Science.gov

Sample records for lepidopterous insect pests

  1. A SCAR-based method for rapid identification of four major lepidopterous stored-product pests.

    PubMed

    Yao, Me-Chi; Chang, Shu-Chen; Lee, Chi-Yang; Lu, Kuang-Hui

    2012-06-01

    Since Taiwan became a World Trade Organization member in 2002, large quantities of grain have been imported from different countries, and insect pests are frequently intercepted from these imported commodities in quarantine inspection. Because most insects are intercepted as immature forms, morphological identification is problematic; therefore, we developed a DNA identification method based on a sequence-characterized amplified region- polymerase chain reaction (SCAR-PCR). Three sets of multiplex SCAR-PCR mixtures, namely SCAR-I, -II, and -III, were developed with each set composed of four species-specific primer pairs derived from the genomic DNA of four major lepidopterous stored-product pests: Corcyra cephalonica (Stainton), Cadra cautella (Walker), Sitotroga cerealella Oliver, and Plodia interpunctella (Hübner). The SCAR-I amplicons of C. cephalonica, C. cautella, S. cerealella, and P. interpunctella were 205, 550, 324, 382 bp, respectively, while those of SCAR-II were 341, 565, 261, and 170 bp, and those of SCAR-III were 514, 555, 445, and 299 bp. These multiplex PCR mixtures could sensitively and unambiguously detect and identify in approximately 5 h individuals among the four lepidopterous pests intercepted in imported stored-products. In summary, the SCAR-PCR method we developed represents a rapid, sensitive and accurate technique for identifying insect species of stored products in plant quarantine operation.

  2. Corn insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the major corn insect pests in South Dakota have been the larvae of corn rootworms (northern and western), European corn borer, and black cutworm. Bt-corn hybrids are effective against most of these pests. However, there are also minor or sporadic pests of corn in South Dakota includin...

  3. Sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Like other annual crops, sunflowers are fed upon by a variety of insect pests capable of reducing yields. Though there are a few insects which are considered consistent or severe (e.g., sunflower moth, banded sunflower moth, red sunflower seed weevil), many more insects are capable of causing proble...

  4. Important Insect Pests of Fruit - Important Insect Pests of Nuts - Field Crop Insect Pests - Insect Pests of Vegetable Crops.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.; And Others

    This document consists of four agriculture extension service publications from Pennsylvania State University. The titles are: (1) Important Insect Pests of Fruit; (2) Important Insect Pests of Nuts; (3) Field Crop Insect Pests; and (4) Insect Pests of Vegetable Crops. The first publication gives the hosts, injury, and description of 22 insect…

  5. Cotton insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton production is challenged worldwide by a diversity of arthropod pests that require management to prevent or reduce crop damage. Advances in arthropod control technologies and improved insect and crop management systems have dramatically reduced levels of arthropod damage and the need for inse...

  6. Irradiating insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a non-technical article focusing on phytosanitary uses of irradiation. In a series of interview questions, I present information on the scope of the invasive species problem and the contribution of international trade in agricultural products to the movement of invasive insects. This is foll...

  7. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  8. Fungal allelochemicals in insect pest management.

    PubMed

    Holighaus, Gerrit; Rohlfs, Marko

    2016-07-01

    Interactions between insects and fungi are widespread, and important mediators of these interactions are fungal chemicals that can therefore be considered as allelochemicals. Numerous studies suggest that fungal chemicals can affect insects in many different ways. Here, we apply the terminology established by insect-plant ecologists for categorizing the effect of fungal allelochemicals on insects and for evaluating the application potential of these chemicals in insect pest management. Our literature survey shows that fungal volatile and non-volatile chemicals have an enormous potential to influence insect behavior and fitness. Many of them still remain to be discovered, but some recent examples of repellents and toxins could open up new ways for developing safe insect control strategies. However, we also identified shortcomings in our understanding of the chemical ecology of insect-fungus interactions and the way they have been investigated. In particular, the mode-of-action of fungal allelochemicals has often not been appropriately designated or examined, and the way in which induction by insects affects fungal chemical diversity is poorly understood. This review should raise awareness that in-depth ecological studies of insect-fungus interactions can reveal novel allelochemicals of particular benefit for the development of innovative insect pest management strategies.

  9. Insect Pests Models and Insecticide Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past, the dominant approach in theoretical pest management ecology has emphasized the use of simple analytical or mathematical models and the analysis of systems in equilibrium. Recent advancements in computer technology have provided the opportunity for ecological insect modelers to move aw...

  10. Insect Pests of Field Crops. MP-28.

    ERIC Educational Resources Information Center

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…

  11. Insect pest management in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Dahlsten, Donald L.; Rowney, David L.

    1983-01-01

    Understanding the role of insects in forest ecosystems is vital to the development of environmentally and economically sound pest management strategies in forestry Most of the research on forest insects has been confined to phytophagous species associated with economically important tree species The roles of most other insects in forest environments have generally been ignored, including the natural enemies and associates of phytophagous species identified as being important In the past few years several investigations have begun to reevaluate the role of phytophagous species responsible for perturbation in forest ecosystems, and it appears that these species may be playing an important role in the primary productivity of those ecosystems Also, there is an increasing awareness that forest pest managers have been treating the symptoms and not the causes of the problems in the forest Many insect problems are associated with poor sites or sites where trees are growing poorly because of crowding As a result, there is considerable emphasis on the hazard rating of stands of trees for their susceptibility to various phytophagous insects The next step is to manipulate forest stands to make them less susceptible to forest pest complexes A thinning study in California is used as an example and shows that tree mortality in ponderosa pine ( Pinus ponderosa) attributable to the western pine beetle ( Dendroctonus brevicomis) can be reduced by commercial thinning to reduce stocking

  12. [Insect pests dissemination by extruded starch packages].

    PubMed

    Fraga, Felipe B; Alencar, Isabel D C C; Tavares, Marcelo T

    2009-01-01

    We observed the viability of extruded starch products used as impact protector for fragile packing as a food source of the following stored grains pests: Cryptolestes ferrugineus (Stephens), Lasioderma serricorne (Fabr.), Oryzaephilus surinamensis (L.), Sitophilus oryzae (L.), Tribolium castaneum (Herbst) (Coleoptera) and Plodia interpunctella (Hübner) (Lepidoptera). Cryptolestes ferrugineus, L. serricorne and T. castaneum were found in these products, which are used by them as shelter and food. Under experimentation, we observed the development of O. surinamensis, S. oryzae and P. interpunctella feeding on this food source. Thus, it is recorded the viability of such material to be a potential dispersal vehicle to spread insect pests.

  13. Insect Pathogenic Bacteria in Integrated Pest Management

    PubMed Central

    Ruiu, Luca

    2015-01-01

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed. PMID:26463190

  14. Insect Pathogenic Bacteria in Integrated Pest Management.

    PubMed

    Ruiu, Luca

    2015-04-14

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  15. Ascochyta blight and insect pests of chickpeas in the Palouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This newsletter article informs chickpea growers in the Palouse region about current disease and insect pest problems. Ascochyta blight appeared in many chickpea fields and was severe in some fields. Insect pests including loopers and armyworms were rampant. Appropriate management practices for t...

  16. North Dakota Sunflower Insect Pest Survey, 2006-2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major insect pest species that cause economic losses to sunflower producers in North Dakota are banded sunflower moth (Cochylis hospes Walsingham), red sunflower seed weevil (Smicronyx fulvus Le Conte), and sunflower midge (Contarinia schulzi Gagne). New emerging insect pests include lygus bugs ...

  17. Minute bug with enormous impacts on insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minute pirate bugs (Orius spp.) are common and abundant insect predators that can be found in cotton and many other field crops in Arizona and the western U.S. They are important predators of a variety of insect and mite pests in western crops and can help to suppress pest populations and thus cont...

  18. Current status and future perspectives on sunflower insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While occasional insect pests of cultivated sunflowers may be managed by conventional or reduced-risk insecticides, the cumulative costs and risks of relying on insecticides to suppress perennial or severe pests (common in North America) call for exploration of broader pest management strategies. Re...

  19. Symbiotic microorganisms: untapped resources for insect pest control.

    PubMed

    Douglas, Angela E

    2007-08-01

    Symbiotic microorganisms offer one route to meet the anticipated heightened demand for novel insect pest management strategies created by growing human populations and global climate change. Two approaches have particular potential: the disruption of microbial symbionts required by insect pests, and manipulation of microorganisms with major impacts on insect traits contributing to their pest status (e.g. capacity to vector diseases, natural enemy resistance). Specific research priorities addressed in this article include identification of molecular targets against which highly specific antagonists can be designed or discovered, and management strategies to manipulate the incidence and properties of facultative microorganisms that influence insect pest traits. Collaboration with practitioners in pest management will ensure that the research agenda is married to agricultural and public health needs.

  20. Coconut leaf bioactivity toward generalist maize insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  1. Automatic monitoring of insect pests in stored grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. To make accurate insect management decisions, managers need to know both the insect species and numbers ...

  2. Comparative metabolism of branched-chain amino acids to precursors of juvenile hormone biogenesis in corpora allata of lepidopterous versus nonlepidopterous insects

    SciTech Connect

    Brindle, P.A.; Schooley, D.A.; Tsai, L.W.; Baker, F.C.

    1988-08-05

    Comparative studies were performed on the role of branched-chain amino acids (BCAA) in juvenile hormone (JH) biosynthesis using several lepidopterous and nonlepidopterous insects. Corpora cardiaca-corpora allata complexes (CC-CA, the corpora allata being the organ of JH biogenesis) were maintained in culture medium containing a uniformly /sup 14/C-labeled BCAA, together with (methyl-/sup 3/H)methionine as mass marker for JH quantification. BCAA catabolism was quantified by directly analyzing the medium for the presence of /sup 14/C-labeled propionate and/or acetate, while JHs were extracted, purified by liquid chromatography, and subjected to double-label liquid scintillation counting. Our results indicate that active BCAA catabolism occurs within the CC-CA of lepidopterans, and this efficiently provides propionyl-CoA (from isoleucine or valine) for the biosynthesis of the ethyl branches of JH I and II. Acetyl-CoA, formed from isoleucine or leucine catabolism, is also utilized by lepidopteran CC-CA for biosynthesizing JH III and the acetate-derived portions of the ethyl-branched JHs. In contrast, CC-CA of nonlepidopterans fail to catabolize BCAA. Consequently, exogenous isoleucine or leucine does not serve as a carbon source for the biosynthesis of JH III by these glands, and no propionyl-CoA is produced for genesis of ethyl-branched JHs. This is the first observation of a tissue-specific metabolic difference which in part explains why these novel homosesquiterpenoids exist in lepidopterans, but not in nonlepidopterans.

  3. Delivery of intrahemocoelic peptides for insect pest management.

    PubMed

    Bonning, Bryony C; Chougule, Nanasaheb P

    2014-02-01

    The extensive use of chemical insecticides for insect pest management has resulted in insecticide resistance now being recorded in >500 species of insects and mites. Although gut-active toxins such as those derived from Bacillus thuringiensis (Bt) have been successfully used for insect pest management, a diverse range of insect-specific insecticidal peptides remains an untapped resource for pest management efforts. These toxins act within the insect hemocoel (body cavity) and hence require a delivery system to access their target site. Here, we summarize recent developments for appropriate delivery of such intrahemocoelic insect toxins, via fusion to a second protein such as a plant lectin or a luteovirus coat protein for transcytosis across the gut epithelium, or via entomopathogenic fungi.

  4. Breeding a super nematode for enhanced insect pest suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes in the genera Heterorhabditis and Steinernema are important regulators of natural insect populations, and are used commercially as biological control agents for pest suppression. Successful biocontrol applications depend on the introduced organism having an array of benef...

  5. Insect and mite pests of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter discusses the postharvest arthropod pests of durum wheat and their control. The main internally feeding pests are Rhyzopertha dominica, Sitophilus granarius, S. oryzae, and S. zeamais. The main externally feeding pests are Cryptolestes ferrugineus, Oryzaephilus surinamensis, O. m...

  6. Companion and refuge plants to control insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The sweetpotato whitefly, Bemisia tabaci and aphids are major pests of crops in the southeast USA. An environmentally-friendly management strategy is “push-pull” technology which combines the use of repellent (“push”) and trap crops (“pull”) for insect pest control. The repellent crop,...

  7. “Push-pull” strategies against vegetable insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull “strategies can be used as components of sustainable or cultural pest management. Dr. Jesusa C. Legaspi (USDA-ARS) and collaborators conducted field studies using mustard pla...

  8. Demonstrating companion planting to control insect pests of vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are major insect pests of vegetables in the southeastern US. There is increasing interest in the use of cultural and more sustainable methods to control these pests. Previous studies have shown that hover fly generalist predators were collected from several perennial and annual...

  9. Insect pest management decisions in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  10. 2009 Sunflower Insect Pest Problems and Insecticide Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflowers (Helianthus annuus L.) are native to North America and a number of insect pests cause economic losses to sunflower production. Head-infesting insects include the red sunflower seed weevil, Smicronyx fulvus LeConte, banded sunflower moth, Cochylis hospes Walsingham, sunflower moth, Homoeos...

  11. Applications of acoustics in insect pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic technology has been applied for many years in studies of insect communication and in the monitoring of calling-insect population levels, geographic distributions, and diversity, as well as in the detection of cryptic insects in soil, wood, container crops, and stored products. Acoustic devi...

  12. Compendium of sunflower disease and insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compendium of Sunflower Diseases and Pests is a new addition to the popular APS Press series of plant disease compendia. This will be the most comprehensive guide to sunflower diseases and pests in the world. The introduction contains brief histories of sunflower use and production, botany of th...

  13. Microbial Control of Structural Insect Pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three major pest groups affecting urban structures, ants, termites, and peridomestic cockroaches, are potentially the most amenable for the development of microbial controls. It is not only because of their economic importance, but their biology and ecology make them more susceptible to control by e...

  14. Advances in organic insect pest management in pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecans are economically the most important native nut crop in the USA. The market for organic pecans has been growing. However, in the Southeastern USA, there are a number of insect pests and plant diseases that challenge the ability of growers to produce organic pecans in an economically sound ma...

  15. Early-season flooding for insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Wisconsin, there is much interest in the spring flood as a means to not only reduce pest populations, but also to facilitate marsh sanitation and provide frost protection. A large-scale field study was undertaken in 2011 to examine how a 30-40 hour spring flood (late May) would affect key insect ...

  16. Harnessing insect-microbe chemical communications to control insect pest of agricultural systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests have long been known to impose serious yield, economic, and food safety problems to managed crops worldwide, and are known to vector microbes, many of which are pathogenic or toxigenic. At the heart of many of these studies has been the vital understanding of the plant-insect interactio...

  17. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  18. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  19. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  20. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  1. 50 CFR 35.7 - Control of wildfires, insects, pest plants, and disease.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Control of wildfires, insects, pest plants... MANAGEMENT General Rules § 35.7 Control of wildfires, insects, pest plants, and disease. To the extent necessary, the Director shall prescribe measures to control wildfires, insects, pest plants, and disease...

  2. Identification and Control of Common Insect Pests of Ornamental Shrubs and Trees.

    ERIC Educational Resources Information Center

    Gesell, Stanley G.

    This agriculture extension service publication from Pennsylvania State University introduces the identification and control of common ornamental insect pests. For each of the insects or insect groups (i.e. aphids) identified in this publication, information on host plants, pest description, and damage caused by the pest is given. Also a calendar…

  3. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management.

  4. Bt resistance in Australian insect pest species.

    PubMed

    Downes, Sharon; Walsh, Tom; Tay, Wee Tek

    2016-06-01

    Bt cotton was initially deployed in Australia in the mid-1990s to control the polyphagous pest Helicoverpa armigera (Hübner) which was intractably resistant to synthetic chemistries. A conservative strategy was enforced and resistance to first generation single toxin technology was managed. A decade later, shortly after the release of dual toxin cotton, high baseline frequencies of alleles conferring resistance to one of its components prompted a reassessment of the thinking behind the potential risks to this technology. Several reviews detail the characteristics of this resistance and the nuances of deploying first and second generation Bt cotton in Australia. Here we explore recent advances and future possibilities to estimate Bt resistance in Australian pest species and define what we see as the critical data for enabling effective pre-emptive strategies. We also foreshadow the imminent deployment of three toxin (Cry1Ac, Cry2Ab, Vip3A) Bollgard 3 cotton, and examine aspects of resistance to its novel component, Vip3A, that we believe may impact on its stewardship.

  5. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    PubMed Central

    Querner, Pascal

    2015-01-01

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them. PMID:26463205

  6. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    PubMed

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  7. Insects and Related Pests of Trees, Shrubs, and Lawns. MP-25R.

    ERIC Educational Resources Information Center

    Spackman, Everett W.; Lawson, Fred A.

    This document discusses identification and control of the pests of trees and shrubs. The insects are grouped according to feeding habits and the type of damage caused to plants. Categories include the sucking insects and mites, leaf eating insects, pests attacking trunks and branches, and gall causing insects. (CS)

  8. Urban warming drives insect pest abundance on street trees.

    PubMed

    Meineke, Emily K; Dunn, Robert R; Sexton, Joseph O; Frank, Steven D

    2013-01-01

    Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  9. Practical applications of insects' sexual development for pest control.

    PubMed

    Koukidou, M; Alphey, L

    2014-01-01

    Elucidation of the sex differentiation pathway in insects offers an opportunity to understand key aspects of evolutionary developmental biology. In addition, it provides the understanding necessary to manipulate insects in order to develop new synthetic genetics-based tools for the control of pest insects. Considerable progress has been made in this, especially in improvements to the sterile insect technique (SIT). Large scale sex separation is considered highly desirable or essential for most SIT targets. This separation can be provided by genetic methods based on sex-specific gene expression. Investigation of sex determination by many groups has provided molecular components and methods for this. Though the primary sex determination signal varies considerably, key regulatory genes and mechanisms remain surprisingly similar. In most cases studied so far, a primary signal is transmitted to a basal gene at the bottom of the hierarchy (dsx) through an alternative splicing cascade; dsx is itself differentially spliced in males and females. A sex-specific alternative splicing system therefore offers an attractive route to achieve female-specific expression. Experience has shown that alternative splicing modules can be developed with cross-species function; modularity and standardisation and re-use of parts are key principles of synthetic biology. Both female-killing and sex reversal (XX females to phenotypic males) can in principle also be used as efficient alternatives to sterilisation in SIT-like methods. Sexual maturity is yet another area where understanding of sexual development may be applied to insect control programmes. Further detailed understanding of this crucial aspect of insect biology will undoubtedly continue to underpin innovative practical applications.

  10. Bats track and exploit changes in insect pest populations.

    PubMed

    McCracken, Gary F; Westbrook, John K; Brown, Veronica A; Eldridge, Melanie; Federico, Paula; Kunz, Thomas H

    2012-01-01

    The role of bats or any generalist predator in suppressing prey populations depends on the predator's ability to track and exploit available prey. Using a qPCR fecal DNA assay, we document significant association between numbers of Brazilian free-tailed bats (Tadarida brasiliensis) consuming corn earworm (CEW) moths (Helicoverpa zea) and seasonal fluctuations in CEW populations. This result is consistent with earlier research linking the bats' diet to patterns of migration, abundance, and crop infestation by important insect pests. Here we confirm opportunistic feeding on one of the world's most destructive insects and support model estimates of the bats' ecosystem services. Regression analysis of CEW consumption versus the moth's abundance at four insect trapping sites further indicates that bats track local abundance of CEW within the regional landscape. Estimates of CEW gene copies in the feces of bats are not associated with seasonal or local patterns of CEW abundance, and results of captive feeding experiments indicate that our qPCR assay does not provide a direct measure of numbers or biomass of prey consumed. Our results support growing evidence for the role of generalist predators, and bats specifically, as agents for biological control and speak to the value of conserving indigenous generalist predators.

  11. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  12. 7 CFR 305.40 - Garbage treatment schedules for insect pests and pathogens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Garbage treatment schedules for insect pests and pathogens. 305.40 Section 305.40 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL... Garbage § 305.40 Garbage treatment schedules for insect pests and pathogens. (a) T415-a, heat...

  13. Description and Biology of Insects and Related Pests Injurious to Vegetable Crops - For Commercial Growers Only.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of vegetable crops grown commercially in Massachusetts. It contains general information on insects and specific descriptions of the major pests, their life cycles, and the damage they cause. The topics…

  14. Optimal sterile insect release for area-wide integrated pest management in a density regulated pest population.

    PubMed

    Gordillo, Luis F

    2014-06-01

    To determine optimal sterile insect release policies in area-wide integrated pest management is a challenge that users of this pest control method inevitably confront. In this note we provide approximations to best policies of release through the use of simulated annealing. The discrete time model for the population dynamics includes the effects of sterile insect release and density dependence in the pest population. Spatial movement is introduced through integrodifference equations, which allow the use of the stochastic search in cases where movement is described through arbitrary dispersal kernels. As a byproduct of the computations, an assessment of appropriate control zone sizes is possible.

  15. Microbial Pest Control Agents: Are they a specific and safe tool for insect pest management?

    PubMed

    Deshayes, Caroline; Siegwart, Myriam; Pauron, David; Froger, Josy-Anne; Lapied, Bruno; Apaire-Marchais, Véronique

    2017-03-14

    Microorganisms (viruses, bacteria and fungi) or their bioactive agents can be used as active substances and therefore are referred as Microbial Pest Control Agents (MPCA). They are used as alternative strategies to chemical insecticides to counteract the development of resistances and to reduce adverse effects on both environment and human health. These natural entomopathogenic agents, which have specific modes of action, are generally considered safer as compared to conventional chemical insecticides. Baculoviruses are the only viruses being used as the safest biological control agents. They infect insects and have narrow host ranges. Bacillus thuringiensis (Bt) is the most widely and successfully bioinsecticide used in the world in the integrated pest management programs. Bt mainly produces crystal delta-endotoxins and secreted toxins. However, the Bt toxins are not stable for a very long time and are highly sensitive to solar UV. So genetically modified plants that express toxins have been developed and represent a large part of the phytosanitary biological products. Finally, entomopathogenic fungi and particularly, Beauveria bassiana and Metarhizium anisopliae, are also used for their insecticidal properties. Most studies on various aspects of the safety of MPCA to human, non-target organisms and environment have only reported acute but not chronic toxicity. This paper reviews the modes of action of MPCA, their toxicological risks to human health and ecotoxicological profiles together with their environmental persistence. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.

  16. Control of key pecan insect pests using biorational pesticides.

    PubMed

    Shapiro-Ilan, David I; Cottrell, Ted E; Jackson, Mark A; Wood, Bruce W

    2013-02-01

    Key pecan insect pests include the black pecan aphid, Melanocallis caryaefoliae (Davis), pecan weevil, Curculio caryae (Horn), and stink bugs (Hemiptera: Pentatomidae). Alternative control tactics are needed for management of these pests in organic and conventional systems. Our objective was to evaluate the potential utility of several alternative insecticides including three plant extract formulations, eucalyptus extract, citrus extract-8.92%, and citrus extract-19.4%, and two microbial insecticides, Chromobacterium subtsugae (Martin et al.) and Isaria fumosorosea (Wize). In the laboratory, eucalyptus extract, citrus extract-8.92%, citrus extract-19.4%, and C. subtsugae caused M. caryaefoliae mortality (mortality was reached approximately 78, 83, and 96%, respectively). In field tests, combined applications of I. fumosorosea with eucalyptus extract were synergistic and caused up to 82% mortality in M. caryaefoliae. In laboratory assays focusing on C. caryae suppression, C. subtsugae reduced feeding and oviposition damage, eucalyptus extract and citrus extract-19.4% were ineffective, and antagonism was observed when citrus extract-19.4% was combined with the entomopathogenic nematode, Steinernema carpocapsae (Weiser). In field tests, C. subtsugae reduced C. caryae damage by 55% within the first 3d, and caused 74.5% corrected mortality within 7 d posttreatment. In the laboratory, C. subtsugae and eucalyptus extract did not cause mortality in the brown stink bug, Euschistus servus (Say). Applications of C. subtsugae for suppression of C. caryae, and eucalyptus extract plus I. fumosorosea for control of M. caryaefoliae show promise as alternative insecticides and should be evaluated further.

  17. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    PubMed

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  18. Forest insect pest management and forest management in China: an overview.

    PubMed

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  19. Forest Insect Pest Management and Forest Management in China: An Overview

    NASA Astrophysics Data System (ADS)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  20. Qpais: A Web-Based Expert System for Assistedidentification of Quarantine Stored Insect Pests

    NASA Astrophysics Data System (ADS)

    Huang, Han; Rajotte, Edwin G.; Li, Zhihong; Chen, Ke; Zhang, Shengfang

    Stored insect pests can seriously depredate stored products causing worldwide economic losses. Pests enter countries traveling with transported goods. Inspection and Quarantine activities are essential to prevent the invasion and spread of pests. Identification of quarantine stored insect pests is an important component of the China's Inspection and Quarantine procedure, and it is necessary not only to identify whether the species captured is an invasive species, but determine control procedures for stored insect pests. With the development of information technologies, many expert systems that aid in the identification of agricultural pests have been developed. Expert systems for the identification of quarantine stored insect pests are rare and are mainly developed for stand-alone PCs. This paper describes the development of a web-based expert system for identification of quarantine stored insect pests as part of the China 11th Five-Year National Scientific and Technological Support Project (115 Project). Based on user needs, textual knowledge and images were gathered from the literature and expert interviews. ASP.NET, C# and SQL language were used to program the system. Improvement of identification efficiency and flexibility was achieved using a new inference method called characteristic-select-based spatial distance method. The expert system can assist identifying 150 species of quarantine stored insect pests and provide detailed information for each species. The expert system has also been evaluated using two steps: system testing and identification testing. With a 85% rate of correct identification and high efficiency, the system evaluation shows that this expert system can be used in identification work of quarantine stored insect pests.

  1. Multiscale approach to pest insect monitoring: random walks, pattern formation, synchronization, and networks.

    PubMed

    Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel

    2014-09-01

    Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.

  2. Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks

    NASA Astrophysics Data System (ADS)

    Petrovskii, Sergei; Petrovskaya, Natalia; Bearup, Daniel

    2014-09-01

    Pest insects pose a significant threat to food production worldwide resulting in annual losses worth hundreds of billions of dollars. Pest control attempts to prevent pest outbreaks that could otherwise destroy a sward. It is good practice in integrated pest management to recommend control actions (usually pesticides application) only when the pest density exceeds a certain threshold. Accurate estimation of pest population density in ecosystems, especially in agro-ecosystems, is therefore very important, and this is the overall goal of the pest insect monitoring. However, this is a complex and challenging task; providing accurate information about pest abundance is hardly possible without taking into account the complexity of ecosystems' dynamics, in particular, the existence of multiple scales. In the case of pest insects, monitoring has three different spatial scales, each of them having their own scale-specific goal and their own approaches to data collection and interpretation. In this paper, we review recent progress in mathematical models and methods applied at each of these scales and show how it helps to improve the accuracy and robustness of pest population density estimation.

  3. 1978 Insect Pest Management Guide: Home, Yard, and Garden. Circular 900.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This publication lists certain insecticides to control insect pests of food, fabrics, structures, man and animals, lawns, shrubs, trees, flowers and vegetables. Suggestions are given for selection, dosage and application of insecticides to combat infestation. (CS)

  4. Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus.

    PubMed

    Murad, André M; Noronha, Eliane F; Miller, Robert N G; Costa, Fabio T; Pereira, Caroline D; Mehta, Angela; Caldas, Ruy A; Franco, Octávio L

    2008-12-01

    Crop improvement in agriculture generally focuses on yield, seed quality and nutritional characteristics, as opposed to resistance to biotic stresses. Consequently, natural antifeedant toxins are often rare in seed material, with commercial crops being prone to insect pest predation. In the specific case of cowpea (Vigna unguiculata), smallholder cropping is affected by insect pests that reproduce inside the stored seeds. Entomopathogenic organisms can offer an alternative to conventional pesticides for pest control, producing hydrolases that degrade insect exoskeleton. In this study, protein secretions of the ascomycete Metarhizium anisopliae, which conferred bioinsecticidal activity against Callosobruchus maculatus, were characterized via 2D electrophoresis and mass spectrometry. Proteases, reductases and acetyltransferase enzymes were detected. These may be involved in degradation and nutrient uptake from dehydrated C. maculatus. Proteins identified in this work allowed description of metabolic pathways. Their potential applications in biotechnology include both novel compound development and production of genetically modified plants resistant to insect pests.

  5. Oviposition Deterrents in Herbivorous Insects and their potential use in Integrated Pest Management.

    PubMed

    Kumari, Archana; Kaushik, Nutan

    2016-03-01

    In the life cycle of insects, oviposition is an important phenomenon, and it is influenced by many intrinsic and extrinsic factors, especially in relation to suitable hosts for completion of their life-cycle. Oviposition deterrents which deter an insect from laying eggs are important in the management of insect pests. Proper understanding of these deterrents shall provide necessary insight into new vistas for Insect Pest Management. Chemicals from plants and insects play an important role in attracting phytophagous insects for selecting host for oviposition. Considerable research has been done on oviposition deterrents and their mode of actions. In the present review, we have consolidated the updated information on this important aspect of insect behavior.

  6. Evaluating mustard and arugula volatiles and refuge plants for sustainable control of insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arugu...

  7. Companion and refuge plants to enhance control of insect pests in vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whiteflies and aphids are important insect pests in vegetable crops. To mitigate the use of chemical insecticides, “push-pull” strategies can be used as components of sustainable or cultural pest management. We conducted laboratory olfactometer or odor detecting tests to measure the effects of arug...

  8. Gene disruption technologies have the potential to transform stored product insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  9. Development of reference transcriptomes for the major insect pests of cowpea: a toolbox for insect pest management approaches in West Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea crops are widely cultivated and a major nutritional source of protein for indigenous human populations in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include Anoplocnemis curvipes, Aphis craccivora, Cl...

  10. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  11. Role of nanotechnology in agriculture with special reference to management of insect pests.

    PubMed

    Rai, Mahendra; Ingle, Avinash

    2012-04-01

    Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.

  12. Pest persistence and eradication conditions in a deterministic model for sterile insect release.

    PubMed

    Gordillo, Luis F

    2015-01-01

    The release of sterile insects is an environment friendly pest control method used in integrated pest management programmes. Difference or differential equations based on Knipling's model often provide satisfactory qualitative descriptions of pest populations subject to sterile release at relatively high densities with large mating encounter rates, but fail otherwise. In this paper, I derive and explore numerically deterministic population models that include sterile release together with scarce mating encounters in the particular case of species with long lifespan and multiple matings. The differential equations account separately the effects of mating failure due to sterile male release and the frequency of mating encounters. When insects spatial spread is incorporated through diffusion terms, computations reveal the possibility of steady pest persistence in finite size patches. In the presence of density dependence regulation, it is observed that sterile release might contribute to induce sudden suppression of the pest population.

  13. A new method for insect pest monitoring at the nursery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strawberry rootworm, Paria fragariae Wilcox (Coleoptera: Chrysomelidae), is a primary pest of azaleas and other containerized ornamental crops at production nurseries. The cryptic nature of all life stages of this pest can make detection and subsequent control a challenge. The intent of our re...

  14. Tea: Biological control of insect and mite pests in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tea is one of the most economically important crops in China. To secure its production and quality conservation biological control within the context of integrated pest management (IPM) has been widely popularized for better control of arthropod pests on tea with less chemical insecticide usage and ...

  15. Pest Insect Olfaction in an Insecticide-Contaminated Environment: Info-Disruption or Hormesis Effect

    PubMed Central

    Tricoire-Leignel, Hélène; Thany, Steeve Hervé; Gadenne, Christophe; Anton, Sylvia

    2012-01-01

    Most animals, including pest insects, live in an “odor world” and depend strongly on chemical stimuli to get information on their biotic and abiotic environment. Although integrated pest management strategies including the use of insect growth regulators (IGRs) are increasingly developed, most insect pest treatments rely on neurotoxic chemicals. These molecules are known to disrupt synaptic transmission, affecting therefore sensory systems. The wide-spread use of neurotoxic insecticides and the growing use of IGRs result in residual accumulation of low concentrations in the environment. These insecticide residues could act as an “info-disruptor” by modifying the chemical communication system, and therefore decrease chances of reproduction in target insects. However, residues can also induce a non-expected hormesis effect by enhancing reproduction abilities. Low insecticide doses might thus induce adaptive processes in the olfactory pathway of target insects, favoring the development of resistance. The effect of sublethal doses of insecticides has mainly been studied in beneficial insects such as honeybees. We review here what is known on the effects of sublethal doses of insecticides on the olfactory system of insect pests. PMID:22457653

  16. Monitoring insect pests in retail stores by trapping and spatial analysis.

    PubMed

    Arbogast, R T; Kendra, P E; Mankin, R W; McGovern, J E

    2000-10-01

    Stored-product insects are a perennial problem in retail stores, where they damage and contaminate susceptible merchandise such as food products and animal feed. Historically, pest management in these stores has relied heavily on chemical insecticides, but environmental and health issues have dictated use of safer methods, and these require better monitoring. A monitoring procedure that employs an array of moth and beetle traps combined with spatial (contour) analysis of trap catch was tested in three department stores and two pet stores. The rate of capture increased with the level of infestation but was essentially constant over 4- to 5-d trapping periods. Contour analysis effectively located foci of infestation and reflected population changes produced by applications of the insect growth regulator (S)-hydroprene. The most abundant insects were Plodia interpunctella (Hiibner), Lasioderma serricorne (F.), Oryzaephilus mercator (Fauvel), Tribolium castaneum (Herbst), and Cryptolestes pusillus (Schönherr). The results indicate that contour analysis of trap counts provides a useful monitoring tool for management of storage pests in retail stores. It identifies trouble spots and permits selection, timing, and precision targeting of control measures to achieve maximum pest suppression with minimum pesticide risk. It permits managers and pest control operators to visualize pest problems over an entire store, to monitor changes over time, and to evaluate the effectiveness of control intervention. The contour maps themselves, along with records of control applications and stock rotation, provide permanent documentation of pest problems and the effectiveness of pest management procedures.

  17. DIETARY SILVER NANOPARTICLES REDUCE FITNESS IN A BENEFICIAL, BUT NOT PEST, INSECT SPECIES.

    PubMed

    Afrasiabi, Zahra; Popham, Holly J R; Stanley, David; Suresh, Dhananjay; Finley, Kristen; Campbell, Jonelle; Kannan, Raghuraman; Upendran, Anandhi

    2016-12-01

    Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often based on simplistic methods that yield nanoparticles of nonuniform shapes and sizes, leaving questions about the precise treatments test insects experienced. Second, we do not know how AgNPs influence beneficial insects. This work addresses these issues. We assessed the influence of AgNPs on life history parameters of two agricultural pest insect species, Heliothis virescens (tobacco budworm) and Trichoplusia ni (cabbage looper) and a beneficial predatory insect species, Podisus maculiventris (spined soldier bug), all of which act in agroecosystems. Rearing the two pest species on standard media amended with AgNPs led to negligible influence on developmental times, pupal weights, and adult emergence, however, they led to retarded development, reductions in adult weight and fecundity, and increased mortality in the predator. These negative effects on the beneficial species, if also true for other beneficial insect species, would have substantial negative implications for continued development of AgNPs for insect pest management programs.

  18. Insect pest densities across site-specific management zones of irrigated corn in northeastern Colorado.

    PubMed

    Davidson, Silas A; Peairs, Frank B; Khosla, Rajiv

    2007-06-01

    The ability to manage insect pests in a site-specific manner is hindered by the costs and time required to describe pest densities and distributions. The purpose of this study was to determine whether insect pest distributions are related to site-specific management zones (SSMZs). Site-specific management zones, as described in this study, delineate fields into three zones of similar yield potential: high, medium, and low productivity. If insect densities vary across SSMZs, it is possible that management decisions could be made at the SSMZ level instead of treating the whole field. This research was conducted during summers 2001 and 2002 on cooperators' farms in northeastern Colorado. Surveys were conducted within corn, Zea mays L., fields, so that densities of three common insect pests of Colorado corn could be compared across SSMZ. The three insect pests were western corn rootworm, Diabrotica virgifera virgifera LeConte; European corn borer, Ostrinia nubilalis (HiAbner); and western bean cutworm, Richia albicosta (Smith). D. v. virgifera larvae and adults were most common in the high-productivity SSMZ. O. nubilalis larval abundance was similar at three fields, whereas in a fourth field the larvae were most common in the high-productivity SSMZ. In one field that contained substantial numbers of R. albicosta, egg abundance was similar across SSMZs, whereas larvae were most common in the high-productivity SSMZ. Site-specific management zones seemed to correlate well with the abundance of some insect pests and might prove useful for managing insects in a site-specific manner.

  19. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    PubMed

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  20. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    PubMed Central

    Perkin, Lindsey C.; Adrianos, Sherry L.; Oppert, Brenda

    2016-01-01

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs. PMID:27657138

  1. Landscape changes have greater effects than climate changes on six insect pests in China.

    PubMed

    Zhao, Zihua; Sandhu, Hardev S; Ouyang, Fang; Ge, Feng

    2016-06-01

    In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes (landscape and climate) and economic damage caused by six main insect pests during 1951-2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller (Cnaphalocrocis medinalis Guenee) and armyworm (Mythimna separate (Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.

  2. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    PubMed

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  3. Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation

    PubMed Central

    Sandhu, Sardul Singh; Sharma, Anil K.; Beniwal, Vikas; Goel, Gunjan; Batra, Priya; Kumar, Anil; Jaglan, Sundeep; Sharma, A. K.; Malhotra, Sonal

    2012-01-01

    The growing demand for reducing chemical inputs in agriculture and increased resistance to insecticides have provided great impetus to the development of alternative forms of insect-pest control. Myco-biocontrol offers an attractive alternative to the use of chemical pesticides. Myco-biocontrol agents are naturally occurring organisms which are perceived as less damaging to the environment. Their mode of action appears little complex which makes it highly unlikely that resistance could be developed to a biopesticide. Past research has shown some promise of the use of fungi as a selective pesticide. The current paper updates us about the recent progress in the field of myco-biocontrol of insect pests and their possible mechanism of action to further enhance our understanding about the biological control of insect pests. PMID:22567344

  4. Integrating insect-resistant GM Crops in pest management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, GM cotton and maize with insect resistance were grown on 12.1 and 20.1 million hectares in 9 and 13 countries, respectively. These insect resistant GM crops produce various Cry toxins from Bacillus thuringiensis (Bt) and provide highly selective and effective control of lepidopteran and col...

  5. Towards environmentally and human friendly insect pest control technologies: photosensitization of leafminer flies Liriomyza bryoniae.

    PubMed

    Luksiene, Zivile; Kurilcik, Natalija; Jursenas, Saulius; Radziute, Sandra; Būda, Vincas

    2007-11-12

    Development of new, ecologically safe technologies to control insect pest populations is of great importance. Photoactive compounds usually used for photosensitization might be effective as pesticide agents, with low impact on the environment, being non-toxic and not mutagenic. Phosensitizer accumulates within the insect body and, following exposure to visible light, induces lethal photochemical reactions and death. The aim of this study is to evaluate the possible usage of several photosensitizers (acridine orange, aminolevulinic acid, hematoporphyrin dimethyl ether, methylene blue) as photopesticides to control population of polyphagous plant pest Liriomyza bryoniae (Kaltenbach, 1858) (Diptera, Agromyzidae). Fluorescence measurements of intact cooled insects indicate that insect feeding with bait containing HPde and sugar induces remarkable accumulation of this compound in the body of insect. This accumulation is strongly dependent on sex and feeding duration. The highest HPde amount in the body of insect was detected 16 h after feeding, whereas no significant photosensitizer amount was detected in the same insect following 48 h. Following irradiation with visible light results in fast death of L. bryoniae. Of importance to note that survival of insects after feeding and irradiation depends on sex: female insect died much faster than males.

  6. A novel approach to evaluation of pest insect abundance in the presence of noise.

    PubMed

    Embleton, Nina; Petrovskaya, Natalia

    2014-03-01

    Evaluation of pest abundance is an important task of integrated pest management. It has recently been shown that evaluation of pest population size from discrete sampling data can be done by using the ideas of numerical integration. Numerical integration of the pest population density function is a computational technique that readily gives us an estimate of the pest population size, where the accuracy of the estimate depends on the number of traps installed in the agricultural field to collect the data. However, in a standard mathematical problem of numerical integration, it is assumed that the data are precise, so that the random error is zero when the data are collected. This assumption does not hold in ecological applications. An inherent random error is often present in field measurements, and therefore it may strongly affect the accuracy of evaluation. In our paper, we offer a novel approach to evaluate the pest insect population size under the assumption that the data about the pest population include a random error. The evaluation is not based on statistical methods but is done using a spatially discrete method of numerical integration where the data obtained by trapping as in pest insect monitoring are converted to values of the population density. It will be discussed in the paper how the accuracy of evaluation differs from the case where the same evaluation method is employed to handle precise data. We also consider how the accuracy of the pest insect abundance evaluation can be affected by noise when the data available from trapping are sparse. In particular, we show that, contrary to intuitive expectations, noise does not have any considerable impact on the accuracy of evaluation when the number of traps is small as is conventional in ecological applications.

  7. Nonmarket economic impacts of forest insect pests: A literature review. Forest Service general technical report

    SciTech Connect

    Rosenberger, R.S.; Smith, E.L.

    1997-05-01

    This report summarizes the results of research on the nonmarket economic impacts of forest insect pests. The majority of the research reports are journal articles or fulfillment of three USDA Forest Service research contracts. This report also reviews the foundations for methodologies used and classifies the forest insect pests studied, the regions in which research has been conducted, the designated land-use areas, the stakeholders, the values, the measurement methods used, and the measures of value indicators. Information on each research project is described with relevant information condensed in tabular form.

  8. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.

    PubMed

    Zhang, Hao; Li, Hai-Chao; Miao, Xue-Xia

    2013-02-01

    Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi-mediated crop protection. However, there are many limitations using RNAi-based technology for pest control, with the effectiveness target gene selection and reliable double-strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome-scale high-throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro-injection or by feeding as a dietary component. However, micro-injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi-mediated crop protection has been considered as a potential new-generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi-based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.

  9. Entomopathogenic Nematodes for Control of Insect Pests Above and Below Ground with Comments on Commercial Production

    PubMed Central

    Lacey, Lawrence A.; Georgis, Ramon

    2012-01-01

    Entomopathogenic nematodes (EPNs) have been utilized in classical, conservation, and augmentative biological control programs. The vast majority of applied research has focused on their potential as inundatively applied augmentative biological control agents. Extensive research over the past three decades has demonstrated both their successes and failures for control of insect pests of crops, ornamental plants, trees and lawn and turf. In this paper we present highlights of their development for control of insect pests above and below ground. The target insects include those from foliar, soil surface, cryptic and subterranean habitats. Advances in mass-production and formulation technology of EPNs, the discovery of numerous efficacious isolates/strains, and the desirability of reducing pesticide usage have resulted in a surge of commercial use and development of EPNs. Commercially produced EPNs are currently in use for control of scarab larvae in lawns and turf, fungus gnats in mushroom production, invasive mole crickets in lawn and turf, black vine weevil in nursery plants, and Diaprepes root weevil in citrus in addition to other pest insects. However, demonstrated successful control of several other insects, often has not lead to capture of a significant share of the pesticide market for these pests. PMID:23482993

  10. Development of reference transcriptomes for the major field insect pests of cowpea: a toolbox for insect pest management approaches in west Africa.

    PubMed

    Agunbiade, Tolulope A; Sun, Weilin; Coates, Brad S; Djouaka, Rousseau; Tamò, Manuele; Ba, Malick N; Binso-Dabire, Clementine; Baoua, Ibrahim; Olds, Brett P; Pittendrigh, Barry R

    2013-01-01

    Cowpea is a widely cultivated and major nutritional source of protein for many people that live in West Africa. Annual yields and longevity of grain storage is greatly reduced by feeding damage caused by a complex of insect pests that include the pod sucking bugs, Anoplocnemis curvipes Fabricius (Hemiptera: Coreidae) and Clavigralla tomentosicollis Stål (Hemiptera: Coreidae); as well as phloem-feeding cowpea aphids, Aphis craccivora Koch (Hemiptera: Aphididae) and flower thrips, Megalurothrips sjostedti Trybom (Thysanoptera: Thripidae). Efforts to control these pests remain a challenge and there is a need to understand the structure and movement of these pest populations in order to facilitate the development of integrated pest management strategies (IPM). Molecular tools have the potential to help facilitate a better understanding of pest populations. Towards this goal, we used 454 pyrosequencing technology to generate 319,126, 176,262, 320,722 and 227,882 raw reads from A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. The reads were de novo assembled into 11,687, 7,647, 10,652 and 7,348 transcripts for A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti, respectively. Functional annotation of the resulting transcripts identified genes putatively involved in insecticide resistance, pathogen defense and immunity. Additionally, sequences that matched the primary aphid endosymbiont, Buchnera aphidicola, were identified among A. craccivora transcripts. Furthermore, 742, 97, 607 and 180 single nucleotide polymorphisms (SNPs) were respectively predicted among A. curvipes, A. craccivora, C. tomentosicollis and M. sjostedti transcripts, and will likely be valuable tools for future molecular genetic marker development. These results demonstrate that Roche 454-based transcriptome sequencing could be useful for the development of genomic resources for cowpea pest insects in West Africa.

  11. Host Plant Resistance and Insect Pest Management in Chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly 60 insect species feed on chickpea worldwide, of which cutworms (black cutworm - Agrotis ipsilon and turnip moth - Agrotis segetum), leaf feeding caterpillars (leaf caterpillar - Spodoptera exigua and hairy caterpillar - Spilarctia oblique), leaf miners (Liriomyza cicerina), aphids (Aphis cr...

  12. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  14. Brazilian free-tailed bats as insect pest regulators in transgenic and conventional cotton crops.

    PubMed

    Federico, Paula; Hallam, Thomas G; McCracken, Gary F; Purucker, S Thomas; Grant, William E; Correa-Sandoval, A Nelly; Westbrook, John K; Medellin, Rodrigo A; Cleveland, Cutler J; Sansone, Chris G; López, Juan D; Betke, Margrit; Moreno-Valdez, Arnulfo; Kunz, Thomas H

    2008-06-01

    During the past 12000 years agricultural systems have transitioned from natural habitats to conventional agricultural regions and recently to large areas of genetically engineered (GE) croplands. This GE revolution occurred for cotton in a span of slightly more than a decade during which a switch occurred in major cotton production areas from growing 100% conventional cotton to an environment in which 95% transgenics are grown. Ecological interactions between GE targeted insects and other insectivorous insects have been investigated. However, the relationships between ecological functions (such as herbivory and ecosystem transport) and agronomic benefits of avian or mammalian insectivores in the transgenic environment generally remain unclear, although the importance of some agricultural pest management services provided by insectivorous species such as the Brazilian free-tailed bat, Tadarida brasiliensis, have been recognized. We developed a dynamic model to predict regional-scale ecological functions in agricultural food webs by using the indicators of insect pest herbivory measured by cotton boll damage and insect emigration from cotton. In the south-central Texas Winter Garden agricultural region we find that the process of insectivory by bats has a considerable impact on both the ecology and valuation of harvest in Bacillus thuringiensis (Bt) transgenic and nontransgenic cotton crops. Predation on agricultural pests by insectivorous bats may enhance the economic value of agricultural systems by reducing the frequency of required spraying and delaying the ultimate need for new pesticides. In the Winter Garden region, the presence of large numbers of insectivorous bats yields a regional summer dispersion of adult pest insects from Bt cotton that is considerably reduced from the moth emigration when bats are absent in either transgenic or non-transgenic crops. This regional decrease of pest numbers impacts insect herbivory on a transcontinental scale. With a few

  15. Integrated Pest Management of Sunflower Insect Pests in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sunflowers are native to North America and include 50 species in the genus Helianthus. Thus, associated insects have coevolved with the plants for centuries. A number of these insect species have made the transition from the wild plants to the cultivated plant to feed and develop. These species affe...

  16. Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration.

    PubMed

    Bearup, Daniel; Petrovskaya, Natalia; Petrovskii, Sergei

    2015-05-01

    Monitoring of pest insects is an important part of the integrated pest management. It aims to provide information about pest insect abundance at a given location. This includes data collection, usually using traps, and their subsequent analysis and/or interpretation. However, interpretation of trap count (number of insects caught over a fixed time) remains a challenging problem. First, an increase in either the population density or insects activity can result in a similar increase in the number of insects trapped (the so called "activity-density" problem). Second, a genuine increase of the local population density can be attributed to qualitatively different ecological mechanisms such as multiplication or immigration. Identification of the true factor causing an increase in trap count is important as different mechanisms require different control strategies. In this paper, we consider a mean-field mathematical model of insect trapping based on the diffusion equation. Although the diffusion equation is a well-studied model, its analytical solution in closed form is actually available only for a few special cases, whilst in a more general case the problem has to be solved numerically. We choose finite differences as the baseline numerical method and show that numerical solution of the problem, especially in the realistic 2D case, is not at all straightforward as it requires a sufficiently accurate approximation of the diffusion fluxes. Once the numerical method is justified and tested, we apply it to the corresponding boundary problem where different types of boundary forcing describe different scenarios of pest insect immigration and reveal the corresponding patterns in the trap count growth.

  17. Development of mimetic analogs of pyrokinin-like neuropeptides to disrupt pest insect physiology/behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrokinin (FXPRLamide) neuropeptides regulate a variety of critical processes and behaviors in insects, though they are unsuitable as tools to arthropod endocrinologists and/or as pest management agents due to sub-optimal biostability and/or bioavailability characteristics. Peptidomimetic analogs c...

  18. Beta vulgaris L. serine proteinase inhibitor gene expression correlates to insect pest resistance in sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analyzing genes that can be used for improving sugar beet resistance to the sugar beet root maggot (SBRM, Tetanops myopaeformis Roder), one of the most destructive insect pests of sugar beet in North America, was a major goal in our investigation. We report on the expression patterns of a sugar beet...

  19. Insect pests and yield potential of vegetable soybean (Endamame) produced in Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of replicated field experiments was conducted with vegetable soybean (edamame), Glycine max (L.) Merrill, to assess the impacts of cultivars, planting dates, and insecticidal controls on insect pest abundance, crop damage and yield potential. The velvetbean caterpillar, Anticarsia gemmatali...

  20. Recent advances in fumigation for control of insect pests in dried fruits and nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    United States agricultural industries are facing, with increasing frequency, environmental and pest-related food safety requirements that are fundamentally difficult to balance. Failure to properly disinfest commodities in trade and marketing channels can result in insect- and microbial-derived dam...

  1. Plant-microbe relationship that influences an insect pest of Califronia tree nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    California produces a large portion of the worldwide supply of pistachios. The navel orangeworm is considered a major insect pest of California pistachios, and causes significant damage to pistachio kernels in addition to introducing aflatoxigenic fungi. Despite the development of semiochemical-base...

  2. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide. It infests crops in most coffee producing countries, and is of particular concern in developing countries where coffee comprises a significant component of gross domestic product. Of more than 850 i...

  3. Broad sprectrum potential of Isaria fumosorosea on insect pests of citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of entomopathogenic fungi, Isaria fumosorosea, Ifr, =Paecilomyces fumosoroseus, successfully increased insect pest mortality. Spraying the Ifr containing product, PFR97 TM, on citrus seedlings was used to screen efficacy for the management of Asian citrus psyllid, Diaphorina citri; glassy-winge...

  4. Should I fight or should I flight? How studying insect aggression can help integrated pest management.

    PubMed

    Benelli, Giovanni

    2015-07-01

    Aggression plays a key role all across the animal kingdom, as it allows the acquisition and/or defence of limited resources (food, mates and territories) in a huge number of species. A large part of our knowledge on aggressive behaviour has been developed on insects of economic importance. How can this knowledge be exploited to enhance integrated pest management? Here, I highlight how knowledge on intraspecific aggression can help IPM both in terms of insect pests (with a focus on the enhancement of the sterile insect technique) and in terms of biological control agents (with a focus on mass-rearing optimisation). Then, I examine what implications for IPM can be outlined from knowledge about interspecific aggressive behaviour. Besides predator-pest aggressive interactions predicted by classic biological control, I focus on what IPM can learn from (i) interspecific aggression among pest species (with special reference to competitive displacement), (ii) defensive behaviour exhibited by prey against predaceous insects and (iii) conflicts among predaceous arthropods sharing the same trophic niche (with special reference to learning/sensitisation practices and artificial manipulation of chemically mediated interactions).

  5. Interaction between juniper Juniperus communis L. and its fruit pest insects: Pest abundance, fruit characteristics and seed viability

    NASA Astrophysics Data System (ADS)

    García, Daniel

    1998-12-01

    The relationships between the fruit features of Juniperus communis and the presence of fruit pests were studied in Sierra Nevada, SE Spain. The abundance of two insect species — a pulp-sucking scale and a seed-predator wasp — was surveyed with respect both to fruit characteristics and to viability of seeds contained therein. Seed-predator pressure was not significantly related to any fruit characteristics; however, pulp suckers tended to be more abundant in plants with low pulp: seed ratios and high fruit-water content. In addition, fruits with high levels of pulp-sucker attack tended to have higher water content. A multi-factor ANOVA, considering the identity of the plant and the attack of the different pests as factors, showed that plant identity accounts for most of the variation in fruit characteristics. The viability of seeds tended to be lower in plants strongly attacked by both pests. Fruits attacked by seed predators showed significantly lower proportions of viable and unviable seeds than did unattacked fruits. Seed viability was also lower in those fruits heavily attacked by pulp suckers, but this pattern is strongly mediated by plant identity. Pest activity proved to be clearly associated with a direct decrease in juniper reproductive capacity. This loss involved a reduction of the viable-seed number, mainly related to the seed predator, as well as a reduction of fruit attractiveness to frugivorous dispersers, related to the pulp sucker.

  6. Optical characterization of agricultural pest insects: a methodological study in the spectral and time domains

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Zhang, H.; Duan, Z.; Lian, M.; Zhao, G. Y.; Sun, X. H.; Hu, J. D.; Gao, L. N.; Feng, H. Q.; Svanberg, S.

    2016-08-01

    Identification of agricultural pest insects is an important aspect in insect research and agricultural monitoring. We have performed a methodological study of how spectroscopic techniques and wing-beat frequency analysis might provide relevant information. An optical system based on the combination of close-range remote sensing and reflectance spectroscopy was developed to study the optical characteristics of different flying insects, collected in Southern China. The results demonstrate that the combination of wing-beat frequency assessment and reflectance spectral analysis has the potential to successfully differentiate between insect species. Further, studies of spectroscopic characteristics of fixed specimen of insects, also from Central China, showed the possibility of refined agricultural pest identification. Here, in addition to reflectance recordings also laser-induced fluorescence spectra were investigated for all the species of insects under study and found to provide complementary information to optically distinguish insects. In order to prove the practicality of the techniques explored, clearly fieldwork aiming at elucidating the variability of parameters, even within species, must be performed.

  7. Flooding as “spring cleaning” for insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2011, a large-scale field study was undertaken to examine how a 30-40 hour spring flood (550-700 DDs) would affect key insect populations, as well as the cranberry plant. A total of 46 beds were included in the study (23 pairs of flooded/unflooded beds across 11 marshes in central Wisconsin), foc...

  8. Biotechnology-derived products for insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to produce microbial-based insecticides have resulted from development of new and improved methods in biotechnology. Microorganisms, metabolites from plants and microorganisms, and transgenic crops have been used to make biotechnologically-derived products for control of insects. New biote...

  9. The insect ecdysone receptor is a good potential target for RNAi-based pest control.

    PubMed

    Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing

    2014-01-01

    RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.

  10. Entomopathogenic Fungi Associated with Exotic Invasive Insect Pests in Northeastern Forests of the USA.

    PubMed

    Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A P; Skinner, Margaret; Parker, Bruce L

    2013-11-04

    Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment.

  11. Relative densities of natural enemy and pest insects within California hedgerows.

    PubMed

    Gareau, Tara L Pisani; Letourneau, Deborah K; Shennan, Carol

    2013-08-01

    Research on hedgerow design for supporting communities of natural enemies for biological control lags behind farmer innovation in California, where assemblages of perennial plant species have been used on crop field margins in the last decade. We compared natural enemy to pest ratios between fields with hedgerows and fields with weedy margins by sampling beneficial insects and key pests of vegetables on sticky cards. We used biweekly vacuum samples to measure the distribution of key insect taxa among native perennial plant species with respect to the timing and intensity of bloom. Sticky cards indicated a trend that field margins with hedgerows support a higher ratio of natural enemies to pests compared with weedy borders. Hedgerow plant species hosted different relative densities of a generally overlapping insect community, and the timing and intensity of bloom only explained a small proportion of the variation in insect abundance at plant species and among hedgerows, with the exception of Orius spp. on Achillea millefolium L. and Baccharis pilularis De Candolle. Indicator Species Analysis showed an affinity of parasitic wasps, especially in the super-family Chalcidoidea, for B. pilularis whether or not it was in flower. A. millefolium was attractive to predatory and herbivorous homopterans; Heteromeles arbutifolia (Lindley) Roemer and B. pilularis to Diabrotica undecimpunctata undecimpunctata Mannerheim; and Rhamnus californica Eschsch to Hemerobiidae. Perennial hedgerows can be designed through species selection to support particular beneficial insect taxa, but plant resources beyond floral availability may be critical in providing structural refuges, alternative prey, and other attractive qualities that are often overlooked.

  12. Entomopathogenic Fungi Associated with Exotic Invasive Insect Pests in Northeastern Forests of the USA

    PubMed Central

    Gouli, Vladimir; Gouli, Svetlana; Marcelino, José A. P.; Skinner, Margaret; Parker, Bruce L.

    2013-01-01

    Mycopathogens of economically important exotic invasive insects in forests of northeastern USA have been the subject of research at the Entomology Research Laboratory, University of Vermont, for the last 20 years. Elongate hemlock scale, European fruit lecanium, hemlock woolly adelgid and pear thrips were analyzed for the presence of mycopathogens, in order to consider the potential for managing these pests with biological control. Fungal cultures isolated from insects with signs of fungal infection were identified based on morphological characters and DNA profiling. Mycopathogens recovered from infected insects were subdivided into three groups, i.e., specialized entomopathogenic; facultative entomopathogens; ubiquitous opportunistic contaminants. Epizootics were caused by fungi in the specialized group with the exception of M. microspora, P. marquandii and I. farinosa. Inoculation of insects in laboratory and field conditions with B. bassiana, L. muscarium and Myriangium sp. caused insect mortality of 45 to 95%. Although pest populations in the field seemed severely compromised after treatment, the remnant populations re-established themselves after the winter. Although capable of inducing high mortality, a single localized aerial application of a soil-dwelling fungus does not maintain long-time suppression of pests. However, it can halt their range expansion and maintain populations below the economic threshold level without the use of expensive insecticides which have a negative impact on the environment. PMID:26462527

  13. Warming and drought combine to increase pest insect fitness on urban trees.

    PubMed

    Dale, Adam G; Frank, Steven D

    2017-01-01

    Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests.

  14. Warming and drought combine to increase pest insect fitness on urban trees

    PubMed Central

    Frank, Steven D.

    2017-01-01

    Urban habitats are characterized by impervious surfaces, which increase temperatures and reduce water availability to plants. The effects of these conditions on herbivorous insects are not well understood, but may provide insight into future conditions. Three primary hypotheses have been proposed to explain why multiple herbivorous arthropods are more abundant and damaging in cities, and support has been found for each. First, less complex vegetation may reduce biological control of pests. Second, plant stress can increase plant quality for pests. And third, urban warming can directly increase pest fitness and abundance. These hypotheses are not mutually exclusive, and the effects of temperature and plant stress are particularly related. Thus, we test the hypothesis that urban warming and drought stress combine to increase the fitness and abundance of the scale insect, Melanaspis tenebricosa, an urban tree pest that is more abundant in urban than rural areas of the southeastern U.S. We did this by manipulating drought stress across an existing mosaic of urban warming. We found support for the additive effect of temperature and drought stress such that female embryo production and body size increased with temperature and was greater on drought-stressed than watered trees. This study provides further evidence that drivers of pest insect outbreaks act in concert, rather than independently, and calls for more research that manipulates multiple abiotic factors related to urbanization and climate change to predict their effects on ecological interactions. As cities expand and the climate changes, warmer temperatures and drought conditions may become more widespread in the native range of this pest. These changes have direct physiological benefits for M. tenebricosa, and potentially other pests, that may increase their fitness and abundance in urban and natural forests. PMID:28278206

  15. An implicit approach to model plant infestation by insect pests.

    PubMed

    Lopes, Christelle; Spataro, Thierry; Doursat, Christophe; Lapchin, Laurent; Arditi, Roger

    2007-09-07

    Various spatial approaches were developed to study the effect of spatial heterogeneities on population dynamics. We present in this paper a flux-based model to describe an aphid-parasitoid system in a closed and spatially structured environment, i.e. a greenhouse. Derived from previous work and adapted to host-parasitoid interactions, our model represents the level of plant infestation as a continuous variable corresponding to the number of plants bearing a given density of pests at a given time. The variation of this variable is described by a partial differential equation. It is coupled to an ordinary differential equation and a delay-differential equation that describe the parasitized host population and the parasitoid population, respectively. We have applied our approach to the pest Aphis gossypii and to one of its parasitoids, Lysiphlebus testaceipes, in a melon greenhouse. Numerical simulations showed that, regardless of the number and distribution of hosts in the greenhouse, the aphid population is slightly larger if parasitoids display a type III rather than a type II functional response. However, the population dynamics depend on the initial distribution of hosts and the initial density of parasitoids released, which is interesting for biological control strategies. Sensitivity analysis showed that the delay in the parasitoid equation and the growth rate of the pest population are crucial parameters for predicting the dynamics. We demonstrate here that such a flux-based approach generates relevant predictions with a more synthetic formalism than a common plant-by-plant model. We also explain how this approach can be better adapted to test different management strategies and to manage crops of several greenhouses.

  16. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  17. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    PubMed

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  18. Competition among agricultural pest insects and its role in pest outbreaks associated with transgenic Bt cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the expansion of transgenic Bt cotton cultivation in the southeast US, stink bugs, particularly Nezara viridula and Euschistus servus [Hemiptera: Pentatomidae], have become serious cotton pests, resulting in continued high insecticide use. Whereas Bt cotton provides effective control of the ca...

  19. Intercropping for Management of Insect Pests of Castor, Ricinus communis, in the Semi—Arid Tropics of India

    PubMed Central

    Srinivasa Rao, M.; Venkateswarlu, B.

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On—farm experiments were conducted in villages of semi—arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop. PMID:22934569

  20. Intercropping for management of insect pests of castor, Ricinus communis, in the semi-arid tropics of India.

    PubMed

    Rao, M Srinivasa; Rama Rao, C A; Srinivas, K; Pratibha, G; Vidya Sekhar, S M; Sree Vani, G; Venkateswarlu, B

    2012-01-01

    Intercropping is one of the important cultural practices in pest management and is based on the principle of reducing insect pests by increasing the diversity of an ecosystem. On-farm experiments were conducted in villages of semi-arid tropical (SAT) India to identify the appropriate combination of castor (Ricinus communis L.) (Malpighiales: Euphorbiaceae) and intercropping in relation to pest incidence. The diversity created by introducing cluster bean, cowpea, black gram, or groundnut as intercrops in castor (1:2 ratio proportions) resulted in reduction of incidence of insect pests, namely semilooper (Achaea janata L.), leaf hopper (Empoasca flavescens Fabricius), and shoot and capsule borer (Conogethes punctiferalis Guenee). A buildup of natural enemies (Microplitis, coccinellids, and spiders) of the major pests of castor was also observed in these intercropping systems and resulted in the reduction of insect pests. Further, these systems were more efficient agronomically and economically, and were thus more profitable than a castor monocrop.

  1. Insect-attracting and antimicrobial properties of antifreeze for monitoring insect pests and natural enemies in stored corn.

    PubMed

    Ni, Xinzhi; Gunawan, Gunawati; Brown, Steve L; Sumner, Paul E; Ruberson, John R; Buntin, G David; Holbrook, C Corley; Lee, R Dewey; Streett, Douglas A; Throne, James E; Campbell, James F

    2008-04-01

    Insect infestations in stored grain cause extensive damage worldwide. Storage insect pests, including the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); Sitophilus spp. (Coleoptera: Curculionidae); and their natural enemies [e.g., Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae), and Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae)] inhabit a temporary, but stable ecosystem with constant environmental conditions. The objective of the present experiment was to assess the efficacy of using ethylene glycol antifreeze in combination with nutrient solutions to monitor storage insect pest and natural enemy populations in three bins of corn, Zea mays L. The treatments were deionized water, a diluted (1:5 antifreeze:water) antifreeze solution, 10% honey, 10% honey in the diluted antifreeze solution, 10% beer in the diluted antifreeze solution, 10% sucrose in the diluted antifreeze solution, and a commercial pheromone trap suspended in a 3.8-liter container filled with 300-ml of diluted antifreeze solution. The seven treatments captured storage insect pests and their natural enemies in the bins at 33-36 degrees C and 51-55% RH. The pheromone trap in the container with the diluted antifreeze captured significantly more P. interpunctella than the other treatments, but a lower percentage (7.6%) of these captures were females compared with the rest of the treatments (> 40% females). All trapping solutions also captured Sitophilus spp. and other beetle species, but the captures of the coleopteran pests were not significantly different among the seven treatments (P > 0.05). Two parasitoid wasps also were captured in the study. The number of A. calandrae was different among the seven treatments (P < 0.05), whereas the number of C. tarsalis was not different among the treatments (P > 0.05). Most A. calandrae adults were captured by the 10% honey in the diluted antifreeze, whereas the fewest were captured in the deionized water

  2. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests.

    PubMed

    King, Glenn F; Hardy, Margaret C

    2013-01-01

    Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.

  3. [Occurrence of insect pests in hospitals in Poland].

    PubMed

    Gliniewicz, Aleksandra; Sawicka, Bozena; Czajka, Ewa

    2003-01-01

    The prevalent synantropic species present in hospitals in Poland was the German cockroach (Blattella germanica L.), found in about 70% hospitals. It was followed by Oriental cockroach (Blatta orientais L.) and Pharaoh's ant (Monomorium pharaonis L.) occurred in 40% and 17% of hospitals respectively. Kitchens, laundries and lavatories were the most often infested places. Preliminary investigation of German cockroaches caught in hospitals in Poland showed on their body surfaces presence of bacteria known as these causing nosocomial infection. Several strains were resistant to antibacterial drugs widely used for treatment and showed insensitivity to chemical disinfectants used for surface treatment. Additional risk elements in Poland could be high resistance levels to many insecticides used for insect control in hospitals.

  4. Combining pest control and resistance management: synergy of engineered insects with Bt crops.

    PubMed

    Alphey, Nina; Bonsall, Michael B; Alphey, Luke

    2009-04-01

    Transgenic crops producing insecticidal toxins are widely used to control insect pests. Their benefits would be lost if resistance to the toxins became widespread in pest populations. The most widely used resistance management method is the high-dose/refuge strategy. This requires toxin-free host plants as refuges near insecticidal crops, and toxin doses intended to be sufficiently high to kill insects heterozygous for a resistant allele, thereby rendering resistance functionally recessive. We have previously shown by mathematical modeling that mass-release of harmless susceptible (toxin-sensitive) insects engineered with repressible female-specific lethality using release of insects carrying a dominant lethal ([RIDL] Oxitec Limited, United Kingdom) technology could substantially delay or reverse the spread of resistance and reduce refuge sizes. Here, we explore this proposal in depth, studying a wide range of scenarios, considering impacts on population dynamics as well as evolution of allele frequencies, comparing with releases of natural fertile susceptible insects, and examining the effect of seasonality. We investigate the outcome for pest control for which the plant-incorporated toxins are not necessarily at a high dose (i.e., they might not kill all homozygous susceptible and all heterozygous insects). We demonstrate that a RIDL-based approach could form an effective component of a resistance management strategy in a wide range of genetic and ecological circumstances. Because there are significant threshold effects for several variables, we expect that a margin of error would be advisable in setting release ratios and refuge sizes, especially as the frequency and properties of resistant alleles may be difficult to measure accurately in the field.

  5. The insect excretory system as a target for novel pest control strategies.

    PubMed

    Ruiz-Sanchez, Esau; O'Donnell, Michael J

    2015-10-01

    The insect excretory system plays essential roles in osmoregulation, ionoregulation and toxin elimination. Understanding the mechanisms of fluid and ion transport by the epithelial cells of the excretory system provides a foundation for development of novel pest management strategies. In the present review, we focus on two such strategies: first, impairment of osmoregulation by manipulation of diuretic or antidiuretic signaling pathways and second, interference with toxin elimination by inhibition of toxin transport systems.

  6. Activity of an essential oil derived from Chenopodium ambrosioides on greenhouse insect pests.

    PubMed

    Cloyd, Raymond A; Chiasson, Helene

    2007-04-01

    This study involved both greenhouse and laboratory experiments evaluating the effect of an essential oil product (QRD 400) derived from Chenopodium ambrosioides variety nr. Ambrosioides L. (Chenopodiaceae) on greenhouse insect pests that feed on different plant parts: citrus mealybug, Planococcus citri (Risso); longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti); western flower thrips, Frankliniella occidentalis (Pergande), and fungus gnats (Bradysia spp.). Treatments were applied to coleus, Solenostemon scutellarioides plants; transvaal daisy, Gerbera jamesonii flowers; or growing medium, depending on the insect pest. The essential oil was most effective, based on adult emergence, on both the second and third instars of the fungus gnat Bradysia sp. nr. coprophila when applied as a drench to growing medium. In addition, there was a significant rate response for QRD 400 on fungus gnats. The QRD 400 treatment had the highest percentage of mortality on longtailed mealybug (55%) compared with the other treatments. However, the essential oil was less effective against citrus mealybug (3% mortality) and western flower thrips adults (18-34% mortality) compared with standard insecticides, such as acetamiprid (TriStar) and spinosad (Conserve), which are typically used by greenhouse producers. This lack of efficacy may be associated with volatility and short residual properties of the essential oil or with the essential oil taking longer to kill insect pests. Other insecticides and miticides evaluated, including sesame oil, garlic, paraffinic oil, and Bacillus thuringiensis subsp. israelensis, provided minimal control of the designated insect pests. In addition, adult rove beetle Atheta coriaria Kraatz adults were not effective in controlling the larval instars of fungus gnats when applied at a rate of five adults per container.

  7. Feeding Behavior of a Potential Insect Pest, Lygus hesperus, on Four New Industrial Crops for the Arid Southwestern USA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina (Camelina sativa), guayule (Parthenium argentatum), lesquerella (Physaria fendleri), and vernonia ( Centrapalus pauciflorus [formerly Vernonia galamensis]) are either under limited commercial production or being developed for production in the southwestern USA. Insect pests are a potential ...

  8. A modelling methodology to assess the effect of insect pest control on agro-ecosystems

    PubMed Central

    Wan, Nian-Feng; Ji, Xiang-Yun; Jiang, Jie-Xian; Li, Bo

    2015-01-01

    The extensive use of chemical pesticides for pest management in agricultural systems can entail risks to the complex ecosystems consisting of economic, ecological and social subsystems. To analyze the negative and positive effects of external or internal disturbances on complex ecosystems, we proposed an ecological two-sidedness approach which has been applied to the design of pest-controlling strategies for pesticide pollution management. However, catastrophe theory has not been initially applied to this approach. Thus, we used an approach of integrating ecological two-sidedness with a multi-criterion evaluation method of catastrophe theory to analyze the complexity of agro-ecosystems disturbed by the insecticides and screen out the best insect pest-controlling strategy in cabbage production. The results showed that the order of the values of evaluation index (RCC/CP) for three strategies in cabbage production was “applying frequency vibration lamps and environment-friendly insecticides 8 times” (0.80) < “applying trap devices and environment-friendly insecticides 9 times” (0.83) < “applying common insecticides 14 times” (1.08). The treatment “applying frequency vibration lamps and environment-friendly insecticides 8 times” was considered as the best insect pest-controlling strategy in cabbage production in Shanghai, China. PMID:25906199

  9. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-03-02

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.

  10. Exploitation of insect vibrational signals reveals a new method of pest management.

    PubMed

    Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Lanzo, Francesco; Virant-Doberlet, Meta; Mazzoni, Valerio

    2012-01-01

    Food production is considered to be the main source of human impact on the environment and the concerns about detrimental effects of pesticides on biodiversity and human health are likely to lead to an increasingly restricted use of chemicals in agriculture. Since the first successful field trial, pheromone based mating disruption enabled sustainable insect control, which resulted in reduced levels of pesticide use. Organic farming is one of the fastest growing segments of agriculture and with the continuously growing public concern about use of pesticides, the main remaining challenge in increasing the safety of the global food production is to identify appropriate alternative mating disruption approaches for the numerous insect pests that do not rely on chemical communication. In the present study, we show for the first time that effective mating disruption based on substrate-borne vibrational signals can be achieved in the field. When disruptive vibrational signals were applied to grapevine plants through a supporting wire, mating frequency of the leafhopper pest Scaphoideus titanus dropped to 9 % in semi-field conditions and to 4 % in a mature vineyard. The underlying mechanism of this environmentally friendly pest-control tactic is a masking of the vibrational signals used in mate recognition and location. Because vibrational communication is widespread in insects, mating disruption using substrate vibrations can transform many open field and greenhouse based farming systems.

  11. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  12. Floricultural Insects and Related Pests - Biology and Control, Section I. Florogram - Specialty Manual Issue for Commercial Greenhouse Growers.

    ERIC Educational Resources Information Center

    Gentile, A. G.; Scanlon, D. T.

    This manual is designed by the Massachusetts Cooperative Extension Service as a guide for the control of the most common insects and related pests of floricultural crops grown commercially in glass and plastic houses in Massachusetts. The publication consists of two sections. The first section presents a description of the major pests of…

  13. Effect of volatile constituents from Securidaca longepedunculata on insect pests of stored grain.

    PubMed

    Jayasekara, Thamara K; Stevenson, Philip C; Hall, David R; Belmain, Steven R

    2005-02-01

    Securidaca longepedunculata Fers (Polygalaceae) is commonly used as a traditional medicine in many parts of Africa as well as against a number of invertebrate pests, including insects infesting stored grain. The present study showed that S. longepedunculata root powder, its methanol extract, and the main volatile component, methyl salicylate, exhibit repellent and toxic properties to Sitophilus zeamais adults. Adult S. zeamais that were given a choice between untreated maize and maize treated with root powder, extract, or synthetic methyl salicylate in a four-way choice olfactometer significantly preferred the control maize. Methyl salicylate vapor also had a dose-dependant fumigant effect against S. zeamais, Rhyzopertha dominica, and Prostephanus truncates, with a LD100 achieved with a 60microl dose in a 1-l container against all three insect species after 24 hr of exposure. Probit analyses estimated LD50 values between 34 and 36 microl (95% CI) for all insect species. Furthermore, prolonged exposure for 6 days showed that lower amounts (30 microl) of methyl salicylate vapor were able to induce 100% adult mortality of the three insect species. The implications are discussed in the context of improving stored product pest control by small-scale subsistence farmers in Africa.

  14. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

    SciTech Connect

    Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; Hao, Zhao; Jenkins, Stefan; Lim, Hsiao Chien; Kosina, Petr; Infante, Francisco; Northen, Trent R.; Brodie, Eoin L.

    2015-07-14

    Here we report that the coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Furthermore, we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We also demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. In conclusion, pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.

  15. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee.

    PubMed

    Ceja-Navarro, Javier A; Vega, Fernando E; Karaoz, Ulas; Hao, Zhao; Jenkins, Stefan; Lim, Hsiao Chien; Kosina, Petr; Infante, Francisco; Northen, Trent R; Brodie, Eoin L

    2015-07-14

    The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.

  16. Gene-for-gene disease resistance: bridging insect pest and pathogen defense.

    PubMed

    Kaloshian, Isgouhi

    2004-12-01

    Active plant defense, also known as gene-for-gene resistance, is triggered when a plant resistance (R) gene recognizes the intrusion of a specific insect pest or pathogen. Activation of plant defense includes an array of physiological and transcriptional reprogramming. During the past decade, a large number of plant R genes that confer resistance to diverse group of pathogens have been cloned from a number of plant species. Based on predicted protein structures, these genes are classified into a small number of groups, indicating that structurally related R genes recognize phylogenetically distinct pathogens. An extreme example is the tomato Mi-1 gene, which confers resistance to potato aphid (Macrosiphum euphorbiae), whitefly (Bemisia tabaci), and root-knot nematodes (Meloidogyne spp.). While Mi-1 remains the only cloned insect R gene, there is evidence that gene-for-gene type of plant defense against piercing-sucking insects exists in a number of plant species.

  17. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

    PubMed Central

    Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; Hao, Zhao; Jenkins, Stefan; Lim, Hsiao Chien; Kosina, Petr; Infante, Francisco; Northen, Trent R.; Brodie, Eoin L.

    2015-01-01

    The coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Here we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitous members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. Pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role. PMID:26173063

  18. Reduced Population Control of an Insect Pest in Managed Willow Monocultures

    PubMed Central

    Dalin, Peter; Kindvall, Oskar; Björkman, Christer

    2009-01-01

    Background There is a general belief that insect outbreak risk is higher in plant monocultures than in natural and more diverse habitats, although empirical studies investigating this relationship are lacking. In this study, using density data collected over seven years at 40 study sites, we compare the temporal population variability of the leaf beetle Phratora vulgatissima between willow plantations and natural willow habitats. Methodology/Principal Findings The study was conducted in 1999–2005. The density of adult P. vulgatissima was estimated in the spring every year by a knock-down sampling technique. We used two measures of population variability, CV and PV, to compare temporal variations in leaf beetle density between plantation and natural habitat. Relationships between density and variability were also analyzed to discern potential underlying processes behind stability in the two systems. The results showed that the leaf beetle P. vulgatissima had a greater temporal population variability and outbreak risk in willow plantations than in natural willow habitats. We hypothesize that the greater population stability observed in the natural habitat was due to two separate processes operating at different levels of beetle density. First, stable low population equilibrium can be achieved by the relatively high density of generalist predators observed in natural stands. Second, stable equilibrium can also be imposed at higher beetle density due to competition, which occurs through depletion of resources (plant foliage) in the natural habitat. In willow plantations, competition is reduced mainly because plants grow close enough for beetle larvae to move to another plant when foliage is consumed. Conclusion/Significance To our knowledge, this is the first empirical study confirming that insect pest outbreak risk is higher in monocultures. The study suggests that comparative studies of insect population dynamics in different habitats may improve our ability to

  19. Insect Pests of Shade Trees and Shrubs: A Guide for Commercial Nurserymen and Arborists. Publication E-41.

    ERIC Educational Resources Information Center

    Schuder, Donald L.

    This guide presents information on controlling insect pests of ornamental trees and shrubs. It is organized for easy reference by nurserymen, arborists, and others desirous of controlling insect damage. General information given includes notes on spraying and sprayers, insecticides, general purpose sprays, phytotoxicity, and health precautions.…

  20. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

    PubMed Central

    Albrecht, Matthias

    2016-01-01

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304

  1. Fluorescent sperm marking to improve the fight against the pest insect Ceratitis capitata (Wiedemann; Diptera: Tephritidae).

    PubMed

    Scolari, Francesca; Schetelig, Marc F; Bertin, Sabrina; Malacrida, Anna R; Gasperi, Giuliano; Wimmer, Ernst A

    2008-06-01

    The Sterile Insect Technique (SIT) involving area-wide release of mass-reared and sterilized pest insects has proven successful to reduce, control and eradicate economically important pest species, such as the Mediterranean fruit fly (medfly). For the efficient application, effective monitoring to assess the number and mating success of the released medflies is essential. Here, we report sperm-specific marking systems based on the spermatogenesis-specific Ceratitis capitata beta2-tubulin (Ccbeta2t) promoter. Fluorescent sperm can be isolated from testes or spermathecae. The marking does not cause general disadvantages in preliminary laboratory competitiveness assays. Therefore, transgenic sperm marking could serve as a major improvement for monitoring medfly SIT programs. The use of such harmless transgenic markers will serve as an ideal initial condition to transfer insect transgenesis technology from the laboratory to field applications. Moreover, effective and easily recognizable sperm marking will make novel studies possible on medfly reproductive biology which will help to further improve SIT programs.

  2. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases.

    PubMed

    Fang, Weiguo; Azimzadeh, Philippe; St Leger, Raymond J

    2012-06-01

    Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests.

  3. Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM.

    PubMed

    Lacey, Lawrence A; Shapiro-Ilan, David I

    2008-01-01

    Because of their selectivity and safety, microbial control agents (MCAs) appear to be ready-made components of integrated pest management (IPM) systems that do not pose a threat to applicators or the environment and allow other natural enemies to function. Control of several orchard pest insects using MCAs, including viruses, Bacillus thuringiensis, fungi, and entomopathogenic nematodes (EPNs), have been demonstrated in apple, pear, stone fruits, citrus, and several nut crops. B. thuringiensis is the most used MCA for control of lepidopteran orchard pests. Significant use of EPNs in citrus for control of root weevils is also reported. The granulovirus of codling moth is used increasingly in apple and pear by organic growers, with interest also shown by conventional growers. Although some success has been achieved, in most orchard systems MCAs account for a relatively small proportion of the pest control tactics employed, and in some systems they are not used at all. Research toward improving MCA efficacy and economic competitiveness is required to enhance the role of MCAs in IPM.

  4. Make your trappings count: The mathematics of pest insect monitoring. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by Petrovskii et al.

    NASA Astrophysics Data System (ADS)

    Blasius, Bernd

    2014-09-01

    Since the beginnings of agriculture the production of crops is characterized by an ongoing battle between farmers and pests [1]. Already during biblical times swarms of the desert locust, Schistocerca gregaria, were known as major pest that can devour a field of corn within an hour. Even today, harmful organisms have the potential to threaten food production worldwide. It is estimated that about 37% of all potential crops are destroyed by pests. Harmful insects alone destroy 13%, causing financial losses in the agricultural industry of millions of dollars each year [2-4]. These numbers emphasize the importance of pest insect monitoring as a crucial step of integrated pest management [1]. The main approach to gain information about infestation levels is based on trapping, which leads to the question of how to extrapolate the sparse population counts at singularly disposed traps to a spatial representation of the pest species distribution. In their review Petrovskii et al. provide a mathematical framework to tackle this problem [5]. Their analysis reveals that this seemingly inconspicuous problem gives rise to surprisingly deep mathematical challenges that touch several modern contemporary concepts of statistical physics and complex systems theory. The review does not aim for a collection of numerical recipes to support crop growers in the analysis of their trapping data. Instead the review identifies the relevant biological and physical processes that are involved in pest insect monitoring and it presents the mathematical techniques that are required to capture these processes.

  5. Ancient pests: the season of the Santorini Minoan volcanic eruption and a date from insect chitin

    NASA Astrophysics Data System (ADS)

    Panagiotakopulu, Eva; Higham, Thomas; Sarpaki, Anaya; Buckland, Paul; Doumas, Christos

    2013-07-01

    Attributing a season and a date to the volcanic eruption of Santorini in the Aegean has become possible by using preserved remains of the bean weevil, Bruchus rufipes, pests of pulses, from the storage jars of the West House, in the Bronze Age settlement at Akrotiri. We have applied an improved pre-treatment methodology for dating the charred insects, and this provides a date of 1744-1538 BC. This date is within the range of others obtained from pulses from the same context and confirms the utility of chitin as a dating material. Based on the nature of the insect material and the life cycle of the species involved, we argue for a summer eruption, which took place after harvest, shortly after this material was transported into the West House storeroom.

  6. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests.

    PubMed

    Betz, F S; Hammond, B G; Fuchs, R L

    2000-10-01

    Plants modified to express insecticidal proteins from Bacillus thuringiensis (referred to as Bt-protected plants) provide a safe and highly effective method of insect control. Bt-protected corn, cotton, and potato were introduced into the United States in 1995/1996 and grown on a total of approximately 10 million acres in 1997, 20 million acres in 1998, and 29 million acres globally in 1999. The extremely rapid adoption of these Bt-protected crops demonstrates the outstanding grower satisfaction of the performance and value of these products. These crops provide highly effective control of major insect pests such as the European corn borer, southwestern corn borer, tobacco budworm, cotton bollworm, pink bollworm, and Colorado potato beetle and reduce reliance on conventional chemical pesticides. They have provided notably higher yields in cotton and corn. The estimated total net savings to the grower using Bt-protected cotton in the United States was approximately $92 million in 1998. Other benefits of these crops include reduced levels of the fungal toxin fumonisin in corn and the opportunity for supplemental pest control by beneficial insects due to the reduced use of broad-spectrum insecticides. Insect resistance management plans are being implemented to ensure the prolonged effectiveness of these products. Extensive testing of Bt-protected crops has been conducted which establishes the safety of these products to humans, animals, and the environment. Acute, subchronic, and chronic toxicology studies conducted over the past 40 years establish the safety of the microbial Bt products, including their expressed insecticidal (Cry) proteins, which are fully approved for marketing. Mammalian toxicology and digestive fate studies, which have been conducted with the proteins produced in the currently approved Bt-protected plant products, have confirmed that these Cry proteins are nontoxic to humans and pose no significant concern for allergenicity. Food and feed derived

  7. Efficacy of Piper (Piperaceae) extracts for control of common home and garden insect pests.

    PubMed

    Scott, I M; Jensen, H; Nicol, R; Lesage, L; Bradbury, R; Sánchez-Vindas, P; Poveda, L; Arnason, J T; Philogène, B J R

    2004-08-01

    Extracts from three species of the plant family Piperaceae, Piper nigrum [L.], Piper guineense [Schum & Thonn, and Piper tuberculatum [Jacq.], were tested for efficacy against insects from five orders. All three species contain isobutyl amides, plant secondary compounds that act as neurotoxins in insects. These materials are considered safe to mammals because Piper spp. were used for centuries for spice and medicinal purposes. When 24-h P. nigrum LC50 values were compared between common insect pests from eastern Canada and the northeastern United States, the most sensitive species in order of increasing lethal concentration were eastern tent caterpillar, Malacosoma americanum (F.) < European pine sawfly larvae, Neodiprion sertifer (Geoffroy) < spindle ermine moth larvae, Yponomeuta cagnagella [Hübner] < viburnum leaf beetle larvae, Pyrrhalta viburni [Paykull] < stripped cucumber beetle adults, Acalymma vittatum (F.) < Colorado potato beetle adults, Leptinotarsa decemlineata (Say) < Japanese beetle adults, Popillia japonica [Newman] < hairy chinch bug, Blissus leucopterus hirtis [Montandon]. The life stage tested was the point at which each species causes the greatest amount of damage to the host plant and the point at which most gardeners would likely choose to treat with a conventional synthetic insecticide. Greenhouse trials revealed that the pepper formulations also had a repellent activity, thus protecting plant leaves from 1) herbivory (lily leaf beetle, Lilioceris lilii [Scopoli], adults and larvae and stripped cucumber beetle adults) and 2) oviposition [European corn borer, Ostrinia nubilalis (Hübner)]. Combinations with other botanical extracts were additive at best in toxicity and repellent trials. Nontarget toxicity to beneficial invertebrates is a possibility because the P. nigrum LC50 for beneficial ladybird beetles was 0.2%. P. nigrum extracts can provide a reasonable level of control against lepidopteran and European pine sawfly larvae and also will

  8. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    PubMed

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  9. Hole density and capture of stored-product insect pests in grain probe traps.

    PubMed

    Epsky, Nancy D; Shuman, Dennis

    2002-12-01

    The relationship between number of holes in a grain probe trap body and capture of stored-grain pests was determined in laboratory tests using adults of the rice weevil, Sitophilus oryzae (L.), the sawtoothed grain beetle, Oryzaephilus surinamensis (L.), and the red flour beetle, Tribolium castaneum (Herbst). Polyvinylchloride (PVC) probe bodies were attached to electronic sensor heads, and insect captures were recorded electronically using an Electronic Grain Probe Insect Counter (EGPIC) system. In comparisons among PVC probe trap bodies with 60-492 holes, tested at 71 insects per kg in 2.8 kg of soft wheat in cylindrical mini-silos, sawtoothed grain beetle and rice weevil captures were directly related to number of holes in the probe trap body, but there was no relationship for red flour beetle capture. Subsequent tests were conducted comparing sawtoothed grain beetle and rice weevil captures in a PVC probe body with 210 holes over a 40-cm long trapping surface with two commercially available probe traps, a polycarbonate (Lexan) probe trap with 180 holes over a 14-cm long trapping surface and a polyethylene (WBII) probe trap with 750 holes over a 34-cm long trapping surface. The highest percentage capture of both species was in the WBII probe trap, but the 210-hole PVC probe body was as effective as the Lexan probe body for rice weevils and sawtoothed grain beetles at 71 and 17 insects per kg of wheat, respectively.

  10. Pest insect movement and dispersal as an example of applied movement ecology. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by Petrovskii, Petrovskaya and Bearup

    NASA Astrophysics Data System (ADS)

    Codling, Edward A.

    2014-09-01

    Over the past decade there has been a revolution in the development of new affordable sensing and tracking technology, and this has led to the deployment of a vast array of location sensors and data loggers for monitoring and recording animal movement [1,2]. This revolution has led to an enormous amount of animal movement data being collected and much of this is now freely available [3]. Alongside the technological revolution, by necessity there has also been a rapid development of new mathematical and statistical tools and techniques for analysing the enormous data sets collected [4-6]. Movement ecology has subsequently been recognised as an important research field in its own right [7,8]. Nevertheless, there are still many open problems remaining. In particular, Petrovskii et al. [9] highlight an important question about how the movement and dispersal of pest insects relates to their population abundance, dynamics and spatial spread. Such a question can be considered an example of "applied movement ecology". As well as serving as an important case study to develop and test movement analysis and spatial modelling techniques, there are obvious direct economic, societal, and conservation benefits to be had from better understanding of pest insect dispersal and subsequent population dynamics at different spatial and temporal scales. Outbreaks of pest insect species (such as Tipula paludosa, as discussed in [9]) are known to cause serious damage to crops. Outbreaks can occur at a range of spatial scales: from a small localised outbreak affecting part of a field, through to a regional outbreak or invasion of a pest species [10,11]. Many millions of dollars are lost globally every year because of lost or reduced crop yields caused directly by pest insect damage [10]. Hence it is important that we can develop better knowledge of pest insect movement and dispersal in order to properly implement integrated pest management (IPM) [11].

  11. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review.

    PubMed

    Huvenne, Hanneke; Smagghe, Guy

    2010-03-01

    RNA interference already proved its usefulness in functional genomic research on insects, but it also has considerable potential for the control of pest insects. For this purpose, the insect should be able to autonomously take up the dsRNA, for example through feeding and digestion in its midgut. In this review we bring together current knowledge on the uptake mechanisms of dsRNA in insects and the potential of RNAi to affect pest insects. At least two pathways for dsRNA uptake in insects are described: the transmembrane channel-mediated uptake mechanism based on Caenorhabditis elegans' SID-1 protein and an 'alternative' endocytosis-mediated uptake mechanism. In the second part of the review dsRNA feeding experiments on insects are brought together for the first time, highlighting the achievement of implementing RNAi in insect control with the first successful experiments in transgenic plants and the diversity of successfully tested insect orders/species and target genes. We conclude with points of discussion and concerns regarding further research on dsRNA uptake mechanisms and the promising application possibilities for RNAi in insect control.

  12. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests.

    PubMed

    Zaritsky, Arieh; Ben-Dov, Eitan; Borovsky, Dov; Boussiba, Sammy; Einav, Monica; Gindin, Galina; Horowitz, A Rami; Kolot, Mikhail; Melnikov, Olga; Mendel, Zvi; Yagil, Ezra

    2010-01-01

    Various subspecies (ssp.) of Bacillus thuringiensis (Bt) are considered the best agents known so far to control insects, being highly specific and safe, easily mass produced and with long shelf life.1 The para-crystalline body that is produced during sporulation in the exosporium includes polypeptides named δ-endotoxins, each killing a specific set of insects. The different entomopathogenic toxins of various Bt ssp. can be manipulated genetically in an educated way to construct more efficient transgenic bacteria or plants that express combinations of toxin genes to control pests.2 Joint research projects in our respective laboratories during the last decade demonstrate what can be done by implementing certain ideas using molecular biology with Bt ssp. israelensis (Bti) as a model system. Here, we describe our progress achieved with Gram-negative bacterial species, including cyanobacteria, and some preliminary experiments to form transgenic plants, mainly to control mosquitoes (Diptera), but also a particular Lepidopteran and Coleopteran pest species. In addition, a system is described by which environment-damaging genes can be removed from the recombinants thus alleviating procedures for obtaining permits to release them in nature.

  13. Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests§

    PubMed Central

    Ben-Dov, Eitan; Borovsky, Dov; Boussiba, Sammy; Einav, Monica; Gindin, Galina; Horowitz, A Rami; Kolot, Mikhail; Melnikov, Olga; Mendel, Zvi; Yagil, Ezra

    2010-01-01

    Various subspecies (ssp.) of Bacillus thuringiensis (Bt) are considered the best agents known so far to control insects, being highly specific and safe, easily mass produced and with long shelf life.1 The para-crystalline body that is produced during sporulation in the exosporium includes polypeptides named δ-endotoxins, each killing a specific set of insects. The different entomopathogenic toxins of various Bt ssp. can be manipulated genetically in an educated way to construct more efficient transgenic bacteria or plants that express combinations of toxin genes to control pests.2 Joint research projects in our respective laboratories during the last decade demonstrate what can be done by implementing certain ideas using molecular biology with Bt ssp. israelensis (Bti) as a model system. Here, we describe our progress achieved with Gram-negative bacterial species, including cyanobacteria, and some preliminary experiments to form transgenic plants, mainly to control mosquitoes (Diptera), but also a particular Lepidopteran and Coleopteran pest species. In addition, a system is described by which environment-damaging genes can be removed from the recombinants thus alleviating procedures for obtaining permits to release them in nature. PMID:21326834

  14. Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations

    PubMed Central

    Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé

    2014-01-01

    Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances. We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth pityocampa, which is currently expanding its range in response to global warming. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests. PMID:25285523

  15. Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests.

    PubMed

    Prabhaker, Nilima; Morse, J G; Castle, S J; Naranjo, S E; Henneberry, T J; Toscano, N C

    2007-08-01

    Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.

  16. Numerical and functional responses of forest bats to a major insect pest in pine plantations.

    PubMed

    Charbonnier, Yohan; Barbaro, Luc; Theillout, Amandine; Jactel, Hervé

    2014-01-01

    Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances.We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth Thaumetopoea pityocampa, which is currently expanding its range in response to global warming [corrected]. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.

  17. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee

    DOE PAGES

    Ceja-Navarro, Javier A.; Vega, Fernando E.; Karaoz, Ulas; ...

    2015-07-14

    Here we report that the coffee berry borer (Hypothenemus hampei) is the most devastating insect pest of coffee worldwide with its infestations decreasing crop yield by up to 80%. Caffeine is an alkaloid that can be toxic to insects and is hypothesized to act as a defence mechanism to inhibit herbivory. Furthermore, we show that caffeine is degraded in the gut of H. hampei, and that experimental inactivation of the gut microbiota eliminates this activity. We also demonstrate that gut microbiota in H. hampei specimens from seven major coffee-producing countries and laboratory-reared colonies share a core of microorganisms. Globally ubiquitousmore » members of the gut microbiota, including prominent Pseudomonas species, subsist on caffeine as a sole source of carbon and nitrogen. In conclusion, pseudomonas caffeine demethylase genes are expressed in vivo in the gut of H. hampei, and re-inoculation of antibiotic-treated insects with an isolated Pseudomonas strain reinstates caffeine-degradation ability confirming their key role.« less

  18. Modeling the integration of parasitoid, insecticide, and transgenic insecticidal crop for the long-term control of an insect pest.

    PubMed

    Onstad, David W; Liu, Xiaoxia; Chen, Mao; Roush, Rick; Shelton, Anthony M

    2013-06-01

    The tools of insect pest management include host plant resistance, biological control, and insecticides and how they are integrated will influence the durability of each. We created a detailed model of the population dynamics and population genetics of the diamondback moth, Plutella xylostella L., and its parasitoid, Diadegma insulare (Cresson), to study long-term pest management in broccoli Brassica oleracea L. Given this pest's history of evolving resistance to various toxins, we also evaluated the evolution of resistance to transgenic insecticidal Bt broccoli (expressing Cry1Ac) and two types of insecticides. Simulations demonstrated that parasitism provided the most reliable, long-term control of P. xylostella populations. Use of Bt broccoli with a 10% insecticide-free refuge did not reduce the long-term contribution of parasitism to pest control. Small refuges within Bt broccoli fields can delay evolution of resistance > 30 generations if resistance alleles are rare in the pest population. However, the effectiveness of these refuges can be compromised by insecticide use. Rainfall mortality during the pest's egg and neonate stages significantly influences pest control but especially resistance management. Our model results support the idea that Bt crops and biological control can be integrated in integrated pest management and actually synergistically support each other. However, the planting and maintenance of toxin-free refuges are critical to this integration.

  19. Effects from early planting of late-maturing sunflowers on damage from primary insect pests in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delayed planting is recommended to reduce damage from sunflower insect pests in the United States, including the sunflower moth, Homoeosoma electellum (Hulst) and banded sunflower moth, Cochylis hospes Walsingham. However, in some locations, planting earlier or growing later-maturing hybrids could i...

  20. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide, causing millions of dollars in yearly losses to coffee growers. We present the third genomic analysis for a Coleopteran species, a draft genome of female coffee berry borers. The genome s...

  1. Unexpected Effects of Low Doses of a Neonicotinoid Insecticide on Behavioral Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Rabhi, Kaouther K.; Esancy, Kali; Voisin, Anouk; Crespin, Lucille; Le Corre, Julie; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2014-01-01

    In moths, which include many agricultural pest species, males are attracted by female-emitted sex pheromones. Although integrated pest management strategies are increasingly developed, most insect pest treatments rely on widespread use of neurotoxic chemicals, including neonicotinoid insecticides. Residual accumulation of low concentrations of these insecticides in the environment is known to be harmful to beneficial insects such as honey bees. This environmental stress probably acts as an “info-disruptor” by modifying the chemical communication system, and therefore decreases chances of reproduction in target insects that largely rely on olfactory communication. However, low doses of pollutants could on the contrary induce adaptive processes in the olfactory pathway, thus enhancing reproduction. Here we tested the effects of acute oral treatments with different low doses of the neonicotinoid clothianidin on the behavioral responses to sex pheromone in the moth Agrotis ipsilon using wind tunnel experiments. We show that low doses of clothianidin induce a biphasic effect on pheromone-guided behavior. Surprisingly, we found a hormetic-like effect, improving orientation behavior at the LD20 dose corresponding to 10 ng clothianidin. On the contrary, a negative effect, disturbing orientation behavior, was elicited by a treatment with a dose below the LD0 dose corresponding to 0.25 ng clothianidin. No clothianidin effect was observed on behavioral responses to plant odor. Our results indicate that risk assessment has to include unexpected effects of residues on the life history traits of pest insects, which could then lead to their adaptation to environmental stress. PMID:25517118

  2. Essential oil formulations useful as a new tool for insect pest control.

    PubMed

    Moretti, Mario D L; Sanna-Passino, Giovanni; Demontis, Stefania; Bazzoni, Emanuela

    2002-01-01

    This study investigated the effects of some essential oils on Limantria dispar (Lepidoptera: Lymantridae, gypsy moth) larvae, one of the most serious pests of cork oak forests. The essential oils were first formulated as oil in water (o/w) emulsions and used in laboratory bioassays to assess their lethal concentration (LC50). Microcapsules containing the most promising oils (Rosmarinus officinalis and Thymus herba-barona) were then prepared by a phase separation process, followed by freeze-drying. The formulations thus obtained, characterized in terms of essential oil content and composition, morphology, storage stability, and release profile, were tested on gypsy moth larvae. The results showed that the tested oils possess interesting larvicidal effects that make them suitable for application in integrated control strategies. The microencapsulation process gave high encapsulation yields (over 98%) with both essential oils, which have different chemical compositions. The microcapsules had toxic effects at a concentration similar to that usually employed for localized treatments with microgranular synthetic pesticides. Toxicity appeared to be maximized when the microparticles adhered to the typical hair structures of several defoliator families. These formulations seem to be able to protect the core material against environmental agents and could be considered for use in controlled drug release systems. The natural active principles they contain could provide an alternative system in insect pest control.

  3. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    PubMed Central

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

  4. Role of two insect growth regulators in integrated pest management of citrus scales.

    PubMed

    Grafton-Cardwell, E E; Lee, J E; Stewart, J R; Olsen, K D

    2006-06-01

    Portions of two commercial citrus orchards were treated for two consecutive years with buprofezin or three consecutive years with pyriproxyfen in a replicated plot design to determine the long-term impact of these insect growth regulators (IGRs) on the San Joaquin Valley California integrated pest management program. Pyriproxyfen reduced the target pest, California red scale, Aonidiella aurantii Maskell, to nondetectable levels on leaf samples approximately 4 mo after treatment. Pyriproxyfen treatments reduced the California red scale parasitoid Aphytis melinus DeBach to a greater extent than the parasitoid Comperiella bifasciata Howard collected on sticky cards. Treatments of lemons Citrus limon (L.) Burm. f. infested with scale parasitized by A. melinus showed only 33% direct mortality of the parasitoid, suggesting the population reduction observed on sticky cards was due to low host density. Three years of pyriproxyfen treatments did not maintain citricola scale, Coccus pseudomagnoliarum (Kuwana), below the treatment threshold and cottony cushion scale, Icerya purchasi Maskell, was slowly but incompletely controlled. Buprofezin reduced California red scale to very low but detectable levels approximately 5 mo after treatment. Buprofezin treatments resulted in similar levels of reduction of the two parasitoids A. melinus and C. bifasciata collected on sticky cards. Treatments of lemons infested with scale parasitized by A. melinus showed only 7% mortality of the parasitoids, suggesting the population reduction observed on sticky cards was due to low host density. Citricola scale was not present in this orchard, and cottony cushion scale was slowly and incompletely controlled by buprofezin. These field plots demonstrated that IGRs can act as organophosphate insecticide replacements for California red scale control; however, their narrower spectrum of activity and disruption of coccinellid beetles can allow other scale species to attain primary pest status.

  5. RNA interference: a new strategy in the evolutionary arms race between human control strategies and insect pests.

    PubMed

    Machado, Vilmar; Rodríguez-García, María Juliana; Sánchez-García, Francisco Javier; Galan, Jose

    2014-01-01

    The relationship between humans and the insect pests of cultivated plants may be considered to be an indirect coevolutionary process, i.e., an arms race. Over time, humans have developed several strategies to minimize the negative impacts of insects on agricultural production. However, insects have made adaptive responses via the evolution of resistance to insecticides, and more recently against Bacillus thuriengiensis. Thus, we need to continuously invest resources in the development of new strategies for crop protection. Recent advances in genomics have demonstrated the possibility of a new weapon or strategy in this war, i.e., gene silencing, which involves blocking the expression of specific genes via mRNA inactivation. In the last decade, several studies have demonstrated the effectiveness of this strategy in the control of different species of insects. However, several technical difficulties need to be overcome to transform this potential into reality, such as the selection of target genes, the concentration of dsRNA, the nucleotide sequence of the dsRNA, the length of dsRNA, persistence in the insect body, and the life stage of the target species where gene silencing is most efficient. This study analyzes several aspects related to the use of gene silencing in pest control and it includes an overview of the inactivation process, as well as the problems that need to be resolved to transform gene silencing into an effective pest control method.

  6. Effects of a killed-cover crop mulching system on sweetpotato production, soil pests, and insect predators in South Carolina.

    PubMed

    Jackson, D Michael; Harrison, Howard F

    2008-12-01

    Sweetpotatoes, Ipomoea batatas (L.) Lam. (Convolvulaceae), are typically grown on bare soil where weeds and erosion can be serious problems. Conservation tillage systems using cover crop residues as mulch can help reduce these problems, but little is known about how conservation tillage affects yield and quality of sweetpotato or how these systems impact populations of beneficial and pest insects. Therefore, field experiments were conducted at the U.S. Vegetable Laboratory, Charleston, SC, in 2002-2004 to evaluate production of sweetpotatoes in conventional tillage versus a conservation tillage system by using an oat (Avena sativa L. (Poaceae)-crimson clover (Trifolium incarnatum L.) (Fabaceae) killed-cover crop (KCC) mulch. The four main treatments were 1) conventional tillage, hand-weeded; 2) KCC, hand-weeded; 3) conventional tillage, weedy; and 4) KCC, weedy. Each main plot was divided into three subplots, whose treatments were sweetpotato genotypes: 'Ruddy', which is resistant to soil insect pests; and 'SC1149-19' and 'Beauregard', which are susceptible to soil insect pests. For both the KCC and conventional tillage systems, sweetpotato yields were higher in plots that received hand weeding than in weedy plots. Orthogonal contrasts revealed a significant effect of tillage treatment (conventional tillage versus KCC) on yield in two of the 3 yr. Ruddy remained resistant to injury by soil insect pests in both cropping systems; and it consistently had significantly higher percentages of clean roots and less damage by wireworm-Diabrotica-Systena complex, sweetpotato flea beetles, grubs, and sweetpotato weevils than the two susceptible genotypes. In general, injury to sweetpotato roots by soil insect pests was not significantly higher in the KCC plots than in the conventionally tilled plots. Also, more fire ants, rove beetles, and carabid beetle were captured by pitfall traps in the KCC plots than in the conventional tillage plots during at least 1 yr of the study

  7. New dispenser types for integrated pest management of agriculturally significant insect pests: an algorithm with specialized searching capacity in electronic data bases.

    PubMed

    Hummel, H E; Eisinger, M T; Hein, D F; Breuer, M; Schmid, S; Leithold, G

    2012-01-01

    Pheromone effects discovered some 130 years, but scientifically defined just half a century ago, are a great bonus for basic and applied biology. Specifically, pest management efforts have been advanced in many insect orders, either for purposes or monitoring, mass trapping, or for mating disruption. Finding and applying a new search algorithm, nearly 20,000 entries in the pheromone literature have been counted, a number much higher than originally anticipated. This compilation contains identified and thus synthesizable structures for all major orders of insects. Among them are hundreds of agriculturally significant insect pests whose aggregated damages and costly control measures range in the multibillions of dollars annually. Unfortunately, and despite a lot of effort within the international entomological scene, the number of efficient and cheap engineering solutions for dispensing pheromones under variable field conditions is uncomfortably lagging behind. Some innovative approaches are cited from the relevant literature in an attempt to rectify this situation. Recently, specifically designed electrospun organic nanofibers offer a lot of promise. With their use, the mating communication of vineyard insects like Lobesia botrana (Lep.: Tortricidae) can be disrupted for periods of seven weeks.

  8. Effect of some Ghanaian plant components on control of two stored-product insect pests of cereals.

    PubMed

    Owusu

    2000-01-15

    In an attempt to find natural and cheaper methods for the control of stored-product pests of cereals, some traditionally useful Ghanaian plant materials were evaluated. Hexane+isopropyl alcohol extract of leaves of Ocimum viride proved most effective in the control of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae), followed by that of Chromolaena odorata. O. viride showed strong repellent activity and thus deterred the insects from feeding. It reduced survival of both insect pests to less than 25% after 10 days of treatment at concentrations of 0.1 mg ml(-1) and above. The results show the potential of O. viride and C. odorata in the control of stored-product insects.

  9. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far

    PubMed Central

    Joga, Mallikarjuna R.; Zotti, Moises J.; Smagghe, Guy; Christiaens, Olivier

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants. PMID:27909411

  10. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far.

    PubMed

    Joga, Mallikarjuna R; Zotti, Moises J; Smagghe, Guy; Christiaens, Olivier

    2016-01-01

    In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.

  11. The potential of using insecticidal properties of medicinal plants against insect pests.

    PubMed

    Khoshnoud, Hojat; Ghiyasi, Mahdi; Amirnia, Reza; Fard, Shiva Sadig; Tajbakhsh, Mehdi; Salehzadeh, Hojat; Alahyary, Parisa

    2008-05-15

    In this study, botanicals extracted from two the species of family Scrophulariaceae, Verbascum cheiranthifolium Boiss and Verbascum speciosum Schard, were examined for their effect on mortality and progeny production against adults of Sitophilus oryzae (L.). The plant extracts were applied at five dose rates, which 0.25, 0.5, 1.0, 2.0 and 3% (w/v). Adults of S. oryzae was exposed to the treated wheat at 25 degrees C and 65% RH and mortality was assessed after 24 h, 48 h, 7 day, 14 day and 21 day of exposure. Then all adults were removed and the treated substrate remained at the same conditions for an additional 45 day after this interval, the commodity was checked for progeny production. In use two extracts the mortality of adults increased with the increase of dose and exposure interval so that; mortality was 100% after 21 days of exposure at the highest dose rate. Results indicated that applied of V. cheiranthifolium extract was more effective than V. speciosum against adult insects. Interestingly, in two cases complete suppression (100% reduction) of the progeny production (F1) was observed in the treated wheat than in control even in the lowest dose rate. Therefore, our results indicate that these medicinal plants can be used for protection of stored grain from infestations of stored-product insect pests.

  12. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee

    PubMed Central

    Acuña, Ricardo; Padilla, Beatriz E.; Flórez-Ramos, Claudia P.; Rubio, José D.; Herrera, Juan C.; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H.; Egan, Ashley N.; Doyle, Jeffrey J.; Rose, Jocelyn K. C.

    2012-01-01

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or “false berry borer”), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices. PMID:22371593

  13. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee.

    PubMed

    Acuña, Ricardo; Padilla, Beatriz E; Flórez-Ramos, Claudia P; Rubio, José D; Herrera, Juan C; Benavides, Pablo; Lee, Sang-Jik; Yeats, Trevor H; Egan, Ashley N; Doyle, Jeffrey J; Rose, Jocelyn K C

    2012-03-13

    Horizontal gene transfer (HGT) involves the nonsexual transmission of genetic material across species boundaries. Although often detected in prokaryotes, examples of HGT involving animals are relatively rare, and any evolutionary advantage conferred to the recipient is typically obscure. We identified a gene (HhMAN1) from the coffee berry borer beetle, Hypothenemus hampei, a devastating pest of coffee, which shows clear evidence of HGT from bacteria. HhMAN1 encodes a mannanase, representing a class of glycosyl hydrolases that has not previously been reported in insects. Recombinant HhMAN1 protein hydrolyzes coffee berry galactomannan, the major storage polysaccharide in this species and the presumed food of H. hampei. HhMAN1 was found to be widespread in a broad biogeographic survey of H. hampei accessions, indicating that the HGT event occurred before radiation of the insect from West Africa to Asia and South America. However, the gene was not detected in the closely related species H. obscurus (the tropical nut borer or "false berry borer"), which does not colonize coffee beans. Thus, HGT of HhMAN1 from bacteria represents a likely adaptation to a specific ecological niche and may have been promoted by intensive agricultural practices.

  14. Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol

    PubMed Central

    Wei, Jianing; Wang, Lizhong; Zhu, Junwei; Zhang, Sufang; Nandi, Owi I.; Kang, Le

    2007-01-01

    Background Plant volatiles play an important role in defending plants against insect attacks by attracting their natural enemies. For example, green leaf volatiles (GLVs) and terpenoids emitted from herbivore-damaged plants were found to be important in the host location of parasitic wasps. However, evidence of the functional roles and mechanisms of these semio-chemicals from a system of multiple plants in prey location by the parasitoid is limited. Little is known about the potential evolutionary trends between herbivore-induced host plant volatiles and the host location of their parasitoids. Methodology/Principal Findings The present study includes hierarchical cluster analyses of plant volatile profiles from seven families of host and non-host plants of pea leafminer, Liriomyza huidobrensis, and behavioral responses of a naive parasitic wasp, Opius dissitus, to some principal volatile compounds. Here we show that plants can effectively pull wasps, O. dissitus, towards them by releasing a universally induced compound, (Z)-3-hexenol, and potentially keep these plants safe from parasitic assaults by leafminer pests, L. huidobrensis. Specifically, we found that volatile profiles from healthy plants revealed a partly phylogenetic signal, while the inducible compounds of the infested-plants did not result from the fact that the induced plant volatiles dominate most of the volatile blends of the host and non-host plants of the leafminer pests. We further show that the parasitoids are capable of distinguishing the damaged host plant from the non-host plant of the leafminers. Conclusions/Significance Our results suggest that, as the most passive scenario of plant involvement, leafminers and mechanical damages evoke similar semio-chemicals. Using ubiquitous compounds, such as hexenol, for host location by general parasitoids could be an adaptation of the most conservative evolution of tritrophic interaction. Although for this, other compounds may be used to improve the

  15. Planting sentinel European trees in eastern Asia as a novel method to identify potential insect pest invaders.

    PubMed

    Roques, Alain; Fan, Jian-Ting; Courtial, Béatrice; Zhang, Yan-Zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-Hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  16. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest.

    PubMed

    Jones, Christopher M; Papanicolaou, Alexie; Mironidis, George K; Vontas, John; Yang, Yihua; Lim, Ka S; Oakeshott, John G; Bass, Chris; Chapman, Jason W

    2015-10-01

    Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.

  17. Enhancement of biological control agents for use against forest insect pests and diseases through biotechnology

    NASA Technical Reports Server (NTRS)

    Slavicek, James M.

    1991-01-01

    Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.

  18. Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae).

    PubMed

    Kang, Jung Koo; Pittendrigh, Barry R; Onstad, David W

    2013-12-01

    The cowpea weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae), can cause up to 100% yield loss of stored cowpea seeds in a few months in West Africa. Genes expressing toxins delaying insect maturation (MDTs) are available for genetic engineering. A simulation model was used to investigate the possible use of MDTs for managing C. maculatus. Specifically, we studied the effect of transgenic cowpea expressing an MDT, an insecticide, or both, on the evolution of resistance by C. maculatus at constant temperature. Transgenic cowpea expressing only a nonlethal MDT causing 50-100% maturation delay did not control C. maculatus well. Mortality caused by a maturation delay improved the efficacy of transgenic cowpea expressing only a lethal MDT, but significantly reduced the durability of transgenic cowpea Transgenic cowpea expressing only a lethal MDT causing 50% maturation delay and 90% mortality controlled C. maculatus better than one expressing only a nonlethal MDT, but its durability was only 2 yr. We concluded that transgenic cowpea expressing only an MDT has little value for managing C. maculatus. The resistance by C. maculatus to transgenic cowpea expressing only an insecticide rapidly evolved. Stacking a gene expressing a nonlethal MDT and a gene expressing an insecticide in transgenic cowpea did not significantly improve the durability of an insecticide, but stacking a gene expressing a lethal MDT and a gene expressing an insecticide in transgenic cowpea significantly improved the durability of an insecticide and an MDT. We also discussed this approach within the idea of using transgenic RNAi in pest control strategies.

  19. Monitoring pest insect traps by means of low-power image sensor technologies.

    PubMed

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J

    2012-11-13

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).

  20. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    PubMed Central

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.

    2012-01-01

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232

  1. Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest.

    PubMed Central

    Brun, L O; Stuart, J; Gaudichon, V; Aronstein, K; French-Constant, R H

    1995-01-01

    The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7568233

  2. Functional haplodiploidy: a mechanism for the spread of insecticide resistance in an important international insect pest.

    PubMed

    Brun, L O; Stuart, J; Gaudichon, V; Aronstein, K; French-Constant, R H

    1995-10-10

    The coffee berry borer, Hypothenemus hampei, is the most important insect pest of coffee worldwide and has an unusual life history that ensures a high degree of inbreeding. Individual females lay a predominantly female brood within individual coffee berries and because males are flightless there is almost entirely full sib mating. We investigated the genetics associated with this interesting life history after the important discovery of resistance to the cyclodiene type insecticide endosulfan. Both the inheritance of the resistance phenotype and the resistance-associated point mutation in the gamma-aminobutyric acid receptor gene Rdl were examined. Consistent with haplodiploidy, males failed to express and transmit paternally derived resistance alleles. Furthermore, while cytological examination revealed that males are diploid, one set of chromosomes was condensed, and probably nonfunctional, in the somatic cells of all males examined. Moreover, although two sets of chromosomes were present in primary spermatocytes, the chromosomes failed to pair before the single meiotic division, and only one set was packaged in sperm. Thus, the coffee berry borer is "functionally" haplodiploid. Its genetics and life history may therefore represent an interesting intermediate step in the evolution of true haplodiploidy. The influence of this breeding system on the spread of insecticide resistance is discussed.

  3. Review of research on the insect pests of kenaf and their control in the Sudan.

    PubMed

    Eldin, N S; El-Amin, E M

    1981-01-01

    Kenaf, Hibiscus cannabinus L., is grown in many parts of the Sudan as a fibre plant. During its various stages of growth, 17 different species of insects were detected, out of which only the cotton flea beetle Podagrica puncticollis Weise is of economic importance. The attack by this pest is most serious in the seedling stage; late sowings coupled with early light showers suffer the heaviest damage. In the leaves the beetles eat out round holes ('shot-hole effect'). The entire life cycle takes about 4 to 5 weeks, and about five generations are completed on the plant depending on the weather conditions. Cultural practices incorporating early sowing and eradication of the main host plants, Hibiscus esculentus and Abutilon spp., considerably reduce the size of the initial infestation. Chemicals tested as seed-dressing or sprays for the control of the beetle failed to give good results. However, granular insecticides showed a better performance and longer residual effect. Disyston 5G was effective for six weeks and also improved the general condition of the plants.

  4. The Phorbol Ester Fraction from Jatropha curcas Seed Oil: Potential and Limits for Crop Protection against Insect Pests

    PubMed Central

    Ratnadass, Alain; Wink, Michael

    2012-01-01

    The physic nut shrub, Jatropha curcas (Euphorbiaceae), has been considered as a “miracle tree”, particularly as a source of alternate fuel. Various extracts of the plant have been reported to have insecticidal/acaricidal or molluscicidal/anthelminthic activities on vectors of medical or veterinary interest or on agricultural or non-agricultural pests. Among those extracts, the phorbol ester fraction from seed oil has been reported as a promising candidate for use as a plant-derived protectant of a variety of crops, from a range of pre-harvest and post-harvest insect pests. However, such extracts have not been widely used, despite the “boom” in the development of the crop in the tropics during recent years, and societal concerns about overuse of systemic chemical pesticides. There are many potential explanations to such a lack of use of Jatropha insecticidal extracts. On the one hand, the application of extracts potentially harmful to human health on stored food grain, might not be relevant. The problem of decomposition of phorbol esters and other compounds toxic to crop pests in the field needing further evaluation before such extracts can be widely used, may also be a partial explanation. High variability of phorbol ester content and hence of insecticidal activity among physic nut cultivars/ecotypes may be another. Phytotoxicity to crops may be further limitation. Apparent obstacles to a wider application of such extracts are the costs and problems involved with registration and legal approval. On the other hand, more studies should be conducted on molluscicidal activity on slugs and land snails which are major pests of crops, particularly in conservation agriculture systems. Further evaluation of toxicity to natural enemies of insect pests and studies on other beneficial insects such as pollinators are also needed. PMID:23203190

  5. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy

    NASA Astrophysics Data System (ADS)

    Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H.

    2015-10-01

    An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. The current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.

  6. Applying GIS and population genetics for managing livestock insect pests: case studies of tsetse and screwworm flies.

    PubMed

    Feldmann, U; Ready, P D

    2014-10-01

    The Food and Agriculture Organization of the United Nations (FAO) and the International Atomic Energy Agency (IAEA) have supported a Co-ordinated Research Project (CRP) on 'Applying GIS and population genetics for managing livestock insect pests'. This six-year CRP (2008-2013) focused on research aimed at under-pinning the Area-Wide Integrated Pest Management (AW-IPM) of populations of tsetse and screwworm flies, and this introductory paper to the Special Issue integrates the findings of the CRP participants and discusses them in a broader context. The tools and techniques for mapping and modelling the distributions of genetically-characterised populations of tsetse and screwworm flies are increasingly used by researchers and managers for more effective decision-making in AW-IPM programmes, as illustrated by the reports in this Special Issue. Currently, the insect pests are often characterized only by neutral genetic markers suitable for recognizing spatially isolated populations that are sometimes associated with specific environments. Two challenges for those involved in AW-IPM are the standardization of best practice to permit the efficient application of GIS and genetic tools by regional teams, and the need to develop further the mapping and modelling of parasite and pest phenotypes that are epidemiologically important.

  7. Using Trichogramma Westwood (Hymenoptera: Trichogrammatidae) for insect pest biological control in cotton crops: an Australian perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichogramma Westwood egg parasitoids alone generally fail to suppress heliothine pests when released in established cotton growing regions. Factors hindering their success include indiscriminate use of detrimental insecticides, compensation for minimal pest larval hatch due to their activity via re...

  8. 1978 Insect Pest Management Guide: Field and Forage Crops. Circular 899.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of field crop pests. Suggestions are given for selection, dosage and application of insecticides to control pests in field corn, alfalfa and clover, small grains, soybeans and grain sorghum. (CS)

  9. Guidelines for the use of mathematics in operational area-wide integrated pest management programs using the sterile insect technique with a special focus on Tephritid Fruit Flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest control managers can benefit from using mathematical approaches, particularly models, when implementing area-wide pest control programs that include sterile insect technique (SIT), especially when these are used to calculate required rates of sterile releases to result in suppression or eradica...

  10. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid

    PubMed Central

    Margaritopoulos, John T; Kasprowicz, Louise; Malloch, Gaynor L; Fenton, Brian

    2009-01-01

    Background Global commerce and human transportation are responsible for the range expansion of various insect pests such as the plant sucking aphids. High resolution DNA markers provide the opportunity to examine the genetic structure of aphid populations, identify aphid genotypes and infer their evolutionary history and routes of expansion which is of value in developing management strategies. One of the most widespread aphid species is the peach-potato aphid Myzus persicae, which is considered as a serious pest on various crops in many parts of the world. The present study examined the genetic variation of this aphid at a world scale and then related this to distribution patterns. In particular, 197 aphid parthenogenetic lineages from around the world were analysed with six microsatellite loci. Results Bayesian clustering and admixture analysis split the aphid genotypes into three genetic clusters: European M. persicae persicae, New Zealand M. persicae persicae and Global M. persicae nicotianae. This partition was supported by FST and genetic distance analyses. The results showed two further points, a possible connection between genotypes found in the UK and New Zealand and globalization of nicotianae associated with colonisation of regions where tobacco is not cultivated. In addition, we report the presence of geographically widespread clones and for the first time the presence of a nicotianae genotype in the Old and New World. Lastly, heterozygote deficiency was detected in some sexual and asexual populations. Conclusion The study revealed important genetic variation among the aphid populations we examined and this was partitioned according to region and host-plant. Clonal selection and gene flow between sexual and asexual lineages are important factors shaping the genetic structure of the aphid populations. In addition, the results reflected the globalization of two subspecies of M. persicae with successful clones being spread at various scales throughout the

  11. Rapid genetic turnover in populations of the insect pest Bemisia tabaci Middle East: Asia Minor 1 in an agricultural landscape.

    PubMed

    Dinsdale, A; Schellhorn, N A; De Barro, P; Buckley, Y M; Riginos, C

    2012-10-01

    Organisms differ greatly in dispersal ability, and landscapes differ in amenability to an organism's movement. Thus, landscape structure and heterogeneity can affect genetic composition of populations. While many agricultural pests are known for their ability to disperse rapidly, it is unclear how fast and over what spatial scale insect pests might respond to the temporally dynamic agricultural landscapes they inhabit. We used population genetic analyses of a severe crop pest, a member of the Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidea) cryptic species complex known as Middle East-Asia Minor 1 (commonly known as biotype B), to estimate spatial and temporal genetic diversity over four months of the 2006-2007 summer growing season. We examined 559 individuals from eight sites, which were scored for eight microsatellite loci. Temporal genetic structure greatly exceeded spatial structure. There was significant temporal change in local genetic composition from the beginning to the end of the season accompanied by heterozygote deficits and inbreeding. This temporal structure suggests entire cohorts of pests can occupy a large and variable agricultural landscape but are rapidly replaced. These rapid genetic fluctuations reinforce the concept that agricultural landscapes are dynamic mosaics in time and space and may contribute to better decisions for pest and insecticide resistance management.

  12. Biological activity of ethanolic extract fractions of Dracaena arborea against infestation of stored grains by two storage insect pests.

    PubMed

    Epidi, T T; Udo, I O

    2009-07-01

    As part of on-going efforts to use eco-friendly alternatives to chemical pesticides, ethanolic extract of dried leaves of Dracaena arborea (Willd.) Link (Dragon tree; Dracaenaceae) dissolved in distilled water and partitioned between equal volumes of n-hexane, chloroform, ethyl acetate and butanol was assessed in the laboratory against infestation by Sitophillus zeamais Motsch. and Callosobruchus maculatus Walp. in stored maize and cowpea, respectively. One hundred grams each of maize grains and cowpea seeds were treated with 400 mg kg(-1) of each extract fraction to evaluate contact toxicity, damage assessment, effect on eggs and immature stages and progeny production in both insect species. Contact toxicity by topical application, toxicity upon filter paper application and repellency using area preference method were carried out on the two insect species. Results showed that the extract fraction caused significant (p < or = 0.05) mortality of both insect pests with a high residual contact activity against S. zeamais. Grain damage was significantly (p < or = 0.01) reduced, while progeny production and development of eggs within grains were inhibited. The extract fractions evoked a strong repellent action against S. zeamais but moderate action against C. maculatus. The full potentials of using extract fractions of D. arborea as grain protectant against infestation by insect pests is discussed.

  13. Acetylcholinesterase Inhibition by Biofumigant (Coumaran) from Leaves of Lantana camara in Stored Grain and Household Insect Pests

    PubMed Central

    Raghavendra, Anjanappa; Bakthavatsalam, Nandagopal

    2014-01-01

    Recent studies proved that the biofumigants could be an alternative to chemical fumigants against stored grain insect pests. For this reason, it is necessary to understand the mode of action of biofumigants. In the present study the prospectus of utilising Lantana camara as a potent fumigant insecticide is being discussed. Inhibition of acetylcholinesterase (AChE) by Coumaran, an active ingredient extracted from the plant L. camara, was studied. The biofumigant was used as an enzyme inhibitor and acetylthiocholine iodide as a substrate along with Ellman's reagent to carry out the reactions. The in vivo inhibition was observed in both dose dependent and time dependent in case of housefly, and the nervous tissue (ganglion) and the whole insect homogenate of stored grain insect exposed to Coumaran. The possible mode of action of Coumaran as an acetylcholinesterase inhibitor is discussed. PMID:25025036

  14. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of Lantana camara in stored grain and household insect pests.

    PubMed

    Rajashekar, Yallappa; Raghavendra, Anjanappa; Bakthavatsalam, Nandagopal

    2014-01-01

    Recent studies proved that the biofumigants could be an alternative to chemical fumigants against stored grain insect pests. For this reason, it is necessary to understand the mode of action of biofumigants. In the present study the prospectus of utilising Lantana camara as a potent fumigant insecticide is being discussed. Inhibition of acetylcholinesterase (AChE) by Coumaran, an active ingredient extracted from the plant L. camara, was studied. The biofumigant was used as an enzyme inhibitor and acetylthiocholine iodide as a substrate along with Ellman's reagent to carry out the reactions. The in vivo inhibition was observed in both dose dependent and time dependent in case of housefly, and the nervous tissue (ganglion) and the whole insect homogenate of stored grain insect exposed to Coumaran. The possible mode of action of Coumaran as an acetylcholinesterase inhibitor is discussed.

  15. New insights into an RNAi approach for plant defence against piercing-sucking and stem-borer insect pests.

    PubMed

    Li, Haichao; Guan, Ruobing; Guo, Huimin; Miao, Xuexia

    2015-11-01

    Insect double-stranded (ds)RNA expression in transgenic crops can increase plant resistance to biotic stress; however, creating transgenic crops to defend against every insect pest is impractical. Arabidopsis Mob1A is required for organ growth and reproduction. When Arabidopsis roots were soaked in dsMob1A, the root lengths and numbers were significantly suppressed and plants could not bolt or flower. Twenty-four hours after rice roots were immersed in fluorescent-labelled dsEYFP (enhanced yellow fluorescent protein), fluorescence was observed in the rice sheath and stem and in planthoppers feeding on the rice. The expression levels of Ago and Dicer in rice and planthoppers were induced by dsEYFP. When rice roots were soaked in dsActin, their growth was also significantly suppressed. When planthoppers or Asian corn borers fed on rice or maize that had been irrigated with a solution containing the dsRNA of an insect target gene, the insect's mortality rate increased significantly. Our results demonstrate that dsRNAs can be absorbed by crop roots, trigger plant and insect RNAi and enhance piercing-sucking and stem-borer insect mortality rates. We also confirmed that dsRNA was stable under outdoor conditions. These results indicate that the root dsRNA soaking can be used as a bioinsecticide strategy during crop irrigation.

  16. Efficacy of Steinernematid Nematodes Against Three Insect Pests of Crucifers in Quebec

    PubMed Central

    Bélair, G.; Fournier, Y.; Dauphinais, N.

    2003-01-01

    Steinernematid nematodes were evaluated against the three major cruciferous insect pests: the imported cabbageworm Artogeia rapae, the diamondback moth Plutella xylostella, and the cabbage looper Trichoplusia ni. LC50 values of S. carpocapsae All, S. feltiae UK, S. feltiae 27, and S. riobrave 335 were 18.2, 3.6, 5.7, and 8.3 on A. rapae L2; 24.5, 2.3, 6.0, and 15.5 on P. xylostella L3; and 10.1, 4.7, 9.5, and 7.8 on T. ni L2, respectively. Insect mortality from the nematode species and isolates was modulated by temperature. Maximum mortality (100%) was recorded for A. rapae L2 from S. riobrave at 30 °C, 95.8% from S. feltiae, and 91.7% from S. feltiae 27 at 25 °C and 75.7% from S. carpocapsae at 30 °C. Mortality of A. rapae L2 increased with contact time to nematode. Mortality of 76% and 78% was achieved for S. carpocapsae and S. feltiae, respectively, after 12-hour exposure. Susceptibility of A. rapae, P. xylostella, and T. ni larvae to entomopathogenic nematodes increased with larval age development. The addition of adjuvants - Corn Oil (0.9%, 1.8%, 3.6%), Leafshield (3.0%, 6.0%, 12.0%), Seaweed (0.1%) and Agral (0.05%) - significantly increased the density and survival rate of S. carpocapsae on cabbage leaves compared to water only. At 20 °C and 70% relative humidity (RH), survival rates of S. carpocapsae All, S. feltiae UK, and S. riobrave 335 on cabbage leaves were 43%, 2%, and 0% after 4 hours following application. Under field conditions, foliar applications of S. carpocapsae provided 35.3% and 33.0% control of A. rapae (L3-L5) on Brussels sprouts and broccoli in 1996 and 24.9%, 19.4% and 14.9% on Brussels sprouts, broccoli, and cauliflower, respectively, in 1999. Based on our field results, foliar applications of S. carpocapsae do not provide an acceptable level of A. rapae control under Quebec's environmental conditions. PMID:19262759

  17. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    PubMed

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  18. Delivery of Nucleic Acids through Embryo Microinjection in the Worldwide Agricultural Pest Insect, Ceratitis capitata.

    PubMed

    Gabrieli, Paolo; Scolari, Francesca

    2016-10-01

    The Mediterranean fruit fly (medfly) Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) is a pest species with extremely high agricultural relevance. This is due to its reproductive behavior: females damage the external surface of fruits and vegetables when they lay eggs and the hatched larvae feed on their pulp. Wild C. capitata populations are traditionally controlled through insecticide spraying and/or eco-friendly approaches, the most successful being the Sterile Insect Technique (SIT). The SIT relies on mass-rearing, radiation-based sterilization and field release of males that retain their capacity to mate but are not able to generate fertile progeny. The advent and the subsequent rapid development of biotechnological tools, together with the availability of the medfly genome sequence, has greatly boosted our understanding of the biology of this species. This favored the proliferation of new strategies for genome manipulation, which can be applied to population control. In this context, embryo microinjection plays a dual role in expanding the toolbox for medfly control. The ability to interfere with the function of genes that regulate key biological processes, indeed, expands our understanding of the molecular machinery underlying medfly invasiveness. Furthermore, the ability to achieve germ-line transformation facilitates the production of multiple transgenic strains that can be tested for future field applications in novel SIT settings. Indeed, genetic manipulation can be used to confer desirable traits that can, for example, be used to monitor sterile male performance in the field, or that can result in early life-stage lethality. Here we describe a method to microinject nucleic acids into medfly embryos to achieve these two main goals.

  19. Deer herbivory alters forest response to canopy decline caused by an exotic insect pest.

    PubMed

    Eschtruth, Anne K; Battles, John J

    2008-03-01

    by seedling species. Our results suggest that, by changing species' competitive abilities, white-tailed deer herbivory alters the trajectory of forest response to this exotic insect pest and has the potential to shift future overstory composition.

  20. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    PubMed Central

    Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; Shen, Eric; Nair, Mridul B.; Ceja-Navarro, Javier A.; Brodie, Eoin L.; Infante, Francisco; Dowd, Patrick F.; Pain, Arnab

    2015-01-01

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies. PMID:26228545

  1. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    DOE PAGES

    Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; ...

    2015-07-31

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complexmore » polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. We find the draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.« less

  2. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei

    SciTech Connect

    Vega, Fernando E.; Brown, Stuart M.; Chen, Hao; Shen, Eric; Nair, Mridul B.; Ceja-Navarro, Javier A.; Brodie, Eoin L.; Infante, Francisco; Dowd, Patrick F.; Pain, Arnab

    2015-07-31

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. We find the draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.

  3. Integrated Pest Management Practices Reduce Insecticide Applications, Preserve Beneficial Insects, and Decrease Pesticide Residues in Flue-Cured Tobacco Production.

    PubMed

    Slone, Jeremy D; Burrack, Hannah J

    2016-09-22

    Integrated pest management (IPM) recommendations, including scouting and economic thresholds (ETs), are available for North Carolina flue-cured tobacco growers, although ETs for key pests have not been updated in several decades. Moreover, reported IPM adoption rates by flue-cured tobacco growers remain low, at < 40%, according to NC cooperative extension surveys conducted during the last four years. Previous research has suggested that timing insecticide treatments using currently available ETs can reduce the average number of applications to two or fewer per season. We conducted field-scale trials at nine commercial tobacco farms, three in 2104 and six in 2015, to quantify inputs associated with current scouting recommendations, to determine if current ETs were able to reduce insecticide applications as compared to grower standard practices, and to assess the impacts of reduced insecticide applications on end of season yield and pesticide residues. Two fields were identified at each farm and were scouted weekly for insects. One field was only treated with insecticides if pests reached ET (IPM), while the other field was managed per grower discretion (Grower Standard). IPM fields received an average of two fewer insecticide applications without compromising yield. More insecticide applications resulted in higher pesticide residues in cured leaf samples from Grower Standard fields than those from IPM fields. Reductions in insecticides and management intensity also resulted in larger beneficial insect populations in IPM fields.

  4. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei.

    PubMed

    Vega, Fernando E; Brown, Stuart M; Chen, Hao; Shen, Eric; Nair, Mridul B; Ceja-Navarro, Javier A; Brodie, Eoin L; Infante, Francisco; Dowd, Patrick F; Pain, Arnab

    2015-07-31

    The coffee berry borer, Hypothenemus hampei, is the most economically important insect pest of coffee worldwide. We present an analysis of the draft genome of the coffee berry borer, the third genome for a Coleopteran species. The genome size is ca. 163 Mb with 19,222 predicted protein-coding genes. Analysis was focused on genes involved in primary digestion as well as gene families involved in detoxification of plant defense molecules and insecticides, such as carboxylesterases, cytochrome P450, gluthathione S-transferases, ATP-binding cassette transporters, and a gene that confers resistance to the insecticide dieldrin. A broad range of enzymes capable of degrading complex polysaccharides were identified. We also evaluated the pathogen defense system and found homologs to antimicrobial genes reported in the Drosophila genome. Ten cases of horizontal gene transfer were identified with evidence for expression, integration into the H. hampei genome, and phylogenetic evidence that the sequences are more closely related to bacterial rather than eukaryotic genes. The draft genome analysis broadly expands our knowledge on the biology of a devastating tropical insect pest and suggests new pest management strategies.

  5. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management.

    PubMed

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-09-03

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.

  6. The novel ABC transporter ABCH1 is a potential target for RNAi-based insect pest control and resistance management

    PubMed Central

    Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun

    2015-01-01

    Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918

  7. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    PubMed

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity.

  8. Planting Sentinel European Trees in Eastern Asia as a Novel Method to Identify Potential Insect Pest Invaders

    PubMed Central

    Roques, Alain; Fan, Jian-ting; Courtial, Béatrice; Zhang, Yan-zhuo; Yart, Annie; Auger-Rozenberg, Marie-Anne; Denux, Olivier; Kenis, Marc; Baker, Richard; Sun, Jiang-hua

    2015-01-01

    Quarantine measures to prevent insect invasions tend to focus on well-known pests but a large proportion of the recent invaders were not known to cause significant damage in their native range, or were not even known to science before their introduction. A novel method is proposed to detect new potential pests of woody plants in their region of origin before they are introduced to a new continent. Since Asia is currently considered to be the main supplier of insect invaders to Europe, sentinel trees were planted in China during 2007-2011 as an early warning tool to identify the potential for additional Asian insect species to colonize European trees. Seedlings (1-1.5 m tall) of five broadleaved (Quercus petraea, Q. suber, Q. ilex, Fagus sylvatica, and Carpinus betulus) and two conifer species (Abies alba and Cupressus sempervirens) were planted in blocks of 100 seedlings at two widely separated sites (one in a nursery near Beijing and the other in a forest environment near Fuyang in eastern China), and then regularly surveyed for colonization by insects. A total of 104 insect species, mostly defoliators, were observed on these new hosts, and at least six species were capable of larval development. Although a number of the insects observed were probably incidental feeders, 38 species had more than five colonization events, mostly infesting Q. petraea, and could be considered as being capable of switching to European trees if introduced to Europe. Three years was shown to be an appropriate duration for the experiment, since the rate of colonization then tended to plateau. A majority of the identified species appeared to have switched from agricultural crops and fruit trees rather than from forest trees. Although these results are promising, the method is not appropriate for xylophagous pests and other groups developing on larger trees. Apart from the logistical problems, the identification to species level of the specimens collected was a major difficulty. This

  9. Evaluation of dry-fleshed sweetpotato genotypes for resistance to soil insect pests, 2011

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two insect susceptible check cultivars (‘Beauregard” and ‘SC1149 19’), an insect resistant check cultivar (‘Ruddy’), 23 advanced dry-fleshed genotypes, and five dry-fleshed cultivars (‘Liberty’, ‘NC Japanese’, ‘Okinawa 100’, ‘Sumor’, and ‘Xushu-18’) were evaluated for insect resistance in replicate...

  10. Evaluation of dry-fleshed sweetpotato genotypes for resistance to soil insect pests, 2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An insect susceptible check cultivar (‘SC1149 19’), an insect resistant check cultivar (‘Ruddy’), 20 advanced dry-fleshed genotypes, and five dry-fleshed cultivars (‘Bonita’, ‘Liberty’, ‘NC Japanese’, ‘Picadito’, and ‘Sumor’) were evaluated for insect resistance in replicated field trials at Charles...

  11. 1978 Insect Pest Management Guide: Commercial Vegetable Crops and Greenhouse Vegetables. Circular 897.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This circular lists suggested uses of insecticides for the control of pests by commercial vegetable farmers. Suggestions are given for selection, dosage and application of insecticides to control pests of cabbage and related crops, beans, cucumbers and other vine crops, tomatoes, potatoes, peppers, corn, and onions. (CS)

  12. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest.

    PubMed

    Sattar, Sampurna; Maiti, Mrinal K

    2011-09-01

    Several isolates of Bacillus thuringiensis (Bt) were screened for the vegetative insecticidal protein (Vip) effective against sap-sucking insect pests. Screening results were based on LC(50) values against cotton aphid (Aphis gossypii), one of the dangerous pests of various crop plants including cotton. Among the isolates, the Bt#BREF24 showed promising results, and upon purification the aphidicidal protein was recognized as a binary toxin. One of the components of this binary toxin was identified by peptide sequencing to be a homolog of Vip2A that has been reported previously in other Bacillus spp. Vip2 belongs to the binary toxin group Vip1-Vip2, and is responsible for the enzymatic activity; and Vip1 is the translocation and receptor binding protein. The two genes encoding the corresponding proteins of the binary toxin, designated as vip2Ae and vip1Ae, were cloned from the Bt#BREF24, sequenced, and heterologously expressed in Escherichia coli. Aphid feeding assay with the recombinant proteins confirmed that these proteins are indeed the two components of the binary toxins, and the presence of both partners is essential for the activity. Aphid specificity of the binary toxin was further verified by ligand blotting experiment, which identified an ~50 kDa receptor in the brush border membrane vesicles of the cotton aphids only, but not in the lepidopteran insects. Our finding holds a promise of its use in future as a candidate gene for developing transgenic crop plants tolerant against sap-sucking insect pests.

  13. First results of the application of a new Neemazal powder formulation in hydroponics against different pest insects.

    PubMed

    Hummel, Edmund; Kleeberg, Hubertus

    2002-01-01

    NeemAzal PC (0.5% Azadirachtin) is a new standardised powder formulation from the seed kernels of the tropical Neem tree (Azadirachta indica A. Juss) with an inert carrier. First experiments with beans--as a model-system for hydroponics--show that active ingredient is taken up by the plants through the roots and is transported efficiently with the plant sap to the leaves. After application of NeemAzal PC solution (0.01-1%) to the roots sucking (Aphis fabae Hom., Aphididae) and free feeding (Heliothis armigera Lep., Noctuidae) pest insects can be controlled efficiently. The effects are concentration and time dependent.

  14. Incorporating carbon storage into the optimal management of forest insect pests: a case study of the southern pine beetle (Dendroctonus frontalis Zimmerman) in the New Jersey Pinelands.

    PubMed

    Niemiec, Rebecca M; Lutz, David A; Howarth, Richard B

    2014-10-01

    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal.

  15. Incorporating Carbon Storage into the Optimal Management of Forest Insect Pests: A Case Study of the Southern Pine Beetle ( Dendroctonus Frontalis Zimmerman) in the New Jersey Pinelands

    NASA Astrophysics Data System (ADS)

    Niemiec, Rebecca M.; Lutz, David A.; Howarth, Richard B.

    2014-10-01

    Forest insect pest disturbance is increasing in certain areas of North America as many insect species, such as the southern pine beetle, expand their range due to a warming climate. Because insect pests are beginning to occupy forests that are managed for multiple uses and have not been managed for pests before, it is becoming increasingly important to determine how forests should be managed for pests when non-timber ecosystem services are considered in addition to traditional costs and revenues. One example of a service that is increasingly considered in forest management and that may affect forest pest management is carbon sequestration. This manuscript seeks to understand whether the incorporation of forest carbon sequestration into cost-benefit analysis of different forest pest management strategies affects the financially optimal strategy. We examine this question through a case study of the southern pine beetle (SPB) in a new area of SPB expansion, the New Jersey Pinelands National Reserve (NJPR). We utilize a forest ecology and economics model and include field data from the NJPR as well as outbreak probability statistics from previous years. We find under the majority of scenarios, incorporating forest carbon sequestration shifts the financially optimal SPB management strategy from preventative thinning toward no management or reactionary management in forest stands in New Jersey. These results contradict the current recommended treatment strategy for SPB and signify that the inclusion of multiple ecosystem services into a cost-benefit analysis may drastically alter which pest management strategy is economically optimal.

  16. Investigating effects of surrounding landscape composition and complexity on populations of two polyphagous insect pest groups in Iowa soybean

    NASA Astrophysics Data System (ADS)

    Kuntz, Cody Daniel

    The composition and complexity of agro-ecosystems are important factors influencing the population dynamics of insect pests. Understanding these interactions may improve our ability to predict the spatial occurrence of pest outbreaks, thereby informing scouting and management decisions. In 2012 and 2013, two concurrent studies were conducted to examine the relationship between landscapes surrounding Iowa soybean, Glycine max [L.] Merrill, fields and two polyphagous pest groups; Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), and stink bugs (Hemiptera: Pentatomidae). Population densities were monitored in soybean within simple and complex agricultural landscapes to determine the response of these pests to landscape complexity. Results revealed P. japonica populations were significantly greater in soybean fields within complex landscapes and were positively associated with area of uncultivated land. The specific compositions of surrounding landscapes were also analyzed to determine the landscape features that explain the greatest variation in P. japonica and stink bug population densities. Results suggested that the area of wooded and grass habitat around fields accounted for the greatest variation in P. japonica populations; however, no discernable relationships were observed with stink bug populations. Sampling also sought to survey the community of stink bugs present in Iowa soybean. The community was predominantly comprised of stink bugs in the genus Euschistus, comprising a combined 91.04% of all captures. Additional species included the green stink bug, Acrosternum hilare (Say) (4.48%); spined soldier bug, Podisus maculiventris (Say) (2.99%); and red shouldered stink bug, Thyanta custator accerra (McAtee) (1.49%). Future work will be needed to determine if the landscape effects on P. japonica in soybean reported here are representative of other similar polyphagous pests of soybean and if they extend to other host plants as well

  17. Pest control: A modelling approach. Comment on “Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks” by S. Petrovskii, N. Petrovskaya and D. Bearup

    NASA Astrophysics Data System (ADS)

    Tyson, Rebecca C.

    2014-09-01

    Successful food production results in the delivery to market of beautiful produce, free of damage from insects. All of that produce however, is an excellent and plentiful food source, and nature has evolved a multitude of insects that compete with humans for access. There exist a number of management strategies to combat pests, including traditional crop rotation and companion planting techniques, as well as more sophisticated techniques including mating disruption using pheromones and the application of chemical sprays. Chemical sprays are extremely effective, and are in widespread use around the globe [1,12,20]. Indeed, pesticides are the dominant form of pest management in current use [10,20].

  18. Influence of diet conditions on predation response of a predatory mite to a polyphagous insect pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), an invasive polyphagous species, is an economically important pest. A modified standard petri dish assay method was employed to examine the functional response and predation capacity of predatory mites (Amblyseius swirskii Anthias-...

  19. Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera

    PubMed Central

    Vélez, Ana M.; Fishilevich, Elane; Matz, Natalie; Storer, Nicholas P.; Narva, Kenneth E.; Siegfried, Blair D.

    2016-01-01

    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests. PMID:28029123

  20. Mechanisms for flowering plants to benefit arthropod natural enemies of insect pests: prospects for enhanced use in agriculture.

    PubMed

    Lu, Zhong-Xian; Zhu, Ping-Yang; Gurr, Geoff M; Zheng, Xu-Song; Read, Donna M Y; Heong, Kong-Luen; Yang, Ya-Jun; Xu, Hong-Xing

    2014-02-01

    Reduction of noncrop habitats, intensive use of pesticides and high levels of disturbance associated with intensive crop production simplify the farming landscape and bring about a sharp decline of biodiversity. This, in turn, weakens the biological control ecosystem service provided by arthropod natural enemies. Strategic use of flowering plants to enhance plant biodiversity in a well-targeted manner can provide natural enemies with food sources and shelter to improve biological control and reduce dependence on chemical pesticides. This article reviews the nutritional value of various types of plant-derived food for natural enemies, possible adverse effects on pest management, and the practical application of flowering plants in orchards, vegetables and field crops, agricultural systems where most research has taken place. Prospects for more effective use of flowering plants to maximize biological control of insect pests in agroecosystem are good but depend up on selection of optimal plant species based on information on the ecological mechanisms by which natural enemies are selectively favored over pest species.

  1. Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera.

    PubMed

    Vélez, Ana M; Fishilevich, Elane; Matz, Natalie; Storer, Nicholas P; Narva, Kenneth E; Siegfried, Blair D

    2016-12-24

    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests.

  2. Prospects of using Metarhizium anisopliae to check the breeding of insect pest, Oryctes rhinoceros L. in coconut leaf vermicomposting sites.

    PubMed

    Gopal, Murali; Gupta, Alka; Thomas, George V

    2006-10-01

    During vermicomposting of coconut leaves by the earthworm Eudrilus sp., Oryctes rhinoceros L. (rhinoceros beetle), an insect pest of palms, was found to breed in the decomposing organic material. Metarhizium anisopliae var. major was tried as a biocontrol agent for management of this pest. The effect of pathogen at spore loads of 10(3), 10(4) and 10(5) per 10 g of substrate was tested in laboratory on Eudrilus sp. kept with O. rhinoceros grubs and on Eudrilus sp. alone for the pathogenic capability of the fungus on the pest and its possible toxicity towards the vermin. The efficacy of the entomopathogen was also tested in the field in vermicomposting tanks. In laboratory bioassay, 100% mycosis of O. rhinoceros grubs could be obtained while the entomopathogen had no toxic effect on the earthworms. There was a positive change in the number and weight of the earthworms on treatment with M. anisopliae. In the field, application of M. anisopliae reduced O. rhinoceros grubs in the vermicomposting tanks upto an extent of 72%. In conclusion, M. anisopliae could effectively control O. rhinoceros in vermicomposting sites and was non-hazardous to the vermicomposting process as well as the Eudrilus sp.

  3. Dietary silver nanoparticles reduce fitness in a beneficial, but not, pest insect species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silver nanoparticles (AgNPs) have antimicrobial and insecticidal properties and they have been considered for their potential use as insecticides. While they do, indeed, kill some insects, two broader issues have not been considered in a critical way. First, reports of insect-lethal AgNPs are often ...

  4. Temperature stratification and insect pest populations in stored wheat with suction versus pressure aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-year study was conducted to compare temperature profiles in the headspace and in the bulk mass of wheat aerated through pressure aeration and suction aeration. Insect pitfall traps were used to measure naturally-occurring populations of stored product insects. Results show uniform distributi...

  5. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    DOE PAGES

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GAmore » down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.« less

  6. Down-regulation of gibberellic acid in poplar has negligible effects on host-plant suitability and insect pest response

    SciTech Connect

    Buhl, Christine; Strauss, Steven H.; Lindroth, Richard L.

    2015-01-06

    Abstract Endogenous levels and signaling of gibberellin plant hormones such as gibberellic acid (GA) have been genetically down-regulated to create semi-dwarf varieties of poplar. The potential benefits of semi-dwarf stature include reduced risk of wind damage, improved stress tolerance, and improved wood quality. Despite these benefits, modification of growth traits may have consequences for non-target traits that confer defense against insect herbivores. According to the growth-differentiation balance hypothesis, reductions in growth may shift allocation of carbon from growth to chemical resistance traits, thereby altering plant defense. To date, host-plant suitability and pest response have not been comprehensively evaluated in GA down-regulated plants. We quantified chemical resistance and nitrogen (an index of protein) in GA down-regulated and wild-type poplar (Populus alba × P. tremula) genotypes. We also evaluated performance of both generalist (Lymantria dispar) and specialist (Chrysomela scripta) insect pests reared on these genotypes. Our evaluation of resistance traits in four GA down-regulated genotypes revealed increased phenolic glycosides in one modified genotype and reduced lignin in two modified genotypes relative to the non-transgenic wild type. Nitrogen levels did not vary significantly among the experimental genotypes. Generalists reared on the four GA down-regulated genotypes exhibited reduced performance on only one modified genotype relative to the wild type. Specialists, however, performed similarly across all genotypes. Results from this study indicate that although some non-target traits varied among GA down-regulated genotypes, the differences in poplar pest susceptibility were modest and highly genotype-specific.

  7. [Preliminary evaluation of the incidence and control of insects--pest control in Polish hospitals].

    PubMed

    Krzemińska, A; Sawicka, B; Gliniewicz, A; Kanclerski, K

    1997-01-01

    The evaluation of the infestation and methods of insect disease vectors control in 748 hospitals in Poland in the period of 1990 to 1995 were done. The insect species, places of their occurrence and control agents were analysed. Blattella germanica L. occurred most frequently (71% hospitals). Blatta orientalis and Monomorium pharaonis were found in 40% and 17% hospitals respectively. Kitchens, laundries and baths were most infested. Sometimes insects were found also in central sterilization units and operating theaters. Controls of insects in hospitals were performed one to four times a year mostly by spraying with residual formulation. The control agents contained pyrethroids (mostly permethrin, but also deltamethrin and cypermethrin) and carbamates (bendiocarb, propoxur). Baits with hydramethylnon, boric acid, methoprene and chlorpyrifos were used not very often. The authors suggest reduction in using the spraying agents. The baits are recommended because they delay the development of the resistance to pesticides in controlling insect populations and are safer.

  8. An Insecticide Further Enhances Experience-Dependent Increased Behavioural Responses to Sex Pheromone in a Pest Insect

    PubMed Central

    Abrieux, Antoine; Mhamdi, Amel; Rabhi, Kaouther K.; Egon, Julie; Debernard, Stéphane; Duportets, Line; Tricoire-Leignel, Hélène; Anton, Sylvia; Gadenne, Christophe

    2016-01-01

    Neonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour. We investigated, using wind tunnel experiments, whether a brief pre-exposure to the sex pheromone could enhance the behavioural response to this important signal in the moth A. ipsilon at different ages (sexually immature and mature males) and after different delays (2 h and 24 h), and if the insecticide clothianidin would interfere with age effects or the potential pre-exposure-effects. Brief pre-exposure to the pheromone induced an age-independent significant increase of sex pheromone responses 24 h later, whereas sex pheromone responses did not increase significantly 2 h after exposure. However, response delays were significantly shorter compared to naïve males already two hours after exposure. Oral treatment with clothianidin increased sex pheromone responses in sexually mature males, confirming previous results, but did not influence responses in young immature males. Males treated with clothianidin after pre-exposure at day 4 responded significantly more to the sex pheromone at day 5 than males treated with clothianidin only and than males pre-exposed only, revealing an additive effect of experience and the insecticide. Plasticity of sensory systems has thus to be taken into account when investigating the effects of sublethal doses of insecticides

  9. A simulation approach to assessing sampling strategies for insect pests: an example with the balsam gall midge.

    PubMed

    Carleton, R Drew; Heard, Stephen B; Silk, Peter J

    2013-01-01

    Estimation of pest density is a basic requirement for integrated pest management in agriculture and forestry, and efficiency in density estimation is a common goal. Sequential sampling techniques promise efficient sampling, but their application can involve cumbersome mathematics and/or intensive warm-up sampling when pests have complex within- or between-site distributions. We provide tools for assessing the efficiency of sequential sampling and of alternative, simpler sampling plans, using computer simulation with "pre-sampling" data. We illustrate our approach using data for balsam gall midge (Paradiplosis tumifex) attack in Christmas tree farms. Paradiplosis tumifex proved recalcitrant to sequential sampling techniques. Midge distributions could not be fit by a common negative binomial distribution across sites. Local parameterization, using warm-up samples to estimate the clumping parameter k for each site, performed poorly: k estimates were unreliable even for samples of n ∼ 100 trees. These methods were further confounded by significant within-site spatial autocorrelation. Much simpler sampling schemes, involving random or belt-transect sampling to preset sample sizes, were effective and efficient for P. tumifex. Sampling via belt transects (through the longest dimension of a stand) was the most efficient, with sample means converging on true mean density for sample sizes of n ∼ 25-40 trees. Pre-sampling and simulation techniques provide a simple method for assessing sampling strategies for estimating insect infestation. We suspect that many pests will resemble P. tumifex in challenging the assumptions of sequential sampling methods. Our software will allow practitioners to optimize sampling strategies before they are brought to real-world applications, while potentially avoiding the need for the cumbersome calculations required for sequential sampling methods.

  10. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects.

    PubMed

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-05-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing 'uncoupled' gene drive system components in the field.

  11. Establishment of the cytoplasmic incompatibility-inducing Wolbachia strain wMel in an important agricultural pest insect

    PubMed Central

    Zhou, Xiao-Fei; Li, Zheng-Xi

    2016-01-01

    The wMel Wolbachia strain was known for cytoplasmic incompatibility (CI)-induction and blocking the transmission of dengue. However, it is unknown whether it can establish and induce CI in a non-dipteran host insect. Here we artificially transferred wMel from Drosophila melanogaster into the whitefly Bemisia tabaci. Fluorescence in situ hybridisation demonstrated that wMel had successfully transfected the new host. Reciprocal crossing was conducted with wMel-transfected and wild-type isofemale lines, indicating that wMel could induce a strong CI without imposing significant cost on host fecundity. We then determined the maternal transmission efficiency of wMel in the offspring generations, showing a fluctuating trend over a period of 12 generations. We thus detected the titre of wMel during different developmental stages and in different generations by using real-time quantitative PCR, revealing a similar fluctuating mode, but it was not significantly correlated with the dynamics of transmission efficiency. These results suggest that wMel can be established in B.tabaci, a distantly related pest insect of agricultural importance; moreover, it can induce a strong CI phenotype in the recipient host insect, suggesting a potential for its use in biological control of B. tabaci. PMID:27982076

  12. Population-level effects of fitness costs associated with repressible female-lethal transgene insertions in two pest insects

    PubMed Central

    Harvey-Samuel, Tim; Ant, Thomas; Gong, Hongfei; Morrison, Neil I; Alphey, Luke

    2014-01-01

    Genetic control strategies offer great potential for the sustainable and effective control of insect pests. These strategies involve the field release of transgenic insects with the aim of introducing engineered alleles into wild populations, either permanently or transiently. Their efficacy can therefore be reduced if transgene-associated fitness costs reduce the relative performance of released insects. We describe a method of measuring the fitness costs associated with transgenes by analyzing their evolutionary trajectories when placed in competition with wild-type alleles in replicated cage populations. Using this method, we estimated lifetime fitness costs associated with two repressible female-lethal transgenes in the diamondback moth and olive fly as being acceptable for field suppression programs. Furthermore, using these estimates of genotype-level fitness costs, we were able to project longer-term evolutionary trajectories for the transgenes investigated. Results from these projections demonstrate that although transgene-associated fitness costs will ultimately cause these transgenes to become extinct, even when engineered lethality is repressed, they may persist for varying periods of time before doing so. This implies that tetracycline-mediated transgene field persistence in these strains is unlikely and suggests that realistic estimates of transgene-associated fitness costs may be useful in trialing ‘uncoupled’ gene drive system components in the field. PMID:24944572

  13. Vibrational duetting mimics to trap and disrupt mating of the devastating Asian citrus psyllid insect pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian citrus psyllid (ACP) is the primary vector of a bacterium that produces a devastating disease of citrus, huanglongbing. Efficient surveillance of ACP at low population densities is essential for timely pest management programs. ACP males search for mates on tree branches by producing vibra...

  14. Improved quality management to enhance the efficacy of the sterile insect technique for lepidopteran pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lepidoptera are among the most severe pests of food and fibre crops in the world and are mainly controlled using broad spectrum insecticides. This does not lead to sustainable control and farmers are demanding alternative control tools which are both effective and friendly to the environment. The st...

  15. The slithering bullet: beneficial nematodes for suppression of peach insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plum curculio, Conotrachelus nenuphar, is a major pest of stone and pome fruits. Stone fruits are also plagued by clear-winged moths such as peachtree borer (Synanthedon exitiosa) and lesser peachtree borer (Synanthedon pictipes). Microbial control agents have potential as alternative management t...

  16. Biology and management of insect pests in North American intensively managed hardwood forest systems.

    SciTech Connect

    Coyle, David R.; Nebeker, T., E.; Hart, E., R.; Mattson, W., J.

    2005-01-01

    Annu. Rev. Entomol. 50:1-29. Abstract Increasing demand for wood and wood products is putting stress on traditional forest production areas, leading to long-term economic and environmental concerns. Intensively managed hardwood forest systems (IMHFS), grown using conventional agricultural as well as forestry methods, can help alleviate potential problems in natural forest production areas. Although IMHFS can produce more biomass per hectare per year than natural forests, the ecologically simplified, monocultural systems may greatly increase the crops susceptibility to pests. Species in the genera Populus and Salix comprise the greatest acreage in IMHFS in North America, but other species, including Liquidambar styracifua and Platanus occidentalis, are also important. We discuss life histories, realized and potential damage, and management options for the most economically infuential pests that affect these hardwood species. The substantial inherent challenges associated with pest management in the monocultural environments created by IMHFS are reviewed. Finally, we discuss ways to design IMHFS that may reduce their susceptibility to pests, increase their growth and productivity potential, and create a more sustainable environment.

  17. A naturally occurring plant cysteine protease possesses remarkable toxicity against insect pests and synergizes Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When caterpillars feed on maize (Zea maize L.) lines with native resistance to several Lepidopteran pests, a defensive systeine protease, Mir1-CP, rapidly accumulates at the wound site. Mir1-CP has been shown to inhibit caterpillar growth in vivo by attacking and permeabilizing the insect’s peritro...

  18. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata

    PubMed Central

    Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides. PMID:25923714

  19. Sequence Analysis of Insecticide Action and Detoxification-Related Genes in the Insect Pest Natural Enemy Pardosa pseudoannulata.

    PubMed

    Meng, Xiangkun; Zhang, Yixi; Bao, Haibo; Liu, Zewen

    2015-01-01

    The pond wolf spider Pardosa pseudoannulata, an important natural predatory enemy of rice planthoppers, is found widely distributed in paddy fields. However, data on the genes involved in insecticide action, detoxification, and response are very limited for P. pseudoannulata, which inhibits the development and appropriate use of selective insecticides to control insect pests on rice. We used transcriptome construction from adult spider cephalothoraxes to analyze and manually identify genes enconding metabolic enzymes and target receptors related to insecticide action and detoxification, including 90 cytochrome P450s, 14 glutathione S-transferases (GSTs), 17 acetylcholinesterases (AChEs), 17 nicotinic acetylcholine receptors (nAChRs), and 17 gamma-aminobutyric acid (GABA) receptors, as well as 12 glutamate-gated chloride channel (GluCl) unigenes. Sequence alignment and phylogenetic analysis revealed the different subclassifications of P450s and GSTs, some important sequence diversities in nAChRs and GABA receptors, polymorphism in AChEs, and high similarities in GluCls. For P450s in P. pseudoannulata, the number of unigenes belonging to the CYP2 clade was much higher than that in CYP3 and CYP4 clades. The results differed from insects in which most P450 genes were in CYP3 and CYP4 clades. For GSTs, most unigenes belonged to the delta and sigma classes, and no epsilon GST class gene was found, which differed from the findings for insects and acarina. Our results will be useful for studies on insecticide action, selectivity, and detoxification in the spider and other related animals, and the sequence differences in target genes between the spider and insects will provide important information for the design of selective insecticides.

  20. [Creation of transgenic sugar beet lines expressing insect pest resistance genes cry1C and cry2A].

    PubMed

    Litvin, D I; Sivura, V V; Kurilo, V V; Oleneva, V D; Emets, A I; Blium, Ia B

    2014-01-01

    Impact of insect pests makes a significant limitation of the sugar beet crop yield. Integration of cry-genes of Bacillus thuringiensis into plant genome is one of the promising strategies to ensure plant resistance. The aim of this work was to obtain sugar beet lines (based on the MM 1/2 line) transformed with cry2A and cry1Cgenes. We have optimized transformation protocol and direct plant let regeneration protocol from leaf explants using 1 mg/l benzylaminopurine as well as 0,25 mg/l benzylaminopurine and 0,1 mg/l indole-butyric acid. Consequently, transgenic sugar beet lines transformed with vector constructs pRD400-cry1C and pRD400-cry2A have been obtained. PCR analysis revealed integration of cry2A and cry1C into genome of transgenic lines and expression of these genes in leaf tissues was shown by reverse transcription PCR.

  1. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia.

    PubMed

    Mensah, Robert K; Young, Alison; Rood-England, Leah

    2015-04-09

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 10² to 10⁸) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 10⁷ spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  2. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia

    PubMed Central

    Mensah, Robert K.; Young, Alison; Rood-England, Leah

    2015-01-01

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 × 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production. PMID:26463189

  3. Field evaluation of the long-lasting treated storage bag, deltamethrin-incorporated (ZeroFly® Storage Bag) as a barrier to insect pest infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The deltamethrin-incorporated polypropylene (PP) bag, ZeroFly® Storage Bag, is a new technology to reduce postharvest losses caused by stored-product insect pests. ZeroFly bags filled with untreated maize were compared to PP bags filled with maize treated with Betallic Super (80 g pirimiphos-methyl ...

  4. Semiochemicals to monitor insect pests – future opportunities for an effective host plant volatile blend to attract navel orangeworm in pistachio orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm (Amyelois transitella) has been a major insect pest of California tree nut orchards for the past five decades. In particular, almond and pistachio orchards suffer major annual economic damage due to both physical and associated fungal damage caused by navel orangeworm larvae. Un...

  5. Perceived Consequences of Herbicide-Tolerant and Insect-Resistant Crops on Integrated Pest Management Strategies in the Western United States: Results of an Online Survey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted an online survey to assess the potential effects of herbicide-tolerant (HT) and insect-resistant (IR) crops on integrated pest management (IPM) practices in the Western United States. For HT crops, participants perceived a decrease in several IPM practices, including crop and herbicide ...

  6. Ecoinformatics for integrated pest management: expanding the applied insect ecologist's tool-kit.

    PubMed

    Rosenheim, Jay A; Parsa, Soroush; Forbes, Andrew A; Krimmel, William A; Law, Yao Hua; Segoli, Michal; Segoli, Moran; Sivakoff, Frances S; Zaviezo, Tania; Gross, Kevin

    2011-04-01

    Experimentation has been the cornerstone of much of integrated pest management (IPM) research. Here, we aim to open a discussion on the possible merits of expanding the use of observational studies, and in particular the use of data from farmers or private pest management consultants in "ecoinformatics" studies, as tools that might complement traditional, experimental research. The manifold advantages of experimentation are widely appreciated: experiments provide definitive inferences regarding causal relationships between key variables, can produce uniform and high-quality data sets, and are highly flexible in the treatments that can be evaluated. Perhaps less widely considered, however, are the possible disadvantages of experimental research. Using the yield-impact study to focus the discussion, we address some reasons why observational or ecoinformatics approaches might be attractive as complements to experimentation. A survey of the literature suggests that many contemporary yield-impact studies lack sufficient statistical power to resolve the small, but economically important, effects on crop yield that shape pest management decision-making by farmers. Ecoinformatics-based data sets can be substantially larger than experimental data sets and therefore hold out the promise of enhanced power. Ecoinformatics approaches also address problems at the spatial and temporal scales at which farming is conducted, can achieve higher levels of "external validity," and can allow researchers to efficiently screen many variables during the initial, exploratory phases of research projects. Experimental, observational, and ecoinformatics-based approaches may, if used together, provide more efficient solutions to problems in pest management than can any single approach, used in isolation.

  7. Fine-scale geographical origin of an insect pest invading North America.

    PubMed

    Hosokawa, Takahiro; Nikoh, Naruo; Fukatsu, Takema

    2014-01-01

    Invasive species may rapidly spread throughout new areas once introduced, which may potentially lead to serious damage to local fauna and flora. Information on geographical origins, introduction routes, and biology in native regions of such invasive species is of critical importance in identifying means of transport, preventing reintroduction, and establishing control/eradication methods. The plataspid stinkbug Megacopta cribraria, known as kudzu bug, recently invaded North America and now has become not only an agricultural pest of soybean but also a nuisance pest. Here we investigate the geographical origin of the invasive M. cribraria populations. Phylogeographical analyses based on 8.7 kb mitochondrial DNA sequences of the introduced and East Asian native Megacopta populations identified a well-supported clade consisting of the introduced populations and M. punctatissima populations in the Kyushu region of Japan, which strongly suggests that the invading M. cribraria populations are derived from a M. punctatissima population in the Kyushu region. Therefore, the region is proposed as a promising source of natural enemies for biological control of the invasive pest. Based on the phylogenetic information, relationship and treatment of the two Megacopta species are discussed.

  8. In situ detection of small-size insect pests sampled on traps using multifractal analysis

    NASA Astrophysics Data System (ADS)

    Xia, Chunlei; Lee, Jang-Myung; Li, Yan; Chung, Bu-Keun; Chon, Tae-Soo

    2012-02-01

    We introduce a multifractal analysis for detecting the small-size pest (e.g., whitefly) images from a sticky trap in situ. An automatic attraction system is utilized for collecting pests from greenhouse plants. We applied multifractal analysis to segment action of whitefly images based on the local singularity and global image characteristics. According to the theory of multifractal dimension, the candidate blobs of whiteflies are initially defined from the sticky-trap image. Two schemes, fixed thresholding and regional minima obtainment, were utilized for feature extraction of candidate whitefly image areas. The experiment was conducted with the field images in a greenhouse. Detection results were compared with other adaptive segmentation algorithms. Values of F measuring precision and recall score were higher for the proposed multifractal analysis (96.5%) compared with conventional methods such as Watershed (92.2%) and Otsu (73.1%). The true positive rate of multifractal analysis was 94.3% and the false positive rate minimal level at 1.3%. Detection performance was further tested via human observation. The degree of scattering between manual and automatic counting was remarkably higher with multifractal analysis (R2=0.992) compared with Watershed (R2=0.895) and Otsu (R2=0.353), ensuring overall detection of the small-size pests is most feasible with multifractal analysis in field conditions.

  9. Toxicity of new pyrethroid in pest insects Asciamonuste and Diaphania hyalinata, predator Solenopsis saevissima and stingless bee Tetragonisca angustula.

    PubMed

    Moreno, Shaiene C; Silvério, Flaviano O; Lopes, Mayara C; Ramos, Rodrigo S; Alvarenga, Elson S; Picanço, Marcelo C

    2017-04-03

    There is increasing demand for new products for vegetable pest management. Thus, the aim of this study was to assess the toxicity of pyrethroids with acid moiety modifications to measure the insecticidal activity of these compounds on the lepidopteran vegetable pests Diaphania hyalinata (L.) (Lepidoptera: Pyralidae) and Asciamonuste (Latreille) (Lepidoptera: Pieridae) and evaluate their selectivity for the predatory ant Solenopsis saevissima (F. Smith) (Hymenoptera: Formicidae) and pollinator Tetragonisca angustula (Latreille) (Hymenoptera: Apidae: Meliponinae). Racemic mixtures of five new pyrethroids (30 µg molecule mg(-1) insect body weight) resulted in high (100%) and rapid (stable LD50 after 12 h) mortality in D. hyalinata and A. monuste. In A. monuste, the trans-pyrethroid [12] isomer showed similar toxicity to permethrin. For D. hyalinata, the trans-pyrethroid [9] isomer and cis-pyrethroid [10] isomer were as toxic as permethrin. Due to their low selectivity, these new pyrethroids should be applied on the basis of ecological selectivity principles to minimize impacts on nontarget organisms S. saevissima and T. angustula.

  10. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae)

    PubMed Central

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-01-01

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters. PMID:27876748

  11. Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae).

    PubMed

    You, Lin-Lin; Wu, You; Xu, Bing; Ding, Jun; Ge, Lin-Quan; Yang, Guo-Qin; Song, Qi-Sheng; Stanley, David; Wu, Jin-Cai

    2016-11-23

    The brown planthopper (BPH) is a devastating pest of rice throughout Asia. In this paper we document the BPH biogeographic range expansion in China over the 20-year period, 1992 to 2012. We posed the hypothesis that the range expansion is due to a syndrome of adaptations to the continuous presence of agricultural chemicals (insecticides and a fungicide) over the last 40 years. With respect to biogeography, BPH ranges have expanded by 13% from 1992 to 1997 and by another 3% from 1997 to 2012. In our view, such expansions may follow primarily from the enhancing effects of JGM, among other agricultural chemicals, and from global warming. JGM treatments led to increased thermotolerance, recorded as decreased mortality under heat stress at 40 ± 1 °C (down from 80% to 55%) and increased fecundity (by 49%) at 34 °C. At the molecular level, JGM treatments led to increased abundances of mRNA encoding Acetyl Co-A carboxylase (Acc) (up 25%) and Hsp70 (up 32%) in experimental BPH. RNAi silencing of Hsp70 and Acc eliminated the JGM effects on fecundity and silencing Hsp70 reduced JGM-induced thermotolerance. Integrated with global climate change scenarios, such syndromes in pest insect species have potential for regional- and global-scale agricultural disasters.

  12. Cost-Benefit Analysis for Biological Control Programs That Targeted Insect Pests of Eucalypts in Urban Landscapes of California.

    PubMed

    Paine, T D; Millar, J G; Hanks, L M; Gould, J; Wang, Q; Daane, K; Dahlsten, D L; Mcpherson, E G

    2015-12-01

    As well as being planted for wind breaks, landscape trees, and fuel wood, eucalypts are also widely used as urban street trees in California. They now are besieged by exotic insect herbivores of four different feeding guilds. The objective of the current analysis was to determine the return on investment from biological control programs that have targeted these pests. Independent estimates of the total number of eucalypt street trees in California ranged from a high of 476,527 trees (based on tree inventories from 135 California cities) to a low of 190,666 trees (based on 49 tree inventories). Based on a survey of 3,512 trees, the estimated mean value of an individual eucalypt was US$5,978. Thus, the total value of eucalypt street trees in California ranged from more than US$1.0 billion to more than US$2.8 billion. Biological control programs that targeted pests of eucalypts in California have cost US$2,663,097 in extramural grants and University of California salaries. Consequently, the return derived from protecting the value of this resource through the biological control efforts, per dollar expended, ranged from US$1,070 for the high estimated number of trees to US$428 for the lower estimate. The analyses demonstrate both the tremendous value of urban street trees, and the benefits that stem from successful biological control programs aimed at preserving these trees. Economic analyses such as this, which demonstrate the substantial rates of return from successful biological control of invasive pests, may play a key role in developing both grass-roots and governmental support for future urban biological control efforts.

  13. Sesquiterpene lactone composition of wild and cultivated sunflowers and biological activity against an insect pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sesquiterpene lactones in sunflowers, Helianthus spp., are important to interactions with pathogens, weeds and insects. Across a broad range of H. annuus, differences in composition of sesquiterpene lactones extracted from florets were found between wild and cultivated sunflowers, but also between d...

  14. Low cost production of nematodes for biological control of insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic nematodes are produced in two ways: in artificial media using liquid or solid fermentation methods (in vitro) or by mass producing insect hosts to be artificially exposed to mass infection by nematodes (in vivo). The yellow mealworm (Tenebrio molitor) is a good host for in vivo nema...

  15. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].

    PubMed

    Sauka, Diego H; Benintende, Graciela B

    2008-01-01

    Bacillus thuringiensis is the most widely applied biological pesticide used to control insects that affect agriculture and forestry and which transmit human and animal pathogens. During the past decades B. thuringiensis has been the subject of intensive research. These efforts have yielded considerable data about the relationships between the structure, mechanism of action, and genetics of their pesticidal crystal proteins. As a result, a coherent picture of these relationships has emerged. Other studies have focused on the ecological role of the B. thuringiensis crystal proteins and their performance in agricultural and other natural settings. With this knowledge as background and the help of biotechnological tools, researchers are now reporting promising results in the development of more useful toxins, recombinant bacteria, new formulations and transgenic plants that express pesticidal activity, in order to assure that these products are utilized with the best efficiency and benefit. This article is an attempt to integrate all these recent developments in the study of B. thuringiensis into a context of biological control of lepidopteran insect pest of agricultural importance.

  16. Contact toxicity and repellency of the essential oil of Liriope muscari (DECN.) bailey against three insect tobacco storage pests.

    PubMed

    Wu, Yan; Zhang, Wen-Juan; Wang, Ping-Juan; Yang, Kai; Huang, Dong-Ye; Wei, Jian-Yu; Tian, Zhao-Fu; Bai, Jia-Feng; Du, Shu-Shan

    2015-01-20

    In order to find and develop new botanical pesticides against tobacco storage pests, bioactivity screening was performed. The essential oil obtained from the aerial parts of Liriope muscari was investigated by GC/MS and GC/FID. A total of 14 components representing 96.12% of the oil were identified and the main compounds in the oil were found to be methyl eugenol (42.15%) and safrole (17.15%), followed by myristicin (14.18%) and 3,5-dimethoxytoluene (10.60%). After screening, the essential oil exhibit potential insecticidal activity. In the progress of assay, it showed that the essential oil exhibited potent contact toxicity against Tribolium castaneum, Lasioderma serricorne and Liposcelis bostrychophila adults, with LD50 values of 13.36, 11.28 µg/adult and 21.37 µg/cm2, respectively. The essential oil also exhibited strong repellency against the three stored product insects. At the same concentrations, the essential oil was more repellent to T. castaneum than to L. serricorne adults. The results indicate that the essential oil of Liriope muscari has potential to be developed into a natural insecticide or repellent for controlling insects in stored tobacco and traditional Chinese medicinal materials.

  17. Purification and characterization of recombinant ligand-binding domains from the ecdysone receptors of four pest insects.

    PubMed

    Graham, Lloyd D; Pilling, Patricia A; Eaton, Ruth E; Gorman, Jeffrey J; Braybrook, Carl; Hannan, Garry N; Pawlak-Skrzecz, Anna; Noyce, Leonie; Lovrecz, George O; Lu, Louis; Hill, Ronald J

    2007-06-01

    Cloned EcR and USP cDNAs encoding the ecdysone receptors of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were manipulated to allow the co-expression of their ligand binding domains (LBDs) in insect cells using a baculovirus vector. Recombinant DE/F segment pairs (and additionally, for H. armigera, an E/F segment pair) from the EcR and USP proteins associated spontaneously with high affinity to form heterodimers that avidly bound an ecdysteroid ligand. This shows that neither ligand nor D-regions are essential for the formation of tightly associated and functional LBD heterodimers. Expression levels ranged up to 16.6mg of functional apo-LBD (i.e., unliganded LBD) heterodimer per liter of recombinant insect cell culture. Each recombinant heterodimer was affinity-purified via an oligo-histidine tag at the N-terminus of the EcR subunit, and could be purified further by ion exchange and/or gel filtration chromatography. The apo-LBD heterodimers appeared to be more easily inactivated than their ligand-containing counterparts: after purification, populations of the former were <40% active, whereas for the latter >70% could be obtained as the ligand-LBD heterodimer complex. Interestingly, we found that the amount of ligand bound by recombinant LBD heterodimer preparations could be enhanced by the non-denaturing detergent CHAPS (3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate). Purity, integrity, size and charge data are reported for the recombinant proteins under native and denaturing conditions. Certain intra- and intermolecular disulfide bonds were observed to form in the absence of reducing agents, and thiol-specific alkylation was shown to suppress this phenomenon but to introduce microheterogeneity.

  18. Prediction of global distribution of insect pest species in relation to climate by using an ecological informatics method.

    PubMed

    Gevrey, Muriel; Worner, S P

    2006-06-01

    The aim of this work was to predict the worldwide distribution of two pest species-Ceratitis capitata (Wiedemann), the Mediterranean fruit fly, and Lymantria dispar (L.), the gypsy moth-based on climatic factors. The distribution patterns of insect pests have most often been investigated using classical statistical models or ecoclimatic assessment models such as CLIMEX. In this study, we used an artificial neural network, the multilayer perceptron, trained using the backpropagation algorithm, to model the distribution of each species. The data matrix used to model the distribution of each species was divided into three data sets to (1) develop and train the model, (2) validate the model and prevent over-fitting, and (3) test each model on novel data. The percentage of correct predictions of the global distribution of each species was high for Mediterranean fruit fly for the three data sets giving 95.8, 81.5, and 80.6% correct predictions, respectively, and 96.8, 84.3, and 81.5 for the gypsy moth. Kappa statistics used to test the level of significance of the results were highly significant (in all cases P < 0.0001). A sensitivity analysis applied to each model based on the calculation of the derivatives of each of a large number of input variables showed that the variables that contributed most to explaining the distribution of C. capitata were annual average temperature and annual potential evapotranspiration. For L. dispar, the average minimum temperature and minimum daylength range were the main explanatory variables. The ANN models and methods developed in this study offer powerful additional predictive approaches in invasive species research.

  19. Sesquiterpene Lactone Composition of Wild and Cultivated Sunflowers and Biological Activity against an Insect Pest.

    PubMed

    Prasifka, Jarrad R; Spring, Otmar; Conrad, Jürgen; Cook, Leonard W; Palmquist, Debra E; Foley, Michael E

    2015-04-29

    Sesquiterpene lactones in sunflowers, Helianthus spp., are important to interactions with pathogens, weeds, and insects. Across a broad range of Helianthus annuus, differences in composition of sesquiterpene lactones extracted from disc florets were found between wild and cultivated sunflowers and also between distinct groups of inbreds used to produce sunflower hybrids. Discriminant function analysis showed the presence and relative abundance of argophyllone B, niveusin B, and 15-hydroxy-3-dehydrodesoxyfruticin were usually (75%) effective at classifying wild sunflowers, cultivated inbreds, and hybrids. Argophyllone B reduced the larval mass of the sunflower moth, Homeosoma electellum, by >30%, but only at a dose greater than that found in florets. Low doses of mixed extracts from cultivated florets produced a similar (≈40%) reduction in larval mass, suggesting combinations of sesquiterpene lactones act additively. Although the results support a role for sesquiterpene lactones in herbivore defense of cultivated sunflowers, additional information is needed to use these compounds purposefully in breeding.

  20. Procarboxypeptidase A from the insect pest Helicoverpa armigera and its derived enzyme. Two forms with new functional properties.

    PubMed

    Bayés, Alex; Sonnenschein, Anka; Daura, Xavier; Vendrell, Josep; Aviles, Francesc X

    2003-07-01

    Although there is a significant knowledge about mammalian metallocarboxypeptidases, the data available on this family of enzymes is very poor for invertebrate forms. Here we present the biochemical characterization of a metallocarboxypeptidase from the insect Helicoverpa armigera (Lepidoptera: Noctuidae), a devastating pest spread in subtropical regions of Europe, Asia, Africa and Oceania. The zymogen of this carboxypeptidase (PCPAHa) has been expressed at high levels in a Pichia pastoris system and shown to display the characteristics of the enzyme purified from the insect midgut. The in vitro activation process of the proenzyme differs significantly from the mammalian ones. The lysine-specific endoprotease LysC activates PCPAHa four times more efficiently than trypsin, the general activating enzyme for all previously studied metalloprocarboxypeptidases. LysC and trypsin independently use two different activation targets and the presence of sugars in the vicinity of the LysC activation point affects the activation process, indicating a possible modulation of the activation mechanism. During the activation with LysC the prodomain is degraded, while the carboxypeptidase moiety remains intact except for a C-terminal octapeptide that is rapidly released. Interestingly, the sequence at the cleavage point for the release of the octapeptide is also found at the boundary between the activation peptide and the enzyme moieties. The active enzyme (CPAHa) is shown to have a very broad substrate specificity, as it appears to be the only known metallocarboxypeptidase capable of efficiently hydrolysing basic and aliphatic residues and, to a much lower extent, acidic residues. Two carboxypeptidase inhibitors, from potato and leech, were tested against CPAHa. The former, of vegetal origin, is the most efficient metallocarboxypeptidase inhibitor described so far, with a Ki in the pm range.

  1. Effects of weed cover composition on insect pest and natural enemy abundance in a field of Dracaena marginata (Asparagales: Asparagaceae) in Costa Rica.

    PubMed

    Sadof, Clifford S; Linkimer, Mildred; Hidalgo, Eduardo; Casanoves, Fernando; Gibson, Kevin; Benjamin, Tamara J

    2014-04-01

    Weeds and their influence on pest and natural enemy populations were studied on a commercial ornamental farm during 2009 in the Atlantic Zone of Costa Rica. A baseline survey of the entire production plot was conducted in February, along a 5 by 5 m grid to characterize and map initial weed communities of plants, cicadellids, katydids, and armored scales. In total, 50 plant species from 21 families were found. Seven weed treatments were established to determine how weed manipulations would affect communities of our targeted pests and natural enemies. These treatments were selected based on reported effects of specific weed cover on herbivorous insects and natural enemies, or by their use by growers as a cover crop. Treatments ranged from weed-free to being completely covered with endemic species of weeds. Although some weed treatments changed pest abundances, responses differed among arthropod pests, with the strongest effects observed for Caldwelliola and Empoasca leafhoppers. Removal of all weeds increased the abundance of Empoasca, whereas leaving mostly cyperacaeous weeds increased the abundance of Caldwelliola. Weed manipulations had no effect on the abundance of katydid and scale populations. No weed treatment reduced the abundance of all three of the target pests. Differential responses of the two leafhopper species to the same weed treatments support hypotheses, suggesting that noncrop plants can alter the abundance of pests through their effects on arthropod host finding and acceptance, as well as their impacts on natural enemies.

  2. Investigation on penetration of three conventional foodstuffs packaging polymers with two different thicknesses by larvae and adults of major species of stored-product pest insects.

    PubMed

    Allahvaisi, Somayeh; Purmirza, Ali Asghar; Safaralizade, Mohamad Hasan

    2009-01-01

    Despite modern methods of packaging, stored agricultural products are still under attack by stored-insect pests. Therefore, determination of the best polymer and appropriate thickness inhibiting the penetration of the insects must be considered. In this study, we investigated the ability of penetration and the rates of contamination by nine important stored product pest insects for three conventional flexible polymers (polyethylene, cellophane and polypropylene) at two thicknesses (16.5 and 29 microm), which are used as pouches for packing of agricultural products. We used adults of T. castaneum (Coleoptera), S. granarius (Coleoptera), R. dominica (Coleoptera), C. maculates (Coleoptera), O. surinamensis (Coleoptera), and larvae of P. interpunctella (Lepidoptera), E. kuehniella (Lepidoptera), S. cerealella (Lepidoptera) and T. granarium (Coleoptera). Results showed that for most of the species penetration occurred between 4 days and 2 weeks, but there were significant differences (p < or = 0.05) in the penetration of three polymers (cellophane, polyethylene and polypropylene) by the insects. Among the polymers, polyethylene with a thickness of 16.5 microm showed the highest degree of penetration and was the most unsuitable polymer for packaging of foodstuffs. Application of this polymer led to a complete infestation of the product and a lot of punctures were created by the insects. In contrast, no penetration was observed in polypropylene polymer with a thickness of 29 microm. Furthermore, adults and larvae of all species showed a much lower penetration when there was no food present in the pouches and this was the case for all polymers tested.

  3. Scale Insects, edition 2, a tool for the identification of potential pest scales at U.S.A. ports-of-entry (Hemiptera, Sternorrhyncha, Coccoidea).

    PubMed

    Miller, Douglass R; Rung, Alessandra; Parikh, Grishma

    2014-01-01

    We provide a general overview of features and technical specifications of an online, interactive tool for the identification of scale insects of concern to the U.S.A. ports-of-entry. Full lists of terminal taxa included in the keys (of which there are four), a list of features used in them, and a discussion of the structure of the tool are provided. We also briefly discuss the advantages of interactive keys for the identification of potential scale insect pests. The interactive key is freely accessible on http://idtools.org/id/scales/index.php.

  4. Scale Insects, edition 2, a tool for the identification of potential pest scales at U.S.A. ports-of-entry (Hemiptera, Sternorrhyncha, Coccoidea)

    PubMed Central

    Miller, Douglass R.; Rung, Alessandra; Parikh, Grishma

    2014-01-01

    Abstract We provide a general overview of features and technical specifications of an online, interactive tool for the identification of scale insects of concern to the U.S.A. ports-of-entry. Full lists of terminal taxa included in the keys (of which there are four), a list of features used in them, and a discussion of the structure of the tool are provided. We also briefly discuss the advantages of interactive keys for the identification of potential scale insect pests. The interactive key is freely accessible on http://idtools.org/id/scales/index.php PMID:25152668

  5. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases.

    PubMed

    Rufino, Fabiola P S; Pedroso, Vanessa M A; Araujo, Jonalson N; França, Anderson F J; Rabêlo, Luciana M A; Migliolo, Ludovico; Kiyota, Sumika; Santos, Elizeu A; Franco, Octavio L; Oliveira, Adeliana S

    2013-02-01

    Pithecellobium dumosum is a tree belonging to the Mimosoideae subfamily that presents various previously characterized Kunitz-type inhibitors. The present study provides a novel Kunitz-trypsin inhibitor isoform purified from P. dumosum seeds. Purification procedure was performed by TCA precipitation followed by a trypsin-Sepharose chromatography and a further reversed-phase HPLC. Purified inhibitor (PdKI-4) showed enhanced inhibitory activity against bovine trypsin and chymotrypsin. Furthermore, PdKI-4 showed remarkable inhibitory activity against serine proteases from the coleopterans Callosobruchus maculatus and Zabrotes subfasciatus, and the lepidopterans Alabama argillacea and Telchin licus. However, PdKI-4 was unable to inhibit porcine pancreatic elastase, pineapple bromelain and Carica papaya papain. SDS-PAGE showed that PdKI-4 consisted of a single polypeptide chain with molecular mass of 21 kDa. Kinetic studies demonstrated that PdKI-4 is probably a competitive inhibitor with a Ki value of 5.7 × 10(-10) M for bovine trypsin. PdKI-4 also showed higher stability over a wide range of temperature (37-100 °C) and pH (2-12). N-termini sequence was obtained by Edman degradation showing higher identity with other Mimosoideae subfamily Kunitz-type inhibitor members. In summary, data here reported indicate the biotechnological potential of PdKI-4 for development of products against insect-pests.

  6. Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots.

    PubMed

    Oliveira, Juliana Velasco de Castro; Borges, Thuanny A; Corrêa dos Santos, Renato Augusto; Freitas, Larissa F D; Rosa, Carlos Augusto; Goldman, Gustavo Henrique; Riaño-Pachón, Diego Mauricio

    2014-06-01

    A novel ustilaginomycetous yeast isolated from the intestinal tract of an insect pest of sugarcane roots in Ribeirão Preto, São Paulo State, Brazil, represents a novel species of the genus Pseudozyma based on molecular analyses of the D1/D2 rDNA large subunit and the internal transcribed spacer (ITS1+ITS2) regions. The name Pseudozyma brasiliensis sp. nov. is proposed for this species, with GHG001(T) ( = CBS 13268(T) = UFMG-CM-Y307(T)) as the type strain. P. brasiliensis sp. nov. is a sister species of Pseudozyma vetiver, originally isolated from leaves of vetiver grass and sugarcane in Thailand. P. brasiliensis sp. nov. is able to grow well with xylan as the sole carbon source and produces high levels of an endo-1,4-xylanase that has a higher specific activity in comparison with other eukaryotic xylanases. This enzyme has a variety of industrial applications, indicating the great biotechnological potential of P. brasiliensis.

  7. Assessment of insecticide resistance in five insect pests attacking field and vegetable crops in Nicaragua.

    PubMed

    Pérez, C J; Alvarado, P; Narváez, C; Miranda, F; Hernández, L; Vanegas, H; Hruska, A; Shelton, A M

    2000-12-01

    Field populations of Hypothenemus hampei (Ferrari), Plutella xylostella (L.), Spodoptera exigua (Hübner), Helicoverpa zea (Boddie) and Bemisia tabaci (Gennadius) were tested for resistance to several insecticides commonly used in Nicariagua. Assays were conducted to estimate the LD50s or LC50s and the corresponding resistance ratios. A diagnostic concentration was used to discriminate between susceptible and resistant strains of H. hampei. The tests with >6,000 H. hampei adults collected from six different sites indicate the absence of resistance to endosulfan. Resistance to cypermethrin, deltamethrin, chlorfluazuron, thiocyclam, and methamidophos was documented in six field populations of P. xylostella. High levels of resistance to cypermethrin and deltamethrin, but moderate levels of resistance to chlorpyriphos and methomyl, were also documented in two field populations of S. exigua. Moderate levels of resistance to cypermethrin, deltamethrin and chlorpyriphos were also documented in three field populations of H. zea. Moderate to high levels of resistance to bifenthrin, methamidophos and endosulfan were documented in four field populations of B. tabaci. The presence of significant correlations between LD50s or LC50s suggests the occurrence of cross-resistance or simultaneous selection for resistance by different insecticides with different modes of action. Our data could not differentiate between these two possibilities. Because insecticides will continue being used in Nicaragua, a resistance management program is urgently needed. The implementation of integrated pest management tactics must be accompanied by specific regulations for pesticide registration. In the future, pesticide registration regulations in Nicaragua should include periodic resistance monitoring. The mechanisms to cover the costs of resistance monitoring and resistance management should also be established.

  8. Activity of leucine aminopeptidase of Telchin licus licus: an important insect pest of sugarcane.

    PubMed

    Valencia, Jorge W Arboleda; de Sá, Maria Fátima Grossi; Jiménez, Arnubio Valencia

    2014-06-01

    The enzymatic activity of leucine aminopeptidase (EC 3.4.11.1) from the intestinal tract of sugarcane giant borer (Telchin licus licus) was assayed by using a simple and sensitive spectrophotometric assay that uses L-leucyl-2- naphthylamide as substrate. In this assay, L-leucyl-2-naphthylamide is hydrolyzed to produce 2-naphthylamine and Lleucine. The product 2-naphthylamine reacts with Fast Black K and can be monitored using a continuous spectrophotometric measurement at 590 nm. The data on the kinetic parameters indicates that the Km for the L-leucyl-2- naphthylamide at pH 7.0 was found to be lower than those found for other LAP substrates. The Km and Vmax for the LAP were determined to be 84.03 µM and 357.14 enzymatic units mg(-1), respectively. A noticeable difference of LAP activity between the two insect orders tested was observed. This method could be used to screen for natural LAP inhibitors.

  9. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect

    PubMed Central

    Rabhi, Kaouther K.; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-01-01

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. PMID:26842577

  10. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.

    PubMed

    Roh, Jong Yul; Choi, Jae Young; Li, Ming Shun; Jin, Byung Rae; Je, Yeon Ho

    2007-04-01

    Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in, 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

  11. Leaves of Lantana camara Linn. (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests.

    PubMed

    Rajashekar, Y; Ravindra, K V; Bakthavatsalam, N

    2014-11-01

    Insects cause extensive damage to stored grains and their value added products. Among the stored grain pests Sitophilus oryzae (L.) Callosobruchus chinensis (Fab.) and Tribolium castaneum (Herbst.) are considered as destructive pests in India. Plants may provide alternatives to currently used insect control agents as they constitute rich source in bioactive molecules. Lantana camara, an erect shrub, which grows widely in the tropics, exhibits insecticidal activity against several insects. The methanol extract from leaves of L. camara has fumigant and contact toxicity against S. oryzae, C. chinesis and T. castaneum. In fumigant assays, The LC50 for S. oryzae was 128 μl/L(1), C. chinensis 130.3 μl/L(1), and T. castaneum 178.7 μl/L(1). The LD50 values for S. oryzae C. chinensis and T. castaneum in contact toxicity were 0.158, 0.140 and 0.208 mg/cm(2), respectively. For grain treatment, a concentration of 500 mg/L(1) and 7 days exposure were needed to obtain 90 - 100 % population extinction in all three insects. Probit analysis showed that C. chinensis were more susceptible than S. oryzae and T. castaneum. Gaschromatography-Mass Spectrometer (GCMS) studies for extracts indicated the presence of potent fumigant molecules in L. camara. The prospect of utilizing L. camara as potent fumigant insecticide is discussed.

  12. Efficacy of insect growth regulators as grain protectants against two stored-product pests in wheat and maize.

    PubMed

    Kavallieratos, Nickolas G; Athanassiou, Christos G; Vayias, Basileios J; Tomanović, Zeljko

    2012-05-01

    Insect growth regulators (IGRs) (two juvenile hormone analogues [fenoxycarb and pyriproxifen], four chitin synthesis inhibitors [diflubenzuron, flufenoxuron, lufenuron, and triflumuron], one ecdysteroid agonist [methoxyfenozide], and one combination of chitin synthesis inhibitors and juvenile hormone analogues [lufenuron plus fenoxycarb]) were tested in the laboratory against adults of Prostephanus truncatus in maize and against adults of Rhyzopertha dominica in wheat. The tested IGRs were applied in maize at three doses (1, 5, and 10 ppm) and assessed at three temperature levels (20, 25, and 30°C) in the case of P. truncatus, while in the case of R. dominica the above doses were assessed only at 25°C in wheat. In addition to progeny production, mortality of the treated adults after 14 days of exposure in the IGR-treated commodities was assessed. All IGRs were very effective (>88.5% suppression of progeny) against the tested species at doses of $ 5 ppm, while diflubenzuron at 25°C in the case of P. truncatus or lufenuron and pyriproxyfen in the case of R. dominica completely suppressed (100%) progeny production when they were applied at 1 ppm. At all tested doses, the highest values of R. dominica parental mortality were observed in wheat treated with lufenuron plus fenoxycarb. Temperature at the levels examined in the present study did not appear to affect the overall performance in a great extent of the tested IGRs in terms of adult mortality or suppression of progeny production against P. truncatus in treated maize. The tested IGRs may be considered viable grain protectants and therefore as potential components in stored-product integrated pest management.

  13. Costs and benefits of thermal acclimation for codling moth, Cydia pomonella (Lepidoptera: Tortricidae): implications for pest control and the sterile insect release programme

    PubMed Central

    Chidawanyika, Frank; Terblanche, John S

    2011-01-01

    Sterile insect release (SIR) is used to suppress insect pest populations in agro-ecosystems, but its success hinges on the performance of the released insects and prevailing environmental conditions. For example, low temperatures dramatically reduce SIR efficacy in cooler conditions. Here, we report on the costs and benefits of thermal acclimation for laboratory and field responses of codling moth, Cydia pomonella. Using a component of field fitness, we demonstrate that low temperature acclimated laboratory-reared moths are recaptured significantly more (∼2–4×) under cooler conditions in the wild relative to warm-acclimated or control moths. However, improvements in low temperature performance in cold-acclimated moths came at a cost to performance under warmer conditions. At high ambient temperatures, warm-acclimation improved field performance relative to control or cold-acclimated moths. Laboratory assessments of thermal activity and their limits matched the field results, indicating that these laboratory assays may be transferable to field performance. This study demonstrates clear costs and benefits of thermal acclimation on laboratory and field performance and the potential utility of thermal pretreatments for offsetting negative efficacy in SIR programmes under adverse thermal conditions. Consequently, the present work shows that evolutionary principles of phenotypic plasticity can be used to improve field performance and thus possibly enhance pest control programmes seeking increased efficacy. PMID:25568003

  14. Qualitative Sybr Green real-time detection of single nucleotide polymorphisms responsible for target-site resistance in insect pests: the example of Myzus persicae and Musca domestica.

    PubMed

    Puggioni, V; Chiesa, O; Panini, M; Mazzoni, E

    2017-02-01

    Chemical insecticides have been widely used to control insect pests, leading to the selection of resistant populations. To date, several single nucleotide polymorphisms (SNPs) have already been associated with insecticide resistance, causing reduced sensitivity to many classes of products. Monitoring and detection of target-site resistance is currently one of the most important factors for insect pest management strategies. Several methods are available for this purpose: automated and high-throughput techniques (i.e. TaqMan or pyrosequencing) are very costly; cheaper alternatives (i.e. RFLP or PASA-PCRs) are time-consuming and limited by the necessity of a final visualization step. This work presents a new approach (QSGG, Qualitative Sybr Green Genotyping) which combines the specificity of PASA-PCR with the rapidity of real-time PCR analysis. The specific real-time detection of Cq values of wild-type or mutant alleles (amplified used allele-specific primers) allows the calculation of ΔCqW-M values and the consequent identification of the genotypes of unknown samples, on the basis of ranges previously defined with reference clones. The methodology is applied here to characterize mutations described in Myzus persicae and Musca domestica and we demonstrate it represents a valid, rapid and cost-effective technique that can be adopted for monitoring target-site resistance in field populations of these and other insect species.

  15. A Transformed Bacterium Expressing Double-Stranded RNA Specific to Integrin β1 Enhances Bt Toxin Efficacy against a Polyphagous Insect Pest, Spodoptera exigua

    PubMed Central

    Kim, Eunseong; Park, Youngjin; Kim, Yonggyun

    2015-01-01

    Background Oral toxicity of double-stranded RNA (dsRNA) specific to integrin β1 subunit (SeINT) was known in a polyphagous insect pest, Spodoptera exigua. For an application of the dsRNA to control the insect pest, this study prepared a transformed Escherichia coli expressing dsRNA specific to SeINT. Principal Findings The dsRNA expression was driven by T7 RNA polymerase overexpressed by an inducer in the transformed E. coli. The produced dsRNA amount was proportional to the number of the cultured bacteria. The transformed bacteria gave a significant oral toxicity to S. exigua larvae with a significant reduction of the SeINT expression. The resulting insect mortality increased with the fed number of the bacteria. Pretreatment with an ultra-sonication to disrupt bacterial cell wall/membrane significantly increased the insecticidal activity of the transformed bacteria. The larvae treated with the transformed bacteria suffered tissue damage in the midgut epithelium, which exhibited a marked loss of cell-cell contacts and underwent a remarkable cell death. Moreover, these treated larvae became significantly susceptible to a Cry toxin derived from Bacillus thuringiensis (Bt). Conclusions This study provides a novel and highly efficient application technique to use dsRNA specific to an integrin gene by mixing with a biopesticide, Bt. PMID:26171783

  16. Inhibitory activity of Beauveria bassiana and Trichoderma spp. on the insect pests Xylotrechus arvicola (Coleoptera: Cerambycidae) and Acanthoscelides obtectus (Coleoptera: Chrisomelidae: Bruchinae).

    PubMed

    Rodríguez-González, Álvaro; Mayo, Sara; González-López, Óscar; Reinoso, Bonifacio; Gutierrez, Santiago; Casquero, Pedro Antonio

    2017-01-01

    Xylotrechus arvicola is an important pest in vineyards (Vitis vinifera) in the main Iberian wine-producing regions, and Acanthoscelides obtectus causes severe post-harvest losses in the common bean (Phaseolus vulgaris). Under laboratory conditions with a spray tower, the susceptibility of the immature stages of X. arvicola and A. obtectus against the entomopathogenic fungi Beauveria bassiana and four strains of Trichoderma spp. was evaluated. Both insect pests T. harzianum and B. bassiana showed a good inhibitory activity, accumulating an inhibition on the eggs of values above 85 and 82%, respectively. T. atroviride and T. citrinoviride had a lower inhibitory activity, with inhibition values of 74.1 and 73.3% respectively. These fungi can be considered a highly effective tool for the control during the immature stages of these species.

  17. A Fungal Insecticide Engineered for Fast Per Os Killing of Caterpillars Has High Field Efficacy and Safety in Full-Season Control of Cabbage Insect Pests

    PubMed Central

    Liu, Yong-Jie; Liu, Jing; Ying, Sheng-Hua; Liu, Shu-Sheng

    2013-01-01

    Fungal insecticides developed from filamentous pathogens of insects are notorious for their slow killing action through cuticle penetration, depressing commercial interest and practical application. Genetic engineering may accelerate their killing action but cause ecological risk. Here we show that a Beauveria bassiana formulation, HV8 (BbHV8), engineered for fast per os killing of caterpillars by an insect midgut-acting toxin (Vip3Aa1) overexpressed in conidia has both high field efficacy and safety in full-season protection of cabbage from the damage of an insect pest complex dominated by Pieris rapae larvae, followed by Plutella xylostella larvae and aphids. In two fields repeatedly sprayed during summer, BbHV8 resulted in overall mean efficacies of killing of 71% and 75%, which were similar or close to the 70% and 83% efficacies achieved by commercially recommended emamectin benzoate but much higher than the 31% and 48% efficacies achieved by the same formulation of the parental wild-type strain (WT). Both BbHV8 and WT sprays exerted no adverse effect on a nontarget spider community during the trials, and the sprays did not influence saprophytic fungi in soil samples taken from the field plots during 4 months after the last spray. Strikingly, BbHV8 and the WT showed low fitness when they were released into the environment because both were decreasingly recovered from the field lacking native B. bassiana strains (undetectable 5 months after the spray), and the recovered isolates became much less tolerant to high temperature and UV-B irradiation. Our results highlight for the first time that a rationally engineered fungal insecticide can compete with a chemical counterpart to combat insect pests at an affordable cost and with low ecological risk. PMID:23956386

  18. A fungal insecticide engineered for fast per os killing of caterpillars has high field efficacy and safety in full-season control of cabbage insect pests.

    PubMed

    Liu, Yong-Jie; Liu, Jing; Ying, Sheng-Hua; Liu, Shu-Sheng; Feng, Ming-Guang

    2013-10-01

    Fungal insecticides developed from filamentous pathogens of insects are notorious for their slow killing action through cuticle penetration, depressing commercial interest and practical application. Genetic engineering may accelerate their killing action but cause ecological risk. Here we show that a Beauveria bassiana formulation, HV8 (BbHV8), engineered for fast per os killing of caterpillars by an insect midgut-acting toxin (Vip3Aa1) overexpressed in conidia has both high field efficacy and safety in full-season protection of cabbage from the damage of an insect pest complex dominated by Pieris rapae larvae, followed by Plutella xylostella larvae and aphids. In two fields repeatedly sprayed during summer, BbHV8 resulted in overall mean efficacies of killing of 71% and 75%, which were similar or close to the 70% and 83% efficacies achieved by commercially recommended emamectin benzoate but much higher than the 31% and 48% efficacies achieved by the same formulation of the parental wild-type strain (WT). Both BbHV8 and WT sprays exerted no adverse effect on a nontarget spider community during the trials, and the sprays did not influence saprophytic fungi in soil samples taken from the field plots during 4 months after the last spray. Strikingly, BbHV8 and the WT showed low fitness when they were released into the environment because both were decreasingly recovered from the field lacking native B. bassiana strains (undetectable 5 months after the spray), and the recovered isolates became much less tolerant to high temperature and UV-B irradiation. Our results highlight for the first time that a rationally engineered fungal insecticide can compete with a chemical counterpart to combat insect pests at an affordable cost and with low ecological risk.

  19. Validating the importance of two acetylcholinesterases in insecticide sensitivities by RNAi in Pardosa pseudoannulata, an important predatory enemy against several insect pests.

    PubMed

    Meng, Xiangkun; Li, Chunrui; Bao, Haibo; Fang, Jichao; Liu, Zewen; Zhang, Yixi

    2015-11-01

    The pond wolf spider (Pardosa pseudoannulata) is an important predatory enemy against several insect pests and showed relative different sensitivities to organophosphate and carbamate insecticides compared to insect pests. In our previous studies, two acetylcholinesterases were identified in P. pseudoannulata and played important roles in insecticide sensitivities. In order to understand the contributions of the two acetylcholinesterases to insecticide sensitivities, we firstly employed the RNAi technology in the spider. For a suitable microinjection RNAi method, the injection site, injection volume and interference time were optimized, which then demonstrated that the injection RNAi method was applicable in this spider. With the new RNAi method, it was revealed that both Pp-AChE1 and Pp-AChE2, encoded by genes Ppace1 and Ppace2, were the targets of organophosphate insecticides, but Pp-AChE1 would be more important. In contrast, the carbamate acted selectively on Pp-AChE1. The results showed that Pp-AChE1 was the major catalytic enzyme in P. pseudoannulata and the major target of organophosphate and carbamate insecticides. In a word, an RNAi method was established in the pond wolf spider, which further validated the importance of two acetylcholinesterases in insecticide sensitivities in this spider.

  20. DEVELOPMENT OF THE STERILE INSECT TECHNIQUE TO MANAGE AN INVASIVE INSECT PEST, CACTOBLASTIS CACTORUM, ATTACKING PRICKLY PEAR CACTUS IN QUINTANA ROO, MEXICO, AND SOUTHEASTERN USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most successful classical biological control of weeds program has been the control of invasive prickly-pear cactus (Opuntia spp.) by the Argentine cactus moth Cactoblastis cactorum. However, the moth has now become an invasive pest in the southeastern USA and its ability to dramatically control ...

  1. Effects of A Killed-Cover Crop Mulching System on Sweetpotato Production, Soil Pests, and Insect Predators in South Carolina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sweetpotato, Ipomoea batatas (L.) Lam., is typically grown bare soils where weeds and erosion can be problematic before plants become established. Conservation tillage systems for sweetpotato may help alleviate these problems. Therefore, one insect-resistant (‘Ruddy’) and two insect-susceptible (‘...

  2. Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina

    PubMed Central

    2014-01-01

    Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication

  3. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and vibrational detection of movement.

    PubMed

    Mankin, R W; Hodges, R D; Nagle, H T; Schal, C; Pereira, R M; Koehler, P G

    2010-10-01

    Crawling and scraping activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanica (L.) (Blattodea: Blattellidae) and Cimex lectularius L. (Hemiptera: Cimicidae), were monitored individually by infrared sensors, microphones, and a piezoelectric sensor in a small arena to evaluate effects of insect locomotory behavior and size on the ability of an inexpensively constructed instrument to detect insects and distinguish among different species. Adults of all species could be detected when crawling or scraping. The smallest insects in the study, first-fourth-instar C. lectularius nymphs, could not be detected easily when crawling, but could be detected when scraping. Sound and vibration sensors detected brief, 3-10-ms impulses from all tested species, often grouped in distinctive trains (bursts), typical of impulses in previous acoustic detection experiments. To consider the potential for targeting or focusing detection on particular species of interest, indicators were developed to assess the likelihood of detection of C. lectularius. Statistically significant differences were found between C. lectularius and other species in distributions of three measured variables: infrared signal durations, sound impulse-burst durations, and sound pressure levels (energy) of impulses that best matched an averaged spectrum (profile) of scraping behavior. Thus, there is potential that signals collected by an inexpensive, polymodal-sensor instrument could be used in automated trapping systems to detect a targeted species, 0.1 mg or larger, in environments where servicing of traps is difficult or when timeliness of trapping information is important.

  4. Evaluation of in vitro and in vivo effects of semipurified proteinase inhibitors from Theobroma seeds on midgut protease activity of Lepidopteran pest insects.

    PubMed

    Paulillo, Luis Cesar Maffei Sartini; Sebbenn, Alexandre Magno; de Carvalho Derbyshire, Maria Tereza Vitral; Góes-Neto, Aristóteles; de Paula Brotto, Marco Aurélio; Figueira, Antonio

    2012-09-01

    We have characterized in vitro and in vivo effects of trypsin inhibitors from Theobroma seeds on the activity of trypsin- and chymotrypsin-like proteins from Lepidopteran pest insects. The action of semipurified trypsin inhibitors from Theobroma was evaluated by the inhibition of bovine trypsin and chymotrypsin activities determined by the hydrolysis of N-Benzoyl-DL-Arginine-p-Nitroanilide (BAPA) and N-Succinyl-Ala-Ala-Pho-Phe p-Nitroanilide (S-(Ala)2ProPhe-pNA). Proteinase inhibitor activities from Theobroma cacao and T. obovatum seeds were the most effective in inhibiting trypsin-like proteins, whereas those from T. obovatum and T. sylvestre were the most efficient against chymotrypsin-like proteins. All larvae midgut extracts showed trypsin-like proteolytic activities, and the putative trypsin inhibitors from Theobroma seeds significantly inhibited purified bovine trypsin. With respect to the influence of Theobroma trypsin inhibitors on intact insects, the inclusion of T. cacao extracts in artificial diets of velvet bean caterpillars (Anticarsia gemmatalis) and sugarcane borer (Diatraea saccharalis) produced a significant increase in the percentage of adult deformation, which is directly related to both the survival rate of the insects and oviposition.

  5. Pest management with natural products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 2012 Philadelphia ACS Symposium on Natural Products for Pest Management introduced recent discoveries and applications of natural products from insect, terrestrial plant, microbial, and synthetic sources for the management of insects, weeds, plant pathogenic microbes, and nematodes. The symposiu...

  6. Knockdown of genes in the Toll pathway reveals new lethal RNA interference targets for insect pest control.

    PubMed

    Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A

    2017-02-01

    RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies.

  7. Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control.

    PubMed

    Wang, Yubing; Zhang, Hao; Li, Haichao; Miao, Xuexia

    2011-04-11

    The key of RNAi approach success for potential insect pest control is mainly dependent on careful target selection and a convenient delivery system. We adopted second-generation sequencing technology to screen RNAi targets. Illumina's RNA-seq and digital gene expression tag profile (DGE-tag) technologies were used to screen optimal RNAi targets from Ostrinia furnalalis. Total 14690 stage specific genes were obtained which can be considered as potential targets, and 47 were confirmed by qRT-PCR. Ten larval stage specific expression genes were selected for RNAi test. When 50 ng/µl dsRNAs of the genes DS10 and DS28 were directly sprayed on the newly hatched larvae which placed on the filter paper, the larval mortalities were around 40∼50%, while the dsRNAs of ten genes were sprayed on the larvae along with artificial diet, the mortalities reached 73% to 100% at 5 d after treatment. The qRT-PCR analysis verified the correlation between larval mortality and the down-regulation of the target gene expression. Topically applied fluorescent dsRNA confirmed that dsRNA did penetrate the body wall and circulate in the body cavity. It seems likely that the combination of DGE-tag with RNA-seq is a rapid, high-throughput, cost less and an easy way to select the candidate target genes for RNAi. More importantly, it demonstrated that dsRNAs are able to penetrate the integument and cause larval developmental stunt and/or death in a lepidopteron insect. This finding largely broadens the target selection for RNAi from just gut-specific genes to the targets in whole insects and may lead to new strategies for designing RNAi-based technology against insect damage.

  8. Stress for invasion success? Temperature stress of preceding generations modifies the response to insecticide stress in an invasive pest insect

    PubMed Central

    Piiroinen, Saija; Lyytinen, Anne; Lindström, Leena

    2013-01-01

    Adaptation to stressful environments is one important factor influencing species invasion success. Tolerance to one stress may be complicated by exposure to other stressors experienced by the preceding generations. We studied whether parental temperature stress affects tolerance to insecticide in the invasive Colorado potato beetle Leptinotarsa decemlineata. Field-collected pyrethroid-resistant beetles were reared under either stressful (17°C) or favourable (23°C) insecticide-free environments for three generations. Then, larvae were exposed to pyrethroid insecticides in common garden conditions (23°C). Beetles were in general tolerant to stress. The parental temperature stress alone affected beetles positively (increased adult weight) but it impaired their tolerance to insecticide exposure. In contrast, offspring from the favourable temperature regime showed compensatory weight gain in response to insecticide exposure. Our study emphasizes the potential of cross-generational effects modifying species stress tolerance. When resistant pest populations invade benign environments, a re-application of insecticides may enhance their performance via hormetic effects. In turn, opposite effects may arise if parental generations have been exposed to temperature stress. Thus, the outcome of management practices of invasive pest species is difficult to predict unless we also incorporate knowledge of the evolutionary and recent (preceding generations) stress history of the given populations into pest management. PMID:23467574

  9. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants

    PubMed Central

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-01-01

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed. PMID:16024367

  10. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants.

    PubMed

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-05-22

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.

  11. Post-Mating Interactions and Their Effects on Fitness of Female and Male Echinothrips americanus (Thysanoptera: Thripidae), a New Insect Pest in China

    PubMed Central

    Li, Xiao-Wei; Jiang, Hong-Xue; Zhang, Xiao-Chen; Shelton, Anthony M.; Feng, Ji-Nian

    2014-01-01

    Post-mating, sexual interactions of opposite sexes differ considerably in different organisms. Post-mating interactions such as re-mating behavior and male harassment can affect the fitness of both sexes. Echinothrips americanus is a new insect pest in Mainland China, and little is known about its post-mating interactions. In this study, we observed re-mating frequency and male harassment frequency and their effects on fitness parameters and offspring sex ratios of E. americanus females. Furthermore, we tested the impact of mating and post-mating interactions on fitness parameters of males. Our results revealed that the re-mating frequency in female adults was extremely low during a 30-day period. However, post-mating interactions between females and males, consisting mainly of male harassment and female resistance, did occur and significantly reduced female longevity and fecundity. Interestingly, increased access to males did not affect the ratio of female offspring. For males, mating dramatically reduced their longevity. However, post-mating interactions with females had no effects on the longevity of mated males. These results enrich our basic knowledge about female and male mating and post-mating behaviors in this species and provide important information about factors that may influence population regulation of this important pest species. PMID:24489956

  12. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests.

    PubMed

    Kostyukovsky, Moshe; Rafaeli, Ada; Gileadi, Carina; Demchenko, Nataly; Shaaya, Eli

    2002-11-01

    As a result of screening a large number of essential oils from Israeli aromatic plants and their biologically active constituents, we isolated two oils with high activity against several stored-product insects. In this study the effect of these compounds on the acetylcholinesterase and the octopamine systems in insects was studied in order to elucidate their mode of action. Inhibition of acetylcholinesterase activity in vitro was evident only at high concentrations (10(-3) M) and could not account effectively for the low-dose mortality for some stored-product insects observed in vivo. However, the essential oil constituents were found to cause a significant increase in the levels of the intracellular messenger, cyclic AMP of abdominal epidermal tissue in the model insect, Helicoverpa armigera Hübn. The effect was significant even at low, physiological concentrations (10(-8) M) when tested directly on abdominal epidermal tissue preparations in vitro. This intracellular response was found to resemble closely the significant increases in the levels of the cyclic AMP of abdominal epidermal tissue due to treatment with the neurotransmitter/neuromodulator, octopamine. Subsequent treatment with the octopaminergic antagonist, phentolamine, effectively inhibited the cyclic AMP levels induced by essential oil treatment, indicating possible competitive activation of octopaminergic receptors by essential oil constituents.

  13. Iowa Commercial Pesticide Applicator Manual, Category 7A: General and Household Pest Control. CS-19. Category 7B: Termite Control, CS-20. Category 7C: Food Industry Pest Control, CS-21. Category 7D: Community Insect Control, CS-22.

    ERIC Educational Resources Information Center

    Stockdale, Harold J., Ed.; And Others

    This manual provides information needed to meet specific standards for certification as a pesticide applicator. The first section discusses general and household pest control and is concerned with parasitic pests and man, stored product pests, and irritating vertebrates. Section two is devoted to identifying and controlling structural pests such…

  14. Climate change and voltinism in Californian insect pest species: sensitivity to location, scenario and climate model choice.

    PubMed

    Ziter, Carly; Robinson, Emily A; Newman, Jonathan A

    2012-09-01

    Experimental studies of the impact of climatic change are hampered by their inability to consider multiple climate change scenarios and indeed often consider no more than simple climate sensitivity such as a uniform increase in temperature. Modelling efforts offer the ability to consider a much wider range of realistic climate projections and are therefore useful, in particular, for estimating the sensitivity of impact predictions to differences in geographical location, and choice of climate change scenario and climate model projections. In this study, we used well-established degree-day models to predict the voltinism of 13 agronomically important pests in California, USA. We ran these models using the projections from three Atmosphere-Ocean Coupled Global Circulation Models (AOCGCMs or GCMs), in conjunction with the SRES scenarios. We ran these for two locations representing northern and southern California. We did this for both the 2050s and 2090s. We used anova to partition the variation in the resulting voltinism among time period, climate change scenario, GCM and geographical location. For these 13 pest species, the choice of climate model explained an average of 42% of the total variation in voltinism, far more than did geographical location (33%), time period (17%) or scenario (1%). The remaining 7% of the variation was explained by various interactions, of which the location by GCM interaction was the strongest (5%). Regardless of these sources of uncertainty, a robust conclusion from our work is that all 13 pest species are likely to experience increases in the number of generations that they complete each year. Such increased voltinism is likely to have significant consequences for crop protection and production.

  15. Fruit Crop Pests. MEP 312.

    ERIC Educational Resources Information Center

    Weaver, Leslie O.; And Others

    As part of a cooperative extension service series by the University of Maryland this publication introduces the identification and control of common agricultural pests of fruit crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects, weeds,…

  16. Vegetable Crop Pests. MEP 311.

    ERIC Educational Resources Information Center

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  17. Ash pests: A guide to major insects, diseases, air pollution injury, and chemical injury. Forest Service general technical report

    SciTech Connect

    Solomon, J.D.; Leininger, T.D.; Wilson, A.D.; Anderson, R.L.; Thompson, L.C.

    1993-09-01

    The ashes (Fraxinus spp.) are one of the authors' more valuable hardwood resources--some 275 million board feet of ash lumber are sawn annually in the United States. Insects, diseases, and pollutants are continuing problems for the ashes, but few actually threaten their widespread use. Disease, simply stated, is a condition of abnormal growth resulting from infection by a biotic agent (fungus, bacterium, or virus), or induced by an abiotic stress such as drought or air pollution.

  18. Use of banker plant system for sustainable management of the most important insect pest in rice fields in China

    PubMed Central

    Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian

    2017-01-01

    To meet the World’s food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a “banker plant system” for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) – the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system. PMID:28367978

  19. Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest.

    PubMed

    Jaramillo, Juliana; Chabi-Olaye, Adenirin; Kamonjo, Charles; Jaramillo, Alvaro; Vega, Fernando E; Poehling, Hans-Michael; Borgemeister, Christian

    2009-08-03

    Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35 degrees C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20-30 degrees C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32 degrees C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1-2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1 degrees C rise in thermal optimum (T(opt.)), the maximum intrinsic rate of increase (r(max)) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.

  20. Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: Predictions of Climate Change Impact on a Tropical Insect Pest

    PubMed Central

    Jaramillo, Juliana; Chabi-Olaye, Adenirin; Kamonjo, Charles; Jaramillo, Alvaro; Vega, Fernando E.; Poehling, Hans-Michael; Borgemeister, Christian

    2009-01-01

    Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2. PMID:19649255

  1. Book Review: Insect Virology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  2. Parasitism of Lepidopterous Stem Borers in Cultivated and Natural Habitats

    PubMed Central

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Dupas, Stéphane; Calatayud, Paul-André

    2011-01-01

    Plant infestation, stem borer density, parasitism, and parasitoid abundance were assessed during two years in two host plants, Zea mays (L.) (Cyperales: Poaceae) and Sorghum bicolor (L.) (Cyperales: Poaceae), in cultivated habitats. The four major host plants (Cyperus spp., Panicum spp., Pennisetum spp., and Sorghum spp.) found in natural habitats were also assessed, and both the cultivated and natural habitat species occurred in four agroecological zones in Kenya. Across habitats, plant infestation (23.2%), stem borer density (2.2 per plant), and larval parasitism (15.0%) were highest in maize in cultivated habitats. Pupal parasitism was not higher than 4.7% in both habitats, and did not vary with locality during each season or with host plant between each season. Cotesia sesamiae (Cameron) and C. flavipes Cameron (Hymenoptera: Braconidae) were the key parasitoids in cultivated habitats (both species accounted for 76.4% of parasitized stem borers in cereal crops), but not in natural habitats (the two Cotesia species accounted for 14.5% of parasitized stem borers in wild host plants). No single parasitoid species exerted high parasitism rates on stem borer populations in wild host plants. Low stem borer densities across seasons in natural habitats indicate that cereal stem borer pests do not necessarily survive the non-cropping season feeding actively in wild host plants. Although natural habitats provided refuges for some parasitoid species, stem borer parasitism was generally low in wild host plants. Overall, because parasitoids contribute little in reducing cereal stem borer pest populations in cultivated habitats, there is need to further enhance their effectiveness in the field to regulate these pests. PMID:21526933

  3. Parasitism of lepidopterous stem borers in cultivated and natural habitats.

    PubMed

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Dupas, Stéphane; Calatayud, Paul-André

    2011-01-01

    Plant infestation, stem borer density, parasitism, and parasitoid abundance were assessed during two years in two host plants, Zea mays (L.) (Cyperales: Poaceae) and Sorghum bicolor (L.) (Cyperales: Poaceae), in cultivated habitats. The four major host plants (Cyperus spp., Panicum spp., Pennisetum spp., and Sorghum spp.) found in natural habitats were also assessed, and both the cultivated and natural habitat species occurred in four agroecological zones in Kenya. Across habitats, plant infestation (23.2%), stem borer density (2.2 per plant), and larval parasitism (15.0%) were highest in maize in cultivated habitats. Pupal parasitism was not higher than 4.7% in both habitats, and did not vary with locality during each season or with host plant between each season. Cotesia sesamiae (Cameron) and C. flavipes Cameron (Hymenoptera: Braconidae) were the key parasitoids in cultivated habitats (both species accounted for 76.4% of parasitized stem borers in cereal crops), but not in natural habitats (the two Cotesia species accounted for 14.5% of parasitized stem borers in wild host plants). No single parasitoid species exerted high parasitism rates on stem borer populations in wild host plants. Low stem borer densities across seasons in natural habitats indicate that cereal stem borer pests do not necessarily survive the non-cropping season feeding actively in wild host plants. Although natural habitats provided refuges for some parasitoid species, stem borer parasitism was generally low in wild host plants. Overall, because parasitoids contribute little in reducing cereal stem borer pest populations in cultivated habitats, there is need to further enhance their effectiveness in the field to regulate these pests.

  4. Avidin expressed in transgenic rice confers resistance to the stored-product insect pests Tribolium confusum and Sitotroga cerealella.

    PubMed

    Yoza, Koh-Ichi; Imamura, Taro; Kramer, Karl J; Morgan, Thomas D; Nakamura, Sumiko; Akiyama, Kohki; Kawasaki, Shinji; Takaiwa, Fumio; Ohtsubo, Ken'ichi

    2005-05-01

    Rice (Oryza sativa var. Nipponbare) was transformed with an artificial avidin gene. The features of this construct are as follows: (1) a signal peptide sequence derived from barley alpha amylase was added at the N-terminal region, (2) codon usage of the gene was optimized for rice, and (3) the gene was driven by rice glutelin GluB-1, an endosperm-specific promoter. Avidin was produced in the grain of the transgenic rice but not in the leaves. The concentration of avidin in the kernels was about 1,800 ppm. All larvae of the confused flour beetle (Tribolium confusum) and Angoumois grain moth (Sitotroga cerealella) died when fed transgenic avidin rice powder or kernels, respectively, whereas most of the test insects developed into adults when they were fed a nontransgenic rice control diet. Avidin extracted from the transgenic rice kernel lost most biotin-binding activity after 5 min heating at 95 degrees C.

  5. Slowing and Combating Pest Resistance to Pesticides

    EPA Pesticide Factsheets

    Pesticides can be used to control a variety of pests, such as insects, weeds, rodents, bacteria, fungi, etc. Over time many pesticides have gradually lost effectiveness because pests develop resistance. Learn what EPA is doing to address resistance issues.

  6. Performance of a Genetically Modified Strain of the Mediterranean Fruit Fly (Diptera: Tephritidae) for Area-Wide Integrated Pest Management With the Sterile Insect Technique.

    PubMed

    Ramírez-Santos, Edwin M; Rendón, Pedro; Ruiz-Montoya, Lorena; Toledo, Jorge; Liedo, Pablo

    2016-12-23

    The genetically modified strain of Ceratitis capitata (Wiedemann) VIENNA 8 1260 has two morphological markers that exhibit fluorescence in body and sperm. To assess the feasibility of its use in area-wide integrated pest management (AW-IPM) programs using the sterile insect technique, its rearing performance and quality control profile under small, medium, and large scales was evaluated, as well as in field cages. The VIENNA 8 1260 strain had a lower yield than the control strains, VIENNA 8 with D53 inversion (VIENNA 8) and without D53 inversion (VIENNA 8 D53-). At mass-rearing scale, yield gradually increased in three generations without reaching the control strain values. The VIENNA 8 1260 strain was stable in the genetic sexing mechanism (>99.9%) and expression of fluorescence (100%). In field cages, the VIENNA 8 1260 males reduced the mating potential of wild males in the same magnitude as the VIENNA 8, when evaluated in independent cage tests. However, the relative sterility index and the strain male relative performance index of VIENNA 8 1260 males were significantly lower than those of the VIENNA 8. There were no significant differences in longevity of these strains. The potential application of the VIENNA 8 1260 in AW-IPM programs is further discussed.

  7. Electrostatic Insect Sweeper for Eliminating Whiteflies Colonizing Host Plants: A Complementary Pest Control Device in An Electric Field Screen-Guarded Greenhouse.

    PubMed

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kusakari, Shin-Ichi; Okada, Kiyotsugu; Kimbara, Junji; Osamura, Kazumi; Toyoda, Hideyoshi

    2015-05-12

    Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs) were arranged at constant intervals along a polyvinylchloride (PVC) pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries) inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse.

  8. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest

    PubMed Central

    Ji, Hyeonso; Kim, Sung-Ryul; Kim, Yul-Ho; Suh, Jung-Pil; Park, Hyang-Mi; Sreenivasulu, Nese; Misra, Gopal; Kim, Suk-Man; Hechanova, Sherry Lou; Kim, Hakbum; Lee, Gang-Seob; Yoon, Ung-Han; Kim, Tae-Ho; Lim, Hyemin; Suh, Suk-Chul; Yang, Jungil; An, Gynheung; Jena, Kshirod K.

    2016-01-01

    Brown planthopper (BPH) is a phloem sap-sucking insect pest of rice which causes severe yield loss. We cloned the BPH18 gene from the BPH-resistant introgression line derived from the wild rice species Oryza australiensis. Map-based cloning and complementation test revealed that the BPH18 encodes CC-NBS-NBS-LRR protein. BPH18 has two NBS domains, unlike the typical NBS-LRR proteins. The BPH18 promoter::GUS transgenic plants exhibited strong GUS expression in the vascular bundles of the leaf sheath, especially in phloem cells where the BPH attacks. The BPH18 proteins were widely localized to the endo-membranes in a cell, including the endoplasmic reticulum, Golgi apparatus, trans-Golgi network, and prevacuolar compartments, suggesting that BPH18 may recognize the BPH invasion at endo-membranes in phloem cells. Whole genome sequencing of the near-isogenic lines (NILs), NIL-BPH18 and NIL-BPH26, revealed that BPH18 located at the same locus of BPH26. However, these two genes have remarkable sequence differences and the independent NILs showed differential BPH resistance with different expression patterns of plant defense-related genes, indicating that BPH18 and BPH26 are functionally different alleles. These findings would facilitate elucidation of the molecular mechanism of BPH resistance and the identified novel alleles to fast track breeding BPH resistant rice cultivars. PMID:27682162

  9. Electrostatic Insect Sweeper for Eliminating Whiteflies Colonizing Host Plants: A Complementary Pest Control Device in An Electric Field Screen-Guarded Greenhouse

    PubMed Central

    Takikawa, Yoshihiro; Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kusakari, Shin-ichi; Okada, Kiyotsugu; Kimbara, Junji; Osamura, Kazumi; Toyoda, Hideyoshi

    2015-01-01

    Our greenhouse tomatoes have suffered from attacks by viruliferous whiteflies Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) over the last 10 years. The fundamental countermeasure was the application of an electric field screen to the greenhouse windows to prevent their entry. However, while the protection was effective, it was incomplete, because of the lack of a guard at the greenhouse entrance area; in fact, the pests entered from the entrance door when workers entered and exited. To address this, we developed a portable electrostatic insect sweeper as a supplementary technique to the screen. In this sweeper, eight insulated conductor wires (ICWs) were arranged at constant intervals along a polyvinylchloride (PVC) pipe and covered with a cylindrical stainless net. The ICWs and metal net were linked to a DC voltage generator (operated by 3-V alkaline batteries) inside the grip and oppositely electrified to generate an electric field between them. Whiteflies on the plants were attracted to the sweeper that was gently slid along the leaves. This apparatus was easy to operate on-site in a greenhouse and enabled capture of the whiteflies detected during the routine care of the tomato plants. Using this apparatus, we caught all whiteflies that invaded the non-guarded entrance door and minimized the appearance and spread of the viral disease in tomato plants in the greenhouse. PMID:26463195

  10. A comparison of growth and development of three major agricultural insect pests infected with Heliothis virescens ascovirus 3h (HvAV-3h).

    PubMed

    Li, Shun-Ji; Wang, Xing; Zhou, Zhong-Shi; Zhu, Jie; Hu, Jue; Zhao, Yi-Pei; Zhou, Gui-Wei; Huang, Guo-Hua

    2013-01-01

    Ascoviruses are double-stranded DNA viruses that are pathogenic to lepidopteran hosts, particularly noctuid larvae. Infection of a larva is characterized by retarded growth, reduced feeding and yellowish body color. In this paper, we reported the growth and development of three major agricultural noctuid insect pests, Helicoverpa armigera (Hübner), Spodoptera exigua (Hübner) and Spodoptera litura (Fabricius), infected with Heliothis virescens ascovirus 3h (HvAV-3h). Using 10-fold serial dilutions (0 to 7) of HvAV-3h-containing hemolymph to infect S. litura larvae, we found no significant difference in larval mortalities from 0 to 10(3)-fold dilutions; however, significant differences were observed at 10(4)-fold dilution and above. Using a 10-fold dilution of HvAV-3h-containing hemolymph to infect H. armigera, S. exigua and S. litura larvae, we found that the growth and development were significantly affected. All infected larvae could not pupate; the survival times of treated H. armigera, S. litura and S. exigua larvae were significantly longer than untreated control larvae. Body weight showed significant difference between treated and untreated control group from day 1 after inoculation in H. armigera and S. exigua, but day 2 in S. litura. Additionally, food intake also showed significant difference between treated and untreated control group from day 2 after inoculation in H. armigera and S. litura, but day 3 in S. exigua.

  11. Identifying a Potential Trap Crop for a Novel Insect Pest, Halyomorpha halys (Hemiptera: Pentatomidae), in Organic Farms.

    PubMed

    Nielsen, Anne L; Dively, Galen; Pote, John M; Zinati, Gladis; Mathews, Clarissa

    2016-04-01

    The invasive brown marmorated stink bug, Halyomorpha halys, poses significant risk to organic farming systems because they rely on biological control, nonsynthetic inputs, and cultural tactics for pest management. This study evaluated the potential of five crop plants (sorghum, admiral pea, millet, okra, and sunflower) to be used as trap crops under organic production in four mid-Atlantic states. Stink bug (H. halys and endemic species) densities and host plant phenologies were recorded weekly (mid-June through September). Sorghum attracted significantly more H. halys than the other crops evaluated, followed by sunflower and okra. Seasonal average H. halys density was 1.5-4× higher on sorghum than the other crops (P < 0.05), depending on site. Endemic stink bugs were equally attracted to all crops except admiral pea. A significant effect of time was detected (P < 0.0001), with H. halys densities initially higher on sunflower; as the sunflower senesced, sorghum supported significantly higher average H. halys densities. While sunflower and sorghum phenologies differed, these crops together provided a 5-wk attraction period coinciding with peak H. halys activity. The efficacies of pheromone-baited traps, flaming, applying OMRI-approved insecticides (Azera and Venerate), and vacuuming to removing stink bugs were evaluated as a management tactic. Flaming was the most effective treatment against H. halys and endemic stink bugs. Our results suggest that a trap crop composed of sorghum and sunflower may be an effective management tool for the mid-Atlantic stink bug complex, including H. halys. Future research should address the appropriate size and placement of trap crop within the farm.

  12. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and virbrational detection of movement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crawling or running, scraping or shuffling, and wriggling activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanic...

  13. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.

    PubMed

    Haynes, Kyle J; Allstadt, Andrew J; Klimetzek, Dietrich

    2014-06-01

    To identify general patterns in the effects of climate change on the outbreak dynamics of forest-defoliating insect species, we examined a 212-year record (1800-2011) of outbreaks of five pine-defoliating species (Bupalus piniarius, Panolis flammea, Lymantria monacha, Dendrolimus pini, and Diprion pini) in Bavaria, Germany for the evidence of climate-driven changes in the severity, cyclicity, and frequency of outbreaks. We also accounted for historical changes in forestry practices and examined effects of past insecticide use to suppress outbreaks. Analysis of relationships between severity or occurrence of outbreaks and detrended measures of temperature and precipitation revealed a mixture of positive and negative relationships between temperature and outbreak activity. Two moth species (P. flammea and Dendrolimus pini) exhibited lower outbreak activity following years or decades of unusually warm temperatures, whereas a sawfly (Diprion pini), for which voltinism is influenced by temperature, displayed increased outbreak occurrence in years of high summer temperatures. We detected only one apparent effect of precipitation, which showed Dendrolimus pini outbreaks tending to follow drought. Wavelet analysis of outbreak time series suggested climate change may be associated with collapse of L. monacha and Dendrolimus pini outbreak cycles (loss of cyclicity and discontinuation of outbreaks, respectively), but high-frequency cycles for B. piniarius and P. flammea in the late 1900s. Regional outbreak severity was generally not related to past suppression efforts (area treated with insecticides). Recent shifts in forestry practices affecting tree species composition roughly coincided with high-frequency outbreak cycles in B. piniarius and P. flammea but are unlikely to explain the detected relationships between climate and outbreak severity or collapses of outbreak cycles. Our results highlight both individualistic responses of different pine-defoliating species to

  14. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks

    PubMed Central

    Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal

    2016-01-01

    Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients’ sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala. PMID:27073878

  15. Population Explosions of Tiger Moth Lead to Lepidopterism Mimicking Infectious Fever Outbreaks.

    PubMed

    Wills, Pallara Janardhanan; Anjana, Mohan; Nitin, Mohan; Varun, Raghuveeran; Sachidanandan, Parayil; Jacob, Tharaniyil Mani; Lilly, Madhavan; Thampan, Raghava Varman; Karthikeya Varma, Koyikkal

    2016-01-01

    Lepidopterism is a disease caused by the urticating scales and toxic fluids of adult moths, butterflies or its caterpillars. The resulting cutaneous eruptions and systemic problems progress to clinical complications sometimes leading to death. High incidence of fever epidemics were associated with massive outbreaks of tiger moth Asota caricae adult populations during monsoon in Kerala, India. A significant number of monsoon related fever characteristic to lepidopterism was erroneously treated as infectious fevers due to lookalike symptoms. To diagnose tiger moth lepidopterism, we conducted immunoblots for tiger moth specific IgE in fever patients' sera. We selected a cohort of patients (n = 155) with hallmark symptoms of infectious fevers but were tested negative to infectious fevers. In these cases, the total IgE was elevated and was detected positive (78.6%) for tiger moth specific IgE allergens. Chemical characterization of caterpillar and adult moth fluids was performed by HPLC and GC-MS analysis and structural identification of moth scales was performed by SEM analysis. The body fluids and chitinous scales were found to be highly toxic and inflammatory in nature. To replicate the disease in experimental model, wistar rats were exposed to live tiger moths in a dose dependant manner and observed similar clinico-pathological complications reported during the fever epidemics. Further, to link larval abundance and fever epidemics we conducted cointegration test for the period 2009 to 2012 and physical presence of the tiger moths were found to be cointegrated with fever epidemics. In conclusion, our experiments demonstrate that inhalation of aerosols containing tiger moth fluids, scales and hairs cause systemic reactions that can be fatal to human. All these evidences points to the possible involvement of tiger moth disease as a major cause to the massive and fatal fever epidemics observed in Kerala.

  16. Insect Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests exhibit a diverse array of genetic-based responses when interacting with crop systems; these changes can be in response to pathogens, symbiotic microbes, host plants, chemicals, and the environment. Agricultural research has for decades focused on gathering crucial information on the bi...

  17. Industrial and Institutional Pest Control. Sale Publication 4073.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information needed to meet Environmental Protection Agency standards on industrial and institutional pest control, and to help prepare for certification. It gives descriptions and pictures of general insect pests, parasitic pests of man, occasional invaders, wood-destroying pests, stored product pests, vertebrates, and weeds. The…

  18. Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism.

    PubMed

    Kumar, Saravanan; Kanakachari, Mogilicherla; Gurusamy, Dhandapani; Kumar, Krishan; Narayanasamy, Prabhakaran; Kethireddy Venkata, Padmalatha; Solanke, Amolkumar; Gamanagatti, Savita; Hiremath, Vamadevaiah; Katageri, Ishwarappa S; Leelavathi, Sadhu; Kumar, Polumetla Ananda; Reddy, Vanga Siva

    2016-06-01

    Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton plant response to bollworm infection is yet to be witnessed. In this context, we have studied the genome-wide response of cotton bolls infested with bollworm using transcriptomic and proteomic approaches. Further, we have validated this data using semi-quantitative real-time PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the proteome were differentially regulated during bollworm infestation. Around 36% of significantly regulated transcripts and 45% of differentially expressed proteins were found to be involved in signalling followed by redox regulation. Further analysis showed that defence-related stress hormones and their lipid precursors, transcription factors, signalling molecules, etc. were stimulated, whereas the growth-related counterparts were suppressed during bollworm infestation. Around 26% of the significantly up-regulated proteins were defence molecules, while >50% of the significantly down-regulated were related to photosynthesis and growth. Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and TFs highlighted the components of retrograde signalling pathways. Our data suggest that a selective regulatory mechanism directs the reallocation of metabolic resources favouring defence over growth under bollworm infestation and these insights could be exploited to develop bollworm-resistant cotton varieties.

  19. The role of wild grasses in the management of lepidopterous stem-borers on maize in the humid tropics of western Africa.

    PubMed

    Ndemah, R; Gounou, S; Schulthess, F

    2002-12-01

    Sites in the humid forest of Cameroon and the derived savanna of Benin were selected to evaluate the effect of planting border rows of wild host plants on lepidopterous stem-borer infestations and on maize yield. Grass species were chosen that in surveys and greenhouse trials were highly attractive to ovipositing female moths but with offspring mortality of close to 100%, thus acting as trap plants. In Cameroon, elephant grass Pennisetum purpureum Moench significantly lowered infestations of Busseola fusca (Fuller), Sesamia calamistis Hampson and Eldana saccharina Walker and increased yields of maize though the differences were not significant during all three cropping seasons. In 1998 in Benin, the only grass tested, Pennisetum polystachion L., significantly increased parasitism of mainly S. calamistis eggs by Telenomus spp. and larvae by Cotesia sesamiae Cameron and reduced numbers of the cob-borer Mussidia nigrivenella Ragonot. In 1999, three grass species; P. polystachion, Sorghum arundinaceum (Desv.) Stapf and Panicum maximum Jacq. were tested. Panicum maximum was the most efficient species for suppressing S. calamistis and M. nigrivenella infestations and enhancing egg and larval parasitism. In the Benin trials, with the exception of M. nigrivenella damage to cobs, the grass species tested had no beneficial effect on yield because pest densities were too low and also rodent damage to maize was enhanced with grasses in the vicinity of the crop. By contrast, stand losses due to Fusarium verticillioides Sacc. (Nirenberg), were significantly reduced by border rows of grasses.

  20. Forest Pest Control. Manual 94.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in forest pest control. The text discusses disease problems, insects, and herbicide use in both established forests and nurseries. (CS)

  1. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  2. Pests in ornamental grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ornamental perennial grasses are becoming increasingly popular in the landscape due to their beauty and ease of care. Although few pest problems are encountered in ornamental grasses, they are not immune to insects and disease. Two lined spittlebugs (Prosapia bicincta) can cause damage to ornament...

  3. Ornamental and Turf Pest Control. Bulletin 764.

    ERIC Educational Resources Information Center

    Bowyer, Timothy H.; And Others

    This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…

  4. Agricultural Plant Pest Control. Manual 93.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides for the agricultural plant pest control category. The text discusses the insect pests including caterpillars, beetles, and soil inhabiting insects; diseases and nematodes; and weeds. Consideration is given…

  5. Agricultural Plant Pest Control. Bulletin 763.

    ERIC Educational Resources Information Center

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  6. RNA Viruses Infecting Pest Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA viruses are viruses whose genetic material is ribonucleic acid (RNA). RNA viruses may be double or single-stranded based on the type of RNA they contain. Single-stranded RNA viruses can be further grouped into negative sense or positive-sense viruses according to the polarity of their RNA. Fur...

  7. Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest.

    PubMed

    Menzel, Annette; Estrella, Nicole; Heitland, Werner; Susnik, Andreja; Schleip, Christoph; Dose, Volker

    2008-01-01

    A recent lengthening of the growing season in mid and higher latitudes of the northern hemisphere is reported as a clear indicator for climate change impacts. Using data from Germany (1951-2003) and Slovenia (1961-2004), we study whether changes in the start, end, and length of the growing season differ among four deciduous broad-leaved tree species and countries, how the changes are related to temperature changes, and what might be the confounding effects of an insect attack. The functional behaviour of the phenological and climatological time series and their trends are not analysed by linear regression, but by a new Bayesian approach taking into account different models for the functional description (one change-point, linear, constant models). We find advanced leaf unfolding in both countries with the same species order (oak > horse chestnut, beech, and birch). However, this advance is non linear over time and more apparent in Germany with clear change-points in the late 1970s, followed by marked advances (on average 3.67 days decade(-1) in the 2000s). In Slovenia, we find a more gradual advance of onset dates (on average 0.8 days decade(-1) in the 2000s). Leaf colouring of birch, beech, and oak has been slightly delayed in the last 3 decades, especially in Germany, however with no clear functional behaviour. Abrupt changes in leaf colouring dates of horse chestnut with recent advancing onset dates can be linked across countries to damage by a newly emerging pest, the horse chestnut leaf-miner (Cameraria ohridella). The lengthening of the growing season, more distinct in Germany than in Slovenia (on average 4.2 and 1.0 days decade(-1) in the 2000s, respectively), exhibits the same species order in both countries (oak > birch > beech). Damage by horse chestnut leaf-miner leads to reduced lengthening (Germany) and drastic shortening (Slovenia) of the horse chestnut growing season (-12 days decade(-1) in the 2000s). Advanced spring leaf unfolding and lengthening

  8. Forest Pest Control. Sale Publication 4072.

    ERIC Educational Resources Information Center

    Stimmann, M. W., Ed.

    The forest pests discussed in this guide are weeds, insects, diseases, and vertebrates. The guide gives information about types of forests, characteristics of common forest pests, pest control methods, pesticides and application equipment used in forestry, and environmental and human hazards. (Author/BB)

  9. Influence of maize/lablab intercropping on lepidopterous stem borer infestation in maize.

    PubMed

    Maluleke, Mary H; Addo-Bediako, Abraham; Ayisi, Kingsley K

    2005-04-01

    Lepidopterous stem borers seriously affect production of maize, Zea mays L., in sub-Saharan Africa. Intercropping maize with legumes such as lablab, Lablab purpurens (L.), is one of the effective systems to control stem borers. Sole culture maize and maize/lablab intercrop system of different lablab densities were planted at two locations to investigate the effects of intercrop system on incidence and severity of stem borers with particular reference to Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae). Stem borer infestation was found to be more severe in sole culture maize than maize in maize/lablab intercrop. There was a significantly negative relationship between lablab densities and maize grain yields, suggesting a possible competition for resources between the two crops. It was concluded that density of lablab and date of planting of lablab in maize/lablab intercropping have significant affects on stem borer populations and maize grain yields.

  10. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern

    PubMed Central

    Jourdain, F.; Girod, R.; Vassal, J.M.; Chandre, F.; Lagneau, C.; Fouque, F.; Guiral, D.; Raude, J.; Robert, V.

    2012-01-01

    The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as “papillonite” in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first “papillonite” epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health. PMID:22550622

  11. The moth Hylesia metabus and French Guiana lepidopterism: centenary of a public health concern.

    PubMed

    Jourdain, F; Girod, R; Vassal, J M; Chandre, F; Lagneau, C; Fouque, F; Guiral, D; Raude, J; Robert, V

    2012-05-01

    The females of the moths Hylesia metabus have their abdomens covered by urticating hairs looking like micro-arrows and causing a puriginous dermatitis to humans known as "papillonite" in French Guiana and also called yellowtail moth dermatitis or Caripito itch. The densities of the moths show great seasonal and annual variations depending on mechanisms mostly unknown. When H. metabus infestations occur, numerous cases of dermatologic manifestations are reported from people living near the mangrove swamps where the moths are developing. One hundred years after the first "papillonite" epidemic reported from French Guiana in 1912, the data presented herein summarize the actual state of knowledge on H. metabus biology and ecology and on the lepidopterism. Some recommendations are proposed for the surveillance and warning systems of H. metabus infestations and to avoid contact with the moths. Research priorities are suggested to improve the control against this problem emerging between nuisance and public health.

  12. Insect Control (1): Use of Pheromones

    ERIC Educational Resources Information Center

    Marx, Jean L.

    1973-01-01

    Discusses current research relating to the use of pheromones as a means of controlling insect pests. These chemicals, which are secreted by insects to affect the behavior of other individuals of the same species, may be used to eliminate pests without destroying their predators and other beneficial insects. (JR)

  13. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a live state of insects which are injurious to cultivated crops, including vegetables, field crops, bush fruits, and orchard, forest or shade trees, and of the eggs, pupae, or larvae of such insects, except...

  14. Effect of plant age, larval age, and fertilizer treatment on resistance of a cry1Ab-transformed aromatic rice to lepidopterous stem borers and foliage feeders.

    PubMed

    Alinia, F; Ghareyazie, B; Rubia, L; Bennett, J; Cohen, M B

    2000-04-01

    The resistance of vegetative, booting, and flowering stage plants of a variety of an aromatic rice, Oryza sativa L., transformed with a Bacillus thuringiensis Berliner cry1Ab gene under control of the maize phosphoenolpyruvate carboxylase (PEPC) promoter was evaluated against four lepidopterous rice pests--the stem borers Chilo suppressalis (Walker) (Lepidoptera: Crambidae) and Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae), and the foliage feeders Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) and Naranga aenescens Moore (Lepidoptera: Noctuidae). Plants of the cry1Ab-transformed line (no. 827) were more resistant to young larvae of S. incertulas, C. suppressalis, and C. medinalis than control plants at the vegetative stage but not at the flowering stage. Survival of 10-d-old stem borer larvae did not differ on cry1Ab plants and control plants at either the vegetative or flowering stage, but the development of 10-d-old C. suppressalis larvae was retarded on the vegetative stage cry1Ab plants. Immunological analysis also showed an apparent decline in Cry1Ab titer in leaf blades and leaf sheaths at the reproductive stage. In experiments comparing three fertilizer treatments (NPK, PK, and none), there was a significant interaction between fertilizer treatment and variety on larval survival only in whole-plant assays at booting stage with C. suppressalis. On cry1Ab plants, larval survival did not differ significantly among the three fertilizer levels, whereas on control plants survival was highest with the NPK treatment. cry1Ab plants tested at the sixth and seventh generations after transformation were more resistant than control plants to N. aenescens and C. suppressalis, respectively, suggesting that gene silencing will not occur in line 827. The results of the experiments are discussed in terms of resistance management for B. thuringiensis toxins in rice.

  15. Insects and Bugs

    ERIC Educational Resources Information Center

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  16. Competitive release of an agricultural insect pest: The case of stink bug outbreaks in transgenic Bt cotton in the southeast US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Empirical studies on the ecological causes of agricultural pest outbreaks have focused primarily on two biotic factors—release from natural enemies and changes in host plant quality. Release from competition, on the other hand, has been theorized as a potential cause but never tested. With the ex...

  17. Insecticidal activity of the root extract of Decalepis hamiltonii against stored-product insect pests and its application in grain protection.

    PubMed

    Rajashekar, Y; Gunasekaran, N; Shivanandappa, T

    2010-06-01

    Root extracts of Decalepis hamiltonii were tested for insecticidal activity against the stored products pests, Rhyzopertha domonica, Sitophilus oryzae, Stigobium pancieum, Tribolium castaneum and Callosobruchus chinensis, in residual and contact toxicity bioassays. Methanolic extract showed LC50 value of 0.14 mg/cm(2) for all the test species in a filter paper residual bioassay. The extract was effective as a grain protectant for wheat and green gram. Reduction of F1 progeny was observed in treated grain stored for 3-4 months. The extract did not affect the germination of the treated grains. Our results indicate that methanolic extracts of D. hamiltonii has a potential to control stored product pests and could serve as a natural grain protectant.

  18. Natural enemies of lepidopterous borers on maize and elephant grass in the forest zone of Cameroon.

    PubMed

    Ndemah, R; Schulthess, F; Poehling, M; Borgemeister, C; Goergen, G

    2001-06-01

    The importance, geographical and temporal distributions of parasitoids of lepidopterous borers on maize and elephant grass, Pennisetum purpureum, were assessed during surveys in farmers' fields in six villages and two on-station trials in the forest zone of Cameroon between 1995 and 1996. The borer species encountered were Busseola fusca (Fuller), Sesamia calamistis Hampson, Eldana saccharina Walker on both host plants, and Mussidia nigrivenella Ragonot on maize only. Busseola fusca was the predominant host accounting for 44-57% and 96% on maize and elephant grass, respectively, followed by E. saccharina on maize with 27-39%. Fifteen hymenopterous, two dipterous and one fungal species were found on these stem and cob-borers. Among those were six pupal, six larval, four egg, one larval-pupal parasitoid and four hyperparasitoids. The scelionid parasitoids Telenomus busseolae Gahan and T. isis Polaszek were found on B. fusca eggs in all locations. During the first season, mean egg parasitism was low and ranged between 3.1% and 27% versus 54-87% during the second season. Species belonging to the Tetrastichus atriclavus Waterston complex were recovered from all four borer species. The majority and most common larval and pupal parasitoid species belonged to the ingress-and-sting guild. Larval and pupal parasitism were very erratic and on more than 50% of the sampling occasions no parasitoids were recovered. Parasitoid diversity was higher on elephant grass than maize.

  19. Evaluation of corn hybrids expressing Cry1F, cry1A.105, Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 against southern United States insect pests.

    PubMed

    Siebert, M W; Nolting, S P; Hendrix, W; Dhavala, S; Craig, C; Leonard, B R; Stewart, S D; All, J; Musser, F R; Buntin, G D; Samuel, L

    2012-10-01

    Studies were conducted across the southern United States to characterize the efficacy of multiple Bacillus thuringiensis (Bt) events in a field corn, Zea mays L., hybrid for control of common lepidopteran and coleopteran pests. Cry1F protein in event TC1507 and Cry1A.105 + Cry2Ab2 proteins in event MON 89034 were evaluated against pests infesting corn on above-ground plant tissue including foliage, stalks, and ears. Cry34Ab1/Cry35Ab1 proteins in event DAS-59122-7 and Cry3Bb1 in event MON 88017 were evaluated against the larvae of Mexican corn rootworm, Diabrotica virgifera zeae Krysan and Smith, which occur below-ground. Field corn hybrids containing Cry1F, Cry1A.105 + Cry2Ab2, Cry34Ab1/Cry35Ab1, and Cry3Bb1 insecticidal proteins (SmartStax) consistently demonstrated reductions in plant injury and/or reduced larval survivorship as compared with a non-Bt field corn hybrid. Efficacy provided by a field corn hybrid with multiple Bt proteins was statistically equal to or significantly better than corn hybrids containing a single event active against target pests. Single event field corn hybrids provided very high levels of control of southwestern corn borer, Diatraea grandiosella (Dyar), lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), and fall armyworm, Spodoptera frugiperda (J.E. Smith), and were not significantly different than field corn hybrids with multiple events. Significant increases in efficacy were observed for a field corn hybrid with multiple Bt events for sugarcane borer, Diatraea saccharalis (F.), beet armyworm, Spodoptera exigua (Hübner), corn earworm, Helicoverpa zea (Boddie), and Mexican corn rootworm. Utilization of field corn hybrids containing multiple Bt events provides a means for managing insect resistance to Bt proteins and reduces non-Bt corn refuge requirements.

  20. Thermal tolerance of the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): inferences of climate change impact on a tropical insect pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the thermal tolerance of the coffee berry borer, Hypothenemus hampei, and make inferences on the possible effects of climate change on the insect using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. The extremes for coffee berry borer survival are 59 and 86 degrees F, but ...

  1. Plant or fungal-produced conophthorin as an important component of host plant volatile-based attractants for agricultural lepidopteran insect pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conophthorin (7-methyl-1,6-dioxaspiro[4.5]decane) is a semiochemical common to numerous coleopteran and hymenopteran insects, and possess varying semiochemical behavior among these species. Conophthorin has recently gained attention as a semiochemical for navel orangeworm, Amyelois transitella (Lepi...

  2. Toxins for transgenic resistance to hemipteran pests.

    PubMed

    Chougule, Nanasaheb P; Bonning, Bryony C

    2012-06-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  3. Coccinellids and the Modern Pest Management

    ERIC Educational Resources Information Center

    Hodek, Ivo

    1970-01-01

    Discusses the concept of integrated pest control combining chemical and biological methods. Describes many examples of the successful use of coccinellids beetles to control other insects. Cites ecological and physiological research studies related to predator prey relationships involving coccinellids. (EB)

  4. Planthopper pests of grapevine (in French)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the French vineyards occur two main insect pests belonging to Fulgoromorpha, Hyalesthes obsoletus Signoret (Cixiidae) and Metcalfa pruinosa (Say) (Flatidae). Hyalesthes obsoletus is inducing economic losses by transmitting a phytoplasma, called Stolbur, from wild plants (bindweed, nettle, etc.) t...

  5. Comparative evaluation of phenoloxidase in different larval stages of four lepidopteran pests after exposure to Bacillus thuringiensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some lepidopteran insects are important agricultural pests, causing serious crop damage. Microbial entomopathogen-based bioinsecticides are considered effective pest control alternatives to synthetic chemicals. However, insects can defend against pathogens by innate mechanisms, including phenoloxi...

  6. Preface: Insect Pathology, 2nd ed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pathology is an essential component of entomology and provides a non-chemical alternative for insect pest management. There are several groups of organisms that can infect and kill insects including viruses, fungi, microsporidia, bacteria, protists, and nematodes. The dilemma in insect patho...

  7. The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests.

    PubMed

    Nahar, Pallavi; Ghormade, Vandana; Deshpande, Mukund V

    2004-02-01

    The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.

  8. Training for Certification: Ornamental & Turf Pest Control.

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College. Cooperative Extension Service.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on ornamental and turf plant pest control, this publication examines the control of plant diseases, insects, and weeds. The contents are divided into a section on ornamental pest control and one on…

  9. Training for Certification: Forest Pest Control.

    ERIC Educational Resources Information Center

    Parker, Robert C., Comp.

    This Cooperative Extension Service publication from Mississippi State University is a training guide for commercial pesticide applicators. Focusing on forest pest control, this publication examines plant and animal pest control practices for southern tree species. Contents include: (1) identification of insects, diseases, and weed tree species;…

  10. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in...

  11. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in...

  12. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of...

  13. 19 CFR 12.31 - Plant pests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Plant pests. 12.31 Section 12.31 Customs Duties U... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a... Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs of...

  14. Nitric oxide fumigation for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitric oxide fumigation is effective against all arthropod pests at various life stages tested. Nine insect pests at various life stages and bulb mites were subjected to nitric oxide fumigation treatments under ultralow oxygen conditions of =50 ppm O2 in 1.9L glass jars as fumigation chambers. The ...

  15. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches.

    PubMed

    Mondal, Suchismita; Rutkoski, Jessica E; Velu, Govindan; Singh, Pawan K; Crespo-Herrera, Leonardo A; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance.

  16. Self-Assembly and Release of Peste des Petits Ruminants Virus-Like Particles in an Insect Cell-Baculovirus System and Their Immunogenicity in Mice and Goats

    PubMed Central

    Li, Wenchao; Jin, Hongyan; Sui, Xiukun; Zhao, Zhanzhong; Yang, Chenghuai; Wang, Wenquan; Li, Junping; Li, Gang

    2014-01-01

    Peste des petits ruminants (PPR) is an acute, febrile, viral disease of small ruminants that has a significant economic impact. For many viral diseases, vaccination with virus-like particles (VLPs) has shown considerable promise as a prophylactic approach; however, the processes of assembly and release of peste des petits ruminants virus (PPRV) VLPs are not well characterized, and their immunogenicity in the host is unknown. In this study, VLPs of PPRV were generated in a baculovirus system through simultaneous expression of PPRV matrix (M) protein and hemaglutin in (H) or fusion (F) protein. The released VLPs showed morphology similar to that of the native virus particles. Subcutaneous injection of these VLPs (PPRV-H, PPRV-F) into mice and goats elicited PPRV-specific IgG production, increased the levels of virus neutralizing antibodies, and promoted lymphocyte proliferation. Without adjuvants, the immune response induced by the PPRV-H VLPs was comparable to that obtained using equivalent amounts of PPRV vaccine. Thus, our results demonstrated that VLPs containing PPRV M protein and H or F protein are potential “differentiating infected from vaccinated animals” (DIVA) vaccine candidates for the surveillance and eradication of PPR. PMID:25117931

  17. Harnessing Diversity in Wheat to Enhance Grain Yield, Climate Resilience, Disease and Insect Pest Resistance and Nutrition Through Conventional and Modern Breeding Approaches

    PubMed Central

    Mondal, Suchismita; Rutkoski, Jessica E.; Velu, Govindan; Singh, Pawan K.; Crespo-Herrera, Leonardo A.; Guzmán, Carlos; Bhavani, Sridhar; Lan, Caixia; He, Xinyao; Singh, Ravi P.

    2016-01-01

    Current trends in population growth and consumption patterns continue to increase the demand for wheat, a key cereal for global food security. Further, multiple abiotic challenges due to climate change and evolving pathogen and pests pose a major concern for increasing wheat production globally. Triticeae species comprising of primary, secondary, and tertiary gene pools represent a rich source of genetic diversity in wheat. The conventional breeding strategies of direct hybridization, backcrossing and selection have successfully introgressed a number of desirable traits associated with grain yield, adaptation to abiotic stresses, disease resistance, and bio-fortification of wheat varieties. However, it is time consuming to incorporate genes conferring tolerance/resistance to multiple stresses in a single wheat variety by conventional approaches due to limitations in screening methods and the lower probabilities of combining desirable alleles. Efforts on developing innovative breeding strategies, novel tools and utilizing genetic diversity for new genes/alleles are essential to improve productivity, reduce vulnerability to diseases and pests and enhance nutritional quality. New technologies of high-throughput phenotyping, genome sequencing and genomic selection are promising approaches to maximize progeny screening and selection to accelerate the genetic gains in breeding more productive varieties. Use of cisgenic techniques to transfer beneficial alleles and their combinations within related species also offer great promise especially to achieve durable rust resistance. PMID:27458472

  18. Aquatic Pest Control. Manual 99.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet the minimum EPA standards for certification as a commercial applicator of pesticides in the aquatic pest control category. The text discusses various water use situations; aquatic weed identification; herbicide use and effects; and aquatic insects and their control. (CS)

  19. Forest Pest Control. Bulletin 759.

    ERIC Educational Resources Information Center

    Coleman, V. Rodney

    This manual describes the major forest types, the major species, seed orchards, and tree nurseries. Methods of identifying forest insect pests and diseases are given. The most common types of insecticides, fungicides, and herbicides are described. Both sprayer and granular applicator methods are discussed. Environmental considerations are…

  20. Plant tolerance: A unique approach to control hemipteran pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through g...

  1. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker)

    PubMed Central

    Zhang, Ya-Nan; Jin, Jun-Yan; Jin, Rong; Xia, Yi-Han; Zhou, Jing-Jiang; Deng, Jian-Yu; Dong, Shuang-Lin

    2013-01-01

    Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other

  2. Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response.

    PubMed

    Binda-Rossetti, Simona; Mastore, Maristella; Protasoni, Marina; Brivio, Maurizio F

    2016-01-01

    Relationships between parasites and hosts can be drastic, depending on the balance between parasite strategies and the efficiency of the host immune response. In the case of entomopathogenic nematodes and their insect hosts, we must also consider the role of bacterial symbionts, as the interaction among them is tripartite and each component plays a critical role in death or survival. We analyzed the effects induced by the nematode-bacteria complex Steinernema carpocapsae, against red palm weevil (RPW) larvae, Rhynchophorus ferrugineus. We examined the antimicrobial response of the insect when in the presence of nematocomplexes or of its symbionts, Xenorhabdus nematophila. In detail, we investigated the potential interference of live and dead S. carpocapsae, their isolated cuticles, live or dead bacterial symbionts and their lipopolysaccharides, on the synthesis and activity of host antimicrobial peptides. Our data indicate that both live nematodes and live bacterial symbionts are able to depress the host antimicrobial response. When nematodes or symbionts were killed, they lacked inhibitory properties, as detected by the presence of antimicrobial peptides (AMPs) in the host hemolymph and by assays of antimicrobial activity. Moreover, we isolated S. carpocapsae cuticles; when cuticles were injected into hosts they revealed evasive properties because they were not immunogenic and were not recognized by the host immune system. We observed that weevil AMPs did not damage X. nematophila, and the lipopolysaccharides purified from symbionts seemed to be non-immunogenic. We believe that our data provide more information on the biology of entomopathogenic nematodes, in particular concerning their role and the activity mediated by symbionts in the relationship with insect hosts.

  3. Sustainable management of insect-resistant crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop genetically engineered to provide resistance to specific groups of insect pests have been adopted by millions of growers throughout the world. Here we document the effects of transgenic crops on pest population densities, beneficial insect densities and biological control services, insecticide ...

  4. Genomics of Insect-Soybean Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dissection of plant-insect interactions has lagged behind that of interactions between plants and other types of pests. Insect pests interact with plants in a variety of ways, ranging from piercing and sucking of phloem to consumption of leaves and other tissues. Hence, a wide range of genetic m...

  5. Information on Pests in Schools and Their Control

    EPA Pesticide Factsheets

    Pests such as insects, rodents, fungi, and weeds can affect the school environment and the people who work and learn there. These pests can cause human health problems, and structural and plant damage. Know what pests you face before deciding on control.

  6. Using new technology and insect behavior in novel terrestrial and flying insect traps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect traps are commonly used for both population sampling and insect control, the former as part of an integrated pest management (IPM) program. We developed traps for two insects, one as part of a pesticide based IPM system and the other for population control. Our IPM trap is for crawling insect...

  7. cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests.

    PubMed

    Di Gennaro, Simone; Ficca, Anna G; Panichi, Daniela; Poerio, Elia

    2005-04-01

    A cDNA encoding the proteinase inhibitor WSCI (wheat subtilisin/chymotrypsin inhibitor) was isolated by RT-PCR. Degenerate oligonucleotide primers were designed based on the amino acid sequence of WSCI and on the nucleotide sequence of the two homologous inhibitors (CI-2A and CI-2B) isolated from barley. For large-scale production, wsci cDNA was cloned into the E. coli vector pGEX-2T. The fusion protein GST-WSCI was efficiently produced in the bacterial expression system and, as the native inhibitor, was capable of inhibiting bacterial subtilisin, mammalian chymotrypsins and chymotrypsin-like activities present in crude extracts of a number of insect larvae ( Helicoverpa armigera , Plodia interpunctella and Tenebrio molitor ). The recombinant protein produced was also able to interfere with chymotrypsin-like activity isolated from immature wheat caryopses. These findings support a physiological role for this inhibitor during grain maturation.

  8. Grain sorghum hybrid resistance to insect and bird damage - 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total of 26 grain sorghum hybrids (24 commercial grain sorghum hybrids and a pair of sugarcane aphid resistant and susceptible controls) were evaluated for resistance to insect and bird damage in Tifton, Georgia. A total of 10 insect pests were observed. The insect pests in order of importance are...

  9. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae)

    PubMed Central

    Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting

    2017-01-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species. PMID:28212394

  10. Salicylic acid is required for Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci, but not for basal defense to this insect pest.

    PubMed

    Rodríguez-Álvarez, C I; López-Climent, M F; Gómez-Cadenas, A; Kaloshian, I; Nombela, G

    2015-10-01

    Plant defense to pests or pathogens involves global changes in gene expression mediated by multiple signaling pathways. A role for the salicylic acid (SA) signaling pathway in Mi-1-mediated resistance of tomato (Solanum lycopersicum) to aphids was previously identified and its implication in the resistance to root-knot nematodes is controversial, but the importance of SA in basal and Mi-1-mediated resistance of tomato to whitefly Bemisia tabaci had not been determined. SA levels were measured before and after B. tabaci infestation in susceptible and resistant Mi-1-containing tomatoes, and in plants with the NahG bacterial transgene. Tomato plants of the same genotypes were also screened with B. tabaci (MEAM1 and MED species, before known as B and Q biotypes, respectively). The SA content in all tomato genotypes transiently increased after infestation with B. tabaci albeit at variable levels. Whitefly fecundity or infestation rates on susceptible Moneymaker were not significantly affected by the expression of NahG gene, but the Mi-1-mediated resistance to B. tabaci was lost in VFN NahG plants. Results indicated that whiteflies induce both SA and jasmonic acid accumulation in tomato. However, SA has no role in basal defense of tomato against B. tabaci. In contrast, SA is an important component of the Mi-1-mediated resistance to B. tabaci in tomato.

  11. Mesoamerican origin and pre- and post-columbian expansions of the ranges of Acanthoscelides obtectus say, a cosmopolitan insect pest of the common bean.

    PubMed

    Oliveira, Márcia Rodrigues Carvalho; Corrêa, Alberto Soares; de Souza, Giselle Anselmo; Guedes, Raul Narciso Carvalho; de Oliveira, Luiz Orlando

    2013-01-01

    An unprecedented global transfer of agricultural resources followed the discovery of the New World; one consequence of this process was that staple food plants of Neotropical origin, such as the common bean (Phaseolus vulgaris), soon expanded their ranges overseas. Yet many pests and diseases were also transported. Acanthoscelides obtectus is a cosmopolitan seed predator associated with P. vulgaris. Codispersal within the host seed seems to be an important determinant of the ability of A. obtectus to expand its range over long distances. We examined the phylogeographic structure of A. obtectus by (a) sampling three mitochondrial gene sequences (12s rRNA, 16s rRNA, and the gene that encodes cytochrome c oxidase subunit I (COI)) throughout most of the species' range and (b) exploring its late evolutionary history. Our findings indicate a Mesoamerican origin for the current genealogical lineages of A. obtectus. Each of the two major centers of genetic diversity of P. vulgaris (the Andes and Mesoamerica) contains a highly differentiated lineage of the bean beetle. Brazil has two additional, closely related lineages, both of which predate the Andean lineage and have the Mesoamerican lineage as their ancestor. The cosmopolitan distribution of A. obtectus has resulted from recent expansions of the two Brazilian lineages. We present additional evidence for both pre-Columbian and post-Columbian range expansions as likely events that shaped the current distribution of A. obtectus worldwide.

  12. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae).

    PubMed

    Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua

    2017-01-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.

  13. Strategic and tactical use of movement information in pest management

    NASA Technical Reports Server (NTRS)

    Knipling, E. F.

    1979-01-01

    Several insect movement problems are discussed. Much more information is needed to make a better appraisal of the practical significance of the insect dispersal problem. Data on the time, rate, and extent of movement of insects are provided. Better techniques for measuring insect movement are developed. A better understanding of the importance of insect movement in the development and implementation of more effective and ecologically acceptable pest management strategies and tactics was proved.

  14. In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops.

    PubMed

    Martínez, Claudia P; Echeverri, Claudia; Florez, Juan C; Gaitan, Alvaro L; Góngora, Carmenza E

    2012-03-30

    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies.

  15. In vitro production of two chitinolytic proteins with an inhibiting effect on the insect coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae) and the fungus Hemileia vastatrix the most limiting pests of coffee crops

    PubMed Central

    2012-01-01

    Two genes from Streptomyces albidoflavus, one exochitinase (905-bp) and an endochitinase (1100-bp) were functionally expressed in Escherichia coli in form of a fusion protein with a maltose binding protein (MBP). The goal was to produce and test proteins that inhibit both the coffee berry borer insect Hypothenemus hampei and the coffee rust fungus Hemileia vastatrix. Both recombinant proteins MBP/exochitinase and MBP/endochitinase showed chitinolytic activity. When recombinant purified proteins were added to an artificial coffee-based diet for the coffee berry borer, MBP/exochitinase at a concentration of 0.5% W/W caused delayed growth of larvae and 100% mortality between days 8 and 15, while MBP/endochitinase caused 100% mortality at day 35. H. vastatrix urediniospores presented total cell wall degradation in their germinative tubes within 18 h of exposure to the proteins at enzyme concentrations of 5 and 6 mg ml-1, with exochitinase having the greatest effect. The dual deleterious effect of S. albidoflavus chitinases on two of the most limiting coffee pests worldwide, the coffee borer and the coffee rust, make them potential elements to be incorporated in integrated control strategies. PMID:22464210

  16. [Phagodeterrent activity of the plants Tithonia diversifolia and Montanoa hibiscifolia (Asteraceae) on adults of the pest insect Bemisia tabaci (Homoptera: Aleyrodidae)].

    PubMed

    Bagnarello, Gina; Hilje, Luko; Bagnarello, Vanessa; Cartín, Victor; Calvo, Marco

    2009-12-01

    Bemisia tabaci (Gennadius) is a polyphagous, cosmopolitan and worldwide relevant pest, mainly acting as a virus vector on many crops. A sound preventive approach to deal with it would be the application of repellent or deterrent substances hopefully present in tropical plants, which in turn may contribute to take advantage of the remarkable rich Mesoamerican biodiversity. Therefore, extracts of two wild plants belonging to family Asteraceae, titonia (Tithonia diversifolia) and "tora" (Montanoa hibiscifolia), were tested for phagodeterrence to B. tabaci adults. The crude leaf extract of each one, as well as four fractions thereof (hexane, dichlorometane, ethyl acetate, and methanol) were tested under greenhouse conditions; in addition, the extracts were submitted to a phytochemical screening to determine possible metabolites causing phagodeterrence. Both restricted-choice and unrestricted-choice experiments were conducted. In the former ones, each fraction was tested at four doses (0.1, 0.5, 1.0 and 1.5% v/v), which were compared with four control treatments: distilled water, endosulfan, an agricultural oil (Aceite Agricola 81 SC), and the emulsifier Citowett. Tomato plants were sprayed and placed inside sleeve cages, where 50 B. tabaci adults were released. The criterion to appraise phagodeterrence was the number of landed adults on plants at 48h. For the unrestricted-choice experiments, only the two highest doses (1.0 and 1.5%) of the crude extracts of each species were tested, and compared to distilled water and the agricultural oil. The titonia and "tora" crude extracts caused phagodeterrence, and for both plant species the methanol fraction stood out. Results suggest that metabolites causing phagodeterrence are several sesquiterpenic lactones, polyphenolic compounds (flavonoids and tannins) and saponins.

  17. Competitive exclusion of a worldwide invasive pest by a native. Quantifying competition between two phytophagous insects on two host plant species.

    PubMed

    Paini, Dean R; Funderburk, Joe E; Reitz, Stuart R

    2008-01-01

    1. High competitive ability is believed to be an important characteristic of invasive species. Many animal studies have compared the competitive ability of invasive species with a native species that is being displaced, but few have looked at systems where an invasive species has failed to establish itself. These types of studies are important to determine if competition is relevant not only to invading species but also to the biotic resistance of a community. 2. The thrips species F. occidentalis is a highly invasive pest that has spread from its original range (the western states of the USA) to a worldwide distribution. Despite this, F. occidentalis is largely absent or occurs in low numbers in the eastern states of the USA, where the native F. tritici dominates. It is possible that F. tritici is competitively excluding F. occidentalis from this region. 3. Larval competition between these two thrips species was tested on two known plant hosts, Capsicum annuum (a crop plant), and Raphanus raphanistrum (an invasive weed), using a response surface design with number of larvae surviving as the response variable. The response surface design allowed competition models to be fit to data using maximum likelihood estimation, thus generating quantitative values for interspecific competition. 4. On both plant hosts, the native F. tritici did not experience significant interspecific competition from the invasive F. occidentalis. In contrast, F. occidentalis did experience significant interspecific competition from F. tritici. Competition from F. tritici larvae on F. occidentalis larvae was estimated to be 1.72 times (on C. annuum) and 1.76 times (on R. raphanistrum) the effect of intraspecific competition. The invasive F. occidentalis appears to be competitively excluded by the native F. tritici. 5. This study confirms the importance of competition in the biotic resistance of a community and is one of the few animal studies to not only test for competition in an apparently

  18. Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest.

    PubMed

    Silva, Farley W S; Elliot, Simon L

    2016-04-27

    pest, velvetbean caterpillar may increase its damage on soybean fields under a scenario of global warming as caterpillars may reach the developmental resistance faster, and thus decrease their susceptibility to biological control by AgMNPV.

  19. Integrated Insect Control May Alter Pesticide Use Pattern

    ERIC Educational Resources Information Center

    Worthy, Ward

    1973-01-01

    Discusses the use of predators, parasites, bacteria, viruses, hormones, pheromones, and sterile-male release and insect-resistance imparting techniques in pest control. Concludes with comments from chemical pesticide companies as popular attitudes toward the integrated pest management. (CC)

  20. Purification and characterization of a trypsin-papain inhibitor from Pithecelobium dumosum seeds and its in vitro effects towards digestive enzymes from insect pests.

    PubMed

    Oliveira, Adeliana S; Migliolo, Ludovico; Aquino, Rodrigo O; Ribeiro, Jannison K C; Macedo, Leonardo L P; Andrade, Lucia B S; Bemquerer, Marcelo P; Santos, Elizeu A; Kiyota, Sumika; de Sales, Maurício P

    2007-01-01

    A novel trypsin-papain inhibitor, named PdKI-2, was purified from the seeds of Pithecelobium dumosum seeds by TCA precipitation, Trypsin-Sepharose chromatography and reversed-phase HPLC. PdKI-2 had an M(r) of 18.1 kDa as determined by SDS-PAGE and was composed of a single polypeptide chain. The inhibition on trypsin was stable at pH range 2-10, temperature of 50 degrees C and had a K(i) value of 1.65 x 10(-8)M, with a competitive inhibition mechanism. PdKI-2 was also active to papain, a cysteine proteinase, and showed a noncompetitive inhibition mechanism and K(i) value of 5.1 x 10(-7)M. PdKI-2 was effective against digestive proteinase from bruchids Zabrotes subfasciatus and Callosobruchus maculatus; Dipteran Ceratitis capitata; Lepidopterans Plodia interpunctella and Alabama argillacea, with 74.5%, 70.0%, 70.3%, 48.7%, and 13.6% inhibition, respectively. Results support that PdKI-2 is a member of Kunitz-inhibitor family and its effect on digestive enzyme larvae from diverse orders indicated this protein as a potent insect antifeedant.

  1. 77 FR 41366 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Genetically Engineered for Insect Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION..., an insect pest of corn. The petition has been submitted in accordance with our regulations concerning... resistance to corn rootworm, an insect pest of corn. The petition states that this corn is unlikely to pose...

  2. Integrating augmentative biocontrol and inherited sterility for management of lepidopteran pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pest management can benefit from the integration of biological control agents and the release of sterile insect pests (hosts). Released sterile or semi-sterile insects and their sterile progeny may augment natural enemies by serving as hosts for build-up of the natural enemies prior to the t...

  3. Biological pest control in Mexico.

    PubMed

    Williams, Trevor; Arredondo-Bernal, Hugo C; Rodríguez-del-Bosque, Luis A

    2013-01-01

    Mexico is a megadiverse country that forms part of the Mesoamerican biological corridor that connects North and South America. Mexico's biogeographical situation places it at risk from invasive exotic insect pests that enter from the United States, Central America, or the Caribbean. In this review we analyze the factors that contributed to some highly successful past programs involving classical biological control and/or the sterile insect technique (SIT). The present situation is then examined with reference to biological control, including SIT programs, targeted at seven major pests, with varying degrees of success. Finally, we analyze the current threats facing Mexico's agriculture industry from invasive pests that have recently entered the country or are about to do so. We conclude that despite a number of shortcomings, Mexico is better set to develop biological control-based pest control programs, particularly on an area-wide basis, than many other Latin American countries are. Classical and augmentative biological control and SIT-based programs are likely to provide effective and sustainable options for control of native and exotic pests, particularly when integrated into technology packages that meet farmers' needs across the great diversity of production systems in Mexico.

  4. Dispersal of forest insects

    NASA Technical Reports Server (NTRS)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  5. People and Insects.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides: (1) background information on how insects affect human lives, both positively and negatively, and on integrated pest management strategies; (2) student activities; and (3) materials (ready-to-copy games, puzzles, coloring pages, worksheets, and/or mazes). Each activity includes an objective, recommended age level(s), subject area(s),…

  6. Airborne multispectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and engineers in areawide pest management programs have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with global positioning systems, geographic information system...

  7. IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2005-03-01

    For years the pest Management Professional has relied on visual and manual inspections to locate insect pest infestations. As building materials have improved, the ability to locate pest problems has become more difficult since building materials are often able to mask the existence of pest infestation. Additionally, these improved building materials have contributed to the pest problem by providing a convenient food and nesting source. Within the past five years, the Pest Management Industry has become aware that IR thermography can aid in the detection of pest infestation by detecting evidence of latent moisture within structures. This paper discusses the use of thermal imaging to detect thermal patterns associated with insect infestation, verification of data and special challenges associated with the inspection process.

  8. Emerging insect problems in peach: A new look at root-feeding weevils and the lesser peachtree borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the fruit-attacking plum curculio remains the primary pest of peach production across the Southeastern Unites States, other insect pests that attack the peach tree can inflict serious economic losses. Some of these other pests, such as scale insects and the peachtree borer, are common pest...

  9. The use and manipulation of insect reproductive molecules for controlling insect populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use and manipulation of insect reproductive molecules, and the genes that encode them, provides a variety of methods to control insect fertility and thus a means of population control for insect pests. Towards this end, we first studied the yolk polypeptide gene from the caribfly, Anastrepha su...

  10. RNAi: future in insect management.

    PubMed

    Burand, John P; Hunter, Wayne B

    2013-03-01

    RNA interference is a post- transcriptional, gene regulation mechanism found in virtually all plants and animals including insects. The demonstration of RNAi in insects and its successful use as a tool in the study of functional genomics opened the door to the development of a variety of novel, environmentally sound approaches for insect pest management. Here the current understanding of the biogenesis of the two RNAi classes in insects is reviewed. These are microRNAs (miRNAs) and short interfering RNAs (siRNAs). Several other key approaches in RNAi -based for insect control, as well as for the prevention of diseases in insects are also reviewed. The problems and prospects for the future use of RNAi in insects are presented.

  11. Lawn and Turf Pest Control: A Guide for Commercial Applicators.

    ERIC Educational Resources Information Center

    Khan, M. S.

    This manual is designed for use in training commercial pesticide applicators. It gives identification and control information for common lawn and turf diseases, insects, nematodes, weeds, and vertebrate pests. It also discusses phytotoxicity, environmental concerns, and application methods. (BB)

  12. Insect pests and diseases in bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Louisiana sugarcane, Saccharum spp., and other grassy crops (e.g., grain sorghum, Sorghum bicolor (L.) Moench, and hybrids involving sugarcane; sorghum; sudangrass, Sorghum bicolor ssp. drummondii (Nees ex Steud.) de Wet and Harlan, and others) with potential for bioenergy production are susceptible...

  13. Roles of insect midgut cadherin in Bt intoxication and resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetically engineered crops producing Bacillus thuringiensis (Bt) proteins for insect control target major insect pests. Bt crops have improved yield and reduced risks associated with conventional insecticides; however, the evolution of resistance to Bt toxins by target pests threatens the long-ter...

  14. Behavior, biology and ecology of stored fruit and nut insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tree nuts and dried fruits vary widely in their quality as hosts for insect pests, but stored product pests can cause economic loss even in commodities that are generally poor hosts. Economic damage can be due to commodity consumed, but the very presence of insect body parts, frass, or webbing can c...

  15. New developments in bait stations for control of pest Tephritids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bait stations are being developed and tested as alternatives to broadcast pesticide application for control of a number of pest insects. This is an attract-and-kill pest management approach. With the development of female-targeted food-based synthetic attractants for tephritid fruit flies, a numbe...

  16. Study on Integrated Pest Management for Libraries and Archives.

    ERIC Educational Resources Information Center

    Parker, Thomas A.

    This study addresses the problems caused by the major insect and rodent pests and molds and mildews in libraries and archives; the damage they do to collections; and techniques for their prevention and control. Guidelines are also provided for the development and initiation of an Integrated Pest Management program for facilities housing library…

  17. RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...

  18. Avocado pests in Florida: Not what you expected

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avocado, Persea americana Mill., is Florida's second most important fruit crop after citrus. Until recently, the complex of spider mite and insect pests that affected avocado in south Florida was under a 20 year Integrated Pest Management (IPM) program. The recent invasion of avocado orchards by a...

  19. Optimizing pyramided transgenic Bt crops for sustainable pest management.

    PubMed

    Carrière, Yves; Crickmore, Neil; Tabashnik, Bruce E

    2015-02-01

    Transgenic crop pyramids producing two or more Bacillus thuringiensis (Bt) toxins that kill the same insect pest have been widely used to delay evolution of pest resistance. To assess the potential of pyramids to achieve this goal, we analyze data from 38 studies that report effects of ten Bt toxins used in transgenic crops against 15 insect pests. We find that compared with optimal low levels of insect survival, survival on currently used pyramids is often higher for both susceptible insects and insects resistant to one of the toxins in the pyramid. Furthermore, we find that cross-resistance and antagonism between toxins used in pyramids are common, and that these problems are associated with the similarity of the amino acid sequences of domains II and III of the toxins, respectively. This analysis should assist in future pyramid design and the development of sustainable resistance management strategies.

  20. Insect Eradication and Containment of Invasive Alien Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect eradication programs are nearly always targeted at recently arrived invasive species with significant pest potential. They attempt to contain a pest to a defined area and then completely eliminate the pest from that area. From a Federal regulatory standpoint, eradication programs are undert...

  1. Personal Insect Repellents and Minimum Risk Pesticides

    EPA Pesticide Factsheets

    An exempt pesticide product may not bear claims to control rodent, insect or microbial pests in a way that links the pests with specific disease. We are considering a proposal to remove personal mosquito and tick repellents from the minimum risk exemption.

  2. Using entomopathogenic nematodes for crop insect control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper is to provide an overview on using entomopathogenic nematodes for insect pest control. Entomopathogenic nematodes (genera Steinernema and Heterorhabditis), are be used as natural biopesticides. Unlike plant parasitic nematodes, which can be serious crop pests, entomopat...

  3. Towards integrated pest management in red clover seed production.

    PubMed

    Lundin, Ola; Rundlöf, Maj; Smith, Henrik G; Bommarco, Riccardo

    2012-10-01

    The development of integrated pest management is hampered by lack of information on how insect pest abundances relate to yield losses, and how pests are affected by control measures. In this study, we develop integrated pest management tactics for Apion spp. weevils (Coleoptera: Brentidae) in seed production of red clover, Trifolium pratense L. We tested a method to forecast pest damage, quantified the relationship between pest abundance and yield, and evaluated chemical and biological pest control in 29 Swedish red clover fields in 2008 and 2011. Pest inflorescence abundance, which had a highly negative effect on yield, could be predicted with pan trap catches of adult pests. In 2008, chemical control with typically one application of pyrethroids was ineffective both in decreasing pest abundances and in increasing yields. In 2011, when chemical control included applications of the neonicotinoid thiacloprid, pest abundances decreased and yields increased considerably in treated field zones. A post hoc analysis indicated that using pyrethroids in addition to thiacloprid was largely redundant. Infestation rates by parasitoids was higher and reached average levels of around 40% in insecticide treated field zones in 2011, which is a level of interest for biological pest control. Based on the data presented, an economic threshold for chemical control is developed, and guidelines are provided on minimum effective chemical pest control.

  4. Demonstrating Integrated Pest Management of Hot Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  5. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  6. Leafhopper and psyllid pests of potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafhoppers and psyllids are important pests of potato worldwide. These insects cause damage to potato by direct feeding or by acting as vectors of potato pathogens. Economically important leafhoppers that attack potato include Empoasca fabae, Macrosteles fascifrons, and Circulifer tenellus. E. faba...

  7. 1976 Commercial Vegetable Pest Control Guide.

    ERIC Educational Resources Information Center

    MacNab, A. A.; And Others

    This guide contains pest control information for commercial vegetable production. It was prepared for agricultural supply dealers, extension agents, fieldmen, and growers. It gives general precautions, information on seed treatment, growing disease-free seedlings and transplants, general soil insect control, general weed control, and spraying…

  8. Pest management update on sunflower midge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sunflower midge (Contarinia schulzi) is a serious insect pest of sunflower, causing bud and head deformation that lead to poor seed development, and in many cases no seed development. This presentation describes the life cycle of the sunflower midge and shows images of infested sunflower heads. ...

  9. Redirect research to control coffee pest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred years ago, one of the most significant biological invasions of an agricultural insect pest in the Americas was initiated. Endemic to Africa, the coffee berry borer (Hypothenemus hampei; Coleoptera: Curculionidae) was accidentally introduced to Brazil in 1913 and years later invaded coff...

  10. Interactive effects of pests increase seed yield.

    PubMed

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  11. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  12. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Vegetable Pests.

    ERIC Educational Resources Information Center

    Cress, D.; And Others

    This manual is intended to assist pesticide applicators in vegetable crops prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on vegetable pest control. The three sections presented describe: (1) Insect pests of vegetable crops; (2) Weed pests of vegetable crops; and (3) Causes of…

  13. Driving pest populations: Agricultural chemicals lead to an adaptive syndrome in Nilaparvata lugens Stal (Hemiptera: Delphacidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some of the effects of contemporary climate change and agricultural practices include increased pest ranges and thermotolerances and phonological mismatches between pest insects and their natural enemies. The brown planthopper (BPH) Nilaparvata lugens Stål (Hemiptera: Delphacidae) is a serious pest ...

  14. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Home, Institutional, and Structural Pest Control.

    ERIC Educational Resources Information Center

    Extension Service (USDA), Washington, DC.

    This manual is designed to assist pest control operators to prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on home, institutional, and structural pest control. The ten sections included describe: (1) Insect control; (2) Rodent control; (3) Special situation pest control; (4)…

  15. Nuke 'Em! Library Pest Control Using a Microwave.

    ERIC Educational Resources Information Center

    Brezner, Jerome; Luner, Philip

    1989-01-01

    Discusses the threats to books and periodicals posed by such insects as book lice, termites, cockroaches, silverfish, firebrats, and beetles; reviews past methods of pest control; and describes a technique for insect control using microwaves. The results of tests of microwave effects on publications are reported, necessary precautions are…

  16. Biocontrol: The Potential of Entomophilic Nematodes in Insect Management

    PubMed Central

    Webster, John M.

    1980-01-01

    A review of the development of entomophilic nematology and a commentary on the potential of entomophilic nematodes in controlling insect pests. The paper considers some of the major contributions to our knowledge of entomophilic nematology; factors involved in insect pest management and how they are applicable to the use of nematodes; nematodes which are most promising as biological control agents; and problems to be solved to facilitate the use of entomophilic nematodes in insect management. PMID:19300702

  17. Scope and Basic Principles of Insect Pathology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insects are the dominant animals in the world with more than one million described species. The vast majority of insects are innocuous or beneficial to humans, but a small percentage are pests that require a significant amount of our time, effort and funds to reduce their negative effects on food pr...

  18. Agricultural applications of insect ecological genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural entomology is poised to benefit from the application of ecological genomics, in particular the fields of biofuels generation and pest insect control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and other insects, and transcriptomic approa...

  19. Agricultural applications of insect ecological genomics.

    PubMed

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.

  20. The role of allelopathy in agricultural pest management.

    PubMed

    Farooq, Muhammad; Jabran, Khawar; Cheema, Zahid A; Wahid, Abdul; Siddique, Kadambot H M

    2011-05-01

    Allelopathy is a naturally occurring ecological phenomenon of interference among organisms that may be employed for managing weeds, insect pests and diseases in field crops. In field crops, allelopathy can be used following rotation, using cover crops, mulching and plant extracts for natural pest management. Application of allelopathic plant extracts can effectively control weeds and insect pests. However, mixtures of allelopathic water extracts are more effective than the application of single-plant extract in this regard. Combined application of allelopathic extract and reduced herbicide dose (up to half the standard dose) give as much weed control as the standard herbicide dose in several field crops. Lower doses of herbicides may help to reduce the development of herbicide resistance in weed ecotypes. Allelopathy thus offers an attractive environmentally friendly alternative to pesticides in agricultural pest management. In this review, application of allelopathy for natural pest management, particularly in small-farm intensive agricultural systems, is discussed.

  1. Prospects for managing turfgrass pests with reduced chemical inputs.

    PubMed

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings.

  2. Grain sorghum hybrid resistance to insect and bird damage-2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty seven grain sorghum hybrids were evaluated for resistance to insect and bird damage in 2014 in Tifton, and a total of 10 insect pests were observed. While sorghum midge and bird damage was relatively low, sorghum webworm and aphid damage was high. Those insects in order of importance are: sug...

  3. Plant Tolerance: A Unique Approach to Control Hemipteran Pests

    PubMed Central

    Koch, Kyle G.; Chapman, Kaitlin; Louis, Joe; Heng-Moss, Tiffany; Sarath, Gautam

    2016-01-01

    Plant tolerance to insect pests has been indicated to be a unique category of resistance, however, very little information is available on the mechanism of tolerance against insect pests. Tolerance is distinctive in terms of the plant’s ability to withstand or recover from herbivore injury through growth and compensatory physiological processes. Because plant tolerance involves plant compensatory characteristics, the plant is able to harbor large numbers of herbivores without interfering with the insect pest’s physiology or behavior. Some studies have observed that tolerant plants can compensate photosynthetically by avoiding feedback inhibition and impaired electron flow through photosystem II that occurs as a result of insect feeding. Similarly, the up-regulation of peroxidases and other oxidative enzymes during insect feeding, in conjunction with elevated levels of phytohormones can play an important role in providing plant tolerance to insect pests. Hemipteran insects comprise some of the most economically important plant pests (e.g., aphids, whiteflies), due to their ability to achieve high population growth and their potential to transmit plant viruses. In this review, results from studies on plant tolerance to hemipterans are summarized, and potential models to understand tolerance are presented. PMID:27679643

  4. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    PubMed Central

    Douglas, Angela E.

    2015-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests. PMID:25341109

  5. Multiorganismal insects: diversity and function of resident microorganisms.

    PubMed

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  6. Global warming presents new challenges for maize pest management

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  7. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  8. 76 FR 37770 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Engineered for Insect Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... MON 87701, which has been genetically engineered for insect resistance. The petition has been... genetically engineered for insect resistance, stating that this soybean is unlikely to pose a plant pest...

  9. Y-Linked markers for improved population control of the tephritid fruit fly pest, Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pest control programs incorporating the sterile insect technique (SIT) rely on the mass production and release of sterilized insects to reduce the wild-type population through infertile matings. Most effective programs release only males to avoid any crop damage caused by female fruit flies o...

  10. A novel mechanism of insect resistance engineered into tobacco

    NASA Astrophysics Data System (ADS)

    Hilder, Vaughan A.; Gatehouse, Angharad M. R.; Sheerman, Suzanne E.; Barker, Richard F.; Boulter, Donald

    1987-11-01

    A major goal of plant genetic engineering is the introduction of agronomically desirable phenotypic traits into crop plants in situations where conventional breeding methods have been unsuccessful. One such target is enhanced resistance to insect pests which, in view of the estimated production losses world-wide and the heavy costs of protective treatments, is very important. We report here that a gene encoding a cowpea trypsin inhibitor, which has been shown to give some measure of field resistance to insect pests1, confers, when transferred to tobacco, enhanced resistance to this species' own herbivorous insect pests.

  11. Alternatives to neonicotinoid insecticides for pest control: case studies in agriculture and forestry.

    PubMed

    Furlan, Lorenzo; Kreutzweiser, David

    2015-01-01

    Neonicotinoid insecticides are widely used for control of insect pests around the world and are especially pervasive in agricultural pest management. There is a growing body of evidence indicating that the broad-scale and prophylactic uses of neonicotinoids pose serious risks of harm to beneficial organisms and their ecological function. This provides the impetus for exploring alternatives to neonicotinoid insecticides for controlling insect pests. We draw from examples of alternative pest control options in Italian maize production and Canadian forestry to illustrate the principles of applying alternatives to neonicotinoids under an integrated pest management (IPM) strategy. An IPM approach considers all relevant and available information to make informed management decisions, providing pest control options based on actual need. We explore the benefits and challenges of several options for management of three insect pests in maize crops and an invasive insect pest in forests, including diversifying crop rotations, altering the timing of planting, tillage and irrigation, using less sensitive crops in infested areas, applying biological control agents, and turning to alternative reduced risk insecticides. Continued research into alternatives is warranted, but equally pressing is the need for information transfer and training for farmers and pest managers and the need for policies and regulations to encourage the adoption of IPM strategies and their alternative pest control options.

  12. 40 CFR 180.1101 - Parasitic (parasitoid) and predatory insects; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with good agricultural and pest control practices to control insect pests of stored raw whole grains such as corn, small grains, rice, soybeans, peanuts, and other legumes either bulk or warehoused...

  13. Newly discovered insect RNA viruses in China.

    PubMed

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  14. Managing social insects of urban importance.

    PubMed

    Rust, Michael K; Su, Nan-Yao

    2012-01-01

    Social insects have a tremendous economic and social impact on urban communities. The rapid urbanization of the world has dramatically increased the incidence of urban pests. Human commerce has resulted in the spread of urban invasive species worldwide such that various species are now common to many major urban centers. We aim to highlight those social behaviors that can be exploited to control these pests with the minimal use of pesticides. Their cryptic behavior often prohibits the direct treatment of colonies. However, foraging and recruitment are essential aspects of their social behavior and expose workers to traps, baits, and pesticide applications. The advent of new chemistries has revolutionized the pest management strategies used to control them. In recent years, there has been an increased environmental awareness, especially in the urban community. Advances in molecular and microbial agents promise additional tools in developing integrated pest management programs against social insects.

  15. Short-range movement of major agricultural pests

    NASA Technical Reports Server (NTRS)

    Vansteenwyk, R.

    1979-01-01

    Visual observations of population fluctuations which cannot be accounted for by either mortality or natality are presented. Lygus bugs in the westside of the San Joaquin Valley of California are used as an example. The dispersal of most agricultural pests in one of the less known facets of their biology is discussed. Results indicate a better understanding of insect movement is needed to develop a sound pest management program.

  16. Area-wide control of insects with screwworm as an example

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screwworms, Cochliomyia hominivorax (Coquerel), are devastating pests of warm blooded animals. They have been eradicated from continental North America using the sterile insect technique (SIT). Proper implementation of SIT is an example of the requirements of area-wide control of insect pests. Area-...

  17. Automated pattern analysis: A newsilent partner in insect acoustic detection studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This seminar reviews methods that have been developed for automated analysis of field-collected sounds used to estimate pest populations and guide insect pest management decisions. Several examples are presented of successful usage of acoustic technology to map insect distributions in field environ...

  18. Hemipteran and dipteran pests: Effectors and plant host immune regulators.

    PubMed

    Kaloshian, Isgouhi; Walling, Linda L

    2016-04-01

    Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.

  19. Insects of the Luquillo Mountains, Puerto Rico. Forest Service general technical report

    SciTech Connect

    Torres, J.A.

    1994-07-01

    In this review of the literature on forest entomology in Puerto Rico, emphasis is given to research conducted in the Luquillo Experimental Forest (LEF). This review should serve as an introduction to the insects inhabiting the LEF for researchers and as a guide for the identification of possible insect pests. There are three sections to this review. The first deals with basic insect ecology; the second, forest insect pests; and the third, insect attacks on dry wood and during wood seasoning. The reference section and appendices contain information on the systematics and taxonomy of different insect orders found in Puerto Rico.

  20. Recombinant fungal entomopathogen RNAi target insect gene.

    PubMed

    Hu, Qiongbo; Wu, Wei

    2016-11-01

    RNA interference (RNAi) technology is considered as an alternative for control of pests. However, RNAi has not been used in field conditions yet, since delivering exogenous ds/siRNA to target pests is very difficult. The laboratory methods of introducing the ds/siRNA into insects through feeding, micro feeding / dripping and injecting cannot be used in fields. Transgenic crop is perhaps the most effective application of RNAi for pest control, but it needs long-time basic researches in order to reduce the cost and evaluate the safety. Therefore, transgenic microbe is maybe a better choice. Entomopathogenic fungi generally invade the host insects through cuticle like chemical insecticides contact insect to control sucking sap pests. Isaria fumosorosea is a common fungal entomopathogen in whitefly, Bemisia tabaci. We constructed a recombinant strain of I. fumosorosea expressing specific dsRNA of whitefly's TLR7 gene. It could silence the TLR7 gene and improve the virulence against whitefly. Transgenic fungal entomopathogen has shown great potential to attain the application of RNAi technology for pests control in fields. In the future, the research interests should be focused on the selection of susceptible target pests and their vital genes, and optimizing the methods for screening genes and recombinants as well.

  1. Microbial control of arthropod pests of tropical tree fruits.

    PubMed

    Dolinski, Claudia; Lacey, Lawrence A

    2007-01-01

    A multitude of insects and mites attack fruit crops throughout the tropics. The traditional method for controlling most of these pests is the application of chemical pesticides. Growing concern on the negative environmental effects has encouraged the development of alternatives. Inundatively and inoculatively applied microbial control agents (virus, bacteria, fungi, and entomopathogenic nematodes) have been developed as alternative control methods of a wide variety of arthropods including tropical fruit pests. The majority of the research and applications in tropical fruit agroecosystems has been conducted in citrus, banana, coconut, and mango. Successful microbial control initiatives of citrus pests and mites have been reported. Microbial control of arthropod pests of banana includes banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae) (with EPNs and fungi) among others Oryctes rhinoceros (L.) is one of the most important pests of coconut and one of the most successful uses of non-occluded virus for classical biological control. Key pests of mango that have been controlled with microbial control agents include fruit flies (Diptera: Tephritidae) (with EPNs and fungi), and other pests. Also successful is the microbial control of arthropod pests of guava, papaya and pineapple. The challenge towards a broader application of entomopathogens is the development of successful combinations of entomopathogens, predators, and parasitoids along with other interventions to produce effective and sustainable pest management.

  2. Ornamental and Shade Tree Pest Control: A Guide for Commercial Applicators.

    ERIC Educational Resources Information Center

    Khan, M. S.

    This is a training manual for commercial pesticide applicators. It gives information for identification and control of diseases, insects, mites, weeds, and vertebrate pests of shade and ornamental trees. Phytotoxicity, environmental concerns, and pesticide application information is also given. (BB)

  3. Airborne multi-spectral remote sensing with ground truth for areawide pest management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  4. Use of Airborne Multi-Spectral Imagery in Pest Management Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists and researchers have been developing, integrating, and evaluating multiple strategies and technologies into a systems approach for management of field crop insect pests. Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology are...

  5. Flight synchrony among the major moth pests of cranberries in the Upper Midwest, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cranberry fruitworm (Acrobasis vaccinii), Sparganothis fruitworm (Sparganothis sulfureana), and black-headed fireworm (Rhopobota naevana) are major insect pests of the American cranberry (Vaccinium macrocarpon) in Wisconsin. While much is known of their natural histories, relatively little has b...

  6. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.

  7. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  8. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    PubMed Central

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies. PMID:26466733

  9. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    PubMed

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  10. Integrated pest management of the banded sunflower moth in cultivated sunflower in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a key insect pest of cultivated sunflowers in North Dakota. We investigated pest management strategies to reduce feeding injury caused by the banded sunflower moth in commercial oilseed and confection sunflower fields l...

  11. Safe, Effective Use of Pesticides, A Manual for Commercial Applicators: Fruit Pest Control.

    ERIC Educational Resources Information Center

    Brunner, J.; And Others

    This manual is intended to assist pesticide applicators prepare for certification under the Michigan Pesticide Control Act of 1976. The primary focus of this publication is on fruit pest control. Sections included are: (1) Causes of fruit diseases; (2) Fruit fungicides and bactericides; (3) Insect and mite pests; (4) Insecticides and miticides;…

  12. Pesticide Applicator Certification Training, Manual No. 1a: Agricultural Pest Control. a. Plant.

    ERIC Educational Resources Information Center

    Allen, W. A.; And Others

    This manual provides information needed to meet the minimum standards for certification as an applicator of pesticides in the agricultural plant pest control category. Adapted for the State of Virginia, the text discusses: (1) the basics of insecticides; (2) insect pests; (3) selection and calibration of applicator equipment; and (4) the proper…

  13. Pheromone-based pest management in china: past, present and future prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiochemical-based pest management technology has been widely used to monitor and control insect pests in agricultural, forestry, and public health sectors in the western world. It became a popular tool in the early 1970s with tremendous efforts in developing environment-friendly control technologi...

  14. Population Dynamics of the Wheat Pest, Hessian fly, in the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hessian fly, Mayetiola destructor (Say), is a wheat crop pest in the United States creating millions of dollars of crop losses each year. The primary means of controlling this insect pest is through the use of resistant cultivars. Over the years, this practice has led to Hessian flies containing g...

  15. Prospects for repellent in pest control: current developments and future challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overall interest for environmentally safe pest control methods and the increased frequency of insecticide resistance in pest populations have stimulated research on insect repellents in the recent decades in medical and agricultural entomology. However, there remains a great deal of work to be ...

  16. Recent developments and applications of bait stations for integrated pest management of tephritid fruit flies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attract-and-kill approach involves the behavioral manipulation of pest insects through the integration of long-distance olfactory/visual stimuli to attract a particular pest and a killing agent and/or a collection device. Bait stations, an element of an attract-and-kill system, can be defined as...

  17. Potential applications of insect symbionts in biotechnology.

    PubMed

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  18. Towards the elements of successful insect RNAi.

    PubMed

    Scott, Jeffrey G; Michel, Kristin; Bartholomay, Lyric C; Siegfried, Blair D; Hunter, Wayne B; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E

    2013-12-01

    RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases.

  19. Insect Allergy.

    PubMed

    Lee, Hobart; Halverson, Sara; Mackey, Regina

    2016-09-01

    Insect bites and stings are common. Risk factors are mostly associated with environmental exposure. Most insect bites and stings result in mild, local, allergic reactions. Large local reactions and systemic reactions like anaphylaxis are possible. Common insects that bite or sting include mosquitoes, ticks, flies, fleas, biting midges, bees, and wasps. The diagnosis is made clinically. Identification of the insect should occur when possible. Management is usually supportive. For anaphylaxis, patients should be given epinephrine and transported to the emergency department for further evaluation. Venom immunotherapy (VIT) has several different protocols. VIT is highly effective in reducing systemic reactions and anaphylaxis.

  20. The insect immune protein scolexin is a novel serine proteinase homolog.

    PubMed Central

    Finnerty, C. M.; Karplus, P. A.; Granados, R. R.

    1999-01-01

    Scolexin is a coagulation-provoking plasma protein induced in response to bacterial or viral infection of larval Manduca sexta, a large lepidopterous insect. Here we report the isolation and sequencing of two cDNA clones that code for scolexin isoforms sharing 80% sequence identity. The scolexin sequences have low but recognizable sequence similarity to members of the chymotrypsin family and represent a new subfamily of chymotrypsin-like serine proteinases. Comparison with known structures reveals the conservation of key catalytic residues and a possible specificity for small nonpolar residues. Most remarkable is the absence of a canonical activation peptide cleavage site. This suggests that the regulation of scolexin activity will involve a novel activation mechanism. PMID:10210202

  1. A Pest of Importance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato cyst nematodes (PCN), G. rostochiensis and G. pallida, are internationally-recognized quarantine pests and considered the most devastating pests of potatoes worldwide. PCNs continue to spread throughout North America and were recently detected in Idaho (G. pallida) and Quebec and Alberta, Can...

  2. Structural Pest Control.

    ERIC Educational Resources Information Center

    Kahn, M. S.; Hoffman, W. M.

    This manual is designed for those who seek certification as pesticide applicators for industrial, institutional, structural, and health-related pest control. It is divided into six sections covering general pest control, wood-destroying organisms, bird control, fumigation, rodent control, and industrial weed control. The manual gives information…

  3. Integrated Pest Management.

    ERIC Educational Resources Information Center

    Council on Environmental Quality, Washington, DC.

    After a brief discussion of the problems of pesticide use and the status of current pest control practices, a definition of integrated pest management is given along with some examples of its successful application, and a description of some of the reasons why the concept has not been applied more widely. The major techniques which can be used as…

  4. Towards the elements of successful insect Ribonucleic acid interference (RNAi)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...

  5. Intraplant communication in maize contributes to defense against insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vasculature of plants act as a channel for transport of signal(s) that facilitate long-distance intraplant communication. In maize, Maize insect resistance1-Cysteine Protease (Mir1-CP), which has homology to papain-like proteases, provides defense to different feeding guilds of insect pests. Fur...

  6. Radio frequency treatments for insect disinfestation of dried legumes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried pulses (chickpeas, green peas or lentils) are valuable export commodities in the US Pacific Northwest. A major problem in the marketing of these products is infestation by insect pests. Typically, chemical fumigants are used to disinfest product, but regulatory issues, insect resistance, envi...

  7. Determining host suitability of pecan for stored-product insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A no-choice test was performed to determine survival and reproductive capacity of stored-product insect pests on pecan, Carya illinoensis (Wangenheim) Koch. Insects used were Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae); sawtoothed grain beetle, Oryzaephilus surinamensis...

  8. A computer model of insect traps in a landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attractant-based trap networks are important elements of invasive insect detection, pest control, and basic research programs. We present a landscape-level spatially explicit model of trap networks that incorporates variable attractiveness of traps and a movement model for insect dispersion. We desc...

  9. Suppressing Resistance to Bt Cotton with Sterile Insect Releases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants producing insecticidal proteins from Bacillus thuringiensis (Bt) are grown widely to control pests, but evolution of insect resistance can reduce their efficacy. The predominant strategy for delaying insect resistance to Bt crops requires refuges of non-Bt host plants to provide s...

  10. Applicator Training Manual for: Agricultural Animal Pest Control.

    ERIC Educational Resources Information Center

    Christensen, Christian M.

    This manual discusses pesticide safety and environmental considerations, pesticide toxicity, residue potential, pesticide formulations, and application techniques. In addition, descriptions of, and methods for controlling insects and related pests that attack cattle, sheep and goats, swine, horses and other equines, and poultry are given. These…

  11. Forest Pest Control and Timber Treatment Category Manual.

    ERIC Educational Resources Information Center

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. The document is a compilation of pamphlets and circulars which discuss forest management, control of undesirable woody plants, herbicides in forestry, diseases and insect pests, and equipment for pesticide application. (CS)

  12. Ornamental and Turfgrass Pest Control. Sale Publication 4074.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information for recognition and control of ornamental and turf pests. Included are disease agents, insects and mites, weeds, and vertebrates. Symptoms and causes of phytotoxicity are given, and a discussion is presented of environmental concerns. Application methods and area measurement are also discussed. (BB)

  13. Compendium of Wheat Diseases and Pests, Third Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Compendium of Wheat Diseases and Pests, Third Edition, is a practical guidebook for the identification and management of over 150 important diseases, insects, and other disorders of wheat. Over 70 expert authors contributed diagnostic photographs and authoritative chapters to this edition. For e...

  14. Nitric oxide as a potent fumigant for postharvest pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a great demand for safe and effective alternative fumigants to replace methyl bromide and other toxic fumigants for pest control. Nitric oxide, a common signal molecule in biological systems, was found to be effective and safe to control insects under ultralow oxygen conditions. Fumigatio...

  15. Opportunity to use native nematodes for pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have surveyed wild cranberry bogs in WI and found three isolates of native nematodes. We have been testing these nematodes as potential biological control agents in for cranberry insect pests including sparganothis fruitworm and flea beetle. The nematodes seem to be effective at finding and killi...

  16. Mendel’s legacy lives through management of sugarcane pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomology and classical Mendelian genetics have had a long association and Mendel’s legacy continues to live through sugarcane pests. In this paper, we discuss examples of that legacy as applied to conventional and molecular approaches to breeding for insect resistance. We also discuss the applicat...

  17. Insect Keepers

    ERIC Educational Resources Information Center

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  18. Survival of Seasonal Flooding in the Amazon by the Terrestrial Insect Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae), a Pest of the Camu-Camu Plant, Myrciaria dubia (Myrtaceae).

    PubMed

    Delgado, C; Couturier, G; Fine, P V A

    2014-08-01

    The weevil Conotrachelus dubiae O'Brien & Couturier (Coleoptera: Curculionidae) is a pest of an economically important Amazonian fruit tree Myrciaria dubia (Myrtaceae). This tree grows in seasonally flooded environments, and how weevil larvae survive flooding has not been studied. From December 2004 to May 2009, five experiments were conducted in natural conditions and in the laboratory, with the aim of understanding the mechanisms that allow the survival of C. dubiae larvae in seasonal floods in Amazonia. The larvae of C. dubiae were kept under water for over 93 days. Older instars exposed to periodic circulation of water survived better than younger instars in addition to all larvae that were kept continuously under uncirculated water. Individuals that were collected from plots of M. dubia located in flooded soils and non-flooded soils did not exhibit statistically significant differences in their levels of survival indicating that the variation in survival of flooding events is due to phenotypic plasticity of the species and not to local adaptation by the populations in different environments. We speculate that larvae can survive floods without major physiological changes as larvae appear to obtain oxygen from water by cutaneous diffusion, assisted by caudal movements.

  19. Insect phylogenomics.

    PubMed

    Behura, S K

    2015-08-01

    Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study the evolution and systematics of species. Recently, several studies employing phylogenomic tools have provided better insights into insect evolution. Next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phy-logenomic investigations help us to better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators and disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution.

  20. Almond Production Manual Chapter: Insects and Mites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The navel orangeworm, Amyelois transitella (Walker), is the most important insect pest of almond in California and can cost as much as $500 dollars per acre to control when the costs of insecticides and sanitation are included. It is a native of the southwestern United States and Mexico and was firs...

  1. Acoustic Detection of Insects in Palm Trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial-crop and ornamental palm trees serve important functions in tropical and subtropical regions of the world, and considerable precautions are taken each year to identify and control infestations of a variety of different insect pests. Large weevils, including the red palm weevil and the co...

  2. Development of Baits for Insect Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article outlines the importance of baits. Baits are formulations that can be used to deliver a toxic chemical or a pathogen (active agent) via ingestion to an insect pest with the goal of killing it. A bait formulations consist of a bait matrix which is the carrier for an active agent. The bait...

  3. Recombinant baculoviruses for insect control.

    PubMed

    Inceoglu, A B; Kamita, S G; Hinton, A C; Huang, Q; Severson, T F; Kang, K; Hammock, B D

    2001-10-01

    Baculoviruses are double-stranded DNA viruses which are highly selective for several insect groups. They are valuable natural control agents, but their utility in many agricultural applications has been limited by their slow speed of kill and narrow host specificity. Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to accelerate their speed of kill. In our and other laboratories, the expression of genes coding for insect juvenile hormone esterases and various peptide neurotoxins has resulted in recombinant baculoviruses with promise as biological insecticides. These viruses are efficacious in the laboratory, greenhouse and field and dramatically reduce damage caused by insect feeding. The recombinant viruses synergize and are synergized by classical pesticides such as pyrethroids. Since they are highly selective for pest insects, they can be used without disrupting biological control. Because the recombinant virus produces fewer progeny in infected larvae than the wild-type virus, they are rapidly out-competed in the ecosystem. The viruses can be used effectively with crops expressing endotoxins of Bacillus thuringiensis. They can be produced industrially but also by village industries, indicating that they have the potential to deliver sustainable pest control in developing countries. It remains to be seen, however, whether the current generation of recombinant baculoviruses will be competitive with the new generation of synthetic chemical pesticides. Current research clearly indicates, though, that the use of biological vectors of genes for insect control will find a place in agriculture. Baculoviruses will also prove valuable in testing the potential utility of proteins and peptides for insect control.

  4. Insect chemical ecology research in the United States Department of Agriculture-Agricultural Research Service.

    PubMed

    Aldrich, Jeffrey R; Bartelt, Robert J; Dickens, Joseph C; Knight, Alan L; Light, Douglas M; Tumlinson, James H

    2003-01-01

    This multi-author paper reviews current work by USDA-ARS scientists in the field of chemical ecology. Work with pheromones, the discovery and development of the codling moth kairomone, studies on insect-plant interactions and chemically mediated tritrophic plant-insect interactions have led to practical methods for control of important insect pests.

  5. ScaleNet: A literature-based model of scale insect biology and systematics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scale insects (Hemiptera: Coccoidea) are small herbivorous insects found in all continents except Antarctica. They are extremely invasive, and many species are serious agricultural pests. They are also emerging models for studies of the evolution of genetic systems, endosymbiosis, and plant-insect i...

  6. Ecological Considerations in Producing and Formulating Fungal Entomopathogens for Use in Insect Biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests persist in a wide variety of agricultural, arboreal, and urban environments. Effective control with fungal entomopathogens using inundation biocontrol requires an understanding of the ecology of the target insect, fungal pathogen, and the insect-pathogen interaction. Historically, the...

  7. Ecological Considerations in Producing and Formulating Fungal Entomopathogens for Use in Insect Biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect pests persist in a wide-variety of agricultural, arboreal, and urban environments. Effective control with fungal entomopathogens using inundation biocontrol requires an understanding of the ecology of the target insect, fungal pathogen, and the insect-pathogen interaction. Historically, the d...

  8. In vivo bioinsecticidal activity toward Ceratitis capitata (fruit fly) and Callosobruchus maculatus (cowpea weevil) and in vitro bioinsecticidal activity toward different orders of insect pests of a trypsin inhibitor purified from tamarind tree (Tamarindus indica) seeds.

    PubMed

    Araújo, Carina L; Bezerra, Ingrid W L; Oliveira, Adeliana S; Moura, Fabiano T; Macedo, Leonardo L P; Gomes, Carlos E M; Barbosa, Aulus E A D; Macedo, Francisco P; Souza, Tánia M S; Franco, Octavio L; Bloch-J, Carlos; Sales, Mauricio P

    2005-06-01

    A proteinaceous inhibitor with high activity against trypsin-like serine proteinases was purified from seeds of the tamarind tree (Tamarindus indica) by gel filtration on Shephacryl S-200 followed by a reverse-phase HPLC Vidac C18 TP. The inhibitor, called the tamarind trypsin inhibitor (TTI), showed a Mr of 21.42 kDa by mass spectrometry analysis. TTI was a noncompetitive inhibitor with a Ki value of 1.7 x 10(-9) M. In vitro bioinsecticidal activity against insect digestive enzymes from different orders showed that TTI had remarkable activity against enzymes from coleopteran, Anthonomus grandis (29.6%), Zabrotes subfasciatus (51.6%), Callosobruchus maculatus (86.7%), Rhyzopertha dominica(88.2%), and lepidopteron, Plodia interpuncptella (26.7%), Alabama argillacea (53.8%), and Spodoptera frugiperda (75.5%). Also, digestive enzymes from Diptera, Ceratitis capitata (fruit fly), were inhibited (52.9%). In vivo bioinsecticidal assays toward C. capitata and C. maculatus larvae were developed. The concentration of TTI (w/w) in the artificial seed necessary to cause 50% mortality (LD50) of larvae was 3.6%, and that to reduce mass larvae by 50.0% (ED50) was 3.2%. Furthermore, the mass C. capitata larvae were affected at 53.2% and produced approximately 34% mortality at a level of 4.0% (w/w) of TTI incorporated in artificial diets.

  9. Pest Management Specialist (AFSC 56650).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This eight-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for pest management specialists. Covered in the individual volumes are civil engineering; pest management (entomology, pest management planning and coordination, and safety and protective equipment); pest management chemicals and…

  10. Persistent pods of the tree Acacia caven: a natural refuge for diverse insects including Bruchid beetles and the parasitoids Trichogrammatidae, Pteromalidae and Eulophidae.

    PubMed

    Rojas-Rousse, D

    2006-01-01

    The persistent pods of the tree, Acacia caven that do not fall from the tree provide opportunities for the appearance of a diverse group of insects the following season. Such pods collected during the spring of 1999 in Chile were indehiscent with highly sclerified pod walls. In contrast, persistent pods collected in Uruguay after a wet winter and spring (2002) were partially dehiscent, inducing the deterioration of the woody pods, and consequently exposing the seeds. These persistent pods are a natural refuge for insect species, namely two bruchid beetles (Pseudopachymeria spinipes, Stator furcatus), one scolytidae (Dendroctonus sp), lepidopterous larvae, ant colonies (Camponotus sp), one species of oophagous parasitoid (Uscana espinae group senex), the gregarious larval-pupae parasitoid Monoksa dorsiplana (Pteromalidae) and two species of Horismenus spp. (Eulophidae). The patriline of M. dorsiplana is frequently formed by 1 son + 7 daughters.

  11. Chirosurveillance: The use of native bats to detect invasive agricultural pests

    PubMed Central

    Maslo, Brooke; Valentin, Rafael; Leu, Karen; Kerwin, Kathleen; Hamilton, George C.; Bevan, Amanda; Fefferman, Nina H.; Fonseca, Dina M.

    2017-01-01

    Invasive insect pests cost the agricultural industry billions of dollars annually in crop losses. Timely detection of pests is critical for management efficiency. Innovative pest detection strategies, such as environmental DNA (eDNA) techniques, combined with efficient predators, maximize sampling resolution across space and time and may improve surveillance. We tested the hypothesis that temperate insectivorous bats can be important sentinels of agricultural insect pest surveillance. Specifically, we used a new high-sensitivity molecular assay for invasive brown marmorated stink bugs (Halyomorpha halys) to examine the extent to which big brown bats (Eptesicus fuscus) detect agricultural pests in the landscape. We documented consistent seasonal predation of stink bugs by big brown bats. Importantly, bats detected brown marmorated stink bugs 3–4 weeks earlier than the current standard monitoring tool, blacklight traps, across all sites. We highlight here the previously unrecognized potential ecosystem service of bats as agents of pest surveillance (or chirosurveillance). Additional studies examining interactions between other bat and insect pest species, coupled with comparisons of detectability among various conventional monitoring methods, are needed to verify the patterns extracted from this study. Ultimately, robust economic analyses will be needed to assess the cost-effectiveness of chirosurveillance as a standard strategy for integrated pest management. PMID:28355216

  12. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism.

    PubMed

    Chardonnet, Floriane; Capdevielle-Dulac, Claire; Chouquet, Bastien; Joly, Nicolas; Harry, Myriam; Le Ru, Bruno; Silvain, Jean-François; Kaiser, Laure

    2014-10-01

    The extent of damage to crop plants from pest insects depends on the foraging behaviour of the insect's feeding stage. Little is known, however, about the genetic and molecular bases of foraging behaviour in phytophagous pest insects. The foraging gene (for), a candidate gene encoding a PKG-I, has an evolutionarily conserved function in feeding strategies. Until now, for had never been studied in Lepidoptera, which includes major pest species. The cereal stem borer Sesamia nonagrioides is therefore a relevant species within this order with which to study conservation of and polymorphism in the for gene, and its role in foraging - a behavioural trait that is directly associated with plant injuries. Full sequencing of for cDNA in S. nonagrioides revealed a high degree of conservation with other insect taxa. Activation of PKG by a cGMP analogue increased larval foraging activity, measured by how frequently larvae moved between food patches in an actimeter. We found one non-synonymous allelic variation in a natural population that defined two allelic variants. These variants presented significantly different levels of foraging activity, and the behaviour was positively correlated to gene expression levels. Our results show that for gene function is conserved in this species of Lepidoptera, and describe an original case of a single nucleotide polymorphism associated with foraging behaviour variation in a pest insect. By illustrating how variation in this single gene can predict phenotype, this work opens new perspectives into the evolutionary context of insect adaptation to plants, as well as pest management.

  13. Nonrandom extinction patterns can modulate pest control service decline.

    PubMed

    Karp, Daniel S; Moeller, Holly V; Frishkoff, Luke O

    2013-06-01

    Changes in biodiversity will mediate the consequences of agricultural intensification and expansion for ecosystem services. Regulating services, like pollination and pest control, generally decline with species loss. In nature, however, relationships between service provision and species richness are not always strong, partially because anthropogenic disturbances purge species from communities in nonrandom orders. The same traits that make for effective service providers may also confer resistance or sensitivity to anthropogenic disturbances, which may either temper or accelerate declines in service provision with species loss. We modeled a community of predators interacting with insect pest prey, and identified the contexts in which pest control provision was most sensitive to species loss. We found pest populations increased rapidly when functionally unique and dietary-generalist predators were lost first, with up to 20% lower pest control provision than random loss. In general, pest abundance increased most in the scenarios that freed more pest species from predation. Species loss also decreased the likelihood that the most effective service providers were present. In communities composed of species with identical traits, predators were equally effective service providers and, when competing predators went extinct, remaining community members assumed their functional roles. In more realistic trait-diverse communities, predators differed in pest control efficacy, and remaining predators could not fully compensate for the loss of their competitors, causing steeper declines in pest control provision with predator species loss. These results highlight diet breadth in particular as a key predictor of service provision, as it affects both the way species respond to and alter their environments. More generally, our model provides testable hypotheses for predicting how nonrandom species loss alters relationships between biodiversity and pest control provision.

  14. Exploiting natural variation to identify insect-resistance genes.

    PubMed

    Broekgaarden, Colette; Snoeren, Tjeerd A L; Dicke, Marcel; Vosman, Ben

    2011-10-01

    Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.

  15. Advanced techniques in IR thermography as a tool for the pest management professional

    NASA Astrophysics Data System (ADS)

    Grossman, Jon L.

    2006-04-01

    Within the past five years, the Pest Management industry has become aware that IR thermography can aid in the detection of pest infestations and locate other conditions that are within the purview of the industry. This paper will review the applications that can be utilized by the pest management professional and discuss the advanced techniques that may be required in conjunction with thermal imaging to locate insect and other pest infestations, moisture within structures, the verification of data and the special challenges associated with the inspection process.

  16. The impact of secondary pests on Bacillus thuringiensis (Bt) crops.

    PubMed

    Catarino, Rui; Ceddia, Graziano; Areal, Francisco J; Park, Julian

    2015-06-01

    The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to insecticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered insect-resistant crops could mitigate many of the negative side effects of insecticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here, we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if nonsusceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers' disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible long-term ecological trophic interactions of employing this technology.

  17. Insect Phylogenomics

    PubMed Central

    Behura, Susanta K.

    2015-01-01

    With the advent of next-generation sequencing methods, phylogenetics has taken a new turn in the recent years. Phylogenomics, the integration of phylogenetics with genome data, has emerged as a powerful approach to study systematics and evolution of species. Recently, breakthrough researches employing phylogenomic tools have provided better insights into the timing and pattern of insect evolution. The next-generation sequencing methods are now increasingly used by entomologists to generate genomic and transcript sequences of various insect species and strains. These data provide opportunities for comparative genomics and large-scale multigene phylogenies of diverse lineages of insects. Phylogenomic investigations help us better understand systematic and evolutionary relationships of insect species that play important roles as herbivores, predators, detritivores, pollinators, or disease vectors. It is important that we critically assess the prospects and limitations of phylogenomic methods. In this review, I describe the current status, outline the major challenges, and remark on potential future applications of phylogenomic tools in studying insect systematics and evolution. PMID:25963452

  18. Intercropping as cultural pest control: Prospects and limitations

    NASA Astrophysics Data System (ADS)

    Risch, Stephen J.

    1983-01-01

    Agriculturalists have been intercropping (simultaneously growing several crops in the same field) for centuries, and the use of polycultures continues as an important form of agriculture among indigenous peoples in the New and Old World tropics and subtropics One demonstrated advantage of intercropping is a reduction in insect pest populations, explained by higher numbers of natural insect enemies in the intercrop and/or reduced herbivore colonization and tenure time in the intercrop A review of 150 published field studies in which 198 herbivore species were studied shows that 53% of the pest species were less abundant in the intercrop, 18% were more abundant in the intercrop, 9% showed no difference, and 20% showed a variable response Two major problems of the published studies are 1) lack of experimental evidence demonstrating that reduced pest numbers in the intercrop resulted in higher yield, and 2) lack of experimental evidence demonstrating the ecological mechanisms responsible for the intercrop effect There is some theoretical and empirical work suggesting that herbivore movement patterns, rather than natural insect enemies, are often more important in accounting for reduced pest abundance in an intercrop Several examples from the author's work are presented that demonstrate ways of studying the ecological mechanisms underlying pest suppression in intercrops. The successful design of new intercropping systems to reduce pests will require a better theoretical understanding of such ecological mechanisms It is emphasized that intercropping has potential in both developed and developing countries and that many of the impediments to incorporating appropriate strategies of diversification are social rather than technological

  19. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application

    PubMed Central

    Farkas, Timothy E

    2015-01-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores. PMID:26495038

  20. Fitness trade-offs in pest management and intercropping with colour: an evolutionary framework and potential application.

    PubMed

    Farkas, Timothy E

    2015-10-01

    An important modern goal of plant science research is to develop tools for agriculturalists effective at curbing yield losses to insect herbivores, but resistance evolution continuously threatens the efficacy of pest management strategies. The high-dose/refuge strategy has been employed with some success to curb pest adaptation, and has been shown to be most effective when fitness costs (fitness trade-offs) of resistance are high. Here, I use eco-evolutionary reasoning to demonstrate the general importance of fitness trade-offs for pest control, showing that strong fitness trade-offs mitigate the threat of pest adaptation, even if adaptation were to occur. I argue that novel pest management strategies evoking strong fitness trade-offs are the most likely to persist in the face of unbridled pest adaptation, and offer the manipulation of crop colours as a worked example of one potentially effective strategy against insect herbivores.