimators created a 0.318-cm diameter, approximately parallel beam incident on the spectrometer and an appropriate dose rate at the image plane (CR strip location). X-ray background in the latent image, reduced by a 7.62-cm thick lead block between the pinhole collimators, was removed using a fitting technique. Theoretical energy-dependent detector response functions (DRFs) were used in an iterative technique to transform CR strip net mean dose profiles into energy spectra on central axis at the entrance to the spectrometer. These spectra were transformed to spectra at 95-cm source to collimator distance (SCD) by correcting for the energy dependence of electron scatter. The spectrometer was calibrated by comparing peak mean positions in the net mean dose profiles, initially to peak mean energies determined from the practical range of central-axis percent depth-dose (%DD) curves, and then to peak mean energies that accounted for how the collimation modified the energy spectra (recalibration). The utility of the spectrometer was demonstrated by measuring the energy spectra for the seven electron beams (7–20 MeV) of an Elekta Infinity radiotherapy accelerator. Results: Plots of DRF illustrated their dependence on energy and position in the imaging plane. Approximately 15 iterations solved for the energy spectra at the spectrometer entrance from the measured net mean dose profiles. Transforming those spectra into ones at 95-cm SCD increased the low energy tail of the spectra, while correspondingly decreasing the peaks and shifting them to slightly lower

  18. Beam-dynamics driven design of the LHeC energy-recovery linac

    SciTech Connect

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; Bogacz, S. Alex

    2015-12-23

    The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Tracking simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.

  19. Interactions of vortices with a flexible beam with applications in fluidic energy harvesting

    SciTech Connect

    Goushcha, O.; Elvin, N.; Andreopoulos, Y.

    2014-01-13

    A cantilever piezoelectric beam immersed in a flow and subjected to naturally occurring vortices such as those formed in the wake of bluff bodies can be used to generate electrical energy harvested in fluid flows. In this paper, we present the pressure distribution and deflection of a piezoelectric beam subjected to controlled vortices. A custom designed experimental facility is set up to study the interaction of individual and multiple vortices with the beam. Vortex tori are generated by an audio speaker and travel at controlled rates over the beam. Particle image velocimetry is used to measure the 2-D flow field induced by each vortex and estimate the effect of pressure force on the beam deflection.

  20. Anomalous electron heating and energy balance in an ion beam generated plasma

    SciTech Connect

    Guethlein, G.

    1987-04-01

    The plasma described in this report is generated by a 15 to 34 kV ion beam, consisting primarily of protons, passing through an H/sub 2/ gas cell neutralizer. Plasma ions (or ion-electron pairs) are produced by electron capture from (or ionization of) gas molecules by beam ions and atoms. An explanation is provided for the observed anomalous behavior of the electron temperature (T/sub e/): a step-lite, nearly two-fold jump in T/sub e/ as the beam current approaches that which minimizes beam angular divergence; insensitivity of T/sub e/ to gas pressure; and the linear relation of T/sub e/ to beam energy.

  1. Beam Position Monitor and Energy Analysis at the Fermilab Accelerator Science and Technology Facility

    SciTech Connect

    Lopez, David Juarez

    2015-08-01

    Fermilab Accelerator Science and Technology Facility has produced its first beam with an energy of 20 MeV. This energy is obtained by the acceleration at the Electron Gun and the Capture Cavity 2 (CC2). When fully completed, the accelerator will consist of a photoinjector, one International Liner Collider (ILC)-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We calculated the total energy of the beam and the corresponding energy to the Electron Gun and CC2. Subsequently, a Beam Position Monitors (BPM) error analysis was done, to calculate the device actual resolution.

  2. In-situ determination of energy species yields of intense particle beams

    DOEpatents

    Kugel, H.W.; Kaita, R.

    1983-09-26

    Objects of the present invention are provided for a particle beam having a full energy component at least as great as 25 keV, which is directed onto a beamstop target, such that Rutherford backscattering, preferably near-surface backscattering occurs. The geometry, material composition and impurity concentration of the beam stop are predetermined, using any suitable conventional technique. The energy-yield characteristic response of backscattered particles is measured over a range of angles using a fast ion electrostatic analyzer having a microchannel plate array at its focal plane. The knee of the resulting yield curve, on a plot of yield versus energy, is analyzed to determine the energy species components of various beam particles having the same mass.

  3. Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

    SciTech Connect

    Schumaker, W. Vargas, M.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Maksimchuk, A.; Nees, J.; Yanovsky, V.; Thomas, A. G. R.; Krushelnick, K.; Sarri, G.; Dromey, B.; Zepf, M.

    2014-05-15

    Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

  4. Comparing Ray-Based and Wave-Based Models of Cross-Beam Energy Transfer

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Edgell, D. H.; Shaw, J. G.; Froula, D. H.; Myatt, J. F.

    2016-10-01

    Ray-based models of cross-beam energy transfer (CBET) are used in radiation-hydrodynamics codes to calculate laser-energy deposition. The accuracy of ray-based CBET models is limited by assumptions about the polarization and phase of the interacting laser beams and by the use of a paraxial Wentzel-Kramers-Brillouin (WKB) approximation. A 3-D wave-based solver (LPSE-CBET) is used to study the nonlinear interaction between overlapping laser beams in underdense plasma. A ray-based CBET model is compared to the wave-based model and shows good agreement in simple geometries where the assumptions of the ray-based model are satisfied. Near caustic surfaces, the assumptions of the ray-based model break down and the calculated energy transfer deviates from wave-based calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Loos, Jennifer L.; /San Jose State U. /SLAC

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  6. Low-energy neutrino-nucleus interactions and beta-beam neutrino

    SciTech Connect

    Jachowicz, N.; Pandey, V.

    2015-05-15

    We present an overview of neutrino-nucleus scattering at low energies with cross sections obtained within a continuum random phase approximation (CRPA) formalism. We highlight potential applications of beta-beam neutrino experiments for neutrino astrophysics. Our calculations are compared with MiniBooNe data at intermediate energies.

  7. Motivation for Staying in College: Differences Between LEP (Limited English Proficiency) and Non-LEP Hispanic Community College Students

    ERIC Educational Resources Information Center

    Fong, Carlton J.; Krause, Jaimie M.; Acee, Taylor W.; Weinstein, Claire Ellen

    2016-01-01

    The study investigated motivational differences and higher education outcomes between limited English proficiency (LEP) Hispanic students compared with non-LEP Hispanic students. With a sample of 668 Hispanic community college students, we measured various forms of achievement motivation informed by self-determination theory, grade point average…

  8. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    SciTech Connect

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-15

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  9. Note: high-efficiency energy harvester using double-clamped piezoelectric beams.

    PubMed

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-01

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  10. Note: High-efficiency energy harvester using double-clamped piezoelectric beams

    NASA Astrophysics Data System (ADS)

    Zheng, Yingmei; Wu, Xuan; Parmar, Mitesh; Lee, Dong-weon

    2014-02-01

    In this study, an improvement in energy conversion efficiency has been reported, which is realized by using a double-clamped piezoelectric beam, based on uniaxial stretching strain. The buckling mechanism is applied to maximize axial stress in the double-clamped beam. The voltage generated by using the double-clamped piezoelectric beam is higher than that generated by using other conventional structures, such as bending cantilevers coated/sandwiched with piezoelectric film, which is proven both theoretically and experimentally. The power generation efficiency is enhanced by further optimizing the double-clamped structure. The optimized high-efficiency energy harvester utilizing double-clamped piezoelectric beams generates a peak output power of 80 μW, under an acceleration of 0.1g.

  11. Experimental study of ultrasonic beam sectors for energy conversion into Lamb waves and Rayleigh waves.

    PubMed

    Declercq, Nico Felicien

    2014-02-01

    When a bounded beam is incident on an immersed plate Lamb waves or Rayleigh waves can be generated. Because the amplitude of a bounded beam is not constant along its wave front, a specific beam profile is formed that influences the local efficiency of energy conversion of incident sound into Lamb waves or Rayleigh waves. Understanding this phenomenon is important for ultrasonic immersion experiments of objects because the quality of such experiments highly depends on the amount of energy transmitted into the object. This paper shows by means of experiments based on monochromatic Schlieren photography that the area within the bounded beam responsible for Lamb wave generation differs from that responsible for Rayleigh wave generation. Furthermore it provides experimental verification of an earlier numerical study concerning Rayleigh wave generation.

  12. The edge transient-current technique (E-TCT) with high energy hadron beam

    NASA Astrophysics Data System (ADS)

    Gorišek, Andrej; Cindro, Vladimir; Kramberger, Gregor; Mandić, Igor; Mikuž, Marko; Muškinja, Miha; Zavrtanik, Marko

    2016-09-01

    We propose a novel way to investigate the properties of silicon and CVD diamond detectors for High Energy Physics experiments complementary to the already well-established E-TCT technique using laser beam. In the proposed setup the beam of high energy hadrons (MIPs) is used instead of laser beam. MIPs incident on the detector in the direction parallel to the readout electrode plane and perpendicular to the edge of the detector. Such experiment could prove very useful to study CVD diamond detectors that are almost inaccessible for the E-TCT measurements with laser due to large band-gap as well as to verify and complement the E-TCT measurements of silicon. The method proposed is being tested at CERN in a beam of 120 GeV hadrons using a reference telescope with track resolution at the DUT of few μm. The preliminary results of the measurements are presented.

  13. A comparison of phantom scatter from flattened and flattening filter free high-energy photon beams

    SciTech Connect

    Richmond, Neil; Allen, Vince; Daniel, Jim; Dacey, Rob; Walker, Chris

    2015-04-01

    Flattening filter free (FFF) photon beams have different dosimetric properties from those of flattened beams. The aim of this work was to characterize the collimator scatter (S{sub c}) and total scatter (S{sub cp}) from 3 FFF beams of differing quality indices and use the resulting mathematical fits to generate phantom scatter (S{sub p}) data. The similarities and differences between S{sub p} of flattened and FFF beams are described. S{sub c} and S{sub cp} data were measured for 3 flattened and 3 FFF high-energy photon beams (Varian 6 and 10 MV and Elekta 6 MV). These data were fitted to logarithmic power law functions with 4 numerical coefficients. The agreement between our experimentally determined flattened beam S{sub p} and published data was within ± 1.2% for all 3 beams investigated and all field sizes from 4 × 4 to 40 × 40 cm{sup 2}. For the FFF beams, S{sub p} was only within 1% of the same flattened beam published data for field sizes between 6 × 6 and 14 × 14 cm{sup 2}. Outside this range, the differences were much greater, reaching − 3.2%, − 4.5%, and − 4.3% for the fields of 40 × 40 cm{sup 2} for the Varian 6-MV, Varian 10-MV, and Elekta 6-MV FFF beams, respectively. The FFF beam S{sub p} increased more slowly with increasing field size than that of the published and measured flattened beam of a similar reference field size quality index, i.e., there is less Phantom Scatter than that found with flattened beams for a given field size. This difference can be explained when the fluence profiles of the flattened and FFF beams are considered. The FFF beam has greatly reduced fluence off axis, especially as field size increases, compared with the flattened beam profile; hence, less scatter is generated in the phantom reaching the central axis.

  14. MHD Augmentation of Rocket Engines Using Beamed Energy

    NASA Astrophysics Data System (ADS)

    Lineberry, John T.; Chapman, James N.; Litchford, Ron J.; Jones, Jonathan

    2003-05-01

    MHD technology and fundamental relations that pertain to accelerating a working fluid for propulsion of space vehicles are reviewed. Previous concepts on MHD propulsion have considered use of an on-board power supply to provide the electric power for the MHD thruster which is accompanied by an obvious weight penalty. In this study, an orbiting power station that beams microwave or laser power to the spacecraft is considered which eliminates this penalty making the thruster significantly more effective from the thrust-to-weight viewpoint. The objective of the study was to investigate augmenting a rocket motor to increase the ISP into the 2,500 seconds range using MHD acceleration. Mission scenarios are presented to parametrically compare the MHD augmented motor. Accelerator performance is calculated for an array of cases which vary the mass throughput, magnetic field strength and MHD interaction level. Performance improved with size, magnetic field strength and interaction level, although lower interaction levels can also produce attractive configurations. Accelerator efficiencies are typically 80-90%. The results display a large regime for improved performance in which the extent of the regime is critically dependent upon the weight of the power receiving equipment (rectenna). It is concluded that this system has potential when used with an orbiting power station that transmits power to the space vehicle by microwave radiation or laser beams. The most critical technology improvement needed is a reduced weight rectenna system but more development is also needed on the MHD accelerator, which is currently underway with NASA sponsorship.

  15. SU-E-T-221: Investigation of Lower Energy (< 6 MV) Photon Beams for Cancer Radiotherapy

    SciTech Connect

    Zhang, Y; Ming, X; Feng, Y; Zhou, L; Ahmad, M; Deng, J; Nguyen, K; Griffin, M

    2014-06-01

    Purpose: To study the potential applications of the lower energy (< 6MV) photon beams in the radiotherapeutic management of pediatric cancer and lung cancer patients. Methods: Photon beams of 2, 3, 4, 5 and 6MV were first simulated with EGS4/BEAM and then used for Monte-Carlo dose calculations. For four pediatric patients with abdominal and brain lesions, six 3D-conformal radiotherapy (3DCRT) plans were generated using single photon energy (2 to 6MV) or mixed energies (3 and 6MV). Furthermore, a virtual machine of 3 and 6MV was commissioned in a treatment planning system (TPS) based on Monte-Carlo simulated data. Three IMRT plans of a lung cancer patient were generated on this virtual machine. All plans were normalized to D95% of target dose for 6MV plan and then compared in terms of integral dose and OAR sparing. Results: For the four pediatric patients, the integral dose for the 2, 3, 4 and 5MV plans increased by 9%, 5%, 3.5%, 1.7%, respectively as compared to 6MV. Almost all OARs in the 2MV plan received more than 10% more doses than 6MV. Mixed energy 3DCRT plans were of the same quality as 6MV plans. For the lung IMRT plans, both the 3MV plan and the mixed beam plan showed better OAR sparing in comparison to 6MV plan. Specifically, the maximum and mean doses to the spinal cord in the mixed energy plan were lower by 21% and 16%, respectively. Conclusion: Single lower energy photon beam was found to be inferior to 6MV in the radiotherapy of pediatric patients and lung cancer patients when the integral doses and the doses to the OARs were considered. However, mixed energy plans combining low with high energy beams showed significant OAR sparing while maintaining the same PTV coverage. Investigation with more patient data is ongoing for further confirmation.

  16. A comparative study on low-energy ion beam and neutralized beam modifications of naked DNA and biological effect on mutation

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Thongkumkoon, P.; Prakrajang, K.; Anuntalabhochai, S.; Yu, L. D.

    2012-02-01

    DNA conformation change or damage induced by low-energy ion irradiation has been of great interest owing to research developments in ion beam biotechnology and ion beam application in biomedicine. Mechanisms involved in the induction of DNA damage may account for effect from implanting ion charge. In order to check this effect, we used both ion beam and neutralized beam at keV energy to bombard naked DNA. Argon or nitrogen ion beam was generated and extracted from a radiofrequency (RF) ion source and neutralized by microwave-driven plasma in the beam path. Plasmid DNA pGFP samples were irradiated with the ion or neutralized beam in vacuum, followed by gel electrophoresis to observe changes in the DNA conformations. It was revealed that the ion charge played a certain role in inducing DNA conformation change. The subsequent DNA transfer into bacteria Escherichia coli ( E. coli) for mutation analysis indicated that the charged ion beam induced DNA change had high potential in mutation induction while neutralized beam did not. The intrinsic reason was attributed to additional DNA deformation and contortion caused by ion charge exchange effect so that the ion beam induced DNA damage could hardly be completely repaired, whereas the neutralized beam induced DNA change could be more easily recoverable owing to absence of the additional DNA deformation and contortion.

  17. Polarization beam combination technique for gain saturation effect compensation in high-energy systems

    NASA Astrophysics Data System (ADS)

    Chen, Junchi; Peng, Yujie; Su, Hongpeng; Leng, Yuxin

    2016-06-01

    To compensate for the gain saturation effect in the high-energy laser amplifier, a modified polarization beam combination (PBC) method is introduced to reshape temporal waveform of the injected laser pulse to obtain a controlled high-energy laser pulse shape after amplification. One linearly polarized beam is divided into two orthogonal polarized beams, which spatially recombine together collinearly after propagating different optical paths with relative time delay in PBC structure. The obtained beam with polarization direction being rotated by the following half wave plate is divided and combined again to reform a new beam in another modified polarization beam structure. The reformed beam is injected into three cascaded laser amplifiers. The amplified pulse shape can be controlled by the incident pulse shape and amplifier gain, which is agreeable to the simulation by the Frank-Nodvik equations. Based on the simple method, the various temporal waveform of output pulse with tunable 7 to 20 ns pulse duration can be obtained without interferometric fringes.

  18. A novel criterion for evaluating the beam quality of high energy laser

    NASA Astrophysics Data System (ADS)

    Han, Kai; Sun, Quan; Xu, Xiaojun

    2016-10-01

    In this paper, a novel criterion for evaluating the beam quality of high energy laser is proposed, which is called "power outside the large bucket", POLB for short. The novel criterion does not demonstrate the divergence of the beam but focuses on the high spatial frequency wavefront aberration of the beam. The POLB values of the laser beams with various aberrations are calculated. It shows that the more high spatial frequency components in the aberration the larger POLB value is. Moreover, it is theoretically analyzed that the laser beams with various aberrations are corrected by ideal adaptive optics (AO) systems with different deformation mirror (DM) actuator numbers. It is shown that the residual error of the corrected wavefront aberration with many high spatial frequency components is quite large. Finally, the dependence of the residual wavefront error on the POLB value is investigated. Only if the POLB is smaller than 3.8/3.4/2.5/1.7 the residual error of the wavefront may be smaller than λ/10, which is corrected by an ideal AO system with 127/61/37/19 actuators. It is necessary to employ a complicated AO system for improving the laser beam of which the POLB value is large. The novel evaluating criterion POLB is able to demonstrate the amount of high spatial frequency aberration and the residual wavefront error corrected by AO system. It is an accessible and useful criterion for evaluating the beam quality of high energy lasers.

  19. Three-Dimensional Modeling of Polarization Effects on Cross-Beam Energy Transfer in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Katz, J.; Myatt, J. F.; Shaw, J.; Froula, D. H.

    2016-10-01

    Beamlet spot images are used to diagnose cross-beam energy transfer (CBET) during OMEGA direct-drive implosions. The spots are, in essence, the end point of beamlets of light originating from different regions of each beam profile and following paths determined by refraction. The intensity of each spot varies because of absorption and CBET along that path. When each beam is linearly polarized, the image is asymmetric in terms of spot intensities. A 3-D CBET postprocessor for hydrodynamics codes is used to model the intensity, wavelength, and polarization of light from each beam. Rotation of polarization caused by CBET is tracked. The model is benchmarked using a 3-D wave-based solver for simplified CBET geometries. For linearly polarized beams in OMEGA implosions, the model predicts that polarization effects will result in asymmetric polarization and unabsorbed light profiles that are different for each beam. An asymmetric beamlet spot image similar to that recorded is predicted by the CBET model for linearly polarized beams. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Search for single top production via FCNC at LEP at s=189 -208 GeV

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration

    2004-06-01

    A search for single top production (e+e-→tc¯) via flavour changing neutral currents (FCNC) was performed using the data taken by the DELPHI detector at LEP2. The data analyzed have been accumulated at center-of-mass energies ranging from 189 to 208 GeV. Limits at 95% confidence level were obtained on the anomalous coupling parameters κγ and κZ.

  1. Search for η in two-photon collisions at LEP II with the DELPHI detector

    NASA Astrophysics Data System (ADS)

    DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2006-03-01

    The pseudoscalar meson η has been searched for in two-photon interactions at LEP II. The data sample corresponds to a total integrated luminosity of 617 pb-1 at centre-of-mass energies ranging from 161 to 209 GeV. Upper limits at a confidence level of 95% on the product Γ(η)×BR(η) are 190, 470 and 660 eV/c for the η decaying into 4, 6 and 8 charged particles, respectively.

  2. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    NASA Astrophysics Data System (ADS)

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-01

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  3. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    SciTech Connect

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-31

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  4. Ultra-low-energy (<10 eV/u) ion beam bombardment effect on naked DNA

    NASA Astrophysics Data System (ADS)

    Thopan, P.; Thongkumkoon, P.; Prakrajang, K.; Suwannakachorn, D.; Yu, L. D.

    2014-05-01

    Since ion energy deposition in the ion-bombarded materials dominantly occurs in the low-energy range, it is very interesting to know effects from ultra-low-energy ion interaction with DNA for understanding ion-beam-induced genetic mutation. Tens-keV Ar- and N-ion beams were decelerated to ultra-low energy ranging from 20 to 100 eV, or only a few to 10 eV/u, to bombard naked plasmid DNA. The bombarded DNA was analyzed using gel electrophoresis for DNA form changes. The original DNA supercoiled form was found to change to relaxed and linear forms, indicating single or double strand breaks after bombarded by tens-eV ion beam. N-ion beam was found more effective in inducing DNA change and mutation than Ar-ion beam. The study demonstrated that the ion bombardment with energy as low as several-tens eV was able to break DNA strands and thus potentially to cause genetic modification of biological cells. The experimental results were discussed in terms of direct atomic collision between the ions and DNA atoms.

  5. Energy regeneration model of self-consistent field of electron beams into electric power*

    NASA Astrophysics Data System (ADS)

    Kazmin, B. N.; Ryzhov, D. R.; Trifanov, I. V.; Snezhko, A. A.; Savelyeva, M. V.

    2016-04-01

    We consider physic-mathematical models of electric processes in electron beams, conversion of beam parameters into electric power values and their transformation into users’ electric power grid (onboard spacecraft network). We perform computer simulation validating high energy efficiency of the studied processes to be applied in the electric power technology to produce the power as well as electric power plants and propulsion installation in the spacecraft.

  6. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    SciTech Connect

    Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.

    2016-10-19

    Here we present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  7. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    DOE PAGES

    Sudar, N.; Musumeci, P.; Duris, J.; ...

    2016-10-19

    Here we present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  8. High Efficiency Energy Extraction from a Relativistic Electron Beam in a Strongly Tapered Undulator

    NASA Astrophysics Data System (ADS)

    Sudar, N.; Musumeci, P.; Duris, J.; Gadjev, I.; Polyanskiy, M.; Pogorelsky, I.; Fedurin, M.; Swinson, C.; Kusche, K.; Babzien, M.; Gover, A.

    2016-10-01

    We present results of an experiment where, using a 200 GW CO2 laser seed, a 65 MeV electron beam was decelerated down to 35 MeV in a 54-cm-long strongly tapered helical magnetic undulator, extracting over 30% of the initial electron beam energy to coherent radiation. These results, supported by simulations of the radiation field evolution, demonstrate unparalleled electro-optical conversion efficiencies for a relativistic beam in an undulator field and represent an important step in the development of high peak and average power coherent radiation sources.

  9. Alpha-induced reaction studies using low-energy RI beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Kahl, D.; Hu, J.; Kubono, S.; Hayakawa, S.; Hashimoto, T.

    2012-11-12

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo. Studies on proton and alpha resonance scatterings, ({alpha}, p) reactions, and other types of measurements ({beta}-decay lifetimes etc.) have been performed using RI beams at CRIB, motivated by interests on astrophysical reactions and exotic nuclear structure. Among the studies at CRIB, the measurement of {sup 7}Li+{alpha}/{sup 7}Be+{alpha} resonant scatterings are presented.

  10. Beam position and energy monitoring in compact linear accelerators for radiotherapy.

    PubMed

    Ruf, Marcel; Müller, Sven; Setzer, Stefan; Schmidt, Lorenz-Peter

    2014-02-01

    The experimental verification of a novel sensor topology capable of measuring both the position and energy of an electron beam inside a compact electron linear accelerator for radiotherapy is presented. The method applies microwave sensing techniques and allows for the noninterceptive monitoring of the respective beam parameters within compact accelerators for medical or industrial purposes. A state space feedback approach is described with the help of which beam displacements, once detected, can be corrected within a few system macropulses. The proof-of-principle experiments have been conducted with a prototype accelerator and customized hardware. Additionally, closed-loop operation with high accuracy is demonstrated.

  11. High efficiency and high-energy intra-cavity beam shaping laser

    NASA Astrophysics Data System (ADS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  12. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng

    2015-04-20

    We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

  13. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    SciTech Connect

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-09

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×10{sup 5} as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  14. Design of the low energy beam transport line between CARIBU and the EBIS charge breeder

    NASA Astrophysics Data System (ADS)

    Perry, A.; Ostroumov, P. N.; Barcikowski, A.; Dickerson, C.; Kondrashev, S. A.; Mustapha, B.; Savard, G.

    2015-01-01

    An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at ATLAS. The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and improve the purity of reaccelerated radioactive ion beams. The EBIS-CB is in the final stage of off-line commissioning. Currently, we are developing a low energy beam transport (LEBT) system to transfer CARIBU beams to the EBIS-CB. As was originally planned, an RFQ cooler-buncher will precede the EBIS-CB. Recently, it was decided to include a multi-reflection time-of-flight (MR-TOF) mass-spectrometer following the RFQ. MR-TOF is a relatively new technology used to purify beams with a mass-resolving power up to 3×105 as was demonstrated in experiments at CERN/ISOLDE. Very high purity singly-charged radioactive ion beams will be injected into the EBIS for charge breeding and due to its inherent properties, the EBIS-CB will maintain the purity of the charge bred beams. Possible contamination of residual gas ions will be greatly suppressed by achieving ultra-high vacuum in the EBIS trap. This paper will present and discuss the design of the LEBT and the overall integration of the EBIS-CB into ATLAS.

  15. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  16. Mechanical Design of a High Energy Beam Absorber for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab

    SciTech Connect

    Baffes, C.; Church, M.; Leibfritz, J.; Oplt, S.; Rakhno, I.; /Fermilab

    2012-05-10

    A high energy beam absorber has been built for the Advanced Superconducting Test Accelerator (ASTA) at Fermilab. In the facility's initial configuration, an electron beam will be accelerated through 3 TTF-type or ILC-type SRF cryomodules to an energy of 750MeV. The electron beam will be directed to one of multiple downstream experimental and diagnostic beam lines and then deposited in one of two beam absorbers. The facility is designed to accommodate up to 6 cryomodules, which would produce a 75kW beam at 1.5GeV; this is the driving design condition for the beam absorbers. The beam absorbers consist of water-cooled graphite, aluminum and copper layers contained in a helium-filled enclosure. This paper describes the mechanical implementation of the beam absorbers, with a focus on thermal design and analysis. The potential for radiation-induced degradation of the graphite is discussed.

  17. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  18. Inertial fusion energy target injection, tracking, and beam pointing

    SciTech Connect

    Petzoldt, Ronald Wayne

    1995-03-07

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive.

  19. Determining Linac Beam Energy from C-11/O-15 Activity Ratios in Polymers

    NASA Astrophysics Data System (ADS)

    Cardman, Ryan; Shepherd, Matthew

    2017-01-01

    A method for precisely measuring the beam energy of 20-25 MeV electron linear accelerator was developed. Polyoxymethylene (Delrin) and poly(methyl methacrylate) (acrylic) samples were irradiated with an electron linac at several energy settings of the accelerator simultaneously producing C-11 and O-15 via photonuclear reactions within each of the polymers. Using gamma-ray spectroscopy the activity ratios of C-11/O-15 were measured by analyzing the decay of activity vs. time. The C-11/O-15 ratio exhibits an energy dependence due to differences in the production cross section vs. energy. The observed dependence can be matched to predictions of the activity ratio vs. energy, developed from GEANT4 Monte Carlo models of an electromagnetic shower and knowledge of the cross sections, in order to determine the energy of the beam at a sub-MeV level of precision. National Science Foundation Research Experience for Undergraduates.

  20. Limiting technologies for particle beams and high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1985-07-01

    Since 1930 the energy of accelerators had grown by an order of magnitude roughly every 7 years. Like all exponential growths, be they human population, the size of computers, or anything else, this eventually will have to come to an end. When will this happen to the growth of the energy of particle accelerators and colliders. Fortunately, as the energy of accelerators has grown the cost per unit energy has decreased almost as fast as has the increase in energy. The result is that while the energy has increased so dramatically the cost per new installation has increased only by roughly an order of magnitude since the 1930's (corrected for inflation), while the number of accelerators operating at the frontier of the field has shrunk. As is shown in the by now familiar Livingston chart this dramatic decrease in cost has been achieved largely by a succession of new technologies, in addition to the more moderate gains in efficiency due to improved design, economies of scale, etc. We are therefore facing two questions: (1) Is there good reason scientifically to maintain the exponential growth, and (2) Are there new technologies in sight which promise continued decreases in unit costs. The answer to the first question is definitely yes; the answer to the second question is maybe.

  1. Rare isotope beam energy measurements and scintillator developments for ReA3

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Ying

    The ReAccelerator for 3 MeV/u beams (ReA3) at the National Superconducting Cyclotron Laboratory (NSCL) in Michigan State University can stop rare isotope beams produced by in-flight fragmentation and reaccelerate them in a superconducting linac. The precise knowledge of the energy and the energy spread of the ion beams extracted from the ReA3 linac is essential for experimental requirement in many applications. Beam energy determination methods such as implantation on a Si detector and/or using calibrated linac settings are precise within a few tens of keV/u. In order to determine beam energies with good resolution of less than 0.5 % FWHM, a 45 degree bending magnet with a movable slit is used to determine the absolute beam energy based on the magnetic rigidity. Two methods have been developed for the energy calibration of the beam analyzing magnet: gamma-ray nuclear resonance reactions and a time-of-flight (TOF) technique. The resonance energies of gamma-ray resonant reactions provide well-known and precise calibration points. The gamma ray yields of the 27Al(p,gamma)28Si at Ep= 992 keV and 632 keV resonances and 58Ni(p,gamma)59Cu at Ep= 1843 keV resonance have been measured with the high efficiency CAESAR (CAESium iodide ARray) and SuN (Summing NaI(Tl)) detectors. By fitting the observed resonant gamma-ray yields, not only the beam energy can be precisely correlated with the magnetic field but also beam energy spread can be obtained. The measured beam energy spread is consistent with beam optics calculations. A time-of-flight system for determining the absolute energy of ion beams and calibrating the 45 degree magnetic analyzer has been developed in ReA3 by using two identical secondary electron monitors (grid-MCP detectors) with appropriate separation. The TOF technique is applicable to the variety of beam energies and ion particles. Velocities of ion beam are determined by simultaneously measuring the arrival time of beam bunches at the two detectors with

  2. An approach to an accurate determination of the energy spectrum of high-energy electron beams using magnetic spectrometry

    NASA Astrophysics Data System (ADS)

    Renner, F.; Schwab, A.; Kapsch, R.-P.; Makowski, Ch; Jannek, D.

    2014-03-01

    At the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt, a research accelerator for dosimetry in radiation therapy has been installed. Magnetic spectrometry is used to determine the spectrum of high-energy electrons generated by this accelerator. Regarding the intended experiments at the accelerator, a high accuracy for the energy determination of the electron beam is required. For this purpose, an experimental setup is used that has a number of additional devices assembled around the spectrometer to determine geometric characteristics of the electron beam, which influence the energy analysis. For the analysis of the acquired data, a software was developed which meets specific needs. One important aspect is that the software is based on an algorithm for energy determination which considers the measured magnetic flux density of the spectrometer and geometric details of the beam and the spectrometer. The software also meets the demand that it can be used to estimate the uncertainty assigned to the energy. This paper covers the experimental and analytical background of magnetic spectrometry at the high-energy beamline of PTB's research accelerator. A comparison of results calculated with the specific algorithm for energy determination which was developed for this experimental setup and with well-known algorithms is given to show the advantage of the specific method. Results of measurements and their analysis with the algorithm are presented as well.

  3. Generation of a pulsed low-energy electron beam using the channel spark device.

    PubMed

    Elgarhy, M A I; Hassaballa, S E; Rashed, U M; ElSabbagh, M M; Soliman, H M; Saudy, A H

    2015-12-01

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  4. Generation of a pulsed low-energy electron beam using the channel spark device

    SciTech Connect

    Elgarhy, M. A. I. Hassaballa, S. E.; Rashed, U. M.; ElSabbagh, M. M.; Saudy, A. H.; Soliman, H. M.

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  5. Relation between field energy and RMS emittance in intense particle beams

    SciTech Connect

    Wangler, T.P.; Crandall, K.R.; Mills, R.S.; Reiser, M.

    1985-01-01

    An equation is presented for continuous beams with azimuthal symmetry and continuous linear focusing, which expresses a relationship between the rate of change for squared rms emittance and the rate of change for a quantity we call the nonlinear field energy. The nonlinear field energy depends on the shape of the charge distribution and corresponds to the residual field energy possessed by beams with nonuniform charge distributions. The equation can be integrated for the case of an rms matched beam to yield a formula for space-charge-induced emittance growth that we have tested numerically for a variety of initial distributions. The results provide a framework for discussing the scaling of rms emittance growth and an explanation for the well-established lower limit on output emittance. 15 refs., 4 figs.

  6. Exploiting neutron-rich radioactive ion beams to constrain the symmetry energy

    NASA Astrophysics Data System (ADS)

    Kohley, Z.; Christian, G.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Jones, M.; Smith, J. K.; Snyder, J.; Spyrou, A.; Thoennessen, M.

    2013-10-01

    The Modular Neutron Array (MoNA) and 4 Tm Sweeper magnet were used to measure the free neutrons and heavy charged particles from the radioactive ion beam induced 32Mg+9Be reaction. The fragmentation reaction was simulated with the constrained molecular dynamics model (CoMD), which demonstrated that the of the heavy fragments and free neutron multiplicities were observables sensitive to the density dependence of the symmetry energy at subsaturation densities. Through comparison of these simulations with the experimental data, constraints on the density dependence of the symmetry energy were extracted. The advantage of radioactive ion beams as a probe of the symmetry energy is demonstrated through examination of CoMD calculations for stable and radioactive-beam-induced reactions.

  7. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams.

    PubMed

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H

    2016-02-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a "Twin Beam" design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector.

  8. Damage localization in beam-like structures using changes in modal strain energy

    NASA Astrophysics Data System (ADS)

    Ouali, M.; Mellel, N.; Dougdag, M.

    2017-02-01

    This paper investigates the application and reliability of using modal strain energy in damage localization estimation of beam-like structures. This is based on the fact that damage often cause a loss of stiffness that increase the modal displacement of two ends of beam element containing the damage, So the modal strain energy after damage will be increased and Modal Strain Energy Change Ratio (MSECR) in this element is larger than other elements and the location of damage is detected by finding the element with higher MSECR. To conduct this investigation, an experimental modal analysis program was carried out on a cantilever beam subjected to a controlled crack levels and the first seven mode shapes were extracted and used to calculate the modal strain energy change. The experimental MSECR was computed and the location of the damage was accurately identified especially for crack sizing as small as 10% of the beam height. Finally, finite elements models were built and validated, MSE change method was applied and the results demonstrate that the method is capable of localizing the damage for beam structure.

  9. Beam-Energy and Centrality Dependence of Directed Flow of Identified Particles

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth

    2016-12-01

    These proceedings present directed flow (v1) measurements in Au+Au collisions from STAR's Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider, for p, p ‾, Λ, Λ ‾, K±, KS0 and π±. At intermediate centrality, protons show a minimum in directed flow slope, dv1 / dy|y≤0.8, as a function of beam energy. Proton dv1 / dy changes sign near 10 GeV, and the directed flow for Λ is consistent with the proton result. The directed flow slope for net protons shows a clear minimum at 14.5 GeV and becomes positive at beam energies below 10 GeV and above 30 GeV. New results for net-kaon directed flow slope resemble net protons from high energy down to 14.5 GeV, but remain negative at lower energies. The slope dv1 / dy shows a strong centrality dependence, especially for p and Λ at the lower beam energies. Available model calculations are in poor agreement.

  10. Surface diffusion activation energy determination using ion beam microtexturing

    NASA Technical Reports Server (NTRS)

    Rossnagel, S. M.; Robinson, R. S.

    1982-01-01

    The activation energy for impurity atom (adatom) surface diffusion can be determined from the temperature dependence of the spacing of sputter cones. These cones are formed on the surface during sputtering while simultaneously adding impurities. The impurities form clusters by means of surface diffusion, and these clusters in turn initiate cone formation. Values are given for the surface diffusion activation energies for various materials on polycrystalline Cu, Al, Pb, Au, and Ni. The values for different impurity species on each of these substrates are approximately independent of impurity species within the experimental uncertainty, suggesting the absence of strong chemical bonding effects on the diffusion.

  11. Modeling Extraction of VLF Energy from Localized Ion Ring Beams for Space Based Active Experiments

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid; Mithaiwala, Manish

    2012-07-01

    Waves in the VLF range are of considerable interest in the magnetosphere since they are responsible for transporting energy and momentum and therefore impacting space weather. Ion ring beams can efficiently generate waves in the VLF frequency range between the electron and ion gyro-frequency (Mithaiwala et al., 2010). Generation of VLF waves by infinite extent ion ring beams have been extensively treated for a broad range of space plasma applications. However, ion ring distributions created by chemical release experiments in the ionosphere (Koons and Pongratz, 1981) and those that occur naturally during storms/substorms or solar-wind comet interactions are localized over a spatial extent. This presentation will consider a new computational model for the nonlinear evolution of VLF waves generated by a spatially localized ion ring beam. The model, though quite general, will have application to generation of VLF waves in the radiation belts by localized creation of an ion ring beam. The model includes the convective loss of energy through phenomenological electron-ion collisions, which models nonlinear scattering of electrostatic lower hybrid waves into large group velocity electromagnetic whistler/magnetosonic waves (Ganguli et al., 2010). Therefore the model, though electrostatic, includes critical electromagnetic effects in a computationally efficient fashion. An emphasis is placed on the determining the efficiency of extraction of VLF energy from the ion ring beam due to the spatial localization of the ion ring beam. It is shown that due to the convection of the VLF waves out of the source region, the efficiency of wave energy extraction is greatly enhanced. This is accompanied by a reduction in background and ion ring beam heating. The results will be used to highlight the importance of non-linear scattering to future active experiments in space. Mithaiwala et al. Phys. Plasma, doi.org/10.1063/1.3372842, 2010 Koons and Pongratz, JGR, 1981. Ganguli et al., Phys

  12. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  13. Physics of neutralization of intense high-energy ion beam pulses by electrons

    SciTech Connect

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-05-15

    Neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100 G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  14. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments Database

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  15. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    SciTech Connect

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  16. Nuclear fragmentation of high-energy heavy-ion beams in water

    NASA Astrophysics Data System (ADS)

    Schardt, D.; Schall, I.; Geissel, H.; Irnich, H.; Kraft, G.; Magel, A.; Mohar, M. F.; Münzenberg, G.; Nickel, F.; Scheidenberger, C.; Schwab, W.; Sihver, L.

    As a part of the physical-technical program of the heavy-ion therapy project at GSI we have investigated the nuclear fragmentation of high-energy ion beams delivered by the heavy-ion synchrotron SIS, using water as a tissue-equivalent target. For a direct comparison of fragmentation properties, beams of ^10B, ^12C, ^14N, and ^16O were produced simultaneously as secondary beams from a primary ^18O beam and separated in flight by magnetic beam analysis. The Z-distributions of beam fragments produced in the water target were measured via energy loss in a large ionisation chamber and a scintillator telescope. From these data we obtained both total and partial charge-changing cross sections. In addition we have performed Bragg measurements using two parallel-plate ionization chambers and a water target of variable length. The detailed shape of the measured Bragg curves and the measured cross sections are in good agreement with model calculations based on semi-empirical formulae.

  17. A modified broad beam ion source for low-energy hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Otte, K.; Schindler, A.; Bigl, F.; Schlemm, H.

    1998-03-01

    A modified broad beam ion source for low-energy hydrogen ion implantation of semiconductors is described. Based on a Kaufman type ion source two different solutions are presented: (a) an ion source with an extraction system consisting of two molybdenum grids with a low gas flow conductance reworked for hydrogen operation, and (b) a ten-grid mass separating ion beam system which enables the mass selection of H+, H2+, and H3+. The ion energy could be set in the range of 200-500 eV with a current density reaching from 1 to 100 μA/cm2. It is shown that at higher pressure the main ion created in the ion source is H3+ due to ion-molecule processes, whereas at lower pressure only H2+ and H+ are produced. Special consideration is given to the ion beam analysis of the two grid ion source operating in the 10-3 mbar range allowing to explain the different peak structures by the potential distribution across the ion source and different charge transfer processes. In addition, the analysis reveals neutral and ionized collision products in the ion beam. The ten-grid mass separating ion source could be operated in the 10-4 mbar range resulting in a nearly collision free ion beam which permits the generation of a mass separated hydrogen ion beam.

  18. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1994-11-01

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS.

  19. High beam current shut-off systems in the APS linac and low energy transfer line

    SciTech Connect

    Wang, X.; Knott, M.; Lumpkin, A.

    1995-05-05

    Two independent high beam current shut-off current monitoring systems (BESOCM) have been installed in the APS linac and the low energy transport line to provide personnel safety protection in the event of acceleration of excessive beam currents. Beam current is monitored by a fast current transformer (FCT) and fully redundant supervisory circuits connected to the Access Control Interlock System (ACIS) for beam intensity related shutdowns of the linac. One FCT is located at the end of the positron linac and the other in the low energy transport line, which directs beam to the positron accumulator ring (PAR). To ensure a high degree of reliability, both systems employ a continuous self-checking function, which injects a test pulse to a single-turn test winding after each ``real`` beam pulse to verify that the system is fully functional. The system is designed to be fail-safe for all possible system faults, such as loss of power, open or shorted signal or test cables, loss of external trigger, malfunction of gated integrator, etc. The system has been successfully commissioned and is now a reliable part of the total ACIS. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Goncharov, V. N.; Igumenshchev, I. V.; Katz, J.; Myatt, J. F.; Seka, W.; Froula, D. H.

    2015-11-01

    A new diagnostic is now being fielded to record the unabsorbed laser light from implosions on OMEGA. Unabsorbed light from each OMEGA beam is imaged as a distinct ``spot'' in time-integrated images. Each spot is, in essence, the end point of a beamlet of light that originates from a specific region of a beam profile and follows a path determined by refraction. The intensity of light in the beamlet varies along that path because of absorption and cross-beam energy transfer (CBET) with other beamlets. This diagnostic allows for the detailed investigation of the effects of CBET on specific locations of the beam profile. A pinhole can be used to isolate specific spots, allowing the time-resolved spectrum of the beamlet to be measured. A fully 3-D CBET hydrodynamics code postprocessor is used to model the intensity and wavelength of each beamlet as it traverses the coronal plasma to the diagnostic. The model predicts that if a single beam in a symmetric implosion is turned off, the recorded intensity of nearby spots will decrease by ~ 15% as a result of loss of CBET from the dropped beam. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. The role of electronic energy loss in ion beam modification of materials

    DOE PAGES

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; ...

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while inmore » other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.« less

  2. The role of electronic energy loss in ion beam modification of materials

    SciTech Connect

    Weber, William J.; Duffy, Dorothy M.; Thome, Lionel; Zhang, Yanwen

    2014-10-05

    The interaction of energetic ions with solids results in energy loss to both atomic nuclei and electrons in the solid. In this article, recent advances in understanding and modeling the additive and competitive effects of nuclear and electronic energy loss on the response of materials to ion irradiation are reviewed. Experimental methods and large-scale atomistic simulations are used to study the separate and combined effects of nuclear and electronic energy loss on ion beam modification of materials. The results demonstrate that nuclear and electronic energy loss can lead to additive effects on irradiation damage production in some materials; while in other materials, the competitive effects of electronic energy loss leads to recovery of damage induced by elastic collision cascades. Lastly, these results have significant implications for ion beam modification of materials, non-thermal recovery of ion implantation damage, and the response of materials to extreme radiation environments.

  3. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D

    SciTech Connect

    Thomas, D. M.; Van Zeeland, M. A.; Grierson, B. A.; Munoz Burgos, J. M.

    2012-10-15

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D{sub {alpha}} emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  4. U.S. Heavy Ion Beam Science towards inertial fusion energy

    SciTech Connect

    Logan, B.G.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Burkhart, C.; Celata, C.M.; Chacon-Golcher, E.; Cohen, R.H.; Davidson, R.C.; Efthimion P.; Faltens, A.; Friedman, A.; Grisham, L.; Grote, D.P.; Haber, I.; Henestroza, E.; Kaganovich, I.; Kishek, R.A.; Kwan, J.W.; Lee, E.P.; Lee, W.W.; Leitner, M.; Lund, S.M.; Meier, W.R.; Molvik, A.W.; O'Shea, P.G.; Olson, C.; Olson, R.E.; Prost, L.R.; Qin, H.; Reiser, M.; Rose, D.; Sabbi, G.; Seidl, P.A.; Sharp, W.M.; Shuman, D.B.; Vay, J-L.; Waldron, W.L.; Welch, D.; Westenskow, G.A.; Yu, S.S.

    2002-10-01

    Significant experimental and theoretical progress in the U.S heavy-ion fusion (HIF) program is reported in modeling and measurements of intense space-charge-dominated heavy ion and electron beams. Measurements of the transport of a well-matched and aligned high current (0.2A) 1.0 MeV potassium ion beam through 10 electric quadrupoles, with a fill factor of 60%, shows no emittance growth within experimental measurement uncertainty, as expected from the simulations. Another experiment shows that passing a beam through an aperture can reduce emittance to near the theoretical limits, and that plasma neutralization of the beam's space-charge can greatly reduce the focal spot radius. Measurements of intense beamlet current density, emittance, charge-state purity, and energy spread from a new, high-brightness, Argon plasma source for HIF experiments are described. New theory and simulations of neutralization of intense beam space charge with plasma in various focusing chamber configurations indicate that near-emittance-limited beam focal spot sizes can be obtained even with beam perveance an order of magnitude higher than in earlier HIF focusing experiments.

  5. Determination of neutral beam energy fractions from collisional radiative measurements on DIII-D.

    PubMed

    Thomas, D M; Grierson, B A; Muñoz Burgos, J M; Van Zeeland, M A

    2012-10-01

    Neutral beams based on positive ion source technology are a key component of contemporary fusion research. An accurate assessment of the injected beam species mix is important for determining the actual plasma heating and momentum input as well as proper interpretation of beam-based diagnostics. On DIII-D, the main ion charge-exchange spectroscopy system is used to extract well-resolved intensity ratios of the Doppler-shifted D(α) emission from the full, half, and third energy beam components for a variety of beam operational parameters. In conjunction with accurate collisional-radiative modeling, these measurements indicate the assumed species mix and power fractions can vary significantly and should be regularly monitored and updated for the most accurate interpretation of plasma performance. In addition, if stable active control of the power fractions can be achieved through appropriate source tuning, the resulting control over the deposition profile can serve as an additional experimental knob for advanced tokamak studies, e.g., varying the off axis beam current drive without altering the beam trajectory.

  6. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  7. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source.

    PubMed

    Malapit, Giovanni M; Mahinay, Christian Lorenz S; Poral, Matthew D; Ramos, Henry J

    2012-02-01

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  8. Searches for the Standard Model Higgs boson at the LEP collider

    NASA Astrophysics Data System (ADS)

    Igo-Kemenes, Peter; Read, Alexander L.

    2016-10-01

    The Large Electron Positron (LEP) collider installed at CERN provided unprecedented possibilities for studying the properties of elementary particles during the years 1989-2000. The four detectors associated to the collider, run by the ALEPH, DELPHI, L3, and OPAL Collaborations, were based on the latest available technologies. The conjunction of high collision energies, precise instrumentation and data analysis techniques allowed the Standard Model (SM) of elementary particles to be tested at the level of quantum corrections. The search for new particles, in particular the long-sought Higgs boson, was one of the primary research subjects. During the twelve years of LEP, data samples of the highest quality and statistical weight were analysed. Concerning the search for the SM Higgs boson, the domain extending from zero mass to the kinematic limit imposed by the collider energy was scrutinised. The spirit of scientific competition gradually gave way to a collaborative effort, allowing the final results of LEP to be optimised. The methodology of Higgs boson searches is summarised in this paper together with the statistical methods adopted to combine the data of the four collaborations.

  9. Numerical studies of the Weibel Instability in Intense Charged Particle Beams with Large Energy Anisotropy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Li; Startsev, Edward A.; Davidson, Ronald C.

    2004-11-01

    In intense charged particle beams with large temperature anisotropy free energy is available to drive a transverse electromagnetic Weibel-type instability. The finite transverse geometry of the confined beam makes a detailed theoretical investigation difficult. In this paper the newly developed bEASt (beam eigenmode and spectra) code which solves the linearized Vlasov-Maxwell equations is used to investigate the detailed properties of the Weibel instability for a long charge bunch propagating through a cylindrical pipe of radius r_w. The stability analysis is carried out for azimuthally symmetric perturbations about a two-temperature thermal equilibrium distribution in the smooth-focusing approximation. To study the nonlinear stage of the instability, the Darwin model is being developed and incorporated into the Beam Equilibrium Stability and Transport(BEST) code.

  10. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  11. Low energy ion beam induced changes in structural and thermal properties of polycarbonate

    NASA Astrophysics Data System (ADS)

    Reheem, A. M. Abdel; Atta, A.; Maksoud, M. I. A. Abdel

    2016-10-01

    The aim of the present study is extended for obtaining relation between the collision of ion beam with polycarbonate polymer (PC) and the introduced modification of technological applications. Polycarbonate films are irradiated by a 6 keV argon ion beam extracted from locally design cold cathode ion source with different ion fluences. The films are characterized using X-ray Diffraction (XRD), Mechanical tester, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). The increase in ion beam irradiation leads to an increase in the tensile strength and reduction in elongation at break for PC. TGA Analysis shows that the thermal decomposition temperature of irradiated polycarbonate changes with ion fluence. The DSC graphs show improvements in thermal stability with increase in the activation energy after ion beam irradiation. Ion penetration depths and distributions of scattered atoms are calculated using SRIM Monte Carlo simulation programs.

  12. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  13. Radiation Therapy of Large Intact Breasts Using a Beam Spoiler or Photons with Mixed Energies

    SciTech Connect

    Lief, Eugene P. Hunt, Margie A.; Hong, Linda X.; Amols, Howard I.

    2007-01-01

    Radiation treatment of large intact breasts with separations of more than 24 cm is typically performed using x-rays with energies of 10 MV and higher, to eliminate high-dose regions in tissue. The disadvantage of the higher energy beams is the reduced dose to superficial tissue in the buildup region. We evaluated 2 methods of avoiding this underdosage: (1) a beam spoiler: 1.7-cm-thick Lucite plate positioned in the blocking tray 35 cm from the isocenter, with 15-MV x-rays; and (2) combining 6- and 15-MV x-rays through the same portal. For the beam with the spoiler, we measured the dose distribution for normal and oblique incidence using a film and ion chamber in polystyrene, as well as a scanning diode in a water tank. In the mixed-energy approach, we calculated the dose distributions in the buildup region for different proportions of 6- and 15-MV beams. The dose enhancement due to the beam spoiler exhibited significant dependence upon the source-to-skin distance (SSD), field size, and the angle of incidence. In the center of a 20 x 20-cm{sup 2} field at 90-cm SSD, the beam spoiler raises the dose at 5-mm depth from 77% to 87% of the prescription, while maintaining the skin dose below 57%. Comparison of calculated dose with measurements suggested a practical way of treatment planning with the spoiler-usage of 2-mm 'beam' bolus-a special option offered by in-house treatment planning system. A second method of increasing buildup doses is to mix 6- and 15-MV beams. For example, in the case of a parallel-opposed irradiation of a 27-cm-thick phantom, dose to D{sub max} for each energy, with respect to midplane, is 114% for pure 6-, 107% for 15-MV beam with the spoiler, and 108% for a 3:1 mixture of 15- and 6-MV beams. Both methods are practical for radiation therapy of large intact breasts.

  14. Radiation therapy of large intact breasts using a beam spoiler or photons with mixed energies.

    PubMed

    Lief, Eugene P; Hunt, Margie A; Hong, Linda X; Amols, Howard I

    2007-01-01

    Radiation treatment of large intact breasts with separations of more than 24 cm is typically performed using x-rays with energies of 10 MV and higher, to eliminate high-dose regions in tissue. The disadvantage of the higher energy beams is the reduced dose to superficial tissue in the buildup region. We evaluated 2 methods of avoiding this underdosage: (1) a beam spoiler: 1.7-cm-thick Lucite plate positioned in the blocking tray 35 cm from the isocenter, with 15-MV x-rays; and (2) combining 6- and 15-MV x-rays through the same portal. For the beam with the spoiler, we measured the dose distribution for normal and oblique incidence using a film and ion chamber in polystyrene, as well as a scanning diode in a water tank. In the mixed-energy approach, we calculated the dose distributions in the buildup region for different proportions of 6- and 15-MV beams. The dose enhancement due to the beam spoiler exhibited significant dependence upon the source-to-skin distance (SSD), field size, and the angle of incidence. In the center of a 20 x 20-cm(2) field at 90-cm SSD, the beam spoiler raises the dose at 5-mm depth from 77% to 87% of the prescription, while maintaining the skin dose below 57%. Comparison of calculated dose with measurements suggested a practical way of treatment planning with the spoiler--usage of 2-mm "beam" bolus--a special option offered by in-house treatment planning system. A second method of increasing buildup doses is to mix 6- and 15-MV beams. For example, in the case of a parallel-opposed irradiation of a 27-cm-thick phantom, dose to D(max) for each energy, with respect to midplane, is 114% for pure 6-, 107% for 15-MV beam with the spoiler, and 108% for a 3:1 mixture of 15- and 6-MV beams. Both methods are practical for radiation therapy of large intact breasts.

  15. Study of Collective Beam Effects in Energy Recovery Linac Driven Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Hall, Christpher C.

    Collective beam effects such as coherent synchrotron radiation (CSR) and longitudinal space charge (LSC) can degrade the quality of high-energy electron beams used for applications such as free-electron lasers (FELs). The advent of energy recovery linac (ERL)-based FELs brings exciting possibilities for very high-average current FELs that can operate with greater efficiency. However, due to the structure of ERLs, they may be even more susceptible to CSR. It is therefore necessary that these collective beam effects be well understood if future ERL-based designs are to be successful. The Jefferson Laboratory ERL driven IR FEL provides an ideal test-bed for looking at how CSR impacts the electron beam. Due to its novel design we can easily test how CSR's impact on the beam varies as a function of compression within the machine. In this work we will look at measurements of both average energy loss and energy spectrum fragmentation as a function of bunch compression. These results are compared to particle tracking simulations including a 1D CSR model and, in general, good agreement is seen between simulation and measurement. Of particular interest is fragmentation of the energy spectrum that is observed due to CSR and LSC. We will also show how this fragmentation develops and how it can be mitigated through use of the sextupoles in the JLab FEL. Finally, a more complete 2D model is used to simulate CSR-beam interaction. Due to the parameters of the experiment it is expected that a 2D CSR model would yield different results than the 1D CSR model. However, excellent agreement is seen between the two CSR model results.

  16. Modeling energy transport in a cantilevered Euler-Bernoulli beam actively vibrating in Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Faria, Cassio T.; Inman, Daniel J.

    2014-04-01

    When a mechanical and/or structural component is immersed in a fluid and it vibrates, the reasonable assumption is that part of the energy is transmitted to the adjacent media. For some engineering applications the energy transport between these two domains, i.e., structure and fluid, plays a central role. The work presented in this paper is focused on discussing the energy transport in beam-like structures as they can be used to represent flexible swimmers (fish-like pulsating mechanisms) in their simplest form. In order to expose the role of each of the fluid and beam properties effecting the energy transfer process, a simplified analytical fluid-structure interaction (FSI) model is derived. After analysis of the resulting coupled-systems' damping coefficient, a new energy transport component is added to the initial Euler-Bernoulli beam equation; a term associated with diffusion (fluid viscosity). In addition our modeling results in an added mass term, a characteristic consistent with previous literature. While deriving the model, an important assumption is made: beam mode shapes are not significantly affected by the domains' interaction. This hypothesis is experimentally tested in two different fluid media and confirmed to be reasonable for the first three vibration mode shapes.

  17. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  18. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    SciTech Connect

    Minucci, M. A. S.

    2008-04-28

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies--IEAv, in collaboration with the Rensselaer Polytechnic Institute--RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO{sub 2} TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO{sub 2} TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  19. An Overview of Brazilian Developments in Beamed Energy Aerospace Propulsion and Vehicle Performance Control

    NASA Astrophysics Data System (ADS)

    Minucci, M. A. S.

    2008-04-01

    Beamed energy propulsion and beamed energy vehicle performance control concepts are equally promising and challenging. In Brazil, the two concepts are being currently investigated at the Prof Henry T Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, of the Institute for Advanced Studies—IEAv, in collaboration with the Rensselaer Polytechnic Institute—RPI, Troy, NY, and the United States Air force Research Laboratory-AFRL. Until recently, only laser energy addition for hypersonic flow control was being investigated at the Laboratory using a 0.3 m nozzle exit diameter hypersonic shock tunnel, T2, and two 7 joule CO2 TEA lasers. Flow visualization, model pressure and heat flux measurements of the laser energy addition perturbed flow around a model were produced as a result of this joint IEAv-RPI investigation. Presently, with the participation of AFRL and the newly commissioned 0.6 m. nozzle exit diameter hypersonic shock tunnel, T3, a more ambitious project is underway. Two 400 Joule Lumonics 620 CO2 TEA lasers will deliver a 20 cm X 25 cm propulsive laser beam to a complete laser propelled air breather/rocket hypersonic engine, located inside T3 test section. Schlieren photographs of the flow inside de engine as well as surface and heat flux measurements will be performed for free stream Mach numbers ranging from 6 to 25. The present paper discusses past, present and future Brazilian activities on beamed energy propulsion and related technologies.

  20. Deployable Air Beam Fender System (DAFS): Energy Absorption Performance Analysis

    DTIC Science & Technology

    2007-03-30

    its energy absorption performance. Quarter-scale and full-scale models were evaluated and compared to protot ype tests for a variety of inflation...pressures, impact berthing conditions, and ballast levels. Model predictions were validated with correlated test data. The explicit FEA method captured...was used. In step 1, the fender was inflated to the specified inflation pressure and the acceleration caused by gravity (386.4 in./s 2) was applied

  1. Improved Beam Jitter Control Methods for High Energy Laser Systems

    DTIC Science & Technology

    2009-12-01

    REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for public...Gyro FSM Fast Steering Mirror FX-LMS Filtered-X Least Mean Squares FX-RLS Filtered-X Recursive Least Square HEL High Energy Laser JCT

  2. On the polarized beam acceleration in medium energy synchrotrons

    SciTech Connect

    Lee, S.Y.

    1992-12-31

    This lecture note reviews physics of spin motion in a synchrotron, spin depolarization mechanisms of spin resonances, and methods of overcoming the spin resonances during acceleration. Techniques used in accelerating polarized ions in the low/medium energy synchrotrons, such as the ZGS, the AGS, SATURNE, and the KEK PS and PS Booster are discussed. Problems related to polarized proton acceleration with snakes or partial snake are also examined.

  3. Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell.

    PubMed

    Reshetnyak, V Yu; Pinkevych, I P; Cook, G; Evans, D R; Sluckin, T J

    2010-03-01

    We develop a semiquantitative theory to describe the experimentally observed energy gain when two light beams intersect in hybrid organic-inorganic photorefractives. These systems consist of a nematic liquid-crystal (LC) layer placed between two photorefractive windows. A periodic space-charge field is induced by the interfering light beams in the photorefractive windows. The field penetrates into the LC, interacting with the nematic director and giving rise to a diffraction grating. LC flexoelectricity is the principal physical mechanism driving the grating structure. Each light beam diffracts from the induced grating, leading to an apparent energy gain and loss within each beam. The LC optics is described in the Bragg regime. In the theory the exponential gain coefficient is a product of a beam interference term, a flexoelectricity term and a space-charge term. The theory has been compared with results of an experimental study on hybrid cells filled with the LC mixture TL 205. Experimentally the energy gain is maximal at much lower grating wave numbers than is predicted by naïve theory. However, if the director reorientation is cubic rather than linear in the space-charge field term, then good agreement between theory and experiment can be achieved using only a single fitting parameter. We provide a semiquantitative argument to justify this nonlinearity in terms of electric-field-induced local phase separation between different components of the liquid crystal.

  4. Generating a Reduced-energy Antiproton beam using Channeling Electrostatic elements (GRACE)

    NASA Astrophysics Data System (ADS)

    Lawler, Gerard; Pacifico, Nicola; Aegis Collaboration

    2016-03-01

    A device was designed for Generating a Reduced-energy Antiproton-beam using Channeling Electrostatic elements (GRACE). A series of einzel lenses and electrodes are used to create a slow beam of antiprotons with tunable mean energy (0 to 16 keV with root mean squared value below 20%) using antiprotons (mean energy of 5 MeV) from the Antiproton Decelerator (AD) at CERN. Degrader foil is in place, so GRACE further deflects the beam bunches away from the annihilation products, focusing them on a 14 mm x 14 mm detector. Manufacturing parameters were found using simulations written in C++. The device is currently in use by the Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (AEgIS) collaboration at CERN, which seeks to measure the sign of the gravitational constant for antimatter by performing interferometry studies on an antihydrogen beam. GRACE delivers on the order of 10 events per beam bunch from the AD. Antiprotons will eventually be used together with a pulse of positronium atoms to make antihydrogen atoms with horizontal velocity. GRACE is being used to perform intermediary experiments concerning interferometry of antiprotons, an important stepping stone on the way to measuring the sign of gravity. Special thanks to Boston University Undergraduate Research Opportunities Program, Lawrence Sulak, and Michael Doser.

  5. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  6. Accelerated Nuclear Energy Materials Development with Multiple Ion Beams

    SciTech Connect

    Fluss, M J; Bench, G

    2009-08-19

    A fundamental issue in nuclear energy is the changes in material properties as a consequence of time, temperature, and neutron fluence. Usually, candidate materials for nuclear energy applications are tested in nuclear reactors to understand and model the changes that arise from a combination of atomic displacements, helium and hydrogen production, and other nuclear transmutations (e.g. fission and the production of fission products). Experiments may be carried out under neutron irradiation conditions in existing nuclear materials test reactors (at rates of 10 to 20 displacements per atom (DPA) per year or burn-up rates of a few percent per year for fertile fuels), but such an approach takes much too long for many high neutron fluence scenarios (300 DPA for example) expected in reactors of the next generation. Indeed it is reasonable to say that there are no neutron sources available today to accomplish sufficiently rapid accelerated aging let alone also provide the temperature and spectral characteristics of future fast spectrum nuclear energy systems (fusion and fission both). Consequently, materials research and development progress continues to be severely limited by this bottleneck.

  7. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

    SciTech Connect

    Froula, D. H.; Kessler, T. J.; Igumenshchev, I. V.; Betti, R.; Goncharov, V. N.; Huang, H.; Hu, S. X.; Hill, E.; Kelly, J. H.; Meyerhofer, D. D.; Shvydky, A.; Zuegel, J. D.

    2013-08-15

    Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by ∼35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5× increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive–ignition implosions by increasing the ablation pressure (1.6×), which will allow for more stable implosions at ignition-relevant velocities.

  8. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  9. Design of a large acceptance, high efficiency energy selection system for the ELIMAIA beam-line

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Andó, L.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Scuderi, V.; Allegra, L.; Amato, A.; Gallo, G.; Korn, G.; Leanza, R.; Margarone, D.; Milluzzo, G.; Petringa, G.

    2016-08-01

    A magnetic chicane based on four electromagnetic dipoles is going to be realized by INFN-LNS to be used as an Energy Selection System (ESS) for laser driven proton beams up to 300 MeV and C6+ up to 70 MeV/u. The system will provide, as output, ion beams with a contrallable energy spread varying from 5% up to 20% according to the aperture slit size. Moreover, it has a very wide acceptance in order to ensure a very high transmission efficiency and, in principle, it has been designed to be used also as an active energy modulator. This system is the core element of the ELIMED (ELI-Beamlines MEDical and Multidisciplinary applications) beam transport, dosimetry and irradiation line that will be developed by INFN-LNS (It) and installed at the ELI-Beamlines facility in Prague (Cz). ELIMED will be the first user's open transport beam-line where a controlled laser-driven ion beam will be used for multidisciplinary research. The definition of well specified characteristics, both in terms of performance and field quality, of the magnetic chicane is crucial for the system realization, for the accurate study of the beam dynamics and for the proper matching with the Permanent Magnet Quadrupoles (PMQs) used as a collection system already designed. Here, the design of the magnetic chicane is described in details together with the adopted solutions in order to realize a robust system form the magnetic point of view. Moreover, the first preliminary transport simulations are also described showing the good performance of the whole beam line (PMQs+ESS).

  10. Progress Towards Plasma Pulse Compression of High Energy, Long Pulse Laser Beams

    SciTech Connect

    Kirkwood, R K; Ping, Y; Rygg, R; Wilks, S; Meezan, N; Niemann, C; Landen, O; Fisch, N; Malkin, V; Valeo, E; Wurtele, J

    2008-06-19

    Compression of laser pulses to < {approx} 1-10 ps duration using stimulated Raman scattering (SRS) in a plasma promises to provide unprecedented power and intensity for a variety of applications, by avoiding the limits to fluence and intensity that are needed to avoid damage to the solid state optics that are used in conventional approaches. In particular, the ability to compress pump beam pulses of {approx} ns duration will allow present facilities with 10's kJ to over a MJ of energy to produce ultra short pulses efficiently, advancing applications in; fusion by fast ignition, x-ray production of high energy density experiments, as well as laser driven particle accelerators. We will discuss a series of experiments to demonstrate the needed beam amplification rate, and focal spot quality in a < 3mm plasma with the properties needed for compression of these pulses (n{sub e} {approx} 10{sup 19}/cm{sup 3}, T{sub e} 200 to 300 eV) when the plasma is extended. The experiments use He plasmas produced with a 300 J, 1 ns, beam at the Jupiter Laser facility to amplify a counter-propagating, ultra-short pulse (USP) seed by a factor of 10x to 37x and study the dependence of the amplification, the associated non-linear wave response, and the resulting beam quality and energy, on the intensity of both seed and pump beam. In particular, a regime in which amplification of USP beams is achieved while maintaining a low angular divergence of the beam consistent with good focal spot quality will be discussed.

  11. Modeling silicon diode energy response factors for use in therapeutic photon beams.

    PubMed

    Eklund, Karin; Ahnesjö, Anders

    2009-10-21

    Silicon diodes have good spatial resolution, which makes them advantageous over ionization chambers for dosimetry in fields with high dose gradients. However, silicon diodes overrespond to low-energy photons, that are more abundant in scatter which increase with large fields and larger depths. We present a cavity-theory-based model for a general response function for silicon detectors at arbitrary positions within photon fields. The model uses photon and electron spectra calculated from fluence pencil kernels. The incident photons are treated according to their energy through a bipartition of the primary beam photon spectrum into low- and high-energy components. Primary electrons from the high-energy component are treated according to Spencer-Attix cavity theory. Low-energy primary photons together with all scattered photons are treated according to large cavity theory supplemented with an energy-dependent factor K(E) to compensate for energy variations in the electron equilibrium. The depth variation of the response for an unshielded silicon detector has been calculated for 5 x 5 cm(2), 10 x 10 cm(2) and 20 x 20 cm(2) fields in 6 and 15 MV beams and compared with measurements showing that our model calculates response factors with deviations less than 0.6%. An alternative method is also proposed, where we show that one can use a correlation with the scatter factor to determine the detector response of silicon diodes with an error of less than 3% in 6 MV and 15 MV photon beams.

  12. Generating Polarized High-Brightness Muon Beams With High-Energy Gammas

    SciTech Connect

    Yakimenko, Vitaly

    2009-01-22

    Hadron colliders are impractical at very high energies as effective interaction energy is a fraction of the energies of the beams and luminosity must rise as energy squared. Further, the prevailing gluon-gluon background radiation makes it difficult to sort out events. e{sup +}e{sup -} colliders, on other hand, are constrained at TeV energies by beamstrahlung radiation and also by cost as long linacs are required to avoid synchrotron radiation in the rings. A muon collider will have the same advantages in energy reach as an e{sup +}e{sup -} collider, but without prohibitive beamstrahlung- and synchrotron- radiation. Generation of the high-brightness polarized muon ({mu}{sup -}{mu}{sup +}) beams through gamma conversion into pairs in the nuclei field is considered in this paper. The dominant effect in the interaction of the high-energy photons with the solid target will be the production of electron-positron pairs. The low-phase space of the resulting muon beams adequately compensates for the small probability of generating a {mu}{sup -}{mu}{sup +} pair.

  13. Laboratory degradation of Kapton in a low energy oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1983-01-01

    An atomic oxygen ion beam, accelerated from a tunable microwave resonant cavity, was used at Lewis Research Center to bombard samples of the widely used polyimide Kapton. The Kapton experienced degradation and mass loss at high rates, which may be comparable to those found in Space Shuttle operations if the activation energy supplied by the beam enabled surface reactions with the ambient oxygen. The simulation reproduced the directionality (ram-wake dependence) of the degradiation, the change in optical properties of the degraded materials, and the structure seen in scanning electron micrographs of samples returned on the Shuttle Trails with a substituted argon ion beam produced no rapid degradation. Energy Dispersive X-ray Analysis (EDAX) showed significant surface composition changes in all bombarded samples. Mass loss rates and surface composition changes are discussed in terms of the possible oxidation chemistry of the interaction. Finally, the question of how the harmful degradation of materials in low earth orbit can be minimized is addressed.

  14. Low-energy ionization cooling of ions for beta beam sources

    SciTech Connect

    Neuffer, David; /Fermilab

    2007-10-01

    Rubbia et al.[1] have recently suggested that multiturn passage of a low-energy ion beam (v/c {approx_equal} 0.1) through a low-Z target can be used in the production of ions useable for beta-beam sources and that ionization cooling techniques can increase the circulating beam lifetime and thus enhance that production. Some parameters in their initial discussion are somewhat optimistic, and the conditions for 3-D cooling are not completely developed. In the present paper we reconsider some features of the scenarios and suggest some variations that may be more practical. While 3-D cooling is possible at these energies, mixing of longitudinal motion with both horizontal and vertical motion is necessary to obtain simultaneous cooling in all dimensions; we suggest lattice variations that would be needed. Direct and reverse kinematics are described and explored.

  15. A modular solid state detector for measuring high energy heavy ion fragmentation near the beam axis.

    PubMed

    Zeitlin, C J; Frankel, K A; Gong, W; Heilbronn, L; Lampo, E J; Leres, R; Miller, J; Schimmerling, W

    1994-01-01

    A multi-element solid state detector has been designed to measure fluences of fragments produced near the beam axis by high energy heavy ion beams in thick targets. The detector is compact and modular, so as to be readily reconfigured according to the range of fragment charges and energies to be measured. Preamplifier gain settings and detector calibrations are adjustable remotely under computer control. We describe the central detector, its associated detectors and electronics, triggering scheme, data acquisition and particle identification techniques, illustrated by data taken with 600 MeV/u 56Fe beams and thick polyethylene targets at the LBL Bevalac. The applications of this work to space radiation protection are discussed.

  16. Effectiveness of high energy electron beam against spore forming bacteria and viruses in slurry

    NASA Astrophysics Data System (ADS)

    Skowron, Krzysztof; Paluszak, Zbigniew; Olszewska, Halina; Wieczorek, Magdalena; Zimek, Zbigniew; Śrutek, Mścisław

    2014-08-01

    The aim of this study was to evaluate the efficacy of high energy electron beam effect against the most resistant indicators - spore forming bacteria (Clostridium sporogenes) and viruses (BPV) - which may occur in slurry. The applied doses of electron beam were 0, 1, 2, 3, 5, 7, 10 and 12 kGy. The theoretic inactivating dose of high energy electron beam for Clostridium sporogenes spores calculated based on the polynomial curve equation was 11.62 kGy, and determined on the basis of regression line equation for BPV virus was equal 23.49 kGy. The obtained results showed a quite good effectiveness of irradiation in bacterial spores inactivation, whereas relatively poor against viruses.

  17. Laboratory degradation of Kapton in a low energy oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1984-01-01

    An atomic oxygen ion beam, accelerated from a tunable microwave resonant cavity, was used at Lewis Research Center to bombard samples of the widely used polyimide Kapton. The Kapton experienced degradation and mass loss at high rates, which may be comparable to those found in Space Shuttle operations if the activation energy supplied by the beam enabled surface reactions with the ambient oxygen. The simulation reproduced the directionality (ram-wake dependence) of the degradation, the change in optical properties of the degraded materials, and the structure seen in scanning electron micrographs of samples returned on the Shuttle Trails with a substituted argon ion beam produced no rapid degradation. Energy Dispersive X-ray Analysis (EDAX) showed significant surface composition changes in all bombarded samples. Mass loss rates and surface composition changes are discussed in terms of the possible oxidation chemistry of the interaction. Finally, the question of how the harmful degradation of materials in low Earth orbit can be minimized is addressed.

  18. Nonlinear targeted energy transfer of two coupled cantilever beams coupled to a bistable light attachment

    NASA Astrophysics Data System (ADS)

    Mattei, P.-O.; Ponçot, R.; Pachebat, M.; Côte, R.

    2016-07-01

    In order to control the sound radiation by a structure, one aims to control vibration of radiating modes of vibration using "Energy Pumping" also named "Targeted Energy Transfer". This principle is here applied to a simplified model of a double leaf panel. This model is made of two beams coupled by a spring. One of the beams is connected to a nonlinear absorber. This nonlinear absorber is made of a 3D-printed support on which is clamped a buckled thin small beam with a small mass fixed at its centre having two equilibrium positions. The experiments showed that, once attached onto a vibrating system to be controlled, under forced excitation of the primary system, the light bistable oscillator allows a reduction of structural vibration up to 10 dB for significant amplitude and frequency range around the first two vibration modes of the system.

  19. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    NASA Astrophysics Data System (ADS)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  20. Nuclear Astrophysical studies using low-energy RI beams at CRIB

    SciTech Connect

    Yamaguchi, H.; Wakabayashi, Y.; Hayakawa, S.; Binh, D. N.; Kahl, D.; Kurihara, Y.; Kubono, S.; Niikura, M.; Teranishi, T.; He, J. J.; Kwon, Y. K.; Nishimura, S.; Togano, Y.; Iwasa, N.; Khiem, L. H.

    2009-05-04

    CRIB (CNS Radioactive Ion Beam separator) is a low-energy RI beam separator at the Center for Nuclear Study (CNS) of the University of Tokyo, used for various studies covering nuclear-astrophysical topics. An application of the RI beam at CRIB for the astrophysical studies is a new measurement of the proton resonance scattering on {sup 7}Be. The measurement was performed up to the excitation energy of 6.8 MeV, ans the excitation function above 3.5 MeV was successfully measured for the first time, providing important information about the reaction rate of {sup 7}Be(p,{gamma}){sup 8}B, which is the key reaction in the solar {sup 8}B neutrino production. A preliminary result of the {sup 7}Be+p experiment is presented.

  1. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    SciTech Connect

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  2. Measurement of the W mass with the DELPHI detector at LEP.

    NASA Astrophysics Data System (ADS)

    Parkes, Chris

    1997-04-01

    In 1996 LEP ran at centre of mass energies of 161 and 172 GeV. An integrated luminosity of approx. 10 pb-1 was collected by the DELPHI experiment at each energy. These data are used to measure the cross-section for the doubly resonant WW process at these energies. At 161 GeV this cross-section may be interpreted, within the Standard Model, as a measurement of the W mass. The method of direct reconstruction is used to obtain a W mass using the 172 GeV data. Results on trilinear gauge couplings are also given.

  3. Analysis of beamed-energy ramjet/scramjet performance

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Powers, M. V.; Zaretzky, C. L.

    1986-01-01

    A study has been performed on a laser-heated ramjet/scramjet vehicle concept for propulsion during the air-breathing portion of an orbital launch trajectory. The concept considers axisymmetric, high-thrust vehicles with external inlets and nozzles. Conceptual design and ramjet/scramjet cycle analysis are emphasized, with propulsive energy provided by combustion of on-board fuel. The conventional ramjet/scramjet combustion chamber is replaced by a laser energy absorption chamber. The elimination of on-board propellant can result in very high thrust-to-weight ratios and payload fractions, in a vehicle with a relatively small degree of mechanical complexity. The basic vehicle has a weight of 12,250 lbf, and a diameter of 5 meters, which is close to the size of the Apollo command module. The ramjet calculations are based on a Mach 3 isentropic inlet with a 13.7 degree half-angle conical tip. The scramjet analysis considers conical inlets with 10, 15, and 30 degree half-angles. Flight Mach numbers from 2 to 20 are considered in the calculations.

  4. Output beam energy measurement of a 100-MeV KOMAC drift tube linac by using a stripline beam position monitor

    NASA Astrophysics Data System (ADS)

    Kim, Han-Sung

    2015-10-01

    The 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex) is composed of a 50-keV proton injector, a 3-MeV RFQ (radio-frequency quadrupole) and a 100-MeV DTL (drift tube linac). The proton beam is accelerated from 3 MeV to 100 MeV through 11 DTL tanks. The precise measurement of the proton-beam's energy at the output of each DTL tank is important for the longitudinal beam dynamics and can be performed by using a time-of-flight method with a BPM (beam position monitor), which is installed between each DTL tank. The details of the output beam energy measurement of the KOMAC DTL with stripline-type BPM and BPM signal processing, along with a comparison with the simulation results, will be presented in this paper.

  5. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    NASA Astrophysics Data System (ADS)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  6. Energy deposition through radiative processes in absorbers irradiated by electron beams

    NASA Astrophysics Data System (ADS)

    Tatsuo, Tabata; Pedro, Andreo; Kunihiko, Shinoda; Rinsuke, Ito

    1994-09-01

    The component of energy deposition due to radiative processes (bremsstrahlung component) in absorbers irradiated by electron beams has been computed together with the total energy deposition by using the ITS Monte Carlo system version 3.0. Plane-parallel electron beams with energies from 0.1 to 100 MeV have been assumed to be incident normally on the slab absorber, whose thickness is 2.5 times the continuous slowing-down approximation (csda) range of the incident electrons. Absorber materials considered are elemental solids with atomic numbers between 4 and 92 (Be, C, Al, Cu, Ag, Au and U). An analytic formula is given to express the depth profile of the bremsstrahlung component as a function of scaled depth (depth in units of the csda range), incident-electron energy and absorber atomic number. It is also applicable to compounds.

  7. A new technique of beam energy resolution by using only quadrupole magnets

    NASA Astrophysics Data System (ADS)

    Sarma, P. R.

    2003-08-01

    In the standard technique of beam energy resolution one uses the property of momentum dispersion by dipole magnets. It is shown that one can, alternatively, use three quadrupole magnets to select the beam momentum or energy. The lengths and magnetic fields of the quadrupoles can be adjusted to focus the particles of the required energy and simultaneously defocus the particles of higher or lower energies. For obtaining a very high resolving power one can use such triplets in cascade. The resolving powers of these are multiplicative, whereas in the case of dipoles one can use just two bending magnets for roughly doubling the resolving power. This method is different from the technique used in quadrupole mass filters where RF field is used in quadrupoles.

  8. The optical band gap and surface free energy of polyethylene modified by electron beam irradiations

    NASA Astrophysics Data System (ADS)

    Abdul-Kader, A. M.

    2013-04-01

    In this study, investigations have been carried out on electron beam irradiated ultra high molecular weight polyethylene (UHMWPE). Polyethylene samples were irradiated with 1.5 MeV electron beam at doses ranging from 50 to 500 kGy. Modifications in optical properties and photoluminescence behavior of the polymer were evaluated by UV-vis and photoluminescence techniques. Changes of surface layer composition of UHMWPE produced by electron irradiations were studied by Rutherford back scattering spectrometry (RBS). The change in wettability and surface free energy induced by irradiations was also investigated. The optical absorption studies reveal that both optical band gap and Urbach's energy decreases with increasing electron dose. A correlation between energy gap and the number of carbon atoms in clusters is discussed. Photoluminescence spectra were reveal remarkable decrease in the integrated luminescence intensity with increasing irradiation dose. Contact angle measurements showed that wettability and surface free energy increases with increasing the irradiation dose.

  9. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  10. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  11. PIP-II Injector Test’s Low Energy Beam Transport: Commissioning and Selected Measurements

    SciTech Connect

    Shemyakin, A.; Alvarez, M.; Andrews, R.; Carneiro, J.-P.; Chen, A.; Hanna, B.; Prost, L.; Scarpine, V.; D'Arcy, R.; Wiesner, C.

    2016-09-16

    The PIP2IT test accelerator is under construction at Fermilab. Its ion source and Low Energy Beam Transport (LEBT) in its initial (straight) configuration have been commissioned to full specification parameters. This paper introduces the LEBT design and summarizes the outcome of the commissioning activities.

  12. Generating High-Brightness Light Ion Beams for Inertial Fusion Energy

    SciTech Connect

    Adams, R.G.; Bailey, J.E.; Cuneno, M.E.; Desjarlais, M.P.; Filuk, A.B.; Hanson, D.L.; Johnson, D.J.; Mehlohorn, T.A.; Menge, P.R.; Olson, C.L.; Pointon, T.D. Slutz, S.A.; Vesey, R.A.; Welch, D.R.; Wenger, D.F.

    1998-10-22

    Light ion beams may be the best option for an Inertial Fusion Energy (IFE) driver from the standpoint of ei%ciency, standoff, rep-rate operation and cost. This approach uses high-energy-density pulsed power to efficiently accelerate ions in one or two stages at fields of 0.5 to 1.0 GV/m to produce a medium energy (30 MeV), high-current (1 MA) beam of light ions, such as lithium. Ion beams provide the ability for medium distance transport (4 m) of the ions to the target, and standofl of the driver from high- yield implosions. Rep-rate operation of' high current ion sources has ako been demonstrated for industrial applications and couId be applied to IFE. Although (hese factors make light ions the best Iong-teml pulsed- power approach to IFE, light-ion research is being suspended this year in favor of a Z-pinch-driven approach which has the best opport lnity to most-rapidly achieve the U.S. Department of Energy sponsor's goal of high-yield fusion. This paper will summarize the status and most recent results of the light-ion beam program at Sandia National Laboratories (SNL), and document the prospects of light ions for future IFE driver development.

  13. Dual-Source Multi-Energy CT with Triple or Quadruple X-ray Beams

    PubMed Central

    Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2016-01-01

    Energy-resolved photon-counting CT (PCCT) is promising for material decomposition with multi-contrast agents. However, corrections for non-idealities of PCCT detectors are required, which are still active research areas. In addition, PCCT is associated with very high cost due to lack of mass production. In this work, we proposed an alternative approach to performing multi-energy CT, which was achieved by acquiring triple or quadruple x-ray beam measurements on a dual-source CT scanner. This strategy was based on a “Twin Beam” design on a single-source scanner for dual-energy CT. Examples of beam filters and spectra for triple and quadruple x-ray beam were provided. Computer simulation studies were performed to evaluate the accuracy of material decomposition for multi-contrast mixtures using a tri-beam configuration. The proposed strategy can be readily implemented on a dual-source scanner, which may allow material decomposition of multi-contrast agents to be performed on clinical CT scanners with energy-integrating detector. PMID:27330237

  14. Calculation of the characteristics of clinical high-energy photon beams with EGS5-MPI

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Morishita, Y.; Kato, M.; Kurosawa, T.; Tanaka, T.; Takata, N.; Saito, N.

    2014-03-01

    A graphite calorimeter has been developed as a Japanese primary standard of absorbed dose to water in the high-energy photon beams from a clinical linac. To obtain conversion factors for the graphite calorimeter, the beam characteristics of the high-energy photon beams from the clinical linac at National Metrology Institute of Japan were calculated with the EGS5 Monte Carlo simulation code. To run the EGS5 code on High Performance Computing machines that have more than 1000 CPU cores, we developed the EGS5 parallelisation package "EGS5-MPI" by implementing a message-passing interface. We calculated the photon energy spectra, which are in good agreement with those previously calculated by D. Sheikh-Bagheri and D. W. O. Rogers (Med. Phys. 29 3). We also estimated the percentage-depth-dose distributions of photon beams from the linac using the calculated photon energy spectra. These calculated percentage-depth-dose distributions were compared with our measured distributions and were found they are in good agreement as well. We will calculate conversion factors for the graphite calorimeter using our results.

  15. AREAL low energy electron beam applications in life and materials sciences

    NASA Astrophysics Data System (ADS)

    Tsakanov, V. M.; Aroutiounian, R. M.; Amatuni, G. A.; Aloyan, L. R.; Aslanyan, L. G.; Avagyan, V. Sh.; Babayan, N. S.; Buniatyan, V. V.; Dalyan, Y. B.; Davtyan, H. D.; Derdzyan, M. V.; Grigoryan, B. A.; Grigoryan, N. E.; Hakobyan, L. S.; Haroutyunian, S. G.; Harutiunyan, V. V.; Hovhannesyan, K. L.; Khachatryan, V. G.; Martirosyan, N. W.; Melikyan, G. S.; Petrosyan, A. G.; Petrosyan, V. H.; Sahakyan, A. A.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Tatikyan, S. Sh.; Tsakanova, G. V.; Tsovyan, E.; Vardanyan, A. S.; Vardanyan, V. V.; Yeremyan, A. S.; Yeritsyan, H. N.; Zanyan, G. S.

    2016-09-01

    The AREAL laser-driven RF gun provides 2-5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  16. Reducing adhesion energy of micro-relay electrodes by ion beam synthesized oxide nanolayers

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Peschot, Alexis; Osoba, Benjamin; Ko, Changhyun; Rubin, Leonard; Liu, Tsu-JaeKing; Wu, Junqiao

    2017-03-01

    Reduction in the adhesion energy of contacting metal electrode surfaces in nano-electro-mechanical switches is crucial for operation with low hysteresis voltage. We demonstrate that by forming thin layers of metal-oxides on metals such as Ru and W, the adhesion energy can be reduced by up to a factor of ten. We employ a low-energy ion-beam synthesis technique and subsequent thermal annealing to form very thin layers (˜2 nm) of metal-oxides (such as RuO2 and WOx) on Ru and W metal surfaces and quantify the adhesion energy using an atomic force microscope with microspherical tips.

  17. The energy calibration of x-ray absorption spectra using multiple-beam diffraction

    SciTech Connect

    Hagelstein, M.; Cunis, S. ); Frahm, R. ); Rabe, P. )

    1992-01-01

    A new method for calibrating the energy scale of x-ray absorption spectra from an energy dispersive spectrometer has been developed. Distinct features in the diffracted intensity of the curved silicon crystal monochromator have been assigned to multiple-beam diffraction. The photon energies of these structures can be calculated if the precise spacing of the diffracting planes and the orientation of the crystal relative to the incident synchrotron radiation are known. The evaluation of Miller indices of operative reflections and the calculation of the corresponding photon energy is presented. The assignment of operative reflexes is simplified if the monochromator crystal can be rotated around the main diffracting vector {bold H}.

  18. Investigation of beamed-energy ERH thruster performance

    NASA Technical Reports Server (NTRS)

    Myrabo, Leik N.; Strayer, T. Darton; Bossard, John A.; Richard, Jacques C.; Gallimore, Alec D.

    1986-01-01

    The objective of this study was to determine the performance of an External Radiation Heated (ERH) thruster. In this thruster, high intensity laser energy is focused to ignite either a Laser Supported Combustion (LSC) wave or a Laser Supported Detonation (LSD) wave. Thrust is generated as the LSC or LSD wave propagates over the thruster's surface, or in the proposed thruster configuration, the vehicle afterbody. Thrust models for the LSC and LSD waves were developed and simulated on a computer. Performance parameters investigated include the effect of laser intensity, flight Mach number, and altitude on mean-thrust and coupling coefficient of the ERH thruster. Results from these models suggest that the ERH thruster using LSC/LSD wave ignition could provide propulsion performance considerably greater than any propulsion system currently available.

  19. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in  60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  20. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-08

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  1. Synchronous timing of multi-energy fast beam extraction during a single AGS cycle

    SciTech Connect

    Gabusi, J.; Naase, S.

    1985-01-01

    Synchronous triggering of fast beams is required because the field of Kicker Magnets must rise within the open space between one beam bunch and the next. Within the Brookhaven AGS, Fast Extracted Beam (FEB) triggering combines nominal timing, based on beam energy with bunch-to-bunch synchronization, based on the accelerating rf waveform. During beam acceleration, a single bunch is extracted at 22 GeV/c and within the same AGS cycle, the remaining eleven bunches are extracted at 28.4 GeV/c. When the single bunch is extracted, a ''hole'', which is left in the remaining circulating beam, can appear in random locations within the second extraction during successive AGS cycles. To overcome this problem, a synchronous rf/12 counting scheme and logic circuitry are used to keep track of the bunch positions relative to each other, and to place the ''hole'' in any desired location within the second extraction. The rf/12 signal is used also to synchronize experimenters triggers.

  2. Charge neutralized low energy beam transport at Brookhaven 200 MeV linac

    SciTech Connect

    Raparia, D. Alessi, J.; Atoian, G.; Zelenski, A.

    2016-02-15

    The H{sup −} magnetron source provides about 100 mA H{sup −} beam to be match into the radio-frequency quadrupole accelerator. As H{sup −} beam traverses through low energy transport, it ionizes the residual gas and electrons are repelled and positive ions are trapped in the beam, due to negative potential of the beam, providing charge neutralization for the H{sup −} beam. The neutralization time for the critical density depends upon the background gas and its pressure. Critical density for xenon gas at 35 keV is about 43 times smaller than that of hydrogen and stripping cross section is only 5 times than that of hydrogen gas. We are using xenon gas to reduce neutralization time and to improve transmission through the 200 MeV linac. We are also using pulse nitrogen gas to improve transmission and stability of polarized H{sup −} beam from optically pumped polarized ion source.

  3. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam.

    PubMed

    Manzi, Nicholas J; Chitnis, Parag V; Holt, R Glynn; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark

    2010-04-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 muC will be reported on. Cavitation was initially detected for a beam charge of 0.082 muC by the presence of an acoustic emission approximately 250 mus after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 muC and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber ( approximately 300 mus), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  4. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  5. Ion energy distribution near a plasma meniscus for multielement focused ion beams

    SciTech Connect

    Mathew, Jose V.; Bhattacharjee, Sudeep

    2009-05-01

    The axial ion energy spread near a plasma meniscus for multielement focused ion beams is investigated experimentally in atomic and molecular gaseous plasmas of krypton, argon, and hydrogen by tailoring the magnetic field in the region. In the case of magnetic end plugging, the ion energy spread reduces by approx50% near the meniscus as compared to the bulk plasma, thereby facilitating beam focusing. A quadrupole filter can be used to control the mean energy of the ions. Comparison with standard Maxwellian and Druyvesteyn distributions with the same mean energy indicates that the ion energy distribution in the meniscus is deficient in the population of low and high energy tail ions, resulting in a Gaussian-like profile with a spread of approx4 and approx5 eV for krypton and argon ions, respectively. By carefully tuning the wave power, plasma collisionality, and the magnetic field in the meniscus, the spread can be made lower than that of liquid metal ion sources, for extracting focused ion beams of other elements with adequate current density, for research and applications in nanosystems

  6. The effect of electron beams on cyclotron maser emission excited by lower-energy cutoffs

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.

    2016-05-01

    Electron-cyclotron maser (ECM) is one of the most important emission mechanisms in astrophysics and can be excited efficiently by lower-energy cutoffs of power-law electrons. These non-thermal electrons probably propagate as a directed collimated beam along ambient magnetic fields. This paper investigates the ECM, in which the effect of electron beams is emphasized. Results show the dependence of emission properties of the ECM on the beam feature. The maximum growth rate of the extraordinary mode (X2) rapidly decreases as the beam momentum increases, while the growth rate of the ordinary mode (O1) changes slightly. In particular, the ordinary mode can overcome the extraordinary mode and becomes the fastest growth mode once the beam momentum is large enough. This research presents an extension of the conventional studies on ECM driven by lower-energy cutoffs and may be helpful to understand better the emission process of solar type I radio bursts, which are dominated by the ordinary mode emission.

  7. Present and future experiments using bright low-energy positron beams

    NASA Astrophysics Data System (ADS)

    Hugenschmidt, Christoph

    2017-01-01

    Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.

  8. Energy harvesting of cantilever beam system with linear and nonlinear piezoelectric model

    NASA Astrophysics Data System (ADS)

    Borowiec, Marek

    2015-11-01

    The nonlinear beam with vertical combined excitations is proposed as an energy harvester. The nonlinearities are included both, in the beam model and also in the electrical subsystem. The system is modelled as a cantilever beam with included a tip mass and piezoelectric patches which convert the bending strains induced by both, the harmonic and the additive stochastic forces. The excitation affects in vertical directions by kinematic forcing into electrical charge. The first main goal is to analyse the dynamics of the electro-mechanical beam system and the influence of the mixed excitation forces into an effectiveness of the energy harvesting. Overcoming the potential barrier by the beam system is also analysed, where large output amplitudes occur. Such region of the vibration affects more power generation, which is crucial in terms of load resistors sensitivities. By increasing the additive noise level with fixed harmonic force it is observed the transition from single well oscillations to inter-well stochastic jumps. The second mail goal is analysing the influence of the piezoelectric nonlinear characteristic and compare the results to the linear piezoelectric cases. The output power is measured during different system behaviours provided by different piezoelectric characteristic as well as introduced stochastic components by modulated tip mass of the system.

  9. An Energy-Stabilized Varied-Line-Space-Monochromator UndulatorBeam Line for PEEM Illumination and Magnetic Circular Dichroism

    SciTech Connect

    Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

    2006-06-01

    A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy.

  10. The Measurement of the Number of Light Neutrino Species at LEP

    NASA Astrophysics Data System (ADS)

    Mele, Salvatore

    2015-07-01

    Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the `invisible' width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the e^-e^+ to ν bar{ν}γ process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. Alongside other LEP achievements, the precision of this result is a testament to the global cooperation underpinning CERN's fourth decade. LEP saw the onset of large-scale collaboration across experiments totaling over 2000 scientists, together with a strong partnership within the wider high-energy physics community: from accelerator operations to the understanding of theoretical processes.

  11. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  12. Note on numerical study of the beam energy spread in NDCX-I

    SciTech Connect

    Vay, J.-L.; Seidl, P.A.; Friedman, A.

    2011-01-19

    The kinetic energy spread (defined here as the standard deviation of the beam particle energies) sets the ultimate theoretical limit on the longitudinal compression that can be attained on NDCX-I and NDCX-II. Experimental measurements will inevitably include the real influences on the longitudinal phase space of the beam due to injector and accelerator field imperfections1. These induced energy variations may be the real limit to the longitudinal compression in an accelerator. We report on a numerical investigation of the energy spread evolution in NDCX-I; these studies do not include all the real imperfections, but rather are intended to confirm that there are no other intrinsic mechanisms (translaminar effects, transverse-longitudinal anisotropy instability, etc.) for significant broadening of the energy distribution. We have performed Warp simulations that use a realistic Marx voltage waveform which was derived from experimental measurements (averaged over several shots), a fully-featured model of the accelerating and focusing lattice, and new diagnostics for computing the local energy spread (and temperature) that properly account for linear correlations that arise from the discrete binning along each physical dimension (these capabilities reproduce and extend those of the earlier HIF code BPIC). The new diagnostics allow for the calculation of multi-dimensional maps of energy spread and temperature in 2-D axisymmetric or 3-D Cartesian space at selected times. The simulated beam-line was terminated at z = 3 m by a conducting plate, so as to approximately reproduce the experimental conditions at the entrance of the spectrometer that was used for mapping the longitudinal phase space. Snapshots of the beam projection and current, as well as the Marx waveform and history of beam kinetic energy collected at the end plate, are shown in Fig. 1. A two-dimensional axisymmetric map of energy spread from simulations of a typical NDCX-I configuration is shown in Fig. 2 (a

  13. Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam

    NASA Astrophysics Data System (ADS)

    Xu, Chundong; Liang, Zhu; Ren, Bo; Di, Wenning; Luo, Haosu; Wang, Dong; Wang, Kailing; Chen, Zhifang

    2013-09-01

    Bi-stable piezoelectric energy harvester has been found as a promising structure for vibration energy harvesting. This paper presents a high performance and simple structure bi-stable piezoelectric energy harvester based on simply supported piezoelectric buckled beam. The potential energy function is established theoretically, and electrical properties of the device under different axial compressive displacements, excitation frequencies, and accelerations are investigated systematically. Experimental results demonstrate that the output properties and bandwidth of the bi-stable nonlinear energy harvester under harmonic mechanical excitation are improved dramatically compared with the traditional linear energy harvester. The device demonstrates the potential in energy harvesting application to low-power portable electronics and wireless sensor nodes.

  14. Plasma effects on extragalactic ultra-high-energy cosmic ray hadron beams in cosmic voids

    SciTech Connect

    Krakau, S.; Schlickeiser, R. E-mail: rsch@tp4.rub.de

    2014-07-01

    The linear instability of an ultrarelativistic hadron beam (Γ {sub b} ≈ 10{sup 6}) in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of collective electrostatic and aperiodic electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays (E > 10{sup 15} eV) from their distant sources to Earth. We calculate minimum instability growth times that are orders of magnitude shorter than the cosmic ray propagation time in the IGM. Due to nonlinear effects, especially the modulation instability, the cosmic ray beam stabilizes and can propagate with nearly no energy loss through the IGM.

  15. High-energy nanosecond radially polarized beam output from Nd:YAG amplifiers

    NASA Astrophysics Data System (ADS)

    Chang, Chengcheng; Chen, Xudong; Pu, Jixiong

    2017-03-01

    Radially polarized laser beam amplification up to the 772 mJ using flash-lamp-pumped Nd:YAG amplifiers was demonstrated. In the experiments, a nanosecond radially polarized seed beam was converted from a conventional Q-switched Nd:YAG laser output with a polarization converter and then amplified with two Nd:YAG amplifier stages. A maximum amplification output energy up to 772 mJ was achieved at 10 Hz with a 10-ns pulse, corresponding to an amplification factor of 323%. Excellent conservation of polarization was also obtained during the amplification.

  16. Short-pulse, high-energy radiation generation from laser-wakefield accelerated electron beams

    NASA Astrophysics Data System (ADS)

    Schumaker, Will

    2013-10-01

    Recent experimental results of laser wakefield acceleration (LWFA) of ~GeV electrons driven by the 200TW HERCULES and the 400TW ASTRA-GEMINI laser systems and their subsequent generation of photons, positrons, and neutrons are presented. In LWFA, high-intensity (I >1019 W /cm2), ultra-short (τL < 1 / (2 πωpe)) laser pulses drive highly nonlinear plasma waves which can trap ~ nC of electrons and accelerate them to ~GeV energies over ~cm lengths. These electron beams can then be converted by a high-Z target via bremsstrahlung into low-divergence (< 20 mrad) beams of high-energy (<600 MeV) photons and subsequently into positrons via the Bethe-Heitler process. By increasing the material thickness and Z, the resulting Ne+ /Ne- ratio can approach unity, resulting in a near neutral density plasma jet. These quasi-neutral beams are presumed to retain the short-pulse (τL < 40 fs) characteristic of the electron beam, resulting in a high peak density of ne- /e+ ~ 1016 cm-3 , making the source an excellent candidate for laboratory study of astrophysical leptonic jets. Alternatively, the electron beam can be interacted with a counter-propagating, ultra-high intensity (I >1021 W /cm2) laser pulse to undergo inverse Compton scattering and emit a high-peak brightness beam of high-energy photons. Preliminary results and experimental sensitivities of the electron-laser beam overlap are presented. The high-energy photon beams can be spectrally resolved using a forward Compton scattering spectrometer. Moreover, the photon flux can be characterized by a pixelated scintillator array and by nuclear activation and (γ,n) neutron measurements from the photons interacting with a secondary solid target. Monte-Carlo simulations were performed using FLUKA to support the yield estimates. This research was supported by DOE/NSF-PHY 0810979, NSF CAREER 1054164, DARPA AXiS N66001-11-1-4208, SF/DNDO F021166, and the Leverhulme Trust ECF-2011-383.

  17. Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow

    NASA Astrophysics Data System (ADS)

    Akcabay, Deniz Tolga; Young, Yin Lu

    2012-05-01

    Electroactive polymers such as piezoelectric elements are able to generate electric potential differences from induced mechanical deformations. They can be used to build devices to harvest ambient energy from natural flow-induced deformations, e.g., as flapping flags subject to flowing wind or artificial seaweed subject to waves or underwater currents. The objectives of this study are to (1) investigate the transient hydroelastic response and energy harvesting potential of flexible piezoelectric beams fluttering in incompressible, viscous flow, and (2) identify critical non-dimensional parameters that govern the response of piezoelectric beams fluttering in viscous flow. The fluid-structure interaction response is simulated using an immersed boundary approach coupled with a finite volume solver for incompressible, viscous flow. The effects of large beam deformation, membrane tension, and coupled electromechanical responses are all considered. Validation studies are shown for the motion of a flexible filament in uniform flow, and for a piezoelectric beam subject to base vibration. The predicted flutter velocities and frequencies also compared well with published experimental and numerical data over a range of Reynolds numbers for varying fluid and solid combinations. The results showed that for a heavy beam in a light fluid (i.e., high βρ regime), flutter incepts at a lower critical speed with a lower reduced frequency than for a light beam in a heavy fluid (i.e., low βρ regime). In the high βρ regime, flutter develops at the second mode and is only realized when the fluid inertial forces are in balance with the solid elastic restoring forces, which leads to large amplitude oscillations and complex wake patterns; the flutter speed is practically independent of the Reynolds number (Re) and solid to fluid mass ratio (βρ), because the response is dominated by the solid inertial forces. In the low βρ regime, fluid inertial forces dominate, flutter develops at

  18. Radiation hygienization of cattle and swine slurry with high energy electron beam

    NASA Astrophysics Data System (ADS)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-06-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms.

  19. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    SciTech Connect

    Lan, C. B.; Qin, W. Y.

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  20. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    SciTech Connect

    Zhao, Nian; Yang, Jin Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  1. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  2. First polarized proton collision at a beam energy of 250 GeV in RHIC

    SciTech Connect

    Bai,M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; et al.

    2009-05-04

    After providing collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider (RHIC) at BNL had its first opportunity to collide polarized protons at its maximum beam energy of 250 GeV in the 2009 polarized proton operations. Equipped with two full Siberian snakes [1] in each ring, RHIC preserves polarization during acceleration from injection to 100 GeV with precise control of the betatron tunes and vertical orbit distortions. However, the strong intrinsic spin resonances beyond 100 GeV are more than two times stronger than those below 100 GeV, requiring much tighter tolerances on vertical orbit distortions and betatron tunes. With the currently achieved orbit correction and tune control, average polarizations of {approx_equal} 42% at top energy and average polarizations of {approx_equal} 55% at injection energy were achieved. Polarization measurements as a function of beam energy also indicated aU polarization losses occurred around three strong intrinsic resonances at 136 GeV, 199.3 GeV and 220.8 GeV Peak luminosity of 122 x 10{sup 30} cm{sup -2} s{sup -1} was also demonstrated. This paper presents the performance of the first RHIC 250 GeV operation and discusses the depolarization issues encountered during the run.

  3. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  4. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  5. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas <2 MeV, an AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  6. LD-pumped erbium and neodymium lasers with high energy and output beam quality

    NASA Astrophysics Data System (ADS)

    Kabanov, Vladimir V.; Bezyazychnaya, Tatiana V.; Bogdanovich, Maxim V.; Grigor'ev, Alexandr V.; Lebiadok, Yahor V.; Lepchenkov, Kirill V.; Ryabtsev, Andrew G.; Ryabtsev, Gennadii I.; Shchemelev, Maxim A.

    2013-05-01

    Physical and fabrication peculiarities which provide the high output energy and beam quality for the diode pumped erbium glass and Nd:YAG lasers are considered. Developed design approach allow to make passively Q-switched erbium glass eye-safe portable laser sources with output energy 8 - 12 mJ (output pulse duration is less than 25 ns, pulse repetition rate up to 5 Hz) and beam quality M2 less than 1.3. To reach these values the erbium laser pump unit parameters were optimized also. Namely, for the powerful laser diode arrays the optimal near-field fill-factor, output mirror reflectivity and heterostructure properties were determined. Construction of advanced diode and solid-state lasers as well as the optical properties of the active element and the pump unit make possible the lasing within a rather wide temperature interval (e.g. from minus forty till plus sixty Celsius degree) without application of water-based chillers. The transversally pumped Nd:YAG laser output beam uniformity was investigated depending on the active element (AE) pump conditions. In particular, to enhance the pump uniformity within AE volume, a special layer which practically doesn't absorb the pump radiation but effectively scatters the pump and lasing beams, was used. Application of such layer results in amplified spontaneous emission suppression and improvement of the laser output beam uniformity. The carried out investigations allow us to fabricate the solid-state Nd:YAG lasers (1064 nm) with the output energy up to 420 mJ at the pulse repetition rate up to 30 Hz and the output energy up to 100 mJ at the pulse repetition rate of of 100 Hz. Also the laser sources with following characteristics: 35 mJ, 30 Hz (266 nm); 60 mJ, 30 Hz (355 nm); 100 mJ, 30 Hz (532 nm) were manufactured on the base of the developed Nd:YAG quantrons.

  7. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    PubMed

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  8. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    NASA Astrophysics Data System (ADS)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  9. Energy monitoring device for 1.5-2.4 MeV electron beams

    NASA Astrophysics Data System (ADS)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  10. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  11. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  12. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    SciTech Connect

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  13. Generation of high-energy neutron beam by fragmentation of relativistic heavy nuclei

    NASA Astrophysics Data System (ADS)

    Yurevich, Vladimir

    2016-09-01

    The phenomenon of multiple production of neutrons in reactions with heavy nuclei induced by high-energy protons and light nuclei is analyzed using a Moving Source Model. The Lorentz transformation of the obtained neutron distributions is used to study the neutron characteristics in the inverse kinematics where relativistic heavy nuclei bombard a light-mass target. The neutron beam generated at 0∘has a Gaussian shape with a maximum at the energy of the projectile nucleons and an energy resolution σE/E < 4% above 6 GeV.

  14. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  15. Dynamics of Finite Energy Airy Beams Carrying Orbital Angular Momentum in Multilevel Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Wu, Zhenkun; Wang, Shun; Hu, Weifei; Gu, Yuzong

    2016-10-01

    We numerically investigate the dynamics of inward circular finite-energy Airy beams carrying different orbital angular momentum (OAM) numbers in a close-Λ three-level atomic vapor with the electromagnetically induced transparency (EIT) window. We report that due to the EIT induced by the microwave field, the transverse intensity distribution properties of Airy beam can be feasibly manipulated and modulated through adjusting OAM numbers l and the frequency detuning, as well as the propagation distance, in the multi-level atomic systems. What's more, the rotation of the beam also can be observed with different positions in atomic ensembles. The investigation may provide a useful tool for studying particle manipulation, signal processing and propagation in graded-index (GRIN) fibers.

  16. A new medium energy beam transport line for the proton injector of AGS-RHIC

    SciTech Connect

    Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J.; Hayashizaki, N.

    2010-09-12

    In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.

  17. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams

    SciTech Connect

    Yang, Aichao; Li, Ping Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-15

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170–206 Hz has 28–188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137–1.43 mW output power corresponding to 0.035–0.36 μW cm{sup −3} volume power density at 170–206 Hz.

  18. Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Lu, Caijiang; Peng, Xiao; He, Wei; Zhang, Jitao; Wang, Decai; Yang, Feng

    2014-06-01

    A high-efficiency broadband acoustic energy harvester consisting of a compliant-top-plate Helmholtz resonator (HR) and dual piezoelectric cantilever beams is proposed. Due to the high mechanical quality factor of beams and the strong multimode coupling of HR cavity, top plate and beams, the high efficiency in a broad bandwidth is obtained. Experiment exhibits that the proposed harvester at 170-206 Hz has 28-188 times higher efficiency than the conventional harvester using a HR with a piezoelectric composite diaphragm. For input acoustic pressure of 2.0 Pa, the proposed harvester exhibits 0.137-1.43 mW output power corresponding to 0.035-0.36 μW cm(-3) volume power density at 170-206 Hz.

  19. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  20. Induction of Micronuclei in Human Fibroblasts from the Los Alamos High Energy Neutron Beam

    NASA Technical Reports Server (NTRS)

    Cox, Bradley

    2009-01-01

    The space radiation field includes a broad spectrum of high energy neutrons. Interactions between these neutrons and a spacecraft, or other material, significantly contribute to the dose equivalent for astronauts. The 15 degree beam line in the Weapons Neutron Research beam at Los Alamos Nuclear Science Center generates a neutron spectrum relatively similar to that seen in space. Human foreskin fibroblast (AG1522) samples were irradiated behind 0 to 20 cm of water equivalent shielding. The cells were exposed to either a 0.05 or 0.2 Gy entrance dose. Following irradiation, micronuclei were counted to see how the water shield affects the beam and its damage to cell nuclei. Micronuclei induction was then compared with dose equivalent data provided from a tissue equivalent proportional counter.

  1. Electromagnetic dispersion characteristics of a high energy electron beam guided with an ion channel

    NASA Astrophysics Data System (ADS)

    Jixiong, Xiao; Zhong, Zeng; Zhijiang, Wang; Donghui, Xia; Changhai, Liu

    2017-02-01

    Taking self-fields into consideration, dispersion properties of two types of electromagnetic modes for a high energy electron beam guided with an ion channel are investigated by using the linear perturbation theory. The dependences of the dispersion frequencies of electromagnetic waves on the electron beam radius, betatron frequency and boundary current are revealed. It is found that the electron beam radius and betatron frequency have different influences on the electromagnetic waves dispersion behavior by compared with the previous works. As the boundary current is taken into account, the TM modes will have two branches and a low-frequency branch emerged as the new branch in strong ion channel case. This new branch has similar dispersion behavior to the betatron modes. For TE modes, there are two branches and they have different dispersion behaviors in strong ion channel case. However, in weak ion channel case, the dispersion behaviors for both of the low frequency and high frequency branches are similar.

  2. A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, P.; Van Eldik, J.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2011-02-01

    The nature of b-quark jet hadronisation has been investigated using data taken at the Z peak by the DELPHI detector at LEP. Two complementary methods are used to reconstruct the energy of weakly decaying b-hadrons, EB^{weak}. The average value of x^{weak}B = EB^{weak}/E_{beam} is measured to be 0.699±0.011. The resulting x^{weak}B distribution is then analysed in the framework of two choices for the perturbative contribution (parton shower and Next to Leading Log QCD calculation) in order to extract measurements of the non-perturbative contribution to be used in studies of b-hadron production in other experimental environments than LEP. In the parton shower framework, data favour the Lund model ansatz and corresponding values of its parameters have been determined within PYTHIA 6.156 from DELPHI data: a= 1.84^{+0.23}_{-0.21}quadandquad b=0.642^{+0.073}_{-0.063} GeV^{-2}, with a correlation factor ρ=92.2%. Combining the data on the b-quark fragmentation distributions with those obtained at the Z peak by ALEPH, OPAL and SLD, the average value of x^{weak}B is found to be 0.7092±0.0025 and the non-perturbative fragmentation component is extracted. Using the combined distribution, a better determination of the Lund parameters is also obtained: a= 1.48^{+0.11}_{-0.10}quadandquad b=0.509^{+0.024}_{-0.023} GeV^{-2}, with a correlation factor ρ=92.6%.

  3. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  4. Variation of sensitometric curves of radiographic films in high energy photon beams.

    PubMed

    Danciu, C; Proimos, B S; Rosenwald, J C; Mijnheer, B J

    2001-06-01

    Film dosimetry is an important tool for the verification of irradiation techniques. The shape of the sensitometric curve depends on the type of film as well as on the irradiation and processing conditions. Existing data concerning the influence of irradiation geometry on the sensitometric curve are conflicting. In particular the variation of optical density, OD, with field size and depth in a phantom shows large differences in magnitude between various authors. This variation, as well as the effect of beam energy and film plane orientation on OD, was therefore investigated for two types of film, Kodak X-Omat V and Agfa Structurix D2. Films were positioned in a solid phantom, either perpendicular or (almost) parallel to the beam axis, and irradiated to different dose levels using various photon beams (Co-60, 6 MV, 15 MV, 18 MV, 45 MV). It was found that the sensitometric curves of the Kodak film derived at different depths are almost identical for the four x-ray beams. For the Kodak film the differences in OD with depth are less than 2%, except for the Co-60 beam, where the difference is about 4% at 10 cm depth for a 15 cm x 15 cm field. The slope of the sensitometric curve of the Agfa film is somewhat more dependent on photon beam energy, depth and field size. The sensitometric curves of both types of film are almost independent of the film plane orientation, except for shallow depths. For Co-60 and for the same dose, the Kodak and Agfa films gave at dose maximum an OD lower by 4% and 6%, respectively, for the parallel compared to the perpendicular geometry. Good dosimetric results can be obtained if films from the same batch are irradiated with small to moderate field sizes (up to about 15 cm x 15 cm), at moderate depths (up to about 15 cm), using a single calibration curve, e.g., for a 10 cm x 10 cm field.

  5. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam

    NASA Astrophysics Data System (ADS)

    Lourenço, A.; Thomas, R.; Homer, M.; Bouchard, H.; Rossomme, S.; Renaud, J.; Kanai, T.; Royle, G.; Palmans, H.

    2017-04-01

    The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, {{k}\\text{fl}} , needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The {{k}\\text{fl}} term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the {{k}\\text{fl}} due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.

  6. Synchrotron radiation beam line for photons in the 700 eV - 7000 eV energy range

    SciTech Connect

    Ebert, P.J.; Anderson, C.J.

    1985-04-01

    The design of a beam line for synchrotron radiation research is described. The 700 to 7000 eV energy range to be covered is determined at low energy by the 2d spacing of easily obtainable diffraction crystals and at high energy by the cutoff of specular reflection of a Pt mirror. Two mirrors are used, the first to collimate the x-ray beam through a double crystal monochromator and the second to focus the collimated monochromatic beam on target. In this way, high monochromatic x-ray throughput is achieved with energy resolution limited by crystal diffraction properties.

  7. Nonlinear and long-term beam dynamics in low energy storage rings

    NASA Astrophysics Data System (ADS)

    Papash, A. I.; Smirnov, A. V.; Welsch, C. P.

    2013-06-01

    Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF+ ions at 93keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3-30 keV ions with a gas jet target are summarized.

  8. Beam-dynamics driven design of the LHeC energy-recovery linac

    DOE PAGES

    Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; ...

    2015-12-23

    The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less

  9. LHC cryogenics – new experience of run with increased beam energy and intensity

    NASA Astrophysics Data System (ADS)

    Brodzinski, K.; Claudet, S.; Delikaris, D.; Delprat, L.; Ferlin, G.; Rogez, E.; Tavian, L.

    2017-03-01

    After the LHC first long shut down (LS1), when necessary consolidation and maintenance activities were performed on different technical systems, the Large Hadron Collider was progressively cooled down from ambient to operation temperatures from May of 2014. Prior to physics run with increased beam energy to 6.5 TeV/beam, increased beam intensity and modified beam injection scheme, several qualifications and tests affecting cryogenic system have been performed to ensure stable run of the accelerator. New beam parameters were gradually applied to the accelerator, reducing operational margins of cryogenic capacity from previous run. The process optimization and related updates in the control system were applied. This paper will briefly recall the main consolidations performed on the cryogenic system during LS1. The cool down process and behaviour of the cryogenic system during qualifications and tests will be presented. Difficulties and applied solutions during the run will be discussed. The availability and helium losses statistics for full year operation of 2015 will be given.

  10. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.

    PubMed

    Arun, C; Palani Selvam, T; Dinkar, Verma; Munshi, Prabhat; Kalra, Manjit Singh

    2013-01-01

    This study presents Monte Carlo-calculated absolute and normalized (relative to a (60)Co beam) sensitivity values of silicon diode dosimeters for a variety of commercially available silicon diode dosimeters for radiotherapy photon beams in the energy range of (60)Co-24 MV. These values were obtained at 5 cm depth along the central axis of a water-equivalent phantom of 10 cm × 10 cm field size. The Monte Carlo calculations were based on the EGSnrc code system. The diode dosimeters considered in the calculations have different buildup materials such as aluminum, brass, copper, and stainless steel + epoxy. The calculated normalized sensitivity values of the diode dosimeters were then compared to previously published measured values for photon beams at (60)Co-20 MV. The comparison showed reasonable agreement for some diode dosimeters and deviations of 5-17 % (17 % for the 3.4 mm brass buildup case for a 10 MV beam) for some diode dosimeters. Larger deviations of the measurements reflect that these models of the diode dosimeter were too simple. The effect of wall materials on the absorbed dose to the diode was studied and the results are presented. Spencer-Attix and Bragg-Gray stopping power ratios (SPRs) of water-to-diode were calculated at 5 cm depth in water. The Bragg-Gray SPRs of water-to-diode compare well with Spencer-Attix SPRs for ∆ = 100 keV and above at all beam qualities.

  11. Improved design of proton source and low energy beam transport line for European Spallation Source

    SciTech Connect

    Neri, L. Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Ciavola, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.

    2014-02-15

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  12. Collective Focusing of Intense Ion Beam Pulses for High-energy Density Physics Applications

    SciTech Connect

    Dorf, Mikhail A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2011-04-27

    The collective focusing concept in which a weak magnetic lens provides strong focusing of an intense ion beam pulse carrying a neutralizing electron background is investigated by making use of advanced particle-in-cell simulations and reduced analytical models. The original analysis by Robertson Phys. Rev. Lett. 48, 149 (1982) is extended to the parameter regimes of particular importance for several high-energy density physics applications. The present paper investigates (1) the effects of non-neutral collective focusing in a moderately strong magnetic field; (2) the diamagnetic effects leading to suppression of the applied magnetic field due to the presence of the beam pulse; and (3) the influence of a finite-radius conducting wall surrounding the beam cross-section on beam neutralization. In addition, it is demonstrated that the use of the collective focusing lens can significantly simplify the technical realization of the final focusing of ion beam pulses in the Neutralized Drift Compression Experiment-I (NDCX-I) , and the conceptual designs of possible experiments on NDCX-I are investigated by making use of advanced numerical simulations. 2011 American Institute of Physics

  13. Improved design of proton source and low energy beam transport line for European Spallation Source

    NASA Astrophysics Data System (ADS)

    Neri, L.; Celona, L.; Gammino, S.; Mascali, D.; Castro, G.; Torrisi, G.; Cheymol, B.; Ponton, A.; Galatà, A.; Patti, G.; Gozzo, A.; Lega, L.; Ciavola, G.

    2014-02-01

    The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). The design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.

  14. Low energy highly charged ion beam facility at Inter University Accelerator Centre: Measurement of the plasma potential and ion energy distributions

    SciTech Connect

    Sairam, T. Bhatt, Pragya; Safvan, C. P.; Kumar, Ajit; Kumar, Herendra

    2015-11-15

    A deceleration lens coupled to one of the beam lines of the electron cyclotron resonance based low energy beam facility at Inter University Accelerator Centre is reported. This system is capable of delivering low energy (2.5 eV/q–1 keV/q) highly charged ion beams. The presence of plasma potential hinders the measurements of low energies (<50 eV), therefore, plasma potential measurements have been undertaken using a retarding plate analyzer in unison with the deceleration assembly. The distributions of the ion energies have been obtained and the effect of different source parameters on these distributions is studied.

  15. Energy calibration of energy-resolved photon-counting pixel detectors using laboratory polychromatic x-ray beams

    NASA Astrophysics Data System (ADS)

    Youn, Hanbean; Han, Jong Chul; Kam, Soohwa; Yun, Seungman; Kim, Ho Kyung

    2014-10-01

    Recently, photon-counting detectors capable of resolving incident x-ray photon energies have been considered for use in spectral x-ray imaging applications. For reliable use of energy-resolved photon-counting detectors (ERPCDs), energy calibration is an essential procedure prior to their use because variations in responses from each pixel of the ERPCD for incident photons, even at the same energy, are inevitable. Energy calibration can be performed using a variety of methods. In all of these methods, the photon spectra with well-defined peak energies are recorded. Every pixel should be calibrated on its own. In this study, we suggest the use of a conventional polychromatic x-ray source (that is typically used in laboratories) for energy calibration. The energy calibration procedure mainly includes the determination of the peak energies in the spectra, flood-field irradiation, determination of peak channels, and determination of calibration curves (i.e., the slopes and intercepts of linear polynomials). We applied a calibration algorithm to a CdTe ERPCD comprised of 128×128 pixels with a pitch of 0.35 mm using highly attenuated polychromatic x-ray beams to reduce the pulse pile-up effect, and to obtain a narrow-shaped spectrum due to beam hardening. The averaged relative error in calibration curves obtained from 16,384 pixels was about 0.56% for 59.6 keV photons from an Americium radioisotope. This pixel-by-pixel energy calibration enhanced the signal- and contrast-to-noise ratios in images, respectively, by a factor of ~5 and 3 due to improvement in image homogeneity, compared to those obtained without energy calibration. One secondary finding of this study was that the x-ray photon spectra obtained using a common algorithm for computing x-ray spectra reasonably described the peaks in the measured spectra, which implies easier peak detection without the direct measurement of spectra using a separate spectrometer. The proposed method will be a useful alternative to

  16. Ultralow frequency acoustic bandgap and vibration energy recovery in tetragonal folding beam phononic crystal

    NASA Astrophysics Data System (ADS)

    Gao, Nansha; Wu, Jiu Hui; Yu, Lie; Hou, Hong

    2016-06-01

    This paper investigates ultralow frequency acoustic properties and energy recovery of tetragonal folding beam phononic crystal (TFBPC) and its complementary structure. The dispersion curve relationships, transmission spectra and displacement fields of the eigenmodes are studied with FEA in detail. Compared with the traditional three layer phononic crystal (PC) structure, this structure proposed in this paper not only unfold bandgaps (BGs) in lower frequency range (below 300 Hz), but also has lighter weight because of beam structural cracks. We analyze the relevant physical mechanism behind this phenomenon, and discuss the effects of the tetragonal folding beam geometric parameters on band structure maps. FEM proves that the multi-cell structures with different arrangements have different acoustic BGs when compared with single cell structure. Harmonic frequency response and piezoelectric properties of TFBPC are specifically analyzed. The results confirm that this structure does have the recovery ability for low frequency vibration energy in environment. These conclusions in this paper could be indispensable to PC practical applications such as BG tuning and could be applied in portable devices, wireless sensor, micro-electro mechanical systems which can recycle energy from vibration environment as its own energy supply.

  17. Electron-beam-pumped XeF(C->A) laser energy scaling

    NASA Astrophysics Data System (ADS)

    Litzenberger, Leonard N.; Smith, M. James; Pardue, Albert L., Jr.; Jones, R. W.; Stone, David

    1995-04-01

    The pulse output energy of the electron-beam pumped XeF(C->A) laser system has been increased by nearly two orders of magnitude relative to previously demonstrated values, to 170 J. This performance was achieved in an existing laser device, referred to as Scale-Up, which is pumped by a pair of three meter long, counterpropagating electron beams. The device was equipped with subaperture mirrors which were coated to be reflective in the blue-green portion of the visible spectrum. The reflectivity of the output coupler of the folded stable cavity was carefully selected to maximize the laser output energy. This choice involved a trade-off between the amount of time required for the intracavity flux to build up from noise to the saturation level, and the energy extraction efficiency under steady state oscillating conditions. The observed optical pulse duration of 0.8 microsecond(s) was in good agreement with the prediction of a flux buildup model which was developed during the design phase of this effort. The demo