Science.gov

Sample records for les colloides radioactifs

  1. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  2. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  3. Active colloids

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior.

  4. Colloidal System

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This colloidal system is a model used to study the fundamentals of solidification. A colloidal mixture of hard spheres dispersed in a liquid has started to form crystals. As the crystallites grow on earth they become heavier and fall to the bottom of the liquid, which disturbs their growth. When grown in microgravity the crystallites remain suspended in the liquid and grow much larger.

  5. Colloid update.

    PubMed

    Argalious, Maged Y

    2012-01-01

    This update aims to provide an evidence based review of natural and synthetic colloids with a special emphasis on the various generations of the synthetic colloid hydroxyethyl starch. The effect of 1(st), 2(nd) and 3(rd) generation hetastarches on bleeding, coagulopathy, acute kidney injury and mortality will be discussed. The results of randomised controlled trials addressing morbidity and mortality outcomes of colloid versus crystalloid resuscitation in critically ill patients will be described. In addition, the rationale and evidence behind early goal directed fluid therapy (EGDFT) including a practical approach to assessment of dynamic measures of fluid responsiveness will be presented.

  6. Hexadecapolar Colloids

    SciTech Connect

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  7. Hexadecapolar Colloids

    DOE PAGES

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; ...

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  8. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  9. Hexadecapolar colloids

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  10. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  11. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  12. Soil colloidal behavior

    USDA-ARS?s Scientific Manuscript database

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  13. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  14. Colloidal Silver Products

    MedlinePlus

    ... can be dangerous to your health. What the Science Says About the Safety and Side Effects of ... homemade and commercial colloidal silver products. What the Science Says About the Effectiveness of Colloidal Silver Scientific ...

  15. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  16. What Is a Colloid?

    ERIC Educational Resources Information Center

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  17. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  18. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  19. Saturated Zone Colloid Transport

    SciTech Connect

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  20. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  1. Nanomachining by colloidal lithography.

    PubMed

    Yang, Seung-Man; Jang, Se Gyu; Choi, Dae-Geun; Kim, Sarah; Yu, Hyung Kyun

    2006-04-01

    Colloidal lithography is a recently emerging field; the evolution of this simple technique is still in progress. Recent advances in this area have developed a variety of practical routes of colloidal lithography, which have great potential to replace, at least partially, complex and high-cost advanced lithographic techniques. This Review presents the state of the art of colloidal lithography and consists of three main parts, beginning with synthetic routes to monodisperse colloids and their self-assembly with low defect concentrations, which are used as lithographic masks. Then, we will introduce the modification of the colloidal masks using reactive ion etching (RIE), which produces a variety of nanoscopic features and multifaceted particles. Finally, a few prospective applications of colloidal lithography will be discussed.

  2. Ring around the colloid

    NASA Astrophysics Data System (ADS)

    Cavallaro, Marcello, Jr.; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Kamien, Randall D.; Yang, Shu; Baumgart, Tobias; Stebe, Kathleen J.

    In this work, we show that Janus washers, genus-one colloids with hybrid anchoring conditions, form topologically required defects in nematic liquid crystals. Experiments under crossed polarizers reveal the defect structure to be a rigid disclination loop confined within the colloid, with an accompanying defect in the liquid crystal. When confined to a homeotropic cell, the resulting colloid-defect ring pair tilts relative to the far field director, in contrast to the behavior of toroidal colloids with purely homeotropic anchoring. We show that this tilting behavior can be reversibly suppressed by the introduction of a spherical colloid into the center of the toroid, creating a new kind of multi-shape colloidal assemblage.

  3. Analysis of colloid transport

    SciTech Connect

    Travis, B.J.; Nuttall, H.E.

    1985-12-31

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab.

  4. Pituitary Colloid Cyst

    PubMed Central

    Guduk, Mustafa; Sun, Halil Ibrahim; Sav, Murat Aydin; Berkman, Zafer

    2017-01-01

    Abstract Colloid cysts appear most commonly in the third ventricle, their occurrence in the sellar region is uncommon. The authors report a female patient with a pituitary colloid cyst. She was diagnosed incidentally with a sellar lesion by a routine paranasal computed tomography examination performed for planning of a dental implant surgery. Radiologic examinations revealed a pituitary lesion that was removed by transnasal transsphenoidal route. Her pathologic examination revealed that the lesion was a colloid cyst. Although rare, colloid cysts should be considered in the differential diagnosis of pituitary lesions PMID:27792102

  5. UZ Colloid Transport Model

    SciTech Connect

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  6. Interface colloidal robotic manipulator

    DOEpatents

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  7. Colloidal transfer printing.

    PubMed

    Skaug, Michael J; Coffey, Brennan M; Schwartz, Daniel K

    2013-12-26

    Many fields of research have adopted self-assembly of colloidal spheres as an easy and reliable method to produce macroscopic structures with nanoscale periodicity. The field of soft lithography in particular has used colloidal self-assembly to fabricate lithographic masks and templates. We developed a colloidal lithography method that uses the colloidal assembly directly to produce submicrometer topographic and chemical surface patterns. The method does not require any specialized equipment, making it particularly useful in biological and chemical laboratories without lithography expertise. The technique involves the curing and solvent removal of a self-assembled colloidal crystal from an inorganic surface. The result is a triangular array of polymer features with submicrometer periodicity that covers square centimeters of surface area. The feature size and spacing is easily controlled, and the features serve as reactive sites for biomolecule immobilization.

  8. Driving magnetic colloidal polymers

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua; Olvera de La Cruz, Monica

    Magnetic colloids are of growing interest for applications such as drug delivery and in vitro tissue growth. Recent experiments have synthesized 1D chains of magnetic colloids into permanent colloidal polymers. We study magnetic colloidal polymers theoretically and computationally under the influence of time-varying external fields and find a rich set of controllable, dynamic conformations. By iterating through a sequence of conformations, these polymers can perform mechanical functions. We discuss possible roles for these polymers beyond those considered for single colloids. This work was supported as part of the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.

  9. Les jeux de hasard chez les enfants et les adolescents

    PubMed Central

    Gupta, Rina; Pinzon, Jorge L

    2012-01-01

    RÉSUMÉ Même si, au Canada, les mineurs n’ont pas le droit de jouer à des jeux de hasard légalisés, les adolescents participent souvent à des jeux de hasard soit légalisés (produits de loterie, casino, terminaux de jeux vidéo), soit autonomes (jeux de cartes, paris sportifs, dés) à la maison et en milieu scolaire. Chez les adultes, le taux de prévalence de dépendance aux jeux de hasard au cours de la vie se situe entre 1 % et 2 %. D’après les données existantes, la prévalence chez les adolescents serait de deux à quatre fois plus élevée. On ne sait pas grand-chose des facteurs de risque d’apparition et de perpétuation d’une dépendance pathologique aux jeux de hasard. Le présent document de principes vise à informer les pédiatres, les médecins de famille et les autres professionnels de la santé des connaissances émergentes sur les jeux de hasard pendant l’enfance et l’adolescence et du risque de conséquences graves qui s’y rattachent. On y exhorte également les gouvernements fédéral, provinciaux et territoriaux à inclure cette question dans leur programme et à tenir compte des facteurs sociopolitiques associés aux jeux de hasard.

  10. Cadarache LOR (liquides organiques radioactifs) treatment by a solidification process using NOCHAR polymers

    SciTech Connect

    Vaudey, Claire-Emilie; Renou, Sebastien; Kelley, Dennis; Cochaud, Chantal; Serrano, Roger

    2013-07-01

    In France, two options can be considered to handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW). The first one is the incineration at CENTRACO facility and the second one is the disposal at ANDRA sites. The waste acceptance in these two channels is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the channel specifications. If the waste characteristics and the channel specifications (presence of significant quantities of halogens, complexing agents, organic components... or/and high activity limits) are incompatible, an alternative solution have to be identify. It consists of a waste pre-treatment process. For Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. They are composed of a mix of organic liquids and water: for the first one, 19 % of organic compounds (xylene, mesitylene, diphenyloxazole, TBP...) and 86.9 % of water, and for the second one, 23 % of organic compounds (TBP...) and 77 % of water. They contain halogens (chlorine and fluorine), complexants agents (nitrate, sulphate, oxalate and formate) and have got αβγ spectra with mass activities equal to some 100 Bq/g. Therefore, tritium is also present. As a consequence, in order for storage acceptance at the ANDRA site, it is necessary to pre-treat the waste. An adequate solution seems to be a solidification process using NOCHAR polymers. Indeed, NOCHAR polymers correspond to an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing ...) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and

  11. NOCHAR Polymers: An Aqueous and Organic Liquid Solidification Process for Cadarache LOR (Liquides Organiques Radioactifs) - 13195

    SciTech Connect

    Vaudey, Claire-Emilie; Renou, Sebastien; Porco, Julien; Kelley, Dennis; Cochaud, Chantal

    2013-07-01

    To handle the Very Low Level Waste (VLLW) and the Low Level Waste (LLW) in France, two options can be considered: the incineration at CENTRACO facility and the disposal facility on ANDRA sites. The waste acceptance in these radwaste routes is dependent upon the adequacy between the waste characteristics (physical chemistry and radiological) and the radwaste route specifications. If the waste characteristics are incompatible with the radwaste route specifications (presence of significant quantities of chlorine, fluorine, organic component etc or/and high activity limits), it is necessary to find an alternative solution that consists of a waste pre-treatment process. In the context of the problematic Cadarache LOR (Liquides Organiques Radioactifs) waste streams, two radioactive scintillation cocktails have to be treated. The first one is composed of organic liquids at 13.1 % (diphenyloxazol, mesitylene, TBP, xylene) and water at 86.9 %. The second one is composed of TBP at 8.6 % and water at 91.4 %. They contain chlorine, fluorine and sulphate and have got alpha/beta/gamma spectra with mass activities equal to some kBq.g{sup -1}. Therefore, tritium is present and creates the second problematic waste stream. As a consequence, in order for disposal acceptance at the ANDRA site, it is necessary to pre-treat the waste. The NOCHAR polymers as an aqueous and organic liquid solidification process seem to be an adequate solution. Indeed, these polymers constitute an important variety of products applied to the treatment of radioactive aqueous and organic liquids (solvent, oil, solvent/oil mixing etc) and sludge through a mechanical and chemical solidification process. For Cadarache LOR, N910 and N960 respectively dedicated to the organic and aqueous liquids solidification are considered. With the N910, the organic waste solidification occurs in two steps. As the organic liquid travels moves through the polymer strands, the strands swell and immobilise the liquid. Then as the

  12. Lock and key colloids.

    PubMed

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly.

  13. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  14. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  15. Colloidal pen lithography.

    PubMed

    Xue, Mianqi; Cai, Xiaojing; Chen, Ghenfu

    2015-02-04

    Colloidal pen lithography, a low-cost, high-throughput scanning probe contact printing method, has been developed, which is based on self-assembled colloidal arrays embedded in a soft elastomeric stamp. Patterned protein arrays are demonstrated using this method, with a feature size ranging from 100 nm to several micrometers. A brief study into the specificity reorganization of protein gives evidence for the feasibility of this method for writing protein chips. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preliminary Advanced Colloids Experiment

    NASA Image and Video Library

    2011-09-29

    ISS029-E-011867 (29 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, works with the Light Microscopy Module (LMM) control box in the Destiny laboratory of the International Space Station in preparation for another session with the Preliminary Advanced Colloids Experiment (PACE) hardware.

  17. Nucleation in food colloids

    NASA Astrophysics Data System (ADS)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  18. Viscosity of colloidal suspensions

    SciTech Connect

    Cohen, E.G.D.; Schepper, I.M. de

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  19. COLLOIDS. Colloidal matter: Packing, geometry, and entropy.

    PubMed

    Manoharan, Vinothan N

    2015-08-28

    Colloidal particles with well-controlled shapes and interactions are an ideal experimental system for exploring how matter organizes itself. Like atoms and molecules, these particles form bulk phases such as liquids and crystals. But they are more than just crude analogs of atoms; they are a form of matter in their own right, with complex and interesting collective behavior not seen at the atomic scale. Their behavior is affected by geometrical or topological constraints, such as curved surfaces or the shapes of the particles. Because the interactions between the particles are often short-ranged, we can understand the effects of these constraints using geometrical concepts such as packing. The geometrical viewpoint gives us a window into how entropy affects not only the structure of matter, but also the dynamics of how it forms.

  20. Colloidal Thermal Fluids

    NASA Astrophysics Data System (ADS)

    Lotzadeh, Saba

    In this dissertation, a reversible system with a well controlled degree of particle aggregation was developed. By surface modification of colloidal silica with aminosilanes, interactions among the particles were tuned in a controlled way to produce stable sized clusters at different pH values ranges from well-disposed to a colloidal gel. N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE) monolayer on particle surface not only removes all the reactive sites to prevent chemical aggregation, also provides steric stabilization in the absence of any repulsion. After surface modification, electrokinetic behavior of silica particles were changed to that of amino groups, positive in acidic pH and neutral at basic pH values. By tuning the pH, the balance between electrostatic repulsion and hydrophobic interactions was reversibly controlled. As a result, clusters with different sizes were developed. The effect of clustering on the thermal conductivity of colloidal dispersions was quantified using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. Thermal conductivity of this system was measured by transient hot wire, the standard method of thermal conductivity measurements in liquids. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory. Numerical calculations were performed to evaluate the importance of structural properties of particles/aggregates on thermal conduction in colloidal particles. Thermal conductivity of non-spherical particles including hollow particles, cubic particles and rods was studied using a Monte Carlo algorithm. We show that anisotropic shapes, increase conductivity above that of isotropic

  1. Colloidal Double Quantum Dots

    PubMed Central

    2016-01-01

    Conspectus Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole–dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single

  2. Colloidal Double Quantum Dots.

    PubMed

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  3. Fractal nematic colloids

    PubMed Central

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  4. Fractal nematic colloids.

    PubMed

    Hashemi, S M; Jagodič, U; Mozaffari, M R; Ejtehadi, M R; Muševič, I; Ravnik, M

    2017-01-24

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  5. Fractal nematic colloids

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter.

  6. Colloidal capsules: nano- and microcapsules with colloidal particle shells.

    PubMed

    Bollhorst, Tobias; Rezwan, Kurosch; Maas, Michael

    2017-04-18

    Utilizing colloidal particles for the assembly of the shell of nano- and microcapsules holds great promise for the tailor-made design of new functional materials. Increasing research efforts are devoted to the synthesis of such colloidal capsules, by which the integration of modular building blocks with distinct physical, chemical, or morphological characteristics in a capsule's shell can result in novel properties, not present in previous encapsulation structures. This review will provide a comprehensive overview of the synthesis strategies and the progress made so far of bringing nano- and microcapsules with shells of densely packed colloidal particles closer to application in fields such as chemical engineering, materials science, or pharmaceutical and life science. The synthesis routes are categorized into the four major themes for colloidal capsule formation, i.e. the Pickering-emulsion based formation of colloidal capsules, the colloidal particle deposition on (sacrificial) templates, the amphiphilicity driven self-assembly of nanoparticle vesicles from polymer-grafted colloids, and the closely related field of nanoparticle membrane-loading of liposomes and polymersomes. The varying fields of colloidal capsule research are then further categorized and discussed for micro- and nano-scaled structures. Finally, a special section is dedicated to colloidal capsules for biological applications, as a diverse range of reports from this field aim at pharmaceutical agent encapsulation, targeted drug-delivery, and theranostics.

  7. Colloidal Covalent Organic Frameworks

    PubMed Central

    2017-01-01

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954

  8. Flocking ferromagnetic colloids

    PubMed Central

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-01-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633

  9. Flocking ferromagnetic colloids

    DOE PAGES

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.

    2017-02-15

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. While colloidal systems are relatively simple, understanding their collective response, especially in out of equilibrium conditions, remains elusive. Here, we report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms leading to the emergence of largescale collective motion: spontaneous symmetry breaking of the clock /more » counterclockwise particle rotation, collisional alignment of particle velocities, and random particle re-orientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Lastly, our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, biopolymers) and living (suspensions of bacteria, cell colonies, bird flocks).« less

  10. Patterned Colloidal Photonic Crystals.

    PubMed

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2017-09-11

    Colloidal photonic crystals (PCs) have been well developed because they are easy-to-prepare, cost-effective, and versatile to be modified and functionalized. Patterned colloidal PCs contributes a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate induced assembly, inkjet printing, and selective immobilization and modification is presented. The advantages of patterned PC devices are also discussed in detail, for example, the detection sensitivity and response speed of sensors can be improved; the flow direction and wicking rate of the microfluidic channel can be well controlled; cross-reactive molecules can be recognized through array patterned microchip; the display devices with tunable pattern, well-arranged RGB unit, and wide viewing-angle can be fabricated; and several anti-counterfeiting devices with different security strategies can be constructed. Finally, the perspective of future developments and challenges is presented and widely exhibited. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Increasing entropy for colloidal stabilization

    PubMed Central

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications. PMID:27872473

  12. Increasing entropy for colloidal stabilization

    NASA Astrophysics Data System (ADS)

    Mo, Songping; Shao, Xuefeng; Chen, Ying; Cheng, Zhengdong

    2016-11-01

    Stability is of paramount importance in colloidal applications. Attraction between colloidal particles is believed to lead to particle aggregation and phase separation; hence, stability improvement can be achieved through either increasing repulsion or reducing attraction by modifying the fluid medium or by using additives. Two traditional mechanisms for colloidal stability are electrostatic stabilization and steric stabilization. However, stability improvement by mixing attractive and unstable particles has rarely been considered. Here, we emphasize the function of mixing entropy in colloidal stabilization. Dispersion stability improvement is demonstrated by mixing suspensions of attractive nanosized titania spheres and platelets. A three-dimensional phase diagram is proposed to illustrate the collaborative effects of particle mixing and particle attraction on colloidal stability. This discovery provides a novel method for enhancing colloidal stability and opens a novel opportunity for engineering applications.

  13. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  14. Colloidal Metamaterials at Optical Frequencies

    DTIC Science & Technology

    2014-07-18

    AFRL-OSR-VA-TR-2014-0184 Colloidal Metamaterials at Optical Frequencies Jennifer Dionne LELAND STANFORD JUNIOR UNIV CA Final Report 07/18/2014...Prescribed by ANSI Std. Z39.18 Colloidal Metamaterials at Optical Frequencies Annual Report, June 30, 2014 A. Investigators PI: Jennifer Dionne...team has combined theoretical and experimental methods to produce a colloidally -synthesized metamaterial fluid, or “metafluid,” exhibiting strong

  15. Microcontact printing of colloidal crystals.

    PubMed

    Yan, Xin; Yao, Jimin; Lu, Guang; Chen, Xin; Zhang, Kai; Yang, Bai

    2004-09-01

    Patterned two-dimensional (2D) colloidal crystals have been transferred by a modified mucp technique that was based on the use of polymer film as "glue" to provide an efficient interaction between the microsphere "ink" and substrate. The versatility of this method has been demonstrated by the patterning of colloidal crystal on a nonplanar substrate and heterogeneously structured colloidal crystal film. The table of contents graphic shows an SEM image of the ordered parallel lines of 2D colloidal crystals on a polymer-coated glass tube with a 3.7 mm radius of curvature.

  16. SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)

    NASA Image and Video Library

    2011-10-17

    ISS029-E-027431 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.

  17. SODI-COLLOID (Selectable Optical Diagnostics Instrument - Colloid)

    NASA Image and Video Library

    2011-10-17

    ISS029-E-027435 (17 Oct. 2011) --- In the International Space Station?s Destiny laboratory, Japan Aerospace Exploration Agency astronaut Satoshi Furukawa, Expedition 29 flight engineer, activates the Microgravity Science Glovebox (MSG) in preparation for work with the Selectable Optical Diagnostics Instrument ? Colloid (SODI-COLLOID) hardware.

  18. Crystalloid and colloid therapy.

    PubMed

    Fielding, Langdon

    2014-08-01

    Fluid therapy is a cornerstone of emergency medicine, but equine practitioners should be aware of recent developments that have modified previous recommendations. First, new emphasis on the avoidance of hyperchloremia suggests that crystalloids with a lower chloride concentration may be more appropriate for use. Second, modifications to the understanding of the Starling equation suggest that the benefits of colloids may be more limited than previously thought. In addition, the negative effects of fluid overload on morbidity and mortality are becoming increasingly recognized. Although more specific research in horses is needed, these principles are likely to apply across all species. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Colloid thruster technology

    NASA Technical Reports Server (NTRS)

    Perel, J.

    1971-01-01

    A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.

  20. Optically transparent dense colloidal gels

    PubMed Central

    Zupkauskas, M.; Lan, Y.; Joshi, D.; Ruff, Z.

    2017-01-01

    Traditionally it has been difficult to study the porous structure of dense colloidal gels and (macro) molecular transport through them simply because of the difference in refractive index between the colloid material and the continuous fluid phase surrounding it, rendering the samples opaque even at low colloidal volume fractions. Here, we demonstrate a novel colloidal gel that can be refractive index-matched in aqueous solutions owing to the low refractive index of fluorinated latex (FL)-particles (n = 1.37). Synthesizing them from heptafluorobutyl methacrylate using emulsion polymerization, we demonstrate that they can be functionalized with short DNA sequences via a dense brush-layer of polystyrene-b-poly(ethylene oxide) block-copolymers (PS-PEO). The block-copolymer, holding an azide group at the free PEO end, was grafted to the latex particle utilizing a swelling–deswelling method. Subsequently, DNA was covalently attached to the azide-end of the block copolymer via a strain-promoted alkyne–azide click reaction. For comparison, we present a structural study of single gels made of FL-particles only and composite gels made of a percolating FL-colloid gel coated with polystyrene (PS) colloids. Further we demonstrate that the diffusivity of tracer colloids dispersed deep inside a refractive index matched FL-colloidal gel can be measured as function of the local confinement using Dynamic Differential Microscopy (DDM). PMID:28970935

  1. Colloid Adsorption onto Responsive Membranes

    PubMed Central

    Dias, Rita S.; Linse, Per

    2008-01-01

    The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations. PMID:18234818

  2. Les hommes regardent le ciel.

    NASA Astrophysics Data System (ADS)

    Jaschek, C.

    Contents: 1. Le ciel nocturne. 2. Le mouvement du soleil. 3. La lune et ses mouvements. 4. L'orientation des bâtiments. 5. Les étoiles et les constellations. 6. Les planètes. 7. Les comètes, météores et météorites. 8. Les phénomènes météorologico-astronomiques. 9. Les éclipses. 10. Le temps et les calendriers. 11. Astres et destinée humaine - l'astrologie. 12. Les mythes de la création du monde. 13. Les mythes de la fin du monde. 14. Astronomie et société.

  3. Light-structured colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie; Palacci lab Team; Sacanna lab Team

    2016-11-01

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of active colloidal motion on a collective scale through the synchronization of the individual motions of SPP. This work is supported by NSF CAREER DMR 1554724.

  4. Physics of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Huang, Jiping

    Colloidal suspensions are complex fluids that consist of mesoscopic particles suspended in a solvent, e.g. water, oil, etc. In this thesis, the objective is to investigate the four aspects of colloidal suspensions: electrorotation, dielectrophoresis, dielectric dispersion spectrum, and nonlinear alternating current (AC) response. The traditional theories failed to fit the recent experimental data, and hence, for the purpose of a better fitting, we aim to develop new theories. In addition, our theories also predicted some new phenomena which are expected to be verified in experiments. Electrorotation has been increasingly employed as a sensitive tool for non-invasive studies of a broad variety of microparticles, ranging from living cells to spores and seeds, as well as synthetic materials. In order to analyze the abundant experimental data, we extend here the existing theory by taking into account crucial elements, such as inhomogeneities, multipolar interactions, nonspherical shapes as well as many-body (local-field) effects. Good agreement is shown between our theoretical results and the experimental data. Dielectrophoresis is typically used for micromanipulation and separation of biological cellular size particles, and it has recently been successfully applied to submicron size particles as well. Specific applications include diverse problems in medicine, colloidal science and nanotechnology. To analyze the recent experimental observations, we present a theory which includes the effects of both charging and multipolar interactions. Our theoretical results are favorably compared with the recent experimental observations. Recent experiments revealed that the dielectric dispersion spectrum of fission yeast cells in a suspension was mainly composed of two sub-dispersions. The low-frequency sub-dispersion depended on the cell length, while the high-frequency one was independent of it. However, the existing theory does not fit the experimental data. Hence, we here put

  5. Colloids in Acute Burn Resuscitation.

    PubMed

    Cartotto, Robert; Greenhalgh, David

    2016-10-01

    Colloids have been used in varying capacities throughout the history of formula-based burn resuscitation. There is sound experimental evidence that demonstrates colloids' ability to improve intravascular colloid osmotic pressure, expand intravascular volume, reduce resuscitation requirements, and limit edema in unburned tissue following a major burn. Fresh frozen plasma appears to be a useful and effective immediate burn resuscitation fluid but its benefits must be weighed against its costs, and risks of viral transmission and acute lung injury. Albumin, in contrast, is less expensive and safer and has demonstrated ability to reduce resuscitation requirements and possibly limit edema-related morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Microfluidic control using colloidal devices.

    PubMed

    Terray, Alex; Oakey, John; Marr, David W M

    2002-06-07

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  7. Microfluidic Control Using Colloidal Devices

    NASA Astrophysics Data System (ADS)

    Terray, Alex; Oakey, John; Marr, David W. M.

    2002-06-01

    By manipulating colloidal microspheres within customized channels, we have created micrometer-scale fluid pumps and particulate valves. We describe two positive-displacement designs, a gear and a peristaltic pump, both of which are about the size of a human red blood cell. Two colloidal valve designs are also demonstrated, one actuated and one passive, for the direction of cells or small particles. The use of colloids as both valves and pumps will allow device integration at a density far beyond what is currently achievable by other approaches and may provide a link between fluid manipulation at the macro- and nanoscale.

  8. Clathrate colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.

    2017-03-01

    DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.

  9. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  10. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  11. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  12. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  13. Mechanical Failure in Colloidal Gels

    NASA Astrophysics Data System (ADS)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  14. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

  15. Les urgences infectieuses ORL

    PubMed Central

    Sereme, Moustapha; Tarnagda, Souleymane; Guiguimde, Patrice; Gyebre, Yvette Marie Chantal; Ouedraogo, Bertin; Céline, Bambara; Ouattara, Maimouna; Ouoba, Kampadilemba

    2016-01-01

    Affections gravissimes à pronostic très réservé particulièrement dans notre contexte de sous médicalisation et de pauvreté. Notre but en initiant ce travail est de déterminer les étiologies de ces urgences et discuter de leur prise en charge thérapeutique. Étude de type rétrospective et descriptive sur 05 ans, au total 52 dossiers cliniques ont été inclus. Ces infections ont représenté 0,33% de nos consultations. La moyenne d'âge de nos patients a été 23 ans. Le jeune âge, les traitements inappropriés et certaines affections ORL ont été retrouvés comme facteurs favorisants. Les motifs de consultation ont été variés en fonction du siège de l'infection, cependant deux signes cliniques ont été constants: la douleur et la fièvre. L'adénophlegmon, le phlegmon péri-amygdalien, les cellulites ont été nos principales étiologies avec le streptocoque et le staphylocoque comme principaux germes en cause. L'antibiothérapie probabiliste a été utilisée en première intention notamment l'association céphalosporine de 3ème génération + aminoside + imidazolé. L'évolution clinique de nos patients a été marquée par la survenue de complications locales et générales. Urgence diagnostic et thérapeutique leur évolution reste encore émaillée de complication en raison de la consultation tardive de nos patients. PMID:28154719

  16. Opto-thermophoretic assembly of colloidal matter.

    PubMed

    Lin, Linhan; Zhang, Jianli; Peng, Xiaolei; Wu, Zilong; Coughlan, Anna C H; Mao, Zhangming; Bevan, Michael A; Zheng, Yuebing

    2017-09-01

    Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembly technique without specific functionalization of the colloidal particles remains elusive. We develop a new strategy to assemble colloidal matter under a light-controlled temperature field, which can solve challenges in the existing assembly techniques. By adding an anionic surfactant (that is, cetyltrimethylammonium chloride), which serves as a surface charge source, a macro ion, and a micellar depletant, we generate a light-controlled thermoelectric field to manipulate colloidal atoms and a depletion attraction force to assemble the colloidal atoms into two-dimensional (2D) colloidal matter. The general applicability of this opto-thermophoretic assembly (OTA) strategy allows us to build colloidal matter of diverse colloidal sizes (from subwavelength scale to micrometer scale) and materials (polymeric, dielectric, and metallic colloids) with versatile configurations and tunable bonding strengths and lengths. We further demonstrate that the incorporation of the thermoelectric field into the optical radiation force can achieve 3D reconfiguration of the colloidal matter. The OTA strategy releases the rigorous design rules required in the existing assembly techniques and enriches the structural complexity in colloidal matter, which will open a new window of opportunities for basic research on matter organization, advanced material design, and applications.

  17. Opto-thermophoretic assembly of colloidal matter

    PubMed Central

    Lin, Linhan; Zhang, Jianli; Peng, Xiaolei; Wu, Zilong; Coughlan, Anna C. H.; Mao, Zhangming; Bevan, Michael A.; Zheng, Yuebing

    2017-01-01

    Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembly technique without specific functionalization of the colloidal particles remains elusive. We develop a new strategy to assemble colloidal matter under a light-controlled temperature field, which can solve challenges in the existing assembly techniques. By adding an anionic surfactant (that is, cetyltrimethylammonium chloride), which serves as a surface charge source, a macro ion, and a micellar depletant, we generate a light-controlled thermoelectric field to manipulate colloidal atoms and a depletion attraction force to assemble the colloidal atoms into two-dimensional (2D) colloidal matter. The general applicability of this opto-thermophoretic assembly (OTA) strategy allows us to build colloidal matter of diverse colloidal sizes (from subwavelength scale to micrometer scale) and materials (polymeric, dielectric, and metallic colloids) with versatile configurations and tunable bonding strengths and lengths. We further demonstrate that the incorporation of the thermoelectric field into the optical radiation force can achieve 3D reconfiguration of the colloidal matter. The OTA strategy releases the rigorous design rules required in the existing assembly techniques and enriches the structural complexity in colloidal matter, which will open a new window of opportunities for basic research on matter organization, advanced material design, and applications. PMID:28913423

  18. Colloids in the vicinity of landfills

    NASA Astrophysics Data System (ADS)

    Baumann, T.; Fruhstorfer, P.; Klein, T.; Niessner, R.

    2003-04-01

    Waste disposals without adequate landfill liner system are a source of contaminants and colloids. In order to assess the effects of the presence of colloids on the transport of heavy metal ions, the colloids at three landfill sites were characterized with regard to their chemical and mineralogical composition, their size distribution, and the concentration of heavy metal ions associated to the colloids. It can be shown that the pattern of the colloids inside and outside of the landfill is different in all examined parameters, e.g. inside of the disposal we find organic colloids and salt particles, whereas the groundwater downstream of the disposal contains mainly iron-colloids and carbonatic particles. Therefore a direct transfer of colloids from the landfill to the aquifer seems unlikely. Changes of the hydrochemical (mainly redox) and hydrodynamic conditions contribute to this behaviour. The association of heavy metal ions to colloids shows an interesting pattern: High concentrations are present in solution and associated to smaller (< 10 nm) and larger (> 1 μm) colloids, whereas the colloids in between show only small concentrations. This finding has some impact on the assessment of colloidal transport processes, since it suggests, that the more mobile colloids do not carry high concentrations of heavy metal ions.

  19. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    NASA Astrophysics Data System (ADS)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    exciting trends and earn the interest of a good fraction of contemporary soft matter scientists. Note1 http://www.elopto2010.fb08.uni-mainz.de Note2 http://www.sfb-tr6.de References [1] Weinberger P 2008 John Kerr and his effects found in 1877 and 1878 Phil. Mag. Lett. 88 897-907 [2] Benoit H 1948 Calcul de l'écart quadratique moyen entre les extrémités de diverses chaînes moléculaires de type usuel J. Polym. Sci. 3 376-87 [3] Benoit H 1949 Sur un dispositif de mesure de l'effet Kerr par impulsions electriques isoles Comptes Rendus 228 1716-8 [4] Benoit H 1951 Contribution a l'etude de l'effet Kerr presente par les solutions diluees de macromolecules rigide Ann. Phys. 6 561-609 Colloidal and molecular electro-optics contents Electric dichroism transients of aqueous solutions of DNA J A Bertolotto, G M Corral, E M Farias de La Torre and G B Roston The role of effective charges in the electrophoresis of highly charged colloids Apratim Chatterji and Jürgen Horbach Nonlinear response of the electric birefringence of polyelectrolyte solutions J L Déjardin and J M Martinez Kerr constant of multi-subunit particles and semiflexible, wormlike chains J García de la Torre, F G Díaz Baños and H E Pérez Sánchez Self-assembling electroactive hydrogels for flexible display technology Scott L Jones, Kok Hou Wong, Pall Thordarson and François Ladouceur Electrooptical effects in colloid systems subjected to short pulses of strong electric field S A Klemeshev, M P Petrov, A A Trusov and A V Voitylov The effect of ionic strength on electrical properties of polyelectrolyte multilayers on colloidal particles V Milkova and Ts Radeva Charge transport and current in non-polar liquids Kristiaan Neyts, Filip Beunis, Filip Strubbe, Matthias Marescaux, Bart Verboven, Masoumeh Karvar and Alwin Verschueren Ionic concentration- and pH-dependent electrophoretic mobility as studied by single colloid electrophoresis I Semenov, P Papadopoulos, G Stober and F Kremer Effect of magnesium ions and

  20. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  1. Metallic Colloid Wavelength-Ratiometric Scattering Sensors

    PubMed Central

    Roll, David; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-01-01

    Gold and silver colloids display strong colors as a result of electron oscillations induced by incident light, which are referred to as the plasmon absorption. This absorption is dependent on colloid–colloid proximity, which has been the basis of absorption assays using colloids. We now describe a new approach to optical sensing using the light scattering properties of colloids. Colloid aggregation was induced by avidin–biotin interactions, which shifted the plasmon absorption to longer wavelengths. We found the spectral shift results in changes in the scattering at different incident wavelengths. By measuring the ratio of scattered intensities at two incident wavelengths, this measurement was made independent of the total colloid concentration. The high scattering efficiency of the colloids resulted in intensities equivalent to fluorescence when normalized by the optical density of the fluorophore and colloid. This approach can be used in a wide variety of assay formats, including those commonly used with fluorescence detection. PMID:14570195

  2. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  3. Les noyaux actifs de galaxies

    NASA Astrophysics Data System (ADS)

    Camenzind, Max; Boucher, A.

    Découverts il y a plus de 30 ans, les quasars et les radiogalaxies sont des galaxies particulières qui manifestent en leur centre une activité intense. Cet ouvrage se consacre aux principales questions de la physique des noyaux actifs en les illustrant par de récentes données. Y sont traités les domaines suivants: les noyaux des galaxies actives, la théorie des trous noirs en rotation et de leurs disques d'accrétion, l'origine des raies d'émission et les jets des galaxies actives. Fournissant une introduction génerale à la terminologie, cet ouvrage s'adresse aussi bien aux étudiants en astronomie qu'aux astrophysiciens.

  4. Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays.

    PubMed

    Zhang, Junhu; Li, Yunfeng; Zhang, Xuemin; Yang, Bai

    2010-10-08

    Self-assembly of colloidal microspheres or nanospheres is an effective strategy for fabrication of ordered nanostructures. By combination of colloidal self-assembly with nanofabrication techniques, two-dimensional (2D) colloidal crystals have been employed as masks or templates for evaporation, deposition, etching, and imprinting, etc. These methods are defined as "colloidal lithography", which is now recognized as a facile, inexpensive, and repeatable nanofabrication technique. This paper presents an overview of 2D colloidal crystals and nanostructure arrays fabricated by colloidal lithography. First, different methods for fabricating self-assembled 2D colloidal crystals and complex 2D colloidal crystal structures are summarized. After that, according to the nanofabrication strategy employed in colloidal lithography, related works are reviewed as colloidal-crystal-assisted evaporation, deposition, etching, imprinting, and dewetting, respectively.

  5. Synthesis and Characterization of Supramolecular Colloids.

    PubMed

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  6. Colloids and Nucleation

    NASA Technical Reports Server (NTRS)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  7. Les aspects psychosociaux de l’obésité chez les enfants et les adolescents

    PubMed Central

    Nieman, Peter; LeBlanc, Claire MA

    2012-01-01

    RÉSUMÉ En plus de donner des conseils aux familles au sujet de l’activité physique régulière et d’une saine alimentation, les cliniciens doivent déterminer les facteurs psychosociaux qui contribuent à l’obésité des enfants ou des adolescents et les aider à y faire face. Les personnes touchées peuvent souffrir de dépression, de mauvaise estime de soi, d’intimidation et de préjugés liés au poids, qui sont tous des expériences qui peuvent compliquer l’obtention des résultats de santé souhaités. Les cliniciens devraient tenter de déterminer les facteurs stressants sous-jacents et s’assurer de la mise en œuvre de conseils pertinents.

  8. Les Abondances Chimiques dans les Galaxies Spirales de Type Precoce

    NASA Astrophysics Data System (ADS)

    Dutil, Yvan

    1998-09-01

    Les galaxies spriales presentent une distribution continue de formes et de proprietes physiques. A l'heure actuelle, il existe deux ecoles de pensee au sujet de la nature de ces proprietes morphologiques des galaxies. Pour certains elles sont innees, pour d'autres elles sont acquises. Les gradients d'abondance nebulaires, de par leur sensibilite aux mouvements a grande echelle du gaz et au taux de formation stellaire, offrent une possibilite de trancher dans ce debat. Toutefois, jusqu'ici, on a surtout observe les gradients d'abondance dans les galaxies de type tardif. Le premier objectif de cette these est d'enrichir l'echantillon de galaxies de type precoce observees. Le second objectif est de demontrer qu'il y a deja eu une barre dans les galaxies de type precoce et, si possible, de chercher des traces d'interactions dans ces galaxies. Dans le cadre de cette these, j'ai observe huit galaxies de type precoce. Mes observations indiquent que ces galaxies presentent des profils d'abondance dont les caracteristiques se rapprochent des galaxies barrees, meme si certaines ne presentent pas de barres. Ce resultat renforce l'hypothese selon laquelle les galaxies changent de type morphologique au cours du temps sous l'effet d'instabilites comme les barres.

  9. Colloid characterization and quantification in groundwater samples

    SciTech Connect

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  10. Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, Dave; Weeks, Eric; Gasser, Urs; Dinsmore, Tony; Mawley, Suliana; Segre, Phil; Cipelletti, Lucia

    2000-01-01

    This talk will present recent results from ground-based research to support the "Physics of Colloids in Space" project which is scheduled to fly in the ISS approximately one year from now. In addition, results supporting future planned flights will be discussed.

  11. Colloidal quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  12. Solid colloidal optical wavelength filter

    DOEpatents

    Alvarez, Joseph L.

    1992-01-01

    A solid colloidal optical wavelength filter includes a suspension of spheal particles dispersed in a coagulable medium such as a setting plastic. The filter is formed by suspending spherical particles in a coagulable medium; agitating the particles and coagulable medium to produce an emulsion of particles suspended in the coagulable medium; and allowing the coagulable medium and suspended emulsion of particles to cool.

  13. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  14. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  15. Enhanced colloidal stability of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Borum, La Rhonda Terese

    Hydroxyapatite, Ca10(PO4)6(OH) 2 is the most thermodynamically stable calcium phosphate in physiological environments. Hence, it is the main inorganic mineral found in bone and teeth. Its colloidal stability, however, is poor because hydroxyapatite (HAp) particles exhibit sediment formation upon standing at short time periods, where agglomerates form and lead to non-homogeneous suspensions. Surface modification is a promising method to tailor the colloidal stability of hydroxyapatite for biomaterial applications. Three techniques to modify the HAp surface and enhance the colloidal stability of HAp were investigated. Modified particles were characterized by methods sensitive to surface chemistry changes, such as sedimentation studies, diffuse reflectance Fourier transform infrared spectroscopy (DRIFT), Brunauer-Emmett-Teller (BET) surface area, and electrophoresis. Sedimentation studies demonstrated how effective each technique was in improving the colloidal stability of hydroxyapatite particles. Electrophoresis provided information on electrostatic interactions within each system. The first technique entailed an esterification reaction of the HAp surface with dodecyl alcohol at elevated temperatures. DRIFT results showed that dodecyl groups from the alcohol replaced acidic hydroxyl and phosphate sites on the HAp surface, giving rise to enhanced colloidal stability through steric interactions in ethanol suspensions. TGA curves gave insight to the degree of esterification for the esterified particles. Higher reaction temperatures give rise to a higher degree of esterification resulting in better colloidal stability. The second technique applied a silica coating on the HAp surface by the hydrolysis of tetraethyl orthosilicate in ethanol. Silica was coated onto the HAp surface at 5--75 wt% loading amounts. A combination of acid dissolution and x-ray diffraction (XRD), along with BET showed that the silica coating is complete at 50 wt% silica loading. The silica coating

  16. Effective Forces Between Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Tehver, Riina; Banavar, Jayanth R.; Koplik, Joel

    1999-01-01

    Colloidal suspensions have proven to be excellent model systems for the study of condensed matter and its phase behavior. Many of the properties of colloidal suspensions can be investigated with a systematic variation of the characteristics of the systems and, in addition, the energy, length and time scales associated with them allow for experimental probing of otherwise inaccessible regimes. The latter property also makes colloidal systems vulnerable to external influences such as gravity. Experiments performed in micro-ravity by Chaikin and Russell have been invaluable in extracting the true behavior of the systems without an external field. Weitz and Pusey intend to use mixtures of colloidal particles with additives such as polymers to induce aggregation and form weak, tenuous, highly disordered fractal structures that would be stable in the absence of gravitational forces. When dispersed in a polarizable medium, colloidal particles can ionize, emitting counterions into the solution. The standard interaction potential in these charged colloidal suspensions was first obtained by Derjaguin, Landau, Verwey and Overbeek. The DLVO potential is obtained in the mean-field linearized Poisson-Boltzmann approximation and thus has limited applicability. For more precise calculations, we have used ab initio density functional theory. In our model, colloidal particles are charged hard spheres, the counterions are described by a continuum density field and the solvent is treated as a homogeneous medium with a specified dielectric constant. We calculate the effective forces between charged colloidal particles by integrating over the solvent and counterion degrees of freedom, taking into account the direct interactions between the particles as well as particle-counterion, counterion-counterion Coulomb, counterion entropic and correlation contributions. We obtain the effective interaction potential between charged colloidal particles in different configurations. We evaluate two

  17. Distorted colloidal arrays as designed template

    NASA Astrophysics Data System (ADS)

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-01

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  18. Distorted colloidal arrays as designed template.

    PubMed

    Yu, Ye; Zhou, Ziwei; Möhwald, Helmuth; Ai, Bin; Zhao, Zhiyuan; Ye, Shunsheng; Zhang, Gang

    2015-01-21

    In this paper, a novel type of colloidal template with broken symmetry was generated using commercial, inductively coupled plasma reactive ion etching (ICP-RIE). With proper but simple treatment, the traditional symmetric non-close-packed colloidal template evolves into an elliptical profile with high uniformity. This unique feature can add flexibility to colloidal lithography and/or other lithography techniques using colloidal particles as building blocks to fabricate nano-/micro-structures with broken symmetry. Beyond that the novel colloidal template we developed possesses on-site tunability, i.e. the transformability from a symmetric into an asymmetric template. Sandwich-type particles with eccentric features were fabricated utilizing this tunable template. This distinguishing feature will provide the possibility to fabricate structures with unique asymmetric features using one set of colloidal template, providing flexibility and broad tunability to enable nano-/micro-structure fabrication with colloidal templates.

  19. Colloid particle size-dependent dispersivity

    NASA Astrophysics Data System (ADS)

    Chrysikopoulos, C. V.; Katzourakis, V. E.

    2014-12-01

    Laboratory and field studies have demonstrated that dispersion coefficients evaluated by fitting advection-dispersion transport models to nonreactive tracer breakthrough curves do not adequately describe colloid transport under the same flow field conditions. Here an extensive laboratory study was undertaken to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size and interstitial velocity. A total of 49 colloid transport experiments were performed in columns packed with glass beads under chemically unfavorable colloid attachment conditions. Nine different colloid diameters, and various flow velocities were examined. The breakthrough curves were successfully simulated with a mathematical model describing colloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity is positively correlated with colloid particle size, and increases with increasing velocity.

  20. Nonequilibrium interfaces in colloidal fluids

    NASA Astrophysics Data System (ADS)

    Bier, Markus; Arnold, Daniel

    2013-12-01

    The time-dependent structure, interfacial tension, and evaporation of an oversaturated colloid-rich (liquid) phase in contact with an undersaturated colloid-poor (vapor) phase of a colloidal dispersion is investigated theoretically during the early-stage relaxation, where the interface is relaxing towards a local equilibrium state while the bulk phases are still out of equilibrium. Since systems of this type exhibit a clear separation of colloidal and solvent relaxation time scales with typical times of interfacial tension measurements in between, they can be expected to be suitable for analogous experimental studies, too. The major finding is that, irrespective of how much the bulk phases differ from two-phase coexistence, the interfacial structure and the interfacial tension approach those at two-phase coexistence during the early-stage relaxation process. This is a surprising observation since it implies that the relaxation towards global equilibrium of the interface is not following but preceding that of the bulk phases. Scaling forms for the local chemical potential, the flux, and the dissipation rate exhibit qualitatively different leading order contributions depending on whether an equilibrium or a nonequilibrium system is considered. The degree of nonquilibrium between the bulk phases is found to not influence the qualitative relaxation behavior (i.e., the values of power-law exponents), but to determine the quantitative deviation of the observed quantities from their values at two-phase coexistence. Whereas the underlying dynamics differs between colloidal and molecular fluids, the behavior of quantities such as the interfacial tension approaching the equilibrium values during the early-stage relaxation process, during which nonequilibrium conditions of the bulk phases are not changed, can be expected to occur for both types of systems.

  1. Magnetic Assisted Colloidal Pattern Formation

    NASA Astrophysics Data System (ADS)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  2. Analytic studies of colloid transport in fractured porous media

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1989-11-01

    We analyze the interactive migration of radioactive colloids and solute in fractured rock. Two possible interactions between radionuclides as colloids and as solute are considered: solute sorption on nonradioactive colloids to form pseudocolloids, and dissolution of radioactive colloids. Previous studies have discussed the formation and transport of colloids in porous media, including removal of colloids by filtration and sedimentation. Colloids can migrate faster than solute because of weaker sorption on stationary solids and because of hydrochromatography of colloid particles in flow channels. However, the migration of colloids and pseudocolloids can be retarded by the interaction of colloids with solute, and the migration of solute in local equilibrium with colloids can be more rapid than if colloids were not present. Here we present a new quantative analysis to predict the interactive migration of colloids and solute in porous and fractured media. 4 figs.

  3. Stable colloids in molten inorganic salts.

    PubMed

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  4. What happens when pharmaceuticals meet colloids.

    PubMed

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  5. Stable colloids in molten inorganic salts

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  6. Colloid Straining within Saturated Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Porubcan, A.; Walczak, J.; Xu, S.

    2008-12-01

    A thorough understanding of colloid movement in the subsurface system is critical to the assessment of groundwater pollution by pathogenic bacteria and colloid-bound contaminants. It is increasingly recognized that straining, a process that occurs when the pore space is too small to allow for a particle's passage, represents an important process in colloid immobilization within groundwater systems. Previously published studies have focused on the kinetics of colloid straining within sand packs composed of uniform mineral grains. Natural aquifers, however, are usually characterized by physically heterogeneous sediments. In this study, we conducted column transport experiments with carboxylated latex particles and quartz sand to investigate the impact of sediment texture (i.e., the size distribution of mineral grains) on colloid straining kinetics. The quartz sands used in the experiment were thoroughly cleaned and the strong repulsive interactions between colloid particles and quartz sands resulted in minimal physicochemical deposition so the straining kinetics can be quantified unambiguously. Sand packs of different textures were prepared by mixing sands of various sizes (mesh sizes of 20-25, 35-40 and 60-70). Our results suggested that the ratio of colloid size and the median sand grain size was insufficient to predict colloid straining within heterogeneous sediments. Soil texture, which was related to the size distribution of the sand grains, must be considered. A relationship between colloid straining kinetics and the heterogeneity of porous media that can be useful for the prediction of colloid transport within heterogeneous sediments was presented.

  7. Chancellor Water Colloids: Characterization and Radionuclide Association

    SciTech Connect

    Abdel-Fattah, Amr I.

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  8. Phases transitions and interfaces in temperature-sensitive colloidal systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Schall, Peter

    2013-03-01

    Colloids are widely used because of their exceptional properties. Beside their own applications in food, petrol, cosmetics and drug industries, photonic, optical filters and chemical sensor, they are also known as powerful model systems to study molecular phase behavior. Here, we examine both aspects of colloids using temperature-sensitive colloidal systems to fully investigate colloidal phase behavior and colloidal assembly.

  9. Electrokinetic properties of polymer colloids

    NASA Technical Reports Server (NTRS)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  10. Doped colloidal artificial spin ice

    DOE PAGES

    Libál, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-10-07

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Conversely, magnetic artificial spin ices, unlike colloidal and vortex artificial spin ice realizations, allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is raised. In contrast, the kagome ice ground state can absorb the doping charge without generating non-ground-state excitations, while at elevated temperatures the hopping of individual colloidsmore » is suppressed near the doping sites. Our results indicate that in the square ice, doping adds degeneracy to the ordered ground state and creates local weak spots, while in the kagome ice, which has a highly degenerate ground state, doping locally decreases the degeneracy and creates local hard regions.« less

  11. Colloid solutions for fluid resuscitation.

    PubMed

    Bunn, Frances; Trivedi, Daksha

    2012-06-13

    Colloids are widely used in the replacement of fluid volume. However doubts remain as to which colloid is best. Different colloids vary in their molecular weight and therefore in the length of time they remain in the circulatory system. Because of this and their other characteristics, they may differ in their safety and efficacy. To compare the effects of different colloid solutions in patients thought to need volume replacement. We searched the Cochrane Injuries Specialised Register (searched 1 Dec 2011), Cochrane Central Register of Controlled Trials 2011, issue 4 (The Cochrane Library); MEDLINE (Ovid) (1948 to November Week 3 2011); EMBASE (Ovid) (1974 to 2011 Week 47); ISI Web of Science: Science Citation Index Expanded (1970 to 1 Dec 2011); ISI Web of Science: Conference Proceedings Citation Index-Science (1990 to 1 Dec 2011); CINAHL (EBSCO) (1982 to 1 Dec 2011); National Research Register (2007, Issue 1) and PubMed (searched 1 Dec 2011). Bibliographies of trials retrieved were searched, and for the initial version of the review drug companies manufacturing colloids were contacted for information (1999). Randomised controlled trials comparing colloid solutions in critically ill and surgical patients thought to need volume replacement. Two authors independently extracted the data and assessed the quality of the trials. The outcomes sought were death, amount of whole blood transfused, and incidence of adverse reactions. Ninety trials, with a total of 5678 participants, met the inclusion criteria. Quality of allocation concealment was judged to be adequate in 35 trials and poor or uncertain in the rest.Deaths were obtained in 61 trials. For albumin or PPF versus hydroxyethyl starch (HES) 32 trials (n = 1769) reported mortality. The pooled relative risk (RR) was 1.07 (95% CI 0.87 to 1.32). When the trials by Boldt were removed from the analysis the pooled RR was 0.90 (95% CI 0.68 to 1.20). For albumin or PPF versus gelatin, nine trials (n = 824) reported

  12. Colloids at Curved Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Stebe, Kathleen

    2016-11-01

    Fluid interfaces are remarkable sites for colloidal assembly. When a colloid attaches to a fluid interface, it distorts a region around it; this distortion has an associated capillary energy, the product of its area and interfacial tension. The particle's capillary energy depends on the local interface curvature. By molding the interface, we can define curvature fields that drive microparticles along pre-determined paths. This example captures the emergent nature of the interactions. We discuss curvature fields as analogues to external electro-magnetic fields, and define curvatures that drive particles to well-defined locations, and to equilibrium sites far from boundaries. Particle-particle and particle-curvature interactions can guide particles into structures via interaction among many particles. This work demonstrates the potential importance of curvature capillary interactions in schemes to make reconfigurable materials, since interfaces and their associated capillary energy landscapes can be readily reconfigured. Analogies in other soft systems will be described. Support acknowledged from NSF DMR 1607878.

  13. Designing Colloidal Molecules with Microfluidics

    PubMed Central

    Shen, Bingqing; Ricouvier, Joshua; Malloggi, Florent

    2016-01-01

    The creation of new colloidal materials involves the design of functional building blocks. Here, a microfluidic method for designing building blocks one by one, at high throughput, with a broad range of shapes is introduced. The method exploits a coupling between hydrodynamic interactions and depletion forces that controls the configurational dynamics of droplet clusters traveling in microfluidic channels. Droplet clusters can be solidified in situ with UV. By varying the flow parameters, clusters are prescribed a given size, geometry, chemical and/or magnetic heterogeneities enabling local bonding. Compact structures (chains, triangles, diamonds, tetrahedrons,...) and noncompact structures, such as crosses and T, difficult to obtain with current techniques are produced. Size dispersions are small (2%) and throughputs are high (30 000 h−1). The work opens a new pathway, based on microfluidics, for designing colloidal building blocks with a potential to enable the creation of new materials. PMID:27840804

  14. Biaxial ferromagnetic liquid crystal colloids

    PubMed Central

    Liu, Qingkun; Ackerman, Paul J.; Lubensky, Tom C.; Smalyukh, Ivan I.

    2016-01-01

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed “director,” whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  15. Predicting crystals of Janus colloids

    NASA Astrophysics Data System (ADS)

    Vissers, Teun; Preisler, Zdeněk; Smallenburg, Frank; Dijkstra, Marjolein; Sciortino, Francesco

    2013-04-01

    We present a numerical study on the phase diagram for a simple model of Janus colloids, including ordered and disordered structures. Using a range of techniques, we generate a set of crystal structures and investigate their relative stability field in the pressure-temperature and temperature-density planes by means of free-energy calculations and thermodynamic integration schemes. We find that despite the Janus colloids' simple architecture, they form stable crystal structures with complicated bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice. In addition, we find a phase consisting of wrinkled bilayer sheets, competing with both the fluid and the crystal phases. We detect a metastable gas-liquid coexistence which displays a micellization-driven re-entrant behavior.

  16. Thermophoresis of charged colloidal particles.

    PubMed

    Fayolle, Sébastien; Bickel, Thomas; Würger, Alois

    2008-04-01

    Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

  17. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  18. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  19. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Mahadevan, L.; Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna

    2014-11-01

    Evaporating suspensions of colloidal particles lead to the formation of a variety of patterns, ranging from rings left behind a coffee drop to periodic bands or uniform solid films deposited on a substrate suspended vertically in a container of the colloidal solution. To characterize the transition between different types of patterns, we develop minimal models of the liquid meniscus deformation due to the evaporation and colloidal deposition. A complementary multiphase model allows us to investigate the detailed dynamics of patterning in a drying solvent. This approach couples the inhomogeneous evaporation at the evolving liquid-air interface to the dynamics inside the suspension, i.e. the liquid flow, local variations of the particle concentration, and the propagation of the deposition front where the solute forms a wet, incompressible porous medium at high concentrations. The results of our theory are in good agreement with direct observations. This research was supported by the Air Force Office of Scientific Research (AFOSR) under Award FA9550-09-1-0669-DOD35CAP and the Kavli Institute for Bionano Science and Technology at Harvard University.

  20. Crystallization of DNA-coated colloids.

    PubMed

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  1. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  2. Crystallization of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-06-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  3. Does colloid shape affect detachment of colloids by a moving air-water interface?

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (<1.5%). Among the different colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  4. Binodal Colloidal Aggregation Test - 4: Polydispersion

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.

    2008-01-01

    Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  5. Thermophoresis of colloids by mesoscale simulations.

    PubMed

    Lüsebrink, Daniel; Yang, Mingcheng; Ripoll, Marisol

    2012-07-18

    The motion of a colloid induced by a temperature gradient is simulated by means of multiparticle collision dynamics, a mesoscale simulation technique. Two algorithms to quantify the thermophoretic behavior are employed and contrasted. The validity of the methods is verified as a function of the temperature gradient, system size, and algorithm parameters. The variation of the solvent-colloid interaction from attractive to purely repulsive interestingly results in the change of the colloid behavior from thermophobic to thermophilic.

  6. Dynamic Colloidal Stabilization by Nanoparticle Halos

    NASA Astrophysics Data System (ADS)

    Karanikas, S.; Louis, A. A.

    2004-12-01

    We explore the conditions under which colloids can be stabilized by the addition of smaller particles. The largest repulsive barriers between colloids occur when the added particles repel each other with soft interactions, leading to an accumulation near the colloid surfaces. At lower densities these layers of mobile particles (nanoparticle halos) result in stabilization, but when too many are added, the interactions become attractive again. We systematically study these effects—accumulation repulsion, reentrant attraction, and bridging—by accurate integral equation techniques.

  7. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  8. Les violences conjugales à Dakar

    PubMed Central

    Soumah, Mohamed Maniboliot; Issa, Abdoul Wahab; Ndiaye, Mor; Ndoye, El Hadj Oumar; Sow, Mamadou Lamine

    2015-01-01

    L'objectif était d’évaluer les aspects épidémiologiques des violences conjugales, identifier les facteurs de risques et les différents types de violences conjugales, évaluer les conséquences des violences conjugales sur la santé des victimes, afin d'améliorer la prise en charge des victimes et la prévention du phénomène. Il s'est agit d'une étude transversale effectuée de décembre 2012 à janvier 2013 à Dakar. Les données ont été recueillies, après consentement, sur fiche d'enquête anonyme soumise à toute personne volontaire vivant en couple et résidant à Dakar. L'analyse statistique a été effectuée avec le logiciel SPSS 13.0. Le nombre de personnes victimes de violences conjugales était de 60 soit 37,30% dont 31 femmes (51,70%) et 29 hommes (48,30%). Le sex-ratio était de 0,93. Parmi les victimes, 53 étaient scolarisées soit 88,30%. Le régime matrimonial était de type monogame dans 39 cas (65%) et polygame dans 21 cas (35%). La vie en couple durait depuis moins de 11 ans dans 60% des cas et durait de 11 ans à 20 ans au plus dans 26,6% des cas. L’étude des types de violences montrait la fréquence des agressions physiques. Les armes utilisées étaient surtout les armes naturelles. Les principaux facteurs de risque de violence conjugale sont les facteurs sociodémographiques, culturels et économiques comme le jeune âge, l'inégalité du genre, les jeunes couples, la précarité, le niveau d'instruction élevé. La prise en charge des victimes et la prévention du phénomène restent insuffisantes dans nos pays. PMID:26918077

  9. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    ERIC Educational Resources Information Center

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  10. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    ERIC Educational Resources Information Center

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  11. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  12. Collective motion in populations of colloidal bots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis

    One of the origins of active matter physics was the idea that flocks, herds, swarms and shoals could be quantitatively described as emergent ordered phases in self-driven materials. From a somehow dual perspective, I will show how to engineer active materials our of colloidal flocks. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors and how to handle them in microfluidic chips. These populations of colloidal bots display a non-equilibrium transition toward collective motion. A special attention will be paid to the robustness of the resulting colloidal flocks with respect to geometrical frustration and to quenched disorder.

  13. Colloid transport in dual-permeability media.

    PubMed

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  14. The hydrodynamics of colloidal gelation.

    PubMed

    Varga, Zsigmond; Wang, Gang; Swan, James

    2015-12-14

    Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.

  15. Corralled Colloids in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Anthony, Stephen; Kim, Minsu; Granick, Steve

    2008-03-01

    Three colloidal particles were placed in small corrals and the strong correlations between their translation and rotation were quantified using the optical anisotropy of MOON (Modulated Optical Nanoprobes) particles to simultaneously measure their translation and rotation in an optical microscope. This system represents the simplest system which can capture one of the relevant components of multi-body interactions, the fact that while two particles can freely rotate together (like gears), once a third particle (or gear) is added there is no universally favorable set of rotations. This simple multi-body system provides a paradigm of how rotation influences translation and vice-versa.

  16. Patchy particles using colloidal caps

    NASA Astrophysics Data System (ADS)

    Middleton, Christine; Pine, David

    2015-03-01

    We present a method for making patchy particles functionalized with single stranded sticky end DNA only on their patches. This is done by adding ``spherical cap'' particles as patches to spherical colloids using the depletion interaction. The caps are then functionalized with single stranded DNA using copper-free click chemistry. Due to being attached only by depletion, the patches diffuse on the surface of the particle. The patchy particles can then interact with each other in a specific, directional way through the mobile, DNA functionalized patches.

  17. Colloid transport in dual-permeability media

    USDA-ARS?s Scientific Manuscript database

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the incre...

  18. Binary Colloidal Alloy Test-5: Aspheres

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.; Hollingsworth, Andrew D.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..

  19. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  20. Effects of artificial colloids on haemostasis.

    PubMed

    Jin, Shan-Liang; Yu, Bu-Wei

    2009-02-01

    Artificial colloids are used in situations with a high risk of bleeding such as trauma or during surgery. Although more efficacious than crystalloids, colloids can be associated with derangements of the haemostatic system and may also interfere with normal haemostasis via a number of different mechanisms.

  1. Colloidal Electrolytes and the Critical Micelle Concentration

    ERIC Educational Resources Information Center

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  2. Une vie active saine pour les enfants et les adolescents

    PubMed Central

    2002-01-01

    De mauvais modes de vie, comme une alimentation malsaine et l’inactivité physique, sont d'importants facteurs contributifs à une augmentation de la morbidité et de la mortalité secondaires à des maladies chroniques à l’âge adulte. Depuis dix ans, on remarque une augmentation du mode de vie sédentaire et de l’obésité chez les enfants et les adolescents, tant en Amérique du Nord qu’ailleurs dans le monde. Les médecins doivent être conscients de l’importance du problème, fournir des conseils de prévention aux familles et promouvoir une vie active saine dans leur pratique.

  3. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    USGS Publications Warehouse

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  4. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    NASA Astrophysics Data System (ADS)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-05-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained "irreversibly" when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained "irreversibly" upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  5. ["Les Impatients": expression through art].

    PubMed

    Lamontagne, Céline; Palardy, Lorraine

    2015-01-01

    The organization called "Les Impatients" was founded in 1992. Using a unique model, Les Impatients welcomes those with mental health issues who would like to express themselves through art. Les Impatients offers free creative workshops and encourages exchanges with the community through the sharing of its participants' creations. The name Les Impatients reinforces the idea that the organization does not consider those attending its workshops as patients, but rather creators who are eager to heal, develop their craft and find their place in society. The participants contribute to the collective objective of breaking down the stigma that surrounds mental illness.Les Impatients collaborates with various mental health organizations in Quebec, such as the Institut universitaire en santé mentale de Montréal (IUSMM) affiliated to the Université de Montréal, Douglas Mental Health University Institute (DMHUI), the Centre de santé et services sociaux Drummond (CSSS Drummond) and the Centre de santé et services sociaux Pierre-Boucher (CSSS Pierre-Boucher). Les Impatients offers more than 48 workshops in eight different locations to around 450 participants each week.Dissemination activities, remarkable events, original projects: Les Impatients stands out through its realizations. Examples are exhibitions, collections of love letters, comic books, CD, concerts, and reading nights. The organization's originality resides in the exploration of the links between the work of the participants and that of professional artists. An illustration of this interest is the annual Parle-moi d'amour auction-exhibition, which has been one of Les Impatients' major events since 1999.As part of its mission, Les Impatients conserves the works of art created by the participants during the workshops. Its collection includes more than 15,000 works of art from Les Impatients as well as pieces donated by collectors of unconventional art, commonly known as "art brut" or "outsider art". The

  6. Attractive interaction between similarly charged colloidal particles

    SciTech Connect

    Chu, X.; Wasan, D.T.

    1996-12-01

    The pair interactions between the charged colloidal particles dispersed in a solvent are studied theoretically by the integral equation method. The pair potential of the mean forces, accounting for the effective pair interaction between colloidal particles, is calculated from the solution of the Ornstein-Zernike equation with the mean spherical approximation (MSA). An attractive interaction was found between two similarly charged colloidal particles in contrast with the purely repulsive force predicted by the Debye-Huckel theory. Such an attractive interaction provides physical insight for the condensed phenomena in charged colloidal dispersions, that is, the coexistence of a condensed phase and an expanded phase (voids). At the higher concentration and charge on colloidal particles, the effective pair interaction becomes oscillatory.

  7. Optical effects of charges in colloidal solutions

    NASA Astrophysics Data System (ADS)

    Chang, Railing; Chung, Hung-Yi; Chen, Chih-Wei; Chiang, Hai-Pang; Leung, P. T.

    2017-04-01

    The optical response of charged polymeric and metallic colloids is investigated using effective medium theories for composite systems of nanoparticles. Based on the Bohren-Hunt theory for generalized Mie scattering from charged particles, an effective quasi-static dielectric function previously obtained is applied to the present study to characterize the response from the various colloidal particles. It is found that such effects are more prominent for polymeric and nonmetallic colloidal solutions in general. In addition, the effects of clustering among the colloidal particles are also studied via a fractal model available from the literature. Detailed numerical studies of the dependence of these effects on the amount of extraneous charge, as well as on the geometry and volume fraction of the colloidal particles are presented.

  8. Structural transitions in condensed colloidal virus phases

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Barr, Steve; Udit, Andrew; Gutierrez, Leonardo; Nguyen, Thanh; Finn, M. G.; Luijten, Erik; Wong, Gerard

    2010-03-01

    Analogous to monatomic systems colloidal phase behavior is entirely determined by the interaction potential between particles. This potential can be tuned using solutes such as multivalent salts and polymers with varying affinity for the colloids to create a hierarchy of attractions. Bacteriophage viruses are a naturally occurring type of colloidal particle with characteristics difficult to achieve by laboratory synthesis. They are monodisperse, nanometers in size, and have heterogeneous surface charge distributions. We use the MS2 and Qbeta bacteriophages (diameters 27-28nm) to understand the interplay between different attraction mechanisms on nanometer-sized colloids. Small Angle X-ray Scattering (SAXS) is used to characterize the inter-particle interaction between colloidal viruses using several polymer species and different salt types.

  9. Les Applications Therapeutiques Des Lasers

    NASA Astrophysics Data System (ADS)

    Brunetaud, J. M.; Mordon, S.; Bourez, J.; Mosquet, L.; Moschetto, Y.

    1984-03-01

    C'est de tres loin le mecanisme predominant dans les applications therapeutiques du laser. En concentrant le flux lumineux sur une surface redui-te, le laser chauffe localement les tissus qui se retractent (coagulation) pour etre elimines ensuite (detersion) ; si on chauffe plus intensement, les tissus peuvent etre volatilises. La coagulation est utilisee soit pour detruire de petits phenomenes tumoraux qui seront elimines lors du processus de detersion, soit pour arreter une hemorragie (hemo-stase) ; dans ce cas la retraction thermique des tissus va provoquer la fermeture de la lumiere des vaisseaux qui seront secondairement obliteres par des caillots formes sur place (thrombose). Par volatilisation it est possible de detruire des phenomenes tumoraux plus importants que ceux at-teints lors d'une simple coagulation. Si la zone volatilisee est tres etroite (de 0,1 a 1 mm) on obtient un effet de coupe avec une excellente hemostase au niveau des berges. Certes ces deux processus - coagulation et volatilisation - peuvent etre obtenus par d'autres procedes : echauffement par contact (sonde thermique) ou effet Joule (courant electrique haute frequence). Le laser a l'avantage de ne necessiter aucun contact mecanique entre le vecteur d'energie et les tissus ; on peut alors predire correctement la repartition d'energie au niveau des tissus et les effets sont tres repro-ductibles. Par ailleurs, l'absorption tissulaire variant considerablement avec la longueur d'onde on peut choisir la source laser en fonction des effets desires.

  10. Colloid Transport and Retention in Fractured Media

    SciTech Connect

    McCarthy, J.F.

    2001-02-01

    The goal of this project was to identify the chemical and physical factors that control the transport of colloids in fractured materials, and develop a generalized capability to predict colloid attachment and detachment based on hydraulic factors (head, flow rate), physical processes and structure (fracture aperture, matrix porosity), and chemical properties (surface properties of colloids, solution chemistry, and mineralogy of fracture surfaces). Both aqueous chemistry and physical structure of geologic formations influenced transport. Results of studies at all spatial scales reached consensus on the importance of several key controlling variables: (1) colloid retention is dominated by chemical conditions favoring colloid-wall interactions; (2) even in the presence of conditions favorable to colloid collection, deposited colloids are remobilized over long times and this process contributes substantially to the overall extent of transport; (3) diffusive exchange between water-conducting fractures and finer fractures and pores acts to ''buffer'' the effects of the major fracture network structure, and reduces predictive uncertainties. Predictive tools were developed that account for fundamental mechanisms of colloid dynamics in fracture geometry, and linked to larger-scale processes in networks of fractures. The results of our study highlight the key role of physical and hydrologic factors, and processes of colloid remobilization that are potentially of even greater importance to colloid transport in the vadose zone than in saturated conditions. We propose that this work be extended to focus on understanding vadose zone transport processes so that they can eventually be linked to the understanding and tools developed in our previous project on transport in saturated groundwater systems.

  11. Kinetically guided colloidal structure formation

    PubMed Central

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The self-organization of colloidal particles is a promising approach to create novel structures and materials, with applications spanning from smart materials to optoelectronics to quantum computation. However, designing and producing mesoscale-sized structures remains a major challenge because at length scales of 10–100 μm equilibration times already become prohibitively long. Here, we extend the principle of rapid diffusion-limited cluster aggregation (DLCA) to a multicomponent system of spherical colloidal particles to enable the rational design and production of finite-sized anisotropic structures on the mesoscale. In stark contrast to equilibrium self-assembly techniques, kinetic traps are not avoided but exploited to control and guide mesoscopic structure formation. To this end the affinities, size, and stoichiometry of up to five different types of DNA-coated microspheres are adjusted to kinetically control a higher-order hierarchical aggregation process in time. We show that the aggregation process can be fully rationalized by considering an extended analytical DLCA model, allowing us to produce mesoscopic structures of up to 26 µm in diameter. This scale-free approach can easily be extended to any multicomponent system that allows for multiple orthogonal interactions, thus yielding a high potential of facilitating novel materials with tailored plasmonic excitation bands, scattering, biochemical, or mechanical behavior. PMID:27444018

  12. Synthesis of substantially monodispersed colloids

    NASA Technical Reports Server (NTRS)

    Klabunde, Kenneth J. (Inventor); Stoeva, Savka (Inventor); Sorensen, Christopher (Inventor)

    2003-01-01

    A method of forming ligated nanoparticles of the formula Y(Z).sub.x where Y is a nanoparticle selected from the group consisting of elemental metals having atomic numbers ranging from 21-34, 39-52, 57-83 and 89-102, all inclusive, the halides, oxides and sulfides of such metals, and the alkali metal and alkaline earth metal halides, and Z represents ligand moieties such as the alkyl thiols. In the method, a first colloidal dispersion is formed made up of nanoparticles solvated in a molar excess of a first solvent (preferably a ketone such as acetone), a second solvent different than the first solvent (preferably an organic aryl solvent such as toluene) and a quantity of ligand moieties; the first solvent is then removed under vacuum and the ligand moieties ligate to the nanoparticles to give a second colloidal dispersion of the ligated nanoparticles solvated in the second solvent. If substantially monodispersed nanoparticles are desired, the second dispersion is subjected to a digestive ripening process. Upon drying, the ligated nanoparticles may form a three-dimensional superlattice structure.

  13. Gel trapping of dense colloids.

    PubMed

    Laxton, Peter B; Berg, John C

    2005-05-01

    Phase density differences in sols, foams, or emulsions often lead to sedimentation or creaming, causing problems for materials where spatial uniformity over extended periods of time is essential. The problem may be addressed through the use of rheology modifiers in the continuous phase. Weak polymer gels have found use for this purpose in the food industry where they appear to be capable of trapping dispersoid particles in a three-dimensional matrix while displaying water-like viscosities at low shear. Attempts to predict sedimentation stability in terms of particle properties (size, shape, density difference) and gel yield stress have led to qualitative success for suspensions of large particles. The effect of particle size, however, in particular the case in which colloidal dimensions are approached, has not been investigated. The present work seeks to determine useful stability criteria for colloidal dispersions in terms of readily accessible viscoelastic descriptors. Results are reported for systems consisting of 12 microm poly(methyl methacrylate) (PMMA) spheres dispersed in aqueous gellan gum. Monovalent salt concentration is varied to control rheological properties, and sedimentation/centrifugation experiments are performed to determine dispersion stability. Necessary conditions for stability consist of a minimum yield stress together with a value of tan delta less than unity.

  14. Plutonium and Cesium Colloid Mediated Transport

    NASA Astrophysics Data System (ADS)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  15. A generalized description of aquatic colloidal interactions: The three-colloidal component approach

    SciTech Connect

    Buffle, J.; Wilkinson, K.J.; Stoll, S.; Filella, M.; Zhang, J.

    1998-10-01

    This paper describes several possible interactions among the different types of organic and inorganic aquatic colloids, based on present knowledge of their size, electric charge, and conformation. The physico-chemical properties of the different groups of colloids are described. Emphasis is placed on the various types of organic components, including fulvic compounds. Subsequently, the role of each colloid class is discussed with respect to homoaggregation (aggregation within a given colloid class) and heteroaggregation (aggregation among different colloid types). On the basis of a synthesis of literature reports, microscopic observations of natural colloids, experimental results obtained with model systems, and numerical simulations, it is concluded that the formation of aggregates in aquatic systems can be understood by mainly considering the roles of three types of colloids: (1) compact inorganic colloids; (2) large, rigid biopolymers; and (3) either the soil-derived fulvic compounds or their equivalent in pelagic waters, aquagenic refractory organic matter. In most natural aquatic systems, the small fulvic compounds will stabilize the inorganic colloids whereas the rigid biopolymers will destabilize them. The concentration of stable colloids in a particular aquatic system will depend on the relative proportions of these three components.

  16. Fluid-fluid demixing curves for colloid-polymer mixtures in a random colloidal matrix

    NASA Astrophysics Data System (ADS)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2011-12-01

    We study fluid-fluid phase separation in a colloid-polymer mixture adsorbed in a colloidal porous matrix close to the θ point. For this purpose we consider the Asakura-Oosawa model in the presence of a quenched matrix of colloidal hard spheres. We study the dependence of the demixing curve on the parameters that characterize the quenched matrix, fixing the polymer-to-colloid size ratio to 0.8. We find that, to a large extent, demixing curves depend only on a single parameter f, which represents the volume fraction which is unavailable to the colloids. We perform Monte Carlo simulations for volume fractions f equal to 40% and 70%, finding that the binodal curves in the polymer and colloid packing-fraction plane have a small dependence on disorder. The critical point instead changes significantly: for instance, the colloid packing fraction at criticality increases with increasing f. Finally, we observe for some values of the parameters capillary condensation of the colloids: a bulk colloid-poor phase is in chemical equilibrium with a colloid-rich phase in the matrix.

  17. Colloid Transport in Saturated Porous Media: Elimination of Attachment Efficiency in a New Colloid Transport Model

    SciTech Connect

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-05-11

    A new colloid transport model is introduced that is conceptually simple but captures the essential features of complicated attachment and detachment behavior of colloids when conditions of secondary minimum attachment exist. This model eliminates the empirical concept of collision efficiency; the attachment rate is computed directly from colloid filtration theory. Also, a new paradigm for colloid detachment based on colloid population heterogeneity is introduced. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of colloids that attach irreversibly and (2) the rate at which reversibly attached colloids leave the surface. These two parameters were correlated to physical parameters that control colloid transport such as the depth of the secondary minimum and pore water velocity. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport. This model can be extended to heterogeneous systems characterized by both primary and secondary minimum deposition by simply increasing the fraction of colloids that attach irreversibly.

  18. Polymer-Induced Depletion Interaction and Its Effect on Colloidal Sedimentation in Colloid-Polymer Mixtures

    NASA Technical Reports Server (NTRS)

    Tong, Penger

    1996-01-01

    In this paper we focus on the polymer-induced depletion attraction and its effect on colloidal sedimentation in colloid-polymer mixtures. We first report a small angle neutron scattering (SANS) study of the depletion effect in a mixture of hard-sphere-like colloid and non-adsorbing polymer. Then we present results of our recent sedimentation measurements in the same colloid-polymer mixture. A key parameter in controlling the sedimentation of heavy colloidal particles is the interparticle potential U(tau), which is the work required to bring two colloidal particles from infinity to a distance tau under a give solvent condition. This potential is known to affect the average settling velocity of the particles and experimentally one needs to have a way to continuously vary U(tau) in order to test the theory. The interaction potential U(tau) can be altered by adding polymer molecules into the colloidal suspension. In a mixture of colloid and non-adsorbing polymer, the potential U(tau) can develop an attractive well because of the depletion effect, in that the polymer chains are expelled from the region between two colloidal particles when their surface separation becomes smaller than the size of the polymer chains. The exclusion of polymer molecules from the space between the colloidal particles leads to an unbalanced osmotic pressure difference pushing the colloidal particles together, which results in an effective attraction between the two colloidal particles. The polymer-induced depletion attraction controls the phase stability of many colloid-polymer mixtures, which are directly of interest to industry.

  19. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.

    PubMed

    Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Salvucci, Anthony E; Geohring, Larry D; Hay, Anthony G; Parlange, Jean-Yves; Steenhuis, Tammo S

    2010-07-01

    Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.

  20. Dynamic Release and Transport of Colloids and Colloidal Organic Carbon in a Seasonally Saturated Wetland

    NASA Astrophysics Data System (ADS)

    Yan, J.; Manelski, R.; Vasilas, B.; Jin, Y.

    2016-12-01

    Wetlands play an important role in the global carbon cycle because their dynamic redox conditions control soil carbon retention, transformation, and release. Reduction in wetlands induces iron dissolution, pH shift and hence promotes release and mobilization of mineral colloids and colloid-associated-organic carbon (OC). The mobilized colloids and colloidal OC transport from wetlands to streams or rivers through both surface runoff and subsurface groundwater flow, therefore they serve as important carbon sources and support biological functions in the downstream aquatic ecosystems. However, due to their small size, i.e. 1-1000 nm, low concentration, and their highly sensitive nature to exposure of oxygen, the role of mobile colloids and colloidal OC in wetland carbon cycles have not been identified in most previous studies. In this study, we collected soil water from wetland inlet to outlet at different depths and monitored changes in water table, OC, colloid concentrations, and shifting in solution chemistry, i.e. pH, electrical conductivity (EC), redox potential (Eh), Fe(II) concentrations. Results demonstrated that concentrations of colloids and OC in the soil water from shallow wells significantly changed with fluctuating water table due to evapotranspiration and storm event and were strongly related to pH and Fe(II) concentrations. On the contrary, EC largely influenced subsurface colloid and OC concentrations but the pH effect was limited. Additionally, colloid and OC concentrations consistently increased from wetland inlet to outlet at both shallow and deep wells, suggesting colloids and OC exported through both surface and subsurface flow paths. These findings have implications for colloidal release and colloidal-facilitated-transport of carbon in redox and hydrologic dynamic environments.

  1. Les plaies du tendon patellaire

    PubMed Central

    Mechchat, Atif; Elidrissi, Mohammed; Mardy, Abdelhak; Elayoubi, Abdelghni; Shimi, Mohammed; Elibrahimi, Abdelhalim; Elmrini, Abdelmajid

    2014-01-01

    Les plaies du tendon patellaire sont peu fréquentes et sont peu rapportés dans la littérature, contrairement aux ruptures sous cutanées. Les sections du tendon patellaire nécessitent une réparation immédiate afin de rétablir l'appareil extenseur et de permettre une récupération fonctionnelle précoce. A travers ce travail rétrospectif sur 13 cas, nous analysons les aspects épidémiologiques, thérapeutiques et pronostiques de ce type de pathologie en comparant différents scores. L’âge moyen est de 25 ans avec une prédominance masculine. Les étiologies sont dominées par les accidents de la voie publique (68%) et les agressions par agent tranchant (26%) et contendant (6 %). Tous nos patients ont bénéficié d'un parage chirurgical avec suture tendineuse direct protégée par un laçage au fils d'aciers en légère flexion. La rééducation est débutée après sédation des phénomènes inflammatoires. Au dernier recul les résultats sont excellents et bon à 92%. Nous n'avons pas noté de différence de force musculaire et d'amplitude articulaire entre le genou sain et le genou lésé. Les lésions ouvertes du tendon patellaire est relativement rare. La prise en charge chirurgicale rapide donne des résultats assez satisfaisants. La réparation est généralement renforcée par un semi-tendineux, synthétique ou métallique en forme de cadre de renfort pour faciliter la réadaptation et réduire le risque de récidive après la fin de l'immobilisation. PMID:25170379

  2. Photochemical manipulation of colloidal structures in liquid-crystal colloids

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Tabe, Y.; Yokoyama, H.

    2007-05-01

    We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.

  3. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  4. Structural evolution of Colloidal Gels under Flow

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  5. Surfactants with colloids: adsorption or absorption?

    PubMed

    Smith, Gregory N; Grillo, Isabelle; Rogers, Sarah E; Eastoe, Julian

    2015-07-01

    The interaction of Aerosol OT (AOT) surfactant with systems of model colloids in nonaqueous solvents (water-in-oil microemulsions, surfactant-stabilized silica organosols, and sterically-stabilized PMMA latexes) is expected to be system specific. Two limiting cases are expected: adsorption, with surfactant located at the particle surfaces, or absorption, with surfactant incorporated into the particle cores. Two approaches have been used to determine how AOT is distributed in the colloidal systems. The stability of the colloids in different alkanes (heptane to hexadecane, including mixtures) has been studied to determine any effects on the colloid surfaces. Contrast-variation small-angle neutron scattering (SANS) measurements of the colloid cores and of AOT-colloid mixtures in colloid-matched solvent have also been performed. Normalization to account for the different scattering intensities and different particle radii have been used to enable a system-independent comparison. AOT in water-in-oil microemulsions and surfactant-stabilized silica organosols is determined to be adsorbed, whereas, surprisingly, AOT in sterically-stabilized PMMA latexes is found to be absorbed. Possible origins of these differences are discussed. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. [The colloid milium: An observation associated with trichinosis].

    PubMed

    Okhremchuk, Ilona; Abed, Safia; Nguyen, Anh Tuan; Brandone, Nicolas; Morand, Jean-Jacques

    2016-04-01

    The colloid milium has four clinical forms: adult colloid milium, juvenile colloid milium, paracolloid (or nodular colloid degeneration) and pigmented colloid milium. We report the case of an adult colloid milium in a man of 56, who presented episodes of diffuse pruritus associated with myalgia and digestive disorders, indicative of trichinosis. He also developed gradually over the past 10 years, yellowish injuries in the mandibles and neck for whom histology objectified a colloid milium. Etiology and treatment are still unknown; association with a trichinosis is probably coincidental.

  7. Oxyhydroxy Silicate Colloids: A New Type of Waterborne Actinide(IV) Colloids

    PubMed Central

    Weiss, Stephan; Hennig, Christoph; Brendler, Vinzenz; Ikeda‐Ohno, Atsushi

    2016-01-01

    Abstract At the near‐neutral and reducing aquatic conditions expected in undisturbed ore deposits or in closed nuclear waste repositories, the actinides Th, U, Np, and Pu are primarily tetravalent. These tetravalent actinides (AnIV) are sparingly soluble in aquatic systems and, hence, are often assumed to be immobile. However, AnIV could become mobile if they occur as colloids. This review focuses on a new type of AnIV colloids, oxyhydroxy silicate colloids. We herein discuss the chemical characteristics of these colloids and the potential implication for their environmental behavior. The binary oxyhydroxy silicate colloids of AnIV could be potentially more mobile as a waterborne species than the well‐known mono‐component oxyhydroxide colloids. PMID:27957406

  8. The Ongoing Controversy: Crystalloids Versus Colloids.

    PubMed

    Pierce, Janet D; Shen, Qiuhua; Thimmesch, Amanda

    2016-01-01

    There is still much debate over the optimal fluid to use for resuscitation. Different studies have indicated either crystalloid or colloid is the ideal intravenous solution to administer, based on mortality or various physiological parameters. Older studies found differences between crystalloids and colloids. However, with the evolving science of fluid administration, more recent studies have shown no differences in patient outcomes. This review article will provide an overview of these substances and discuss the advantages, disadvantages, and implications for giving crystalloids and colloids in clinical practice.

  9. Aggregation and Gelation of Anisometric Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Mohraz, Ali; Solomon, Michael J.

    2002-11-01

    The quiescent and flow-induced structure and dynamics of colloidal aggregates and gels of anisometric particles are studied by means of static and dynamic light scattering. Ground-based studies of weak gels are possible due to the submicron size of the boehmite rod suspensions investigated; however, microgravity conditions would be required for more general studies. The properties of colloidal rod suspensions are compared to typical properties of spherical particle gels to understand the role of anisotropic excluded volume on gel structure and dynamics. The structure and dynamics of colloidal aggregates and gels have long been of scientific and technological interest; however, most research has focused on suspensions of spherical particles. Yet, aggregates and gels of anisometric particles - colloidal rods and platelets - may exhibit structure and dynamics that are quite different from spherical colloids. For example, suspensions of colloidal rods gel at extremely low volume fractions and form birefringent sediments. The rheology of solutions and gels of colloidal rods and platelets differs dramatically from that of colloidal spheres. Scientifically, studies with anisometric particles offer the opportunity to assess the role of anisotropic excluded volume and particle orientation in aggregates and gels. Technologically, anisometric colloids find use in a wide range of materials such as ceramics, polymer nanocomposites, well-bore drilling fluids and magnetic storage media. Model colloidal boehmite rods of approximately monodisperse dimension and aspect ratio have been synthesized according to the method of Philipse and coworkers. In aqueous solution, these materials undergo gelation upon the addition of divalent salt. By means of a novel grafting reaction and procedure for solvent refractive index matching, the rods have also been dispersed in mixed organic solvents. In this case, gelation is induced by means of depletion interaction. We report the effect of

  10. Food colloids research: historical perspective and outlook.

    PubMed

    Dickinson, Eric

    2011-06-09

    Trends and past achievements in the field of food colloids are reviewed. Specific mention is made of advances in knowledge and understanding in the areas of (i) structure and rheology of protein gels, (ii) properties of adsorbed protein layers, (iii) functionality derived from protein-polysaccharide interactions, and (iv) oral processing of food colloids. Amongst ongoing experimental developments, the technique of particle tracking for monitoring local dynamics and microrheology of food colloids is highlighted. The future outlook offers exciting challenges with expected continued growth in research into digestion processes, encapsulation, controlled delivery, and nanoscience.

  11. Linear colloidal crystal arrays by electrohydrodynamic printing

    NASA Astrophysics Data System (ADS)

    Poon, H. F.; Saville, D. A.; Aksay, I. A.

    2008-09-01

    We use electrohydrodynamic jets of colloidal suspensions to produce arrays of colloidal crystalline stripes on surfaces. A critical factor in maintaining a stable jet is the distance of separation between the nozzle and the surface. Colloidal crystalline stripes are produced as two wetting lines of the deployed suspension merge during drying. To ensure that the two wetting lines merge, the "deployed-line-width" to "particle size" ratio is kept below a critical value so that the capillary forces overcome the frictional forces between the particles and the substrate.

  12. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.

  13. Transport in charged colloids driven by thermoelectricity.

    PubMed

    Würger, Alois

    2008-09-05

    We study the thermal diffusion coefficient D{T} of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

  14. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013240 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, conducts a session with the Binodal Colloidal Aggregation Test?4 (BCAT-4) in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  15. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013244 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, uses a computer during a session with the Binodal Colloidal Aggregation Test?4 (BCAT-4) in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  16. BCAT (Binary Colloid Alloy Test) experiment documentation

    NASA Image and Video Library

    2009-05-02

    ISS019-E-013241 (2 May 2009) --- Astronaut Michael Barratt, Expedition 19/20 flight engineer, prepares to photograph Binodal Colloidal Aggregation Test?4 (BCAT-4) experiment samples in the Destiny laboratory of the International Space Station. This experiment studies the long-term behavior of colloids ? fine particles suspended in a fluid in a microgravity environment, where the effects of sedimentation and convention are removed. Results from this study may lead to new colloid materials with applications in the communications and computer industries for switches, displays and optical devices with properties that could rival those of lasers.

  17. Colloidal QDs-polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  18. Carbon Nanomaterials as Antibacterial Colloids

    PubMed Central

    Maas, Michael

    2016-01-01

    Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials. PMID:28773737

  19. Porous Networks Through Colloidal Templates

    NASA Astrophysics Data System (ADS)

    Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich

    Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.

  20. Colloidal Synthesis of Gold Semishells

    PubMed Central

    Rodríguez-Fernández, Denis; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Liz-Marzán, Luis M

    2012-01-01

    This work describes a novel and scalable colloid chemistry strategy to fabricate gold semishells based on the selective growth of gold on Janus silica particles (500 nm in diameter) partly functionalized with amino groups. The modulation of the geometry of the Janus silica particles allows us to tune the final morphology of the gold semishells. This method also provides a route to fabricating hollow gold semishells through etching of the silica cores with hydrofluoric acid. The optical properties were characterized by visible near-infrared (vis-NIR) spectroscopy and compared with simulations performed using the boundary element method (BEM). These revealed that the main optical features are located beyond the NIR region because of the large core size. PMID:24551496

  1. Colloids at NAPL-Interfaces

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Metz, Christian

    2014-05-01

    Non-aqueous phase liquids in subsurface are relevant in the scope of contaminated sites as well as for enhanced oil recovery. In both cases colloids and engineered nanoparticles are applied to increase the efficiency of NAPL removal. Particle tracking experiments using fluoresecent latex beads and opaque particles have been run in micromodels mimicking the pore structure of subsurface media. The results show that the interface between NAPL and water is highly dynamic, especially in its early stage. There is a distinct circular flow pattern at the interface, effectively increasing the interfacial area. Concentration gradients measured with Raman Microspectrometry at low Peclet numbers suggest that the mass transfer of dissolved contaminants from the NAPL into the water is highly affected by the interface dynamics. On the other hand the interfaces themselves are less accessible, which has implications for the remediation of contaminated sites.

  2. Cracking in Drying Colloidal Films

    NASA Astrophysics Data System (ADS)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  3. Diffusiophoretic Focusing of Suspended Colloids

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Nery-Azevedo, Rodrigo; Abdel-Fattah, Amr I.; Squires, Todd M.

    2016-12-01

    Using a microfluidic system to impose and maintain controlled, steady-state multicomponent p H and electrolyte gradients, we present systems where the diffusiophoretic migration of suspended colloids leads them to focus at a particular position, even in steady-state gradients. We show that naively superpositing effects of each gradient may seem conceptually and qualitatively reasonable, yet is invalid due to the coupled transport of these multicomponent electrolytes. In fact, reformulating the classic theories in terms of the flux of each species (rather than local gradients) reveals rather stringent conditions that are necessary for diffusiophoretic focusing in steady gradients. Either particle surface properties must change as a function of local composition in solution (akin to isoelectric focusing in electrophoresis), or chemical reactions must occur between electrolyte species, for such focusing to be possible. The generality of these findings provides a conceptual picture for understanding, predicting, or designing diffusiophoretic systems.

  4. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.

  5. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  6. First ISS crew, wearing LES

    NASA Image and Video Library

    2000-05-12

    Photographic documentation showing the first crew of the ISS posing together in bldg. 9N during descent training, wearing orange Launch & Entry Suits (LES) and clasping right hands in a sign of unity. From left to right: Sergei Krikalev, William Shepherd and Yuri Gidzenko.

  7. A colloidal quantum dot spectrometer

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  8. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    SciTech Connect

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  9. Polarity inversion of ζ-potential in concentrated colloidal dispersions.

    PubMed

    Manzanilla-Granados, Héctor M; Jiménez-Ángeles, Felipe; Lozada-Cassou, Marcelo

    2011-10-27

    A concentrated colloidal dispersion is studied by applying an integral equations theory to the colloidal primitive model fluid. Important effects, attributed to large size and charge and to the finite concentration of colloidal particles, are found. We observe a polarity inversion of ζ-potential for concentrated colloidal dispersions, while it is not present for a single colloidal particle at infinite dilution. An excellent qualitative agreement between our theoretical predictions and our computer simulations is observed.

  10. Solid colloids with surface-mobile linkers.

    PubMed

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  11. A Course in Colloid and Surface Science.

    ERIC Educational Resources Information Center

    Scamehorn, John F.

    1984-01-01

    Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)

  12. Self-similarity in active colloid motion

    NASA Astrophysics Data System (ADS)

    Constant, Colin; Sukhov, Sergey; Dogariu, Aristide

    The self-similarity of displacements among randomly evolving systems has been used to describe the foraging patterns of animals and predict the growth of financial systems. At micron scales, the motion of colloidal particles can be analyzed by sampling their spatial displacement in time. For self-similar systems in equilibrium, the mean squared displacement increases linearly in time. However, external forces can take the system out of equilibrium, creating active colloidal systems, and making this evolution more complex. A moment scaling spectrum of the distribution of particle displacements quantifies the degree of self-similarity in the colloid motion. We will demonstrate that, by varying the temporal and spatial characteristics of the external forces, one can control the degree of self-similarity in active colloid motion.

  13. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles.

    PubMed

    Xu, Sheng-Liang; Cui, Hua

    2007-01-01

    Platinum colloids prepared by the reduction of hexachloroplatinic acid with citrate in the presence of different stabilizers were found to enhance the chemiluminescence (CL) of the luminol-H(2)O(2) system, and the most intensive CL signals were obtained with citrate-protected Pt colloids synthesized with citrate as both a reductant and a stabilizer. Light emission was intense and reproducible. Transmission electron microscopy and X-ray photoelectron spectroscopy studies were conducted before and after the CL reaction to investigate the possible CL enhancement mechanism. It is suggested that this CL enhancement is attributed to the catalysis of platinum nanoparticles, which could accelerate the electron-transfer process and facilitate the CL radical generation in aqueous solution. The effects of Pt colloids prepared by the hydroborate reduction were also investigated. The application of the luminol-H(2)O(2)-Pt colloids system was exploited for the determination of compounds such as uric acid, ascorbic acid, phenols and amino acids.

  14. Computer simulations of charged colloids in confinement.

    PubMed

    Puertas, Antonio M; de las Nieves, F Javier; Cuetos, Alejandro

    2015-02-15

    We study by computer simulations the interaction between two similarly charged colloidal particles confined between parallel planes, in salt free conditions. Both the colloids and ions are simulated explicitly, in a fine-mesh lattice, and the electrostatic interaction is calculated using Ewald summation in two dimensions. The internal energy is measured by setting the colloidal particles at a given position and equilibrating the ions, whereas the free energy is obtained introducing a bias (attractive) potential between the colloids. Our results show that upon confining the system, the internal energy decreases, resulting in an attractive contribution to the interaction potential for large charges and strong confinement. However, the loss of entropy of the ions is the dominant mechanism in the interaction, irrespective of the confinement of the system. The interaction potential is therefore repulsive in all cases, and is well described by the DLVO functional form, but effective values have to be used for the interaction strength and Debye length.

  15. A Course in Colloid and Surface Science.

    ERIC Educational Resources Information Center

    Scamehorn, John F.

    1984-01-01

    Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)

  16. Hydrodynamic interactions between pairs of colloidal spheres

    NASA Astrophysics Data System (ADS)

    Parmley, Samantha J.; Ou-Yang, H. Daniel

    1998-03-01

    The use of optical tweezers is becoming a standard technique for probing the colloidal environment and much recent work has been focused on colloidal interactions. We report on a novel method for studying the pair interaction between colloidal particles. We currently use phase lock-in methods to make dynamic measurements of a microsphere held and oscillated by laser tweezers. By using a second tweezers to fix a particle near the oscillating particle one can measure the pair interaction by observing the change in the dynamics. In this presentation we will demonstrate the capability of this method by measurement of the hydrodynamic interaction between pairs of polystyrene microspheres as a function of interparticle spacing. We expect to extend this technique to measure general colloidal interactions.

  17. Thin film interference of colloidal thin films.

    PubMed

    Cong, Hailin; Cao, Weixiao

    2004-09-14

    A stairlike colloidal crystal thin film composed of poly(styrene-methyl methacrylate-acrylic acid) (P(St-MMA-AA)) monodispersed colloids was fabricated on an inclined silicon substrate. Different bright colors were observed on the various parts of the film with different layers as white light irradiated perpendicularly on it. The relationship between the colors and layers of the film was investigated and discussed according to the principle of thin film interference. On the basis of the phenomenon of thin film interference, a one-layer colloidal film having uniform color was researched and it would display diverse colors before and after swollen by styrene (St). A circular stairlike colloidal film was achieved to mimic the colors of the peacock tail feather.

  18. Colloidal suspension simulates linear dynamic pressure profile

    NASA Technical Reports Server (NTRS)

    Mc Cann, R. J.

    1966-01-01

    Missile nose fairings immersed in colloidal suspension prepared with various specific gravities simulate pressure profiles very similar to those encountered during reentry. Stress and deflection conditions similar to those expected during atmospheric reentry are thus attained in the laboratory.

  19. Melting Mechanisms of 3D Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Alsayed, A. M.

    2005-03-01

    We study the melting mechanisms of 3D colloidal crystals using aqueous suspensions of thermally responsive NIPA microgel colloidal particles. Below 32 ^oC, the particle radius decreases approximately linearly with increasing temperature. We use this effect to tune the volume fraction of nearly hard-sphere aqueous NIPA colloidal suspensions from 0.74 to 0.54. Using video tracking microscopy, we measured the Lindemann parameter of particles within the crystal as a function of temperature. Interestingly, we find that melting of the 3D colloidal crystals starts at grain boundaries and free surfaces, rather than isolated vacancies or dislocations. Very near the melting temperature, the Lindemann parameter for particles near the grain boundaries and free surfaces was ˜0.16; the parameter decreased approximately exponentially with distance into the bulk crystal. These works has been partially supported by NSF through MRSEC DMR-0203378 and DMR-079909 and by NASA grant NAG8- 2172.

  20. Entropically Driven Colloidal Assembly in Emulsions

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui; Lai, Liang-Jie; Chen, Hui

    2007-03-01

    Using the techniques developed by Manoharan [1], we encapsulate small numbers of colloidal microspheres and polymers in oil-in-water emulsion droplets, remove the oil and generate colloidal clusters covered with polymers. We observe two types of arrangement in the clusters. The first kind is the same as the type reported in [1] of which the clusters are formed without polymer. The second kind is the same as the structure reported in [2] of which the clusters are formed by binary colloidal microspheres. The polymers we put in the emulsions induce depletion interactions between colloidal particles. We will show that two types of structures are from the interplay between the depletion interactions and surface tension. [1] Manoharan, Elsesser, Pine, Science 301, 483(2003). [2] Cho et al. JACS 127, 15968 (2005).

  1. Solid colloids with surface-mobile linkers

    NASA Astrophysics Data System (ADS)

    van der Meulen, Stef A. J.; Helms, Gesa; Dogterom, Marileen

    2015-06-01

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  2. Quantum oscillations in magnetically doped colloidal nanocrystals.

    PubMed

    Ochsenbein, Stefan T; Gamelin, Daniel R

    2011-02-01

    Progress in the synthesis of colloidal quantum dots has recently provided access to entirely new forms of diluted magnetic semiconductors, some of which may find use in quantum computation. The usefulness of a spin qubit is defined by its Rabi frequency, which determines the operation time, and its coherence time, which sets the error correction window. However, the spin dynamics of magnetic impurity ions in colloidal doped quantum dots remain entirely unexplored. Here, we use pulsed electron paramagnetic resonance spectroscopy to demonstrate long spin coherence times of ∼0.9 µs in colloidal ZnO quantum dots containing the paramagnetic dopant Mn(2+), as well as Rabi oscillations with frequencies ranging between 2 and 20 MHz depending on microwave power. We also observe electron spin echo envelope modulations of the Mn(2+) signal due to hyperfine coupling with protons outside the quantum dots, a situation unique to the colloidal form of quantum dots, and not observed to date.

  3. Colloidal alloys with preassembled clusters and spheres

    NASA Astrophysics Data System (ADS)

    Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J.

    2017-06-01

    Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

  4. Hemorrhagic Colloid Cyst Presenting with Acute Hydrocephaly

    PubMed Central

    Akhavan, Reza; Zandi, Behrouz; Pezeshki-Rad, Masoud; Farrokh, Donya

    2017-01-01

    Colloid cysts are benign slow-growing cystic lesions located on the roof of the third ventricle that usually present with symptoms related to gradual rise of intracranial pressure. They mostly remain asymptomatic and sometimes grow progressively and cause diverse symptoms associated with increased intracranial pressure such as headache, diplopia, and sixth cranial nerve palsy. Here we report a 47-year-old female who presented to the emergency department with acute severe headache and nausea/vomiting. On MRI examination acute hydrocephaly due to hemorrhagic colloid cyst was detected. Acute hemorrhage in colloid cysts is extremely rare and may present with symptoms of acute increase in the intracranial pressure. Intracystic hemorrhage is very rarely reported as a complication of colloid cyst presenting with paroxysmal symptoms of acute hydrocephaly. PMID:28210514

  5. Accelerated purification of colloidal silica sols

    NASA Technical Reports Server (NTRS)

    Bahnsen, E. B.; Garofalini, S.; Pechman, A.

    1979-01-01

    Accelerated purification process for colloidal sols using heat/deionization scheme, sharply reduces waiting time between deionization cycles from several months to a few days. Process produces same high purity silica sols as conventional methods.

  6. Sulfonated nanoporous colloidal films and membranes

    NASA Astrophysics Data System (ADS)

    Smith, Joanna Jane

    The objective of this thesis is to describe the preparation and investigation of a new class of proton-conducting membrane materials, namely, nanoporous colloidal membranes whose proton conductivity results from the nanopore surface modification with organic molecules carrying acid functionalities. Both the proton transport and ion transport were studied in nanoporous silica colloidal crystals that were surface modified with sulfonic groups. First, the transport of ions was studied through sulfonated silica colloidal films that were supported on platinum electrodes using cyclic voltammetry. The surface of self-assembled nanoporous silica colloidal crystalline films was sulfonated using 1,3-propanesultone. We found that the flux of anions through the sulfonated colloidal films is reduced, while the flux of cations is increased, compared to the unmodified colloidal films. Second, the proton transport in free-standing assemblies of surface-sulfonated silica nanospheres, either randomly packed or self-assembled into a close-packed arrangement, were studied. It was demonstrated that colloidal assemblies prepared using surface-sulfonated silica nanospheres posses proton conductivity that depends on the ordering of the material, temperature and relative humidity. Based on the comparison between the close-packed and disordered assemblies made of the same spheres, we conclude that the increase in structural organization of the self-assembled colloidal materials leads to increased proton conductivity and better water retention. Next free-standing colloidal membranes with a relatively large area and no mechanical defects were prepared by sintering silica colloidal films. The sintered membranes were then surface rehydroxylated, which restores the surface silanol groups, and then can be chemically modified. Finally, sintered self-assembled nanoporous silica colloidal crystals were modified with poly(sulfopropyl-methacrylate) (pSPM) and poly(stryrenesulfonic acid) (pSSA) brushes

  7. Advanced Colloids Experiment-1 (ACE-1)

    NASA Image and Video Library

    2013-07-22

    ISS036-E-023770 (22 July 2013) --- NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts science work with the ongoing experiment Advanced Colloids Experiment-1 (ACE-1) inside the Fluids Integrated Rack. The experiment observes colloids, microscopic particles evenly dispersed throughout materials, with the potential for manufacturing improved materials and products on Earth. Cassidy is working at the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.

  8. Colloidal models. A bit of history.

    PubMed

    Lyklema, Johannes

    2015-05-15

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro's number, development in the insight into driving forces for double layer formation, colloid stability, thin films, and thermodynamic approaches in interfacial electrochemistry. Some personal reminiscences of key players in the field are included, partly to illustrate historical developments. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Colloid milium: a rare cutaneous deposition disease.

    PubMed

    Rahman, Simeen Ber; Arfan Ul Bari; Mumtaz, Nadeem

    2008-04-01

    Colloid milium is a rare degenerative skin disorder known by the development of small translucent, yellowish brown pappular nodules or plaques, generally located in sun exposed areas. Clinically they are of two types, adult and juvenile type. We present a case of adult type Colloid milium in a 60 years old female patient with clinical and histological findings unmistakable of the condition. She was treated with IPL. (Intense Pulsed Light) laser following unsatisfactory response with dermabrasion.

  10. Coarse-graining polymers as soft colloids

    NASA Astrophysics Data System (ADS)

    Louis, A. A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; Meijer, E. J.; Hansen, J. P.

    2002-04-01

    We show how to coarse-grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid- or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  11. Colloids with high-definition surface structures

    PubMed Central

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  12. Self-replication with magnetic dipolar colloids.

    PubMed

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  13. Density functional theory of charged colloidal systems

    SciTech Connect

    Chan, Derek Y. C.

    2001-06-01

    The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E >59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Huckel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. >105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior.

  14. Inventions Utilizing Microfluidics and Colloidal Particles

    NASA Technical Reports Server (NTRS)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  15. Self-replication with magnetic dipolar colloids

    NASA Astrophysics Data System (ADS)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  16. Colloids with high-definition surface structures.

    PubMed

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-07-03

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

  17. Linked topological colloids in a nematic host

    PubMed Central

    Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2015-01-01

    Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization. PMID:25825765

  18. Tunable Time-Dependent Colloidal Interactions

    NASA Astrophysics Data System (ADS)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  19. Linked topological colloids in a nematic host.

    PubMed

    Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-04-14

    Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization.

  20. Colloids generation from metallic uranium fuel

    SciTech Connect

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  1. Estuarine mixing behavior of colloidal organic carbon and colloidal mercury in Galveston Bay, Texas.

    PubMed

    Lee, Seyong; Han, Seunghee; Gill, Gary A

    2011-06-01

    Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved). This phase speciation influences the fate and cycling of Hg in estuarine systems. However, limited information exists on the estuarine distribution of colloidal phase Hg, mainly due to the technical difficulties involved in measuring it. In the present study, we determined Hg and organic carbon levels from unfiltered, filtered (<0.45 μm), colloidal (10 kDa-0.45 μm), and truly dissolved (<10 kDa) fractions of Galveston Bay surface water in order to understand the estuarine mixing behavior of Hg species as well as interactions of Hg with colloidal organic matter. For the riverine end-member, the colloidal fraction comprised 43 ± 11% of the total dissolved Hg pool and decreased to 17 ± 8% in brackish water. In the estuarine mixing zone, dissolved Hg and colloidal organic carbon showed non-conservative removal behavior, particularly in the low salinity (<15 ppt) region. This removal may be caused by salt-induced coagulation of colloidal matter and consequent removal of dissolved Hg. The particle-water interaction, K(d) ([particulate Hg (mol kg(-1))]/[dissolved Hg (mol L(-1))]) of Hg decreased as particle concentration increased, while the particle-water partition coefficient based on colloidal Hg and the truly dissolved Hg fraction, K(c) ([colloidal Hg (mol kg(-1))]/[truly dissolved Hg (mol L(-1))]) of Hg remained constant as particle concentration increased. This suggests that the particle concentration effect is associated with the amount of colloidal Hg, increasing in proportion to the amount of suspended particulate matter. This work demonstrates that, colloidal organic matter plays an important role in the transport, particle-water partitioning, and removal of dissolved Hg in estuarine waters.

  2. Colloid's influences on microalgae growth as a potential environmental factor

    NASA Astrophysics Data System (ADS)

    Zhao, Xinhuai; Zhang, Zhengbin; Liu, Liansheng

    2003-09-01

    The role of colloid as “colloid pump” in the ocean is well known. The important influence of colloid in seawater on the growth of microalga was found in our 1999 2000 study. Colloid concentrates were obtained by employing a cross-flow filtration system to ultrafilter seawater (which had been pre-filtrated by 0.45 μm acetate cellulose membrane) successively with different membranes. Ultrafiltration retentions (we called them colloid concentrates) together with control sample (seawater without colloid) were then inoculated with two species of microalgae and cultivated in selected conditions. Monitoring of microalgae growth during cultivation showed that all colloid concentrates had obvious influence on the growth of the microalgae studied. Addition of Fe(OH)3 colloid or organic colloid (protein or carbohydrate) to the control sample enhanced the microalgae’s growth.

  3. Equilibrium sedimentation profile of dilute, salt-free charged colloids.

    PubMed

    Wang, Tzu-Yu; Li, Hsien-Tsung; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2008-11-28

    The sedimentation profile of a dilute colloidal solution follows the barometric distribution owing to the balance between gravitational force and thermal fluctuation. However, the electrostatic interactions may lead to significant deviation even in the low volume fraction limit (e.g., 10(-5)). On the basis of Monte Carlo simulations for a dilute, salt-free colloidal dispersion, five regimes can be identified through the resulting colloidal sedimentation profile and the counterion distribution. The electrostatic interactions depends on the Coulomb strength E(c) defined as the ratio of the Bjerrum length to the colloid size. At weak colloid-ion attractions (small E(c)), counterions tend to distribute uniformly in the container. However, both barometric and inflated profiles of colloids can be observed. On the contrary, at strong colloid-ion attraction (large E(c)), counterions accumulate in the vicinity of the colloids. Significant counterion condensation effectively decreases the strength of colloid-colloid repulsion and barometric profile of colloids can be obtained as well. As a result, the sedimentation profile and counterion distribution are indicative of the strength of effective colloid-colloid and colloid-ion interactions. It is also found that local electroneutrality condition is generally not satisfied and charge separation (or internal electric field) is neither a sufficient nor necessary condition for nonbarometric distributions.

  4. Statistical thermodynamics of charge-stabilized colloids

    NASA Astrophysics Data System (ADS)

    Torres Valderrama, A.

    2008-06-01

    This thesis is a theoretical study of equilibrium statistical thermodynamic properties of colloidal systems in which electrostatic interactions play a dominant role, namely, charge-stabilized colloidal suspensions. Such systems are fluids consisting of a mixture of a large number of mesoscopic particles and microscopic ions which interact via the Coulomb force, suspended in a molecular fluid. Quantum statistical mechanics is essential to fully understand the properties and stability of such systems. A less fundamental but for many purposes, sufficient description, is provided by classical statistical mechanics. In such approximation the system is considered as composed of a great number of charged classical particles with additional hard-core repulsions. The kinetic energy or momentum integrals become independent Gaussians, and hence their contribution to the free energy can be trivially evaluated. The contribution of the potential energy to the free energy on the other hand, depends upon the configuration of all the particles and becomes highly non-trivial due to the long-range character of the Coulomb force and the extremely different length scales involved in the problem. Using the microscopic model described above, we focus on the calculation of equilibrium thermodynamic properties (response functions), correlations (structure factors), and mechanical properties (forces and stresses), which can be measured in experiments and computed by Monte Carlo simulations. This thesis is divided into three parts. In part I, comprising chapters 2 and 3, we focus on finite-thickness effects in colloidal platelets and rigid planar membranes. In chapter 2 we study electrolyte-mediated interactions between two of such colloidal objects. Several aspects of these interactions are considered including the nature (attractive or repulsive) of the force between the objects, the osmotic properties for different types of surfaces and image charge effects. In part II, which includes

  5. SUSY Les Houches Accord 2

    SciTech Connect

    Allanach, B.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Goto, T.; Guasch, J.; Guchait, M.; Hahn, T.; Heinemeyer, S.; Hugonie, C.; Hurth, T.; Kraml, S.; Kreiss, S.; Lykken, J.; Moortgat, F.; /Cambridge U., DAMTP /Monash U. /Annecy, LAPTH /Bonn U. /Harish-Chandra Res. Inst. /Orsay, LPT /Turin U. /INFN, Turin /Bangalore, Indian Inst. Sci. /KEK, Tsukuba /Barcelona U. /Tata Inst. /Munich, Max Planck Inst. /Cantabria Inst. of Phys. /Montpellier U. /CERN /SLAC /Edinburgh U. /Fermilab /Zurich, ETH /Southampton U.

    2007-11-08

    The Supersymmetry Les Houches Accord (SLHA) provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalizations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavor, as well as the simplest next-to-minimal model.

  6. SUSY Les Houches Accord 2

    SciTech Connect

    Allanach, B.; Balazs, C.; Belanger, G.; Bernhardt, M.; Boudjema, F.; Choudhury, D.; Desch, K.; Ellwanger, U.; Gambino, P.; Godbole, R.; Goto, T.; /Cambridge U., DAMTP /Monash U. /Annecy, LAPTH /Bonn U. /Harish-Chandra Res. Inst. /Orsay, LPT /Turin U. /INFN, Turin /Bangalore, Indian Inst. Sci. /KEK, Tsukuba /Barcelona U.

    2007-11-08

    The Supersymmetry Les Houches Accord (SLHA) [1] provides a universal set of conventions for conveying spectral and decay information for supersymmetry analysis problems in high energy physics. Here, we propose extensions of the conventions of the first SLHA to include various generalizations: the minimal supersymmetric standard model with violation of CP, R-parity, and flavor, as well as the simplest next-to-minimal model.

  7. Colloids and polymers in random colloidal matrices: demixing under good-solvent conditions.

    PubMed

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2012-10-01

    We consider a simplified coarse-grained model for colloid-polymer mixtures, in which polymers are represented as monoatomic molecules interacting by means of pair potentials. We use it to study polymer-colloid segregation in the presence of a quenched matrix of colloidal hard spheres. We fix the polymer-to-colloid size ratio to 0.8 and consider matrices such that the fraction f of the volume that is not accessible to the colloids due to the matrix is equal to 40%. As in the Asakura-Oosawa-Vrij (AOV) case, we find that binodal curves in the polymer and colloid volume-fraction plane have a small dependence on disorder. As for the position of the critical point, the behavior differs from that observed in the AOV case: While the critical colloid volume fraction is essentially the same in the bulk and in the presence of the matrix, the polymer volume fraction at criticality increases as f increases. At variance with the AOV case, no capillary colloid condensation or evaporation is generically observed.

  8. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  9. Colloids and polymers in random colloidal matrices: Demixing under good-solvent conditions

    NASA Astrophysics Data System (ADS)

    Annunziata, Mario Alberto; Pelissetto, Andrea

    2012-10-01

    We consider a simplified coarse-grained model for colloid-polymer mixtures, in which polymers are represented as monoatomic molecules interacting by means of pair potentials. We use it to study polymer-colloid segregation in the presence of a quenched matrix of colloidal hard spheres. We fix the polymer-to-colloid size ratio to 0.8 and consider matrices such that the fraction f of the volume that is not accessible to the colloids due to the matrix is equal to 40%. As in the Asakura-Oosawa-Vrij (AOV) case, we find that binodal curves in the polymer and colloid volume-fraction plane have a small dependence on disorder. As for the position of the critical point, the behavior differs from that observed in the AOV case: While the critical colloid volume fraction is essentially the same in the bulk and in the presence of the matrix, the polymer volume fraction at criticality increases as f increases. At variance with the AOV case, no capillary colloid condensation or evaporation is generically observed.

  10. Appendicite chronique chez les enfants

    PubMed Central

    Kim, David; Butterworth, Sonia A.; Goldman, Ran D.

    2016-01-01

    Résumé Question Alors que le diagnostic d’appendicite aigu est relativement simple à poser, celui d’appendicite chronique peut être controversé et souvent mal posé. De quelle manière et à quel moment les cliniciens devraient-ils investiguer l’appendicite chronique comme la cause de douleurs abdominales chroniques et récidivantes dans la population pédiatrique? Réponse L’appendicite chronique est une inflammation ou fibrose de longue date de l’appendice dont le tableau clinique est une douleur abdominale prolongée ou intermittente. Son diagnostic est souvent difficile à poser et elle peut entraîner des complications telles que des infections intra-abdominales, ou l’occlusion ou la perforation de l’intestin. Le tableau clinique, de même que les études d’imagerie, peuvent aider le clinicien à écarter d’autres affections, et chez les patients qui reçoivent un diagnostic, dont de nombreux enfants, l’appendicectomie soulage partiellement ou complètement la douleur.

  11. Inverted hemispherical mask colloidal lithography.

    PubMed

    Xu, Haixia; Rao, Wenyuan; Meng, Jun; Shen, Yang; Jin, Chongjun; Wang, Xuehua

    2009-11-18

    This paper presents a cost-effective nanofabrication method for forming large area and high coverage two-dimensional metal nanostructures on flat and curved surfaces. This method starts with a periodic array of hemispherical dimples on polystyrene (PS) film prepared by colloidal lithography with a sacrificial layer of polyacrylic acid (PAA) underneath. After the removal of PAA in water solution, the PS layer is turned over and attached to the substrate to be patterned. An inverted hemispherical mask is formed after oxygen plasma etching. As the holes at the bottom are much larger than those on the surface, the mask is especially suitable for a standard lift-off process. Based on this mask, metal nano-disk and pair-disk arrays, as well as two-dimensional nanostructures on a curved surface, have been fabricated. Optical measurement shows that a surface plasmon resonance exists in a periodic disk array. This method is valuable for the fabrication of a magnifying metamaterial hyperlens in order to eliminate the limitation of optical diffraction.

  12. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Baumann, Thomas

    2014-05-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau. Samples were collected after each tributary from a sub-catchment and filtered on-site. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analyses provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of indvidual particles. Particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition.

  13. Drying of thin colloidal films

    NASA Astrophysics Data System (ADS)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  14. Molecular Recognition in the Colloidal World.

    PubMed

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-10-06

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  15. Colloid transport in model fracture filling materials

    NASA Astrophysics Data System (ADS)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  16. Seismic stress mobilization of natural colloids in a porous rock

    SciTech Connect

    Roberts, Peter M; Abdel-fattah, Amr I

    2008-01-01

    Stress oscillations at 26 Hz enhanced the release of natural micro-particles (colloids) in a porous rock sample. Micron-scale effects were induced by meter-scale wavelengths. The results are attributed to altering the release rate coefficient for colloids trapped in pores. The rate change did not depend on colloid size and thus is not due to altering colloid-pore-wall interactions. Enhanced colloid detachment from pore walls and flushing from dead-end pores are likely mechanisms. This phenomenon could impact a broad range of physical sciences involving colloid dynamics and porous transport.

  17. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.

    PubMed

    Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau

    2017-07-31

    Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

  18. Self-Pinning by Colloids Confined at a Contact Line

    NASA Astrophysics Data System (ADS)

    Weon, Byung Mook; Je, Jung Ho

    2013-01-01

    Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets.

  19. Colloids in the intensive care unit.

    PubMed

    Kruer, Rachel M; Ensor, Christopher R

    2012-10-01

    The most recent published evidence on the use of colloids versus crystalloids in critical care is reviewed, with a focus on population-dependent differences in safety and efficacy. Colloids offer a number of theoretical advantages over crystalloids for fluid resuscitation, but some colloids (e.g., hydroxyethyl starch solutions, dextrans) can have serious adverse effects, and albumin products entail higher costs. The results of the influential Saline Versus Albumin Fluid Evaluation (SAFE) trial and a subsequent SAFE subgroup analysis indicated that colloid therapy should not be used in patients with traumatic brain injury and other forms of trauma due to an increased mortality risk relative to crystalloid therapy. With regard to patients with severe sepsis, two meta-analyses published in 2011, which collectively evaluated 82 trials involving nearly 10,000 patients, indicated comparable outcomes with the use of either crystalloids or albumins. For patients requiring extracorporeal cardiopulmonary bypass (CPB) during heart surgery, the available evidence supports the use of a colloid, particularly albumin, for CPB circuit priming and postoperative volume expansion. In select patients with burn injury, the published evidence supports the use of supplemental colloids if adequate urine output cannot be maintained with a crystalloid-only rescue strategy. The results of the SAFE trial and a subgroup analysis of SAFE data suggest that colloids should be avoided in patients with trauma and traumatic brain injury. There are minimal differences in outcome between crystalloids and hypo-oncotic or iso-oncotic albumin for fluid resuscitation in severe sepsis; in select populations, such as patients undergoing cardiac surgery, the use of iso-oncotic albumin may confer a survival advantage and should be considered a first-line alternative.

  20. Les torsions sur testicules cryptorchides

    PubMed Central

    Gharbi, Mohamed; Amri, Najmeddine; Chambeh, Wahib; Braiek, Salem; Kamel, Rafik El

    2010-01-01

    Résumé But : La cryptorchidie est une pathologie assez fréquente en urologie. Elle est associée à un risque élevé d’infertilité et de dégénérescence. Elle semble aussi être associée à un risque important de torsion. Cette entité est très peu abordée dans la littérature. Nous rapportons tous les cas de torsion sur testicule cryptorchide observés à notre service dans le but de mieux caractériser cette pathologie et de réduire ainsi le taux d’orchidectomies. Méthodologie : Il s’agit d’une étude rétrospective portant sur tous les cas de torsion sur testicule cryptorchide opérés dans notre service d’urologie entre 1999 et 2007. Les patients ont fait l’objet d’une description basée sur le résumé de leurs observations. Résultats : Les patients étaient âgés de 7 mois à 39 ans. La torsion touchait le testicule droit dans 53 % des cas. Le tableau clinique comportait une douleur au niveau de la région inguinale d’apparition soudaine avec une masse sous-cutanée inflammatoire et douloureuse à ce niveau et surtout un hémiscrotum homolatéral vide. Dans 60 % des cas, le diagnostic était tardif et une orchidectomie a été réalisée. Dans les autre cas, un abaissement du testicule a été réalisé avec orchidopexie controlatéral dans le même temps opératoire. Conclusion : Bien qu’il s’agisse d’une pathologie peu courante, la torsion sur testicule cryptorchide doit être étudiée davantage. Le diagnostic précoce permettra de sauver et d’abaisser le testicule et faciliter ainsi le dépistage d’une éventuelle dégénérescence. PMID:21191497

  1. Saturated Zone Colloid-Facilitated Transport

    SciTech Connect

    A. Wolfsberg; P. Reimus

    2001-12-18

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS M&O 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  2. Rheological properties of Cubic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2016-11-01

    Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.

  3. Colloids with continuously tunable surface charge.

    PubMed

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  4. Interparticle interactions and polarization effects in colloids

    SciTech Connect

    Hayter, J.B.

    1987-01-01

    The physics of simple colloidal systems is usually dominated by three independent length scales: the particle size, the average interparticle distance, and the range of the interparticle potential. The dispersed particles typically have characteristic dimensions in the range 5 to 100 nm, often with spherical or cylindrical symmetry. Dispersion densities vary over volume fractions ranging from 0.5 to 10/sup -4/, with the corresponding mean interparticle distances ranging from about 1 to 10 diameters (in spherical systems). The interaction potential may be very short ranged (hard sphere), very long ranged (Coulomb or dipolar), or anywhere in between (screened Coulomb), and the correlations exhibited in the dispersion may be gas-like, liquid-like or crystalline, depending on the range of the potential relative to the interparticle distance. This rich phase behavior is responsible for the remarkable importance of colloidal studies in many areas of condensed matter physics and biophysics, but it poses often intractable problems in developing the statistical mechanical descriptions necessary for an understanding of scattering data from colloids. This paper will review the considerable recent progress in this field, in the context of SANS experiments on colloids in which the potentials are dominated by either screened Coulomb or magnetic dipolar interactions; in the case of magnetic colloids (ferrofluids), the use of polarization analysis will also be discussed. 32 refs., 4 figs.

  5. Colloid-polymer mixtures under slit confinement.

    PubMed

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-14

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1⩾q⩾0.4 and the confinement distance, H, in 10σc⩾H⩾3σc, σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc)(-1) for H≳4σc. The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc)(-1), from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  6. Colloid-polymer mixtures under slit confinement

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, Allan; Figueroa-Gerstenmaier, Susana; Odriozola, Gerardo

    2017-03-01

    We report a NVT molecular dynamic study of colloid-polymer mixtures under slit confinement. For this purpose, we are employing the Asakura-Oosawa model for studying colloidal particles, polymer coils, and hard walls as the external confining field. The colloid-polymer size ratio, q, is varied in the range 1 ⩾q ⩾0.4 and the confinement distance, H, in 10 σc ⩾H ⩾3 σc , σc being the colloidal diameter. Vapor-liquid coexistence properties are assessed, from which phase diagrams are built. The obtained data fulfill the corresponding states law for a constant H when q is varied. The shift of the polymer and colloidal chemical potentials of coexistence follows a linear relationship with (H-σc ) -1 for H ≳4 σc . The confined vapor-liquid interfaces can be fitted with a semicircular line of curvature (H-σc ) -1, from which the contact angle can be obtained. We observe complete wetting of the confining walls for reservoir polymer concentrations above and close to the critical value, and partial wetting for reservoir polymer concentrations above and far from it.

  7. Quasicrystalline tilings with nematic colloidal platelets.

    PubMed

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-02-18

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from ~ 10 nm to ~ 10 μm), which could allow for the design of quasicrystalline photonics at multiple frequency ranges.

  8. Quasicrystalline tilings with nematic colloidal platelets

    PubMed Central

    Dontabhaktuni, Jayasri; Ravnik, Miha; Žumer, Slobodan

    2014-01-01

    Complex nematic fluids have the remarkable capability for self-assembling regular colloidal structures of various symmetries and dimensionality according to their micromolecular orientational order. Colloidal chains, clusters, and crystals were demonstrated recently, exhibiting soft-matter functionalities of robust binding, spontaneous chiral symmetry breaking, entanglement, shape-driven and topological driven assembly, and even memory imprinting. However, no quasicrystalline structures were found. Here, we show with numerical modeling that quasicrystalline colloidal lattices can be achieved in the form of original Penrose P1 tiling by using pentagonal colloidal platelets in layers of nematic liquid crystals. The tilings are energetically stabilized with binding energies up to 2500 kBT for micrometer-sized platelets and further allow for hierarchical substitution tiling, i.e., hierarchical pentagulation. Quasicrystalline structures are constructed bottom-up by assembling the boat, rhombus, and star maximum density clusters, thus avoiding other (nonquasicrystalline) stable or metastable configurations of platelets. Central to our design of the quasicrystalline tilings is the symmetry breaking imposed by the platelet shape and the surface anchoring conditions at the colloidal platelets, which are misaligning and asymmetric over two perpendicular mirror planes. Finally, the design of the quasicrystalline tilings as platelets in nematic liquid crystals is inherently capable of a continuous variety of length scales of the tiling, ranging over three orders of magnitude in the typical length (from to ), which could allow for the design of quasicrystalline photonics at multiple frequency ranges. PMID:24550269

  9. Method for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    1999-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  10. Apparatus for electrohydrodynamically assembling patterned colloidal structures

    NASA Technical Reports Server (NTRS)

    Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)

    2000-01-01

    A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.

  11. New Light Alloys (Les Nouveaux Alliages Legers)

    DTIC Science & Technology

    1990-09-01

    potential for reducing structural weight and are gaining recognition as competitive materials within the aerospace industries . Topics to be addressed in...base de I’aluminium et de magnesium) pour des application structurales dans les industries a~rospatiales. Ces nouveaux alliages sont prometteurs...d’une reduction en poids des structures et leur comp~titivit est de plus en plus reconnue par les industries aerospatiales. Parmi les sujets qui seront

  12. Influence of heteroaggregation processes between intrinsic colloids and carrier colloids on cerium(III) mobility through fractured carbonate rocks.

    PubMed

    Tran, Emily; Klein Ben-David, Ofra; Teutch, Nadya; Weisbrod, Noam

    2016-09-01

    Colloid facilitated transport of radionuclides has been implicated as a major transport vector for leaked nuclear waste in the subsurface. Sorption of radionuclides onto mobile carrier colloids such as bentonite and humic acid often accelerates their transport through saturated rock fractures. Here, we employ column studies to investigate the impact of intrinsic, bentonite and humic acid colloids on the transport and recovery of Ce(III) through a fractured chalk core. Ce(III) recovery where either bentonite or humic colloids were added was 7.7-26.9% Ce for all experiments. Greater Ce(III) recovery was observed when both types of carrier colloids were present (25.4-37.4%). When only bentonite colloids were present, Ce(III) appeared to be fractionated between chemical sorption to the bentonite colloid surfaces and heteroaggregation of bentonite colloids with intrinsic carbonate colloids, precipitated naturally in solution. However, scanning electron microscope (SEM) images and colloid stability experiments reveal that in suspensions of humic acid colloids, colloid-facilitated Ce(III) migration results only from the latter attachment mechanism rather than from chemical sorption. This observed heteroaggregation of different colloid types may be an important factor to consider when predicting potential mobility of leaked radionuclides from geological repositories for spent fuel located in carbonate rocks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Colloidal joints with designed motion range and tunable joint flexibility.

    PubMed

    Chakraborty, Indrani; Meester, Vera; van der Wel, Casper; Kraft, Daniela J

    2017-06-14

    The miniaturization of machines towards the micron and nanoscale requires the development of joint-like elements that enable and constrain motion. We present a facile method to create colloidal joints, that is, anisotropic colloidal particles functionalized with surface mobile DNA linkers that control the motion range of bonded particles. We demonstrate quantitatively that we can control the flexibility of these colloidal joints by tuning the DNA linker concentration in the bond area. We show that the shape of the colloidal joint controls the range of motion of bonded particles through a maximisation of the bond area. Using spheres, cubes, and dumbbells, we experimentally realize spherical joints, planar sliders, and hinges, respectively. Finally we demonstrate the potential of the colloidal joints for programmable bottom-up self-assembly by creating flexible colloidal molecules and colloidal polymers. The reconfigurability and motion constraint offered by our colloidal joints make them promising building blocks for the development of switchable materials and nanorobots.

  14. COLLOIDAL CONSIDERATIONS IN GROUNDWATER SAMPLING AND CONTAMINANT TRANSPORT PREDICTIONS

    EPA Science Inventory

    The association of contaminants with suspended colloidal material in groundwater is a possible transport mechanism and a complicating factor for accurate estimations of the aqueous geochemistry of subsurface systems. esearch to date indicates colloidal facilitated transport of co...

  15. Colloidal crystallization of colloidal silica modified with ferrocenyl group-contained polymers in organic solvents.

    PubMed

    Yoshinaga, Kohji; Shigeta, Maki; Komune, Seishu; Mouri, Emiko; Nakai, Akemi

    2007-01-15

    Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.

  16. Targeted delivery of colloids by swimming bacteria

    PubMed Central

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  17. Industrial application of surface and colloid science

    SciTech Connect

    Borgarello, E.

    1995-12-01

    Interfacial phenomena are playing a key role in several industrial processes such as oil production and refining, synthesis of chemicals and catalytic reactions. Eniricerche has gained a quite wide experience in applied colloid science in the last fifteen years working together with the Operating Companies of the ENI group. The main areas of interest have been oil production and transportation, fuel formulation, lubrication, bitumen, detergency, reactions in microemulsions, gels for cosmetics, blood substitutes, and photocatalytic degradation of pollutants in colloidal dispersions. The understanding of the interfacial phenomena occurring at the solid-liquid or at the liquid-liquid interface has been a major contribution to the solution of industrial problems. After a short description of Eniricerche activities in applied colloid science, two examples will be described: the hydroformulation of olefines in a microemulsion and the transportation of heavy oil in an oil-in-water emulsion.

  18. Plasmonic films based on colloidal lithography.

    PubMed

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Energy transport velocity in bidispersed magnetic colloids

    NASA Astrophysics Data System (ADS)

    Bhatt, Hem; Patel, Rajesh; Mehta, R. V.

    2012-07-01

    Study of energy transport velocity of light is an effective background for slow, fast, and diffuse light and exhibits the photonic property of the material. We report a theoretical analysis of magnetic field dependent resonant behavior in forward-backward anisotropy factor, light diffusion constant, and energy transport velocity for bidispersed magnetic colloids. A bidispersed magnetic colloid is composed of micrometer size magnetic spheres dispersed in a magnetic nanofluid consisting of magnetic nanoparticles in a nonmagnetic liquid carrier. Magnetic Mie resonances and reduction in energy transport velocity accounts for the possible delay (longer dwell time) by field dependent resonant light transport. This resonant behavior of light in bidispersed magnetic colloids suggests a novel magnetophotonic material.

  20. Colloids in food: ingredients, structure, and stability.

    PubMed

    Dickinson, Eric

    2015-01-01

    This article reviews progress in the field of food colloids with particular emphasis on advances in novel functional ingredients and nanoscale structuring. Specific aspects of ingredient development described here are the stabilization of bubbles and foams by the protein hydrophobin, the emulsifying characteristics of Maillard-type protein-polysaccharide conjugates, the structural and functional properties of protein fibrils, and the Pickering stabilization of dispersed droplets by food-grade nanoparticles and microparticles. Building on advances in the nanoscience of biological materials, the application of structural design principles to the fabrication of edible colloids is leading to progress in the fabrication of functional dispersed systems-multilayer interfaces, multiple emulsions, and gel-like emulsions. The associated physicochemical insight is contributing to our mechanistic understanding of oral processing and textural perception of food systems and to the development of colloid-based strategies to control delivery of nutrients during food digestion within the human gastrointestinal tract.

  1. Colloidal Disorder-Order Transition (CDOT-2)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.

  2. Manipulating colloidal assemblies with active dopants

    NASA Astrophysics Data System (ADS)

    Ramananarivo, Sophie; Palacci, Jeremie

    2016-11-01

    The dynamics of a densely packed 2D layer of colloids can be significantly altered upon introducing a small amount of active microparticles. Those motile intruders drive the system out-of-equilibrium, which produces a variety of new complex phenomena such as the accentuation of density heterogeneities or the reorganization of crystalline colloidal structures. We investigate the altered dynamics of the passive spheres, as well as the behavior of micro-swimmers propelling in such crowded environment where interactions with passive obstacles or other active units become important. Ultimately, understanding and controlling such mixed systems could open new routes toward activity-assisted manipulation of colloids, potentially guiding the design of materials able to self-anneal their defects.

  3. Crack opening: from colloidal systems to paintings.

    PubMed

    Léang, Marguerite; Giorgiutti-Dauphiné, Frédérique; Lee, Lay-Theng; Pauchard, Ludovic

    2017-08-30

    Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

  4. Colloidal Disorder-Order Transition (CDOT-2)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is an image of a colloidal crystal from the CDOT-2 investigation flown on STS-95. There are so many colloidal particles in this sample that it behaves like a glass. In the laboratory on Earth, the sample remained in an amorphous state, showing no sign of crystal growth. In microgravity the sample crystallized in 3 days, as did the other glassy colloidal samples examined in the CDOT-2 experiment. During the investigation, crystallization occurred in samples that had a volume fraction (number of particles per total volume) larger than the formerly reported glass transition of 0.58. This has great implications for theories of the structural glass transition. These crystals were strong enough to survive space shuttle re-entry and landing.

  5. Dynamic Assembly of Magnetic Colloidal Vortices

    SciTech Connect

    Mohorič, Tomaž; Kokot, Gašper; Osterman, Natan; Snezhko, Alexey; Vilfan, Andrej; Babič, Dušan; Dobnikar, Jure

    2016-04-29

    Magnetic colloids in external time-dependent fields are subject to complex induced many-body interactions governing their self-assembly into a variety of equilibrium and out-of-equilibrium structures such as chains, networks, suspended membranes, and colloidal foams. Here, we report experiments, simulations, and theory probing the dynamic assembly of superparamagnetic colloids in precessing external magnetic fields. Within a range of field frequencies, we observe dynamic large-scale structures such as ordered phases composed of precessing chains, ribbons, and rotating fluidic vortices. We show that the structure formation is inherently coupled to the buildup of torque, which originates from internal relaxation of induced dipoles and from transient correlations among the particles as a result of short-lived chain formation. We discuss in detail the physical properties of the vortex phase and demonstrate its potential in particle-coating applications.

  6. Electrochemical reduction of chlorophyll in colloidal solutions

    SciTech Connect

    Suponeva, E.P.; Kadoshnikova, I.G.; Kazakova, A.A.; Kiselev, B.A.

    1986-02-01

    This paper discusses determining the energy yield of the photochemical reaction. The authors investigated the peculiarities of the electrochemical reduction of Chl in the colloidal state, where the elements of the molecular organization of the pigments in the reaction centers of photosynthesis are simulated and, as a result, the lifetime of Chl.- is substantially increased. Polarograms of a colloidal solution of Chl ''a'' in aqueous buffer solution contining less than 5% acetone are presented. The adsorption spectra were measured on a spectrophotometer and the fluorescence spectra were recorded on a setup assembled on the basis of RM-w and FEU-30 monochromators. The results obtained are evidence of the ability of Chl for spontaneous formation of molecular associates in aqueous medium, which are characterized by hindrance of the protonation of Chl.- in comparison with monomeric Chl at a high rate of exchange of an electron between the eletrode and the colloidal particle and between molecules in the volume of the particle.

  7. Shape-shifting colloids via stimulated dewetting

    PubMed Central

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  8. Convection of a stratified colloidal suspension

    SciTech Connect

    Cherepanov, I. N.; Smorodin, B. L.

    2013-11-15

    The convection of a colloidal suspension, which is a binary mixture of a carrier medium with an admixture of nanoparticles having a large positive thermal diffusion parameter, has been studied for the case of the heating of a horizontal cell from below and periodic conditions at the vertical boundaries corresponding to the experimental situation of ring channels. Bifurcation diagrams have been constructed for vibrational and monotonic regimes of the convection of the colloidal mixture. The time dependences of the maximum stream function and the stream function at a fixed point of the cell, as well as the spatial distributions of the concentration field of the colloid admixture, have been obtained. It has been shown that a stable regime of traveling waves exists in a certain region of the parameters of the problem (Boltzmann and Rayleigh numbers characterizing the gravitational stratification and intensity of the thermal effect, respectively)

  9. Spin Dynamics of Charged Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Stern, N. P.

    2005-03-01

    Colloidal semiconductor quantum dots are promising structures for controlling spin phenomena because of their highly size- tunable physical properties, ease of manufacture, and nanosecond-scale spin lifetimes at room temperature. Recent experiments have succeeded in controlling the charging of the lowest electronic state of colloidal quantum dots ootnotetextC. Wang, B. L. Wehrenberg, C. Y. Woo, and P. Guyot-Sionnest, J. Phys. Chem B 108, 9027 (2004).. Here we use time-resolved Faraday rotation measurements in the Voigt geometry to investigate the spin dynamics of colloidal CdSe quantum dot films in both a charged and uncharged state at room temperature. The charging of the film is controlled by applying a voltage in an electrochemical cell and is confirmed by absorbance measurements. Significant changes in the spin precession are observed upon charging, reflecting the voltage- controlled electron occupation of the quantum dot states and filling of surface states.

  10. Vector assembly of colloids on monolayer substrates

    PubMed Central

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-01-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize ‘vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers. PMID:28594002

  11. Vector assembly of colloids on monolayer substrates

    NASA Astrophysics Data System (ADS)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  12. Targeted delivery of colloids by swimming bacteria

    NASA Astrophysics Data System (ADS)

    Koumakis, N.; Lepore, A.; Maggi, C.; di Leonardo, R.

    2013-10-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems.

  13. Gravitational compression dynamics of charged colloidal crystals.

    PubMed

    Murai, Masako; Okuzono, Tohru; Yamamoto, Masaaki; Toyotama, Akiko; Yamanaka, Junpei

    2012-03-15

    We examine the compression of charged colloidal crystals under the influence of gravitational force by monitoring the spatiotemporal variations of Bragg diffraction from the crystal lattice. We use the dilute aqueous dispersions of colloidal silica particles (diameter=216 nm, charge number=733, a particle volume fraction φ=0.06) in the presence of 5-15 μM sodium chloride. The sedimentation profiles of the colloidal crystals along the crystal height are determined by in situ fiber optics reflection spectroscopy. The time evolutions of the sedimentation profiles are calculated by numerical simulations based on a phenomenological continuum model that explicitly incorporates the electrostatic interparticle interactions. The simulation results correctly describe the experiments at sufficiently high ionic strength. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Shape-shifting colloids via stimulated dewetting

    NASA Astrophysics Data System (ADS)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  15. Manipulating semiconductor colloidal stability through doping.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  16. Highly Elastic and Self-Healing Composite Colloidal Gels.

    PubMed

    Diba, Mani; Wang, Huanan; Kodger, Thomas E; Parsa, Shima; Leeuwenburgh, Sander C G

    2017-03-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new, critical insight into the structural and mechanical properties of composite colloidal gels and opens up new avenues for practical application of colloidal gels.

  17. Colloid straining within saturated heterogeneous porous media.

    PubMed

    Porubcan, Alexis A; Xu, Shangping

    2011-02-01

    The transport of 0.46 μm, 2.94 μm, 5.1 μm and 6.06 μm latex particles in heterogeneous porous media prepared from the mixing of 0.78 mm, 0.46 mm and 0.23 mm quartz sands was investigated through column transport experiments. It was observed that the 0.46 μm particles traveled conservatively within the heterogeneous porous media, suggesting that under the experimental conditions employed in this research the strong repulsive interactions between the negatively charged latex particles and the clean quartz sands led to minimal colloid immobilization due to physicochemical filtration. The immobilization of the 2.94 μm, 5.1 μm and 6.06 μm latex particles was thus attributed to colloid straining. Experimental results showed that the straining of colloidal particles within heterogeneous sand mixtures increased when the fraction of finer sands increased. The mathematical model that was developed and tested based on results obtained using uniform sands (Xu et al., 2006) was found to be able to describe colloid straining within heterogeneous porous media. Examination of the relationship between the best-fit values of the clean-bed straining rate coefficients (k(0)) and the ratio of colloid diameter (d(p)) and sand grain size (d(g)) indicated that when number-average sizes were used to represent the size of the heterogeneous porous media, there existed a consistent relationship for both uniform sands and heterogeneous sand mixtures. Similarly, the use of the number-averaged sizes for the heterogeneous porous media produced a uniform relationship between the colloid straining capacity term (λ) and the ratio of d(p)/d(g) for all the sand treatments.

  18. Colloid mobilization and transport during capillary fringe fluctuations.

    PubMed

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  19. Novel Colloidal and Dynamic Interfacial Phenomena in Liquid Crystalline Systems

    DTIC Science & Technology

    2014-09-13

    investigation supported by this grant moved beyond past studies of interfacial and colloidal phenomena involving isotropic liquids to explore and understand a...2010 20-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Novel Colloidal and Dynamic Interfacial Phenomena in Liquid...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 liquid crystals, interfacial phenomena, colloids , amphiphiles

  20. Dynamics of Colloidal Disorder-Order Transition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Experiments with colloidal solutions of plastic microspheres suspended in a liquid serve as models of how molecules interact and form crystals. For the Dynamics of Colloidal Disorder-Order Transition (CDOT) experiment, Paul Chaikin of Princeton University has identified effects that are attributable to Earth's gravity and demonstrated that experiments are needed in the microgravity of orbit. Space experiments have produced unexpected dendritic (snowflake-like) structures. To date, the largest hard sphere crystal grown is a 3 mm single crystal grown at the cool end of a ground sample. At least two more additional flight experiments are plarned aboard the International Space Station. This image is from a video downlink.

  1. Dynamics of Colloidal Disorder-Order Transition

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Experiments with colloidal solutions of plastic microspheres suspended in a liquid serve as models of how molecules interact and form crystals. For the Dynamics of Colloidal Disorder-Order Transition (CDOT) experiment, Paul Chaikin of Princeton University has identified effects that are attributable to Earth's gravity and demonstrated that experiments are needed in the microgravity of orbit. Space experiments have produced unexpected dendritic (snowflake-like) structures. To date, the largest hard sphere crystal grown is a 3 mm single crystal grown at the cool end of a ground sample. At least two more additional flight experiments are plarned aboard the International Space Station. This image is from a video downlink.

  2. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  3. Partial rejuvenation of a colloidal glass.

    PubMed

    Ozon, F; Narita, T; Knaebel, A; Debrégeas, G; Hébraud, P; Munch, J-P

    2003-09-01

    We study the effect of shear on the aging dynamics of a colloidal suspension of synthetic clay particles. We find that a shear of amplitude gamma reduces the relaxation time measured just after the cessation of shear by a factor exp(-gamma/gamma(c)), with gamma(c) approximately 5%, and is independent of the duration and the frequency of the shear. This simple law for the rejuvenation effect shows that the energy involved in colloidal rearrangements is proportional to the shear amplitude gamma rather than gamma(2), leading to an Eyring-like description of the dynamics of our system.

  4. Pair Potential of Charged Colloidal Stars

    NASA Astrophysics Data System (ADS)

    Huang, F.; Addas, K.; Ward, A.; Flynn, N. T.; Velasco, E.; Hagan, M. F.; Dogic, Z.; Fraden, S.

    2009-03-01

    We report on the construction of colloidal stars: 1μm polystyrene beads grafted with a dense brush of 1μm long and 10 nm wide charged semiflexible filamentous viruses. The pair interaction potentials of colloidal stars are measured using an experimental implementation of umbrella sampling, a technique originally developed in computer simulations in order to probe rare events. The influence of ionic strength and grafting density on the interaction is measured. Good agreements are found between the measured interactions and theoretical predictions based upon the osmotic pressure of counterions.

  5. Collective sliding states for colloidal molecular crystals

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  6. Dynamic Light Scattering From Colloidal Gels

    NASA Technical Reports Server (NTRS)

    Krall, A. H.; Weitz, David A.

    1996-01-01

    We present a brief, preliminary account of the interpretation of dynamic light scattering from fractal colloidal gels. For small scattering angles, and for high initial colloid particle volume fractions, the correlation functions exhibit arrested decay, reflecting the non-ergodic nature of these systems and allowing us to directly determine the elastic modulus of the gels. For smaller initial volume fractions, the correlation functions decay completely. In all cases, the initial decay is not exponential, but is instead described by a stretched exponential. We summarize the principles of a model that accounts for these data and discuss the scaling behavior of the measured parameters.

  7. Fabrication of anisotropic multifunctional colloidal carriers

    NASA Astrophysics Data System (ADS)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  8. Self-assembly of colloidal surfactants

    NASA Astrophysics Data System (ADS)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  9. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  10. Binary Colloidal Alloy Test-5: Phase Separation

    NASA Technical Reports Server (NTRS)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  11. Binary Colloidal Alloy Test-5: Compete

    NASA Technical Reports Server (NTRS)

    Frisken, Barbara J.; Bailey, Arthur E.; Weitz, David A.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Compete (BCAT-5-Compete) investigation will photograph andomized colloidal samples onboard the International Space Station (ISS) to determine their resulting structure over time. The use of EarthKAM software and hardware will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-Compete will utilize samples 6 - 8 in the BCAT-5 hardware to study the competition between phase separation and crystallization, which is important in the manufacture of plastics and other materials.

  12. Anisotropic elasticity of experimental colloidal Wigner crystals.

    PubMed

    Russell, Emily R; Spaepen, Frans; Weitz, David A

    2015-03-01

    Colloidal particles interacting via a long-range repulsion can, in contrast to hard-sphere systems, exhibit crystalline ordering at low volume fraction. Here we experimentally investigate the structure and properties of such "colloidal Wigner crystals." We find a body-centered-cubic crystalline phase at volume fractions of ϕ≳15%, which exhibits large fluctuations of individual particles from their average positions. We determine the three independent crystalline elastic constants and find that these crystals are very compliant and highly anisotropic.

  13. Colloids in the River Inn

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  14. Colloid Transport in Porous Medium: Impact of High Salinity Solutions

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Magal, E.; Yechieli, Y.; Yakirevich, A.

    2009-12-01

    We explored the transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to Dead Sea brines. Migration of latex microspheres through saturated sand columns of different sizes was studied in lab experiments, and colloid transport was simulated with a mathematical model. We have found that latex microspheres were mobile even in the extremely saline brines of the Dead Sea (ionic strength = 100.9 M). At this high ionic strength, according to the common colloid transport theories, no energetic barrier to colloid attachment exists and colloid adsorption was expected to be a favorable process. Apparently, even in that high salinity, colloids adsorption is not complete and ~20% colloids are allowed to transport (through 30-cm long column). Colloid transport was found to be related to the solution salinity, as expected. After 2-3 pore volumes (PV) the relative concentration of colloids at the outlet of 30-cm long columns decreased as the solution ionic strength increased until some critical value (ionic strength greater than 10-1.8 M) and then remained constant as the solution salinity increased. To further explore the sorption of colloids on sand surfaces in Dead Sea brines, breakthrough curves (BTCs) were studied using 7-cm long columns, through which hundreds of PV were introduced. The observed BTCs exhibited a bi-modal shape that suggests different rates of colloid attachment. After initial breakthrough the relative concentration of colloids at the outlet rose to a value of 0.8 (after 1.5 PV), and it remained relatively constant until approximately 17 PV were flushed through the column. After a total flow of about 20 PV, the relative concentration reached a value of one. The colloid migration process was successfully modeled using the limited entrapment model (Pachepsky et al., 2006), assuming the colloid attachment rate is dependent on the concentration of attached colloids.

  15. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  16. Measuring colloidal osmotic compressibility of a polymer-crowded colloidal suspension by optical trapping

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Kara, Vural; Ou-Yang, H. Daniel

    2013-03-01

    Particle interactions determine the stability of nanoparticle suspensions and the phase separation of particle-polymer mixtures. However, due to the small sizes of the dispersed nanoparticles, it is not easy to directly measure interaction forces between particles in a colloidal suspension. In this paper, we propose an ``Optical Bottle'' approach to quantify these particle interactions in a suspension by measuring the colloidal osmotic compressibility of the nanoparticles. Virial expansion of the colloidal osmotic compressibility yields virial coefficients of different orders. The second order virial coefficient of aqueous suspensions of colloidal polystyrene nanospheres in the presence of high-salt (KCl) and polyethylene glycol (PEG) is found to decrease with increasing PEG concentration, suggesting an attractive depletion interaction between the PEG-crowed polystyrene particles.

  17. Industrial Applications of LES in Mechanical Engineering

    DTIC Science & Technology

    2001-08-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013624 TITLE: Industrial Applications of LES in Mechanical Engineering DISTRIBUTION...compilation report: ADP013620 thru ADP013707 UNCLASSIFIED INDUSTRIAL APPLICATIONS OF LES IN MECHANICAL ENGINEERING CHISACHI KATO Institute of Industrial...Science University of Tokyo, Tokyo, Japan MASAYUKI KAIHO, AKIRA MANABE Mechanical Engineering Research Laboratory Hitachi LTD., Ibaraki, Japan Abstract

  18. Microgravity Experiments Being Developed for Microscopic Study of Colloidal Spheres

    NASA Technical Reports Server (NTRS)

    Rogers, Richard B.

    1999-01-01

    Microscopic spheres suspended in liquid become highly ordered under the proper conditions. Such collections of particles, called colloidal suspensions or colloids, are the subject of a series of ongoing microgravity experiments at the NASA Lewis Research Center. By studying the way these colloidal suspensions order themselves, scientists can better understand how atoms of a liquid become ordered to form a solid. In addition, highly ordered colloids have special properties that may make them useful in future hightech applications. Work is underway at Lewis to develop an optical microscope to view these colloidal suspensions sphere by sphere in microgravity.

  19. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.

  20. Size determinations of plutonium colloids using autocorrelation photon spectroscopy

    SciTech Connect

    Triay, I.R.; Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Hobart, D.E.; Palmer, P.D.; Newton, T.W.; Thompson, J.L.

    1989-12-01

    Autocorrelation Photon Spectroscopy (APS) is a light-scattering technique utilized to determine the size distribution of colloidal suspensions. The capabilities of the APS methodology have been assessed by analyzing colloids of known sizes. Plutonium(IV) colloid samples were prepared by a variety of methods including: dilution; peptization; and alpha-induced auto-oxidation of Pu(III). The size of theses Pu colloids was analyzed using APS. The sizes determined for the Pu colloids studied varied from 1 to 370 nanometers. 7 refs., 5 figs., 3 tabs.

  1. Preparation and properties of uniform size colloids

    SciTech Connect

    Matijevic, E. )

    1993-04-01

    The achievements and problems in the preparation of uniform colloids by precipitation from homogeneous electrolyte solutions are reviewed. Specifically, the syntheses of [open quotes]monodispersed[close quotes] particles of simple and mixed compositions as well as of coated and hollow particles of different shapes are described, and the physical and chemical mechanisms of their formation are discussed. 126 refs., 25 figs., 1 tab.

  2. The colloidal chemistry of ceramic clays

    NASA Technical Reports Server (NTRS)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  3. Colloid Formation at Waste Plume Fronts

    SciTech Connect

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  4. Advanced Colloids Experiment (ACE-T1)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  5. Advanced Colloids Experiment (ACE-H-2)

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  6. Natural and Synthetic Colloids in Veterinary Medicine.

    PubMed

    Brooks, Aimee; Thomovsky, Elizabeth; Johnson, Paula

    2016-06-01

    This review article covers basic physiology underlying the clinical use of natural and artificial colloids as well as provide practice recommendations. It also touches on the recent scrutiny of these products in human medicine and how this may have an effect on their use in veterinary medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Colloidal quantum dots as optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Vasudev, Milana; Yamanaka, Takayuki; Sun, Ke; Li, Yang; Yang, Jianyong; Ramadurai, Dinakar; Stroscio, Michael A.; Dutta, Mitra

    2007-02-01

    Novel optoelectronic systems based on ensembles of semiconductor nanocrystals are addressed in this paper. Colloidal semiconductor quantum dots and related quantum-wire structures have been characterized optically; these optical measurements include those made on self-assembled monolayers of DNA molecules terminated on one end with a common substrate and on the other end with TiO II quantum dots. The electronic properties of these structures are modeled and compared with experiment. The characterization and application of ensembles of colloidal quantum dots with molecular interconnects are considered. The chemically-directed assembly of ensembles of colloidal quantum dots with biomolecular interconnects is demonstrated with quantum dot densities in excess of 10 +17 cm -3. A number of novel photodetectors have been designed based on the combined use of double-barrier quantum-well injectors, colloidal quantum dots, and conductive polymers. Optoelectronic devices including photodetectors and solar cells based on threedimensional ensembles of quantum dots are considered along with underlying phenomena such as miniband formation and the robustness of minibands to displacements of quantum dots in the ensemble.

  8. Patchy particles made by colloidal fusion.

    PubMed

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-09-18

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or 'patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  9. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  10. Switching Colloidal Superstructures by Critical Casimir Forces.

    PubMed

    Nguyen, Truc A; Newton, Arthur; Veen, Sandra J; Kraft, Daniela J; Bolhuis, Peter G; Schall, Peter

    2017-09-01

    Recent breakthroughs in colloidal synthesis promise the bottom-up assembly of superstructures on nano- and micrometer length scales, offering molecular analogues on the colloidal scale. However, a structural control similar to that in supramolecular chemistry remains very challenging. Here, colloidal superstructures are built and controlled using critical Casimir forces on patchy colloidal particles. These solvent-mediated forces offer direct analogues of molecular bonds, allowing patch-to-patch binding with exquisite temperature control of bond strength and stiffness. Particles with two patches are shown to form linear chains undergoing morphological changes with temperature, resembling a polymer collapse under poor-solvent conditions. This reversible temperature switching carries over to particles with higher valency, exhibiting a variety of patch-to-patch bonded structures. Using Monte Carlo simulations, it is shown that the collapse results from the growing interaction range favoring close-packed configurations. These results offer new opportunities for the active control of complex structures at the nano and micrometer scale, paving the way to novel temperature-switchable materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photoelectrochromism in Tungsten Trioxide Colloidal Solutions

    ERIC Educational Resources Information Center

    Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan

    2004-01-01

    Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.

  12. Photoelectrochromism in Tungsten Trioxide Colloidal Solutions

    ERIC Educational Resources Information Center

    Chenthamarakshan, C. R.; Tacconi, N. R. de; Xu, Lucy; Rajeshwar, Krishnan

    2004-01-01

    Photophysical and photochemical properties of semiconductor metal oxide colloids are studied in the context of photoelectrochemical conversion and storage of solar energy. The experiment teaches the instrumental principles of UV-visible spectrophotometry, spectral acquisition and background subtraction strategies and diode array spectrometers.

  13. Cobalt-doped cadmium selenide colloidal nanowires.

    PubMed

    Li, Zhen; Du, Ai Jun; Sun, Qiao; Aljada, Muhsen; Cheng, Li Na; Riley, Mark J; Zhu, Zhong Hua; Cheng, Zhen Xiang; Wang, Xiao Lin; Hall, Jeremy; Krausz, Elmars; Qiao, Shi Zhang; Smith, Sean C; Lu, Gao Qing Max

    2011-11-21

    Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.

  14. Motile Fluids: Granular, Colloidal and Living

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2014-03-01

    My talk will present our recent results from theory, simulation and experiment on flocking, swarming and instabilities in diverse realizations of active systems. The findings I will report include: flocking at a distance in vibrated granular monolayers; the active hydrodynamics of self-propelled solids; clusters, asters and oscillations in colloidal chemotaxis. Supported by a J C Bose Fellowship.

  15. Practical colloidal processing of multication ceramics

    DOE PAGES

    Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; ...

    2015-09-07

    The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sinteringmore » of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.« less

  16. Practical colloidal processing of multication ceramics

    SciTech Connect

    Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; Wu, Yiquan

    2015-09-07

    The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sintering of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.

  17. Aggregation kinetics of coalescing polymer colloids.

    PubMed

    Gauer, Cornelius; Jia, Zichen; Wu, Hua; Morbidelli, Massimo

    2009-09-01

    The aggregation behavior of a soft, rubbery colloidal system with a relatively low glass transition temperature, T(g) approximately -20 degrees C, has been investigated. It is found that the average gyration and hydrodynamic radii, R(g) and R(h), measured by light scattering techniques, evolve in time in parallel, without exhibiting the crossover typical of rigid particle aggregation. Cryogenic scanning electron microscopy (cryo-SEM) images reveal sphere-like clusters, indicating that complete coalescence between particles occurs during aggregation. Since coalescence leads to a reduction in the total colloidal surface area, the surfactant adsorption equilibrium, and thus the colloidal stability, change in the course of aggregation. It is found that to simulate the observed kinetic behavior based on the population balance equations, it is necessary to assume that all the clusters are spherical and to account for variations in the colloidal stability of each aggregating particle pair with time. This indicates that, for the given system, the coalescence is very fast, i.e., its time scale is much smaller than that of the aggregation.

  18. Rheology and dynamics of colloidal superballs.

    PubMed

    Royer, John R; Burton, George L; Blair, Daniel L; Hudson, Steven D

    2015-07-28

    Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are marginally different from comparably sized hard spheres. However, shape-mediated interactions modify the suspension microstructure, leading to significant differences in the self-diffusion of the superballs. While this excluded volume interaction can be captured with a rescaling of the superball volume fraction, we observe qualitative differences in the shear thickening behavior of moderately concentrated superball suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns associated with the effects of shape on the rheology and dynamics of colloidal solutions.

  19. Stratification dynamics in drying colloidal mixtures.

    PubMed

    Howard, Michael P; Nikoubashman, Arash; Panagiotopoulos, Athanassios Z

    2017-03-28

    Stratification in binary colloidal mixtures was investigated using implicit-solvent molecular dynamics simulations. For large particle size ratios and film Péclet numbers greater than unity, smaller colloids migrated to the top of the film, while big colloids were pushed to the bottom, creating an "inverted" stratification. This peculiar behavior was observed in recent simulations and experiments conducted by Fortini et al. (Phys. Rev. Lett. 2016, 116, 118301). To rationalize this behavior, particle size ratios and drying rates spanning qualitatively different Péclet number regimes were systematically studied, and the dynamics of the inverted stratification were quantified in detail. The stratified layer of small colloids was found to grow faster and to larger thicknesses for larger size ratios. Interestingly, inverted stratification was observed even at moderate drying rates where the film Péclet numbers were comparable to unity, but the thickness of the stratified layer decreased. A model based on dynamical density functional theory is proposed to explain the observed phenomena.

  20. Electroneutrality and phase behavior of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Denton, A. R.

    2007-11-01

    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Hückel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.

  1. Colloidal nanophotonics: the emerging technology platform.

    PubMed

    Gaponenko, Sergey; Demir, Hilmi Volkan; Seassal, Christian; Woggon, Ulrike

    2016-01-25

    Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field.

  2. Subharmonic Shapiro steps in sliding colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Vanossi, Andrea; Paronuzzi, Stella; Fornasier, Gabriele; Manini, Nicola; Santoro, Giuseppe E.; Tosatti, Erio

    We examine the possibility to observe dynamical mode locking, in the form of Shapiro steps, when a time-periodic potential modulation is applied to two mutually sliding incommensurate 2D lattices. Specifically we present realistic MD simulations of a monolayer of charged colloids that are dragged by an external force over an optically generated periodic potential, where the colloid sliding is enacted through the motion of soliton or antisoliton lines between locally commensurate domains. Clear integer Shapiro steps, with the synchronous rigid advancement of the whole monolayer, known from previous studies, are found. The jump between one step and the next during each AC cycle corresponding to particles jumping from one patch to the next, across the soliton boundary. We find additional smaller ``subharmonic'' steps. Here, the overall colloid advancement takes several AC cycles. At each cycle, different subsets of particles negotiate the soliton line between commensurate domains. The wide parameter tunability of colloid monolayers makes these predictions potentially easy to access in an experimentally rich 2D geometry. Supported by ERC Advanced Grant N. 320796 MODPHYSFRICT.

  3. Forces between colloid particles in natural waters.

    PubMed

    Mosley, Luke M; Hunter, Keith A; Ducker, William A

    2003-08-01

    The origin and nature of interparticle forces acting on colloid surfaces in natural waters has been examined using an atomic force microscope. Natural colloids were represented by a surface film of iron oxide precipitated onto spherical SiO2 particles, and the effects of adsorbed natural organic matter (NOM), solution pH, and ionic composition on the force-separation curves were investigated. NOM from both riverine and marine environments was strongly adsorbed to the iron oxide surface. Under conditions of low ionic strength, the interparticle forces were dominated by electrostatic repulsion arising from negative functional groups on the NOM, except at very small separations (<10 nm) where repulsive forces arising from steric interference of the NOM molecules were also present. At high ionic strength (e.g., seawater) or low pH, the electrostatic forces were largely absent, allowing steric repulsion forces to dominate. In addition, adhesive bridging between surfaces by adsorbed NOM was observed, creating a strong energy barrier to spontaneous disaggregation of colloid aggregates. Our results demonstrate that adsorbed NOM dominates the surface forces and thus stability with respect to aggregation of natural water colloids.

  4. Continuous separation of colloidal particles using dielectrophoresis.

    PubMed

    Yunus, Nurul Amziah Md; Nili, Hossein; Green, Nicolas G

    2013-04-01

    Dielectrophoresis is the movement of particles in nonuniform electric fields and has been of interest for application to manipulation and separation at and below the microscale. This technique has the advantages of being noninvasive, nondestructive, and noncontact, with the movement of particle achieved by means of electric fields generated by miniaturized electrodes and microfluidic systems. Although the majority of applications have been above the microscale, there is increasing interest in application to colloidal particles around a micron and smaller. This paper begins with a review of colloidal and nanoscale dielectrophoresis with specific attention paid to separation applications. An innovative design of integrated microelectrode array and its application to flow-through, continuous separation of colloidal particles is then presented. The details of the angled chevron microelectrode array and the test microfluidic system are then discussed. The variation in device operation with applied signal voltage is presented and discussed in terms of separation efficiency, demonstrating 99.9% separation of a mixture of colloidal latex spheres. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  6. Assembly of Colloidal Materials Using Bioadhesive Interactions

    NASA Technical Reports Server (NTRS)

    Hammer, Daniel A.; Hiddessen, Amy L.; Tohver, Valeria; Crocker, John C.; Weitz, David A.

    2002-01-01

    We have pursued the use of biological crosslinking molecules of several types to make colloidal materials at relatively low volume fraction of colloidal particles. The objective is to make binary alloys of colloidal particles, made of two different colloidal particles coated with complementary biological lock-and-key binding molecules, which assemble due to the biological specificity. The long-term goal is to use low affinity lock-and-key biological interactions, so that the can anneal to form crystalline states. We have used a variety of different surface chemistries in order to make colloidal materials. Our first system involved using selectin-carbohydrate (sialyl-Lewis) interactions; this chemistry is derived from immune system. This chemical interaction is of relatively low affinity, with timescales for dissociation of several seconds. Furthermore, the adhesion mediated by these molecules can be reversed by the chelation of calcium atoms; thus assembled structures can be disassembled reversibly. Our second system employed avidin-biotin chemistry. This well-studied system is of high affinity, and is generally irreversible on a laboratory time-scale. Thus, we would expect selectin-carbohydrate interactions at high molecular density and avidin-biotin interactions to give kinetically-trapped structures; however, at low densities, we would expect significant differences in the structure and dynamics of the two materials, owing to their very different release rates. We have also begun to use a third chemistry - DNA hybridization. By attaching single stranded DNA oligonucleotide chains to beads, we can drive the assembly of colloidal materials by hybridization of complementary DNA chains. It is well known that DNA adenosine-thymine (A-T) and guanine-cytosine (G-C) bases hybridize pairwise with a Gibbs free energy change of 1.7 kcal/mol per base; thus, the energy of the assembly can be modulated by altering the number of complementary bases in the DNA chains. Using

  7. Colloid suspension stability and transport through unsaturated porous media

    SciTech Connect

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  8. Colloid-Mediated Transport of PPCPs through Porous Media

    NASA Astrophysics Data System (ADS)

    Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie

    2017-04-01

    Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.

  9. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    PubMed

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO2/Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO2/Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  10. Active structuring of colloidal armour on liquid drops

    PubMed Central

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets. PMID:23811716

  11. [Preliminary study of colloid osmotic pressure for cardiopulmonary bypass].

    PubMed

    Wang, D; Xiang, L; Luo, J

    1996-12-01

    The ideal colloid osmotic pressure is beneficial to decrease the fluid accumulated in the pulmonary and other tissue during cardiopulmonary bypass. Schupbach reported the proper colloidosmotic pressure for cardiopulmonary bypass was 2.1 kPa (16 mmHg). Colloid osmotic pressures of blood and priming fluid during cardiopulmonary bypass were measured in 28 patients with heart disease by using colloid osmotic pressure detection apparatus. The value of colloid osmotic pressure suitable for the designed standard was apparently different among the Gelofusine group and other groups. P value was 0.005. Priming fluid for cardiopulmonary bypass needs to satisfy the quality and the quantity of colloid osmotic pressure. Using Albumin isn't economical. Whole blood and plazma are not suitable for increasing colloid osmotic pressure. Hydroxyethyl starch or Gelofusine is best choice in priming to get designed standard of colloid osmotic pressure. The ratio of hydroxyethyl starch or Gelofusine in priming fluid should beyond 1/2.

  12. Introduction to special section on Colloid Transport in Subsurface Environments

    NASA Astrophysics Data System (ADS)

    Saiers, James E.; Ryan, Joseph N.

    2006-12-01

    The Water Resources Research special section on Colloid Transport in Subsurface Environments presents new knowledge that is critical to solving problems related to groundwater pollution by microbial pathogens and hazardous chemicals. This introduction to the special section surveys fourteen manuscripts that advance current understanding of the transport of biocolloids (e.g., bacteria, viruses, and protozoa), mineral colloids, and colloid-associated contaminants in the vadose zone and in groundwater. These papers present new techniques for elucidating mechanisms that govern colloid mobility, propose mathematical models appropriate for quantifying colloid and colloid-associated contaminant transport, and report pore-scale and column-scale observations requisite for evaluating these models. Together, the papers of this special section illuminate the complexity of the colloid transport problem and describe progress toward understanding this complexity.

  13. Colloid Mobilization and Transport during Capillary Fringe Fluctuations

    NASA Astrophysics Data System (ADS)

    Aramrak, Surachet; Flury, Markus

    2016-04-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead filled column. Confocal images showed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively-charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively-charged colloids did not attach to static air-bubbles, but hydrophobic negatively-charged and hydrophilic positively-charged colloids did.

  14. Tracking liquid in drying colloidal fluids with polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook

    2014-11-01

    When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  15. Scattering from correlations in colloidal systems

    SciTech Connect

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10/sup 4/ A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10/sup -8/-10/sup -3/ sec) than those found in simple atomic or small molecular systems (10/sup -13/-10/sup -10/ sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest.

  16. N° 341-Diagnostic et prise en charge de la torsion annexielle chez les filles, les adolescentes et les femmes adultes.

    PubMed

    Kives, Sari; Gascon, Suzy; Dubuc, Élise; Van Eyk, Nancy

    2017-02-01

    Passer en revue les connaissances scientifiques actuelles et formuler des recommandations relatives au diagnostic et à la prise en charge de la torsion annexielle chez les filles, les adolescentes et les femmes adultes. L'étude porte sur les facteurs de risque, la précision diagnostique, les options de prise en charge et les issues de la torsion annexielle. RéSULTATS: Nous avons examiné les études publiées en faisant des recherches dans MEDLINE, Embase, CINAHL et la Bibliothèque Cochrane à l'aide d'une terminologie contrôlée et de mots-clés appropriés (« adnexal torsion », « ovarian torsion »). Nous avons limité les résultats aux revues systématiques, aux essais contrôlés aléatoires, aux essais cliniques contrôlés et aux études d'observation. Nous avons refait les recherches de façon régulière et intégré de nouvelles données à la directive jusqu'en décembre 2014. Nous avons également étudié la littérature grise (non publiée) trouvée sur les sites Web d'organismes d'évaluation des technologies de la santé et d'autres organismes connexes, dans des collections de directives cliniques et dans des registres d'essais cliniques, et obtenue auprès d'associations nationales et internationales de médecins spécialistes. Les résultats ont été examinés et évalués par le comité CANPAGO de la Société des obstétriciens et gynécologues du Canada (SOGC), sous la direction des auteures principales. Les recommandations ont été classées selon les critères établis par le Groupe d'étude canadien sur les soins de santé préventifs. AVANTAGES, DéSAVANTAGES ET COûTS: L'application de la directive devrait aider les praticiens à adopter une approche de diagnostic et de prise en charge optimale en matière de torsion annexielle, à réduire au minimum les effets néfastes et à améliorer l'issue qui attend les patientes. La présente directive a été évaluée et approuvée par le Comité de pratique - gynécologie de la SOGC

  17. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    SciTech Connect

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  18. Anisotropic grid adaptation in LES

    NASA Astrophysics Data System (ADS)

    Toosi, Siavash; Larsson, Johan

    2016-11-01

    The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.

  19. Preferences for colloid use in Scandinavian intensive care units.

    PubMed

    2008-07-01

    Fluid resuscitation is a frequent intervention in intensive care. Colloids are widely used, but recent data suggest harm by some of these solutions. This calls for more clinical studies on this matter, but the current preferences for colloid use in Scandinavian intensive care units (ICUs) are unknown. In March-May 2007, 120 Scandinavian ICUs were invited to answer a web-based survey consisting of 18 questions on types of colloids, indications, contraindications and rationale of use. Seventy-three ICUs, of which 31 were university hospital units, answered the questionnaire. Most ICUs used both synthetic and natural colloids, and hydroxyethyl starch (HES) 130/0.4 was the preferred colloid in 59 units. Eleven ICUs had protocols for colloid use. The most frequent indication was second-line fluid for hypovolaemia, but one in three ICUs used colloids as first-line fluid. Thirty-five ICUs had contraindications, which were mainly for the use of synthetic colloids (acute renal failure 25 units, bleeding 15 units). Most units based the use of colloids on theoretical knowledge and tradition. Sixty-five and 54 ICUs were ready to change colloid use based on data from randomised trials of ICU patients showing changes in mortality or renal function, respectively. Most Scandinavian ICUs use both synthetic and natural colloids, but HES 130/0.4 is by far the preferred colloid. Few units have protocols for colloid use, but most use them for hypovolaemia, and the majority have no contraindications. Most ICUs are ready to change colloid use if randomised trials in ICU patients show changes in mortality or renal function.

  20. Colloids from the aqueous corrosion of uranium nuclear fuel

    NASA Astrophysics Data System (ADS)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  1. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    NASA Astrophysics Data System (ADS)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  2. Regard sur les lazarets en terre canadienne

    PubMed Central

    Milot, Jean

    2008-01-01

    Puisant dans les nombreuses références qu’offrent les publications médicales canadiennes du milieu du XIXe siècle à nos jours, l’auteur fait découvrir l’existence de lazarets en terre canadienne, décrit l’impact de la maladie sur les conditions vie des lépreux qui y étaient confinés et en souligne les contrecoups tant sur le plan physique et psychologique que social. Il présente un bref aperçu de la maladie, ses symptômes, ses signes ainsi que ses complications oculaires et rappelle les premiers moyens thérapeutiques à base d’huile de chaulmoogra introduits dans la colonie de Tracadie vers 1901. Il illustre son propos en évoquant la vie dans les lazarets de l’île de Sheldrake (1844–1848) et de Tracadie (1848–1965) au Nouveau-Brunswick, puis dans ceux des îles D’Arcy (1891–1924) et de Bentinck (1924–1957) en Colombie-Britannique. PMID:19352451

  3. Hierarchical microstructures formed by bidisperse colloidal suspensions within colloid-in-liquid crystal gels.

    PubMed

    Diestra-Cruz, Heberth; Bukusoglu, Emre; Abbott, Nicholas L; Acevedo, Aldo

    2015-04-08

    Past studies have reported that colloids of a single size dispersed in the isotropic phase of a mesogenic solvent can form colloid-rich networks (and gels) upon thermal quenching of the system across the isotropic-nematic phase boundary of the mesogens. Herein we report the observation and characterization of complex hierarchical microstructures that form when bidisperse colloidal suspensions of nanoparticles (NPs; iron oxide with diameters of 188 ± 20 nm or poly(methyl methacrylate) with diameters of 150 ± 15 nm) and microparticles (MPs; polystyrene with diameters of 2.77 ± 0.20 μm) are dispersed in the isotropic phase of 4-pentyl-4'-cyanobiphenyl (5CB) and thermally quenched. Specifically, we document microstructuring that results from three sequential phase separation processes that occur at distinct temperatures during stepwise cooling of the ternary mixture from its miscibility region. The first phase transition demixes the system into coexisting MP-rich and NP-rich phases; the second promotes formation of a particle network within the MP-rich phase; and the third, which coincides with the isotropic-to-nematic phase transition of 5CB, produces a second colloidal network within the NP-rich phase. We quantified the dynamics of each demixing process by using optical microscopy and Fourier transform image analysis to establish that the phase transitions occur through (i) surface-directed spinodal decomposition, (ii) spinodal decomposition, and (iii) nucleation and growth, respectively. Significantly, the observed series of phase transitions leads to a hierarchical organization of cellular microstructures not observed in colloid-in-liquid crystal gels formed from monodisperse colloids. The results of this study suggest new routes to the synthesis of colloidal materials with hierarchical microstructures that combine large surface areas and organized porosity with potential applications in catalysis, separations, chemical sensing, or tissue engineering.

  4. Approaches to separations using silica colloidal membranes

    NASA Astrophysics Data System (ADS)

    Ignacio-de Leon, Patricia Anne Argana

    This thesis describes the synthesis and properties of free-standing nanoporous silica colloidal membranes where the molecular transport is controlled on the basis of size, charge, and chiral selectivity. To achieve this, free-standing membranes were prepared from colloidal solutions of silica nanospheres and the nanopore size and surface functionality were varied. First, Au-coated membranes were prepared and the transport of neutral and charged small molecules through Au-coated silica colloidal membranes modified with poly(methacrylic acid) was studied. Polymer length was controlled by polymerization time to produce pH- and ion-responsive brushes inside the nanopores. By monitoring the flux of a diffusing species, it was demonstrated that the polyelectrolyte brush undergoes swelling and collapse when the pH is increased and decreased, respectively. We also observed an expansion and contraction in the absence and presence of counterions, respectively. We also studied the transport of enantiomers of a chiral dye molecule through silica colloidal membranes with attached chiral moieties. We used small molecules and polymers of amino acid derivatives and chiral calixarenes capable of chiral recognition as a result of stereochemically dependent noncovalent interactions with the diffusing molecule. We found that the selectivity remains approximately the same for membranes modified with small molecules and with polymers. This suggests that enantiopermselectivity depends primarily on the strength of noncovalent interactions rather than the availability of recognition sites. Next, the transport of various generations of dendrimers through silica colloidal membranes was studied in a proof-of-concept experiment to demonstrate the size-selectivity of our materials. Smaller dendrimers were found to diffuse faster and selectivity is improved by using smaller nanopores. Finally, the transport of proteins through silica colloidal membranes was studied as a function of nanopore size

  5. Advanced Colloids Experiment (ACE) Science Overview

    NASA Technical Reports Server (NTRS)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  6. Sorption of selected endocrine disrupting chemicals to different aquatic colloids.

    PubMed

    Zhou, J L; Liu, R; Wilding, A; Hibberd, A

    2007-01-01

    The sorption of seven endocrine disrupting chemicals (EDCs) to aquatic colloids was determined by cross-flow ultrafiltration (CFUF) followed by gas chromatography-mass spectrometry (GC-MS). Results show that the colloidal organic carbon normalized sorption coefficient (Kcoc) of EDCs to different aquatic colloids varies by a factor of 6-12 because such colloids are of different origin. Through characterization of colloidal samples, a significant relationship was established between Kcoc values and the molar extinction coefficient of colloids at 280 nm, whereas no other colloidal properties such as elemental ratios were correlated with Kcoc values. The results are consistent with other reports of the importance of the quality of sorbents such as their aromatic carbon content in sorbing various organic pollutants. The presence of a surfactant was found to increase Kcoc values for estrone (El) and 17alpha-ethynylestradiol (EE2). The method was subsequently applied for determining EDC concentrations in field samples, where both conventional and truly dissolved EDCs showed higher concentrations close to sewage outfalls than either upstream or downstream, confirming the sourceconcentration relationship. In addition, the truly dissolved EDC concentrations were lower than the conventional dissolved concentrations, confirming that there were interactions between aquatic colloids and EDCs. It is estimated that between 10 and 29% of EDCs are associated with aquatic colloids. As colloids are highly abundant in rivers and ocean, they will therefore play a significant role in the environmental behavior and fate of EDCs.

  7. Mobile linkers on DNA-coated colloids: valency without patches.

    PubMed

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  8. Quantifying colloid retention in partially saturated porous media

    NASA Astrophysics Data System (ADS)

    Zevi, Yuniati; Dathe, Annette; Gao, Bin; Richards, Brian K.; Steenhuis, Tammo S.

    2006-12-01

    The transport of colloid-contaminant complexes and colloid-sized pathogens through soil to groundwater is of concern. Visualization and quantification of pore-scale colloid behavior will enable better description and simulation of retention mechanisms at individual surfaces, in contrast to breakthrough curves which only provide an integrated signal. We tested two procedures for quantifying colloid movement and retention as observed in pore-scale image sequences. After initial testing with static images, three series of images of synthetic microbead suspensions passing through unsaturated sand were examined. The region procedure (implemented in ImageJ) and the Boolean procedure (implemented in KS400) yielded nearly identical results for initial test images and for total colloid-covered areas in three image series. Because of electronic noise resulting in pixel-level brightness fluctuations the Boolean procedure tended to underestimate attached colloid counts and conversely overestimate mobile colloid counts. The region procedure had a smaller overestimation error of attached colloids. Reliable quantification of colloid retention at pore scale can be used to improve current understanding on the transport mechanisms of colloids in unsaturated porous media. For example, attachment counts at individual air/water meniscus/solid interface were well described by Langmuir isotherms.

  9. Colloidal mode of transport in the Potomac River watershed

    SciTech Connect

    Maher, I.L.; Foster, G.D.

    1995-12-31

    Similarly to the particulate phase the colloidal phase may play an important role in the organic contaminant transport downstream the river. The colloidal phase consisting of microparticles and micromolecules which are small enough to be mobile and large enough to attract pollutants can absorb nonpolar organic compounds similarly as do soil and sediment particles. To test the hypothesis three river water samples have been analyzed for PAH content in the dissolved, the colloidal, and the particulate phase. The first sample was collected at the Blue Ridge province of Potomac River watershed, at Point of Rocks, the second one in the Pidmont province, at Riverbend Park, and the third sample at Coastal Plane, at Dyke Marsh (Belle Heven marina). In the laboratory environment each water sample was prefiltered to separate the particulate phase form the dissolved and colloidal phase. One part of the prefiltered water sample was ultrafiltered to separate colloids while the second part of the water was Goulden extracted. The separated colloidal phase was liquid-liquid extracted (LLE) while filters containing the suspended solids were Soxhlet extracted. The extracts of the particulate phase, the colloidal phase, and the dissolved plus colloidal phase were analyzed for selected PAHs via GC/MS. It is planned that concentrations of selected PAHs in three phases will be used for calculations of the partition coefficients, the colloid/dissolved partition coefficient and the particle/dissolved partition coefficient. Both partition coefficients will be compared to define the significance of organic contaminant transport by aquatic colloids.

  10. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    NASA Astrophysics Data System (ADS)

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  11. Shape recognition of microbial cells by colloidal cell imprints

    NASA Astrophysics Data System (ADS)

    Borovička, Josef; Stoyanov, Simeon D.; Paunov, Vesselin N.

    2013-08-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called ``colloid antibodies'', were fabricated by partial fragmentation of silica shells obtained by templating the targeted microbial cells. We successfully demonstrated the shape and size recognition between such colloidal imprints and matching microbial cells. High percentage of binding events of colloidal imprints with the size matching target particles was achieved. We demonstrated selective binding of colloidal imprints to target microbial cells in a binary mixture of cells of different shapes and sizes, which also resulted in high binding selectivity. We explored the role of the electrostatic interactions between the target cells and their colloid imprints by pre-coating both of them with polyelectrolytes. Selective binding occurred predominantly in the case of opposite surface charges of the colloid cell imprint and the targeted cells. The mechanism of the recognition is based on the amplification of the surface adhesion in the case of shape and size match due to the increased contact area between the target cell and the colloidal imprint. We also tested the selective binding for colloid imprints of particles of fixed shape and varying sizes. The concept of cell recognition by colloid imprints could be used for development of colloid antibodies for shape-selective binding of microbes. Such colloid antibodies could be additionally functionalized with surface groups to enhance their binding efficiency to cells of specific shape and deliver a drug payload directly to their surface or allow them to be manipulated using external fields. They could benefit the pharmaceutical industry in developing selective antimicrobial therapies and formulations.

  12. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    PubMed

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media

    NASA Astrophysics Data System (ADS)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-06-01

    While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.

  14. Colloidal Dancers: Designing networks of DNA-functionalized colloids for non-random walks

    NASA Astrophysics Data System (ADS)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.

    2014-03-01

    We present experimental developments of a system of DNA-functionalized colloidal particles with the goal of creating directed motion (`dancing') along patterned substrates in response to temperature cycling. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal dancer. In comparison to DNA-based walkers, which move autonomously and whose motion is controlled by the substrate, our colloidal dancers respond to external driving, and their motion can be controlled in situ. Our use of DNA-functionalized colloidal particles instead of pure DNA systems also enables walking on the mesoscale in contrast to the molecular length scales previously demonstrated, allowing for the future prospect of directed transport over larger distances.

  15. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.

    PubMed

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter

    2015-04-28

    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.

  16. Viscoelasticity of colloidal polycrystals doped with impurities

    NASA Astrophysics Data System (ADS)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  17. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  18. Optoelectronic Applications of Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wang, Zhiping; Zhang, Nanzhu; Brenneman, Kimber; Wu, Tsai Chin; Jung, Hyeson; Biswas, Sushmita; Sen, Banani; Reinhardt, Kitt; Liao, Sicheng; Stroscio, Michael A.; Dutta, Mitra

    This chapter highlights recent optoelectronic applications of colloidal quantum dots (QDs). In recent years, many colloidal QD-based optoelectronic devices, and device concepts have been proposed and studied. Many of these device concepts build on traditional optoelectronic device concepts. Increasingly, many new optoelectronic device concepts have been based on the use of biomolecule QD complexes. In this chapter, both types of structures are discussed. Special emphasis is placed on new optoelectronic device concepts that incorporate DNA-based aptamers in biomolecule QD complexes. Not only are the extensions of traditional devices and concepts realizable, such as QD-based photo detectors, displays, photoluminescent and photovoltaic devices, light-emitting diodes (LEDs), photovoltaic devices, and solar cells, but new devices concepts such a biomolecule-based molecular sensors possible. This chapter highlights a number of such novel QD-based devices and device concepts.

  19. The NASA GSFC MEMS Colloidal Thruster

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Jamieson, Brian G.; Norgaard, Peter C.; Chepko, Ariane B.

    2004-01-01

    A number of upcoming missions require different thrust levels on the same spacecraft. A highly scaleable and efficient propulsion system would allow substantial mass savings. One type of thruster that can throttle from high to low thrust while maintaining a high specific impulse is a Micro-Electro-Mechanical System (MEMS) colloidal thruster. The NASA GSFC MEMS colloidal thruster has solved the problem of electrical breakdown to permit the integration of the electrode on top of the emitter by a novel MEMS fabrication technique. Devices have been successfully fabricated and the insulation properties have been tested to show they can support the required electric field. A computational finite element model was created and used to verify the voltage required to successfully operate the thruster. An experimental setup has been prepared to test the devices with both optical and Time-Of-Flight diagnostics.

  20. Knot theory realizations in nematic colloids

    PubMed Central

    Čopar, Simon; Tkalec, Uroš; Muševič, Igor; Žumer, Slobodan

    2015-01-01

    Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand. The nematic nature of the medium adds additional topological parameters to the conventional results of knot theory, which couple with the knot topology and introduce order into the phase diagram of possible structures. The crystalline order allows the simplified construction of the Jones polynomial and medial graphs, and the steps in the construction algorithm are mirrored in the physics of liquid crystals. PMID:25624467

  1. Forging Colloidal Nanostructures via Cation Exchange Reactions

    PubMed Central

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  2. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chekesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe-close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  3. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chakesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe- close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  4. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.

  5. Colloidal attraction induced by a temperature gradient.

    PubMed

    Di Leonardo, R; Ianni, F; Ruocco, G

    2009-04-21

    Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.

  6. Correlated Clusters in Aging Colloidal Glass

    NASA Astrophysics Data System (ADS)

    Robe, Dominic; Boettcher, Stefan; Yunker, Peter

    A numerical model of correlated domains in glassy colloids is recreated, following its development by Becker, et. al.. The model is a course grained representation of 2D colloidal systems inspired by record dynamics, and produces emergent dynamic heterogeneity and aging. Results from the original development are reproduced, and compared to the same observables in an experimental system of bidisperse microgel spheres studied by Yunker, et. al.. Basic observables such as particle persistence and mean square displacement are measured at different waiting times to observe aging. Four-point correlation lengths are also examined for signs of dynamic heterogeneity. Results from both the numerical and experimental systems are consistent with the predictions of record dynamics, that aging systems evolve on a logarithmic time scale. This work is supported by NSF Grant DMR-1207431.

  7. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  8. Renormalized jellium model for colloidal mixtures

    NASA Astrophysics Data System (ADS)

    García de Soria, María Isabel; Álvarez, Carlos E.; Trizac, Emmanuel

    2016-10-01

    In an attempt to quantify the role of polydispersity in colloidal suspensions, we present an efficient implementation of the renormalized jellium model for a mixture of spherical charged colloids. The different species may have different size, charge, and density. Advantage is taken from the fact that the electric potential pertaining to a given species obeys a Poisson's equation that is species independent; only boundary conditions do change from one species to the next. All species are coupled through the renormalized background (jellium) density, that is determined self-consistently. The corresponding predictions are compared to the results of Monte Carlo simulations of binary mixtures, where Coulombic interactions are accounted for exactly, at the primitive model level (structureless solvent with fixed dielectric permittivity). An excellent agreement is found.

  9. Silicon oxide colloidal/polymer nanocomposite films

    SciTech Connect

    Wang Haifeng; Cao Wenwu; Zhou, Q.F.; Shung, K. Kirk; Huang, Y.H.

    2004-12-13

    The quarter-wavelength ({lambda}/4) acoustic matching layer, a vital component in medical ultrasonic transducer, can bridge the large acoustic impedance mismatch between the piezoelectric material and the human body. Composite materials are widely used as matching materials in order to cover the wide acoustic impedance range that cannot be accomplished by using a single-phase material. At high frequencies (>50 MHz), the {lambda}/4 matching layers become extremely thin so that the fabrication of homogeneous composite material matching layers becomes very challenging. A method is reported in this letter to fabricate sol-gel silicon oxide colloidal/polymer composite film on silicon substrate, in which the particle size of silicon oxide colloidal is between 10 and 40 nm. The acoustic impedance of the nanocomposite films versus aging temperature has been measured at the desired operating frequency.

  10. Silicon oxide colloidal/polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Cao, Wenwu; Zhou, Q. F.; Shung, K. Kirk; Huang, Y. H.

    2004-12-01

    The quarter-wavelength (λ/4) acoustic matching layer, a vital component in medical ultrasonic transducer, can bridge the large acoustic impedance mismatch between the piezoelectric material and the human body. Composite materials are widely used as matching materials in order to cover the wide acoustic impedance range that cannot be accomplished by using a single-phase material. At high frequencies (>50MHz), the λ /4 matching layers become extremely thin so that the fabrication of homogeneous composite material matching layers becomes very challenging. A method is reported in this letter to fabricate sol-gel silicon oxide colloidal/polymer composite film on silicon substrate, in which the particle size of silicon oxide colloidal is between 10 and 40 nm. The acoustic impedance of the nanocomposite films versus aging temperature has been measured at the desired operating frequency.

  11. Tunable Assembly of Heterogeneously Charged Colloids

    PubMed Central

    2014-01-01

    The self-assembly of colloidal particles is a route to designed materials production that combines high flexibility, cost effectiveness, and the opportunity to create ordered structures at length scales ranging from nano- to micrometers. For many practical applications in electronics, photovoltaics, and biomimetic material synthesis, ordered mono- and bilayers are often needed. Here we present a novel and simple way to tune via external parameters the ordering of heterogeneously charged colloids into quasi two-dimensional structures. Depending on the charges of the underlying substrate and of the particles, a rich and versatile assembly scenario takes place, resulting from the complex interplay between directional attractive and repulsive particle–particle and particle–substrate interactions. Upon subtle variations of the relative charge of the system components, emerging via pH modification, reversible changes either from extended aggregates to a monomeric phase or from triangular to square domains are observed. PMID:24842542

  12. Aging near the wall in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  13. Manipulating colloids with charges and electric fields

    NASA Astrophysics Data System (ADS)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  14. Collective motion in populations of colloidal robots

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas

    2014-03-01

    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  15. Dielectric spectroscopy of bidisperse colloidal suspensions.

    PubMed

    Beltramo, Peter J; Furst, Eric M

    2012-08-15

    Dielectric spectroscopy is used to measure the complex permittivity of bidisperse colloidal suspensions over the frequency range 2.5 kHz ≤ ω/2π ≤ 10 MHz using the spectrometer design of Hollingsworth and Saville (A.D. Hollingsworth, D.A. Saville, J. Colloid Interface Sci., 2003). Dielectric spectra of monodisperse polystyrene spheres of two diameters (530 nm and 1 μm) are fit to electrokinetic theory using the surface charge density as an adjustable parameter. Quantitative agreement is found in the dielectric increment and also for the conductivity increment, after considering the effect of added counterions and nonspecific adsorption. Bidisperse suspension spectra are a linear superposition of each particle's dielectric response. The results provide a simple method to extend standard electrokinetic theory based on a single particle size to dilute suspensions with many particle sizes and verify the sensitivity of the spectrometer. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Anisotropic hydrodynamic function of dense confined colloids

    NASA Astrophysics Data System (ADS)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  17. Colloidal Nanoparticles for Intermediate Band Solar Cells

    SciTech Connect

    Vörös, Márton; Galli, Giulia; Zimanyi, Gergely T.

    2015-07-28

    The Intermediate Band (IB) solar cell concept is a promising idea to transcend the Shockley–Queisser limit. Using the results of first-principles calculations, we propose that colloidal nanoparticles (CNPs) are a viable and efficient platform for the implementation of the IB solar cell concept. We focused on CdSe CNPs and we showed that intragap states present in the isolated CNPs with reconstructed surfaces combine to form an IB in arrays of CNPs, which is well separated from the valence and conduction band edges. We demonstrated that optical transitions to and from the IB are active. We also showed that the IB can be electron doped in a solution, e.g., by decamethylcobaltocene, thus activating an IB-induced absorption process. Our results, together with the recent report of a nearly 10% efficient CNP solar cell, indicate that colloidal nanoparticle intermediate band solar cells are a promising platform to overcome the Shockley–Queisser limit.

  18. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  19. Renormalized jellium model for colloidal mixtures.

    PubMed

    García de Soria, María Isabel; Álvarez, Carlos E; Trizac, Emmanuel

    2016-10-01

    In an attempt to quantify the role of polydispersity in colloidal suspensions, we present an efficient implementation of the renormalized jellium model for a mixture of spherical charged colloids. The different species may have different size, charge, and density. Advantage is taken from the fact that the electric potential pertaining to a given species obeys a Poisson's equation that is species independent; only boundary conditions do change from one species to the next. All species are coupled through the renormalized background (jellium) density, that is determined self-consistently. The corresponding predictions are compared to the results of Monte Carlo simulations of binary mixtures, where Coulombic interactions are accounted for exactly, at the primitive model level (structureless solvent with fixed dielectric permittivity). An excellent agreement is found.

  20. Structure and hydrodynamics of colloidal systems

    SciTech Connect

    Hayter, J.B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to ..mu..sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  1. Influence of biofilms on the movement of colloids in porous media. Implications for colloid facilitated transport in subsurface environments.

    PubMed

    Leon Morales, Carlos Felipe; Strathmann, Martin; Flemming, Hans-Curt

    2007-05-01

    Colloid transport through porous media can be influenced by the presence of biofilms. Sterile and non-sterile sand columns were investigated using Laponite RD as model colloid and a highly mucoid strain of Pseudomonas aeruginosa as model biofilm former. Laponite RD was marked specifically by fluorescent complexes with rhodamine 6G. Breakthrough curves (BTCs) were used as parameters for determination of colloid transport characteristics. In the sterile columns, the colloid was mobile (collision efficiencies from 0.05 to 0.08) both after the presence of Na(+) and Ca(2+) ions followed by deionised water influent. In the biofilm-grown column, the same treatment did not result in colloid retention in the case of Na(+) exposure, but in altered or enhanced colloid transport. In the case of Ca(2+) ions exposure, colloid retention increased with biofilm age. After 3 weeks, almost complete retention was observed. Similar observations were made in columns packed with material from slow sand filtration units. These data reveal the complex interactions between biofilms, cations and colloid transport. Changes in the electrolyte composition of water percolating the subsurface can frequently occur and will result in different colloid transport characteristics with regard to the dominating species of ions and the relative abundance of microbial biofilms. This has to be considered when modelling colloid transport through the subsurface.

  2. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the

  3. Colloidal Nanocrystals Fluoresced by Surface Coordination Complexes

    PubMed Central

    Wang, Guan; Ji, Jianwei; Zhang, Xinwen; Zhang, Yan; Wang, Qiangbin; You, Xiaozeng; Xu, Xiangxing

    2014-01-01

    Colloidal Nanocrystals (NCs) with fluorescence originating from surface complexes are successfully prepared. The components of these NCs range from insulator, semiconductor to metal, with either pure phase, doped or core/shell structures. The photoluminescence of these NCs can be reversibly tuned across the visible to infrared spectrum, and even allow multi-color emission. A light emitting device is fabricated and a new in vivo cell imaging method is performed to demonstrate the power of this technology for emerging applications. PMID:24970242

  4. Patterning colloidal films via evaporative lithography.

    PubMed

    Harris, Daniel J; Hu, Hua; Conrad, Jacinta C; Lewis, Jennifer A

    2007-04-06

    We investigate evaporative lithography as a route for patterning colloidal films. Films are dried beneath a mask that induces periodic variations between regions of free and hindered evaporation. Direct imaging reveals that particles segregate laterally within the film, as fluid and entrained particles migrate towards regions of higher evaporative flux. The films exhibit remarkable pattern formation that can be regulated by tuning the initial suspension composition, separation distance between the mask and underlying film, and mask geometry.

  5. Columnar self-assembly of colloidal nanodisks.

    PubMed

    Saunders, Aaron E; Ghezelbash, Ali; Smilgies, Detlef-M; Sigman, Michael B; Korgel, Brian A

    2006-12-01

    The self-assembly of sterically stabilized colloidal copper sulfide nanodisks, 14-20 nm in diameter and 5-7 nm thick, was studied. The nanodisks were observed by electron microscopy and small-angle X-ray scattering to form columnar arrays when evaporated as thin films from concentrated dispersions. These superstructured nanomaterials might give rise to technologically useful properties, such as anisotropic electrical transport and electrorheological and optical properties.

  6. Stabilization of Colloidal Silica Using Small Polyols

    SciTech Connect

    GULLEY, GERALD L.; MARTIN, JAMES E.

    1999-09-07

    We have discovered that small polyols are reasonably effective at stabilizing colloidal silica against aggregation, even under the conditions of high pH and salt concentration. Both quasielastic and elastic light scattering were used to show that these polyols dramatically decrease the aggregation rate of the suspension, changing the growth kinetics from diffusion-limited cluster-cluster aggregation to reaction-limited cluster-cluster aggregation. These polyols maybe useful in the treatment of tank wastes at the Hanford site.

  7. CGEL-2: Structural Studies of Colloidal Suspensions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These are images of CGEL-2 samples taken during STS-95. They show binary colloidal suspensions that have formed ordered crystalline structures in microgravity. In sample 5, there are more particles therefore, many, many crystallites (small crystals) form. In sample 6, there are less particles therefore, the particles are far apart and few, much larger crystallites form. The white object in the right corner of sample 5 is the stir bar used to mix the sample at the begirning of the mission.

  8. Toward Multispectral Imaging with Colloidal Metasurface Pixels.

    PubMed

    Stewart, Jon W; Akselrod, Gleb M; Smith, David R; Mikkelsen, Maiken H

    2017-02-01

    Multispectral colloidal metasurfaces are fabricated that exhibit greater than 85% absorption and ≈100 nm linewidths by patterning film-coupled nanocubes in pixels using a fusion of bottom-up and top-down fabrication techniques over wafer-scale areas. With this technique, the authors realize a multispectral pixel array consisting of six resonances between 580 and 1125 nm and reconstruct an RGB image with 9261 color combinations.

  9. Les Brulures Chimiques Par Le Laurier Rose

    PubMed Central

    Bakkali, H.; Ababou, M.; Nassim Sabah, T.; Moussaoui, A.; Ennouhi, A.; Fouadi, F.Z.; Siah, S.; Ihrai, H.

    2010-01-01

    Summary Le laurier rose ou Nerium oleander est un arbuste qui pousse naturellement dans les régions méditerranéennes. Au Maroc on le trouve dans les lieux humides. Il est réputé par ses risques de toxicité systémique en cas d'empoisonnement à cause de la présence de deux alcaloïdes, surtout l'oléandrine. La littérature illustre des cas d'utilisation locale des feuilles de cette plante contre la gale, les hémorroïdes et les furoncles. Nous rapportons deux cas de brûlures chimiques par le laurier rose de gravité différente. Cela doit aboutir à une information élargie de la population, ainsi qu'une réglementation stricte de sa commercialisation. PMID:21991211

  10. General nonequilibrium theory of colloid dynamics.

    PubMed

    Ramírez-González, Pedro; Medina-Noyola, Magdaleno

    2010-12-01

    A nonequilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n(r,t) and of the covariance [Formula in text] of its fluctuations δn(r,t)=n(r,t)-n(r,t). These two coarse-grained equations involve a local mobility function b(r,t) which, in its turn, is written in terms of the memory function of the two-time correlation function [Formula in text]. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n(0)(r) and σ(0)(r,r') toward its equilibrium state characterized by the equilibrium local concentration profile n(eq)(r) and equilibrium covariance σ(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities.

  11. Improving feed slurry rheology by colloidal techniques

    SciTech Connect

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  12. Light-activated self-propelled colloids

    PubMed Central

    Palacci, J.; Sacanna, S.; Kim, S.-H.; Yi, G.-R.; Pine, D. J.; Chaikin, P. M.

    2014-01-01

    Light-activated self-propelled colloids are synthesized and their active motion is studied using optical microscopy. We propose a versatile route using different photoactive materials, and demonstrate a multiwavelength activation and propulsion. Thanks to the photoelectrochemical properties of two semiconductor materials (α-Fe2O3 and TiO2), a light with an energy higher than the bandgap triggers the reaction of decomposition of hydrogen peroxide and produces a chemical cloud around the particle. It induces a phoretic attraction with neighbouring colloids as well as an osmotic self-propulsion of the particle on the substrate. We use these mechanisms to form colloidal cargos as well as self-propelled particles where the light-activated component is embedded into a dielectric sphere. The particles are self-propelled along a direction otherwise randomized by thermal fluctuations, and exhibit a persistent random walk. For sufficient surface density, the particles spontaneously form ‘living crystals’ which are mobile, break apart and reform. Steering the particle with an external magnetic field, we show that the formation of the dense phase results from the collisions heads-on of the particles. This effect is intrinsically non-equilibrium and a novel principle of organization for systems without detailed balance. Engineering families of particles self-propelled by different wavelength demonstrate a good understanding of both the physics and the chemistry behind the system and points to a general route for designing new families of self-propelled particles. PMID:25332383

  13. Colloidal competences of any polyethyleneglycol conjugates.

    PubMed

    Jianu, C; Cocan, Ileana; Rujescu, Cristina; Jianu, I

    2008-01-01

    The present paper presents research rely on the knowledge of basic colloidal competences (surface tension, critical micelar concentration, HLB value) of certain new structured lipids by accessing "homogeneous" polyoxyethylene chains (n=3-18) (PEGn) monoderivatized R(NF; EH) during processing by cyanoethylation, hydrolysis, and esterification together with fatty acids (R') isolated and characterized from grape seeds (Vitis vinifera) (S), wild chestnut (Aesculus hyppocastanum) (Ca), wild rose (Rosa Canina) (mn), coriander (Coriandri fructus) (Co) in the architecture of the conjugates about foaming and wetting competences. Basic colloidal characterisation aimed at directing future research to optimagrape seed technological directions for agroalimentary and horticultural processing (and not only) among which these structures through synergic cumulus of defining competences of the polyunsaturated fatty acids (1 delta; 2delta; 3delta), of "homogeneous" derivatised polyethyleneoxy chains (PEO) with monitored degree of oligomerization (n=3-18). We thought it useful to access oligomeric chains PEO processed through adapted Williamson synthesis to clearly quantify its role in the global "colloidal fingerprint" of the studied conjugate. On the other hand, polyunsaturated plant lipid residues we selected constitute a variant of valorification by-products from horticultural and/or agroalimentary processing accessible over worldwide geographical areas with differences due to soil and climate conditions and to the cultivars specific to spontaneous and cultivated flora.

  14. Colloidal solitary waves with temperature dependent compressibility

    NASA Astrophysics Data System (ADS)

    Azmi, A.; Marchant, T. R.

    2014-05-01

    Spatial solitary waves which form in colloidal suspensions of dielectric nanoparticles are considered. The interactions, or compressibility, of the colloidal particles, is modelled using a series in the particle density, or packing fraction, where the virial, or series, coefficients depend on the type of particle interaction model. Both the theoretical hard disk and sphere repulsive models, and a model with temperature dependent compressibility, are considered. Experimental results show that particle interactions can be temperature dependent and either repulsive or attractive in nature, so we model the second virial coefficient using a physically realistic temperature power law. One- and two-dimensional semi-analytical colloidal solitary wave solutions are found. Trial functions, based on the form of the nonlinear Schrödinger equation soliton, are used, together with averaging, to develop the semi-analytical solutions. When the background packing fraction is low, the one-dimensional solitary waves have three solutions branches (with a bistable regime) while the two-dimensional solitary waves have two solution branches, with a single stable branch. The temperature dependent second virial coefficient results in changes to the solitary wave properties and the parameter space, in which multiple solutions branches occur. An excellent comparison is found between the semi-analytical and numerical solutions.

  15. Colloidal nanorod heterostructures for photovoltaics and optoelectronics

    NASA Astrophysics Data System (ADS)

    Shim, Moonsub

    2017-05-01

    Colloidal quantum dots (QDs) synthesized in versatile, easy-to-process solutions are opening up exciting prospects in multiple areas, especially in biomedical imaging, photovoltaics, solid-state lighting and displays. The success of most of these prospects relies on high-quality heterostructures that improve optical properties. In particular, the core/shell heterostructure with a type I straddling band offset has been indispensable but the applicability is often limited to those exploiting only photoluminescence. QDs and their heterostructures can also be made with anisotropic shapes that allow access to essentially an unlimited number of combinations of size, shape and composition. Structures that allow enhancement of optical properties and physical accessibility for carrier injection/extraction simultaneously can open up new and exciting prospects in photovoltaics and optoelectronics. This topical review focuses on nanorod-based colloidal semiconductor heterostructures. Two-component, type II staggered band offset nanorod heterostructures capable of efficiently separating photoinduced charges are first discussed. Double heterojunction nanorods that contain three different phases are then considered with respect to their novelty and potential as emissive materials in light-emitting diodes. We conclude with an outlook on the possibility of developing colloidal nanorods that contain epitaxial interfaces beyond the conventional semiconductor heterojunctions.

  16. Recent advances in polymer colloidal crystal lasers.

    PubMed

    Furumi, Seiichi

    2012-09-21

    Colloids with a size in the nanometres to micrometres range are frequently used in both fundamental research and industrial applications. In this context, colloidal crystals (CCs)-3D ordered arrays of monodispersed colloidal microparticles with a diameter of several hundred nanometres-have garnered a great deal of attention in the intriguing research realm of photonic crystals (PCs) due to the feasible and high-throughput 3D-PC fabrication with CCs. For optoelectronic applications, it is of prime importance to construct 3D-PCs with photonic band-gaps (PBGs) in the visible wavelength range. With regard to photonic device applications, many reports have been made on a wide variety of optical reflection sensors and displays using CCs that shift the visible PBG wavelength in response to external stimuli. This Minireview describes the research progress in the investigation of CCs and their laser applications. We highlight not only the research background of CCs as 3D-PCs, but also new potential applications of CCs as flexible and widely tunable lasers by low-threshold optical excitation.

  17. Composition of estuarine colloidal material: organic components

    USGS Publications Warehouse

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  18. Supraorbital endoscopic approach to colloid cysts.

    PubMed

    Delitala, Alberto; Brunori, Andrea; Russo, Natale

    2011-12-01

    Surgical approaches to colloid cysts of the third ventricle have evolved over time. In recent years, endoscopy has been recognized as an effective alternative to open surgery. The disadvantage of endoscopic treatment is the difficulty in controlling the adhesion of the cyst to the roof of the third ventricle and in obtaining complete removal of the cyst. To design and carry out a supraorbital approach to obtain a better viewing angle of the cyst and better control of the adhesion of the cyst to the roof of the third ventricle. From September 2005 to February 2008, we operated on 7 consecutive patients with colloid cysts in the third ventricle. All procedures were performed with the endoscopic supraorbital approach. The endoscopic procedure was performed with a rigid STORZ endoscope with 3 working channels. In 4 patients, the surgical supraorbital trajectory was planned with the help of a navigator. The procedures lasted between 60 and 110 minutes, including the registration on the navigation system. Near-total removal of the cyst was achieved in 6 patients. All patients were discharged within 6 days. Endoscopic treatment may be an effective and safe alternative to open surgical craniotomy. Our series shows that the endoscopic supraorbital endoscopic resection is a valuable approach to colloid cysts of the third ventricle.

  19. Dense colloidal fluids form denser amorphous sediments

    PubMed Central

    Liber, Shir R.; Borohovich, Shai; Butenko, Alexander V.; Schofield, Andrew B.; Sloutskin, Eli

    2013-01-01

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, φRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, φRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed. PMID:23530198

  20. Colloquium: Toward living matter with colloidal particles

    NASA Astrophysics Data System (ADS)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  1. Armoring confined bubbles in concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  2. Dynamics of Polymers in Colloidal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Alexander-Katz, Alfredo

    2011-03-01

    This research is motivated by recent studies on the von Willebrand factor (vWF), a large multimeric protein that plays an essential role in the initial stages of blood clotting in blood vessels. Recent experiments substantiated the hypothesis that the vWF is activated by shear stress in blood flow that causes its shape to transform from a compact globule to an extended state, and biological function is obtained only in the extended state. Simple simulations (which only consider a single polymer in bulk shear flow) have successfully reproduced the observed dynamics of the vWF. However, a more refined model is still demanding for the better understanding of the behaviors of this biomolecule in the physiological environments. Here we refine the existing model by adding the drifting colloids into the flows to mimic the presence of the blood cells in the bloodstream. Preliminary result shows that colloids greatly influence the dynamics of the polymers. It is observed that the average extensions of polymers along and perpendicular to the shear flow direction are both increased with the presence of the colloids.

  3. Patchy polymer colloids with tunable anisotropy dimensions.

    PubMed

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  4. Colloidal Switches by Electric and Magnetic Fields.

    PubMed

    Demirörs, Ahmet Faik; Beltramo, Peter J; Vutukuri, Hanumantha Rao

    2017-05-24

    External electric and magnetic fields have already been proven to be a versatile tool to control the particle assembly; however, the degree of control of the dynamics and versatility of the produced structures is expected to increase if both can be implemented simultaneously. For example, while micromagnets can rapidly assemble superparamagnetic particles, repeated, rapid disassembly or reassembly is not trivial because of the remanence and coercivity of metals used in such applications. Here, an interdigitated design of micromagnet and microfabricated electrodes enables rapid switching of colloids between their magnetic and electric potential minima. Active control over colloids between two such adjacent potential minima enables a fast on/off mechanism, which is potentially important for optical switches or display technologies. Moreover, we demonstrate that the response time of the colloids between these states is on the order of tens of milliseconds, which is tunable by electric field strength. By carefully designing the electrode pattern, our strategy enables the switchable assembly of single particles down to few microns and also hierarchical assemblies containing many particles. Our work on precise dynamic control over the particle position would open new avenues to find potential applications in optical switches and display technologies.

  5. Structure of colloidal sphere-plate mixtures

    NASA Astrophysics Data System (ADS)

    Doshi, N.; Cinacchi, G.; van Duijneveldt, J. S.; Cosgrove, T.; Prescott, S. W.; Grillo, I.; Phipps, J.; Gittins, D. I.

    2011-05-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  6. Dissipative Particle Dynamics simulation of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Maia, Joao

    2014-03-01

    DPD as a mesoscale method was firstly proposed to study dynamics of suspensions under flow condition. However the proposed method failed to capture shear properties of suspensions because it lacked: first a potential to reproduce lubrication forces and second a clear definition for the colloid surface. Recently we reported a modified DPD method which defines colloidal particles as particles with hard core and a dissipative coat. An additional lubrication force was introduced to include the short-range hydrodynamics that are not captured in original DPD. The model was found to be able to reproduce shear properties of suspensions for a wide range of different systems, from monodisperse to bimodal with different volume fractions, compositions and size ratios. In present work our modified DPD method is employed to study both equilibrium and flow properties of colloidal suspension. Zero shear viscosity of suspension is measured using Green-Kubo expressions and the results are compared to theoretical predictions. Furthermore, structure formation in suspensions is studied in respect to energy landscape of the fluid both at rest and under flow.

  7. Theory of dynamic arrest in colloidal mixtures

    NASA Astrophysics Data System (ADS)

    Juárez-Maldonado, R.; Medina-Noyola, M.

    2008-05-01

    We present a first-principles theory of dynamic arrest in colloidal mixtures based on the multicomponent self-consistent generalized Langevin equation theory of colloid dynamics [M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E 72, 031107 (2005); M. A. Chávez-Rojo and M. Medina-Noyola, Phys. Rev. E76, 039902 (2007)]. We illustrate its application with a description of dynamic arrest in two simple model colloidal mixtures: namely, hard-sphere and repulsive Yukawa binary mixtures. Our results include observation of the two patterns of dynamic arrest, one in which both species become simultaneously arrested and the other involving the sequential arrest of the two species. The latter case gives rise to mixed states in which one species is arrested while the other species remains mobile. We also derive the (”bifurcation” or fixed-point”) equations for the nonergodic parameters of the system, which takes the surprisingly simple form of a system of coupled equations for the localization length of the particles of each species. The solution of this system of equations indicates unambiguously which species is arrested (finite localization length) and which species remains ergodic (infinite localization length). As a result, we are able to draw the entire ergodic-nonergodic phase diagram of the binary hard-sphere mixture.

  8. [Indications and limitations for colloids in interventions and surgery].

    PubMed

    Artmann, Thorsten; Gan, Tong Joo; Kranke, Peter

    2015-04-01

    Over the last few decades colloids have played an important part in the stabilisation of patients with acute need of intravascular volume replacement. After the 6S and the CHEST trials were published in 2012 and the subsequent recommendations of the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) there has been some uncertainty about the current clinical relevance and routine use of colloids. This article summarizes the current evidence and relevance of colloids in the perioperative environment and in the interventional setting on the basis of the recently published German S3-guidelines for volume therapy in adults. In situations of acute volume resuscitation colloids are still appropriate. Only colloids in balanced solutions should be used. Possible side effects, contraindications and the maximum daily dose have to be taken into consideration when administering colloids.

  9. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    PubMed

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  10. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    NASA Technical Reports Server (NTRS)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  11. Design and elaboration of colloidal molecules: an overview.

    PubMed

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  12. Evanescent wave excited luminescence from levitated quantum dot modified colloids.

    PubMed

    Everett, W Neil; Beckham, Richard E; Meissner, Kenith; Bevan, Michael A

    2007-08-14

    Evanescent wave excited luminescence of quantum dot modified polystyrene (QDPS) colloids is investigated to measure potential energy profiles of QDPS colloids electrostatically levitated above a planar glass surface. Luminescence is characterized for three different-sized PS colloids modified with three different-sized QDs using confocal microscopy, emission spectra, flow cytometry, and temporal measurements of levitated and deposited colloids. Colloid-surface potential energy profiles constructed from scattering and luminescence intensity data display excellent agreement with each other, theoretical predictions, and independently measured parameters. QDPS luminescence intensity is indirectly confirmed to have an exponential dependence on height similar to conventional colloidal evanescent wave scattering. Our findings indicate that evanescent wave excited QDPS luminescence could enable total internal reflection microscopy measurements of index-matched hard spheres, multiple specific biomolecular interactions via spectral multiplexing, enhanced morphology-dependent resonance modes, and integrated evanescent wave-video-confocal microscopy experiments not possible with scattering.

  13. Local elastic response measured near the colloidal glass transition

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Schaar, D.; Hentschel, H. G. E.; Hay, J.; Habdas, Piotr; Weeks, Eric R.

    2013-03-01

    We examine the response of a dense colloidal suspension to a local force applied by a small magnetic bead. For small forces, we find a linear relationship between the force and the displacement, suggesting the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples' volume fractions to the colloidal glass transition. The strain field of the colloidal particles surrounding the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.

  14. Self-pinning by colloids confined at a contact line

    NASA Astrophysics Data System (ADS)

    Weon, Byung; Je, Jung

    2013-03-01

    Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets. This research was supported by the Creative Research Initiatives (Functional X-ray Imaging) of MEST/NRF.

  15. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study.

    PubMed

    Gonzalo, Soledad; Llaneza, Veronica; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.

  16. A Colloidal Singularity Reveals the Crucial Role of Colloidal Stability for Nanomaterials In-Vitro Toxicity Testing: nZVI-Microalgae Colloidal System as a Case Study

    PubMed Central

    Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganes, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI) towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs. PMID:25340509

  17. Colloidal Surfaces with Boundaries, Apex Boojums, and Nested Elastic Self-Assembly of Nematic Colloids

    NASA Astrophysics Data System (ADS)

    Park, Sungoh; Liu, Qingkun; Smalyukh, Ivan I.

    2016-12-01

    Self-assembly of colloidal particles is poised to become a powerful composite material fabrication technique, but remains challenged by a limited control over the ensuing structures. We develop a new breed of nematic colloids that are physical analogs of a mathematical surface with boundary, interacting with the molecular alignment field without inducing defects when flat. However, made from a thin nanofoil, they can be shaped to prompt formation of self-compensating defects that drive preprogramed elastic interactions mediated by the nematic host. To show this, we wrap the nanofoil on all triangular side faces of a pyramid, except its square base. The ensuing pyramidal cones induce point defects with fractional hedgehog charges of opposite signs, spontaneously align with respect to the far-field director to form elastic dipoles and nested assemblies with tunable spacing. Nanofoils shaped into octahedrons interact as elastic quadrupoles. Our findings may drive realization of low-symmetry colloidal phases.

  18. LES versus DNS: A comparative study

    NASA Technical Reports Server (NTRS)

    Shtilman, L.; Chasnov, J. R.

    1992-01-01

    We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.

  19. Computational Study of Colloidal Droplet Interactions with Three Dimensional Structures

    DTIC Science & Technology

    2015-05-18

    SECURITY CLASSIFICATION OF: The colloidal droplet spreading on and sorption into a porous medium is important to 3D printing technology. In this study... colloidal fluid distribution in the porous structure after sorption of single/multiple droplets in powder beds. The spreading of the droplet on the surface...Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: Computational Study of Colloidal Droplet Interactions with Three Dimensional

  20. Exotic crystal superstructures of colloidal crystals in confinement.

    PubMed

    Fontecha, Ana Barreira; Schöpe, Hans Joachim

    2008-06-01

    Colloidal model systems have been used for over three decades for investigating liquids, crystals, and glasses. Colloidal crystal superstructures have been observed in binary systems of repulsive spheres as well as oppositely charged sphere systems showing structures well known from atomic solids. In this work we study the structural transition of colloidal crystals under confinement. In addition to the known sequence of crystalline structures, crystal superstructures with dodecagonal and hexagonal symmetry are observed in one component systems. These structures have no atomic counterpart.

  1. Influence of salt on colloidal lithography of albumin.

    PubMed

    Geng, D L; Miao, Y H; Helseth, L E

    2007-07-31

    We investigate the influence of salt on colloidal lithography of biomolecular patterns. Albumin labeled with fluorescein isothiocyanate (FITC) was adsorbed on polyelectrolyte-coated glass substrates covered by negatively charged colloids using fluorescence microscopy. After removing the colloids, a well-defined albumin pattern remains, and we study how the pattern changes upon adding salt to the protein solution. The proposed method is simple and cheap and can be used to create stable one- and two-dimensional biomolecular arrays.

  2. Fabrication of heterogeneous binary arrays of nanoparticles via colloidal lithography.

    PubMed

    Zhang, Gang; Wang, Dayang

    2008-04-30

    Heterogeneous binary arrays of metallic nanoparticles have been constructed by consecutively depositing gold and silver into monolayers of hexagonally close-packed latex spheres at the incidence angles of 15 and -15 degrees, followed by removal of the colloidal masks. The present approach is independent of the chemical nature of both colloidal masks and deposition materials. The pattern feature of the resulting binary nanoparticle arrays is dependent on the colloidal mask registry.

  3. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    PubMed

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  4. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    PubMed

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  5. Colloidal crystallization of colloidal silica grafted with iron(0) complex-tethered polymers in organic solvents

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Kohji; Mouri, Emiko

    2007-09-01

    Incorporation of iron(0) complex into polymer-grafted silica and colloidal crystallization in organic solvent were studied. In this study, zero-valence iron complex, vinylferrocene (Vfc) and iron(0)tricarbonyl(4,4-dimethyl-1,-4-cyclohexadienyl) acrylate (Fe(0)Ac) or methacrylate (Fe(0)Me), were introduced into grafted polymer to prevent from increasing ionic strength in colloidal crystallization system. Poly(methyl methacrylate (MMA)-co-Vfc)-grafted silica never formed colloidal crystals in polar solvent, such as acetone or acetonitrile. However, increasing ferrocenyl group fraction in the polymer resulted in disturbing the crystallization. Poly(N-isopropylacrylamide (NIPAAm)-co-Vfc)-grafted silica, which was composed of mole fraction of Vfc, 1/3, afforded crystallization in ethanol over the particle fraction of 0.053. In the case of diene-Fe(0)(CO) 3/polymer-grafted silica, poly(MMA-co-Fe(0)Ac)-, poly(NIPAAm-co-Fe(0)Ac)- and poly(N.N-dimethylacrylamide (DMAAm)-co-Fe(0)Ac)-grafted silica gave colloidal crystallization in relatively low polar solvents, DMF, acetone, acetonirile and ethanol, critical volume fraction for which were in the range from 0.054 to 0.117. In the case of copolymer-grafted silica containing Fe(0)Me, poly(MMA-co-FeMe)-grafted silica crystallized in DMF, Interestingly, especially in cases of polymer-grafted silica containing Fe(0)Ac or Fe(0)Me composed of the highest mole fraction Fe(0)Me, 1/2, afforded crystallization in DMF. The iridescence color of the colloidal crystals was changed with the combination of grafted polymer and solvent. The characteristic coloration of the solution from reddish to greenish color is possibly due to absorption of blue light region by diene-Fe(0)(CO) 3 complex and Bragg deflection on colloidal crystals.

  6. Les Elements Legers: Diffusion dans les Enveloppes Stellaires et Implications Cosmologiques

    NASA Astrophysics Data System (ADS)

    Richer, Jacques

    1992-01-01

    Les observations des abondances des elements legers (Z <= 5) sont utilisees pour estimer la quantitie de lithium qui a ete produite lors du Big -Bang, et obtenir simultanement des contraintes sur la nature des inhomogeneites qui ont pu exister durant la nucleosynthese primordiale. Nous utilisons un modele simple capable de simuler approximativement la diffusion et la retro-diffusion des neutrons a travers la matiere inhomogene durant les premieres minutes de l'expansion de l'Univers. Nous tenons compte de la difference possible entre l'abondance primordiale de Li et les abondances observees dans les plus vieilles etoiles. Cette difference (un facteur 2, environ) est estimee en construisant des modeles evolutifs d'etoiles peu massives de Population II, incluant la sedimentation gravitationnelle du lithium et de l'helium. Ces modeles montrent egalement que les ages des vieux amas stellaires sont grandement surestimes lorsqu'ils sont determines a partir de modeles stellaires n'incluant pas l'effet de la diffusion de He. Nous calculons ensuite comment evoluent les abondances de Li et Be dans des etoiles plus massives et plus jeunes, de la pre-sequence principale ou de la ZAMS, jusqu'a l'epuisement de leur hydrogene central. Les modeles incluent la sedimentation simultanee de l'helium a travers l'enveloppe. Une approche hierarchique (evolution du coeur--evolution de l'enveloppe --tri des elements traces) est utilisee pour simuler efficacement le grand nombre d'etoiles necessaire pour la construction d'isochrones. Une attention particuliere est portee aux consequences de la sedimentation de He sur l'etendue des zones convectives, et sur la diffusion de Li et Be. Les forces radiatives agissant sur ces deux elements sont calculees en detail a partir des donnees atomiques. Les etoiles simulees correspondent approximativement aux types spectraux A, F, et AmFm. Les abondances de Li et Be observees dans les etoiles jeunes de ces types sont comparees a nos predictions dans le

  7. Fluid management in cardiac surgery: colloid or crystalloid?

    PubMed

    Shaw, Andrew; Raghunathan, Karthik

    2013-06-01

    The crystalloid-colloid debate has raged for decades, with the publication of many meta-analyses, yet no consensus. There are important differences between colloids and crystalloids, and these differences have direct relevance for cardiac surgical patients. Rather than asking crystalloid or colloid, we believe better questions to ask are (1) High or low chloride content? and (2) Synthetic or natural colloid? In this paper we review the published literature regarding fluid therapy in cardiac surgery and explain the background to these two important and unanswered questions. Published by Elsevier Inc.

  8. Phosphate binding by natural iron-rich colloids in streams.

    PubMed

    Baken, Stijn; Moens, Claudia; van der Grift, Bas; Smolders, Erik

    2016-07-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 μm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Size and density of a /sup 242/Pu colloid

    SciTech Connect

    Rundberg, R.S.; Mitchell, A.J.; Torstenfelt, N.B.

    1987-01-01

    The size and density of a /sup 242/Pu colloid has been measured by autocorrelation photon spectrometry. The density of the colloid was determined by ultraspeed centrifugation. From the concentration profiles of /sup 242/Pu in the centrifuged test tubes, a standard sedimentation formula was used to calculate the density; the size of the colloid was known from the light scattering experiments. The determined density of the /sup 242/Pu colloid was unexpectedly low compared to the density of crystalline PuO/sub 2/. 5 refs., 1 tab.

  10. Colloid mobilization by fluid displacement fronts in channels.

    PubMed

    Lazouskaya, Volha; Wang, Lian-Ping; Or, Dani; Wang, Gang; Caplan, Jeffrey L; Jin, Yan

    2013-09-15

    Understanding colloid mobilization during transient flow in soil is important for addressing colloid and contaminant transport issues. While theoretical descriptions of colloid detachment exist for saturated systems, corresponding mechanisms of colloid mobilization during drainage and imbibition have not been considered in detail. In this work, theoretical force and torque analyses were performed to examine the interactive effects of adhesion, drag, friction, and surface tension forces on colloid mobilization and to outline conditions corresponding to the mobilization mechanisms such as lifting, sliding, and rolling. Colloid and substrate contact angles were used as variables to determine theoretical criteria for colloid mobilization mechanisms during drainage and imbibition. Experimental mobilization of hydrophilic and hydrophobic microspheres with drainage and imbibition fronts was investigated in hydrophilic and hydrophobic channels using a confocal microscope. Colloid mobilization differed between drainage and imbibition due to different dynamic contact angles and interfacial geometries on the contact line. Experimental results did not fully follow the theoretical criteria in all cases, which was explained with additional factors not included in the theory such as presence of aggregates and trailing films. Theoretical force and torque analyses resulted in similar mobilization predictions and suggested that all mobilization mechanisms contributed to the observed colloid mobilization.

  11. Nonlinear Optical Properties of Colloids with Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Mayor, A. Yu.; Proschenko, D. Yu.; Golik, S. S.; Postnova, I. V.; Shchipunov, Yu. A.; Podlesnyh, A. A.

    Experimentally studied linear and nonlinear characteristics of colloid on the basis of a new class of carbon nanoparticles (CN) synthesized by hydrothermal synthesis. The spectral characteristics of supercontinuum of the colloids with CN in the range 420 - 700 nm were investigated. The effectiveness of excitation of one- and two-photon fluorescence colloids with UN was determined. The anomalous dependence of the nonlinear refractive index of the wavelength of the radiation was revealed. It was installed that the efficiency of spectral transformation of the supercontinuum process in the case of colloid with carbon nanoparticles is less in the anti-stokes region than in case with water.

  12. Three-dimensional colloidal crystals in liquid crystalline blue phases

    PubMed Central

    Ravnik, Miha; Alexander, Gareth P.; Yeomans, Julia M.; Žumer, Slobodan

    2011-01-01

    Applications for photonic crystals and metamaterials put stringent requirements on the characteristics of advanced optical materials, demanding tunability, high Q factors, applicability in visible range, and large-scale self-assembly. Exploiting the interplay between structural and optical properties, colloidal lattices embedded in liquid crystals (LCs) are promising candidates for such materials. Recently, stable two-dimensional colloidal configurations were demonstrated in nematic LCs. However, the question as to whether stable 3D colloidal structures can exist in an LC had remained unanswered. We show, by means of computer modeling, that colloidal particles can self-assemble into stable, 3D, periodic structures in blue phase LCs. The assembly is based on blue phases providing a 3D template of trapping sites for colloidal particles. The particle configuration is determined by the orientational order of the LC molecules: Specifically, face-centered cubic colloidal crystals form in type-I blue phases, whereas body-centered crystals form in type-II blue phases. For typical particle diameters (approximately 100 nm) the effective binding energy can reach up to a few 100 kBT, implying robustness against mechanical stress and temperature fluctuations. Moreover, the colloidal particles substantially increase the thermal stability range of the blue phases, for a factor of two and more. The LC-supported colloidal structure is one or two orders of magnitude stronger bound than, e.g., water-based colloidal crystals. PMID:21368186

  13. Statics and dynamics of colloidal particles on optical tray arrays

    SciTech Connect

    Reichardt, Charles; Reichhardt, Cynthia J

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  14. Study of the stability coated and uncoated nanosilver colloid

    NASA Astrophysics Data System (ADS)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  15. Dynamics of Fractal Cluster Gels with Embedded Active Colloids

    NASA Astrophysics Data System (ADS)

    Szakasits, Megan E.; Zhang, Wenxuan; Solomon, Michael J.

    2017-08-01

    We find that embedded active colloids increase the ensemble-averaged mean squared displacement of particles in otherwise passively fluctuating fractal cluster gels. The enhancement in dynamics occurs by a mechanism in which the active colloids contribute to the average dynamics both directly through their own active motion and indirectly through their excitation of neighboring passive colloids in the fractal network. Fractal cluster gels are synthesized by addition of magnesium chloride to an initially stable suspension of 1.0 μ m polystyrene colloids in which a dilute concentration of platinum coated Janus colloids has been dispersed. The Janus colloids are thereby incorporated into the fractal network. We measure the ensemble-averaged mean squared displacement of all colloids in the gel before and after the addition of hydrogen peroxide, a fuel that drives diffusiophoretic motion of the Janus particles. The gel mean squared displacement increases by up to a factor of 3 for an active to passive particle ratio of 1 ∶20 and inputted active energy—defined based on the hydrogen peroxide's effect on colloid swim speed and run length—that is up to 9.5 times thermal energy, on a per particle basis. We model the enhancement in gel particle dynamics as the sum of a direct contribution from the displacement of the Janus particles themselves and an indirect contribution from the strain field that the active colloids induce in the surrounding passive particles.

  16. Zero-valent iron colloid emplacement in sand columns

    SciTech Connect

    Cantrell, K.J.; Kaplan, D.I.

    1997-05-01

    Application of chemically reactive barriers to mitigate contaminant migration is an active area of research and development. Studies were conducted to evaluate a novel approach of emplacing chemically reactive barriers composed of zero-valent iron (Fe{sup 0}) by injecting suspensions of colloidal-size Fe{sup 0} particles into porous media. The specific objective of this study was to evaluate the effect of influent colloid concentration, rate, and volume of colloidal suspensions on Fe{sup 0} colloid emplacement in sand columns. Relatively even distributions of Fe{sup 0} throughout a sand column were obtained at low influent colloid concentrations and high injection rates. As the concentration of influent suspensions was increased, a point was reached beyond which a significant increase in the filtration of Fe{sup 0} particles near the front of the column was observed. This point was also found to occur at lower influent colloid concentrations as the injection rate was decreased, i.e., there was an interactive effect of influent colloid concentration and injection rate on the extent of filtration that occurred near the front of the column. As the volume of the colloidal suspension injected into the column was increased, the distribution of Fe{sup 0} colloids within the column became increasingly even.

  17. Infrared colloidal lead chalcogenide nanocrystals: synthesis, properties, and photovoltaic applications.

    PubMed

    Fu, Huiying; Tsang, Sai-Wing

    2012-04-07

    Simple solution phase, catalyst-free synthetic approaches that offer monodispersed, well passivated, and non-aggregated colloidal semiconductor nanocrystals have presented many research opportunities not only for fundamental science but also for technological applications. The ability to tune the electrical and optical properties of semiconductor nanocrystals by manipulating the size and shape of the crystals during the colloidal synthesis provides potential benefits to a variety of applications including photovoltaic devices, light-emitting diodes, field effect transistors, biological imaging/labeling, and more. Recent advances in the synthesis and characterization of colloidal lead chalcogenide nanocrystals and the achievements in colloidal PbS or PbSe nanocrystals solar cells have demonstrated the promising application of infrared-emitting colloidal lead chalcogenide nanocrystals in photovoltaic devices. Here, we review recent progress in the synthesis and optical properties of colloidal lead chalcogenide nanocrystals. We focus in particular upon the size- and shape-controlled synthesis of PbS, PbSe, and PbTe nanocrystals by using different precursors and various stabilizing surfactants for the growth of the colloidal nanocrystals. We also summarize recent advancements in the field of colloidal nanocrystals solar cells based on colloidal PbS and PbSe nanocrystals. This journal is © The Royal Society of Chemistry 2012

  18. Colloid-Polymer Mixtures in the Protein Limit

    NASA Astrophysics Data System (ADS)

    Bolhuis, Peter G.; Meijer, Evert Jan; Louis, Ard A.

    2003-02-01

    We computed the phase-separation behavior and effective interactions of colloid-polymer mixtures in the “protein limit,” where the polymer radius of gyration is much larger than the colloid radius. For ideal polymers, the critical colloidal packing fraction tends to zero, whereas for interacting polymers in a good solvent the behavior is governed by a universal binodal, implying a constant critical colloid packing fraction. In both systems the depletion interaction is not well described by effective pair potentials but requires the incorporation of many-body contributions.

  19. Tuning Colloid-Interface Interactions by Salt Partitioning

    NASA Astrophysics Data System (ADS)

    Everts, J. C.; Samin, S.; van Roij, R.

    2016-08-01

    We show that the interaction of an oil-dispersed colloidal particle with an oil-water interface is highly tunable from attractive to repulsive, either by varying the sign of the colloidal charge via charge regulation or by varying the difference in hydrophilicity between the dissolved cations and anions. In addition, we investigate the yet unexplored interplay between the self-regulated colloidal surface charge distribution with the planar double layer across the oil-water interface and the spherical one around the colloid. Our findings explain recent experiments and have direct relevance for tunable Pickering emulsions.

  20. Colloid formation and laser-induced bleaching in fluorite

    SciTech Connect

    LeBret, Joel B.; Cramer, Loren P.; Norton, M. Grant; Dickinson, J. T.

    2004-11-08

    Colloid formation and subsequent laser-induced bleaching in fluorite has been studied by transmission electron microscopy and electron diffraction. At high incident electron-beam (e-beam) energies, Ca colloids with diameter {approx}10 nm form a simple cubic superlattice with lattice parameter a{approx}18 nm. The colloids themselves are topotactic with the fluorite matrix forming low-energy interfaces close to a {sigma}=21 special grain boundary in cubic materials. Laser irradiation using {lambda}=532 nm has been shown to effectively bleach the e-beam-irradiated samples returning the fluorite to its monocrystalline state. The bleached samples appear more resistant to further colloid formation.

  1. Sodium meta-autunite colloids: Synthesis, characterization,stability

    SciTech Connect

    zzuoping@lbl.gov

    2004-04-10

    Waste forms of U such as those in the United States Department of Energy's Hanford Site often contain high concentrations of Na and P. Low solubility sodium uranyl phosphates such as sodium meta-autunite have the potential to form mobile colloids that can facilitate transport of this radionuclide. In order to understand the geochemical behavior of uranyl phosphate colloids, we synthesized sodiummeta-autunite colloids, and characterized their morphology, chemical composition, structure, dehydration, and surface charge. The stability of these synthetic plate-shaped colloids was tested with respect to time and pH. The highest aggregation rate was observed at pH 3, and the rate decreases as pH increases, indicating that higher stability of colloid dispersion under neutral and alkaline pH conditions. The synthetic colloids are all negatively charged and no isoelectric points were found over a pH range of 3 to 9. The zeta-potentials of the colloids in the phosphate solution show a strong pH-dependence in the more acidic range over time, but are relatively constant in the neutral and alkaline pH range. The geochemical behavior of the synthetic colloids can be interpreted using DLVO theory. The results suggest that formation of mobile sodium meta-autunite colloids can enhance the transport of U in some contaminated sediments.

  2. Switching light with light - advanced functional colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Bley, K.; Sinatra, N.; Vogel, N.; Landfester, K.; Weiss, C. K.

    2013-12-01

    Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica colloids are assembled into monolayers. However, the incorporation of functional molecules into such colloids offers a convenient possibility of implementing additional properties to the two-dimensional crystal. Here, we present the formation of novel functional colloidal monolayers with photoswitchable fluorescence. The miniemulsion polymerization technique was used to incorporate an appropriate dye system of a perylene-based fluorophore and a bis-arylethene as a photochrome in polymeric colloids in defined ratios. Upon irradiation with UV or visible light the photochrome reversibly isomerizes from the ring-closed form, which is able to absorb light of the emission wavelength of the fluorescent dye and the ring-open form, which is not. The fluorescence emission of the dye can thus be reversibly switched on and off with light even when embedded in colloids. The colloids were self-assembled at the air-water interface to produce hexagonally ordered functional monolayers and more complex binary crystals. We investigate in detail the influence of the polymeric matrix on the switching properties of the fluorophore/photochrome system and find that the rate constants for the photoswitching, which all lie in the same range, are less influenced by the polymeric environment than expected. We demonstrate the reversible switching of the fluorescence emission in self-assembled colloidal monolayers. The arrangement of broadly distributed functional colloids into ordered monolayers with high addressability was obtained by the formation of binary colloidal monolayers.Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica

  3. Active Colloids in Isotropic and Anisotropic Electrolytes

    NASA Astrophysics Data System (ADS)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  4. Biogeochemical Factors Influencing the Transport and Fate of Colloids and Colloid-Associated Contaminants in the Vadose Zone

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.

    2016-12-01

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, radionuclides, pesticides, and antibiotics). This presentation highlights our research activities to better understand and predict the influence of specific biogeochemical processes on colloid and colloid-facilitated transport. Results demonstrate the sensitivity of colloid transport, retention, release, and clogging to transients in solution chemistry (e.g., ionic strength, pH, cation and anion type, and surfactants), water velocity and saturation, and preferential flow. Mathematical modeling at interface-, pore-, and continuum-scales is shown to be a critical tool to quantify the relative importance and coupling of these biogeochemical factors on colloid and contaminant transport and fate, which otherwise might be experimentally intractable. Existing gaps in knowledge and model limitations are identified.

  5. Approche pratique à l’évaluation des testicules chez les nourrissons et les enfants

    PubMed Central

    Mau, Elke E.; Leonard, Michael P.

    2017-01-01

    Résumé Objectif Établir les différences entre les testicules normaux, ascenseurs, ectopiques, intra-abdominaux et non descendus, et décrire l’examen testiculaire optimal pouvant les distinguer, démontrer que l’échographie n’est pas nécessaire, et préciser quand il convient de recommander le cas à un spécialiste. Sources de l’information Le présent article s’appuie sur certaines constatations tirées d’une recherche sur MEDLINE sur les testicules non descendus et les recommandations pour orchidopexie, et sur notre expérience à la Clinique d’urologie du Centre hospitalier pour enfants de l’est de l’Ontario à Ottawa, y compris un examen des recommandations à notre clinique pour testicules non descendus et les constatations de variantes normales par rapport aux cas chirurgicaux qui en résultent. Les titres MeSH anglais utilisés dans notre recherche sur MEDLINE étaient undescended testicle, retractile testicle, ectopic testicle, ascended testicle, referral and consultation et orchiopexy. Message principal Un testicule non descendu désigne l’absence réelle d’un testicule (ou des 2) de sa position normale dans le scrotum. Les testicules ectopiques et intra-abdominaux sont aussi absents du scrotum, mais les testicules intra-abdominaux y ont été présents à un certain moment du développement. Il importe de distinguer les différentes observations à l’examen testiculaire, puisque les testicules descendus et ascenseurs, ou rétractiles, sont pris en charge de manière conservatrice, tandis qu’une intervention chirurgicale rapide est indiquée dans les cas de testicules intra-abdominaux, ectopiques et non descendus. L’incertitude liée au diagnostic de testicule non descendu cause de l’anxiété, pourrait entraîner des examens d’imagerie non justifiés et allonger les listes d’attente pour une consultation auprès d’un spécialiste. C’est pourquoi la récente campagne Choisir avec soin conseillait d’éviter l

  6. Comparison of intravenous colloid and colloid-crystalloid combination in hypotension prophylaxis during spinal anesthesia for cesarean section.

    PubMed

    Idehen, H O; Amadasun, F E; Ekwere, I T

    2014-01-01

    Many studies comparing different intravenous fluid types usually do not use equipotent volumes of three to one crystalloid to colloid ratio in such comparisons. Conflicting results emanate from such studies. This study was designed to compare the efficacy of equipotent volumes of colloid and crystalloid-colloid combination in spinal anesthesia-induced hypotension prophylaxis during cesarean section. A prospective randomized double blinded experimental study carried out in a tertiary hospital in Nigeria. Pregnant women scheduled for elective cesarean section were prospectively randomized into two groups to receive either 1000 ml of crystalloid/colloid (750/250 ml) combination or 500 ml colloid intravenous fluid preload, before spinal anesthesia. Hemodynamic variables were monitored till the end of surgery. The results were collated, analyzed, and rational conclusions deduced. Data collected and analyzed with Statistical Package for Social Sciences (SPSS) version 16 and rational deductions derived. In the first 10 min, the crystalloid-colloid combination showed better efficacy in hypotension prophylaxis over the colloid only regimen. In the next 30 min; however, there was no significant difference between both groups in hemodynamic parameters. Beyond 10 min the crystalloid-colloid combination has no advantage over colloid alone in hypotension prophylaxis, as used in this study.

  7. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    NASA Astrophysics Data System (ADS)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  8. Observation and characterization of colloids derived from leached cement hydrates.

    PubMed

    Fujita, T; Sugiyama, D; Swanton, S W; Myatt, B J

    2003-03-01

    The possibility of colloid generation from cement hydrates in a cementitious repository environment has been investigated through leaching experiments. Pulverized samples of High Flyash and Silica fume-content Cement (HFSC) and 1:9 ordinary portland cement/blast furnace slag (1:9 OPC/BFS) hydrate were leached in low-salinity groundwater at three solid-to-liquid (S/L) mass ratios (1:5, 1:50 and 1:100), and two temperatures (20 and 60 degrees C) for durations of nearly 2 and 8 months. Detailed characterization of colloid populations has been undertaken by TEM coupled with X-ray analysis. In addition, the surface charge and stability behavior of colloids have been investigated. The colloid concentrations in HFSC hydrate leachates generated at 20 and 60 degrees C show similar trends with S/L ratio. The colloid concentrations of leachates with the lower S/L ratio (1:50 and 1:100) are in the range of 10(11)-10(12) particles per liter. The majority of these particles are composed predominantly of Si, Ca, and Al; the mean particle size is less than 100 nm. The lowest colloid concentrations are found in the leachates with the highest S/L ratios, and the colloid populations tend to be dominated by larger particles. HFSC-derived colloid stability is due to a high negative zeta potential at alkaline pH values, combined with a calcium concentration that is below the critical coagulation concentration (CCC) for the colloids. A preliminary interpretation of HFSC-derived colloid stability based on classical DLVO theory provides a semi-quantitative explanation of the dependence of colloid populations on the S/L ratio in the leaching experiments. Copyright 2002 Elsevier Science B.V.

  9. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  10. Prise en charge de l’infection gonococcique chez les adultes et les jeunes

    PubMed Central

    Pogany, Lisa; Romanowski, Barbara; Robinson, Joan; Gale-Rowe, Margaret; Latham-Carmanico, Cathy; Weir, Christine; Wong, Tom

    2015-01-01

    Résumé Objectif Présenter des recommandations sur la prise en charge de l’infection gonococcique chez les adultes et les jeunes. Qualité des données Les recommandations thérapeutiques des lignes directrices canadiennes sur les infections transmissibles sexuellement reposent sur une recherche documentaire de même que sur des catégories de recommandations et des niveaux de qualité de données déterminés par au moins 2 évaluateurs. Les recommandations ont été revues par des pairs et sont en instance d’approbation par le groupe de travail d’experts. Message principal Les nouvelles recommandations portant sur la prise en charge de l’infection gonococcique chez les adultes et les jeunes préconisent les cultures à titre d’outil diagnostique lorsqu’elles sont pratiques, le traitement par antibiothérapie combinée (ceftriaxone associée à l’azithromycine) et le signalement sans délai de tous les cas dont le traitement a échoué aux autorités de santé publique. Conclusion Si elles sont suivies, ces nouvelles recommandations pourraient réduire l’échec thérapeutique, contribuer à une surveillance plus étroite des tendances à la résistance de Neisseria gonorrhoeae aux antibiotiques et contribuer à prévenir la transmission de gonorrhée résistante à plusieurs médicaments.

  11. DNA hybridization and ligation for directed colloidal assembly

    NASA Astrophysics Data System (ADS)

    Shyr, Margaret

    Colloidal assembly using DNA hybridization has been pursued as a means assemble non-conventional ordered colloidal structures. However, to date it is undetermined whether DNA hybridization can be used to achieve non-FCC colloidal crystals. Using microcontact printing techniques, we have fabricated covalently bound single stranded DNA (ssDNA) two-dimensional arrays on glass surfaces, which were used to direct the assembly of complementary DNA functionalized polystyrene colloids. Two of the hallmarks of DNA hybridization, sequence specificity and thermal reversibility, were demonstrated. Due to the periodicity of these arrays, laser diffraction was used to directly monitor these structures during assembly. To demonstrate the versatility of the 2D colloidal array assembled via DNA hybridization, a catalytic DNA sequence or DNAzyme was incorporated into the colloidal array system. By tethering the enzymatic strand to the patterned glass surface and the substrate strand to polystyrene colloids, we showed that the DNAzyme could prevent the assembly of the arrays when the required Pb2+ cofactor was provided. Attempts to assemble the colloid arrays and disassemble via the Pb2+-DNAzyme induced cleavage were unsuccessful, likely due to the incomplete cleavage of the multitude of hybridized linkages between each colloid and the surface. Since DNA is not only capable of catalyzing reactions, but also capable of being reacted upon by a variety of biological enzymes, we examined the use of DNA ligase as a means to control the assembly of DNA-functionalized colloids. A three-sequence linker system was used for the hybridization mediated assembly of colloids: one sequence was tethered to the surface of the glass slide or colloids, one was tethered to another colloid surface, and the linker sequence hybridizes simultaneously to both tethered sequences. Once hybridized, the two tethered fragments can be ligated using DNA ligase, resulting in a continuous sequence tethered on one end

  12. DNS and LES of some engineering flows

    NASA Astrophysics Data System (ADS)

    Rodi, Wolfgang

    2006-02-01

    In this paper, direct numerical simulations (DNS) and large eddy simulations (LES) of three engineering flows carried out in the author's research group are presented. The first example, simulated both with DNS and LES, is the flow in a low-pressure turbine cascade with wakes passing periodically through the cascade channel. In this situation, the laminar-turbulent transition of the boundary layers on the blade surfaces, which is strongly influenced by the passing wakes, is of special interest. Next, LES of the flow past the Ahmed body is presented, which is a car model with slant back. In spite of the fairly simple geometry, the flow around the model has many features of the complex, fully 3D flow around real cars. The third example, for which LES is presented, is the flow past a surface mounted circular cylinder of height-to-diameter ratio of 2.5. In this case also complex 3D flow develops with interaction of various vortices behind the cylinder. By means of these examples, the paper shows that complex turbulent flows of engineering relevance can be predicted realistically by DNS and LES, albeit at large cost. The methods are particularly suited and superior to RANS methods for situations where unsteadiness like shedding and large-scale structures dominate the flow, and DNS has evolved into an important tool for studying transition mechanisms.

  13. Sustainable steric stabilization of colloidal titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  14. Aborder les soins préventifs chez les aînés

    PubMed Central

    Tazkarji, Bachir; Lam, Robert; Lee, Shawn; Meiyappan, Soumia

    2016-01-01

    Résumé Objectif Guider les médecins de famille dans l’élaboration de plans de dépistage et de traitements préventifs à l’intention de leurs patients âgés. Sources de l’information Une recension a été effectuée dans la base de données MEDLINE pour trouver des lignes directrices canadiennes sur les soins de santé primaires et les personnes âgées; des lignes directrices, des méta-analyses, des guides de pratique clinique ou des révisions systématiques portant sur le dépistage de masse chez les 80 ans et plus et les aînés fragiles, se limitant à ceux publiés entre 2006 et juillet 2016; et des articles sur les services de santé préventifs à l’intention des aînés et présentant un intérêt pour la pratique familiale ou les médecins de famille, limités à ceux publiés en anglais entre 2012 et juillet 2016. Message principal L’estimation de l’espérance de vie n’est pas une science facile ou précise, mais la fragilité est un concept émergent susceptible d’être utile à cet égard. Le Groupe d’étude canadien sur les soins de santé préventifs propose des lignes directrices sur le dépistage du cancer, mais elles sont moins précises en ce qui concerne les patients de plus de 74 ans et il faut donc individualiser les plans de prise en charge. L’estimation des années de vie qui restent aide à orienter vos recommandations concernant les plans de dépistage et de traitements préventifs. Les risques augmentent souvent proportionnellement avec la fragilité et la comorbidité. D’autre part, les bienfaits diminuent souvent à mesure que l’espérance de vie raccourcit. Les plans de prise en charge préventive devraient tenir compte des points de vue du patient et être convenus d’un commun accord. Un moyen mnémonique pour se rappeler des principaux domaines de prévention en soins primaires – CCMF, abréviation pour cancer, cardiovasculaire, mauvais équilibre, chute et ostéoporose, fiche de vaccinations pr

  15. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  16. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  17. Colloid Thrusters, Physics, Fabrication and Performance

    DTIC Science & Technology

    2005-11-17

    1-0380, covwering the period Oct. 1, 2001-Sep. 30, 2003 3. I. Romero -Sanz, R. Bocanegra and J. Fernandez de la Mora, "Source of heavy molecular ions...AIAA 2002-3814 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 7 - 10 Jul. 2002 Indianapolis, Indiana. 8. I. Romero -Sanz and J. Fernandez...and Jose M. Lopez-Urdiales, "Electrospray emission from non-wetting flat dielectric surfaces", Journal of Colloid and Interface Science 276 (2004) 392

  18. Argyria associated with colloidal silver supplementation.

    PubMed

    McKenna, Jeffrey K; Hull, Christopher M; Zone, John J

    2003-07-01

    A 65-year-old male presented for skin examination and was incidentally noted to have discoloration of the fingernails. These findings were completely asymptomatic. The patient had been taking colloidal silver supplementation (Silverzone 140 ppm silver Gifts of Nature, St. George, UT, USA) for 2 years as therapy for diabetes. He first noticed the onset of nail discoloration 1 year ago. His past medical history included type II diabetes and hypertension. His current medications were metformin, glyburide, and benazepril. Physical examination revealed slate-gray discoloration involving the lunulae of the fingernails (Fig. 1). The skin, mucous membranes, and sclerae were unaffected.

  19. Chiral edge fluctuations of colloidal membranes

    NASA Astrophysics Data System (ADS)

    Jia, Leroy L.; Zakhary, Mark J.; Dogic, Zvonimir; Pelcovits, Robert A.; Powers, Thomas R.

    2017-06-01

    We study edge fluctuations of a flat colloidal membrane comprised of a monolayer of aligned filamentous viruses. Experiments reveal that a peak in the spectrum of the in-plane edge fluctuations arises for sufficiently strong virus chirality. Accounting for internal liquid crystalline degrees of freedom by the length, curvature, and geodesic torsion of the edge, we calculate the spectrum of the edge fluctuations. The theory quantitatively describes the experimental data, demonstrating that chirality couples in-plane and out-of-plane edge fluctuations to produce the peak.

  20. Colloidal polymeric nanoparticles and brain drug delivery.

    PubMed

    Khalil, Najeh Maissar; Mainardes, Rubiana Mara

    2009-07-01

    The blood brain barrier protects the brain from harmful substances in the blood stream and has stopped the development of many powerful and interesting drugs candidates for central nervous system due to the low poor distribution and by efflux mechanisms. Many different approaches have been developed in order to overcome this barrier and the drug gain access to the brain. The polymeric nanoparticles are efficient colloidal systems that have been investigated to the brain drug delivery. This review will focus on the current strategies for brain drug delivery emphasizing the properties and characteristics of polymeric nanoparticles for this purpose.

  1. Simultaneous growths of gold colloidal crystals.

    PubMed

    Goubet, Nicolas; Portalès, Hervé; Yan, Cong; Arfaoui, Imad; Albouy, Pierre-Antoine; Mermet, Alain; Pileni, Marie-Paule

    2012-02-29

    Natural systems give the route to design periodic arrangements with mesoscopic architecture using individual nanocrystals as building blocks forming colloidal crystals or supracrystals. The collective properties of such supracrystals are one of the main driving forces in materials research for the 21st century with potential applications in electronics or biomedical environments. Here we describe two simultaneous supracrystal growth processes from gold nanocrystal suspension, taking place in solution and at the air-liquid interface. Furthermore, the growth processes involve the crystallinity selection of nanocrystals and induce marked changes in the supracrystal mechanical properties. © 2012 American Chemical Society

  2. Antibacterial Fluorinated Silica Colloid Superhydrophobic Surfaces

    PubMed Central

    Privett, Benjamin J.; Youn, Jonghae; Hong, Sung A; Lee, Jiyeon; Han, Junhee

    2011-01-01

    A superhydrophobic xerogel coating synthesized from a mixture of nanostructured fluorinated silica colloids, fluoroalkoxysilane, and a backbone silane is reported. The resulting fluorinated surface was characterized using contact angle goniometry, SEM, and AFM. Quantitative bacterial adhesion studies performed using a parallel plate flow cell demonstrated that the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa were reduced by 2.08 ± 0.25 and 1.76 ± 0.12 log over controls, respectively. This simple superhydrophobic coating synthesis may be applied to any surface regardless of geometry and does not require harsh synthesis or processing conditions, making it an ideal candidate as a biopassivation strategy. PMID:21718023

  3. Thermoelectricity and thermodiffusion in charged colloids.

    PubMed

    Huang, B T; Roger, M; Bonetti, M; Salez, T J; Wiertel-Gasquet, C; Dubois, E; Cabreira Gomes, R; Demouchy, G; Mériguet, G; Peyre, V; Kouyaté, M; Filomeno, C L; Depeyrot, J; Tourinho, F A; Perzynski, R; Nakamae, S

    2015-08-07

    The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through forced Rayleigh scattering measurements, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 82 meV K(-1). Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.

  4. Trion decay in colloidal quantum dots.

    PubMed

    Jha, Praket P; Guyot-Sionnest, Philippe

    2009-04-28

    Using charged films of colloidal CdSe/CdS core/shell quantum dots of approximately 3.5 to 4.5 nm core diameters and 0.6 to 1.2 nm thick CdS shells, the radiative and nonradiative decay of the negatively charged exciton, the trion T-, are measured. The T- radiative rate is faster than the exciton by a factor of 2.2 +/- 0.4 and estimated at approximately 10 ns. The T- lifetime is approximately 0.7-1.5 ns for the samples measured and is longer than the biexciton lifetime by a factor or 7.5 +/- 1.7.

  5. Osmotically driven shape-dependent colloidal separations

    NASA Astrophysics Data System (ADS)

    Mason, T. G.

    2002-12-01

    The thermally induced motion of nanometer-sized surfactant micelles in water is used to create strong attractive forces between micron-sized disks of wax in a mixed aqueous dispersion of microdisks and microspheres. The short-ranged attractive force due to the depletion of micelles from between the microdisks is much stronger than that between two microspheres of similar size, and is largest when the disks approach face to face, so columns of microdisks form. These columns cream, whereas the spheres remain dispersed, providing a means for shape-dependent colloidal separations driven by an applied micellar osmotic pressure.

  6. Lateral optical binding between two colloidal particles

    PubMed Central

    Wei, Ming-Tzo; Ng, Jack; Chan, C. T.; Ou-Yang, H. Daniel

    2016-01-01

    An optical binding force between two nearby colloidal particles trapped by two coherent laser beams is measured by phase-sensitive detection. The binding force is long-range and spatially oscillatory. For identical linearly-polarized incident beams, the oscillation period is equal to the optical wavelength. For mutually perpendicular polarizations, a new force appears with half-wavelength periodicity, caused by double inter-particle scattering. This force is observable only with cross-polarized incident beams, for which the stronger single-scattering forces are forbidden by parity. PMID:27982052

  7. Colloid research for the Nevada Test Site

    SciTech Connect

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  8. Self-diffusiophoresis of chemically active colloids

    NASA Astrophysics Data System (ADS)

    Popescu, Mihail N.; Uspal, William E.; Dietrich, Siegfried

    2016-11-01

    Chemically active colloids locally change the chemical composition of their solvent via catalytic reactions which occur on parts of their surface. They achieve motility by converting the released chemical free energy into mechanical work through various mechanisms, such as phoresis. Here we discuss the theoretical aspects of self-diffusiophoresis, which - despite being one of the simplest motility mechanisms - captures many of the general features characterizing self-phoresis, such as self-generated and maintained hydrodynamic flows "driven" by surface activity induced inhomogeneities in solution. By studying simple examples, which provide physical insight, we highlight the complex phenomenology which can emerge from self-diffusiophoresis.

  9. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    Crystalline Colloidal Arrays (CCA, also known as colloidal crystals), composed of aqueous or nonaqueous dispersions of self-assembled nanosized polymer colloidal spheres, are emerging toward the development of advanced optical devices for technological applications. The spontaneous self assembly of polymer spheres in a dielectric medium results from the electrostatic repulsive interaction between particles of uniform size and charge distribution. In a way similar to atomic crystals that diffract X-rays, CCA dispersions in thin quartz cells selectively and efficiently Bragg diffract the incident visible light. The reason for this diffraction is because the lattice (body or face centered cubic) spacing is on the order of the wavelength of visible light. Unlike the atomic crystals that diffract a fixed wavelength, colloidal crystals in principle, depending on the particle size, particle number and charge density, can diffract W, Vis or IR light. Therefore, the CCA dispersions can be used as laser filters. Besides, the diffraction intensity depends on the refractive index mismatch between polymer spheres and dielectric medium; therefore, it is possible to modulate incident light intensities by manipulating the index of either the spheres or the medium. Our interest in CCA is in the fabrication of all-optical devices such as optical switches, limiters, and spatial light modulators for optical signal processing. The two major requirements from a materials standpoint are the incorporation of suitable nonlinear optical materials (NLO) into polymer spheres which will allow us to alter the refractive index of the spheres by intense laser radiation, and preparation of solid CCA filters which can resist laser damage. The fabrication of solid composite filters not only has the advantage that the films are easier to handle, but also the arrays in solid films are more robust than in liquid media. In this paper, we report the photopolymerization process used to trap CCA in polymer

  10. Numerical modeling of colloid facilitated virus transport in porus media

    NASA Astrophysics Data System (ADS)

    Katzourakis, Vasileios E.; Chrysikopoulos, Constantinos V.

    2013-04-01

    A conceptual mathematical model was developed to describethe simultaneous transport (cotransport) of viruses and colloids in three-dimensional, water saturated, homogeneous porous media with uniform flow. The model accounts for the migration of individual virus and colloid particles as well as viruses attached onto colloids. Viruses can be suspended in the aqueous phase, attached onto suspended colloids and the solid matrix, and attached onto colloids previously attached on the solid matrix. Colloids can be suspended in the aqueous phase or attached on the solid matrix. Viruses in all four phases (suspended in the aqueous phase, attached onto suspended colloid particles, attached onto the solid matrix, and attached onto colloids previously attached on the solid matrix) may undergo inactivation with different inactivation coefficients. The governing coupled partial differential equations were solved numerically by employing finite difference methods, which were implemented explicitly or implicitly so that both stability and accuracy factors were satisfied. Furthermore, available experimental data were used to test the newly developed cotransport model. The model was shown to simulate quite accurately the available experimental data.

  11. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes

    PubMed Central

    McLaughlin, Christopher K.; Duan, Da; Ganesh, Ahil N.; Torosyan, Hayarpi

    2016-01-01

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the co-aggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, co-formulating them with bis-azo dyes. The co-formulation reduced colloid sizes to <100 nm, and improved uniformity of the particle size distribution. The new colloid formulations are more stable than previous aggregator particles. Specifically, co-aggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT) or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase and trypsin. Unlike traditional aggregates, the co-formulated colloid-protein particles could be centrifuged and re-suspended multiple times, and from re-suspended particles, active trypsin could be released up to 72 hours after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension and release. PMID:26741163

  12. Recent Results from the Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Bailey, A.; Christianson, R.; Manley, S.; Prasad, V.; Segre, P.; Gasser, U.; Cipelletti, L.; Schoefield, A.; Pusey, P.

    2002-01-01

    The Physics of Colloids in Space is an experiment which flew in the ISS. Data on several different samples of colloidal particles were obtained. They provided unexpected information about the behavior of the samples in microgravity. The data are currently being analyzed. The most recent findings will be discussed in this talk.

  13. Colloid adhesive parameters for chemical heterogeneous porous media

    USDA-ARS?s Scientific Manuscript database

    A simple modeling approach was developed to calculate colloid adhesive parameters for chemically heterogeneous porous media. The area of the zone of electrostatic influence between a colloid and solid-water interface (Az) was discretized into a number of equally sized grid cells to capture chemical...

  14. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  15. Feasibility of colloidal silver SERS for rapid bacterial screening

    USDA-ARS?s Scientific Manuscript database

    Citrate-reduced silver colloids have been used extensively for surface-enhanced Raman scattering (SERS) study and are commonly characterized by UV-visible spectroscopy. In this work, relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of SERS peaks from sma...

  16. Collective behavior in out-of-equilibrium colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.

    2013-06-01

    Colloidal suspensions, heterogeneous fluids containing solid microscopic particles, play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. Colloidal suspensions can be divided in two major classes: equilibrium, and active, i.e. maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, out-of-equilibrium colloids pose a formidable challenge and the research is in its early exploratory stage. The possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures, is one of the most remarkable properties of out-of-equilibrium colloids. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. In contrast to their equilibrium counterparts, out-of-equilibrium colloidal suspensions may exhibit novel material properties, e.g. reduced viscosity, enhanced self-diffusivity, etc. This work reviews recent developments in the field of self-assembly and collective behavior of out-of-equilibrium colloids, with the focus on the fundamental physical mechanisms.

  17. Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers.

    PubMed

    Ding, Tao; Tian, Ye; Liang, Kui; Clays, Koen; Song, Kai; Yang, Guoqiang; Tung, Chen-Ho

    2011-02-28

    Oxygen plasma etching of electrospun polymer fibers containing spherical colloids is presented as a new approach towards anisotropic colloidal nanoparticles. The detailed morphology of the resulting nanoparticles can be precisely controlled in a continuous way. The same approach is also amenable to prepare inorganic nanoparticles with double-sided patches.

  18. Physics of Colloids in Space: Flight Hardware Operations on ISS

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Bailey, Arthur E.; Jankovsky, Amy L.; Lorik, Tibor

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment was launched on Space Shuttle STS-100 in April 2001 and integrated into EXpedite the PRocess of Experiments to Space Station Rack 2 on the International Space Station (ISS). This microgravity fluid physics investigation is being conducted in the ISS U.S. Lab 'Destiny' Module over a period of approximately thirteen months during the ISS assembly period from flight 6A through flight 9A. PCS is gathering data on the basic physical properties of simple colloidal suspensions by studying the structures that form. A colloid is a micron or submicron particle, be it solid, liquid, or gas. A colloidal suspension consists of these fine particles suspended in another medium. Common colloidal suspensions include paints, milk, salad dressings, cosmetics, and aerosols. Though these products are routinely produced and used, we still have much to learn about their behavior as well as the underlying properties of colloids in general. The long-term goal of the PCS investigation is to learn how to steer the growth of colloidal structures to create new materials. This experiment is the first part of a two-stage investigation conceived by Professor David Weitz of Harvard University (the Principal Investigator) along with Professor Peter Pusey of the University of Edinburgh (the Co-Investigator). This paper describes the flight hardware, experiment operations, and initial science findings of the first fluid physics payload to be conducted on ISS: The Physics of Colloids in Space.

  19. Recent Results from the Physics of Colloids in Space

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Bailey, A.; Christianson, R.; Manley, S.; Prasad, V.; Segre, P.; Gasser, U.; Cipelletti, L.; Schoefield, A.; Pusey, P.

    2002-01-01

    The Physics of Colloids in Space is an experiment which flew in the ISS. Data on several different samples of colloidal particles were obtained. They provided unexpected information about the behavior of the samples in microgravity. The data are currently being analyzed. The most recent findings will be discussed in this talk.

  20. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  1. Stable colloidal solutions of strontium hexaferrite hard magnetic nanoparticles.

    PubMed

    Trusov, Lev A; Vasiliev, Alexander V; Lukatskaya, Maria R; Zaytsev, Dmitry D; Jansen, Martin; Kazin, Pavel E

    2014-12-04

    Herein we demonstrate an approach to prepare a colloidal solution of strontium hexaferrite via a glass-ceramic route. The as obtained colloids are stable and resistive to aggregation or sedimentation. They reveal outstanding magnetic and magneto-optical properties because of their platelet-like anisotropic shape and high permanent magnetic moment.

  2. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  3. Composition and cycling of colloids in marine environments

    NASA Astrophysics Data System (ADS)

    Guo, Laodong; Santschi, Peter H.

    1997-02-01

    Colloidal (COM) or macromolecular organic matter makes up a significant portion of the bulk dissolved organic matter (DOM) pool in aquatic environments. Because of their high specific surface areas and complexation capacities, marine colloids are of great importance not only in the global carbon cycle but also in the biogeochemical cycling of many particle-reactive nuclides and trace elements in the ocean. However, the colloidal pool as a whole is still poorly understood and largely uncharacterized. Recently, cross-flow ultrafiltration and other separation techniques, which have been successfully used to isolate marine colloids, combined with a multitracer approach, have greatly advanced our understanding of the cycling of COM and its associated trace elements in marine environments. In this paper we focus on recent developments on isotopic and elemental composition of colloids which allow organic matter cycling in marine environments to be constrained. Major sections review sampling techniques for aquatic colloids, concentrations and distribution of COM, biochemical and elemental (organic and inorganic) characterization, and stable isotopic (13C and 15N) and radioisotopic (14C and 234Th) characterization of marine colloids. We discuss sources and turnover rates of organic matter in the ocean, importance of benthic boundary layer processes in the cycling of DOM, changes in the paradigms of marine organic matter cycling, and research needs for a better understanding of the biogeochemistry of marine colloids.

  4. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  5. Predicting colloid transport through saturated porous media: A critical review

    NASA Astrophysics Data System (ADS)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities

  6. Humic colloid-borne natural polyvalent metal ions: dissociation experiment.

    PubMed

    Geckeis, H; Rabung, Th; Ngo Manh, T; Kim, J I; Beck, H P

    2002-07-01

    The natural association nature of the humic colloid-borne trace elements is investigated. Rare earth elements (REE) Th and U are chosen as naturally occurring representatives and chemical homologues for actinides of different oxidation states present in nuclear waste. Tri- and tetravalent elements in two investigated Gorleben groundwaters (Gohy-532 and -2227) almost exclusively occur as humic or fulvic colloid-borne species. Their desorption behavior from colloids is examined in the unperturbed groundwater (pH approximately 8) under anaerobic conditions (Ar/1% CO2) by addition of a chelating cation exchanger resin. Particularly, the dissociation process of naturally occurring Eu(III) in the groundwater is compared with the Eu(III) desorption from its humate complex prepared with purified Aldrich humic acid in a buffered aqueous solution at pH approximately 8. The Eu(III) dissociation from the groundwater colloids is found to be considerably slower than found for the humate complex synthesized in the laboratory. This suggests that under natural aquatic conditions the Eu(III) binding in colloids is chemically different from the simple humate complexation as observed in the laboratory experiment. The colloid characterization bythe size exclusion chromatography (SEC) and the flow field-flow fractionation (FFFF) indicates that natural colloid-borne trace elements are found predominantly in colloids of larger size (>15 nm in size), while Eu(III) in its humate complex is found mainly in colloids of hydrodynamic diameters <5 nm. The slower desorption kinetics and the larger colloid size suggest that the polyvalent metal ion binding in natural humic colloids is associated to polynucleation with other co-present trace metal ions. Radiotracer experiments reveal that isotopic equilibria with the naturally colloid-borne trace elements are not attained within a period of more than 100 days, indicating irreversible binding of at least a part of colloid-borne polyvalent trace

  7. SUBSURFACE MOBILE PLUTONIUM SPECIATION: SAMPLING ARTIFACTS FOR GROUNDWATER COLLOIDS

    SciTech Connect

    Kaplan, D.; Buesseler, K.

    2010-06-29

    A recent review found several conflicting conclusions regarding colloid-facilitated transport of radionuclides in groundwater and noted that colloids can both facilitate and retard transport. Given these contrasting conclusions and the profound implications even trace concentrations of plutonium (Pu) have on the calculated risk posed to human health, it is important that the methodology used to sample groundwater colloids be free of artifacts. The objective of this study was: (1) to conduct a field study and measure Pu speciation, ({sup 239}Pu and {sup 240}Pu for reduced-Pu{sub aq}, oxidized-Pu{sub aq}, reduced-Pu{sub colloid}, and oxidized-Pu{sub colloid}), in a Savannah River Site (SRS) aquifer along a pH gradient in F-Area, (2) to determine the impact of pumping rate on Pu concentration, Pu speciation, and Pu isotopic ratios, (3) determine the impact of delayed sample processing (as opposed to processing directly from the well).

  8. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  9. Colloidal characterization of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  10. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  11. Nonlinear machine learning and design of reconfigurable digital colloids.

    PubMed

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  12. Optical dispersive shock waves in defocusing colloidal media

    NASA Astrophysics Data System (ADS)

    An, X.; Marchant, T. R.; Smyth, N. F.

    2017-03-01

    The propagation of an optical dispersive shock wave, generated from a jump discontinuity in light intensity, in a defocusing colloidal medium is analysed. The equations governing nonlinear light propagation in a colloidal medium consist of a nonlinear Schrödinger equation for the beam and an algebraic equation for the medium response. In the limit of low light intensity, these equations reduce to a perturbed higher order nonlinear Schrödinger equation. Solutions for the leading and trailing edges of the colloidal dispersive shock wave are found using modulation theory. This is done for both the perturbed nonlinear Schrödinger equation and the full colloid equations for arbitrary light intensity. These results are compared with numerical solutions of the colloid equations.

  13. Les modèles de calcul de dose en radiothérapie clinique

    NASA Astrophysics Data System (ADS)

    Rosenwald, J. C.

    1998-04-01

    In radiation therapy, it is important to know precisely the dose distribution in the target volume and in the critical organs. To be clinically applicable, the dose calculation models must account for the actual characteristics of the beams and for the tissue densities. An accuracy of 2% in low dose gradient regions and 2mm in high dose gradient is expected, while keeping the computation time consistent with an interactive approach. We describe and discuss briefly the dose calculation models currently used. En radiothérapie, il est indispensable d'avoir une connaissance précise de la dose délivrée dans le volume cible et dans les organes critiques avoisinants. Pour être utilisables cliniquement, les modèles de calcul doivent tenir compte des caractéristiques exactes des faisceaux utilisés et des densités des tissus. Une précision de l'ordre de 2% dans les régions à faible gradient de dose, et de 2mm dans les régions à fort gradient est nécessaire tout en conservant un temps de calcul compatible avec une approche interactive. Les modèles de calcul utilisés sont ici succintement décrits et commentés.

  14. Superlubric-pinned transition in sliding incommensurate colloidal monolayers

    NASA Astrophysics Data System (ADS)

    Mandelli, Davide; Vanossi, Andrea; Invernizzi, Michele; Paronuzzi, Stella; Manini, Nicola; Tosatti, Erio

    2015-10-01

    Two-dimensional (2D) crystalline colloidal monolayers sliding over a laser-induced optical lattice providing the periodic "corrugation" potential recently emerged as a new tool for the study of friction between ideal crystal surfaces. Here, we focus in particular on static friction, the minimal sliding force necessary to depin one lattice from the other. If the colloid and the optical lattices are mutually commensurate, the colloid sliding is always pinned by static friction; however, when they are incommensurate, the presence or absence of pinning can be expected to depend upon the system parameters, like in one-dimensional (1D) systems. If a 2D analogy to the mathematically established Aubry transition of one-dimensional systems were to hold, an increasing periodic corrugation strength U0 should turn an initially free-sliding, superlubric colloid into a pinned state, where the static friction force goes from zero to finite through a well-defined dynamical phase transition. We address this problem by the simulated sliding of a realistic model 2D colloidal lattice, confirming the existence of a clear and sharp superlubric-pinned transition for increasing corrugation strength. Unlike the 1D Aubry transition, which is continuous, the 2D transition exhibits a definite first-order character, with a jump of static friction. With no change of symmetry, the transition entails a structural character, with a sudden increase of the colloid-colloid interaction energy, accompanied by a compensating downward jump of the colloid-corrugation energy. The transition value for the corrugation amplitude U0 depends upon the misalignment angle θ between the optical and the colloidal lattices, superlubricity surviving until larger corrugations for angles away from the energetically favored orientation, which is itself generally slightly misaligned, as shown in recent work. The observability of the superlubric-pinned colloid transition is proposed and discussed.

  15. Merging RANS & LES approaches in submesoscale modeling

    NASA Astrophysics Data System (ADS)

    Fock, B. H.; Schluenzen, K. H.

    2010-09-01

    Merging LES and RANS simulation is important for extending the application range of mesoscale models to the sub-mesoscale. Hence many traditional mesoscale modeling groups are currently working on adding LES capabilities to their models. To investigate the differences, which occur by switching from RANS to LES approaches, simulations with the METRAS and METRAS-LES (Fock, 2007) are presented. These differences are investigated in terms of effects caused by the choice of the computational grid and the sub-grid scale closures. Simulations of convective boundary layers on two different grids are compared to investigate the influence of vertical grid spacing and extension. One simulation is carried out on a high-resolution vertical homogeneous grid and the other with a vertical stretched grid, which has coarser resolution in higher altitudes. The stretched grid is vertical defined, as it would be done in the standard setup for the mesoscale model. Hence, this investigation shows to what amount the eddy resolving capabilities of a LES model is effected by the transition of the grid to a grid, which is vertically the same as typically used in mesoscale modeling. The differences, which occur by using different approaches for subgrid scale turbulence, are quantified and compared with the effects caused by the computational grid. Additional some details of the used LES SGS closure (Deardorff, 1980) are investigated. These details deal on evaluating the importance of the reduced characteristic filter length scale for stable stratification. But the main focus is on comparing RANS and LES and discussion of combination in a mixed turbulence scheme, which applies a the LES closure in the atmospheric boundary layer and a RANS based turbulence model in the stable atmosphere above. References: Deardorff J. W. (1980): Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorology. 18. (4). 495-527. DOI:10.1007/BF00119502 Fock B. H. (2007): METRAS

  16. Localized Plastic Deformation in Colloidal Micropillars

    NASA Astrophysics Data System (ADS)

    Strickland, Daniel; Hor, Jyo Lyn; Ortiz, Carlos; Lee, Daeyeon; Gianola, Daniel

    When driven beyond yield, many amorphous solids exhibit concentrated regions of large plastic strain referred to as shear bands. Shear bands are the result of localized, cooperative rearrangements of particles known as shear transformations (STs). STs are dilatory: their operation results in an increase of free volume and local softening that leads to spatially concentrated plasticity. However, the evolution of STs into a macroscopic shear band remains poorly understood. To study the process, we perform compression experiments on amorphous colloidal micropillars. The micropillars, which are composed of fluorescent 3 μm PMMA particles, are made freestanding so that shear banding instabilities are not suppressed by confining boundaries. During compression, we observe strong localization of strain in a band of the pillar. As deformation proceeds, the sheared region continues to dilate until it reaches the colloidal glass transition, at which point dilation terminates. We quantify a length scale by measuring the extent of spatial correlations in strain. This length scale decreases gradually with increasing dilation and becomes static beyond the glass transition. Our results reinforce the idea of yield as a stress-induced glass transition in amorphous solids.

  17. Colloidal gelation with variable attraction energy.

    PubMed

    Zaccone, Alessio; Crassous, Jérôme J; Ballauff, Matthias

    2013-03-14

    We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension df as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time, and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction, and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension df modulates the time evolution of cluster size, lag time and gelation time, and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df = 3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition.

  18. Critical Casimir forces for colloidal assembly.

    PubMed

    Nguyen, V D; Dang, M T; Nguyen, T A; Schall, P

    2016-02-03

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  19. Flow of colloidal suspensions and gels

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna

    Our recent studies of yield of colloidal gels under shear show that yield in such gels occurs in distinct stages. Under fixed stress, yield follows a finite delay period of slow solid-like creep. Post yield, the gel fluidizes and may undergo long-time viscous flow or, in some cases, may re-solidify. Under imposed strain rate, the transition from equilibrium to long-time flow is characterized by one or more stress overshoots, signifying a yield process here as well. These rheological changes are accompanied by evolution in morphology and dynamics of the gel network. Similar regimes have been observed in gels subjected to gravitational forcing; the gel initially supports its own weight, or perhaps undergoes slow, weak compaction. This may be followed by a sudden transition to rapid compaction or sedimentation. Various models have been put forth to explain these behaviors based on structural evolution, but this detail is difficult to observe in experiment. Here we examine the detailed microstructural evolution and rheology of reversible colloidal gels as they deform under gravity, identifying the critical buoyant force at which yield occurs, the role played by ongoing gel coarsening, and similarities and differences compared to yield under shear. We gratefully acknowledge the support of the NSF XSEDE Computational Resource, the NSF Early CAREER Program, and the Office of Naval Research Young Investigator Program.

  20. Colloidal gelation with variable attraction energy

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio; Crassous, Jérôme J.; Ballauff, Matthias

    2013-03-01

    We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension df as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time, and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction, and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension df modulates the time evolution of cluster size, lag time and gelation time, and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df = 3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition.