Science.gov

Sample records for les jets turbulents

  1. Study of supersonic wave components in high-speed turbulent jets using an LES database

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Lele, S. K.; Viswanathan, K.

    2014-12-01

    Near-field characteristics of supersonic wave components in turbulent jets are investigated using the well-validated large eddy simulation (LES) database by Bodony and Lele (2005) [1]. Three unheated (constant stagnation temperature) jets with a jet Mach number ranging from 0.51 to 1.95, and one heated (Tj/T∞=2.3) transonic jet are considered. The Reynolds number based on the exit diameter ranges from 79,000 to 336,000. The supersonic wave components of the flow variables are decomposed from the full flow-field using wavenumber-frequency domain filtering. The spatial structure of the fluctuating pressure field is obtained by the proper orthogonal decomposition (POD) of the full and filtered data. POD modes of unheated subsonic jets reveal large scale-disparity between the full and supersonic components. For the supersonic jet at Mj=1.95, the energetic structures of the pressure field also contribute significantly to the supersonic components, and scale disparity is absent. The variance of the subsonic pressure components from unheated jets scales as Uj4, where Uj is the jet exit velocity (i.e., |p|~Uj4), which is the expected scaling for turbulence-associated hydrodynamic-pressure fluctuations. In contrast, supersonic pressure variance, which peaks within the turbulent flow region, scales with Uj8, coinciding with the far field noise intensity scaling associated with Lighthill's analogy. In the acoustic near-field, even higher exponent of the jet velocity scaling is found for the positive phase velocity supersonic pressure component (|p|~Uj10), which is consistent with the scaling of the far-field noise at shallow exit angles [2,3]. The filtered velocity components also show a similar pattern, i.e., supersonic velocity variances scale with a higher power of the jet velocity, but the scaling exponents in jet-region are different for different velocity components and depend on the azimuthal mode. Previous investigations have presented two distinct spectral peaks

  2. Scalar mixing in LES/PDF of a high-Ka premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    You, Jiaping; Yang, Yue

    2016-11-01

    We report a large-eddy simulation (LES)/probability density function (PDF) study of a high-Ka premixed turbulent flame in the Lund University Piloted Jet (LUPJ) flame series, which has been investigated using direct numerical simulation (DNS) and experiments. The target flame, featuring broadened preheat and reaction zones, is categorized into the broken reaction zone regime. In the present study, three widely used mixing modes, namely the Interaction by Exchange with the Mean (IEM), Modified Curl (MC), and Euclidean Minimum Spanning Tree (EMST) models are applied to assess their performance through detailed a posteriori comparisons with DNS. A dynamic model for the time scale of scalar mixing is formulated to describe the turbulent mixing of scalars at small scales. Better quantitative agreement for the mean temperature and mean mass fractions of major and minor species are obtained with the MC and EMST models than with the IEM model. The multi-scalar mixing in composition space with the three models are analyzed to assess the modeling of the conditional molecular diffusion term. In addition, we demonstrate that the product of OH and CH2O concentrations can be a good surrogate of the local heat release rate in this flame. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11521091 and 91541204).

  3. Large-eddy simulation of round turbulent jets using the Inertial LES method with multifractal subgrid-scale modeling

    SciTech Connect

    Burton, G

    2007-01-08

    Large-eddy simulation of passive scalar mixing by a fully three-dimensional round incompressible turbulent jet is evaluated using the Inertial LES methodology with multifractal subgrid-scale modeling. The Inertial LES approach involves the direct calculation of the inertial term {ovr u{sub i} u{sub j}} in the filtered incompressible Navier-Stokes equation and the scalar flux term {ovr u{sub j} {phi}} in the filtered advection-diffusion equation, using models for the subgrid velocity field u{sup sgs} and the subgrid scalar-concentration field {phi}{sup sgs}. In this work, the models are based on the multifractal structure of the subgrid enstrophy 2Q{sup sgs}(x,t) {triple_bond} {omega}{sup sgs} {center_dot} {omega}{sup sgs} and scalar-dissipation {chi}{sup sgs} (x,t) {triple_bond} D{del}{phi}{sup sgs} {center_dot} {del}{phi}{sup sgs} fields, respectively. No artificial viscosity or diffusivity constructs are applied and no explicit dealiasing is performed. Numerical errors are controlled by the application of an adaptive backscatter limiter. The present work summarizes the initial evaluation of the Inertial LES approach in the context of the round turbulent jet, including examinations of jet self-similarity and the scale-to-scale distribution of kinetic and scalar energy in the jet far field. These inquiries confirm that the Inertial LES method accurately recovers the large scale structure of this complex turbulent shear flow.

  4. Asymptotic structure of low frequency supersonic heated jet noise using LES data to re-construct a turbulence model

    NASA Astrophysics Data System (ADS)

    Afsar, Mohammed; Sescu, Adrian; Sassanis, Vasileios; Bres, Guillaume; Towne, Aaron; Lele, Sanjiva

    2016-11-01

    The Goldstein-Sescu-Afsar asymptotic theory postulated that the appropriate distinguished limit in which non-parallel mean flow effects introduces a leading order change in the 'propagator' (which is related adjoint linearized Euler Green's function) within Goldstein's acoustic analogy must be when the jet spread rate is the same order as Strouhal number. We analyze the low frequency structure of the acoustic spectrum using Large-eddy simulations of two axi-symmetric jets (heated & unheated) at constant supersonic jet Mach number to obtain the mean flow for the asymptotic theory. This approach provides excellent quantitative agreement for the peak jet noise when the coefficients of the turbulence model are tuned for good agreement with the far-field acoustic data. Our aim in this talk, however, is to show the predictive capability of the asymptotics when the turbulence model in the acoustic analogy is 'exactly' re-constructed by numerically matching the length scale coefficients of an algebraic-exponential model for the 1212-component of the Reynolds stress auto-covariance tensor (1 is streamwise & 2 is radial direction) with LES data at any spatial location and temporal frequency. In this way, all information is obtained from local unsteady flow. We thank Professor Parviz Moin for supporting this work as part of the Center for Turbulence Research Summer Program 2016.

  5. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.

  6. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  7. Fountain-Jet Turbulence.

    DTIC Science & Technology

    1980-09-01

    and 3 times higher than expected from free- jet results. Hill et al., (Reference 6) in work with foun- tain jets impacting fuselage models, detected ...delineate the origins of the turbulent anomalies associated with fountain jets by extending the previous studies. The results are presented herein...jet velocities were detected with a Thermal Systems Inc. Model 1050 dual-channel constant-temperature anemometer equipped with a Thermal Systems Inc

  8. Characterizing glottal jet turbulence.

    PubMed

    Alipour, Fariborz; Scherer, Ronald C

    2006-02-01

    Air pressure associated with airflow from the lungs drives the vocal folds into oscillation and allows the air to exit the glottis as a turbulent jet, even though laminar flow may enter the glottis from the trachea. The separation of the turbulence from the deterministic portion of the glottal jet was investigated in the excised canine larynx model. The present study is methodological in that the main goal was to examine three methods of obtaining reasonable representations of both the deterministic signal and the residual turbulence portion: (a) smoothing, (b) wavelet denoising, and (c) ensemble averaging. Ensemble averaging resulted in a deterministic signal that disregarded gross cyclic alterations while exaggerating the turbulence intensity. Wavelet denoising can perform an excellent analysis and synthesis of the glottal velocity, but was problematic in determining which levels of analysis to choose to represent both the deterministic and turbulence appropriately. Smoothing appeared to be the most appropriate for phonation velocities because it preserved gross cyclic variations important to perturbations and modulations, while extracting turbulence at what appears to be reasonable levels.

  9. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  10. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2017-01-01

    Large-eddy simulations (LES) were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver was used to compute the flow from a 2-inch round nozzle. Three different flow conditions of varying jet Mach numbers and temperature ratios were examined. The LES results showed that the temperature field behaves similar to the velocity field, but with a more rapidly spreading mixing layer. Predictions of mean, mu-bar(sub i), and fluctuating, mu'(sub i), velocities were compared to particle image velocimetry data. Predictions of mean, T-bar, and fluctuating, T', temperature were compared to data obtained using Rayleigh scattering and Raman spectroscopy. Very good agreement with experimental data was demonstrated for the mean and fluctuating velocities. The LES correctly predicts the behavior of the turbulent temperature field, but over-predicts the levels of the fluctuations. The turbulent heat flux was examined and compared to Reynolds-averaged Navier-Stokes (RANS) results. The LES and RANS simulations produced very similar results for the radial heat flux. However, the axial heat flux obtained from the LES differed significantly from the RANS result in both structure and magnitude, indicating that the gradient diffusion type model in RANS is inadequate. Finally, the LES data was used to compute the turbulent Prandtl number and verify that a constant value of 0.7 used in the RANS models is a reasonable assumption.

  11. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  12. Interaction between a vertical turbulent buoyant jet and a thermocline

    NASA Astrophysics Data System (ADS)

    Ezhova, Ekaterina; Brandt, Luca; Cenedese, Claudia

    2016-11-01

    We study the behaviour of an axisymmetric vertical turbulent jet in an unconfined stratified environment by means of well-resolved large eddy simulations (LES). The stratification is two layers separated by a thermocline and the thermocline thickness considered is smaller and on the order of the jet diameter at the thermocline entrance. We quantify mean jet penetration, stratified turbulent entrainment and study the generation of internal waves. The mean jet penetration is predicted based on the conservation of the source energy in the thermocline. The entrainment coefficient for the thin thermocline agrees with the theoretical model for a two-layer stratification with a sharp interface. A secondary flow towards the jet top appears in the upper part of the thick thermocline. The jet generates internal waves at frequencies in agreement with similar experiments. We shall also report the results of LES of a turbulent plume in a stratified fluid modelling subglacial discharge from a submarine glacier in stratifications typical of Greenland fjords. We consider a free plume from a round source of various diameters with double the total discharge estimated from the field data. We quantify plume dynamics and compare the results for plumes and jets. E. Ezhova acknowledges VR Swedish Research Council. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).

  13. Variable density mixing in turbulent jets with coflow

    DOE PAGES

    Charonko, John James; Prestridge, Katherine Philomena

    2017-07-24

    Two sets of experiments are performed to study variable-density effects in turbulent round jets with co flow at density ratios, s = 4.2 and s = 1.2. 10,000 instantaneous realisations of simultaneous 2-D PIV and PLIF at three axial locations in the momentumdominated region of the jet allow us to calculate the full t.k.e. budgets, providing insights into the mechanisms of density fluctuation correlations both axially and radially in a non- Boussinesq flow. The strongest variable-density effects are observed within the velocity half-width of the jet, r~u1/2 . Variable density effects decrease the Reynolds stresses via increased turbulent mass fluxmore » in the heavy jet, as shown by previous jet centreline measurements. Radial pro les of turbulent flux show that in the lighter jet t.k.e. is moving away from the centreline, while in the heavy jet it is being transported both inwards towards the centreline and radially outwards. Negative t.k.e. production is observed in the heavy jet, and we demonstrate that this is caused by both reduced gradient stretching in the axial direction and increased turbulent mass fluxes. Large differences in advection are also observed between the two jets. The air jet has higher total advection caused by strong axial components, while density fluctuations in the heavy jet reduce the axial advection signi cantly. The budget mechanisms in the non-Boussinesq regime are best understood using effective density and velocity half-width, ρeff ¯u3 1,CL/r~u1/2,eff , a modi cation of previous scaling.« less

  14. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  15. Coherent structures and wavepackets in subsonic transitional turbulent jets

    NASA Astrophysics Data System (ADS)

    Yang, Haihua; Zhang, Xingchen; Ran, Lingke; Sun, Dejun; Wan, Zhenhua

    2017-02-01

    A large eddy simulation (LES) is performed for two subsonic jets with a Reynolds number of Re=10^5, which have different core temperatures, i.e., the cold and hot jet. The far-field overall sound pressure levels (OASPL) and noise spectra are well validated against previous experimental results. It is found that the OASPL is raised by heating at shallow angles. The most energetic coherent structures are extracted with specified frequencies using the filter based on the frequency domain variant of the snapshot method of proper orthogonal decomposition (POD). The m=0,1 modes have high coherence of near-field pressure for both jets, while the coherence of m=0 modes is enhanced greatly by heating. Based on the coherent structures, spatial wavepackets are educed and the characteristics of growth, saturation and decay are analyzed and compared between the two jets in detail. The results show that heating would enhance the linear growth rate for high frequency components, and nonlinear growth rates for low frequency components in general, which are responsible for higher OASPL in the hot jet. The far-field sound generated by wavepackets is computed using the Kirchhoff extrapolation, which matches well with that of LES at shallow angles. This indicates that the wavepackets associated with coherent structures are dominant sound sources in forced transitional turbulent jets. Additionally, the present POD method is proven to be a robust tool to extract the salient features of the wavepackets in turbulent flows.

  16. Aeroacoustics of Turbulent High-Speed Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1996-01-01

    Aeroacoustic noise generation in a supersonic round jet is studied to understand in particular the effect of turbulence structure on the noise without numerically compromising the turbulence itself. This means that direct numerical simulations (DNS's) are needed. In order to use DNS at high enough Reynolds numbers to get sufficient turbulence structure we have decided to solve the temporal jet problem, using periodicity in the direction of the jet axis. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. Therefore in order to answer some questions about the turbulence we will partially compromise the overall structure of the jet. The first section of chapter 1 describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. In the second section we present preliminary work done using a TVD numerical scheme on a CM5. This work is only two-dimensional (plane) but shows very interesting results, including weak shock waves. However this is a nonviscous computation and the method resolves the shocks by adding extra numerical dissipation where the gradients are large. One wonders whether the extra dissipation would influence small turbulent structures like small intense vortices. The second chapter is an extensive discussion of preliminary numerical work using the spectral method to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which are solved in O(N) steps. A very accurate highly resolved DNS of a turbulent jet flow is expected.

  17. Streamwise Vorticity Generation in Laminar and Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Demuren, Aodeji O.; Wilson, Robert V.

    1999-01-01

    Complex streamwise vorticity fields are observed in the evolution of non-circular jets. Generation mechanisms are investigated via Reynolds-averaged (RANS), large-eddy (LES) and direct numerical (DNS) simulations of laminar and turbulent rectangular jets. Complex vortex interactions are found in DNS of laminar jets, but axis-switching is observed only when a single instability mode is present in the incoming mixing layer. With several modes present, the structures are not coherent and no axis-switching occurs, RANS computations also produce no axis-switching. On the other hand, LES of high Reynolds number turbulent jets produce axis-switching even for cases with several instability modes in the mixing layer. Analysis of the source terms of the mean streamwise vorticity equation through post-processing of the instantaneous results shows that, complex interactions of gradients of the normal and shear Reynolds stresses are responsible for the generation of streamwise vorticity which leads to axis-switching. RANS computations confirm these results. k - epsilon turbulence model computations fail to reproduce the phenomenon, whereas algebraic Reynolds stress model (ASM) computations, in which the secondary normal and shear stresses are computed explicitly, succeeded in reproducing the phenomenon accurately.

  18. Navier Stokes analysis methods for turbulent jet flows with application to aircraft exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Georgiadis, Nicholas J.; DeBonis, James R.

    2006-07-01

    This article presents the current status of computational fluid dynamics (CFD) methods as applied to the simulation of turbulent jet flowfields issuing from aircraft engine exhaust nozzles. For many years, Reynolds-averaged Navier-Stokes (RANS) methods have been used routinely to calculate such flows, including very complex nozzle configurations. RANS methods replace all turbulent fluid dynamic effects with a turbulence model. Such turbulence models have limitations for jets with significant three-dimensionality, compressibility, and high temperature streams. In contrast to the RANS approach, direct numerical simulation (DNS) methods calculate the entire turbulent energy spectrum by resolving all turbulent motion down to the Kolmogorov scale. Although this avoids the limitations associated with turbulence modeling, DNS methods will remain computationally impractical in the foreseeable future for all but the simplest configurations. Large-Eddy simulation (LES) methods, which directly calculate the large-scale turbulent structures and reserve modeling only for the smallest scales, have been pursued in recent years and may offer the best prospects for improving the fidelity of turbulent jet flow simulations. A related approach is the group of hybrid RANS/LES methods, where RANS is used to model the small-scale turbulence in wall boundary layers and LES is utilized in regions dominated by the large-scale jet mixing. The advantages, limitations, and applicability of each approach are discussed and recommendations for further research are presented.

  19. The numerical analysis of a turbulent compressible jet

    NASA Astrophysics Data System (ADS)

    Debonis, James Raymond

    2000-10-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Sub-grid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two and three dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and sub-grid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved sub-grid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately ½Dj. Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 Uj.

  20. Turbulent wall jet in a coflowing stream

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1975-01-01

    A theoretical investigation was undertaken to develop a relatively simple model of a two-dimensional, turbulent wall jet in a coflowing stream. The incompressible jet flow was modeled by using an integral method which includes turbulent shear stress, entrainment, and heat transfer. The method solves the conservation equations for the average jet flow properties and uses the velocity profile suggested by Escudier and Nicoll to obtain detailed characteristics of the jet on a flat plate. The analytical results compare favorably with experimental data for a range of injection velocities, which demonstrates the usefulness of the theory for estimating jet growth, velocity decay, and wall skin friction. The theory, which was applied to a Coanda jet on a circular cylinder, provided estimates of suction pressures aft of the jet exit that were in close agreement with experimental values.

  1. Turbulence measurements in curved wall jets

    NASA Astrophysics Data System (ADS)

    Rodman, L. C.; Wood, N. J.; Roberts, L.

    1987-01-01

    Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional plane and curved wall jet flows are simulated by having a jet blow axially over a cylinder. In the plane case the cylinder has constant transverse radius, and in the curved cases the cylinder has a varying transverse radius. Although the wall jet in these cases is axisymmetric, adequate 'two-dimensional' flow can be obtained as long as the ratio of the jet width to the cylinder radius is small. The annular wall jet has several advantages over wall jets issuing from finite rectangular slots. Since the slot has no ends, three-dimensional effects caused by the finite length of the slot and side wall interference are eliminated. Also, the transverse curvature of the wall allows close optical access to the surface using a Laser Doppler Velocimetry (LDV) system. Hot wire measurements and some LDV measurements are presented for plane and curved wall jet flows. An integral analysis is used to assess the effects of transverse curvature on the turbulent shear stress. The analysis and the data show that the effects of transverse curvature on both the mean flow and the shear stress are small enough for two-dimensional flow to be approximately satisfactorily.

  2. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  3. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  4. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  5. Numerical Investigation of Forced Strong and Weak Wall Jets %Using DNS and LES

    NASA Astrophysics Data System (ADS)

    Wernz, S.; Fasel, H. F.

    1997-11-01

    Wall jets are technically important flows that are used, for example, for boundary layer control on airfoils. Recent experiments by Wygnanski et al. have demonstrated the effectiveness of pulsed wall jets to control separation for flows over single-element or segmented airfoils. For gaining insight into the fundamental mechanisms responsible for the often striking effect of periodic forcing on wall jets, in the present research forced transitional and turbulent wall jets are investigated using Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES). Both DNS and LES are performed using a three-dimensional Navier-Stokes code based on the incompressible vorticity-velocity formulation. For the LES, a Smagorinsky-type subgrid-scale turbulence model has been incorporated into the code. Two types of base flows are considered. Strong wall jets are represented by a Glauert-type wall jet with a small free stream component added, weak wall jets are generated by wall-tangential blowing through a slot into a boundary layer. In the simulations, the base flows are periodically forced using a blowing and suction slot in the wall. For the LES of turbulent wall jets, rapid breakdown to turbulence is triggered by large amplitude three-dimensional random forcing. The focus of the present study is the influence of the free steam component on the development of large coherent structures. This research is funded by AFOSR, Grant Nr. F49620-97-1-0274, and is also supported by a grant of HPC time from the DoD HPC Shared Resource Center, CEWES.

  6. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  7. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  8. Measurements of turbulent velocity statistics in a microscale rectangular confined impinging jets reactor

    NASA Astrophysics Data System (ADS)

    Olsen, Michael; Somashekar, Vishwanath; Fox, Rodney

    2011-11-01

    Microscale chemical reactors capable of operating in the turbulent flow regime, such as the confined impinging jets reactor (CIJR), offer many advantages for rapid chemical processing at the microscale, especially in application such as flash nanoprecipitation used for the production of functional nanoparticles. In the presented work, microscopic particle image velocimetry (microPIV) was employed on a microscale rectangular CIJR to obtain instantaneous velocity fields at jet Reynolds numbers of 200, 1000 and 1500, which corresponds to completely laminar, weakly turbulent, and fully turbulent regimes respectively in the reaction zone. For each Reynolds number, approximately 2000 instantaneous velocity fields were collected to analyze the flow fields and calculate pointwise and spatial turbulence statistics. Large eddy simulation (LES) was then performed to obtain time resolved simulated velocity fields which were then compared with the experimental results. Good agreement was observed between the experimental results and the LES results, demonstrating the viability of LES could be used as a tool for designing microscale reactors.

  9. Hydrodynamics of submerged turbulent plane offset jets

    NASA Astrophysics Data System (ADS)

    Dey, Subhasish; Ravi Kishore, Galla; Castro-Orgaz, Oscar; Ali, Sk Zeeshan

    2017-06-01

    The results of an experimental study on the turbulent flow characteristics in submerged plane offset jets are presented. The vertical profiles of time-averaged velocity components and Reynolds stresses at different horizontal locations are depicted to illustrate their variations across the pre-attachment, impingement, and wall jet regions. The characteristic lengths and the jet profile of submerged offset jets in the pre-attachment region are determined from the velocity profiles. The regional profiles of velocity and Reynolds stresses are analyzed in the context of the self-similarity, the decay of their representative scales, and the development of the length scales. The self-similarity characteristics in the pre-attachment and wall jet regions are preserved better than those in the impingement region. The turbulent kinetic energy (TKE) fluxes suggest that within the jet layer in the pre-attachment region, an upward advection of low-speed fluid streaks induces a strong retardation to the jet; while in the wall jet region, an inrush of low-speed fluid streaks induces a weak retardation. Analysis of the TKE budget reveals that within the jet layer, the TKE diffusion rate and the pressure energy diffusion rate oppose each other, and the peaks of the dissipation rate lag from those of the corresponding production rate.

  10. Synchrotron brightness distribution of turbulent radio jets

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Bridle, A. H.; Chan, K. L.

    1981-01-01

    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile.

  11. Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane

    NASA Astrophysics Data System (ADS)

    Gomez, Luis Fernando

    Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.

  12. Etude aerodynamique d'un jet turbulent impactant une paroi concave

    NASA Astrophysics Data System (ADS)

    LeBlanc, Benoit

    Etant donne la demande croissante de temperatures elevees dans des chambres de combustion de systemes de propulsions en aerospatiale (turbomoteurs, moteur a reaction, etc.), l'interet dans le refroidissement par jets impactant s'est vu croitre. Le refroidissement des aubes de turbine permet une augmentation de temperature de combustion, ce qui se traduit en une augmentation de l'efficacite de combustion et donc une meilleure economie de carburant. Le transfert de chaleur dans les au bages est influence par les aspects aerodynamiques du refroidissement a jet, particulierement dans le cas d'ecoulements turbulents. Un manque de comprehension de l'aerodynamique a l'interieur de ces espaces confinees peut mener a des changements de transfert thermique qui sont inattendus, ce qui augmente le risque de fluage. Il est donc d'interet pour l'industrie aerospatiale et l'academie de poursuivre la recherche dans l'aerodynamique des jets turbulents impactant les parois courbes. Les jets impactant les surfaces courbes ont deja fait l'objet de nombreuses etudes. Par contre des conditions oscillatoires observees en laboratoire se sont averees difficiles a reproduire en numerique, puisque les structures d'ecoulements impactants des parois concaves sont fortement dependantes de la turbulence et des effets instationnaires. Une etude experimentale fut realisee a l'institut PPRIME a l'Universite de Poitiers afin d'observer le phenomene d'oscillation dans le jet. Une serie d'essais ont verifie les conditions d'ecoulement laminaires et turbulentes, toutefois le cout des essais experimentaux a seulement permis d'avoir un apercu du phenomene global. Une deuxieme serie d'essais fut realisee numeriquement a l'Universite de Moncton avec l'outil OpenFOAM pour des conditions d'ecoulement laminaire et bidimensionnel. Cette etude a donc comme but de poursuivre l'enquete de l'aerodynamique oscillatoire des jets impactant des parois courbes, mais pour un regime d'ecoulement transitoire, turbulent

  13. Sound amplification by jittering wavepackets in subsonic turbulent jets

    NASA Astrophysics Data System (ADS)

    Zhang, Mengqi; Towne, Aaron; Jordan, Peter; Colonius, Tim; Brès, Guillaume; Lele, Sanjiva

    2014-11-01

    Recent research confirms that coherent structures in turbulent jets can be understood as hydrodynamic instabilities (wavepackets) of the turbulent mean that amplify and decay as they convect downstream. Linear models used to compute such wavepackets obtain compelling agreement with experiment in terms of both wavepacket structure and phase speed. But the radiated sound can have errors of several orders of magnitude. Data analysis suggests that this is because individual wavepackets evolve, not on the long-time mean of the turbulence, but on a slowly varying mean, which may be described statistically via an ensemble of short-time averages. We use data from a Large Eddy Simulation to explore this idea. The simulation has been carefully validated by an accompanying experiment and found, in particular, to reproduce loud intermittent events observed in the measurements. Slowly varying and short-time-averaged mean flows are extracted from the LES. The Linearised Euler Equations are solved using the slowly varying mean-obtained by low-pass filtering the LES data-as a base flow. The Parabolised Stability and One-Way Euler equations are solved using the short-time ensemble. The solutions comprise jittering wavepackets whose sound radiation is enhanced by several orders of magnitude. This work was supported by the Center for Turbulence Research.

  14. Ray Traces Through Unsteady Jet Turbulence

    NASA Technical Reports Server (NTRS)

    Freund, J. B.; Fleischman, T. G.

    2002-01-01

    Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.

  15. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  16. Turbulent mixing noise from supersonic jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Chen, Ping

    1994-01-01

    There is now a substantial body of theoretical and experimental evidence that the dominant part of the turbulent noise of supersonic jets is generated directly by the large turbulence structures/instability waves of the jet flow. Earlier, Tam and Burton provided a description of the physical mechanism by which supersonically traveling instability waves can generate sound efficiently. They used the method of matched asymptotic expansions to construct an instability wave solution which is valid in the far field. The present work is an extension of the theory of Tam and Burton. It is argued that the instability wave spectrum of the jet may be regarded as generated by stochastic white noise excitation at the nozzle lip region. The reason why the excitation has white noise characteristics is that near the nozzle lip region the flow in the jet mixing layer has no intrinsic length and time scales. The present stochastic wave model theory of supersonic jet noise contains a single unknown multiplicative constant. Comparisons between the calculated noise directivities at selected Strouhal numbers and experimental measurements of a Mach 2 jet at different jet temperatures have been carried out. Favorable agreements are found.

  17. Jet sharpening by turbulent mixing.

    PubMed

    Dritschel, D G; Scott, R K

    2011-02-28

    Jets or localized strong currents in planetary atmospheres, as well as in the Earth's oceans, are often associated with sharp potential-vorticity gradients owing to the inherent balance exhibited by these flows. Here, we explore and quantify jet sharpening in a simple idealized single-layer quasi-geostrophic model on a mid-latitude β-plane. The advantages of this idealization are that just two parameters control the flow development (the Rossby deformation length and the amplitude of the initial random flow perturbation), and that numerical experiments can comprehensively and accurately cover the parameter space. These experiments, carried out at unprecedented numerical resolution, reveal how an initially broad jet is sharpened, and the role played by coherent vortices in the vicinity of jets.

  18. Formation and inflammation of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Chen, D. Y.; Oppenheim, A. K.

    1984-01-01

    The formation and inflammation of a planar, turbulent jet in an incompressible medium is modeled numerically by the use of the random vortex method amended by a flame propagation algorithm. The results demonstrate the dominant influence of turbulent eddies and their interactions upon the development of the jet. Its growth is shown to consist of three stages: formation of small eddies, pairing of eddies with the same sign of circulation, and pairing of eddies of opposite signs. On this basis a number of features of the jet mechanism are revealed, namely penetration, engulfment, entrainment, and intermittency. Two cases of inflammation are considered. In one, the jet is ignited at the center of the orifice, the solution tracing its own inflammation. In the other, combustion is initiated across its full cross section, the results modeling the action of a turbulent torch as it spreads the flame into the combustible surroundings. In both cases the flow field is still dominated by the turbulent eddies and their interactions. However, the coherence among them is encumbered as a consequence of expansion due to the exothermicity of the combustion process.

  19. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  20. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  1. The Aeroacoustics of Turbulent Coanda Wall Jets

    NASA Astrophysics Data System (ADS)

    Lubert, Caroline; Fox, Jason

    2007-11-01

    Turbulent Coanda wall jets have become increasingly widely used in a variety of industrial applications in recent years, due to the substantial flow deflection that they afford. A related characteristic is the enhanced turbulence levels and entrainment they offer, compared with conventional jet flows. This characteristic is, however, generally accompanied by a significant increase in the noise levels associated with devices employing this effect. As a consequence, the potential offered by Coanda devices is yet to be fully realized. This problem provides the impetus for the research detailed in this poster. To date, some work has been done on developing a mathematical model of the Turbulent Mixing Noise emitted by such a device, assuming that the surface adjoining the turbulent flow was essentially 2-D. This poster extends this fundamental model, through a combination of mathematical modeling and acoustical and optical experiments. The effect of a variety of parameters, including nozzle configuration and jet exit velocity will be discussed, and ways of reducing or attenuating the noise generated by such flow, whilst still maintaining the crucial flow characteristics, will be presented.

  2. Optical properties of a planar turbulent jet.

    PubMed

    Joia, I A; Perkins, R J; Uscinski, B J; Balmer, G; Jordan, D; Jakeman, E

    1995-10-20

    A planar heated air jet was constructed. Its flow properties were characterized and shown to be both reproducible and in good agreement with the results of turbulence theory. The optical properties of the jet were studied with the help of a 632.8-nm He-Ne laser beam. The random phase modulations imposed on the wave front of the beam traversing the jet were measured by interferometric means, and their spectra and variance were determined. The one-dimensional phase fluctuation spectrum obeyed a -8/3 power law as predicted by theory, whereas the phase variance (?(2)) depended on the jet temperature and was studied for values to as high as 0.4 (rad)(2)).

  3. The structure of jet turbulence producing jet noise.

    NASA Technical Reports Server (NTRS)

    Wooldridge, C. E.; Wooten, D. C.; Amaro, A. J.

    1972-01-01

    Measurements are presented that characterize the structure of the jet in both the core and the surrounding annular mixing region. Experiments were carried out in a 1.5-inch diameter subsonic jet at Mach numbers of 0.3, 0.5, and 0.7. The growth of pressure fluctuations within the core from the jet outlet to the end of the jet core was traced through the examination of spectral results. The spectra in the jet core exhibited a peak whose frequency scaled with the jet velocity and the jet diameter which is related to a characteristic dimension of the mixing process. A digital data reduction program was used to calculate the auto- and cross-correlations of axial velocity fluctuations. In the core the cross-correlations were nearly constant in the space-time plane indicating a traveling pressure wave, while in the annular mixing region the cross-correlations exhibited the usual decay in the space-time plane characteristic of convected turbulence.

  4. The structure of jet turbulence producing jet noise.

    NASA Technical Reports Server (NTRS)

    Wooldridge, C. E.; Wooten, D. C.; Amaro, A. J.

    1972-01-01

    Measurements are presented that characterize the structure of the jet in both the core and the surrounding annular mixing region. Experiments were carried out in a 1.5-inch diameter subsonic jet at Mach numbers of 0.3, 0.5, and 0.7. The growth of pressure fluctuations within the core from the jet outlet to the end of the jet core was traced through the examination of spectral results. The spectra in the jet core exhibited a peak whose frequency scaled with the jet velocity and the jet diameter which is related to a characteristic dimension of the mixing process. A digital data reduction program was used to calculate the auto- and cross-correlations of axial velocity fluctuations. In the core the cross-correlations were nearly constant in the space-time plane indicating a traveling pressure wave, while in the annular mixing region the cross-correlations exhibited the usual decay in the space-time plane characteristic of convected turbulence.

  5. A priori analysis of a LES subfilter model for soot-turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.

    2016-11-01

    In a turbulent flame, soot interacts with turbulence and combustion chemistry at the smallest scales. An existing LES subfilter model proposes that soot-turbulence interactions are independent of chemistry due to the time scale separation between slow soot formation and rapid heat-releasing reactions. However, interactions between soot, turbulence, and chemistry occur even after the nucleation of soot from polycyclic aromatic hydrocarbon (PAH) dimers. In fact, the interplay of soot and gas-phase chemistry may be intensified during oxidation and surface growth. To capture these effects, a dependence on the local mixture fraction has been introduced into the subfilter model. This modified model is evaluated a priori using a direct numerical simulation (DNS) database of soot evolution in a turbulent non-premixed n-heptane/air jet flame.

  6. Aerodynamic interactions with turbulent jet exhaust plumes

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1982-01-01

    The importance of aerodynamic interactions associated with external flow-field effects on turbulent jet exhaust plume structure is discussed. A viscous/inviscid prediction technique is presented which combines the overlaid mixing and inviscid plume components of the JANNAF Standardized Plume Flow-Field (SPF) model with inviscid external flow and boundary-layer analyses for treating nozzle afterbodies at subsonic/transonic speeds. Validation of the technique via comparisons between predictions and experiment for cold-air jet plumes is presented. Predicted spatial temperature distributions for hot, nonafterburning plumes are presented and compared to results obtained from more simplified prediction techniques in order to assess the importance of the aerodynamic interactions associated with external boundary layers and pressure gradients. It is demonstrated that these interactions play a significant role in determining the near-field turbulent mixing and inviscid plume shock structure. The implication of these results to plume radiation predictions is discussed.

  7. Simultaneous computation of jet turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C. H.; Ramos, J. I.

    1989-01-01

    The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.

  8. Numerical Study of High-Temperature Jet Flow Using RANS/LES and PANS Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2005-01-01

    Two multi-scale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k(epsilon)) model with a RANS/LES transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the Partially Averaged Navier-Stokes (PANS) model, where the unresolved kinetic energy parameter (f(sub k)) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS). It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and equal to one in the viscous sub layer, and when the RANS turbulent viscosity becomes smaller than the LES viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate and turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide valuable tool for accurate jet noise predictions. Solutions from these models are compared to RANS results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid RANS/LES and PANS in simulating such flow phenomena.

  9. Modeling of Turbulence Generated Noise in Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2004-01-01

    A numerically calculated Green's function is used to predict jet noise spectrum and its far-field directivity. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. In this paper, contributions from the so-called self- and shear-noise source terms will be discussed. A Reynolds-averaged Navier-Stokes solution yields the required mean flow as well as time- and length scales of a noise-generating turbulent eddy. A non-compact source, with exponential temporal and spatial functions, is used to describe the turbulence velocity correlation tensors. It is shown that while an exact non-causal Green's function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at moderate Mach numbers, at high subsonic and supersonic acoustic Mach numbers the polar directivity of radiated sound is not entirely captured by this Green's function. Results presented for Mach 0.5 and 0.9 isothermal jets, as well as a Mach 0.8 hot jet conclude that near the peak radiation angle a different source/Green's function convolution integral may be required in order to capture the peak observed directivity of jet noise.

  10. Turbulent jet mixing in a supersonic stream

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Schetz, J. A.

    1971-01-01

    An experimental study of turbulent, subsonic, coaxial jet mixing of air in a supersonic air stream is presented. Data taken at five axial stations downstream of the exit of the jet supply tube, which was suspended through the nozzle throat of a supersonic wind tunnel, are given in the form of total pressure, Mach number, and velocity distributions. An investigation of the effect of swirl as a mixing aid was conducted. Swirl, produced by tangential injection of 50% of the total air mass flow leaving the jet supply tube, was examined through Schlieren photographs and total pressure surveys. From a comparison of nonswirl and swirl data, it is concluded that the swirl has no discernible effect on the mixing.

  11. The diffusion of turbulent buoyant jets

    NASA Astrophysics Data System (ADS)

    Gebhart, B.; Hilder, D. S.; Kelleher, M.

    It is pointed out that the cooling water discharge from a power plant into a large body of water, the thermally loaded condenser discharge from the condenser of a moving ship, and the high-temperature gas issuing from a stack or gas turbine exhaust are all buoyant momentum jets. The present study is concerned with a single, fully turbulent, circular buoyant jet, discharged into a surrounding ambient of the same fluid. The characteristics of circular discharges are examined, and a review of modeling schemes and experimental studies is conducted. Attention is given to properties and ambient stratification modeling, a general formulation, comparative calculations regarding the simplest entrainment models and later entrainment models, comparative calculations involving jets in unstratified flowing ambients, the effects of ambient stratifications, and dimensionless variables.

  12. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  13. The deterministic chaos and random noise in turbulent jet

    SciTech Connect

    Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  14. The deterministic chaos and random noise in turbulent jet.

    PubMed

    Yao, Tian-Liang; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  15. Measurement of acoustic shielding by a turbulent jet

    NASA Technical Reports Server (NTRS)

    Yu, J. C.; Fratello, D. J.

    1985-01-01

    The acoustic shielding properties of a turbulent jet have been investigated experimentally. The experimental arrangement consisted of an acoustic point source and a turbulent shielding jet. The source and jet parameters investigated include the source frequency, source spectrum, jet velocity, jet heating by simulation and the lateral and longitudinal source positions with respect to the shielding jet. It is found that the maximum sound attenuation provided by the shielding jet depends on the balance between refraction and diffraction. Over the frequency range investigated, the redistribution of sound by the shielding air jet is power conserving. Comparison between measurement and prediction based on an idealized cylindrical uniform jet model indicates that the spreading and decay of the flow field in real jets are important. Comparisons between the present data trends and those reported for jet-by-jet shielding suggest that the major effects observed in the latter are acoustical rather than aerodynamical.

  16. Inverse energy cascade in a turbulent round jet.

    PubMed

    Hrebtov, M Yu; Ilyushin, B B; Krasinsky, D V

    2010-01-01

    Large eddy simulation of turbulent free round jet has been performed to study statistical properties of turbulence, including third-order structure functions. It has been shown the presence of a zone within the jet initial region where the spectral flux of turbulent energy is directed from smaller scales toward larger ones and the longitudinal third-order structure function becomes positive. Energy spectra calculated in this zone demonstrate the E(k) approximately k(-3) law specific for two-dimensional turbulence.

  17. Spectral peculiarities of turbulent pulsations of submerged water jets

    NASA Astrophysics Data System (ADS)

    Znamenskaya, I. A.; Koroteeva, E. Yu.; Novinskaya, A. M.; Sysoev, N. N.

    2016-07-01

    The spectra of turbulent jet temperature pulsations at 1-40 Hz frequencies have been experimentally studied based on high-speed thermography of the water boundary layer: the region where an impact jet interacts with a surface transparent to IR radiation, as well as the near-wall region where two submerged jets interact in a disc-shaped tee-joint. It has been indicated that the slopes of the spectra of impact submerged jet turbulent pulsations are close to-5/3 and a double inertial interval exists in a quasi-2D turbulent flow that is formed when two jets mix.

  18. High resolution LES study of the nocturnal low level jet

    NASA Astrophysics Data System (ADS)

    Giometto, Marco; Calaf, Marc; Oldroyd, Holly; Fang, Jiannong; Parlange, Marc B.

    2013-04-01

    Katabatic winds are buoyantly driven flows arising along cooled sloping surfaces which play a crucial role in driving the local weather, redistributing scalars such as temperature and moisture in the atmosphere. These winds are established following sunset under strong radiational cooling and rapidly stop after dawn with the formation of the convective boundary layer. They are characterized by a peak in the along slope velocity known as nocturnal low level jet (LLJ) whose effects, on the dynamics of such systems, have been recently investigated but are still not fully understood. The current contribution proposes a Large Eddy Simulation (LES) study at high resolution of idealized katabatic flows along cooled sloping surfaces and aims at gaining a deeper understanding on those that are the dynamics of such thermodynamical systems at the LLJ height. The stably stratified atmosphere is approximated in the Boussinesq sense, rotational effects are not taken into account and the subgrid terms for momentum and buoyancy are independently parametrized adopting Lagrangian scale dependent dynamic models (Bou Zeid et al., 2005). The structure of the mean and turbulent fields obtained from our numerical setup is analysed and results are compared with recent literature and meteorological observations from a narrow alpine valley with steep slopes (Val Ferret, Switzerland). The importance of the subgrid parametrization is tested via run at various resolution.

  19. Coupling Turbulence in Hybrid LES-RANS Techniques

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen L.

    2011-01-01

    A formulation is proposed for hybrid LES-RANS computations that permits accurate computations during resolution changes, so that resolution may be changed at will in order to employ only as much resolution in each subdomain as is required by the physics. The two components of this formulation, establishing the accuracy of a hybrid model at constant resolutions throughout the RANS-to-LES range and maintaining that accuracy when resolution is varied, are demonstrated for decaying, homogeneous, isotropic turbulence.

  20. LES based investigation of autoignition in turbulent co-flow configurations

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rohit; Zellhuber, Mathieu; Polifke, Wolfgang

    2013-04-01

    The impact of turbulence on the autoignition of a diluted hydrogen jet in a hot co-flow of air is studied numerically. The LES combustion model used is successfully validated against experimental measurements and 3D DNS. Parametric studies are then carried out by separately varying turbulent intensity and integral length scale in the co-flow, while keeping all other boundary conditions unchanged. It is found that the impact of turbulence on the location of autoignition is non-trivial. For weak to mild turbulence, with a turbulent time scale larger than the minimum ignition delay time, autoignition is facilitated by increased turbulence. This is due to enhanced mixing between fuel and air, creating larger most reactive mixture fraction regions. On the other hand, for turbulent time scales smaller than the ignition delay time, the increased scalar dissipation rate dominates over the effect of increased most reactive mixture fraction regions, which leads to a rise in the autoignition length. Turbulence-chemistry interaction mechanisms are analysed in order to explain these observations.

  1. Large eddy simulation of a turbulent non-reacting spray jet

    SciTech Connect

    Hu, Bing; Banerjee, S; Liu, K; Rajamohan, D; Deur, J M; Xue, Qingluan; Som, Sibendu; Senecal, Peter Kelly; Pomraning, Eric

    2015-01-01

    We performed Large Eddy Simulation (LES) of a turbulent non-reacting n-Heptane spray jet, referred to as Spray H in the Engine Combustion Network (ECN), and executed a data analysis focused on key LES metrics such as fraction of resolved turbulent kinetic energy and similarity index. In the simulation, we used the dynamic structure model for the sub-grid stress, and the Lagrangian-based spray-parcel models coupled with the blob-injection model. The finest mesh-cell size used was characterized by an Adaptive Mesh Refinement (AMR) cell size of 0.0625 mm. To obtain ensemble statistics, we performed 28 numerical realizations of the simulation. Demonstrated by the comparison with experimental data in a previous study [7], this LES has accurately predicted global quantities, such as liquid and vapor penetrations. The analysis in this work shows that 14 realizations of LES are sufficient to provide a reasonable representation of the average flow behavior that is benchmarked against the 28-realization ensemble. With the current mesh, numerical schemes, and sub-grid scale turbulence model, more than 95% of the turbulent kinetic energy is directly resolved in the flow regions of interest. The large-scale flow structures inferred from a statistical analysis reveal a region of disorganized flow around the peripheral region of the spray jet, which appears to be linked to the entrainment process.

  2. The structure of jet turbulence producing jet noise

    NASA Technical Reports Server (NTRS)

    Wooldridge, C. E.; Wooten, D. C.; Amaro, A. J.

    1971-01-01

    The structure of the turbulence in the mixing region for the first few diameters downstream from the outlet of a circular subsonic jet is characterized at three Mach numbers, 0.3, 0.5, and 0.7, with most of the measurements taken at M = 0.3. Profiles of turbulence intensity showed that downstream of the lip intensity is independent of axial distance, while in the core intensity varies by a factor of eight between the jet outlet and the end of the core. A digital data reduction program was used to calculate the auto- and cross-correlations of axial velocity fluctuations and the power spectral densities. Convection velocities were measured using broadband, hot wire signals and signals that were digitally filtered for band-passes about center frequencies of 0.8, 1.3, 1.6, and 3.2 kHz. The center frequency of 1.3 kHz corresponded to the peak energy in the core spectrum. The results support the hypothesis that the coherent pressure field is driven by the intermittent fluctuations at the core boundary, which in turn are related to the large (low frequency) eddies.

  3. Mixing in High Schmidt Number Turbulent Jets.

    NASA Astrophysics Data System (ADS)

    Miller, Paul Lewis

    This thesis is an experimental investigation of the passive scalar (species concentration) field in the far-field of round, axisymmetric, high Schmidt number (liquid phase), turbulent jets issuing into a quiescent reservoir, by means of a quantitative laser-induced fluorescence technique. Single -point concentration measurements are made on the jet centerline, at axial locations from 100 to 305 nozzle diameters downstream, and Reynolds numbers of 3,000 to 102,000, yielding data with a resolved temporal dynamic range up to 2.5 times 10^5, and capturing as many as 504 large-scale structure passages. Long-time statistics of the jet concentration are found to converge slowly. Between 100 and 300 large-scale structure passages are required to reduce the uncertainty in the mean to 1%, or so. The behavior of the jet varies with Reynolds number. The centerline concentration pdf's become taller and narrower with increasing Re, and the normalized concentration variances correspondingly decrease with Re. The concentration power spectra also evolve with Re. The behavior of the spectral slopes is examined. No constant -1 (Batchelor) spectral slope range is present. Rather, in the viscous region, the power spectra exhibit log-normal behavior, over a range of scales exceeding a factor of 40, in some cases. The frequency of the beginning of this log-normal range scales like Re^{3/4} (Kolmogorov scaling). Mixing in the far-field is found to be susceptible to initial conditions. Disturbances in the jet plenum fluid and near the nozzle exit strongly influence the scalar variance, with larger disturbances causing larger variances, i.e., less homogeneous mixing. The plenum/nozzle geometry also influences the variance. These effects of initial conditions persist for hundreds of diameters from the nozzle exit, over hundreds of large scales. Mixing in these jets differs from gas-phase, order unity Sc, jet mixing. At low to moderate Re, the higher Sc jet is less well mixed. The difference

  4. Hybrid RANS/LES of round impinging jets

    NASA Astrophysics Data System (ADS)

    Kubacki, Slawomir; Rokicki, Jacek; Dick, Erik

    2011-12-01

    Fluid flow and heat transfer characteristics are presented for simulations of round impinging jets at two nozzle-plate distances H/D = 2 and 10 (D is the nozzle exit diameter) and two Reynolds numbers Re = 5000 and 70,000 with hybrid RANS/LES (Reynolds-averaged Navier-Stokes/Large Eddy Simulation), dynamic Smagorinsky LES and RANS k-ω models. Three k-ω based hybrid RANS/LES models are analyzed. With the hybrid RANS/LES models, improved heat transfer results are obtained, when compared to RANS, in the impact region and in the developing wall-jet region. For accurate predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, it is important to capture the evolution and breakup of the unsteady vortices in the shear layer of the jet, so that realistic mean and fluctuating velocity profiles are obtained in the impact jet region.

  5. Dynamics and control of coherent structure in turbulent jets

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1992-01-01

    Current understanding of coherent structure dynamics in incompressible turbulent jets as explained by the nonlinear stability theory is reviewed, focusing on nonswirling turbulent jets. Topics addressed include hydrodynamic stability theory and coherent structures; dynamics of energy transfers among different scales of motion; nonlinear development of amplitude; development of single-frequency coherent mode; fundamental-subharmonic interaction and vortex pairing; and reversal of Reynolds stresses. Attention is also given to the effect of initial phase-difference angle between fundamental and subharmonic, conditions for resonance interaction, modulation of spreading rate by controlling coherent structure, turbulence enhancement or suppression due to excitation, 3D effects, jet noise, and swirling jets.

  6. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  7. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  8. LES of turbulent lifted CH4 /H2 flames using a novel FGM-PDF model

    NASA Astrophysics Data System (ADS)

    Abtahizadeh, S. Ebrahim; van Oijen, Jeroen; Bastiaans, Rob; de Goey, Philip

    2014-11-01

    This study reports on numerical investigations of preferential diffusion effects on flame stabilization of turbulent lifted flames using LES with a FGM-PDF approach. The experimental test case is the Delft JHC burner to study Mild combustion; a clean combustion concept. In this burner, CH4 based fuel has been enriched from 0 to 25% of H2. Since the main stabilization mechanism of these turbulent flames is autoignition, the developed numerical model should be able to predict this complex event. Furthermore, addition of hydrogen makes modeling even more challenging due to its preferential diffusion effects. These effects are increasingly important since autoignition is typically initiated at very small mixture fractions where molecular diffusion is comparable to turbulence transport (eddy viscosity). In this study, first, a novel numerical model is developed based on the Flamelet Generated Manifolds (FGM) to account for preferential diffusion effects in autoignition. Afterwards, the developed FGM approach is implemented in LES of the H2 enriched turbulent lifted jet flames. Main features of these turbulent lifted flames such as the formation of ignition kernels and stabilization mechanisms are thoroughly analyzed and compared with the measurements of OH chemiluminescence. The authors gratefully acknowledge the financial support of the Dutch Technology Foundation (STW) under Project No. 10414.

  9. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  10. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  11. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGES

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  12. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  13. A turbulent model for the surface brightness of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Zaninetti, L.

    2009-04-01

    This paper summarizes the known physics of turbulent jets observed in laboratory experiments. The formula, which gives the power released in turbulence describes the concentration of turbulence/relativistic particles in each point of the astrophysical jets. The same expression is also used to analyze the power released in turbulence in the case of pipe and non-Newtonian fluids. Through an integral operation it is possible to deduce the intensity of synchrotron radiation for a profile perpendicular (or not) to a straight jet, a 2D map for a perpendicular, randomly oriented straight jet, as well as a 2D map of complex trajectories such as NCC 4061 and 3C31. Presented here is a simulation of the spectral index in brightness of 3C273 as well as a 2D map of the degree of linear polarization. The Sobel operator is applied to the theoretical 2D maps of straight perpendicular jets.

  14. Turbulence effects on hemolysis by revisiting experiments with LES computations

    NASA Astrophysics Data System (ADS)

    Ozturk, Mesude; O'Rear, Edgar; Papavassiliou, Dimitrios

    2015-11-01

    Determining mechanically stimulated red blood cell trauma as a function of turbulence properties is required to design prosthetic heart devices. Because blood is typically exposed to turbulence in such devices, the design of prosthetic heart devices depends on determining the effect of turbulent stresses on hemolysis. While turbulent stresses increase hemolysis when cells are exposed to them, turbulent flow characteristics in the vicinity of lysed blood cells, and the mechanism of cell damage remains uncertain. In this work, LES computations are used to investigate the effect of turbulent eddy structure on cell damage. The flow was simulated for classic Couette and capillary tube experiments, in order to examine the relation between hemolysis turbulence properties related to the dissipation of turbulent kinetic energy. The hypothesis tested is that eddies that are close in size with the erythrocytes are the ones that are responsible for hemolysis, rather than Reynolds stresses or viscous stresses. We define extensive measures, like the eddy areas for small eddies comparable to the size of the red blood cells, to provide a more general understanding of the mechanical cause of blood trauma.

  15. Polymer-induced turbulence modifications in an impinging jet

    NASA Astrophysics Data System (ADS)

    Mejia-Alvarez, R.; Christensen, K. T.

    2012-05-01

    This effort explores the impact of dilute polymer solutions on the turbulence characteristics in a submerged liquid impinging-jet configuration. Turbulent impinging jets are commonly used in technological applications such as drying, scouring, cooling, or heating due to an enhancement in transport characteristics in the impingement region under certain nozzle-to-wall configurations. Previous efforts have identified significant turbulence modifications in the presence of dilute concentrations of polymer in both bounded and unbounded flows, though the former has received considerably more attention. To this end, particle-image velocimetry measurements were taken for an axisymmetric turbulent impinging jet with a nozzle-to-wall distance H/ D = 6.8 and nominal Reynolds number of 26,000. Measurements were performed for both plain water and dilute polymer solutions of polyethylene oxide at concentrations of 50 and 100 ppm. The mean and turbulence characteristics of these three flows are contrasted and it is observed that the two polymer solutions modify both the mean and turbulent characteristics of the jet in all three regions of interest (the free-jet, impingement, and wall-jet regions). Of interest, the 50 ppm case yielded a slight suppression of the turbulence in the free-jet region accompanied by a longer axial length of the potential core compared to the case of plain water. In contrast, the 100 ppm case exhibits clear enhancement of the turbulence in the free-jet region and a shortening of the potential core length. The effect of polymer was opposite in the impingement and wall-jet regions wherein the turbulence was slightly suppressed in the 100 ppm case in a manner consistent with the onset of the Toms effect in this wall-bounded region of the flow.

  16. Scaling Analysis of Temperature Variability Between a Rotating Cylinder and a Turbulent Buoyant Jet

    NASA Astrophysics Data System (ADS)

    Lapointe, Caelan; Wimer, Nicholas T.; Hayden, Torrey R. S.; Christopher, Jason D.; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Vortex shedding from a cylinder is a canonical problem in fluid dynamics and is a phenomenon whose behavior is well documented for a wide range of Reynolds numbers. Industrial processes, by contrast, often have many moving parts that may also be exposed to high temperatures, resulting in highly complex flow fields. This complexity can, in turn, introduce velocity and temperature variations that may be undesirable for a particular industrial process. In this study, we specifically seek to understand and parameterize temperature variability between a rotating cylinder and a high-temperature turbulent buoyant jet. The relevance of this configuration for industrial processing is outlined, and velocity and temperature fields between the jet and cylinder are obtained using large eddy simulations (LES). In the LES, key parameters such as the angular velocity and diameter of the cylinder, the dimensions, velocity, and temperature of the turbulent buoyant jet, and the distance between the cylinder and the jet are varied. The resulting LES results are then used to develop scaling relationships between temperature variance near the cylinder and other problem parameters. Such scaling relations will be highly beneficial for the estimation of temperature variations in industrial applications.

  17. Turbulence Associated With Broadband Shock Noise in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2008-01-01

    Time-Resolved Particle Image Velocimetry (TRPIV) has been applied to a series of jet flows to measure turbulence statistics associated with broadband shock associated noise (BBSN). Data were acquired in jets of Mach numbers 1.05, 1.185, and 1.4 at different temperatures. Both convergent and ideally expanded nozzles were tested, along with a convergent nozzle modified to minimize screech. Key findings include the effect of heat on shock structure and jet decay, the increase in turbulent velocity when screech is present, and the relative lack of spectral detail associated with the enhanced turbulence.

  18. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  19. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    NASA Technical Reports Server (NTRS)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  20. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, G.; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  1. Jet vortex generators for turbulent flow separation control

    NASA Technical Reports Server (NTRS)

    Selby, Gregory; Lin, J.; Howard, F.

    1990-01-01

    A parametric study was performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low speed turbulent flow over a two dimensional rearward-facing ramp. Results indicate that flow separation control can be accomplished with the level of control achieved being a function of jet speed, jet orientation (with respect to the free stream direction), and orifice pattern (double row of jets vs. single row). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  2. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence

  3. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to

  4. Naturally occurring and forced azimuthal modes in a turbulent jet

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Naturally occurring instability modes in an axisymmetric jet were studied using the modal frequency technique. The evolution of the modal spectrum was obtained for a jet with a Reynolds number based on a diameter of 400,000 for both laminar and turbulent nozzle boundary layers. In the early evolution of the jet the axisymmetric mode was predominant, with the azimuthal modes growing rapidly but dominating only the end of the potential core. The growth of the azimuthal was observed closer to the nozzle exit for the jet in the laminar boundary layer case than for the turbulent. Target modes for efficient excitation of the jet were determined and two cases of excitation were studied. First, a jet was excited simultaneously by two helical modes, m equals plus 1 and m equals minus 1 at a Strouhal number based on jet diameter of 0.15 and the axisymmetric mode, m equals 0 at a jet diameter of 0.6. Second, m equals plus one and m equals minus 1 at jet diameter equals 0.3 and m equals 0 at jet diameter equals 0.6 were excited simultaneously. The downstream evolution of the hydrodynamic modes and the spreading rate of the jet were documented for each case. Higher jet spreading rates, accompanied by distorted jet cross sections were observed for the cases where combinations of axisymmetric and helical forcings were applied.

  5. Signal transit velocities in a turbulent plane jet

    NASA Technical Reports Server (NTRS)

    Stiffler, A. K.

    1975-01-01

    A turbulent jet is perturbed transverse to the flow direction by periodic pressure gradients near the nozzle exit. Transit velocities are defined in terms of the measured signal time delay for stations 8, 12, 16 nozzle widths downstream of the nozzle exit. Excitation frequencies to 800 cps are considered. Transit velocities are found to be much less than the jet centerline velocity. The results are related to the convection velocity of turbulence.

  6. Generating and controlling homogeneous air turbulence using random jet arrays

    NASA Astrophysics Data System (ADS)

    Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo

    2016-12-01

    The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.

  7. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  8. Turbulence and heat excited noise sources in single and coaxial jets

    NASA Astrophysics Data System (ADS)

    Koh, Seong Ryong; Schröder, Wolfgang; Meinke, Matthias

    2010-03-01

    The generation of noise in subsonic high Reynolds number single and coaxial turbulent jets is analyzed by a hybrid method. The computational approach is based on large-eddy simulations (LES) and solutions of the acoustic perturbation equations (APE). The method is used to investigate the acoustic fields of one isothermal single stream jet at a Mach number 0.9 and a Reynolds number 400,000 based on the nozzle diameter and two coaxial jets whose Mach number and Reynolds number based on the secondary jet match the values of the single jet. One coaxial jet configuration possesses a cold primary flow, whereas the other configuration has a hot primary jet. Thus, the configurations allow in a first step the analysis of the relationship of the flow and acoustic fields of a single and a cold coaxial jet and in a second step the investigation of the differences of the fluid mechanics and aeroacoustics of cold and hot coaxial jets. For the isothermal single jet the present hybrid acoustic computation shows convincing agreement with the direct acoustic simulation based on large-eddy simulations. The analysis of the acoustic field of the coaxial jets focuses on two noise sources, the Lamb vector fluctuations and the entropy sources of the APE equations. The power spectral density (PSD) distributions evidence the Lamb vector fluctuations to represent the major acoustic sources of the isothermal jet. Especially the typical downstream and sideline acoustic generations occur on a cone-like surface being wrapped around the end of the potential core. Furthermore, when the coaxial jet possesses a hot primary jet, the acoustic core being characterized by the entropy source terms increases the low frequency acoustics by up to 5 dB, i.e., the sideline acoustics is enhanced by the pronounced temperature gradient.

  9. Mass and momentum turbulent transport experiments with confined coaxial jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1984-01-01

    An experimental study of mixing downstream of coaxial jets discharging into an expanded circular duct was conducted to obtain data for the evaluation and improvement of turbulent transport models. A combination of turbulent momentum transport rate and two components of velocity data were obtained from simultaneous measurements with a two-color LV system. A combination of turbulent mass transport rate, concentration and velocity data were obtained from simultaneous measurements with laser velocimeter (LV) and laser induced fluorescence (LIF) systems.

  10. Establishing Consensus Turbulence Statistics for Hot Subsonic Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Werner, Mark P.

    2010-01-01

    Many tasks in fluids engineering require knowledge of the turbulence in jets. There is a strong, although fragmented, literature base for low order statistics, such as jet spread and other meanvelocity field characteristics. Some sources, particularly for low speed cold jets, also provide turbulence intensities that are required for validating Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) codes. There are far fewer sources for jet spectra and for space-time correlations of turbulent velocity required for aeroacoustics applications, although there have been many singular publications with various unique statistics, such as Proper Orthogonal Decomposition, designed to uncover an underlying low-order dynamical description of turbulent jet flow. As the complexity of the statistic increases, the number of flows for which the data has been categorized and assembled decreases, making it difficult to systematically validate prediction codes that require high-level statistics over a broad range of jet flow conditions. For several years, researchers at NASA have worked on developing and validating jet noise prediction codes. One such class of codes, loosely called CFD-based or statistical methods, uses RANS CFD to predict jet mean and turbulent intensities in velocity and temperature. These flow quantities serve as the input to the acoustic source models and flow-sound interaction calculations that yield predictions of far-field jet noise. To develop this capability, a catalog of turbulent jet flows has been created with statistics ranging from mean velocity to space-time correlations of Reynolds stresses. The present document aims to document this catalog and to assess the accuracies of the data, e.g. establish uncertainties for the data. This paper covers the following five tasks: Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. Compare PIV data with hotwire and laser Doppler

  11. Prediction of Turbulent Temperature Fluctuations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Debonis, James R.

    2017-01-01

    Large-eddy simulations were used to investigate turbulent temperature fluctuations and turbulent heat flux in hot jets. A high-resolution finite-difference Navier-Stokes solver, WRLES, was used to compute the flow from a 2-inch round nozzle. Several different flow conditions, consisting of different jet Mach numbers and temperature ratios, were examined. Predictions of mean and fluctuating velocities were compared to previously obtained particle image velocimetry data. Predictions of mean and fluctuating temperature were compared to new data obtained using Raman spectroscopy. Based on the good agreement with experimental data for the individual quantities, the combined quantity turbulent heat flux was examined.

  12. Spectra and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1951-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through band-pass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectra of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined.

  13. Effect of VGs on a turbulent hydrogen jet

    NASA Astrophysics Data System (ADS)

    Senouci, M.; Hibbo, H.; Hammoudi, B.; Kadi, M.; Imine, B.

    2016-03-01

    The aim of this study is to investigate numerically the effects of four vortices on the dynamic, scalar, and turbulent fields of the hydrogen jet. These vortices, which appear in the vicinities of the nozzle, are created by the vortex generators (VGs), and they are assembled with periodicity or symmetry in order, respectively, to give four vortices of the same or opposite direction. A second-order Reynolds stress model is used to investigate asymmetric turbulent jet. The results indicate that the presence of the vortex near the emission jet section noticeably enhances mixing to ensure a good combustion.

  14. Study of vertical plane turbulent jets and plumes

    NASA Astrophysics Data System (ADS)

    Ramaprian, B. R.; Chandrasekhara, M. S.

    1983-03-01

    Asymptotic, plane, vertical, turbulent plumes and nonbuoyant jets were studied. Simultaneous velocity and temperature were measured using frequency shifted, two component Laser Doppler anemometry (LDA), resistance thermometry and a high speed data acquisition system. Results obtained for two plumes with vastly different initial Richardson numbers indicate that both the plumes exhibit a nearly universal asymptotic behavior. The Richardson number of the asymptotic plume is a universal constant and is about 0.3. The mean velocity and temperature profiles in both jets and plumes are nearly Gaussian. It is found that turbulence levels in plumes are significantly higher than in jets.

  15. Input-output analysis of high-speed turbulent jet noise

    NASA Astrophysics Data System (ADS)

    Jeun, Jinah; Nichols, Joseph W.

    2015-11-01

    We apply input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with Mach numbers 0 . 6 jets, the optimal response closely resembles a wavepacket in both the nearfield and the farfield such as those obtained by the parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of suboptimal modes to noise generation are nearly equal to that of the optimal mode, explaining why PSE misses some of the farfield sound in this case. Finally, high-fidelity large eddy simulation (LES) is used to assess the prevalence of suboptimal modes in the unsteady data. By projecting LES data onto the corresponding input modes, the weighted gain of each mode is examined.

  16. In-vivo turbulent stresses of bileaflet prosthesis leakage jets.

    PubMed

    Travis, Brandon R; Christensen, Thomas D; Smerup, Morten; Olsen, Morten S; Hasenkam, J Michael; Nygaard, Hans

    2005-09-01

    Previous studies of leakage jet turbulence have been carried out in vitro, using a Newtonian fluid to simulate blood and large, rigid approximations to the chambers of the heart. The study aim was to apply an in-vivo method of quantifying leakage jet turbulence to a variety of bileaflet mechanical heart valves, and thereafter to determine the effects of exercise and valve design on turbulent shear stresses within leakage flow. Bileaflet prostheses sewn to a manual traversing device were implanted in the mitral position of 29 pigs of body weight ca. 90 kg. Pulsed Doppler ultrasound was used to acquire velocity measurements within the leakage jets detected 1 mm upstream of the housing. Analytical techniques were used to estimate peak velocities and maximum turbulent shear stresses from these velocity measurements. Maximum turbulent shear stress was found to rise with increasing ventricular pressure. No leakage turbulence was found from a valve with relatively small leakage gap widths. The Medtronic Parallel valve was found to have considerable significant leakage flow disturbance, even under low ventricular pressure conditions. Similar maximum turbulent shear stress magnitudes were estimated in the leakage jets of the St. Jude Medical, CarboMedics and Sorin Bicarbon valves at medium ventricular pressure conditions. The maximum turbulent shear stresses estimated in these experiments were lower than those found in previous in-vitro measurements. Exercise raises the turbulent shear stresses of leakage flow substantially. Hinge design and leakage gap width also affect the magnitudes of these stresses. Leakage flow turbulence may be less damaging to the blood than was previously thought, and is considerably less damaging than forward-flow turbulence.

  17. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  18. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  19. Large Eddy Simulation Of Gravitational Effects In Transitional And Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Jaberi, Farhad A.; Givi, Peyman

    2003-01-01

    The influence of gravity on the spatial and the compositional structures of transitional and turbulent hydrocarbon diffusion flames are studies via large eddy simulation (LES) and direct numerical simulation (DNS) of round and planar jets. The subgrid-scale (SGS) closures in LES are based on the filtered mass density function (FMDF) methodology. The FMDF represents the joint probability density function (PDF) of the SGS scalars, and is obtained by solving its transport equation. The fundamental advantage of LES/FMDF is that it accounts for the effects of chemical reaction and buoyancy exactly. The methodology is employed for capturing some of the fundamental influences of gravity in equilibrium flames via realistic chemical kinetic schemes. Some preliminary investigation of the gravity effects in non-equilibrium flames is also conducted, but with idealized chemical kinetics models.

  20. Isothermal and Reactive Turbulent Jets in Cross-Flow

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim; Bush, Scott; Ibrahim, Irene

    2004-11-01

    Jets in cross flow have numerous applications including vertical/short takeoff/landing (V/STOL) aircraft, cooling jets for gas turbine blades and combustion air supply inlets in gas turbine engine. The properties exhibited by these jets are dictated by complex three dimensional turbulence structures which form due to the interaction of the jet with the freestream. The isothermal tests are conducted in a wind tunnel measuring the characteristics of air jets injected perpendicular into an otherwise undisturbed air stream. Different nozzle exit geometries of the air jets were tested including circular, triangular and elongated configurations. Jets are injected in single and paired combinations with other jets to measure the effect of mutual interaction on the parameters mentioned. Quantitative velocity fields are obtained using PIV. The data obtained allows the extraction of flow parameters such as jet structure, penetration and mixing. The reacting tests include separate and combined jets of fuel/air mixture utilized to explore the stabilization of combustion at various operating conditions. Different geometrical configurations of transverse jets are tested to determine the shape and combination of jets that will optimize the jets ability to successfully stabilize a flame.

  1. Application of Wall-modeled LES to Turbulent Separated Flows

    NASA Astrophysics Data System (ADS)

    Iyer, Prahladh S.; Park, George I.; Malik, Mujeeb R.

    2016-11-01

    Resolved Large-Eddy Simulations (LES) and Direct Numerical Simulations (DNS) are unaffordable for very high Reynolds number (Re) wall-bounded flows. While the Reynolds Averaged Navier-Stokes (RANS) based methods predict high Re attached flows accurately with little cost, their fidelity is degraded significantly in flows involving separation. A popular compromise between cost and accuracy is to use a Wall-modeled LES (WMLES) approach. In WMLES, the outer portion of the boundary layer is resolved with LES while the inner portion is modeled. In order to assess the performance of the widely used wall-stress models in separated flows, we perform WMLES simulations using an unstructured, compressible finite volume LES solver. The equilibrium and non-equilibrium wall models that require the solution of the simplified/full RANS on a separate near-wall domain are employed. Two configurations are studied: the shock-induced separation in a transonic flow over an axisymmetric bump placed on a cylinder, and a low-Mach flow past a NACA 4412 airfoil at a near-stall condition. Detailed comparisons will be made with available experimental data to comment on the applicability of WMLES in predicting complex turbulent flows involving separation.

  2. Large Eddy Simulation of a Near Sonic Turbulent Jet and Its Radiated Noise

    NASA Technical Reports Server (NTRS)

    Constantinescu, G. S.; Lele, S. K.

    2001-01-01

    In this paper numerical simulations are used to calculate the turbulence dynamics simultaneously with the sound field for a high-speed near-sonic (Ma=0.9) compressible jet at two Reynolds numbers of 3,600 and 72,000. LES (Large Eddy Simulation) in conjunction with accurate numerical schemes is used to calculate the unsteady flow and sound in the near field of the jet. It is shown that the jet mean parameters, mean velocity fields and turbulence statistics are in good agreement with experimental data and results from other simulations. The sound in the near-field is calculated directly from the simulations. The calculations are shown to capture the peak in the dilatation and pressure spectra around a Strouhal number St=0.25-0.3, in agreement with typical jet-noise spectra measured in experiments. Dilatation contours in the near-field show the formation of acoustic waves with a dominant wavelength of 3.2-4 jet diameters, corresponding to the peak in the dilatation spectra. As expected, the non-compact noise sources are found to be most dominant in the region corresponding to the end of the potential core. The contribution of the LES model to the radiated noise appears to be weak and does not contaminate the sound field with spurious high-frequency noise. However, the frequency spectra of the sound show a rapid falloff away from the peak frequency. This is attributed to the quasi-laminar state of the shear-layers in the region prior to potential core closure, and a possible effect of insufficient azimuthal resolution at the observed location. Further analysis of the effect of the LES model, especially at high frequencies, is needed.

  3. Characteristics of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    Three dimensional turbulent jets in crossflow at low to medium jet-to-crossflow velocity ratios are computed with a finite volume numerical procedure which utilizes a second-moment closure model to approximate the Reynolds stresses. A multigrid method is used to accelerate the convergence rate of the procedure. Comparison of the computations to measured data show good qualitative agreement. All trends are correctly predicted, though there is some uncertainty on the height of penetration of the jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.

  4. Naturally occurring and forced azimuthal modes in a turbulent jet

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Naturally occurring instability modes in an axisymmetric jet are studied utilizing the modal frequency spectrum method. In the early evolution of the jet the axisymmetric mode was predominant, with the azimuthal modes growing quickly but dominating only after the end of the potential core. The growth of the azimuthal modes is seen nearer to the nozzle exit for the jet in the laminar boundary layer case than for the turbulent. Based on the results from these naturally occurring jet instability mode tests, target modes for efficient excitation were determined and two cases of excitation were examined.

  5. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  6. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size

  7. A Hybrid RANS/LES Approach for Predicting Jet Noise

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2006-01-01

    Hybrid acoustic prediction methods have an important advantage over the current Reynolds averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence. Unfortunately, they are unable to account for the high frequency sound generated by the turbulence in the initial mixing layers. This paper introduces an alternative approach that directly calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those used in current RANS based noise prediction methods to determine the unknown sources in the equations for the remaining unresolved components of the sound field. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid noise prediction methods.

  8. Mechanics of the turbulent-nonturbulent interface of a jet.

    PubMed

    Westerweel, J; Fukushima, C; Pedersen, J M; Hunt, J C R

    2005-10-21

    We report the results of an experimental investigation of the mechanics and transport processes at the bounding interface between the turbulent and nonturbulent regions of flow in a turbulent jet, which shows the existence of a finite jump in the tangential velocity at the interface. This is associated with small-scale eddying motion at the outward propagating interface (nibbling) by which irrotational fluid becomes turbulent, and this implies that large-scale engulfment is not the dominant entrainment process. Interpretation of the jump as a singular structure yields an essential and significant contribution to the mean shear in the jet mixing region. Finally, our observations provide a justification for Prandtl's original hypothesis of a constant eddy viscosity in the nonturbulent outer jet region.

  9. Modellingthe Turbulent Mixing Noise Associated with Coanda Jets

    NASA Astrophysics Data System (ADS)

    Smith, Caroline

    2004-11-01

    Turbulent Mixing Noise (TMN) is a primary high-frequency noise source in aeronautical and aerospace applications that utilize the Coanda effect, due to the enhanced turbulence levels and entrainment that devices employing this effect generally offer when compared with conventional jet flows. A theory, previously developed to predict the TMN emitted by unit volume of jet-type shear-layer turbulence close to a rigid plane, is extended to predict the aeroacoustic characteristics of a three-dimensional turbulent flow over a particular Coanda surface. The ability to accurately predict this significant source of high frequency acoustic radiation will allow investigation of modifications to basic Coanda devices, so that the benefits of such devices can be fully exploited, without this unfortunate side effect.

  10. Turbulent jet manipulation using two unsteady azimuthally separated radial minijets.

    PubMed

    Yang, H; Zhou, Y; So, R M C; Liu, Y

    2016-07-01

    The active manipulation of a turbulent round jet is experimentally investigated based on the injection of two radial unsteady minijets, prior to the issue of the main jet. The parametric study is conducted for the mass flow ratio Cm of the minijets to the main jet, and the ratio fe/f0 of the minijet frequency to the preferred-mode frequency of the main jet. It is found that the decay rate of the jet centreline mean velocity could be greatly increased if the two minijets are separated azimuthally by an angle θ=60°, instead of by θ=180°. This increase is a consequence of the flapping motion of the jet column, and the formation process and generation mechanism of this flapping motion are unveiled by careful analysis of the experimental data.

  11. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  12. Turbulent jet manipulation using two unsteady azimuthally separated radial minijets

    PubMed Central

    Zhou, Y.; So, R. M. C.; Liu, Y.

    2016-01-01

    The active manipulation of a turbulent round jet is experimentally investigated based on the injection of two radial unsteady minijets, prior to the issue of the main jet. The parametric study is conducted for the mass flow ratio Cm of the minijets to the main jet, and the ratio fe/f0 of the minijet frequency to the preferred-mode frequency of the main jet. It is found that the decay rate of the jet centreline mean velocity could be greatly increased if the two minijets are separated azimuthally by an angle θ=60°, instead of by θ=180°. This increase is a consequence of the flapping motion of the jet column, and the formation process and generation mechanism of this flapping motion are unveiled by careful analysis of the experimental data. PMID:27493582

  13. Turbulent Mixing in Exponential Transverse Jets

    DTIC Science & Technology

    1990-09-30

    1989 MIT; Seminar, April 7, 1989 University of Michigan; AFOSR Contractors Meeting, June 19-21, 1989 Rocketdyne Div.; Consulting Boeing Aerospace...which entrainment of the cros-flow tentially applicable to numerous free shear flow prob- fluid into the jet relies heavily on the ring vortices lems ...8217nonsteadiness’ is brought into the prob- injection region of a free jet, for example, engulfs both lem by introducing this jet into a cross-flow as illus- the

  14. The interaction of synthetic jets with turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Cui, Jing

    In recent years, a promising approach to the control of wall bounded as well as free shear flows, using synthetic jet (oscillatory jet with zero-net-mass-flux) actuators, has received a great deal of attention. A variety of impressive flow control results have been achieved experimentally by many researchers including the vectoring of conventional propulsive jets, modification of aerodynamic characteristics of bluff bodies, control of lift and drag of airfoils, reduction of skin-friction of a flat plate boundary layer, enhanced mixing in circular jets, and control of external as well as internal flow separation and of cavity oscillations. More recently, attempts have been made to numerically simulate some of these flowfields. Numerically several of the above mentioned flow fields have been simulated primarily by employing the Unsteady Reynolds-Averaged Navier Stokes (URANS) equations with a turbulence model and a limited few by Direct Numerical Simulation (DNS). In simulations, both the simplified boundary conditions at the exit of the jet as well as the details of the cavity and lip have been included. In this dissertation, I describe the results of simulations for several two- and three-dimensional flowfields dealing with the interaction of a synthetic jet with a turbulent boundary layer and control of separation. These simulations have been performed using the URANS equations in conjunction with either one- or a two-equation turbulence model. 2D simulations correspond to the experiments performed by Honohan at Georgia Tech. and 3D simulations correspond to the CFD validation test cases proposed in the NASA Langley Research Center Workshop---"CFD Validation of Synthetic Jets and Turbulent Separation Control" held at Williamsburg VA in March 2004. The sources of uncertainty due to grid resolution, time step, boundary conditions, turbulence modeling etc. have been examined during the computations. Extensive comparisons for various flow variables are made with the

  15. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  16. Strategies for comparing LES and experimental data of urban turbulence

    NASA Astrophysics Data System (ADS)

    Hertwig, D.; Nguyen van yen, R.; Patnaik, G.; Leitl, B.

    2012-12-01

    Unsteady flow within and above built environments is an important example of the complex nature of near-surface atmospheric turbulence. Typically, obstacle-resolving micro-scale meteorological models based on the Reynolds-averaged conservation equations are adopted to investigate and predict the mean-states of urban flow phenomena. The rapid advancements in computer capacities, however, fostered the use of time-resolved approaches like large-eddy simulation (LES) for applications on the urban micro-scale. LES has the potential to provide a realistic picture of the spatio-temporal behavior of turbulent flows within and above the urban canopy layer, which cannot be easily achieved with classic in-situ micro-meteorological measurements. The further success of eddy-resolving techniques, however, is coupled to the critical assessment of the model performance in terms of a rigorous validation against suitable reference data. This task is particularly challenging with regard to the time-dependent nature of the problem and the need to verify whether the model predicts turbulence structures in a realistic way. In this study, a hierarchy of validation strategies for urban LES flow fields is formulated and systematically applied. The test case is neutrally stratified turbulent flow in the inner city of Hamburg, Germany. The LES computations were conducted by the U.S. Naval Research Laboratory on the basis of a monotone integrated LES methodology. Reference experiments in terms of single-point, high resolution time-series measurements were carried out in the boundary-layer wind-tunnel facility at the University of Hamburg. The wind-tunnel model was built on a scale of 1:350 and included building structures with a full-scale spatial resolution of 0.5 m. Benchmark parameters for the congruent representation of atmospheric inflow conditions in the physical and the numerical model were obtained from long-term sonic anemometer measurements at a suburban meteorological field site

  17. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method

    PubMed Central

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-01-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, Mj=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These “VR tones” did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier–Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes. PMID:20815448

  18. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method.

    PubMed

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-09-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, M(j)=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These "VR tones" did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier-Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes.

  19. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  20. Splattering during turbulent liquid jet impingement on solid targets

    SciTech Connect

    Bhunia, S.K.; Lienhard, J.H. V . Dept. of Mechanical Engineering)

    1994-06-01

    In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, the authors present a more complete study of splattering and improved correlations that extend and supersede the previous reports on this topic. The authors report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8--5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exist. These experiments cover Weber numbers between 130--31,000, Reynolds numbers between 2,700--98,000, and nozzle-to-target separations of 0.2 [<=]l/d[<=]125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, the authors establish the range of applicability of the model of Lienhard et al. and the authors provide a more accurate set of coefficients for their correlation.

  1. Evolution of turbulent jets in low aspect ratio containers

    NASA Astrophysics Data System (ADS)

    Pol, S.; Nath, C.; Gest, D.; Voropayev, S.; Fernando, H. J. S.; Webb, S.

    2009-11-01

    The evolution of homogeneous and buoyant turbulent jets released into a low aspect ratio (width/height) container was investigated experimentally using PIV, MSCT probing and digital imaging. The motivation was to understand mixing process occurring in U.S. Strategic Petroleum Reserves (SPR), where crude oil is stored in salt caverns of low aspect ratio. During maintenance or filling, oil is introduced as a jet from the top of the caverns. This study is focussed on mean and turbulent flow characteristics as well as global flow instability and periodic oscillations intrinsic to jets in low aspect ratio containers. Scaling arguments were advanced for salient flow parameters, which included the characteristic length (container width D) and velocity (for homogeneous jets, J^1/2D, where J is the momentum flux at the jet exit) scales. For buoyant jets, the buoyancy flux B needs to be introduced as an additional parameter. Such jet flows do not reach a steady state, but bifurcate periodically with a frequency scale J^1/2/ D^2 while enhancing global mixing.

  2. Interaction between plasma synthetic jet and subsonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zong, Haohua; Kotsonis, Marios

    2017-04-01

    This paper experimentally investigates the interaction between a plasma synthetic jet (PSJ) and a subsonic turbulent boundary layer (TBL) using a hotwire anemometer and phase-locked particle imaging velocimetry. The PSJ is interacting with a fully developed turbulent boundary layer developing on the flat wall of a square wind tunnel section of 1.7 m length. The Reynolds number based on the freestream velocity (U∞ = 20 m/s) and the boundary layer thickness (δ99 = 34.5 mm) at the location of interaction is 44 400. A large-volume (1696 mm3) three-electrode plasma synthetic jet actuator (PSJA) with a round exit orifice (D = 2 mm) is adopted to produce high-speed (92 m/s) and short-duration (Tjet = 1 ms) pulsed jets. The exit velocity variation of the adopted PSJA in a crossflow is shown to remain almost identical to that in quiescent conditions. However, the flow structures emanating from the interaction between the PSJ and the TBL are significantly different from what were observed in quiescent conditions. In the midspan xy plane (z = 0 mm), the erupted jet body initially follows a wall-normal trajectory accompanied by the formation of a distinctive front vortex ring. After three convective time scales the jet bends to the crossflow, thus limiting the peak penetration depth to approximately 0.58δ99. Comparison of the normalized jet trajectories indicates that the penetration ability of the PSJ is less than steady jets with the same momentum flow velocity. Prior to the jet diminishing, a recirculation region is observed in the leeward side of the jet body, experiencing first an expansion and then a contraction in the area. In the cross-stream yz plane, the signature structure of jets in a crossflow, the counter-rotating vortex pair (CVP), transports high-momentum flow from the outer layer to the near-wall region, leading to a fuller velocity profile and a drop in the boundary layer shape factor (1.3 to 1.2). In contrast to steady jets, the CVP produced by the PSJ

  3. Reconnection, turbulence, and intermittency in coronal-hole jets

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim; DeVore, Richard; Roberts, Merrill; Karpen, Judith

    2017-04-01

    Extreme-ultraviolet and X-ray jets occur in magnetically open coronal holes on the Sun, especially at high solar latitudes. We have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model (Karpen et al., ApJ 2016). The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller-Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves generated by an untwisting magnetic field. These properties also reflect the overall collimated jet structure imposed by the geometry of the magnetic reconnection driving the jet. A comparison with Ulysses observations shows a quantitative agreement with turbulence in the fast solar wind.

  4. Mixing at the external boundary of a submerged turbulent jet

    NASA Astrophysics Data System (ADS)

    Eidelman, A.; Elperin, T.; Kleeorin, N.; Hazak, G.; Rogachevskii, I.; Sadot, O.; Sapir-Katiraie, I.

    2009-02-01

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use particle image velocimetry and an image processing technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in qualitative agreement with the obtained experimental results.

  5. The development of an axisymmetric curved turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Gregory-Smith, D. G.; Hawkins, M. J.

    1991-12-01

    An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.

  6. Numerical simulation of particle laden coaxial turbulent jet flows

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2010-11-01

    The study of coaxial turbulent particle laden jets has been of interest due to its importance in many applications such as industrial burners, and mixing devices. The addition of the second phase to the continuous phase jet can change the already complicated flow pattern and turbulent characteristics of the jets. Albeit the vast research efforts that have been devoted to understand such phenomena, demand for detailed investigation of particle laden flows remains an active area of research. The advent of laser diagnostics has helped to quantify the myriad details of the jet flow fields in more details. In parallel computational fluid dynamics (CFD) can provide additional information by further investigating such flows with an acceptable level of accuracy. In this work, numerical simulations results are presented for the flow and turbulent characteristics of a coaxial jet with and without the dispersed phase. The results are compared with the experimental data measured using Molecular Tagging Velocimetry diagnostic technique. The key objective of this work is to undermine the flow field details that are difficult if not impossible to measure.

  7. Mixing at the external boundary of a submerged turbulent jet.

    PubMed

    Eidelman, A; Elperin, T; Kleeorin, N; Hazak, G; Rogachevskii, I; Sadot, O; Sapir-Katiraie, I

    2009-02-01

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use particle image velocimetry and an image processing technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles, which are characterized by a large Schmidt number and a small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use two approaches, whereby one approach is based on the measured phase function for the study of the mixed state of two fluids. The other approach is based on the analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that probability density function of the phase function of a jet fluid penetrating into an external flow and the two-point second-order correlation function of the particle number density do not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in qualitative agreement with the obtained experimental results.

  8. Theoretical study of reactive and nonreactive turbulent coaxial jets

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Wakelyn, N. T.

    1976-01-01

    The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.

  9. Intermittency in non-homogeneous Wake and Jet Turbulence

    NASA Astrophysics Data System (ADS)

    Mahjoub, O. B.; Sekula, E.; Redondo, J. M.

    2010-05-01

    The scale to scale transfer and the structure functions are calculated and from these the intermittency parametres [1[3]. The estimates of turbulent diffusivity could also be measured. Some two point correlations and time lag calculations are used to investigate the local mixedness [4,5] and the temporal and spatial integral length scales obtained from both Lagrangian and Eulerian correlations and functions. We compare these results with both theoretical and experimental ones in the Laboratory with a wind tunnel at the wake of a grid or cillinder with and withoutand a near Wall. The a theoretical description of how to simulate intermittency following the model of Babiano et al. (1996) and the role of locality in higher order exponents is applied to the different flows. The information about turbulent jets is needed in several configurations providing basic information about the turbulent free jet, the circular jet and the turbulent wall jet. The experimental measurements of turbulent velocity is based on Acoustic Doppler Velocimeter measurements of the jet centerline and off centered radial positions in the tank at several distances from the wall. Spectral and structure function analysis are useful to determine the flow mixing ability using also flow visualization [6,7]. Results of experiments include the velocity distribution, entrainment angle of the jets, jet and wake average and fluctuating velocity, PDF's, Skewness and Kurthosis, velocity and vorticity standard deviation, boundary layers function and turbulence intensity . Different range of Wake and Jet flows show a maximum of turbulent intensity at a certain distance from the wall as it breaks the flow simmetry and adds large scale vorticity in the different experiments, these efects are also believed to occur in Geo-Astrophysical flows. [1] Babiano, A. (2002), On Particle dispersion processes in two-dimensional turbulence. In Turbulent mixing in geophysical flows. Eds. Linden P.F. and Redondo J.M., p. 2

  10. Nonlinear time series analysis and clustering for jet axis identification in vertical turbulent heated jets.

    PubMed

    Charakopoulos, A K; Karakasidis, T E; Papanicolaou, P N; Liakopoulos, A

    2014-03-01

    In the present work we approach the hydrodynamic problem of discriminating the state of the turbulent fluid region as a function of the distance from the axis of a turbulent jet axis. More specifically, we analyzed temperature fluctuations in vertical turbulent heated jets where temperature time series were recorded along a horizontal line through the jet axis. We employed data from different sets of experiments with various initial conditions out of circular and elliptical shaped nozzles in order to identify time series taken at the jet axis, and discriminate them from those taken near the boundary with ambient fluid using nonconventional hydrodynamics methods. For each temperature time series measured at a different distance from jet axis, we estimated mainly nonlinear measures such as mutual information combined with descriptive statistics measures, as well as some linear and nonlinear dynamic detectors such as Hurst exponent, detrended fluctuation analysis, and Hjorth parameters. The results obtained in all cases have shown that the proposed methodology allows us to distinguish the flow regime around the jet axis and identify the time series corresponding to the jet axis in agreement with the conventional statistical hydrodynamic method. Furthermore, in order to reject the null hypothesis that the time series originate from a stochastic process, we applied the surrogate data method.

  11. Numerical computations of turbulent flows; LES/SAS comparison

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel; Smith, Stefan Llewellyn

    2010-11-01

    In aerodynamics, the unsteady fluctuations of the flow field can have a significant influence on stalled flow characteristics, or on the forces acting on different parts of the aircraft. In non-aerodynamic flows, there is a multitude of mixing problems such as piston engines or turbine blade cooling where steady Reynolds-Averaged Navier-Stokes (RANS) solutions are not adequate. On the other hand the unsteady Reynolds-Averaged Navier-Stokes (URANS) has proven to be insufficient. This is due to the highly dissipative nature of standard URANS. The use of Large Eddy Simulation (LES) methods is often not practical, due to the requirement of very fine grid resolution near walls. Direct Numerical Simulations (DNS) compute the flow field without further simplifications. However, due to a wide range of length and time scales present in turbulent flows, the use of DNS is still limited to low-Reynolds-number flows and relatively simple geometries. To combine the advantages of a URANS with the higher resolution of a LES, hybrid methods such as Detached Eddy Simulation (DES) or Scale Adaptive Simulation (SAS) are preferred. The present research concerns the suitability of SAS for the computation of highly separated flows. The results show that SAS is a promising approach for the computation of massively separated flows.

  12. Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations

    NASA Astrophysics Data System (ADS)

    Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod

    2016-11-01

    Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.

  13. Evaluation of stochastic particle dispersion modeling in turbulent round jets

    DOE PAGES

    Sun, Guangyuan; Hewson, John C.; Lignell, David O.

    2016-11-02

    ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less

  14. Evaluation of stochastic particle dispersion modeling in turbulent round jets

    SciTech Connect

    Sun, Guangyuan; Hewson, John C.; Lignell, David O.

    2016-11-02

    ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzed to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.

  15. Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet.

    PubMed

    Taveira, Rodrigo R; Diogo, José S; Lopes, Diogo C; da Silva, Carlos B

    2013-10-01

    Lagrangian statistics from millions of particles are used to study the turbulent entrainment mechanism in a direct numerical simulation of a turbulent plane jet at Re(λ) ≈ 110. The particles (tracers) are initially seeded at the irrotational region of the jet near the turbulent shear layer and are followed as they are drawn into the turbulent region across the turbulent-nonturbulent interface (TNTI), allowing the study of the enstrophy buildup and thereby characterizing the turbulent entrainment mechanism in the jet. The use of Lagrangian statistics following fluid particles gives a more correct description of the entrainment mechanism than in previous works since the statistics in relation to the TNTI position involve data from the trajectories of the entraining fluid particles. The Lagrangian statistics for the particles show the existence of a velocity jump and a characteristic vorticity jump (with a thickness which is one order of magnitude greater than the Kolmogorov microscale), in agreement with previous results using Eulerian statistics. The particles initially acquire enstrophy by viscous diffusion and later by enstrophy production, which becomes "active" only deep inside the turbulent region. Both enstrophy diffusion and production near the TNTI differ substantially from inside the turbulent region. Only about 1% of all particles find their way into pockets of irrotational flow engulfed into the turbulent shear layer region, indicating that "engulfment" is not significant for the present flow, indirectly suggesting that the entrainment is largely due to "nibbling" small-scale mechanisms acting along the entire TNTI surface. Probability density functions of particle positions suggests that the particles spend more time crossing the region near the TNTI than traveling inside the turbulent region, consistent with the particles moving tangent to the interface around the time they cross it.

  16. Active separation control of high-Re turbulent separated flow over a wall-mounted hump using RANS, DES, and LES turbulence modeling approaches

    NASA Astrophysics Data System (ADS)

    Gan, Subhadeep

    -Averaged Navier-Stokes (RANS) equations-based turbulence models and three-dimensional time-dependent Detached Eddy Simulation (DES) and Large-Eddy Simulation (LES) methods. Multiple turbulence modeling approaches help to ascertain what models are most appropriate for capturing the physics of this complex separated flow. The various turbulence modeling cases are simulated with the same grid and solution methodology, and the turbulence models' equations are solved with the same numerical method. This ensures that the variances amongst the results obtained with different models are exclusively due to use of the different turbulence models, and indeed enable assessment of the performance of these models with respect to one another. The results will help us better decide what models to choose for flows with adverse pressure gradients, flow separation and control of separated flows. Validation work using Turbulent Couette flow demonstrates that, for LES, a fine enough grid is required throughout the computational domain and not just near the wall, to capture the turbulent flow structures and flow physics. For the flow over the wall-mounted hump, the simulation results agree well with experiment. Significant computational-resources savings was realized by using an analytical exit velocity profile for the active flow control jets, instead of simulating the entire flow-control manifold without sacrificing the quality of the work. Results compared with experimental values were surface pressure coefficient, skin friction coefficient, mean velocity profiles, Reynolds stresses and flow reattachment locations. Simulation results show some degree of variation with experimental results in the separated flow region. The steady-suction active control was able to reduce the reattachment length the most. The region of negative streamwise velocity was the smallest in the active flow control with steady suction. The multiple jets cases, with steady suction and synthetic jets, were able to reduce the

  17. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1992-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.

  18. Characterization of optical turbulence in a jet engine exhaust with Shack-Hartmenn wavefront sensor

    NASA Astrophysics Data System (ADS)

    Deron, R.; Mendez, F.

    2008-10-01

    Airborne laser countermeasure applications (DIRCM) are hampered by the turbulence of jet engine exhaust. The effects of this source of perturbation on optical propagation have still to be documented and analyzed in order to get a better insight into the different mechanisms of the plume perturbations and also to validate CFD/LES codes. For that purpose, wave front sensing has been used as a non-intrusive optical technique to provide unsteady and turbulent optical measurements through a plume of a jet engine installed at a fixed point on the ground. The experiment has been implemented in October 2007 along with other optical measuring techniques at Volvo Aero Corporation (Trollhättan, Sweden). This study is part of a European research programme dealing with DIRCM issues. The Shack- Hartmann (SH) wave front sensing technique was employed. It consisted of 64 x 64 lenslets coupled to a 1024x1024 pixel Dalsa CCD sensor working at a sampling rate of 40 Hz. A 15 ns pulsed laser synchronized with the SH sensor enabled "freezing" turbulence in each SH image. The ability of the technique to substract a reference permitted a simple calibration procedure to ensure accurate and reliable measurements despite vibration environment. Instantaneous phases are reconstructed using Fourier techniques so as to obtain a better spatial resolution against turbulent effects. Under any given plume condition, overall tilt aberration prevails. Phase power spectra derived from phase statistics are drawn according to the plume main axis and to normal axis. They compare favorably well to the decaying Kolmogorov power law on a useful high spatial frequency range. Averaged phases are also decomposed into Zernike polynomials to analyze optical mode behavior according to engine status and to plume abscissa. With overall tilt removed, turbulent DSP's amplitude drops by a factor of 30 to 40 and mean aberrations by a factor of 10 from an abscissa 1 meter to another 3.5 meters away from the engine

  19. On the extension of LES methods from incompressible to compressible turbulent flows with application to turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Pedro, J. B.; Báez Vidal, A.; Lehmkuhl, O.; Pérez Segarra, C. D.; Oliva, A.

    2016-09-01

    The objective of the present work is to validate the compressible Large-Eddy Simulation (LES) models implemented in the in house parallel unstructured CFD code TermoFluids. Our research team has implemented and tested several LES models over the past years for the incompressible regimen. In order to be able to solve complex turbulent compressible flows, the models are revisited and modified if necessary. In addition, the performance of the implemented hybrid advection scheme is an issue of interest for the numerical simulation of turbulent compressible flows. The models are tested in the well known turbulent channel flow problem at different compressible regimens.

  20. VARIABILITY IN ACTIVE GALACTIC NUCLEI FROM PROPAGATING TURBULENT RELATIVISTIC JETS

    SciTech Connect

    Pollack, Maxwell; Pauls, David; Wiita, Paul J.

    2016-03-20

    We use the Athena hydrodynamics code to model propagating two-dimensional relativistic jets as approximations to the growth of radio-loud active galactic nuclei for various input jet velocities and jet-to-ambient matter density ratios. Using results from these simulations we estimate the changing synchrotron emission by summing the fluxes from a vertical strip of zones behind the reconfinement shock, which is nearly stationary, and from which a substantial portion of the flux variability should arise. We explore a wide range of timescales by considering two light curves from each simulation; one uses a relativistic turbulence code with bulk velocities taken from our simulations as input, while the other uses the bulk velocity data to compute fluctuations caused by variations in the Doppler boosting due to changes in the direction and the speed of the flow through all zones in the strip. We then calculate power spectral densities (PSDs) from the light curves for both turbulent and bulk velocity origins for variability. The range of the power-law slopes of the PSDs for the turbulence induced variations is −1.8 to −2.3, while for the bulk velocity produced variations this range is −2.1 to −2.9; these are in agreement with most observations. When superimposed, these power spectra span a very large range in frequency (about five decades), with the turbulent fluctuations yielding most of the shorter timescale variations and the bulk flow changes dominating the longer periods.

  1. Evaluation of Liquid Fuel Spray Models for Hybrid RANS/LES and DLES Prediction of Turbulent Reactive Flows

    NASA Astrophysics Data System (ADS)

    Afshar, Ali

    An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.

  2. Variable density effects on the mixing of turbulent rectangular jets

    NASA Astrophysics Data System (ADS)

    Sarh, B.; Goekalp, I.

    Variable density turbulent rectangular jets are investigated theoretically and experimentally. The theoretical description capitalizes on Rodi (1978), but introduces a new definition for the effective channel width. The experimental results are obtained by LDA and fine-wires in strongly heated air jets issuing vertically from a long rectangular channel into still air. Both approaches indicate that axial decay rates of the mean velocity and temperature increase when the density ratio between the ambient medium and the jet is increased. The use of the effective channel width defined here allows the global density effect to be taken into account. The effect of keeping constant jet exit parameters when the density ratio is varied is also discussed.

  3. Controlled excitation of a cold turbulent swirling free jet

    NASA Technical Reports Server (NTRS)

    Taghavi, R.; Rice, E. J.; Farokhi, S.

    1987-01-01

    Experimental results from acoustic excitation of a cold free turbulent jet with and without swirl are presented. A flow with a swirl number of 0.35 (i.e., moderate swirl) is excited internally by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak rms amplitude, and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4. So far no change in the mean velocity components of the swirling jet is observed as a result of excitation.

  4. Controlled excitation of a cold turbulent swirling free jet

    NASA Technical Reports Server (NTRS)

    Taghavi, R.; Rice, E. J.; Farokhi, S.

    1988-01-01

    Experimental results from acoustic excitation of a cold free turbulent jet with and without swirl are presented. A flow with a swirl number of 0.35 (i.e., moderate swirl) is excited internally by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak rms amplitude, and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4. So far no change in the mean velocity components of the swirling jet is observed as a result of excitation.

  5. Mixing at the External Boundary of a Submerged Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Eidelman, A.; Elperin, T.; Kleeorin, N.; Hazak, G.; Rogachevskii, I.; Sadot, O.; Sapir-Katiraie, I.

    We study experimentally and theoretically mixing at the external boundary of a submerged turbulent jet. In the experimental study we use Particle Image Velocimetry and an Image Processing Technique based on the analysis of the intensity of the Mie scattering to determine the spatial distribution of tracer particles. An air jet is seeded with the incense smoke particles which are characterized by large Schmidt number and small Stokes number. We determine the spatial distributions of the jet fluid characterized by a high concentration of the particles and of the ambient fluid characterized by a low concentration of the tracer particles. In the data analysis we use an approach that is based on analysis of the two-point second-order correlation function of the particle number density fluctuations generated by tangling of the gradient of the mean particle number density by the turbulent velocity field. This gradient is formed at the external boundary of a submerged turbulent jet. We demonstrate that the two-point second-order correlation function of the particle number density does not have universal scaling and cannot be described by a power-law function. The theoretical predictions made in this study are in a qualitative agreement with the obtained experimental results.

  6. Turbulence measurements in a rectangular mesoscale confined impinging jets reactor

    NASA Astrophysics Data System (ADS)

    Somashekar, Vishwanath; Liu, Ying; Fox, Rodney O.; Olsen, Michael G.

    2012-12-01

    Mesoscale chemical reactors capable of operating in the turbulent flow regime, such as confined impinging jets reactors (CIJR), offer many advantages for rapid chemical processing at the microscale. One application where these reactors are used is flash nanoprecipitation, a method for producing functional nanoparticles. Because these reactors often operate in a flow regime just beyond transition to turbulence, modeling flows in these reactors can be problematic. Moreover, validation of computational fluid dynamics models requires detailed and accurate experimental data, the availability of which has been very limited for turbulent microscale flows. In this work, microscopic particle image velocimetry (microPIV) was performed in a mesoscale CIJR at inlet jet Reynolds numbers of 200, 1,000, and 1,500. Pointwise and spacial turbulence statistics were calculated from the microPIV data. The flow was observed to be laminar and steady in the entire reactor at a Reynolds number of 200. However, at jets Reynolds numbers of 1,000 and 1,500, instabilities as a result of the jets impinging along the centerline of the reactor lead to a highly turbulent impingement region. The peak magnitude of the normalized Reynolds normal and shear stresses within this region were approximately the same for the Reynolds numbers of 1,000 and 1,500. The Reynolds shear stress was found to exhibit a butterfly shape, consistent with a flow field dominated by an oblique rocking of the impingement zone about the center of the reactor. Finally, the spatial auto- and cross-correlations velocity fluctuations were calculated and analyzed to obtain an understanding of size of the coherent structures.

  7. Sooting turbulent jet flame: characterization and quantitative soot measurements

    NASA Astrophysics Data System (ADS)

    Köhler, M.; Geigle, K. P.; Meier, W.; Crosland, B. M.; Thomson, K. A.; Smallwood, G. J.

    2011-08-01

    Computational fluid dynamics (CFD) modelers require high-quality experimental data sets for validation of their numerical tools. Preferred features for numerical simulations of a sooting, turbulent test case flame are simplicity (no pilot flame), well-defined boundary conditions, and sufficient soot production. This paper proposes a non-premixed C2H4/air turbulent jet flame to fill this role and presents an extensive database for soot model validation. The sooting turbulent jet flame has a total visible flame length of approximately 400 mm and a fuel-jet Reynolds number of 10,000. The flame has a measured lift-off height of 26 mm which acts as a sensitive marker for CFD model validation, while this novel compiled experimental database of soot properties, temperature and velocity maps are useful for the validation of kinetic soot models and numerical flame simulations. Due to the relatively simple burner design which produces a flame with sufficient soot concentration while meeting modelers' needs with respect to boundary conditions and flame specifications as well as the present lack of a sooting "standard flame", this flame is suggested as a new reference turbulent sooting flame. The flame characterization presented here involved a variety of optical diagnostics including quantitative 2D laser-induced incandescence (2D-LII), shifted-vibrational coherent anti-Stokes Raman spectroscopy (SV-CARS), and particle image velocimetry (PIV). Producing an accurate and comprehensive characterization of a transient sooting flame was challenging and required optimization of these diagnostics. In this respect, we present the first simultaneous, instantaneous PIV, and LII measurements in a heavily sooting flame environment. Simultaneous soot and flow field measurements can provide new insights into the interaction between a turbulent vortex and flame chemistry, especially since soot structures in turbulent flames are known to be small and often treated in a statistical manner.

  8. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  9. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  10. PIV measurements of isothermal plane turbulent impinging jets at moderate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Khayrullina, A.; van Hooff, T.; Blocken, B.; van Heijst, G. J. F.

    2017-04-01

    This paper contains a detailed experimental analysis of an isothermal plane turbulent impinging jet (PTIJ) for two jet widths at moderate Reynolds numbers (7200-13,500) issued on a horizontal plane at fixed relative distances equal to 22.5 and 45 jet widths. The available literature on such flows is scarce. Previous studies on plane turbulent jets mainly focused on free jets, while most studies on impinging jets focused on the heat transfer between the jet and an impingement plane, disregarding jet development. The present study focuses on isothermal PTIJs at moderate Reynolds numbers characteristic of air curtains. Flow visualisations with fluorescent dye and 2D particle image velocimetry (PIV) measurements have been performed. A comparison is made with previous studies of isothermal free turbulent jets at moderate Reynolds numbers. Mean and instantaneous velocity and vorticity, turbulence intensity, and Reynolds shear stress are analysed. The jet issued from the nozzle with higher aspect ratio shows more intensive entrainment and a faster decay of the centreline velocity compared to the jet of lower aspect ratio for the same value of jet Reynolds number. The profiles of centreline and cross-jet velocity and turbulence intensity show that the PTIJs behave as a free plane turbulent jet until 70-75% of the total jet height. Alongside the information obtained on the jet dynamics, the data will be useful for the validation of numerical simulations.

  11. Microtearing turbulence limiting the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Jenko, F.; Told, D.; Görler, T.; Saarelma, S.

    2016-10-01

    The first nonlinear gyrokinetic turbulence simulations that quantitatively reproduce experimental transport levels in an H-mode pedestal are reported. In the JET-ILW (ITER-like wall) pedestal, the bulk of the transport in the steep gradient region is caused by the turbulence driven by the microtearing mode (MTM). Kinetic ballooning modes are found to be in a second-stability regime. With contributions from the neoclassical and electron temperature gradient driven transport, the MTM mechanism reproduces, quantitatively, the experimental power balance across most of the pedestal.

  12. Numerical study of nanoparticle formation in a free turbulent jet

    NASA Astrophysics Data System (ADS)

    Gilfanov, A. K.; Koch, W.; Zaripov, S. K.; Rybdylova, O. D.

    2016-11-01

    Di-ethyl-hexyl-sebacate (DEHS) aerosol nanoparticle formation in a free turbulent jet as a result of nucleation, condensation and coagulation is studied using fluid flow simulation and the method of moments under the assumption of lognormal particle size distribution. The case of high nucleation rates and the coagulation-controlled growth of particles is considered. The formed aerosol performance is jet is numerically investigated for the various nozzle diameters and two approximations of the saturation pressure dependence on the temperature. It is demonstrated that a higher polydispersity of the aerosol is obtained for smaller nozzle diameters.

  13. Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet.

    PubMed

    Westerweel, Jerry; Petracci, Alberto; Delfos, René; Hunt, Julian C R

    2011-02-28

    The turbulent/non-turbulent interface of a jet is characterized by sharp jumps ('discontinuities') in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re=2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.

  14. Turbulent Flow Physics and Noise in High Reynolds Number Compressible Jets

    NASA Astrophysics Data System (ADS)

    Glauser, Mark

    2016-11-01

    In this talk I will present a snapshot of our ongoing research in high Reynolds number turbulent compressible jets. The high speed axisymmetric jet work (Mach 0.6 - 1.1) has been jointly performed with Spectral Energies LLC through AFRL support and involves 10 kHz and large window PIV data extracted from the near field jet plume, simultaneously sampled with near field pressure and far field noise. We have learned from the simultaneously sampled 10 kHz PIV near field plume and far field noise data, using POD/OID and Wavelet filtering, that there are certain "loud" velocity modes that have low averaged turbulent kinetic energy content but strongly correlate with the far field noise. From the large window PIV data obtained at Mach 1.0 and 1.1, specific POD modes were found to contain important physics of the problem. For example, the large-scale structure of the jet, shock-related fluctuations, and turbulent mixing regions of the flow were isolated through POD. By computing cross correlations, particular POD modes were found to be related to particular noise spectra. I will conclude with a description of our complex nozzle work which uses the multi-stream supersonic single expansion rectangular nozzle (SERN) recently installed in our large anechoic chamber at SU. This work is funded from both AFOSR (joint with OSU with a primary focus on flow physics) and Spectral Energies LLC (via AFRL funds with a focus on noise). Particular emphasis will be on insight gained into this complex 3D flow field (and its relationship to the far field noise) from applications of POD, Wavelet filtering and DMD to various numerical (LES) and experimental (PIV, high speed schlieren, near and far field pressure) data sets, at a core nozzle Mach number of 1.6 and a second stream Mach number of 1.0.

  15. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  16. Numerical investigation of turbulent mixing in a jet bubble column

    SciTech Connect

    Mitra-Majumdar, D.; Farouk, B.; Shah, Y.T.

    1993-12-31

    Mixing behavior of multiphase turbulent flow in a jet bubble column is studied numerically. For the two-phase flow, air and water are used. The solids and liquid are assumed to form a pseudohomogeneous slurry phase, in the three-phase studies. The time evolution of the mixing behavior of a liquid tracer is considered in turbulent flow within a jet bubble column. Some of the predictions of the numerical model, for the two-phase flow, are compared with experimental measurements. Measured Residence Time Distributions (RTD) of the liquid tracer within the cone agree well with the predicted values given by the numerical model. For the range of parameters considered in the study, lack of radial mixing is evident within the column which axial mixing is found to be large. Lack of mixing is observed near the walls of the column. Three phase flow study is under investigation.

  17. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct numerical simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial.helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moser are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  18. The effects of turbulence on nanoparticle growth in turbulent reacting jets

    NASA Astrophysics Data System (ADS)

    Das, Shankhadeep; Garrick, Sean C.

    2010-10-01

    The effects of turbulence on nanoparticle growth in turbulent reacting flows are studied via a priori analysis of direct numerical simulation data. The formation and growth of titanium dioxide nanoparticles in incompressible planar jets are simulated via gas-phase hydrolysis of titanium tetrachloride. The particle field is captured by utilizing a nodal approach which accounts for nucleation, condensation, and Brownian coagulation. Simulations are performed at a single Reynolds number and two different precursor concentration levels. Instantaneous, filtered, and averaged data are presented to convey the nature of turbulent or unresolved contributions to the growth of nanoparticles. The effects of turbulence on particle dynamics, in the context of both Reynolds-averaged Navier-Stokes simulation and large-eddy simulation, are assessed by comparing the exact, turbulent, and subgrid-scale growth rates. The results show that large particles are produced in the regions away from the jet core, and an increase in the precursor concentration level increases the particle mean diameter. Particles grow faster when the precursor concentration is increased. It is further observed that the growth rate of the particles is higher inside the eddies and it increases as the jet grows. Additionally, the results show that the unresolved small-scale fluctuations can both augment and inhibit particle growth. However the predominant effect is to reduce particle growth. This tendency is increased (in magnitude) as the precursor concentration level is increased.

  19. Dynamics of turbulent jets in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Bernstein, Joseph Jinmoon

    Quasi-zonal jets exist in both the mid-latitude atmosphere and ocean. These jets support a high eddy variance constituting a state of geostrophic turbulence. In addition to the turbulence, there is low frequency variability (LFV) which is not periodic. In the ocean it manifests as the zonal growth and collapse of the jet with a decadal timescale. In the atmosphere large meridional velocities occur producing blocking patterns which frequently persist for weeks. This work advances the idea that the mechanism for the origin of the LFV in both the atmosphere and ocean is eddy/mean flow interactions. In order to analyze these interactions the method of Stochastic Structural Stability Theory (SSST) is used. In the implementation of SSST used in this work the flow equations are split into separate sets governing the fast and slow timescale and a stochastic turbulence model is used to parameterize the nonlinear eddy-eddy interactions in the fast variable equation set. The slow equation is then forced by turbulent fluxes coupling the two together. SSST results in a set of nonlinear deterministic equations describing the interaction between the eddies and mean flow. In the oceanic literature there are two opposing theories concerning the origin of LFV. One claims that turbulent eddy/mean flow interactions cause LFV while the other claims a homoclinic bifurcation of the laminar flow is the origin. Our calculations show that the LFV is produced by a homoclinic bifurcation arising from eddy mean flow interactions providing a framework in which both theories have a role. In the mid-latitude atmosphere the spatial structure of LFV is explained by SSST, but temporally irregular behavior is not found for realistic parameter ranges. However, if assumptions used in the derivation of SSST are relaxed then stochastic fluctuations arise. It is shown that these fluctuations are capable of reproducing the temporal variability of blocking seen in the atmosphere.

  20. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.

  1. Two-point coherence of wave packets in turbulent jets

    NASA Astrophysics Data System (ADS)

    Jaunet, V.; Jordan, P.; Cavalieri, A. V. G.

    2017-02-01

    An experiment has been performed in order to provide support for wave-packet jet-noise modeling efforts. Recent work has shown that the nonlinear effects responsible for the two-point coherence of wave packets must be correctly accounted for if accurate sound prediction is to be achieved for subsonic turbulent jets. We therefore consider the same Mach 0.4 turbulent jet studied by Cavalieri et al. [Cavalieri et al., J. Fluid Mech. 730, 559 (2013), 10.1017/jfm.2013.346], but this time using two independent but synchronized, time-resolved stereo particle-image velocimetry systems. Each system can be moved independently, allowing simultaneous measurement of velocity in two, axially separated, crossflow planes, enabling eduction of the two-point coherence of wave packets. This and the associated length scales and phase speeds are studied and compared with those of the energy-containing turbulent eddies. The study illustrates how the two-point behavior of wave packets is fundamentally different from that of the more usually studied bulk two-point behavior, suggesting that sound-source modeling efforts should be reconsidered in the framework of wave packets. The study furthermore identifies two families of two-point-coherence behavior, respectively upstream and downstream of the end of the potential core, regions where linear theory is, respectively, successful and unsuccessful in predicting the axial evolution of wave-packets fluctuation energy.

  2. Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.

    2005-01-01

    This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.

  3. Mass Entrainment Rate of an Ideal Momentum Turbulent Round Jet

    NASA Astrophysics Data System (ADS)

    Medrano, Fermín Franco; Fukumoto, Yasuhide; Marika Velte, Clara; Hodžić, Azur

    2017-03-01

    We propose a two-phase-fluid model for a full-cone turbulent round jet that describes its dynamics in a simple but comprehensive manner with only the apex angle of the cone being a disposable parameter. The basic assumptions are that (i) the jet is statistically stationary and that (ii) it can be approximated by a mixture of two fluids with their phases in dynamic equilibrium. To derive the model, we impose conservation of the initial volume and total momentum fluxes. Our model equations admit analytical solutions for the composite density and velocity of the two-phase fluid, both as functions of the distance from the nozzle, from which the dynamic pressure and the mass entrainment rate are calculated. Assuming a far-field approximation, we theoretically derive a constant entrainment rate coefficient solely in terms of the cone angle. Moreover, we carry out experiments for a single-phase turbulent air jet and show that the predictions of our model compare well with this and other experimental data of atomizing liquid jets.

  4. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  5. The statistical nature of turbulent barotropic ocean jets

    NASA Astrophysics Data System (ADS)

    David, Tomos W.; Marshall, David P.; Zanna, Laure

    2017-05-01

    Jets are an important element of the global ocean circulation. Since these jets are turbulent, it is important that they are characterized using a statistical framework. A high resolution barotropic channel ocean model is used to study jet statistics over a wide range of forcing and dissipation parameters. The first four moments of the potential vorticity distribution on contours of time-averaged streamfunction are considered: mean, standard deviation, skewness and kurtosis. A self-similar response to forcing is found in the mean and standard deviation for eastward barotropic jets which exhibit strong mixing barriers; this self-similarity is related to the global potential enstrophy of the flow. The skewness and kurtosis give a behaviour which is characteristic of mixing barriers, revealing a bi/trimodal statistical distribution of potential vorticity with homogenized potential vorticity on each side of the barrier. The mixing barrier can be described by a simple statistical model. This behaviour is shown to be lost in westward jets due to an asymmetry in the formation of zonal mixing barriers. Moreover, when the statistical analysis is performed on eastward jets in a streamfunction following frame of reference, the distribution becomes monomodal. In this way we can distinguish between the statistics due to wave-like meandering of the jet and the statistics due to the more diffusive eddies. The statistical signature of mixing barriers can be seen in more realistic representations of the Southern Ocean and is shown to be an useful diagnostic tool for identifying strong jets on isopycnal surfaces. The statistical consequences of the presence, and absence, of mixing barriers are likely to be valuable for the development of stochastic representations of eddies and their dynamics in ocean models.

  6. Two-step simulation of velocity and passive scalar mixing at high Schmidt number in turbulent jets

    NASA Astrophysics Data System (ADS)

    Rah, K. Jeff; Blanquart, Guillaume

    2016-11-01

    Simulation of passive scalar in the high Schmidt number turbulent mixing process requires higher computational cost than that of velocity fields, because the scalar is associated with smaller length scales than velocity. Thus, full simulation of both velocity and passive scalar with high Sc for a practical configuration is difficult to perform. In this work, a new approach to simulate velocity and passive scalar mixing at high Sc is suggested to reduce the computational cost. First, the velocity fields are resolved by Large Eddy Simulation (LES). Then, by extracting the velocity information from LES, the scalar inside a moving fluid blob is simulated by Direct Numerical Simulation (DNS). This two-step simulation method is applied to a turbulent jet and provides a new way to examine a scalar mixing process in a practical application with smaller computational cost. NSF, Samsung Scholarship.

  7. Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects

    NASA Astrophysics Data System (ADS)

    Silva, Tiago S.; B. da Silva, Carlos; Idmec Team

    2016-11-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 <= Reλ <= 246 , and Schmidt numbers from 0 . 07 <= Sc <= 7 . The steepness of the scalar gradient, as observed from conditional profiles near the TNTI, increases with the Schmidt number. Conditional scalar gradient budgets show that for low and moderate Schmidt numbers a diffusive superlayer emerges at the TNTI, where the scalar gradient diffusion dominates, while the production is negligible. For low Schmidt numbers the growth of the turbulent front is commanded by the molecular diffusion, whereas the scalar gradient convection is negligible. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.

  8. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow.

    PubMed

    Shetty, Dinesh A; Frankel, Steven H

    2013-09-20

    The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed.

  9. Assessment of stretched vortex subgrid-scale models for LES of incompressible inhomogeneous turbulent flow

    PubMed Central

    Shetty, Dinesh A.; Frankel, Steven H.

    2013-01-01

    Summary The physical space version of the stretched vortex subgrid scale model [Phys. Fluids 12, 1810 (2000)] is tested in large eddy simulations (LES) of the turbulent lid driven cubic cavity flow. LES is carried out using a higher order finite-difference method [J. Comput. Phys. 229, 8802 (2010)]. The effects of different vortex orientation models and subgrid turbulence spectrums are assessed through comparisons of the LES predictions against direct numerical simulations (DNS) [Phys. Fluids 12, 1363 (2000)]. Three Reynolds numbers 12000, 18000, and 22000 are studied. Good agreement with the DNS data for the mean and fluctuating quantities is observed. PMID:24187423

  10. The behaviour of the scalar gradient across the turbulent/non-turbulent interface in jets

    NASA Astrophysics Data System (ADS)

    Silva, Tiago S.; da Silva, Carlos B.

    2017-08-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface is analysed through direct numerical simulations of turbulent planar jets, with Reynolds numbers ranging from 142 ≤R eλ≤246 , and Schmidt numbers from 0.07 ≤S c ≤7.0 . A scalar-gradient turbulent/non-turbulent interface (SG-TNTI) forms at the outer edge of the jet, which does not coincide with the vorticity turbulent/non-turbulent interface (VO-TNTI) for the lower Schmidt number cases (Sc = 0.07 and 0.7). Specifically, for Sc = 0.07 and 0.7, the scalar gradient maxima, and thus the bulk of the mixing takes place in the irrotational region, between 10 and 30 Kolmogorov micro-scale distances from the start of the VO-TNTI. For these moderate Schmidt number cases, the SG-TNTI exhibits an irrotational-diffusive superlayer, where the scalar gradient diffusion dominates, while the production is negligible, followed by an irrotational-straining sublayer where the scalar gradient production dominates. In contrast for Sc = 7.0, the SG-TNTI consists of a v iscous-conv ective superlayer that closely matches the viscous superlayer from the VO-TNTI and an inertial-convective sublayer, where scalar gradient production dominates, which is much smaller than the turbulent sublayer of the VO-TNTI. The scaling laws and mean thicknesses of each one of these (sub)layers are briefly discussed. This work presents a systematic study of the effects of the Schmidt number on the scalar gradient evolution and of the SG-TNTI characteristics.

  11. Probing acceleration and turbulence at relativistic shocks in blazar jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.

    2017-02-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broad-band continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-Large Area Telescope spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.

  12. On the Two Components of Turbulent Mixing Noise from Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Golebiowski, Michel; Seiner, J. M.

    1996-01-01

    It is argued that because of the lack of intrinsic length and time scales in the core part of the jet flow, the radiated noise spectrum of a high-speed jet should exhibit similarity. A careful analysis of all the axisymmetric supersonic jet noise spectra in the data-bank of the Jet Noise Laboratory of the NASA Langley Research Center has been carried out. Two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the noise from the fine-scale turbulence, are identified. The two similarity spectra appear to be universal spectra for axisymmetric jets. They fit all the measured data including those from subsonic jets. Experimental evidence are presented showing that regardless of whether a jet is supersonic or subsonic the noise characteristics and generation mechanisms are the same. There is large turbulence structures/instability waves noise from subsonic jets. This noise component can be seen prominently inside the cone of silence of the fine-scale turbulence noise near the jet axis. For imperfectly expanded supersonic jets, a shock cell structure is formed inside the jet plume. Measured spectra are provided to demonstrate that the presence of a shock cell structure has little effect on the radiated turbulent mixing noise. The shape of the noise spectrum as well as the noise intensity remain practically the same as those of a fully expanded jet. However, for jets undergoing strong screeching, there is broadband noise amplification for both turbulent mixing noise components. It is discovered through a pilot study of the noise spectrum of rectangular and elliptic supersonic jets that the turbulent mixing noise of these jets is also made up of the same two noise components found in axisymmetric jets. The spectrum of each individual noise component also fits the corresponding similarity spectrum of axisymmetric jets.

  13. Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models

    NASA Astrophysics Data System (ADS)

    Degrazia, G. A.; Rizza, U.; Puhales, F. S.; Welter, G. S.; Acevedo, O. C.; Maldaner, S.

    2012-02-01

    A turbulent subfilter viscosity for Large Eddy Simulation (LES) based on the Taylor statistical diffusion theory is proposed. This viscosity is described in terms of a velocity variance and a time scale, both associated to the inertial subrange. This new subfilter viscosity contains a cutoff wavenumber kc, presenting an identical form (differing by a constant) to the Heisenberg subfilter viscosity. Therefore, both subfilter viscosities are described in terms of a sharp division between large and small wavenumbers of a turbulent flow and, henceforth, Taylor and Heisenberg subfilter viscosities are in agreement with the sharp Fourier filtering operation, frequently employed in LES models. Turbulent statistics of different orders, generated from atmospheric boundary layer simulations employing both Taylor and Heisenberg subfilter viscosities have been compared with observations and results provided by other simulations. The comparison shows that the LES model utilizing the approaches of Taylor and Heisenberg reproduces these turbulent statistics correctly in different vertical regions of a planetary convective boundary layer (CBL).

  14. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  15. Oscillations of a Turbulent Jet Incident Upon an Edge

    SciTech Connect

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  16. Experiments on confined turbulent jets in cross flow. [longitudinal and transverse distributions of velocity and temperature for jet flow

    NASA Technical Reports Server (NTRS)

    Kamotani, Y.; Greber, I.

    1974-01-01

    Results are reported of experiments on the effects of an opposite wall on the characteristics of turbulent jets injected into a cross flow, for unheated and heated jets. Longitudinal and transverse distributions of velocity and temperature are presented for single and multiple circular jets, and trajectories are presented for two-dimensional jets. The opposite wall has relatively little effect on a single jet unless the ratio of jet to cross flow momentum flux is large enough for the jet to impinge on the opposite wall. For a row of jets aligned perpendicularly to the cross flow, the opposite wall exerts progressively larger influence as the spacing between jets decreases. Much of the effect of jet and wall proximity can be understood by considering the interaction of the vortex flow which is the major feature of the structure of a single jet in a cross flow. Smoke photographs are shown to elucidate some of the interaction patterns.

  17. Transition to turbulence and noise radiation in heated coaxial jet flows

    SciTech Connect

    Gloor, Michael Bühler, Stefan; Kleiser, Leonhard

    2016-04-15

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35{sup ∘}. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for r{sub mic} > 40R{sub 1}, where r{sub mic} is the distance from the end of the potential core and R{sub 1} is the core-jet radius, a perfect 1/r{sub mic} decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  18. Transition to turbulence and noise radiation in heated coaxial jet flows

    NASA Astrophysics Data System (ADS)

    Gloor, Michael; Bühler, Stefan; Kleiser, Leonhard

    2016-04-01

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35∘. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for rmic > 40R1, where rmic is the distance from the end of the potential core and R1 is the core-jet radius, a perfect 1/rmic decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  19. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  20. Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

  1. Surface Properties of Turbulent Liquid Jets in Still Air

    NASA Astrophysics Data System (ADS)

    Sallam, Khaled; Faeth, Gerard

    2001-11-01

    The mechanisms of creating drops from ligaments along the free surface of turbulent round and plane liquid jets in gases during turbulent primary breakup were investigated experimentally using pulsed holography. Jet exit conditions were limited to non-cavitating water and ethanol flows and long length-to-diameter ratio constant area injector passages at conditions where direct effects of liquid viscosity were small. Measurements involved drop/ligament diameter ratio, ligament angle, ligament slenderness ratio at the time of breakup, ligament breakup time and ligament tip velocity. The results show that the main mode of ligament breakup is Rayleigh breakup with the initial disturbance amplitude comparable to the ligament size and with drops forming at the tip of the ligament. A less common mode of drop formation involved ligament separation at its base due to velocity fluctuations. Ligament velocities were enhanced compared to the expectations of velocity fluctuations in turbulent pipe flows due to the smaller inertial resistance of the gas compared to the liquid.

  2. Qualitative dynamics of wave packets in turbulent jets

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Lusseyran, François; Pastur, Luc; Jordan, Peter

    2017-09-01

    We analyze the temporal dynamics associated with axisymmetric coherent structures in a turbulent jet. It has long been established that turbulent jets comprise large-scale coherent structures, now more commonly referred to as "wave packets" [Jordan and Colonius, Annu. Rev. Fluid Mech. 45, 173 (2013), 10.1146/annurev-fluid-011212-140756]. These structures exhibit a marked spatiotemporal organization, despite turbulence, and we aim to characterize their temporal dynamics by means of nonlinear statistical tools. The analysis is based on data presented Breakey et al., in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2083 (AIAA, Reston, VA, 2013), where time series of the wave-packet signatures are extracted at different streamwise locations. The experiment runs at Ma=0.6 and Re=5.7 ×105 . A thorough analysis is performed. Statistical tools are used to estimate the embedding and correlation dimensions that characterize the dynamical system. Input-output transfer functions are designed as control-oriented models; and for this special case, consistent with other recent studies, we find that linear models can reproduce much of the convective input-ouput behavior. Finally, we show how surrogate models can partially reproduce the nonlinear dynamics.

  3. Characteristics Of Turbulent Nonpremixed Jet-Flames And Jet-Flames In Crossflow In Normal- And Low-Gravity

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Boxx, I. G.; Idicheria, C. A.

    2003-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. For example, previous studies have shown that transitional and turbulent jet flames exhibit flame lengths that are as much as a factor of two longer in microgravity than in normal gravity. The objective of this study is to extend these previous studies by investigating both mean and fluctuating characteristics of turbulent nonpremixed jet flames under three different gravity levels (1 g, 20 mg and 100 micrograms). This work is described in more detail elsewhere. In addition, we have recently initiated a new study into the effects of buoyancy on turbulent nonpremixed jet flames in cross-flow (JFICF). Buoyancy has been observed to play a key role in determining the centerline trajectories of such flames.6 The objective of this study is to use the low gravity environment to study the effects of buoyancy on the turbulent characteristics of JFICF.

  4. Effects of nucleating species on soot formation in turbulent non-premixed sooting jet flames

    NASA Astrophysics Data System (ADS)

    Jain, Abhishek; Xuan, Yuan

    2016-11-01

    Soot nucleation is one of the most unknown processes in the soot life cycle, and it is believed to occur from Polycyclic Aromatic Hydrocarbons (PAH) generated from the combustion of various fuel sources under locally fuel-rich conditions. Current soot nucleation models may include as few as one (typically naphthalene) or as many as a dozen of nucleating species. In this study, the effects of PAH inclusion in the soot nucleation model on soot yield and distribution are studied by means of Large-Eddy Simulations (LES) of two piloted turbulent non-premixed sooting jet flames, using ethylene and a jet fuel surrogate, respectively. Two sets of simulations are performed for each flame, one considering only a single nucleating PAH (naphthalene) and the other one considering a range of nucleating PAH from naphthalene to cyclopenta[cd]pyrene. Flamelet-based chemistry tabulation is used for the major thermochemical quantities, and a recently developed relaxation model is used for PAH species to account for the interactions between turbulence and their chemistry. The effects of nucleating PAH species on soot are highlighted by comparing the mean soot volume fraction distributions and statistical characteristics of soot obtained from both sets of simulations against experimental measurements. Graduate Student, MNE.

  5. Development of a methodology for LES of Turbulent Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, Aswin

    The objective of this dissertation is to develop a numerical methodology for large eddy simulation of multiphase cavitating flows on unstructured grids and apply it to study two cavitating flow problems. The multiphase medium is represented using a homogeneous mixture model that assumes thermal equilibrium between the liquid and vapor phases. We develop a predictor-corrector approach to solve the governing Navier Stokes equations for the liquid/vapor mixture, together with the transport equation for the vapor mass fraction. While a non-dissipative and symmetric scheme is used in the predictor step, a novel characteristic-based filtering scheme with a second order TVD filter is developed for the corrector step to handle shocks and material discontinuities in non-ideal gases and mixtures. Additionally, a sensor based on vapor volume fraction is proposed to localize dissipation to the vicinity of discontinuities. The scheme is first validated for one dimensional canonical problems to verify its accuracy in predicting jump conditions across material discontinuities and shocks. It is then applied to two turbulent cavitating flow problems - over a hydrofoil and over a wedge. Our results show that the simulations are in good agreement with experimental data for the above tested cases, and that the scheme can be successfully applied to RANS, LES and DNS methodologies. We first study cavitation over a circular cylinder at two different Reynolds numbers (Re = 200 and 3900 based on cylinder diameter and free stream velocity) and four different cavitation numbers (sigma = 2.0, 1.0, 0.7 and 0.5). Large Eddy Simulation (LES) is employed at the higher Reynolds number and Direct Numerical Simulations (DNS) at the lower Reynolds number. The unsteady characteristics of the flow are found to be altered significantly by cavitation. It is observed that the simulated cases fall into two different cavitation regimes: cyclic and transitional. Cavitation is seen to significantly influence

  6. Measurements of the flow and turbulence characteristics of round jets in crossflow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.; Pletcher, R. H.

    1989-06-01

    Measurements of the velocity and turbulence characteristics of a round turbulent jet in crossflow are reported. The experiments were conducted in a water channel, 8.53 m long, 0.61 m wide, and 1.067 m deep, of the recirculation type. Water was injected vertically upward from a circular pipe located near the channel bottom to simulate the turbulent jet. Normal and 45 deg-slanted fiber-film probes along with appropriate anemometers and bridges were operated in the constant temperature mode to measure mean velocities, turbulence intensities, Reynolds stresses, structural parameters, correlation coefficients, and the turbulent kinetic energy. The measurements were carried out in the jet and its wake both in and outside the jet plane of symmetry. Details of the jet-wake cross section (including the vortex region) were revealed at a number of downstream locations using constant velocity and turbulence intensity contours.

  7. DNS of a turbulent lifted DME jet flame

    SciTech Connect

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatial locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.

  8. DNS of a turbulent lifted DME jet flame

    SciTech Connect

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatial locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.

  9. DNS of a turbulent lifted DME jet flame

    DOE PAGES

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  10. An analysis of turbulent diffusion flame in axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Chung, P. M.; Im, K. H.

    1980-01-01

    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed.

  11. An analysis of turbulent diffusion flame in axismmetric jet

    NASA Astrophysics Data System (ADS)

    Chung, P. M.; Im, K. H.

    1980-04-01

    The kinetic theory of turbulent flow was employed to study the mixing limited combustion of hydrogen in axisymmetric jets. The integro-differential equations in two spatial and three velocity coordinates describing the combustion were reduced to a set of hyperbolic partial differential equations in the two spatial coordinates by a binodal approximation. The MacCormick's finite difference method was then employed for solution. The flame length was longer than that predicted by the flame-sheet analysis, and was found to be in general agreement with a recent experimental result. Increase of the turbulence energy and scale resulted in an enhancement of the combustion rate and, hence, in a shorter flame length. Details of the numerical method as well as of the physical findings are discussed.

  12. Cinema particle image velocimetry investigation of turbulent jet flame stabilization

    NASA Astrophysics Data System (ADS)

    Upatnieks, Ansis

    A new cinema PIV system was developed and used to study the physical phenomena of non-premixed turbulent jet flame stabilization. The system offers an unprecedented combination of image acquisition rate (8000/s), sequence length (4000) and resolution (equivalent to 1K x 1.5K pixels) that provides finely resolved yet extraordinarily lengthy time histories of the evolution of velocity fields in laboratory-scale gas-phase turbulent flows. These measurements provide quantitative information concerning the dynamics of turbulence and combustion that is not available from conventional experimental techniques or computational simulations. For example, time histories of the interaction between turbulent vortex structures and the flame thermal boundary are observed. Gas and flame velocities are obtained simultaneously, yielding direct measurements of flame propagation velocities. The gas and flame velocities are highly correlated, suggesting strong interaction between the velocity field and the flame. The gas and propagation velocities at the flame base remain close to premixed laminar burning velocities (SL), which are three to four times smaller than the velocities in corresponding non-reacting cases. Strong reverse flow is observed upstream of the flame base, suggesting that the velocity reduction is caused by heat release-induced dilatation. These observations suggest that the dilatation velocity field plays a dominant role in stabilization by reducing incident gas velocities to levels at which laminar premixed, triple, or edge flames can be sustained.

  13. Numerical Simulation of Turbulent Jets with Rectangular Cross-Section

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional turbulent jets with rectangular cross-section are simulated with a finite-difference numerical method. The full Navier-Stokes equations are solved at low Reynolds numbers, whereas at the high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporal discretization and a fourth-order compact scheme is used for spatial discretization. Computations are performed for different inlet conditions which represent different types of jet forcing. The phenomenon of axis-switching is observed, and it is confirmed that this is based on self-induction of the vorticity field. Budgets of the mean streamwise velocity show that convection is balanced by gradients of the Reynolds stresses and the pressure.

  14. Interaction of a circular turbulent jet with a flat target

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.

    2007-01-01

    Large eddy simulations are performed for an unsteady flow and heat transfer in the region of interaction of a circular turbulent jet with a normally positioned flat obstacle (target). Space-filtered Navier-Stokes equations are closed by the RNG model of eddy viscosity, which takes into account the curvature of streamlines in the region of flow turning. The computations are performed for different dimensionless distances between the nozzle exit and the target and for different Reynolds numbers. The dependence between the Nusselt number distribution over the target surface and the vortex structure of the jet is analyzed. The local and integral characteristics of the flow are compared with the data of a physical experiment.

  15. Numerical simulation of turbulent jet noise, part 1

    NASA Technical Reports Server (NTRS)

    Metcalfe, R. W.; Orszag, S. A.

    1975-01-01

    Flow characteristics, such as quadrupole moments are examined in order to study generation of aerodynamic noise. The mean flow quantities are set in accordance with experimental data and the incompressible Navier-Stokes are solved numerically. Isolated downstream sections of a turbulent jet are modelled separately with the mean flow characteristics held constant in time. The flows are allowed to evolve until the fluctuating velocity components reach a statistically steady state. Cross section contour plots of the velocity components and the quadrupole moments at three different downstream positions are presented.

  16. On the buckling property of inviscid jets and the origin of turbulence

    NASA Astrophysics Data System (ADS)

    Bejan, A.

    1981-06-01

    This letter outlines the analogy which exists between inviscid jets and elastic columns in axial compression. It is shown that straight inviscid jet columns possess the property of sinusoidal infinitesimal buckling. The buckling wavelength scales with the transversal dimension of the jet. The repeated buckling and breakup of the jet column is responsible for the observed whiplash motion of turbulent jets. The buckling theory predicts correctly the natural frequency of the whiplash motion and the Reynolds number for the laminar-turbulent transition in free jet flow.

  17. Computational aeroacoustics of turbulent high-speed jets

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.

    2014-11-01

    Despite significant scientific investigation, jet noise remains a large component of the overall noise generated by supersonic aircraft. Experiments show that alterations to nozzle geometry, such as the addition of chevrons to the nozzle lip, can significantly reduce jet noise. In this talk, we assess unstructured large eddy simulation as a tool for predicting and understanding the aeroacoustic effects of complex geometry upon supersonic jets. Body-fitted, adaptive meshes are used to simulate the flow inside, around and through complicated nozzles, and results are validated against experimental measurements. High-fidelity simulations utilizing as many as one million processors simultaneously will be discussed, allowing for a detailed description of interactions between turbulence, shocks, and acoustics. This includes observations of the phenomenon of ``crackle'' noise in heated supersonic jets. We will briefly discuss challenges met and overcome along this frontier of com putational science, and describe how information extracted from the high-fidelity simulations can be used to construct accurate reduced-order models useful for aeroacoustic design. Computational resources were provided by the Argonne Leadership Computing Facility at Argonne National Laboratory and the ERDC and AFRL supercomputing centers.

  18. A Study of Turbulence-Chemistry-Soot-Radiation Interaction in Luminous Turbulent Jet Flames

    NASA Astrophysics Data System (ADS)

    Roy, Somesh; Haworth, Daniel

    2013-11-01

    A detailed soot model based on method of moments with interpolative closure (MOMIC) is used in RANS simulations of luminous turbulent jet flames using OpenFOAM. A detailed chemical mechanism has been used to describe the chemistry of key soot precursors, and a transported probability density function (tPDF) method has been used to capture the turbulence-chemistry-soot-radiation interactions. The results from the detailed soot model have been compared with those from a semi-empirical, two-equation soot model for accuracy and performance. The effects of turbulence-chemistry-radiation interactions on soot dynamics are isolated and quantified. This work has been supported by NASA under cooperative agreement NNX07AB40A and by NSF under grant OCI-0904649.

  19. The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet.

    PubMed

    da Silva, Carlos Bettencourt; dos Reis, Ricardo José Nunes

    2011-02-28

    The role of coherent vortices near the turbulent/non-turbulent (T/NT) interface in a turbulent plane jet is analysed by a direct numerical simulation (DNS). The coherent vortices near the jet edge consist of large-scale vortical structures (LSVSs) maintained by the mean shear and intense vorticity structures (IVSs) created by the background fluctuating turbulence field. The radius of the LSVS is equal to the Taylor micro-scale R(lsvs)≈λ, while the radius of the IVS is of the order of the Kolmogorov micro-scale R(ivs)~η. The LSVSs are responsible for the observed vorticity jump at the T/NT interface, being of the order of the Taylor micro-scale. The coherent vortices in the proximity of the T/NT interface are preferentially aligned with the tangent to the T/NT interface and are responsible for the viscous dissipation of kinetic energy near the T/NT interface and to the characteristic shape of the enstrophy viscous diffusion observed at that location.

  20. Characterizing Laminar Flame Interactions with Turbulent Fluidic Jets and Solid Obstacles for Turbulence Induction

    NASA Astrophysics Data System (ADS)

    Gerdts, Stephen; Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    A detonation engine's fundamental design concept focuses on enhancing the Deflagration to Detonation Transition (DDT), the process through which subsonic flames accelerate to form a spontaneous detonation wave. Flame acceleration is driven by turbulent interactions that expand the reaction zone and induce mixing of products and reactants. Turbulence in a duct can be generated using solid obstructions, fluidic obstacles, duct angle changes, and wall skin friction. Solid obstacles have been previously explored and offer repeatable turbulence induction at the cost of pressure losses and additional system weight. Fluidic jet obstacles are a novel technique that provide advantages such as the ability to be throttled, allowing for active control of combustion modes. The scope of the present work is to expand the experimental database of varying parameters such as main flow and jet equivalence ratios, fluidic momentum ratios, and solid obstacle blockage ratios. Schlieren flow visualization and particle image velocimetry (PIV) are employed to investigate turbulent flame dynamics throughout the interaction. Optimum conditions that lead to flame acceleration for both solid and fluidic obstacles will be determined. American Chemical Society.

  1. The radiated noise from isotropic turbulence and heated jets

    NASA Technical Reports Server (NTRS)

    Lilley, G. M.

    1995-01-01

    Our understanding of aerodynamic noise has its foundations in the work of Sir James Lighthill (1952), which was the first major advance in acoustics since the pioneering work of Lord Rayleigh in the last century. The combination of Lighthill's theory of aerodynamic noise as applied to turbulent flows and the experimental growing database from the early 1950's was quickly exploited by various jet propulsion engine designers in reducing the noise of jet engines at takeoff and landing to levels marginally acceptable to communities living in the neighborhoods of airports. The success in this noise containment led to the rapid growth of fast economical subsonic civil transport aircraft worldwide throughout the 1960's and has continued to the present day. One important factor in this success story has been the improvements in the engine cycle that have led to both reductions in specific fuel consumption and noise. The second is the introduction of Noise Certification, which specifies the maximum noise levels at takeoff and landing that all aircraft must meet before they can be entered on the Civil Aircraft Register. The growing interest in the development of a new supersonic civil transport to replace 'Concorde' in the early years of the next century has led to a resurgence of interest in the more challenging problem of predicting the noise of hot supersonic jets and developing means of aircraft noise reduction at takeoff and landing to meet the standards now accepted for subsonic Noise Certification. The prediction of aircraft noise to the accuracy required to meet Noise Certification requirements has necessitated reliance upon experimental measurements and empirically derived laws based on the available experimental data bases. These laws have their foundation in the results from Lighthill's theory, but in the case of jet noise, where the noise is generated in the turbulent mixing region with the external ambient fluid, the complexity of the turbulent motion has

  2. Large-Eddy Simulation (LES) of a Compressible Mixing Layer and the Significance of Inflow Turbulence

    NASA Technical Reports Server (NTRS)

    Mankbadi, Mina Reda; Georgiadis, Nicholas J.; Debonis, James R.

    2017-01-01

    In the context of Large Eddy Simulations (LES), the effects of inflow turbulence are investigated through the Synthetic Eddy Method (SEM). The growth rate of a turbulent compressible mixing layer corresponding to operating conditions of GeobelDutton Case 2 is investigated herein. The effects of spanwise width on the growth rate of the mixing layer is investigated such that spanwise width independence is reached. The error in neglecting inflow turbulence effects is quantified by comparing two methodologies: (1) Hybrid-RANS-LES methodology and (2) SEM-LES methodology. Best practices learned from Case 2 are developed herein and then applied to a higher convective mach number corresponding to Case 4 experiments of GeobelDutton.

  3. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  4. Measurements of Turbulent Convection Speeds in Multistream Jets Using Time-Resolved PIV

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2017-01-01

    Convection speeds of turbulent velocities in jets, including multi-stream jets with and without flight stream, were measured using an innovative application of time-resolved particle image velocimetry. The paper describes the unique instrumentation and data analysis that allows the measurement to be made. Extensive data is shown that relates convection speed, mean velocity, and turbulent velocities for multiple jet cases. These data support the overall observation that the local turbulent convection speed is roughly that of the local mean velocity, biased by the relative intensity of turbulence.

  5. Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Mehta, Ranjan S.

    Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure. Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with

  6. An experimental study of turbulent flow in attachment jet combustors by LDV

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Cheng-Kang

    1993-12-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width.

  7. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  8. Computation of confined coflow jets with three turbulence models

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T. H.

    1993-01-01

    A numerical study of confined jets in a cylindrical duct is carried out to examine the performance of two recently proposed turbulence models: an RNG-based K-epsilon model and a realizable Reynolds stress algebraic equation model. The former is of the same form as the standard K-epsilon model but has different model coefficients. The latter uses an explicit quadratic stress-strain relationship to model the turbulent stresses and is capable of ensuring the positivity of each turbulent normal stress. The flow considered involves recirculation with unfixed separation and reattachment points and severe adverse pressure gradients, thereby providing a valuable test of the predictive capability of the models for complex flows. Calculations are performed with a finite-volume procedure. Numerical credibility of the solutions is ensured by using second-order accurate differencing schemes and sufficiently fine grids. Calculations with the standard K-epsilon model are also made for comparison. Detailed comparisons with experiments show that the realizable Reynolds stress algebraic equation model consistently works better than does the standard K-epsilon model in capturing the essential flow features, while the RNG-based K-epsilon model does not seem to give improvements over the standard K-epsilon model under the flow conditions considered.

  9. Particle clustering within a two-phase turbulent pipe jet

    NASA Astrophysics Data System (ADS)

    Lau, Timothy; Nathan, Graham

    2016-11-01

    A comprehensive study of the influence of Stokes number on the instantaneous distributions of particles within a well-characterised, two-phase, turbulent pipe jet in a weak co-flow was performed. The experiments utilised particles with a narrow size distribution, resulting in a truly mono-disperse particle-laden jet. The jet Reynolds number, based on the pipe diameter, was in the range 10000 <= ReD <= 40000 , while the exit Stokes number was in the range 0 . 3 <= SkD <= 22 . 4 . The particle mass loading was fixed at ϕ = 0 . 4 , resulting in a flow that was in the two-way coupling regime. Instantaneous particle distributions within a two-dimensional sheet was measured using planar nephelometry while particle clusters were identified and subsequently characterised using an in-house developed technique. The results show that particle clustering is significantly influenced by the exit Stokes number. Particle clustering was found to be significant for 0 . 3 <= SkD <= 5 . 6 , with the degree of clustering increasing as SkD is decreased. The clusters, which typically appeared as filament-like structures with high aspect ratio oriented at oblique angles to the flow, were measured right from the exit plane, suggesting that they were generated inside the pipe. The authors acknowledge the financial contributions by the Australian Research Council (Grant No. DP120102961) and the Australian Renewable Energy Agency (Grant No. USO034).

  10. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  11. One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet

    SciTech Connect

    Gupta, Kamlesh G.; Echekki, Tarek

    2011-02-15

    The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

  12. Turbulent jet noise in the absence of coherent structures

    NASA Astrophysics Data System (ADS)

    Fu, Zhidong; Agarwal, Anurag; Cavalieri, André V. G.; Jordan, Peter; Brès, Guillaume A.

    2017-06-01

    Sound radiation from a subsonic turbulent jet is examined after a hypothetical removal of the near-field coherent structures in the axisymmetric component of the velocity fluctuations. With the help of a well-validated database of large-eddy simulation, the near-field coherent structures are extracted using a discrete wavelet transform (DWT), and their spatial structures are examined using a proper orthogonal decomposition (POD). The acoustic far field is calculated using Lighthill's acoustic analogy. It is shown that the coherent part extracted by DWT accounts for most of the fluctuation energy in the axisymmetric component of axial velocity, whereas the incoherent part, assumed to have a Gaussian probability distribution, has little energy. After the coherent part is removed, the axisymmetric component of the sound is found to be significantly reduced, around 7 dB in the overall sound pressure level at 30 deg with respect to the jet axis. The reduction is mostly at low Strouhal numbers (St<0.4 , based on the speed of sound and the nozzle exit diameter). The first few POD modes of the near-field coherent part, which capture most of the fluctuation energy, are found to be characterized by large-scale wavy structures. After these POD modes are removed, the axisymmetric component of the sound pressure level is also reduced considerably, by around 5 dB /St at St=0.2 . The results suggest that there is a causal link between the axisymmetric components of the near-field hydrodynamic fluctuations and far-field low-angle jet noise, although the axisymmetric mode constitutes only a small proportion of total fluctuation energy. It is also suggested that not only the large-scale wavy structures in low POD modes but also the smaller scale structures in higher POD modes need to be included for jet noise modeling, because they are both shown to be efficient at sound radiation.

  13. A study of sound generation from turbulent heated round jets using three-dimensional large eddy simulation

    NASA Astrophysics Data System (ADS)

    Lew, Phoi-Tack

    Improvements in computing speed over the past decade have made Large Eddy Simulations (LES) amenable to the study of jet noise. The study of turbulent hot jets is required jets since all jet engines fitted on aircraft operate at hot exhaust conditions. The primary goal of this research was to further advance the science of jet noise prediction with a specific emphasis on heated jets using 3-D LES. For the 3-D LES methodology, spatial filtering is used as an implicit subgrid scale (SGS) model in place of an explicit SGS model, such as the classical Smagorinsky or Dynamic Smagorinsky models. To study the far-field noise, the porous FfowcsWilliams-Hawkings (FWH) surface integral acoustic formulation is employed. Results obtained for the heated jets in terms of jet development are in good agreement with other LES results and experimental data. The predicted overall sound pressure level (OASPL) values for heated jets exhibited the same trend as experimental data. The levels were over-predicted by approximately 3 dB, which was deemed satisfactory. An investigation of noise sources for heated jets was also performed within the framework of Lighthill's acoustic analogy. It is discovered that when a high-speed is jet heated, significant cancellations occur between shear and entropy noise sources compared to an unheated high speed jet. This could explain why a high speed heated jet is quieter than an unheated jet at the same ambient Mach number. High-order compact finite difference schemes along with high-order filters are used extensively in LES, especially for aeroacoustics problems, since these schemes have very high accuracy and spectral-like resolution as well as low-dispersion and diffusion errors. Due to the implicit nature of compact schemes, one technique of parallelization is based on the data transposition strategy. However, such transposition strategy is near impossible to apply to jets with complex geometries. Hence, an alternative parallelization methodology

  14. Radiation characteristics and turbulence-radiation interactions in sooting turbulent jet flames

    NASA Astrophysics Data System (ADS)

    HASH(0x3416010), R. S.; HASH(0x33f0c38), M. F.; Haworth, D. C.

    2010-03-01

    A comprehensive modeling strategy including detailed chemistry, soot and radiation models coupled with state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions is applied to various luminous turbulent jet flames. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O2 to 55% O2). All simulations are carried out with a single set of physical and numerical parameters (model constants). A Lagrangian particle Monte Carlo method is used to solve a modeled joint probability density function (PDF) transport equation, which allows accurate closure for turbulence-chemistry interactions including nonlinear soot subprocesses. Radiation is calculated using a particle-based photon Monte Carlo method that is coupled with the PDF method to accurately account for both emission and absorption turbulence-radiation interactions (TRI). Line-by-line databases are used for accurate spectral radiative properties of CO2 and H2O; soot radiative properties also are modeled as nongray. For the flames that have been investigated, soot emission can be almost 45% of the total emission, even when the peak soot volume fraction is of the order of a few parts-per-million (ppm) and up to 99% of soot emission can escape the domain without re-absorption. Turbulence-radiation interactions have a strong effect on the net radiative heat loss from these sooting flames. For a given temperature, species and soot distribution, TRI increases emission from the flames by 30-60%, and the net heat loss from the flame increases by 45-90% when accounting for TRI. This is higher than the corresponding increase in radiative heat loss due to TRI in nonsooting flames. Absorption TRI was found to be negligible in these laboratory-scale sooting flames with soot levels on the order of a few ppm, but may be

  15. Measurements of the flow and turbulence characteristics of round jets in cross flow

    NASA Astrophysics Data System (ADS)

    Sherif, S. A.; Pletcher, R. H.

    1986-05-01

    Measurements of the velocity and turbulence characteristics of a round turbulent jet in cross flow are reported. The experiments were conducted in a water channel, 8.53 m long, 0.61 m wide, and 1.067 m deep, of the recirculation type. Water was injected vertically upward from a circular pipe located near the channel bottom to simulate the turbulent jet. Normal and 45 deg-slanted fiber-film probes along with appropriate anemometers and bridges were operated in the constant temperature mode to measure mean velocities, turbulence intensities, Reynolds stresses, structural parameters, correlation coefficients, and the turbulent kinetic energy. The measurements were carried out in the jet and its wake both in and outside the jet plane of symmetry.

  16. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    NASA Astrophysics Data System (ADS)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  17. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  18. Turbulence, waves, and jets in a differentially heated rotating annulus experiment

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Read, P. L.; Yamazaki, Y. H.

    2008-12-01

    We report an analog laboratory study of planetary-scale turbulence and jet formation. A rotating annulus was cooled and heated at its inner and outer walls, respectively, causing baroclinic instability to develop in the fluid inside. At high rotation rates and low temperature differences, the flow became chaotic and ultimately fully turbulent. The inclusion of sloping top and bottom boundaries caused turbulent eddies to behave like planetary waves at large scales, and eddy interaction with the zonal flow then led to the formation of several alternating jets at mid-depth. The jets did not scale with the Rhines length, and spectral analysis of the flow indicated a distinct separation between jets and eddies in wavenumber space, with direct energy transfer occurring nonlocally between them. Our results suggest that the traditional ``turbulent cascade'' picture of zonal jet formation may be an inappropriate one in the geophysically important case of large-scale flows forced by differential solar heating.

  19. Emission of sound from axisymmetric turbulence convected by a mean flow with application to jet noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1972-01-01

    A model, based on Lighthill's theory, for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. Unlike Ribner's model, it does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic. turbulence by the more realistic one of axisymmetric turbulence. The implications of the model for jet noise are discussed.

  20. Longitudinal broadening of quenched jets in turbulent color fields.

    PubMed

    Majumder, A; Müller, B; Bass, S A

    2007-07-27

    The nearside distribution of particles at intermediate transverse momentum, associated with a high momentum trigger hadron produced in a high energy heavy-ion collision, is broadened in rapidity compared with the jet cone. This broadened distribution is thought to contain the energy lost by the progenitor parton of the trigger hadron. We show that the broadening can be explained as the final-state deflection of the gluons radiated from the hard parton inside the medium by soft, transversely oriented, turbulent color fields that arise in the presence of plasma instabilities. The magnitude of the effect is found to grow with medium size and density and diminish with increasing energy of the associated hadron.

  1. LES study of near-seabed tide-induced turbulence in the East China Sea

    NASA Astrophysics Data System (ADS)

    Wakata, Yoshinobu; Endoh, Takahiro; Yoshikawa, Yutaka

    2017-08-01

    Near-seabed turbulent properties observed in the East China Sea were investigated using a large eddy simulation (LES) model. Tidal forcing estimated from the observed tidal current is imposed to the LES model assuming a flat seabed. Turbulence stirred by tidal currents near the seabed is simulated and compared to observed turbulence. The observed tide is dominated by the M2 constituent. The energy dissipation rate evolves with a quarter-day period near the seabed, whereas the dissipation rate evolves with a diurnal period in the upper part of the boundary layer. Salinity also oscillates diurnally. Thickness of the boundary layer related to K1 is thicker than that of M2. Orientation of the major axis of M2 in the tidal ellipse does not change downward, but that of K1 rotates counterclockwise. The vertical structure difference of two constituents is attributable to the observation site latitude, which is approximately the critical latitude of K1. All of these features are simulated in the LES model. Particularly, results show that the interference of M2 and K1 induces diurnal variation of the turbulent dissipation rate in the upper part of the boundary layer through the turbulent energy production rate controlled by the vertical shear. A hypothetical simulation without horizontal advection demonstrate that this process can contribute more to the diurnal variation in the upper part of the boundary layer than stratification stability control owing to salinity advection through tidal straining.

  2. Entrainment by turbulent jets issuing from sharp-edged inlet round nozzles

    NASA Astrophysics Data System (ADS)

    Trabold, T. A.; Essen, E. B.; Obot, N. T.

    Experiments were carried out to determine entrainment rates by turbulent air jets generated with square-edged inlet round nozzles. A parametric study was made which included the effects of Reynolds number, nozzle length, partial confinement and geometry of the jet plenum chamber. Measurements were made for the region extending from the nozzle exit to 24 jet hole diameters downstream. There is a large difference in entrainment rate between jets generated with relatively short nozzles and those discharged through long tubes.

  3. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  4. Investigation of differential diffusion in turbulent jet flows using planar laser Rayleigh scattering

    SciTech Connect

    Dibble, Robert W.; Long, Marshall B.

    2005-12-01

    A series of laser Rayleigh-scattering experiments has been performed to investigate the effects of differential molecular diffusion in turbulent nonreacting jet flows. A turbulent jet of a mixture of Freon and H{sub 2} exiting into coflowing air was studied at various Reynolds numbers. In laminar flow, Rayleigh scattering clearly showed H{sub 2} diffusing ahead of Freon. In turbulent flow, the instantaneous Rayleigh images showed differential diffusion at the many interfaces between jet fluid and entrained air. Yet, ensemble averages of instantaneous images showed no average diffusion of H{sub 2} ahead of Freon.

  5. Entropy-viscosity based LES of turbulent flow in a flexible pipe

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Xie, Fangfang; Triantafyllou, Michael; Constantinides, Yiannis; Karniadakis, George

    2016-11-01

    We present large-eddy simulations (LES) of turbulent flow in a flexible pipe conveying incompressible fluid. We are interested in quantifying the flow-structure interaction in terms of mean quantities and their variances. For the LES, we employ an Entropy Viscosity Method (EVM), implemented in a spectral element code. In previous work, we investigated laminar flow and studied the complex interaction between structural and internal flow dynamics and obtained a phase diagram of the transition between states as function of three non-dimensional quantities: the fluid-tension parameter, the dimensionless fluid velocity, and the Reynolds number. Here we extend our studies in the turbulence regime, Re from 5,000 to 50,000. The motion of the flexible pipe affects greatly the turbulence statistics of the pipe flow, with substantial differences for free (self-sustained) vibrations and prescribed (forced) vibrations.

  6. RANS/PDF and LES/FDF for prediction of turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Yilmaz, Server Levent

    Probability density function (PDF) and filtered density function (FDF) methodologies are developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both simulations employ finite rate kinetics via a reduced methane chemistry mechanism to account for combustion. Prediction results are compared with experimental data, and are shown to capture some of the intricate physics of turbulent premixed combustion. Keywords. large eddy simulation, filtered density function, Reynolds-averaged Navier-Stokes, probability density function, turbulent reacting flows, lean premixed combustion.

  7. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  8. Cinematographic 3-D PIV of a Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Clemens, Noel T.

    2005-11-01

    The structure of a fully developed turbulent jet at a Reynolds number of 5000 is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis (i.e., ``end view''). The temporal resolution is sufficiently high that Taylor's hypothesis can be used to enable the computation of velocity gradients in the axial direction. Furthermore, the resolution (in space and time) is approximately three Kolmogorov scales, and is therefore sufficient to resolve the structure of the dissipation field. The technique enables computation of all terms of the velocity gradient tensor in a plane, at kilohertz rates, and therefore at each point in the plane we can compute the complete vorticity vector, strain rate tensor and kinetic energy dissipation. We use the data to investigate the time-evolution of the dissipation field and its relationship to the vorticity and strain rate fields. The data can alternatively be used to form y-z-t volumes (with x the axial direction). These pseudo-volumes show that the vorticity field is dominated by tube-like structures and the dissipation structures are often sheet-like or more nondescript "blobs". The spatial relationship among the dissipation, strain rate and vorticity will be discussed, as well as a statistical analysis of these quantities.

  9. Evolution of a turbulent jet subjected to volumetric heating

    NASA Astrophysics Data System (ADS)

    Agrawal, Amit; Prasad, Ajay K.

    2004-07-01

    The goal of this study is to understand the effect of latent heat release on entrainment in cumulus clouds by employing a laboratory analogue consisting of a volumetrically heated turbulent axisymmetric jet. The jet fluid is volumetrically heated in an off-source manner to simulate condensation heat release in clouds. The experimental set-up is similar to Bhat & Narasimha (1996), and the current application of wholefield velocimetry and thermometry has allowed us to probe in detail the velocity and temperature fields within the heat injection zone (HIZ) for the first time, leading to several new results. We are able to demarcate three distinct zones within the HIZ based primarily on the nature of the cross-stream velocity profile, and we present sharp differences in flow properties in these zones. Thermochromic liquid crystal-based temperature visualizations have revealed details about the complex interplay of velocity, local concentration and temperature leading to a physically coherent understanding of this flow. We also provide evidence using linear stochastic estimates (LSE) to show that large eddies are disrupted in the latter part of the HIZ; the disruption of large eddies is linked to the change in the nature of the cross-stream velocity profile. While our results have confirmed certain previously reported observations such as a reduction in scalar width, we have measured significantly larger r.m.s. values within the HIZ than previously reported, which is corroborated by direct numerical simulation results.

  10. Microtearing Turbulence Limiting the JET-ILW Pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, David; Kotschenreuther, Michael; Mahajan, Swadesh; Valanju, Prashant; Liu, Xing; Goerler, Tobias; Jenko, Frank; Told, Daniel

    2015-11-01

    The gyrokinetic GENE code is used to model instabilities and transport in the JET-ILW (ITER like wall) pedestal. Local GENE simulations identify microtearing modes (MTM) as the dominant low-ky instability across most of the pedestal, with KBM unstable in a narrow region near the separatrix. Global simulations find that MTM growth rates are decreased by ExB shear, but to a lesser extent than electrostatic ITG/TEM-type modes, so that the MTM becomes relatively more prominent in the presence of ExB shear. A β scan demonstrates local KBM to be unstable across the pedestal at lower β (60% of the experimental value). As β approaches and surpasses the experimental value, the KBM become more stable, and are limited to progressively narrower regions of the pedestal (consistent with the concept of second stability), while the MTM becomes more unstable and spans most of the pedestal. The absence of KBM is even more pronounced in global simulations. Nonlinear simulations of MTM turbulence using the experimental profiles produce transport levels that are comparable to experimental expectations, establishing the MTM as the likely mechanism limiting pedestal profile evolution in JET-ILW pedestals. This work was supported by U.S. DOE Contract No. DE-FG02-04ER54742.

  11. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  12. A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.

    2013-11-01

    A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.

  13. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  14. Effects of turbulence and carrier fluid on simple, turbulent spray jet flames

    SciTech Connect

    Staarner, Sten H.; Gounder, James; Masri, Assaad R.

    2005-12-01

    This paper presents simultaneous LIF images of OH and the two-phase acetone fuel concentration as well as detailed single-point phase-Doppler measurements of velocity and droplet flux in three turbulent spray flames of acetone. This work forms part of a larger program to study spray jets and flames in a simple, well-defined geometry, aimed at providing a platform for developing and validating predictive tools for such flows. Spray flames that use nitrogen or air as droplet carrier are investigated and issues of flow field, droplet dispersion, size distribution, and evaporation are addressed. The joint OH/acetone concentration images reveal a substantial similarity to premixed flame behavior when the carrier stream is air. When the carrier is nitrogen, the reaction zone has a diffusion flame structure. There is no indication of individual droplet burning. The results show that evaporation occurs close to the jet centerline rather than in the outer shear layer. Turbulence does not have a significant impact on the evaporation rates. A small fraction of the droplets escapes the reaction zone unburned along the centerline and persists far downstream of the flame tip. The proportion of this droplet residue increases with shorter residence times as observed for the higher velocity flame.

  15. Axisymmetric confined turbulent jet directed towards the liquid surface from below

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin-Shun

    1989-01-01

    A numerical simulation is presented of an axisymmetric turbulent jet discharging axially from below into a cylindrical tank and directed towards the liquid vapor interface. The liquid vapor interface is assumed to be flat and shear free. The k-epsilon turbulence model is used to calculate the eddy viscosity. The turbulence intensity distribution and the length scale associated with the k-epsilon model are calculated as functions of jet flow rates and systems parameters. Numerical results are compared with appropriate experimental data. The problems associated with the free surface boundary conditions for the turbulent quantities are discussed.

  16. Axisymmetric confined turbulent jet directed towards the liquid surface from below

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin-Shun

    1988-01-01

    A numerical simulation is presented of an axisymmetric turbulent jet discharging axially from below into a cylindrical tank and directed towards the liquid vapor interface. The liquid vapor interface is assumed to be flat and shear free. The k-epsilon turbulence model is used to calculate the eddy viscosity. The turbulence intensity distribution and the length scale associated with the k-epsilon model are calculated as functions of jet flow rates and systems parameters. Numerical results are compared with appropriate experimental data. The problems associated with the free surface boundary conditions for the turbulent quantities are discussed.

  17. Control of low-speed turbulent separated flow using jet vortex generators

    NASA Technical Reports Server (NTRS)

    Selby, G. V.; Lin, J. C.; Howard, F. G.

    1992-01-01

    A parametric study has been performed with jet vortex generators to determine their effectiveness in controlling flow separation associated with low-speed turbulent flow over a two-dimensional rearward-facing ramp. Results indicate that flow-separation control can be accomplished, with the level of control achieved being a function of jet speed, jet orientation (with respect to the free-stream direction, and jet location (distance from the separation region in the free-stream direction). Compared to slot blowing, jet vortex generators can provide an equivalent level of flow control over a larger spanwise region (for constant jet flow area and speed).

  18. Analysis of noise produced by an orderly structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1973-01-01

    The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.

  19. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  20. Fluorescence imaging study of free and impinging supersonic jets: Jet structure and turbulent transition

    NASA Astrophysics Data System (ADS)

    Inman, Jennifer Ann

    A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. This work was conducted in support of the Return to Flight effort following the loss of the Columbia. The tests involved simulating flow through a hypothetical breach in the leading edge of the Space Shuttle Orbiter along its reentry trajectory, with the goal of generating a data set with which other researchers can test and validate computational modeling tools. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit Mach numbers of 1 and 2.6. Reynolds numbers based on nozzle exit conditions ranged from about 200 to 35,000, and nozzle exit-to-ambient jet pressure ratios ranged from about 1 to 37. Both free and impinging jets were studied, with impingement distances ranging from 10 to 40 nozzle diameters, and impingement angles of 45°, 60°, and 90°. For the majority of cases, the jet fluid was a mixture of 99.5% nitrogen seeded with 0.5% nitric oxide (NO). Planar laser-induced fluorescence (PLIF) of NO was used to non-intrusively visualize the flow with a temporal resolution on the order of lets. PLIF images were used to identify and measure the location and size of flow structures. PLIF images were further used to identify unsteady jet behavior in order to quantify the conditions governing the transition to turbulent flow. This dissertation will explain the motivation behind the work, provide details of the laser system and test hardware components, discuss the theoretical aspects of laser-induced fluorescence, give an overview of the spectroscopy of nitric oxide, and summarize the governing fluid mechanical concepts. It will present measurements of the size and location of flow structures, describe the basic mechanisms and origins of unsteady behavior in these flows, and discuss the dependence of such behavior on particular flow

  1. Influence of nonisothermicity of the medium and polymer admixtures on a turbulent vertical wall jet

    NASA Astrophysics Data System (ADS)

    Pokryvailo, N. A.; Shashmin, V. K.; Shul'Man, Z. P.

    1990-04-01

    The results are given on an experimental investigation of the effect of small polymer admixtures and density inhomogeneity of the ambient medium on the laws of development of plane, vertical, turbulent wall jets.

  2. Flow Visualization and Radial Velocity Measurements of Entrainment in an Axisymmetric Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Falcone, Anthony M.; Cataldo, Joseph C.

    1998-11-01

    A submerged, axisymmetric turbulent jet of water was studied using a laser Doppler anemometer (LDA). Mean radial and turbulent radial velocity profiles within the irrotational ambient region (external to the jet) and rotational region (within the jet) were measured up to 40 jet diameters. Flow visualization studies (photographs and video) were conducted using incandescent light sheets with LDA tracer particles. These visual observations reveal detailed turbulent flow structure. Trailing ends of turbulent eddies at the jet edge travel opposite to the mean axial flow. The intermittency surface undulates irregularly and resembles a violently perturbed boundary layer between two immiscible liquids. Irrotational ambient fluid follows parabolic streamlines into the jet, but only when perceived as a time average. Mean radial velocity profiles, measured with an LDA, followed typical "Double S" curves. The mean radial velocity in the irrotational region of the jet was found to be an inverse function of radial distance measured from the jet axis, for any given axial location. This evidence proves there is no entrainment velocity that is directly proportional to the local axial velocity: the key assumption to jet entrainment theory.

  3. Distorted turbulence submitted to frame rotation: RDT and LES results

    NASA Technical Reports Server (NTRS)

    Godeferd, Fabien S.

    1995-01-01

    The objective of this effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation. We apply the RDT approximation to turbulence submitted to frame rotation for the case of a uniformly sheared flow and compare its mean statistics to results of high resolution DNS of a rotating plane channel flow. In the latter, the mean velocity profile is modified by the Coriolis force, and accordingly, different regions in the channel can be identified. The properties of the plane pure strain turbulence submitted to frame rotation are, in addition, investigated in spectral space, which shows the usefulness of the spectral RDT approach. This latter case is investigated here. Among the general class of quadratic flows, this case does not follow the same stability properties as the others since the related mean vorticity is zero.

  4. On the deformation of the rectangular turbulent jet cross-section

    NASA Astrophysics Data System (ADS)

    Abramovich, G. N.

    1982-12-01

    The paper explains the reason for the experimentally observable deformation of a rectangular turbulent jet manifesting itself in a rapid growth (along the jet length) of the jet cross-section short side and a reduction of its long side. As a result, these sides change places some distance downstream of the jet origin. The jet deformation is shown to be due to a specific pressure field induced by large vortices that originate in the jet mixing zone. A method of calculating the jet deformation is developed which makes use of the author's information on the pressure field produced by large vortices. The predicted results are compared with the experimental data available from other sources. The theory suggested applies to jet flows in boiler furnaces, dryers, combustion chambers of jet engines and stationary gas-turbine plants of electric power stations, chemical reactors, etc.

  5. Mixing Characteristics of Turbulent Twin Impinging Axisymmetric Jets at Various Impingement Angles

    NASA Astrophysics Data System (ADS)

    Landers, Brian Donn

    An experimental study is first presented on the comparison between two commonly used velocity measurement techniques applied in experimental fluid dynamics: Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV). The comparison is performed in the near-field region of an axisymmetric circular turbulent jet where the flow field contains large scale turbulent structures. The comparison was performed for five Reynolds numbers, based on diameter, between 5,000 and 25,000. The Reynolds numbers selected cover the critical Reynolds number range, 10,000 to 20,000 where the characteristics of the flow transition to a fully developed turbulent mixing layer. A comparison between these two measurement techniques was performed in order to determine the differences between an intrusive (CTA) and non-intrusive (PIV) method when applied to a practical application. The results and observations obtained from the comparison between the two techniques were applied to better characterize the time-averaged characteristics of a single axisymmetric turbulent jet with a Reynolds number of 7,500. The mean and fluctuating velocities, turbulent kinetic energy (TKE), and vorticity were measured as a baseline case. Additionally, smoke visualization was utilized to determine the mixing characteristics of the transient start of an axisymmetric turbulent jet. The shedding frequencies, also known as, the `preferred mode were investigated for a single jet. Particle Image Velocimetry (PIV) was also utilized to characterize the pre-and post-regions of the interaction region of two axisymmetric, incompressible turbulent jets at included angles: 30, 45, and 60 degrees. The Reynolds number selected (7,500) was within the range of critical Reynolds numbers and the geometrical distance to twin jet impingement, X0, remained constant at 10.33D for each impingement angle. The mean and fluctuating velocities, vorticity, and turbulent kinetic energy (TKE) were measured. Smoke Visualization

  6. Interaction of a turbulent-jet noise source with transverse modes in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Baumeister, K. J.; Ingard, K. U.

    1978-01-01

    A turbulent jet was used to excite transverse acoustic modes in a rectangular duct. The pressure spectrum showed asymmetric singularities (pressure spikes) at the resonant frequencies of the duct modes. This validates previously published theoretical results. These pressure spikes occurred over a range of jet velocities, orientations, and inlet turbulence levels. At the frequency of the spike, the measured transverse pressure shape matched the resonant mode shape.

  7. Numerical investigation of heat transfer under confined impinging turbulent slot jets

    SciTech Connect

    Tzeng, P.Y.; Soong, C.Y.; Hsieh, C.D. )

    1999-06-01

    Impinging jet systems are extensively used to provide rapid heating, cooling, or drying in diverse industrial applications. Among these applications are the annealing of metals and plastic sheets; tempering and shaping of glass; drying of textiles, veneer, paper, and film materials; and cooling of combustion walls, turbine blades, and electronic components. This work numerically investigates confined impinging turbulent slot jets. Eight turbulence models, including one standard and seven low-Reynolds-number [kappa]-[epsilon] models, are employed and tested to predict the heat transfer performance of multiple impinging jets. Validation results indicate that the prediction by each turbulence model depends on grid distribution and numerical scheme used in spatial discretization. In addition, spent fluid exits are set between impinging jets to reduce the cross-flow effect in degradation of the heat transfer of downstream impinging jets. The overall heat transfer performance can be enhanced by proper spent fluid removal.

  8. Estimation of turbulent shear stress in free jets: application to valvular regurgitation.

    PubMed

    Winoto, S H; Shah, D A; Liu, H

    1996-01-01

    In an attempt to better assess the severity of valvular regurgitation, an in-vitro experiment has been conducted to estimate turbulent shear stress levels within free jets issuing from different orifice shapes and sizes by means of hot-wire anemometry. On the basis of the measured mean velocities and the jet profiles, the distributions of the normalized kinematic turbulent shear stress (uv/Um2) were estimated for different jets by using an equation available for self-preserving circular jet. The results indicate that the equation can estimate the distributions of uv/Um2 independent of the orifice shape and Reynolds number of the jet. For the range of Reynolds numbers considered, the estimation of maximum turbulent shear stress inferred from these distributions suggests that the critical shear stress level of approximately 200 N/m2, corresponding to destruction of blood cells, is exceeded for typical blood flow velocity of 5 m/s at the valvular lesion.

  9. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  10. Numerical and Experimental Investigation of Confined Turbulent Multiple Transverse Jets (Briefing Charts)

    DTIC Science & Technology

    2014-07-29

    Distribution A: Approved for public release; distribution unlimited • Objectives • Jet in Crossflow characteristics • ONERA Air-to-air Experimental...transverse jets • Single phase/component ONERA experimental/LES studies of an eight jet mixing chamber 9 Distribution A: Approved for public release... ONERA ) Distribution C: Distribution authorized to US Government agencies and their contractors; Critical Technology, April 2013. Warning – Export

  11. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    SciTech Connect

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of

  12. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  13. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  14. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    NASA Astrophysics Data System (ADS)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-01

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of ReD = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  15. The effect of a turbulent jet on gas transport during oscillatory flow.

    PubMed

    Kamm, R D; Bullister, E T; Keramidas, C

    1986-08-01

    Axial mass transport due to the combined effects of flow oscillation and a turbulent jet was studied both experimentally and with a simple theoretical model. The experiments show that the distance over which turbulence enhances transport is greatly increased by flow oscillation, and is particularly sensitive to tidal volume. The jet flow rate and jet configuration are relatively less important. To analyze the results, the region influenced by the jet is divided into two zones: a near field in which the time-mean flow velocities are larger than the turbulent fluctuations, and a far field where the time-mean flow is essentially zero. In the far field, axial mass transport is increased due to the turbulence which decays in strength away from the jet. When oscillatory flow is superimposed upon the steady jet flow, the turbulence in the far field interacts with the flow oscillations to augment the transport of turbulence energy and of mass. This transport enhancement is modeled by introducing an effective axial diffusivity analogous to that used in laminar oscillatory flow.

  16. Prediction of the particle-laden jet with a two-equation turbulence model

    SciTech Connect

    Elghobashi, S.; Abou.-Arab, T.; Moustafa, A.; Rizk, M.

    1984-12-01

    A two-equation turbulence model for two-phase flows has recently been proposed by Elghobashi and Abou-Arab (1983). They derived the exact equations of the kinetic energy of turbulence and the rate of dissipation of that energy, and modeled the turbulent correlations, resulting from time-averaging, up to third order. In order to validate the proposed model, a turbulent axisymmetric gaseous jet laden with spherical uniform-size solid particles is studied here. The predictions of the mean flow properties of the two-phases and the turbulence kinetic energy and shear stress of the carrier phase show good agreement with the experimental data.

  17. Vorticity, turbulence production, and turbulence induced accelerations in a rectangular jet as measured using 3-D LDA

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    The flow field of a rectangular jet with a 4:1 aspect ratio (50.4 x 12.7 mm) was studied at a Reynolds number of 100,000 (Mach number 0.09) using a 3-D laser Doppler anemometer system. Measurements were performed along the major and minor axis planes and at various downstream cross-sections of the jet. The mean velocity vector and entire Reynolds stress tensor were measured and presented in a previous publication. The present work presents the vorticity vector, turbulence production, and turbulence induced acceleration vector distributions which were calculated from the previously presented data.

  18. Investigation of mean flow and turbulence for a variable-density jet near transition

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen; Mastin, Larry; Viggiano, Bianca; Dib, Tamara; Ali, Nasim; Cal, Raul; Volcanic Plume Research Team Collaboration

    2016-11-01

    Plumes can vary widely in size and speed in geophysical systems, with Reynolds numbers (Re) extending from thousands to billions. Concurrently, their densities also have significant deviations, resulting in Richardson numbers (Ri) from negligible levels to near one. To investigate a range of these flow conditions more closely, a laboratory-scale experiment considered helium jets exhausting into air. The tests considered Re from 1500 to 10000 and Ri magnitudes near 0.001, which encompasses a series of jet conditions near the exit, including laminar, transitioning, and turbulent flow. Using particle image velocimetry (PIV), instantaneous velocity fields were acquired, and these were used to determine the mean velocity, entrainment, and turbulent statistics. The laminar jet showed very little development or entrainment, with only minor fluctuations. Turbulent jets had rapid flow development, nearing fully-developed conditions earlier than similar non-buoyant jets. For the transitioning jet, the entrainment and turbulent stresses were significantly larger than even the fully turbulent jet, with axial normal stresses more than doubled. Examining the instantaneous flow fields, these increases coincided with large, non-axisymmetric eddies in the shear layer. Supported by NSF Grant #: EAR-1346580.

  19. Structure of three-dimensional turbulent offset jets with small offset distances

    NASA Astrophysics Data System (ADS)

    Agelin-Chaab, Martin; Tachie, Mark

    2009-11-01

    An offset jet is a jet that discharges into a medium above a wall which is offset by a certain distance. The ``Coanda effect'' forces the offset jet to deflect towards the wall and eventually attaches itself to the wall. The only detailed study of three-dimensional offset jets (3DOJs) did not report the flow field in the region from the jet exit to the point where the jet attaches itself to the wall. In this region flow reversal is expected. Velocity measurements of 3DOJs were conducted using particle image velocimetry. The 3DOJs have different jet exit offset distances (h) normalized by the jet exit diameter (d) of h/d = 0.5 to 4. The Reynolds numbers based on the jet exit velocities and jet exit diameters were 5000, 10000 and 20000. The detailed flow fields of the 3DOJs were examined in terms of mean velocities, and one-point turbulence statistics. In view of the wide range of length and temporal scales that are present in turbulent flows, multi-point turbulence statistics such as two-point velocity correlations and proper orthogonal decomposition are used to document the salient features of 3DOJs.

  20. Intensity, Scale, and Spectra of Turbulence in Mixing Region of Free Subsonic Jet

    NASA Technical Reports Server (NTRS)

    Laurence, James C

    1956-01-01

    Report presents the results of the measurements of intensity of turbulence, the longitudinal and lateral correlation coefficients, and the spectra of turbulence in a 3.5-inch-diameter free jet measured with hot-wire anemometers at exit Mach numbers from 0.2 to 0.7 and Reynolds numbers from 192,000 to 725,000.

  1. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  2. Control of Structure in Turbulent Flows: Bifurcating and Blooming Jets.

    DTIC Science & Technology

    1987-10-10

    by Lee and Reynolds (1985a; see Appendix A) in a study of mechanically-excited water jets at a Reynolds number of 4,000. The axial excitation was...round air jets is described. The jet evolution and of mechanically-perturbed round water jets at a structure is documented by flow visualization at

  3. Simultaneous velocity and concentration measurements of a turbulent jet mixing flow.

    PubMed

    Hu, Hui; Saga, Tetsuo; Kobayashi, Toshio; Taniguchi, Nobuyuki

    2002-10-01

    A method for the simultaneous measurement of velocity and passive scalar concentration fields by means of particle image velocimetry (PIV) and planar laser induced florescence (PLIF) techniques is described here. An application of the combined PIV-PLIF system is demonstrated by performing simultaneous velocity and concentration measurements in the near field of a turbulent jet mixing flow. The distributions of the ensemble-averaged velocity and concentration, turbulent velocity fluctuation, concentration standard deviation, and the correlation terms between the fluctuating velocities and concentration in the near field of the turbulent jet flow are presented as the measurement results of the simultaneous PIV-PLIF system.

  4. LES of turbulent boundary layer flow over urban-like roughness elements

    NASA Astrophysics Data System (ADS)

    Tamura, Tetsuro; Tsubokura, Makoto; Nozu, Tsuyoshi; Onishi, Keiji

    2014-11-01

    LES of turbulent boundary layer flow over urban-like roughness elements has been performed. Final goal of this paper is to elucidate the availability of LES on the wind flow within the canopy among buildings in cities. Firstly rectangular blocks, definitely larger than those on conventional rough wall such as grain or sand, are homogeneously arrayed and above-region equilibrium profiles of mean velocity and turbulent statistics are investigated. Also, in order to predict the fluctuating velocity characteristics of urban boundary layer, actual complicated-shaped buildings are used for reproducing the surface shape in cities. For numerical modeling, this study employs the unstructured-grid system where grid lines correctly fit to the building shape and BCM (Building Cube Method) which is formulated on very fine Cartesian mesh system. Based on the GIS data, BCM employs the external forcing technique named IBM (Immersed Boundary Method). Also, in BCM, computational process is so simple that the parallel algorithm and the memory access obtain the perfect efficiency. Using both the LES results, turbulence structures in the urban canopy are discussed. Appropriate 3D vortical structures can be recognized at inflow, along the street and among a pack of tall buildings.

  5. Further Experiments on the Flow and Heat Transfer in a Heated Turbulent Air Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1949-01-01

    Measurements have been made of the mean total-head and temperature fields in a round turbulent jet with various initial temperatures. The results show that the jet spreads more rapidly as its density becomes lower than that of the receiving medium, even when the difference is not sufficiently great to cause measurable deviations from the constant-density, dimensionless, dynamic-pressure profile function. Rough analytical considerations have given the same relative spread. The effective "turbulent Prandtl number" for a section of the fully developed jet was found to be equal to the true (laminar) Prandtl number within the accuracy of measurement. (author)

  6. Effect of nozzle length-to-diameter ratio on atomization of turbulent liquid jets

    NASA Astrophysics Data System (ADS)

    Osta, Anu Ranjan

    Breakup of liquid jets is of considerable interest motivated by its applicability in combustion and propulsion systems (CI and SI engines), and agricultural fertilizer/pesticide sprays, among others. Almost all of the practical liquid injectors introduce some degree of turbulence in the liquid jet leaving the injector passage and an intriguing question is the relative importance of the liquid turbulence, cavitation, and the aerodynamic forces in the breakup processes of fuel injectors. A better design of liquid fuel injector would reduce pollutants and increase the efficiency of liquid fuel combustion processes. An experimental study to investigate the effect of nozzle length to diameter ratio on the surface properties of turbulent liquid jets in gaseous crossflow and still air was carried out. Straight cavitation-free nozzles with length/diameter ratios of 10, 20 and 40 were used to generate turbulent liquid jets in gaseous crossflow. The present study was limited to small Ohnesorge number liquid jets (Oh < 0.01) injected in crossflow within the shear breakup regime (WeG > 110). The diagnostics consisted of pulsed shadowgraphy, pulsed digital holographic microscopy and x-ray diagnostics. The x-ray tests were conducted at the Advanced Photon Source (APS) facility of Argonne National Laboratory. The test matrix was designed to maintain the same aerodynamic forces in order to isolate the effects of jet turbulence on the breakup process. The measurements included liquid jet surface properties, breakup location of the liquid column as a whole, the breakup regime transitions, bubble size inside the jet and seeding particle displacement inside the jet structures. The results include the jet surface characteristics, the liquid column breakup lengths, bubble growth, and phenomenological analysis to explain the observed results. It is observed that for a jet breakup in crossflow the injector passage length does play a role in determining the breakup length as well as

  7. Quasi-equilibrium Dynamics of Stratified Turbulence In A Model Tropospheric Jet

    NASA Astrophysics Data System (ADS)

    Mahalov, A.; Nicolaenko, B.

    Direct numerical simulations are performed to study the dynamics of an inhomoge- neous stratified shear flow for a model atmospheric jet in the tropopause. The basic state is characterized by a jet centered at the tropopause in which the density strat- ification is vertically non-uniform. Small to moderate background stratifications are selected, a weak background rotation is imposed and simulations are conducted for a range of Reynolds and Froude numbers. A new spectral domain decomposition method that is particularly suitable for simulations of inhomogeneous stratified flows is developed to generate the desired turbulent jet, and quasi-equilibrium flow-fields are obtained after long-time integration of the governing equations. The structure of the mean flow and turbulence fields are calculated, which are interpreted using relevant length scales (Ozmidov, buoyancy, shear, Ellison and Kolmogorov) and Richardson number profiles. The ratios of the Ellison to buoyancy scales are much smaller than unity at the jet core and approach unity at the edges, confirming that mechanical tur- bulence prevails in the jet core, whereas nonlinear waves and stratification effects are significant at the edges. The jet core is found to support sustained mechanical (active) turbulence, outside of which lay a region of intermittent turbulence and non-linear gravity wave activity characterized by spatially decaying velocity fluctuations and strong temperature fluctuations. Detailed energy budgets show how energy is parti- tioned within the flow, including the transport of energy from the jet to its immediate vicinity by non-linear gravity waves.

  8. High-fidelity Simulation of Jet Noise from Rectangular Nozzles . [Large Eddy Simulation (LES) Model for Noise Reduction in Advanced Jet Engines and Automobiles

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj

    2014-01-01

    This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.

  9. DNS/LES of Complex Turbulent Flows beyond Petascale

    NASA Astrophysics Data System (ADS)

    Fischer, Paul

    2014-11-01

    Petascale computing platforms currently feature million-way parallelism and it is anticipated that exascale computers with billion-way concurrency will be deployed by 2020. In this talk, we explore the potential of computing at these scales with a focus on turbulent fluid flow and heat transfer in a variety of applications including nuclear energy, combustion, oceanography, vascular flows, and astrophysics. Following Kreiss and Oliger '72, we argue that high-order methods are essential for scalable simulation of transport phenomena. We demonstrate that these methods can be realized at costs equivalent to those of low-order methods having the same number of gridpoints. We further show that, with care, efficient multilevel solvers having bounded iteration counts will scale to billion-way concurrency. Using data from leading-edge platforms over the past 25 years, we analyze the scalability of state-of-the-art solvers to predict parallel performance on exascale architectures. The analysis sheds light on the expected scope of exascale physics simulations and provides insight to design requirements for future algorithms, codes, and architectures. Supported by DOE Applied Mathematics Research Program.

  10. Random vortex-street model for a self-similar plane turbulent jet.

    PubMed

    L'vov, Victor S; Pomyalov, Anna; Procaccia, Itamar; Govindarajan, Rama

    2008-08-29

    We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large-scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large-scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless, the exact self-similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.

  11. Near field of a transient, acoustically forced transitional and turbulent jets

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2011-11-01

    Acoustic liners are widely used to reduce aircraft engine noise. They work by converting acoustic-bound energy into vorticity-bound energy, in the form of a transient jet, at an orifice that is very small relative to the incident sound wavelength. At low sound amplitudes (<130 dB) the forced jet is laminar. At higher amplitudes (> = 150 dB) vortical instabilities appear and the jet becomes turbulent. In this work the behavior of transitional and fully turbulent transient jets are studied using direct numerical simulations of the compressible Navier-Stokes equations. We focus on the near-aperture dynamics of the acoustically-forced fluid by quantifying the jets' phase-averaged properties and linking these to a reduced order dynamical model with the objective of understanding the motion of transient turbulent jets. Results indicate that boundary layer separation from the orifice walls is critical to seeding instabilities within the jets as they develop while at later times disturbances from the previous acoustic cycle reinforce the jets' unsteadiness.

  12. A theoretical and experimental study of turbulent particle-laden jets

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Zhang, Q. F.; Faeth, G. M.

    1983-01-01

    Mean and fluctuating velocities of both phases, particle mass fluxes, particle size distributions in turbulent particle-laden jets were measured. The following models are considered: (1) a locally homogeneous flow (LHF) model, where slip between the phases was neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of particle dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model. The SSF model performed reasonably well with no modifications in the prescriptions for eddy properties from its original calibration. A modified k- model, incorporating direct contributions of interphase transport on turbulence properties (turbulence modulation), was developed within the framework of the SSF model.

  13. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  14. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  15. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  16. Effect of large density ratios on turbulence budgets in buoyant jets with coflow

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2016-11-01

    Turbulence statistics and energy transport budgets have been measured in two fully turbulent jets with coflow at density ratios of s = 1 . 2 & 4.2 to improve our understanding of variable-density mixing in turbulent flows. The exit Reynolds number was matched for both flows at 20,000 and simultaneous planar PIV and acetone PLIF measurements were acquired so the coupled evolution of the velocity and density statistics could be examined in terms of density-weighted average quantities. Measurements were taken over 10,000 snapshots of the flow at three locations to assure statistical convergence, and the spatial resolution (288 μm) is well below the Taylor microscale. Variable-density effects caused changes in both the magnitude and distribution of the evolving turbulence, with differences most pronounced within the jet half-width. As the jet tends toward pseudo self-similarity, a new scaling based on effective diameter and density successfully scales the energy budgets of the two jets, but significant differences were still seen in the core. For the high density ratio jet, the turbulent kinetic energy production is negative on the centerline, as opposed to slightly positive, leading to large changes in advection and diffusion. A mechanism for these differences is proposed.

  17. Visualization of the heat release zone of highly turbulent premixed jet flames

    NASA Astrophysics Data System (ADS)

    Lv, Liang; Tan, Jianguo; Zhu, Jiajian

    2017-10-01

    Visualization of the heat release zone (HRZ) of highly turbulent flames is significantly important to understand the interaction between turbulence and chemical reactions, which is the foundation to design and optimize engines. Simultaneous measurements of OH and CH2O using planar laser-induced fluorescence (PLIF) were performed to characterize the HRZ. A well-designed piloted premixed jet burner was employed to generate four turbulent premixed CH4/air jet flames, with different jet Reynolds numbers (Rejet) ranging from 4900 to 39200. The HRZ was visualized by both the gradient of OH and the pixel-by-pixel product of OH and CH2O. It is shown that turbulence has an increasing effect on the spatial structure of the flame front with an increasing height above the jet exit for the premixed jet flames, which results in the broadening of the HRZ and the increase of the wrinkling. The HRZ remains thin as the Rejet increases, whereas the preheat zone is significantly broadened and thickened. This indicates that the smallest turbulent eddies can only be able to enter the flame front rather than the HRZ in the present flame conditions. The flame quenching is observed with Rejet = 39200, which may be due to the strong entrainment of the cold air from outside of the burned gas region.

  18. Turbulent steam jets in enclosed structures: An application to nuclear reactor accident analysis

    NASA Astrophysics Data System (ADS)

    Nguyenle, Quocanh

    The primary objective of this thesis is to characterize the behavior of steam jets within an enclosed structures. To satisfy the above objective, the following areas were studied and addressed: (1) study the analytical models of round turbulent jets, (2) to model the turbulent jets using commercially available CFD codes, (3) measure steam convection and stratification pattern within the PUMA Drywell and compare against numerical models. The analytical approach is limited because the solutions for complex geometry and boundary conditions are not readily available. However, the analytical studies provided the necessary understanding of the physical processes involved in turbulent steam jet discharge and convection. From this analytical study, a new mechanistic model of turbulence eddy viscosity model is introduced to replace the ad hoc model recently proposed. Numerical modeling of the current problem allows greater flexibility. Even though the present state of numerical modeling of turbulent flows is still far from complete, the slightly modified k-ε models of turbulent round jets match that of experimental data extremely well. Based on the basic models of axisymmetric turbulent round jets, PUMA DW geometry and boundary conditions specific were developed. The results of these numerical models compared favorably against the PUMA MSLB tests. The 3-D simulations show that the PUMA DW environment was highly stratified and that the temperature and velocity distributions were extremely complicated. Experimentally, it was found that even though the discharged steam was stably stratified in the upper drywell, the PCCS operation was largely unaffected. Additionally, it was determined that DW wall condensation is not a significant factor in containment cooling. Additionally, it was found that homogeneous condensation within the upper drywell was not possible because steam entering the upper drywell was superheated.

  19. Reducing spin-up time for DNS and LES of turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Nelson, Kurt; Fringer, Oliver

    2016-11-01

    In DNS or LES of turbulent channel flow, significant computational resources are wasted on simulation of flow evolution as it approaches statistical equilibrium. Although the driving pressure gradient that produces the desired time-averaged bottom stress is known a-priori, during flow spin-up this pressure gradient is typically not in balance with the time-averaged bottom stress, leading to flow acceleration beyond the target velocity which can significantly prolong the time to reach statistical equilibrium. Through DNS of turbulent channel flow with Reτ = 500, we present a method that ensures a time invariant volume-averaged streamwise velocity. While the method eliminates spin-up time related to approaching the target volume-averaged velocity, spin-up time is still needed for the turbulence to reach statistical equilibrium. To this end, we study the evolution of the turbulence in response to different initial velocity profiles and initial random perturbations and show that initialization with a laminar velocity profile significantly reduces spin-up time because the linear distribution of vertical shear triggers turbulence faster than it would with a log-law velocity profile. We gratefully acknowledge ONR Grant N00014-15-1-2287.

  20. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  1. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  2. Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology

    NASA Astrophysics Data System (ADS)

    Sukhodolov, Alexander N.; Krick, Julian; Sukhodolova, Tatiana A.; Cheng, Zhengyang; Rhoads, Bruce L.; Constantinescu, George S.

    2017-06-01

    Only a handful of field studies have examined turbulent flow structure at discordant confluences; the dynamics of flow at such confluences have mainly been examined in the laboratory. This paper reports results of a field-based investigation of turbulent flow structure at a discordant river confluence. These results support the hypothesis that flow at a discordant alluvial confluence with a velocity ratio greater than 2 exhibits jet-like characteristics. Scaling analysis shows that the dynamics of the jet core are quite similar to those of free jets but that the complex structure of flow at the confluence imposes strong effects that can locally suppress or enhance the spreading rate of the jet. This jet-like behavior of the flow has important implications for morphodynamic processes at these types of confluences. The highly energetic core of the jet at this discordant confluence is displaced away from the riverbed, thereby inhibiting scour; however, helical motion develops adjacent to the jet, particularly at high flows, which may promote scour. Numerical experiments demonstrate that the presence or absence of a depositional wedge at the mouth of the tributary can strongly influence detachment of the jet from the bed and the angle of the jet within the confluence.

  3. Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet

    NASA Astrophysics Data System (ADS)

    Uritsky, Vadim M.; Roberts, Merrill A.; DeVore, C. Richard; Karpen, Judith T.

    2017-03-01

    Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller-Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.

  4. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  5. The effect of exit conditions on the development of an axisymmetric turbulent free jet

    NASA Technical Reports Server (NTRS)

    Kleis, S. J.; Foss, J. F.

    1974-01-01

    The mean flow in the near field of a submerged axisymmetric jet emitting from a plane wall is presented. An experimental configuration to provide a nearly uniform mean velocity profile with a core of homogeneous turbulence of variable intensity and scale was developed. Eight cases with intensity values of 0.004 less than or equal to U prime less than or equal to 0.035 and integral scales up to l sub x/R = 0.28 were investigated using conditional sampling techniques. It was found that the jet exhibits an increasing momentum flux in the near field. Contrary to expectation and the accepted assumption of ambient static pressure in a turbulent jet, results seem to be conclusive and borne out by comparison with published data. Both integral measures, mass and momentum flux ratios, are insensitive to exit turbulence variations, but, the detailed structure (including centerline velocity) variations with exit conditions are systematic and explainable.

  6. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  7. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-08-26

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  8. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  9. Evolution of a confined turbulent jet in a long cylindrical cavity: Homogeneous fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Sanchez, X.; Nath, C.; Webb, S.; Fernando, H. J. S.

    2011-11-01

    The flow induced in a long cylinder by an axially discharging round turbulent jet was investigated experimentally with applications to crude oil storage in the U.S. strategic petroleum reserves (SPR). It was found that the flow does not reach a true steady state, but vacillates periodically. Digital video recordings and particle image velocimetry were used to map the flow structures and velocity/vorticity fields, from which the frequency of jet switching, jet stopping distance, mean flow, turbulence characteristics, and the influence of end-wall boundary conditions were inferred. The results were parameterized using the characteristic length D and velocity J1/2/D scales based on the jet kinematic momentum flux J and cylinder width D. The scaling laws so developed could be used to extrapolate laboratory observations to SPR flows.

  10. Noise produced by the large-scale transition region structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1974-01-01

    The 'orderly' structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For the case of a circular jet, this structure is modeled as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. These results suggest a new approach to noise suppression which has been substantiated experimentally.

  11. Comparison of Measured and WRF-LES Turbulence Statistics in a Real Convective Boundary Layer over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.

    2015-12-01

    Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.

  12. On the development of noise-producing large-scale wavelike eddies in a turbulent jet

    NASA Technical Reports Server (NTRS)

    Merkine, L. O.; Liu, J. T. C.

    1974-01-01

    The development of large-scale wavelike eddies in a two-dimensional turbulent jet was studied. The basic mean flow develops from a mixing region type with an initial specified boundary layer thickness into a fully developed jet. The role of the varicose and sinuous modes as these develop in a growing mean flow is brought out. In general, it was found, for a given frequency parameter, the varicose mode has a shorter streamwise lifetime than the sinuous mode. The latter, for lower frequency ranges, persists past the end of the potential core only to be subject to dissolution by the more enhanced fine scale turbulent activity in that region.

  13. Sound propagation through a real jet flow field with scattering due to interaction with turbulence

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Liu, C. H.; Ting, L.; Gunzburger, M.

    1974-01-01

    The sound propagation through a nonuniform turbulent jet flow field is studied by means of a system of linearized equations governing the acoustic variables. These equations depend on the fluctuating flow-field variables which are prescribed by experimental results. It is shown that the redistribution of the acoustic energy in the far field depends on space-time correlation of the turbulent velocities and on the mean flow variables and their gradients.

  14. Investigation of Strain/Vorticity and Large-Scale Flow Structure in Turbulent Nonpremixed Jet Flames

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.

    1999-01-01

    Our study will use the microgravity environment to investigate the underlying flow structure of turbulent nonpremixed round jet flames. In particular, we aim to investigate the large-scale turbulent structure using planar laser Mie scattering (PLMS), and the strain rate and vorticity fields using particle image velocimetry (PIV). This work is motivated by recent studies in our laboratory that have led to several interesting observations of nominally momentum-driven turbulent nonpremixed planar flames. First of all, the organized large-scale turbulent structures that are observed in nonreacting planar jets may be substantially modified or suppressed in nonpremixed planar jet flames. Furthermore, a recent study using PIV and planar laser-induced fluorescence of OH has shown that in transitional and turbulent nonpremixed planar jet flames the presence of the flame seems to greatly influence the underlying vorticity and strain fields, as compared to nonreacting jets. For example, the reaction zones in the jet flames are strongly correlated with regions of high vorticity. A related study has demonstrated that vorticity is not correlated in the same way with either iso-scalar surfaces or scalar dissipation layers in nonreacting planar jets. Furthermore, the relationship between strain and the reaction zone appears to be modified by the presence of high levels of heat release. In particular, the strain rate field in planar jet flames exhibits a preferred direction of principal compressive strain that apparently is related to strong shear across the reaction zone. This preferred direction of strain was not observed in nonreacting jets. One of the major problems encountered when conducting these types of studies is that it is difficult to know to what extent buoyancy influences the results. Therefore, the microgravity environment provides us with an excellent opportunity to explore these issues without the complicating effects of buoyancy. This is particularly the case when

  15. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  16. Integrated Computational/Experimental Study of Turbulence Modification and Mixing Enhancement in Swirling Jets

    DTIC Science & Technology

    2009-01-07

    needed. In addition, most existing measurement efforts have used hot - wire anemometry rather than LDA. Since LDA is the most appropriate tech- nique...swirling jets that included turbulence measurements are listed in table 1. Most of these measurements used hot wires that are no longer the best... Anemometry (I.DA) measurements have been carried out for swirling jets of various strengths and swirl distributions. Radial profiles of velocity have been

  17. Three-dimensional study of turbulent flow characteristics of an offset plane jet with variable density

    NASA Astrophysics Data System (ADS)

    Assoudi, Ali; Habli, Sabra; Mahjoub Saïd, Nejla; Bournot, Hervé; Le Palec, Georges

    2016-11-01

    An experimental and numerical investigation of the flow field of variable density turbulent offset jet is presented. The velocity measurements are performed using a Velocimetry Laser Doppler technique for an offset height h. Three cases of variable-density turbulent plane jets discharging from a rectangular nozzle into a quiescent medium are studied. The variation density jets considered were revealed at different Reynolds numbers. In the second step of this work, a numerical three-dimensional model of the problem is simulated through the resolution of the Navier-Stokes equations by means of the finite volume method and the Reynolds stress model second-order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzle and both the vertical and horizontal walls is also adopted. A good level of agreement was achieved, between the experiments and the calculations. Once the model validated, our model allowed the evaluation of the influence of the variation density on the characterizing features of the resulting flow filed. It is found that the centerline velocity and concentration of the heavier jet decays much faster than in the two other jets, and a similar behavior for the vertical profiles in the three variable-density jets is well reproduced in the simulation.

  18. Synthetic Jet Interaction With A Turbulent Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Smith, Douglas R.

    2002-01-01

    Perhaps one of the more notable advances to have occurred in flow control technology in the last fifteen years is the application of surface-issuing jets for separation control on aerodynamic surfaces. The concept was introduced by Johnston and Night (1990) who proposed using circular jets, skewed and inclined to the wall, to generate streamwise vortices for the purpose of mitigating boundary layer separation. The skew and inclination angles have subsequently been shown to affect the strength and sign of the ensuing vortices. With a non-circular orifice, in addition to skew and inclination, the yaw angle of the major axis of the orifice can influence the flow control effectiveness of the jet. In particular, a study by Chang arid Collins (1997) revealed that a non-circular orifice, yawed relative to the freestream, can be used to control the size and strength of the vortices produced by the control jet. This early work used jets with only a steady injection of mass. Seifert et al. revealed that an unsteady blowing jet, could be as effective at separation control as a steady jet but with less mass flow. Seifert et al. showed that small amplitude blowing oscillations superimposed on a low momentum steady jet Was the most effective approach to delaying separation on a NACA 0015 airfoil at post-stall angles of attack. More recent work suggests that perhaps the most efficient jet control effect comes from a synthetic (oscillatory) jet where the time-averaged mass flux through the orifice is zero, but the net wall normal momentum is non-zero. The control effectiveness of synthetic jets has been demonstrated for several internal and external flow fields used synthetic jet control on a thick, blunt-nosed airfoil to delay stall well beyond the stall angles for the uncontrolled airfoil and with a dramatic increase in the lift-to-drag performance. Amitay et al. used an array of synthetic jets to mitigate flow separation in curved and diffusing ducts. While the control

  19. Investigation with an Interferometer of the Turbulent Mixing of a Free Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Gooderum, Paul B; Wood, George P; Brevoort, Maurice J

    1950-01-01

    The free turbulent mixing of a supersonic jet of Mach number 1.6 has been experimentally investigated. An interferometer, of which a description is given, was used for the investigation. Density and velocity distributions through the mixing zone have been obtained. It was found that there was similarity in distribution at the cross sections investigated and that, in the subsonic portion of the mixing zone, the velocity distribution fitted the theoretical distribution for incompressible flow. It was found that the rates of spread of the mixing zone both into the jet and into the ambient air were less than those of subsonic jets.

  20. Numerical modeling of turbulent supersonic reacting coaxial jets

    NASA Technical Reports Server (NTRS)

    Eklund, Dean R.; Hassan, H. A.; Drummond, J. Philip

    1989-01-01

    The paper considers the mixing and subsequent combustion within turbulent reacting shear layers. A computer program was developed to solve the axisymmetric Reynolds averaged Navier-Stokes equations. The numerical method integrates the Reynolds averaged Navier-Stokes equations using a finite volume approach while advancing the solution forward in time using a Runge-Kutta scheme. Three separate flowfields are investigated and it is found that no single turbulence model considered could accurately predict the degree of mixing for all three cases.

  1. Intermittency in the Process of Turbulence Evolution in a Free Jet Flow

    NASA Astrophysics Data System (ADS)

    Katsuyama, Tomoo; Nagata, Ken-ichi

    1996-10-01

    Turbulence characteristics in the process of turbulence evolution in an air-in-air jet flow are explored in a constant velocity region (CVR), a transitional turbulence region (TTR), and a preservative turbulence region (PTR). Swift velocity variations (i.e., turbulent velocities), which are caused by entrainment due to the viscous shear of the fluid motion, occur intermittently in the CVR and the TTR. The probability density function (PDF) of the turbulent velocity departs largely in the TTR from a Gaussian PDF. The scaling property in the inertial subrange (ISR) begins to appear in the TTR, where the turbulent velocity is intermittent even in the ISR. Fully developed turbulence established in the PTR exhibits a nearly Gaussian PDF, and is basically intermittent at viscous subrange (VSR) frequencies. The intermittency effects are inherent in the VSR throughout the process of turbulence evolution. The scaling property is the attribute of the scaling transformation invariance of the Navier-Stokes equation for an incompressible fluid in the inviscid limit. The intermittency effects are attributed to the instability of flow motion. The intermittency is not directly related to the scaling property.

  2. LES of turbulent flow past axial flow turbines and turbine arrays: Model development and validation

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Kang, Seokkoo; Yang, Xiaolei; Chamorro, Leonardo; Hill, Craig

    2012-11-01

    We present recent progress towards the numerical simulation of turbulent flows past axial-flow wind and hydrokinetic turbines and farms. For simulating multi-turbine arrays, we combine turbine parameterization approaches (actuator disk and actuator line models) with our curvilinear-immersed boundary (CURVIB) LES model. Simulations are carried out both for aligned and staggered wind farms and the computed results are compared with wind tunnel experiments carried out at the St. Anthony Falls Laboratory (SAFL) atmospheric boundary layer wind tunnel. Turbine geometry resolving simulations also employ the CURVIB-LES solver with a wall model and very fine computational grids. Simulations are reported for a complete model marine turbine mounted at the bottom of a straight open channel and the computed results are compared with laboratory experiments obtained in the SAFL Main Channel. The simulated flowfields are analyzed to elucidate the structure of the turbine wake, identify large-scale instabilities, and quantify the mechanisms of turbulence production in the near and far wakes. This work was supported by US Department of Energy (Grant No. DE-EE0002980, DE-EE0005482), Xcel Energy (Grant No. RD3-42), Verdant Power, Initiative for Renewable Energy & the Environment (Grant No. RO-0004-12), and Minnesota Supercomputing Institute.

  3. Turbulent amplification of magnetic fields in colliding laboratory jets

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Meinecke, J.; Bell, A. R.; Doyle, H.; Bingham, R.; Churazov, E. M.; Crowston, R.; Murphy, C. D.; Woolsey, N. C.; Drake, R. P.; Kuranz, C. C.; MacDonald, M. J.; Wan, W. C.; Koenig, M.; Pelka, A.; Ravasio, A.; Yurchak, R.; Kuramitsu, Y.; Sakawa, Y.; Park, H.-S.; Reville, B.; Miniati, F.; Schekochihin, A. A.; Lamb, D. Q.; Gregori, G.

    2015-11-01

    Turbulence and magnetic fields are ubiquitous in the universe. In galaxy clusters, turbulence is believed to amplify seed magnetic fields to values of a few μG, as observed through diffuse radio-synchrotron emission and Faraday rotation measurements. In this study we present experiments that emulate such a process in a controlled laboratory environment. Two laser-driven plasma flows collide to mimic the dynamics of a cluster merger. From the measured density fluctuations we infer the development of Kolmogorov-like turbulence. Measurements of the magnetic field show it is amplified by turbulent motions, reaching a non-linear regime that is a precursor to turbulent dynamo. We also present numerical simulations with the FLASH code that model these experiments. The simulations reproduce the measured plasma properties and enable us to disentangle and characterize the complex physical processes that occur in the experiment. This study provides a promising experimental platform to probe magnetic field amplification by turbulence in plasmas, a process thought to occur in many astrophysical phenomena.

  4. Turbulent transport and length scale measurement experiments with comfined coaxial jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Roback, R.

    1984-01-01

    A three phase experimental study of mixing downstream of swirling and nonswirling confined coaxial jets was conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures. The present effort was directed toward the acquisition of length scale and dissipation rate data that provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur, and the acquisition of mass and momentum turbulent transport data for a nonswirling flow condition with a blunt inner jet inlet configuration rather than the tapered inner jet inlet. A measurement technique, generally used to obtain approximate integral length and microscales of turbulence and dissipation rates, was computerized. Results showed the dissipation rate varied by 2 1/2 orders of magnitude across the inlet plane, by 2 orders of magnitude 51 mm from the inlet plane, and by 1 order of magnitude at 102 mm from the inlet plane for a nonswirling flow test conditions.

  5. Blazar Variability from Turbulence in Jets Launched by Magnetically Arrested Accretion Flows

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2017-07-01

    Blazars show variability on timescales ranging from minutes to years, the former being comparable to and in some cases even shorter than the light-crossing time of the central black hole. The observed γ-ray light curves can be described by a power-law power density spectrum (PDS), with a similar index for both BL Lacs and flat-spectrum radio quasars. We show that this variability can be produced by turbulence in relativistic jets launched by magnetically arrested accretion flows (MADs). We perform radiative transport calculations on the turbulent, highly magnetized jet launching region of a MAD with a rapidly rotating supermassive black hole. The resulting synchrotron and synchrotron self-Compton emission, originating from close to the black hole horizon, is highly variable. This variability is characterized by PDS, which is remarkably similar to the observed power-law spectrum at frequencies less than a few per day. Furthermore, turbulence in the jet launching region naturally produces fluctuations in the plasma on scales much smaller than the horizon radius. We speculate that similar turbulent processes, operating in the jet at large radii (and therefore a high bulk Lorentz factor), are responsible for blazar variability over many decades in frequency, including on minute timescales.

  6. Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  7. A model for droplet condensational growth in a turbulent, axisymmetric jet

    NASA Astrophysics Data System (ADS)

    Keedy, Ryan; Aliseda, Alberto

    2011-11-01

    Droplet growth at the edge of clouds is strongly influenced by the non-linear saturation field produced by mixing of warm, wet air inside the cloud with cold, dry air outside. This, together with the high intermittency of the turbulent at these geological scales, leads to uncertainty in the modeling of this process. We use experiments in a turbulent, axisymmetric jet to study this problem and develop a model. Although the distribution of a passive scalar in a turbulent jet is a classic problem, with a well-established solution, little attention has been devoted to heterogeneous nucleation, condensational growth and evaporation within a turbulent mixing layer where local supersaturation values may exceed unity. By leveraging the well-characterized self-similar behavior of a scalar (temperature, humidity) within a turbulent jet, we use a stochastic model for the instantaneous values from the statistics of the distribution to determine the super-saturation profile. Taking into account the high intermittency of the supersaturation field allows us to predict the droplet size at various stages of the flow. A Phase Doppler Particle Analyzer (PDPA) is used to collect statistics of velocity statistics, droplet growth and frequency that are used to inform the development and validation of the model.

  8. Turbulence Measurements of a High Reynolds Number Inclined Jet in Crossflow using PIV and FRAP

    NASA Astrophysics Data System (ADS)

    Aga, Vipluv; Feliciani, Claudio; Chokani, Ndaona; Abhari, Reza

    2007-11-01

    The TKE, turbulence intensity and Reynolds shear stress for a jet inclined at 30^o to the freestream with a blowing ratio of 2 and Reynolds numbers, based on hole diameter, (Red) of 30000 are measured using 3-D Stereoscopic PIV and a miniature Fast Response Aerodynamic Probe (FRAP). The Maximum Entropy Method is used to compose a spectrum for variance calculations from PIV data, thereby ameliorating the low sampling rate and systematic noise. The PIV measurements are compared with those from the FRAP and found to be within error estimates. TKE contours indicate that the two main sites of turbulence production are the counter rotating vortex pair and the shearing surface of the jet. It is observed that the turbulence within the vortex pair is higher and dissipates slower than that in the jet shear surface. The eddy diffusivities of momentum in different cardinal directions are also compared and found to have an anistropic distribution. The mechanisms of turbulent mixing in this complex flow and their relevance to turbulence modeling are commented upon.

  9. Lagrangian filtered density function for LES-based stochastic modelling of turbulent particle-laden flows

    NASA Astrophysics Data System (ADS)

    Innocenti, Alessio; Marchioli, Cristian; Chibbaro, Sergio

    2016-11-01

    The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study particle-laden turbulent flows, when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGSs) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided by LES and then used to advance the SDEs in time. The model consistency is assessed in the limit of particles with zero inertia, when "duplicate fields" are available from both the Eulerian LES and the Lagrangian tracking. Tests with inertial particles were performed to examine the capability of the model to capture the particle preferential concentration and near-wall segregation. Upon comparison with DNS-based statistics, our results show improved accuracy and considerably reduced errors with respect to the case in which no SGS model is used in the equations of particle motion.

  10. Analytical and experimental investigation of circulation control by means of a turbulent Coanda jet

    NASA Technical Reports Server (NTRS)

    Levinsky, E. S.; Yeh, T. T.

    1972-01-01

    An analytical and experimental investigation of circulation control on a circular cylinder by means of tangential blowing (Coanda effect) is presented. The analytical method developed has also been used to estimate the blowing coefficients required for achieving potential flow on airfoils with flaps. The analysis is presented for conditions for which the flow in the boundary layer ahead of the jet exit is turbulent. The turbulent boundary layer and the jet layer on the upper surface, and the turbulent boundary layer on the lower surface are computed by a multi-strip integral method. The region of integration is between the correponding transition and separation points on each surface. Longitudinal curvature effects, which give rise to a radial pressure gradient across the jet layer and to an additional adverse tangential pressure gradient just upstream of the separation point, are included in the jet layer analysis in an approximate manner. The longitudinal curvature effect is found to have a pronounced influence on the separation of the jet layer.

  11. The emergence of zonal jets in forced rotating shallow water turbulence: A laboratory study

    NASA Astrophysics Data System (ADS)

    Espa, S.; Di Nitto, G.; Cenedese, A.

    2010-11-01

    The emergence of a sequence of alternating intense and elongated eastward-westward bands i.e. zonal jets in the atmosphere of the giant planets and in Earth's oceans have been widely investigated. Nevertheless jets formation and role as material barriers remain still unclear. Jets are generated in a quasi-2D turbulent flow due to the latitudinal variation of the Coriolis parameter (the so-called β-effect) which modifies the inverse cascade process channeling energy towards zonal modes. In previous experiments we have investigated the impact of the variation of the rotation rate, of the domain geometry and of the initial spectra on jets organization in a decaying regime. In this work we investigate the formation of jets in a continuously forced flow, we characterize the observed regime and also we attempt to verify the existence of an universal regime corresponding to the so-called zonostrophic turbulence. The experimental set-up consists of a rotating tank where turbulence is generated by electromagnetically forcing a shallow layer of an electrolyte solution, and the variation of the Coriolis parameter has been simulated by the parabolic profile assumed by the free surface of the fluid under rotation. Flow measurements have been performed using image analysis.

  12. Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2012-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  13. Computation of a Synthetic Jet in a Turbulent Cross-Flow Boundary Layer

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2004-01-01

    A series of unsteady Reynolds-averaged Navier-Stokes computations are performed for the flow of a synthetic jet issuing into a turbulent boundary layer through a circular orifice. This is one of the validation test cases from a synthetic jet validation workshop held in March 2004. Several numerical parameters are investigated, and the effects of three different turbulence models are explored. Both long-time-averaged and time-dependent phase-averaged results are compared to experiment. On the whole, qualitative comparisons of the mean flow quantities are fairly good. There are many differences evident in the quantitative comparisons. The calculations do not exhibit a strong dependence on the type of turbulence model employed.

  14. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  15. Analysis of the effect of initial conditions on the initial development of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Kim, Soong KI; Chung, Myung Kyoon; Cho, Ji Ryong

    1992-01-01

    The effect of the initial condition at the jet exit on the downstream evolution, particularly within the potential core length, were numerically investigated as well as with available experimental data. In order to select the most dependable computational model for the present numerical experiment, a comparative study has been performed with different turbulence models at k-epsilon level, and it was found that the k-epsilon-gammma model yields superior prediction accuracy over other conventional models. The calculated results show that the potential core length and the spreading rate the initial mixing layer are dependent on the initial length scale as well as the turbulent kinetic energy at the jet exit. Such effect of the initial length scale increases with higher initial turbulence level. An empirical parameter has been devised to collapse the calculated data of the potential core length and the spreading rate with various initial conditions onto a single curve.

  16. Particle removal from smooth and rough surfaces by turbulent jet impingement

    NASA Astrophysics Data System (ADS)

    Liebner, Thomas; Settles, Gary

    2006-11-01

    Recent experiments, e.g. Phares, Smedley & Flagan, J. Aerosol Sci. 31(11) 1335, 2000, have characterized monodisperse particle removal as a function of the theoretical wall shear stress induced by a free turbulent jet impinging upon a smooth surface. These experiments were done with variable jet impingement angle, duration, pressure, standoff distance, etc. The current research expands upon this theme through the experimental investigation of particle removal at larger standoff distances and correspondingly lower wall shear stress levels. We determine particle removal efficiency ratings as a function of the induced wall shear stress for particles of varying size and composition. Finally, we address the complications that arise in particle removal by turbulent jets if the impingement surface is no longer smooth (e.g. a fabric surface). This work has application to such problems as contamination control and the sampling of chemical traces from common surfaces.

  17. A visual study in the near field of turbulent jets and implications for estimating accidental discharges

    NASA Astrophysics Data System (ADS)

    Savaş, Ö.

    2012-11-01

    A series of dye flow visualization experiments are carried out in water to study the visible flow features in the near field of turbulent jets and to assess their usefulness in estimating the discharge rate of a turbulent jet in a homogeneous medium. The jet Reynolds numbers are 0.3-2.2 × 105. The large eddies at the core of the flow and the smaller eddies at the edge show disparate, independent length scales. Their convection speeds are more than an order of magnitude apart. Discharge rate estimates based on large-scale core features are useful. However, their reliability depends on a priori knowledge of the state of the bulk flow upstream of the discharge location. A useful method for estimating discharge rates based on the small-scale outer edge features is not obvious.

  18. Effect of liquid droplets on turbulence in a round gaseous jet

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Elghobashi, S. E.

    1986-01-01

    The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data.

  19. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames

    SciTech Connect

    Mehta, R.S.; Haworth, D.C.; Modest, M.F.

    2010-05-15

    A comprehensive model for luminous turbulent flames is presented. The model features detailed chemistry, radiation and soot models and state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions. A transported probability density function (PDF) method is used to capture the effects of turbulent fluctuations in composition and temperature. The PDF method is extended to include soot formation. Spectral gas and soot radiation is modeled using a (particle-based) photon Monte Carlo method coupled with the PDF method, thereby capturing both emission and absorption turbulence-radiation interactions. An important element of this work is that the gas-phase chemistry and soot models that have been thoroughly validated across a wide range of laminar flames are used in turbulent flame simulations without modification. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O{sub 2} to 55% O{sub 2}). All simulations are carried out with a single set of physical and numerical parameters (model constants). Uniformly good agreement between measured and computed mean temperatures, mean soot volume fractions and (where available) radiative fluxes is found across all flames. This demonstrates that with the combination of a systematic approach and state-of-the-art physical models and numerical algorithms, it is possible to simulate a broad range of luminous turbulent flames with a single model. (author)

  20. Quantifying the Uncertainty in a Computational Fluid Dynamics Turbulent Twin Jet Model

    NASA Astrophysics Data System (ADS)

    Lawrence, Seth Sheldon

    Ubiquitous application of CFD motivates the need to verify and validate CFD models and quantify uncertainty in the results. The objective of this research was to investigate the uncertainty interval over which an ANSYS Fluent CFD model predicted the axial velocity in a turbulent twin jet flow regime with 95% confidence. The modeling domain was composed of water, injected through a nozzle and into a static holding tank. This configuration was described by the American Society of Mechanical Engineers (ASME), Nuclear System Thermal Fluids Behavior (V&V30) Standard Committee as a twin jet benchmark verification and validation problem. The steady Reynolds Average Navier-Stokes (RANS) approach utilizing a realizable k-ε turbulence model was chosen. The system response quantity under consideration was the axial velocity of the flowfield in both the pre- and post-combing regions of the twin jet flow. The model input uncertainty in the jet width and spacing was treated as epistemic, with aleatory uncertainties in the mass-flow-rate and turbulence inputs for each jet. Numerical uncertainty was considered at the discretization level, through grid refinement and the Grid Convergence Index (GCI) method. Validation uncertainty was achieved through a validation procedure using experimental data. The uncertainties in the model inputs, numerics, and validation, were combined to quantify the total uncertainty in the Fluent CFD model. The results indicated that numerical uncertainty was the dominate factor in the region near the jet nozzle, located before the two jets merge together. Moving further away from the nozzle, to the region where the jets merge to form a single jet, the numerical uncertainty was reduced significantly. In this region, differences between the model and experiment resulted in a dominant validation uncertainty. This uncertainty was observed as the consistent under prediction of axial velocity in the combined flow region. The final results offered a prediction

  1. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model

    NASA Technical Reports Server (NTRS)

    Younis, Bassam A.; Gatski, Thomas B.; Speziale, Charles G.

    1994-01-01

    Data from free turbulent jets both with and without swirl are used to assess the performance of the pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses. Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi model which are linear in the same terms. All models are used as part of a complete second-order closure based on the solution of differential transport equations for each non-zero component of the Reynolds stress tensor together with an equation for the scalar energy dissipation rate. For non-swirling jets, the quadratic model underestimates the measured spreading rate of the plane jet but yields a better prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the mean flow and the turbulence structure in sharp contrast with the linear models which yield results that are in serious error. The reasons for these differences are discussed.

  2. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.

    PubMed

    Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P

    2016-02-27

    3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core.

  3. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  4. Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate.

    PubMed

    Benmouhoub, Dahbia; Mataoui, Amina

    2013-10-01

    The flow field and heat transfer of a plane impinging jet on a hot moving wall were investigated using one point closure turbulence model. Computations were carried out by means of a finite volume method. The evolutions of mean velocity components, vorticity, skin friction coefficient, Nusselt number and pressure coefficient are examined in this paper. Two parameters of this type of interaction are considered for a given impinging distance of 8 times the nozzle thickness (H/e = 8): the jet-surface velocity ratio and the jet exit Reynolds number. The flow field structure at a given surface-to-jet velocity ratio is practically independent to the jet exit Reynolds number. A slight modification of the flow field is observed for weak surface-to-jet velocity ratios while the jet is strongly driven for higher velocity ratio. The present results satisfactorily compare to the experimental data available in the literature for Rsj ≤ 1.The purpose of this paper is to investigate this phenomenon for higher Rsj values (0 ≤ Rsj ≤ 4). It follows that the variation of the mean skin friction and the Nusselt number can be correlated according to the surface-to-jet velocity ratios and the Reynolds numbers.

  5. LES of Triangular-stabilized Lean Premixed Turbulent Flames with an algebraic reaction closure: Quality and Error Assessment

    NASA Astrophysics Data System (ADS)

    Manickam, B.; Franke, J.; Muppala, S. P. R.; Dinkelacker, F.

    In this LES study, an algebraic flame surface wrinkling model based on the progress variable gradient approach is validated for lean premixed turbulent propane/air flames measured on VOLVO test rig. These combustion results are analyzed for uncertainty in the solution using two quality assessment techniques.

  6. Turbulent Noncondensing and Condensing Gas Jets in Liquids.

    DTIC Science & Technology

    1985-08-01

    direct-contact condensers, gas dissolution systems, reservoir destratification , nuclear reactor pressure suppression systems, etc. The present...vapor jets were handled with equal success justified analogy between these systems (Avery and Faeth, 1975). Treatment of external expansion was crude ...positive-displacement meters. The temperature of the inlet air is monitored with thermocouples. Seeding maurials in the flow include oil particles, for LDA

  7. On the effect of fractal generated turbulence on the heat transfer of circular impinging jets

    NASA Astrophysics Data System (ADS)

    Astarita, Tommaso; Cafiero, Gioacchino; Discetti, Stefano

    2013-11-01

    The intense local heat transfer achieved by circular impinging jets is exploited in countless industrial applications (cooling of turbine blades, paper drying, tempering of glass and metals, etc). The heat transfer rate depends mainly on the Reynolds number, the nozzle-to-plate distance and the upstream turbulence. It is possible to enhance the heat transfer by exciting/altering the large scale structures embedded within the jet. In this work turbulent energy is injected by using a fractal grid at the nozzle exit. Fractal grids can generate more intense turbulence with respect to regular grids with the same blockage ratio by enhancing the jet turbulence over different scales. Consequently, they are expected to improve the convective heat transfer. The results outline that a significant improvement is achieved (for small nozzle-to-plate distances up to 100% at the stagnation point and more than 10% on the integral heat transfer over a circular area of 3 nozzle diameters) under the same power input.

  8. Large scale Direct Numerical Simulation of premixed turbulent jet flames at high Reynolds number

    NASA Astrophysics Data System (ADS)

    Attili, Antonio; Luca, Stefano; Lo Schiavo, Ermanno; Bisetti, Fabrizio; Creta, Francesco

    2016-11-01

    A set of direct numerical simulations of turbulent premixed jet flames at different Reynolds and Karlovitz numbers is presented. The simulations feature finite rate chemistry with 16 species and 73 reactions and up to 22 Billion grid points. The jet consists of a methane/air mixture with equivalence ratio ϕ = 0 . 7 and temperature varying between 500 and 800 K. The temperature and species concentrations in the coflow correspond to the equilibrium state of the burnt mixture. All the simulations are performed at 4 atm. The flame length, normalized by the jet width, decreases significantly as the Reynolds number increases. This is consistent with an increase of the turbulent flame speed due to the increased integral scale of turbulence. This behavior is typical of flames in the thin-reaction zone regime, which are affected by turbulent transport in the preheat layer. Fractal dimension and topology of the flame surface, statistics of temperature gradients, and flame structure are investigated and the dependence of these quantities on the Reynolds number is assessed.

  9. Review of literature on local scour under plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Aamir, Mohammad; Ahmad, Zulfequar

    2016-10-01

    Stability of hydraulic structures is threatened by persistent scour downstream of the apron, which renders their foundations exposed. Jets issuing under the sluice gate are turbulent enough to cause significant scour. Extensive study of the jets is, therefore, necessary in order to understand the underlying hydraulics and provide remedial measures. In this paper, a comprehensive review of the investigations on local scour caused by wall jets is presented, including both the classical as well as the prevalent approach. Various aspects of the scour under wall jets have been explained, including the process of scouring, different parameters affecting the maximum scour depth, analysis of flow characteristics within the scour hole and on the apron, time variation of scour depth, rate of sediment removal, and scour depth estimation formulae.

  10. Specific features of a stopped pipe blown by a turbulent jet: Aeroacoustics of the panpipes.

    PubMed

    Auvray, Roman; Fabre, Benoît; Meneses, Felipe; de la Cuadra, Patricio; Lagrée, Pierre-Yves

    2016-06-01

    Flute-like instruments with a stopped pipe were widely used in ancient cultures and continue to be used in many musical expressions throughout the globe. They offer great flexibility in the input control parameters, allowing for large excursions in the flux and in the geometrical configuration for the lips of the instrumentalist. For instance, the transverse offset of the jet axis relative to the labium can be shifted beyond the operational limits found in open-open pipes, and the total jet flux can be increased up to values that produce highly turbulent jets while remaining on the first oscillating regime. Some of the fundamental aspects of the acoustics and hydrodynamics of this kind of instrument are studied, like the instability of the jet wave and the static aerodynamic balance in the resonator. A replica of an Andean siku has been created to observe, through the Schlieren flow visualization, the behavior of both excitation and resonator of the instrument.

  11. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  12. Computation of Supersonic Jet Mixing Noise Using PARC Code With a kappa-epsilon Turbulence Model

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Kim, C. M.

    1999-01-01

    A number of modifications have been proposed in order to improve the jet noise prediction capabilities of the MGB code. This code which was developed at General Electric, employees the concept of acoustic analogy for the prediction of turbulent mixing noise. The source convection and also refraction of sound due to the shrouding effect of the mean flow are accounted for by incorporating the high frequency solution to Lilley's equation for cylindrical jets (Balsa and Mani). The broadband shock-associated noise is estimated using Harper-Bourne and Fisher's shock noise theory. The proposed modifications are aimed at improving the aerodynamic predictions (source/spectrum computations) and allowing for the non- axisymmetric effects in the jet plume and nozzle geometry (sound/flow interaction). In addition, recent advances in shock noise prediction as proposed by Tam can be employed to predict the shock-associated noise as an addition to the jet mixing noise when the flow is not perfectly expanded. Here we concentrate on the aerodynamic predictions using the PARC code with a k-E turbulence model and the ensuing turbulent mixing noise. The geometry under consideration is an axisymmetric convergent-divergent nozzle at its design operating conditions. Aerodynamic and acoustic computations are compared with data as well as predictions due to the original MGB model using Reichardt's aerodynamic theory.

  13. The Radiated Noise from Isotropic Turbulence with Applications to the Theory of Jet Noise

    NASA Astrophysics Data System (ADS)

    Lilley, G. M.

    1996-02-01

    Lighthill [1], in his Theory of Aerodynamic Noise, considered the noise from a pseudo-finite yet unbounded domain of compressible unsteady flow. The first application of this theory was given by Proudman [2] for the case of isotropic turbulence at low Mach numbers and high Reynolds numbers. More recently, Lilley [3] and Sarkar and Hussaini [4], using Direct Numerical Simulation (DNS), have reconsidered this problem, and evaluated for the first time the fourth order space-retarded time covariance which is central to Lighthill's theory for the determination of the acoustic radiated sound power. In this paper the previous work is extended to include the effects of a hot fluid in motion immersed in an external medium at rest. On the introduction of a simple hypothesis these results for the noise radiated from isotropic turbulence are used to predict the noise power radiated from a gaseous hot turbulent jet. The results are found to be qualitatively in agreement with far field experimental data on hot jets at subsonic and supersonic speeds, provided the jets are fully expanded and are devoid of shock waves. The theory has its origins in the 1950s following the publication of Lighthill's theory of aerodynamic noise, when Professor E. J. Richards, the author and their colleagues were striving to predict the noise from jet engines and establish methods for their noise reduction, without loss in performance.

  14. Turbulent transport and entrainment in jets and plumes: A DNS study

    NASA Astrophysics Data System (ADS)

    van Reeuwijk, Maarten; Salizzoni, Pietro; Hunt, Gary R.; Craske, John

    2016-11-01

    We present a direct numerical simulation (DNS) data set for a statistically axisymmetric turbulent jet, plume, and forced plume in a domain of size 40 r0×40 r0×60 r0 , where r0 is the source diameter. The data set supports the validity of the Priestley-Ball entrainment model in unstratified environments (excluding the region near the source) [Priestley and Ball, Q. J. R. Meteor. Soc. 81, 144 (1955), 10.1002/qj.49708134803], which is corroborated further by the Wang-Law and Ezzamel et al. experimental data sets [Wang and Law, J. Fluid Mech. 459, 397 (2002), 10.1017/S0022112002008157; Ezzamel et al., J. Fluid Mech. 765, 576 (2015), 10.1017/jfm.2014.694], the latter being corrected for a small but influential coflow that affected the statistics. We show that the second-order turbulence statistics in the core region of the jet and the plume are practically indistinguishable from each other, although there are significant differences near the plume edge. The DNS data indicate that the turbulent Prandtl number is about 0.7 for both jets and plumes. For plumes, this value is a result of the difference in the ratio of the radial turbulent transport of radial momentum and buoyancy. For jets, however, the value originates from a different spread of the buoyancy and velocity profiles, in spite of the fact that the ratio of radial turbulent transport terms is approximately unity. The DNS data do not show any evidence of similarity drift associated with gradual variations in the ratio of buoyancy profile to velocity profile widths.

  15. Jets.

    PubMed

    Rhines, Peter B.

    1994-06-01

    This is a discussion of concentrated large-scale flows in planetary atmospheres and oceans, argued from the viewpoint of basic geophysical fluid dynamics. We give several elementary examples in which these flows form jets on rotating spheres. Jet formation occurs under a variety of circumstances: when flows driven by external stress have a rigid boundary which can balance the Coriolis force, and at which further concentration can be caused by the beta effect; when there are singular lines like the line of vanishing windstress or windstress-curl, or the Equator; when compact sources of momentum, heat or mass radiate jet-like beta plumes along latitude circles; when random external stirring of the fluid becomes organized by the beta effect into jets; when internal instability of the mass field generates zonal flow which then is concentrated into jets; when bottom topographic obstacles radiate jets, and when frontogenesis leads to shallow jet formation. Essential to the process of jet formation in stratified fluids is the baroclinic life cycle described in geostrophic turbulence studies; there, conversion from potential to kinetic energy generates eddy motions, and these convert to quasibarotropic motions which then radiate and induce jet-like large-scale circulation. Ideas of potential vorticity stirring by eddies generalize the notion of Rossby-wave radiation, showing how jets embedded in an ambient potential vorticity gradient (typically due to the spherical geometry of the rotating planet) gain eastward momentum while promoting broader, weaker westward circulation. Homogenization of potential vorticity is an important limit point, which many geophysical circulations achieve. This well-mixed state is found in subdomains of the terrestrial midlatitude oceans, the high-latitude circumpolar ocean, and episodically in the middle atmosphere. Homogenization expels potential vorticity gradients vertically to the top and bottom of the fluid, and sideways to the edges of

  16. Large Eddy Simulation of Gravitational Effects on Transitional and Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Jaberi, Farhad A.

    2001-01-01

    The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.

  17. Dissipation element analysis of a turbulent non-premixed jet flame

    NASA Astrophysics Data System (ADS)

    Gauding, Michael; Dietzsch, Felix; Goebbert, Jens Henrik; Thévenin, Dominique; Abdelsamie, Abouelmagd; Hasse, Christian

    2017-08-01

    The objective of the present work is to examine the interaction between turbulent mixing and chemistry by employing the method of dissipation elements in a non-premixed turbulent jet flame. The method of dissipation elements [L. Wang and N. Peters, J. Fluid Mech. 554, 457-475 (2006)] is used to perform a space-filling decomposition of the turbulent jet flow into different regimes conditioned on their location with respect to the reaction zone. Based on the non-local structure of dissipation elements, this decomposition allows us to discern whether points away from stoichiometry are connected through a diffusive layer with the reaction zone. In a next step, a regime based statistical analysis of dissipation elements is carried out by means of data obtained from a direct numerical simulation. Turbulent mixing and chemical reactions depend strongly on the mixture fraction gradient. From a budget between strain and dissipation, the mechanism for the formation and destruction of mean gradients along dissipation elements is inspected. This budget reveals that large gradients in the mixture fraction field occur at a small but finite length scale. Finally, the inner structure of dissipation elements is examined by computing statistics along gradient trajectories of the mixture fraction field. Thereby, the method of dissipation elements provides a statistical characterization of flamelets and novel insight into the interaction between chemistry and turbulence.

  18. Scattering from condensates in turbulent jets. [for crossed beam instruments

    NASA Technical Reports Server (NTRS)

    Wilson, L. N.; Dennen, R. S.

    1970-01-01

    An analysis is made of the scattering signal levels to be expected from condensed water vapor droplets for crossed-beam instruments operating in the wavelength region. 18 to 4.3 microns. The results show that scattering should not present a problem for the infrared system operating under conditions typical of the IITRI jet facility. Actual measurements made for comparison indicate that scattering levels are appreciable, and presumably result from oil mist added by the facility air compressors.

  19. Efficiency prediction for a low head bulb turbine with SAS SST and zonal LES turbulence models

    NASA Astrophysics Data System (ADS)

    Jošt, D.; Škerlavaj, A.

    2014-03-01

    A comparison between results of numerical simulations and measurements for a 3-blade bulb turbine is presented in order to determine an appropriate numerical setup for accurate and reliable simulations of flow in low head turbines. Numerical analysis was done for three angles of runner blades at two values of head. For the smallest blade angle the efficiency was quite accurately predicted, but for the optimal and maximal blade angles steady state analysis entirely failed to predict the efficiency due to underestimated torque on the shaft and incorrect results in the draft tube. Transient simulation with SST did not give satisfactory results, but with SAS and zonal LES models the prediction of efficiency was significantly improved. From the results obtained by SAS and zonal LES the interdependence between turbulence models, vortex structures in the flow, values of eddy viscosity and flow energy losses in the draft tube can be seen. Also the effect of using the bounded central differential scheme instead of the high resolution scheme was evident. To test the effect of grid density, simulations were performed on four grids. While a difference between results obtained on the basic grid and on the fine grid was small, the results obtained on the coarse grids were not satisfactory.

  20. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  1. Simulation of a subsonic isothermal turbulent submerged jet flowing from an annular nozzle

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.

    2008-03-01

    A simulation of the flow in a jet has been carried out with the use of the Reynolds-averaged, space-filtered Navier-Stokes equations closed by the k-ɛ model of turbulence and the subgrid RNG model of eddy viscosity. The results of calculations carried out on the basis of the k-ɛ model and the results of simulation of large vortices are in quantitative and qualitative agreement with the corresponding measurement data, which is evidence in favor of the main laws defining the decay of the gas-dynamic behavior of cold-gas submerged jets and the fluctuations of their parameters.

  2. Large eddy simulation in a turbulent jet exhausting into a submerged space or a cocurrent flow

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.

    2011-01-01

    Results of large eddy simulations in a subsonic isothermal turbulent jet exhausting from a circular nozzle into a submerged space or a cocurrent flow are presented. The flow is described by space-averaged Navier-Stokes equations and by the RNG model of subgrid scale viscosity. Results computed for different values of the cocurrency parameter are compared with available results of numerical simulations and experimental data. The results obtained are found to agree well with measured data and to confirm the basic laws of variation of gas-dynamic and fluctuating parameters of submerged and cocurrent jets.

  3. Dynamic Models for LES of Turbulent Front Propagation With a Spectral Method

    NASA Technical Reports Server (NTRS)

    Im, H. G.; Lund, T. S.; Ferziger, J. H.

    1996-01-01

    Direct numerical simulation of turbulent reacting flows places extreme demands on computational resources. At the present time, simulations can be performed only for greatly simplified reaction systems and for very low Reynolds numbers. Direct simulation of more realistic cases occurring at higher Reynolds number and including multiple species and numerous chemical reactions will exceed available computational resources far into the future. Because of this, there is a clear need to develop the technique of large eddy simulation for reacting flows. Unfortunately this task is complicated by the fact that combustion arises from chemical reactions that occur at the smallest scales of the flow. Capturing the large-scale behavior without resolving the small-scale details is extremely difficult in combustion problems. Thus LES modeling for turbulent combustion encounters difficulties not present in modeling momentum transport, in which the main effect of the small scales is to provide dissipation. The difficulty is more pronounced in premixed combustion, where detailed chemistry plays an essential role in determining the flame speed (or overall burning rate); in nonpremixed combustion infinite rate chemistry can be assumed, eliminating the small scale features to a first approximation.

  4. Dynamic Models for LES of Turbulent Front Propagation With a Spectral Method

    NASA Technical Reports Server (NTRS)

    Im, H. G.; Lund, T. S.; Ferziger, J. H.

    1996-01-01

    Direct numerical simulation of turbulent reacting flows places extreme demands on computational resources. At the present time, simulations can be performed only for greatly simplified reaction systems and for very low Reynolds numbers. Direct simulation of more realistic cases occurring at higher Reynolds number and including multiple species and numerous chemical reactions will exceed available computational resources far into the future. Because of this, there is a clear need to develop the technique of large eddy simulation for reacting flows. Unfortunately this task is complicated by the fact that combustion arises from chemical reactions that occur at the smallest scales of the flow. Capturing the large-scale behavior without resolving the small-scale details is extremely difficult in combustion problems. Thus LES modeling for turbulent combustion encounters difficulties not present in modeling momentum transport, in which the main effect of the small scales is to provide dissipation. The difficulty is more pronounced in premixed combustion, where detailed chemistry plays an essential role in determining the flame speed (or overall burning rate); in nonpremixed combustion infinite rate chemistry can be assumed, eliminating the small scale features to a first approximation.

  5. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen

    2013-11-01

    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  6. Turbulence Analysis Upstream of a Wind Turbine: a LES Approach to Improve Wind LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Calaf, M.

    2015-12-01

    Traditionally wind turbines learn about the incoming wind conditions by means of a wind vane and a cup anemometer. This approach presents two major limitations: 1) because the measurements are done at the nacelle, behind the rotor blades, the wind observations are perturbed inducing potential missalignement and power losses; 2) no direct information of the incoming turbulence is extracted, limiting the capacity to timely adjust the wind turbine against strong turbulent intensity events. Recent studies have explored the possibility of using wind LIDAR (Light Detection and Ranging) to overcome these limitations (Angelou et al. 2010 and Mikelsen et al., 2013). By installing a wind LIDAR at the nacelle of a wind turbine one can learn about the incoming wind and turbulent conditions ahead of time to timely readjust the turbine settings. Yet several questions remain to be answered such as how far upstream one should measure and what is the appropriate averaging time to extract valuable information. In light of recent results showing the relevance of atmospheric stratification in wind energy applications, it is expected that different averaging times and upstream scanning distances are advised for wind LIDAR measurements. A Large Eddy Simulation (LES) study exploring the use of wind LIDAR technology within a wind farm has been developed. The wind farm consists of an infinite array of horizontal axis wind turbines modeled using the actuator disk with rotation. The model also allows the turbines to dynamically adjust their yaw with the incoming wind vector. The flow is forced with a constant geostrophic wind and a time varying surface temperature reproducing a realistic diurnal cycle. Results will be presented showing the relevance of the averaging time for the different flow characteristics as well as the effect of different upstream scanning distances. While it is observed that within a large wind farm there are no-significant gains in power output by scanning further

  7. Validation Analysis for the Calculation of a Turbulent Free Jet in Water Using CFDS-FLOW 3-D and FLUENT

    SciTech Connect

    Dimenna, R.A.; Lee, S.Y.

    1995-05-01

    The application of computational fluid dynamics methods to the analysis of mixing in the high level waste tanks at the Savannah River Site requires a demonstration that the computer codes can properly represent the behavior of fluids in the tanks. The motive force for mixing the tanks is a set of jet pumps taking suction from the tank fluid and discharging turbulent jets near the bottom of the tank. The work described here focuses on the free turbulent jet in water as the simplest case of jet behavior for which data could be found in the open literature. Calculations performed with both CFDS-FLOW3D and FLUENT were compared with data as well as classical jet theory. Results showed both codes agreed reasonably well with each other and with the data, but that results were sensitive to the computational mesh and, to a lesser degree, the selection of turbulence models.

  8. Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L. (Compiler)

    2007-01-01

    The papers presented here are from the Langley Research Center Workshop on Computational Fluid Dynamics (CFD) Validation of Synthetic Jets and Turbulent Separation Control (nicknamed "CFDVAL2004"), held March 2004 in Williamsburg, Virginia. The goal of the workshop was to bring together an international group of CFD practitioners to assess the current capabilities of different classes of turbulent flow solution methodologies to predict flow fields induced by synthetic jets and separation control geometries. The workshop consisted of three flow-control test cases of varying complexity, and participants could contribute to any number of the cases. Along with their workshop submissions, each participant included a short write-up describing their method for computing the particular case(s). These write-ups are presented as received from the authors with no editing. Descriptions of each of the test cases and experiments are also included.

  9. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  10. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code(NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation.

  11. The Interaction of Jet/Front Systems and Mountain Waves: Implications for Lower Stratospheric Aviation Turbulence

    DTIC Science & Technology

    2008-01-01

    wing and an engine. In this case the superposition of two distinct jet features was hypothesized to have established an unusually strong inversion just...above the tropopause which allowed strong buoyancy-driven motions to enhance the horizontal shear and turbulent eddies, eventually leading to the...in this case, with a strong upstream trough and decreasing cyclonic curvature with height above the tropopause Report Documentation Page Form

  12. The turbulent wall jet: a triple-layered structure and incomplete similarity.

    PubMed

    Barenblatt, G I; Chorin, A J; Prostokishin, V M

    2005-06-21

    We demonstrate using the high-quality experimental data that turbulent wall jet flows consist of two self-similar layers: a top layer and a wall layer, separated by a mixing layer where the velocity is close to maximum. The top and wall layers are significantly different from each other, and both exhibit incomplete similarity, i.e., a strong influence of the width of the slot that had previously been neglected.

  13. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    SciTech Connect

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  14. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGES

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  15. Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1983-01-01

    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  16. Dynamics of turbulent front at the correlation between atmospheric pressure plasma jet & gas flow field

    NASA Astrophysics Data System (ADS)

    Ghasemi, Maede; Xu, Haitao; Pei, Xuekai; Lu, Xinpei

    2016-09-01

    Among variety of plasma applications, there is significant interest recently in the use of plasma as an actuator in flow control for aerodynamic applications in which the correlation between atmospheric pressure plasma jet (APPJ) and gas flow field is a crucial role. In this contribution, dynamic characterizations of the turbulent flow field in APPj are investigated by focusing on the effect of different parameters of APPJ, such as applied voltage, pulse repetition frequency, gas flow rate, and time duration of the pulse We utilized Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate and applied voltage amplitude. It is found that the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation demonstrated that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream and the effect of increasing frequency results in the increasing of the number of turbulent front and expansion of their region of formation.

  17. Influence of Turbulence on the Restraint of Liquid Jets by Surface Tension in Microgravity Investigated

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2002-01-01

    Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity. After the code was implemented in axisymmetric form and verified by several test cases at the NASA Glenn Research Center, the drop tower runs of Aydelott were modeled. Work last year with a laminar model was found to overpredict Aydelott's results, except at the lowest Reynolds number conditions of 400. This year, a simple turbulence model was implemented by adding a turbulent viscosity based on the mixing-length hypothesis and empirical measurements of previous works. Predictions made after this change was implemented have been much closer to experimentally observed flow patterns and geyser heights. Two model runs is shown. The first, without any turbulence correction

  18. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  19. Mass and momentum turbulent transport experiments with confined swirling coaxial jets. I

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Roback, R.

    1984-01-01

    An experimental study of mixing downstream of swirling coaxial jets discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter and laser induced fluorescence techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. Mean and fluctuating velocity profiles and probability density functions were obtained at selected axial and radial locations throughout the flow field. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Major mixing regions were observed to occur (1) at the interface between the inner stream and the centerline recirculation zone, and (2) at the interface between the inner jet and the annular jet streams. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  20. A Comparison of Single and Multiphase Turbulent Jets, Pure and Forced Plumes at Moderate Reynolds Numbers.

    NASA Astrophysics Data System (ADS)

    Taub, G. N.; Balachandar, S.; Plourde, F.

    2012-11-01

    Turbulent axisymmetric shear flows, such as jets and plumes arise often in industrial applications and environmental studies. The recent Deep Water Horizon oil spill in the Gulf of Mexico is one example which brought to light the need for a greater understanding of the turbulent behavior of such flows. The results of Direct Numerical Simulations of single phase pure jets (Re=2000), pure plumes (Gr = 20002) and forced plumes (Re=1684, Ri=0.025), where both buoyancy and initial momentum are present, will be compared and contrasted. In addition to the mean flow behavior, second and third order statistics will be presented as well as the turbulent energy balance for all three flows. In the case of the forced plume, the transition from jet like behavior near the source of initial momentum to plume like behavior in the far field will be discussed. Preliminary results of laboratory experiments and Direct Numerical Simulations of multiphase forced plumes will also be presented. Supported in part by the National Science Foundation (NSF OISE-0968313) through the Partnership for International Research and Education (PIRE).

  1. Modelling for turbulent transport of nanoparticles growing around a thermal plasma jet

    NASA Astrophysics Data System (ADS)

    Shigeta, Masaya

    2015-09-01

    Modelling works for expressing the simultaneous processes of growth and transport of nanoparticles around a turbulent-like thermal plasma jet are presented. From the physical aspect, extending the previous model, a simple-but-consistent model which requires less computational costs is developed to describe the nanoparticles' birth and collective growth through homogeneous nucleation, heterogeneous condensation, and coagulation among themselves as well as transports by convection, diffusion, and thermophoresis. From the mathematical aspect, an original simulation code with higher accuracy is developed to express thermal plasma turbulence and to capture steep gradients in the spatial distribution of nanoparticles. As a base case, an argon thermal plasma jet is ejected at 1.5 slm from the nozzle, and iron vapor is supplied at 0.1 g/min with the plasma jet. The computation shows that the high-temperature plasma jet entrains the surrounding non-ionized gas because of Kelvin-Helmholtz instability at their interface. The instability waves grow up and then the interface rolls up to eddies. As the jet goes downstream, the eddies break to smaller ones, which lead to turbulence transition. This feature has also been reported in the experimental study. The iron vapor is transported with the plasma flow and simultaneously diffuses across the plasma's fringe where the vapor experiences the temperature decrease. As a result, the vapor changes its phase to nanoparticles through nucleation and condensation. The nanoparticles are also transported by convection and diffusion. The regions of large diameters coincide with those of low number densities of nanoparticles, because the size of nanoparticles increases through coagulation among themselves decreasing their own numbers.

  2. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  3. Plasma turbulence measured with fast frequency swept reflectometry in JET H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Sirinelli, A.; Meneses, L.; Contributors, JET

    2016-12-01

    In this work we present recent achievements to provide precise measurements of turbulence on JET H-mode plasmas using frequency sweeping reflectometry diagnostic. The plasma density fluctuations retrieved from swept reflected signals, first initiated with the Tore Supra reflectometry (Heuraux et al 2003 Rev. Sci. Instrum. 74 1501, Vermare et al 2006 Nucl. Fusion 46 S743, Gerbaud et al 2006 Rev. Sci. Instrum. 77 10E928), provides a radial profile of the density fluctuation level and its spectral structure. Using the complete set of the JET X-mode fast sweeping heterodyne reflectometers we have determined the temporal dynamic of the density fluctuation profile from the edge to the center during an H-mode discharge. At the L-H transition, the turbulence reduction seems to occur, at first, simultaneously from the edge to the center then deepens at the edge at ρ ~ 0.95 and this deepening propagates toward the center with a steepening of the wavenumber spectra. During an edge localized mode (ELM) event, a substantial density fluctuations increase has been observed with a localized turbulent wave front propagating toward the center accompanying a particle transport. We also show that type-III ELMs sustain a steady and high level of plasma turbulence compare to type-I.

  4. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2006-01-01

    A computational fluid dynamics (CFD) validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result, there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  5. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2004-01-01

    A CFD validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result. there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  6. Splattering and heat transfer during impingement of a turbulent liquid jet

    SciTech Connect

    Lienhard, J.H. V; Liu, X.; Gabour, L.A. )

    1992-05-01

    Splattering and heat transfer due to impingement of an unsubmerged, fully turbulent liquid jet is investigated experimentally and analytically. Heat transfer measurements were made along a uniformly heated surface onto which a jet impacted, and a Phase Doppler Particle Analyzer was used to measure the size, velocity, and concentration of the droplets splattered after impingement. Splattering is found to occur in proportion to the magnitude of surface disturbances to the incoming jet, and it is observed to occur only within a certain radial range, rather than along the entire film surface. A nondimensional group developed from inviscid capillary disturbance analysis of the circular jet successfully scales the splattering data, yielding predictive results for the onset of splattering results is used to formulate a prediction of local Nusselt number. Both the prediction and the experimental data reveal that the Nusselt number is enhanced for radial locations immediately following splattering, but falls below the nonsplattering Nusselt number at larger radii. The turbulent heat transfer enhancement upstream of splattering is also characterized.

  7. Parameter Estimation for a Turbulent Buoyant Jet Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Christopher, Jason D.; Wimer, Nicholas T.; Hayden, Torrey R. S.; Lapointe, Caelan; Grooms, Ian; Rieker, Gregory B.; Hamlington, Peter E.

    2016-11-01

    Approximate Bayesian Computation (ABC) is a powerful tool that allows sparse experimental or other "truth" data to be used for the prediction of unknown model parameters in numerical simulations of real-world engineering systems. In this presentation, we introduce the ABC approach and then use ABC to predict unknown inflow conditions in simulations of a two-dimensional (2D) turbulent, high-temperature buoyant jet. For this test case, truth data are obtained from a simulation with known boundary conditions and problem parameters. Using spatially-sparse temperature statistics from the 2D buoyant jet truth simulation, we show that the ABC method provides accurate predictions of the true jet inflow temperature. The success of the ABC approach in the present test suggests that ABC is a useful and versatile tool for engineering fluid dynamics research.

  8. Control of an axisymmetric turbulent jet by multi-modal excitation

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Experimental measurements of naturally occurring instability modes in the axisymmetric shear layer of high Reynolds number turbulent jet are presented. The region up to the end of the potential core was dominated by the axisymmetric mode. The azimuthal modes dominated only downstream of the potential core region. The energy content of the higher order modes (m is greater than 1) was significantly lower than that of the axisymmetric and m = + or - 1 modes. Under optimum conditions, two-frequency excitation (both at m = 0) was more effective than single frequency excitation (at m = 0) for jet spreading enhancement. An extended region of the jet was controlled by forcing combinations of both axisymmetric (m = 0) and helical modes (m = + or - 1). Higher spreading rates were obtained when multi-modal forcing was applied.

  9. Large eddy simulation of a particle-laden turbulent plane jet.

    PubMed

    Jin, Han-Hui; Luo, Kun; Fan, Jian-Ren; Cen, Ke-Fa

    2003-01-01

    Gas-solid two-phase turbulent plane jet is applied to many natural situations and in engineering systems. To predict the particle dispersion in the gas jet is of great importance in industrial applications and in the designing of engineering systems. A large eddy simulation of the two-phase plane jet was conducted to investigate the particle dispersion patterns. The particles with Stokes numbers equal to 0.0028, 0.3, 2.5, 28 (corresponding to particle diameter 1 microm, 10 microm, 30 microm, 100 microm, respectively) in Re = 11 300 gas flow were studied. The simulation results of gas phase motion agreed well with previous experimental results. And the simulation results of the solid particles motion showed that particles with different Stokes number have different spatial dispersion; and that particles with intermediate Stokes number have the largest dispersion ratio.

  10. Control of an axisymmetric turbulent jet by multi-modal excitation

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Experimental measurements of naturally occurring instability modes in the axisymmetric shear layer of high Reynolds number turbulent jet are presented. The region up to the end of the potential core was dominated by the axisymmetric mode. The azimuthal modes dominated only downstream of the potential core region. The energy content of the higher order modes (m is greater than 1) was significantly lower than that of the axisymmeteric and m = + or - 1 modes. Under optimum conditions, two-frequency excitation (both at m = 0) was more effective than single frequency excitation (at m = 0) for jet spreading enhancement. An extended region of the jet was controlled by forcing combinations of both axisymmetric (m = 0) and helical modes (m = + or - 1). Higher spreading rates were obtained when multi-modal forcing was applied.

  11. Control of an axisymmetric turbulent jet by multi-modal excitation

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Experimental measurements of naturally occurring instability modes in the axisymmetric shear layer of high Reynolds number turbulent jet are presented. The region up to the end of the potential core was dominated by the axisymmetric mode. The azimuthal modes dominated only downstream of the potential core region. The energy content of the higher order modes (m is greater than 1) was significantly lower than that of the axisymmetric and m = + or - 1 modes. Under optimum conditions, two-frequency excitation (both at m = 0) was more effective than single frequency excitation (at m = 0) for jet spreading enhancement. An extended region of the jet was controlled by forcing combinations of both axisymmetric (m = 0) and helical modes (m = + or - 1). Higher spreading rates were obtained when multi-modal forcing was applied.

  12. The mixing mechanism by organised turbulence structures in a plane jet excited by a novel method

    NASA Technical Reports Server (NTRS)

    Badri Narayanan, M. A.; Platzer, Max F.

    1988-01-01

    The effect on a plane subsonic turbulent jet of controlled high-amplitude periodic oscillations applied to the nozzle is investigated experimentally. A variable-speed motor and a gear-cam mechanism are used to make the lips of the nozzle reciprocate in opposite directions at the desired frequency. Velocity profiles, flow visualizations, and pressure-signal traces are presented and analyzed in detail. The complex vortex processes involved in the oscillation-induced spreading and entrainment of the jet are explored, and a critical Strouhal number for vortex formation and amplification is determined. The oscillation technique is found to augment the thrust of a jet/duct-diffuser configuration by a factor of 1.20; the thrust increases with oscillation frequency up to 20 Hz and remains constant if the frequency is further increased.

  13. Scalar dissipation rate statistics in turbulent swirling jets

    NASA Astrophysics Data System (ADS)

    Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.

    2016-07-01

    The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.

  14. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGES

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; ...

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  15. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  16. Unsteady phenomena of an oscillating turbulent jet flow inside a cavity: Effect of aspect ratio

    NASA Astrophysics Data System (ADS)

    Mataoui, A.; Schiestel, R.

    2009-01-01

    Self-sustained oscillatory phenomena in confined flow may occur when a turbulent plane jet is discharging into a rectangular cavity. An experimental set-up was developed and the flow analysis has been made using mainly hot-wire measurements, which were complemented by visualisation data. Previous studies confirmed that periodic oscillations may occur, depending on the location of the jet exit nozzle inside the cavity, and also the distance between the side-walls. The present study deals with the symmetrical interaction between a turbulent plane jet and a rectangular cavity and the influence of the geometrical characteristics of the cavity on the oscillatory motion. The size and aspect ratio of the cavity were varied together with the jet width compared to that of the cavity. The study is carried out both numerically and experimentally. The numerical method solves the unsteady Reynolds averaged Navier-Stokes equations (URANS) together with the continuity equation for an incompressible fluid. The closure of the flow equations system is achieved using a two-scale energy-flux model at high Reynolds number in the core flow coupled with a wall function treatment in the vicinity of the wall boundaries. The fundamental frequency of the oscillatory flow was found to be practically independent of the cavity length. Moreover, the oscillations are attenuated as the cavity width increases, until they disappear for a critical value of the cavity width. Contour maps of the instantaneous flow field are drawn to show the flow pattern evolution at the main phases of oscillation. They are given for several aspect ratios of the cavity, keeping constant values for the cavity width and the jet thickness. The proposed approach may help to investigate further the oscillation mechanisms and the entrainment process occurring in pressure driven jet-cavity interactions.

  17. Numerical simulation of the interaction of a transverse jet with a supersonic flow using different turbulence models

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emelyanov, V. N.; Yakovchuk, M. S.

    2015-09-01

    This paper presents a numerical simulation of the flow resulting from transverse jet injection into a supersonic flow through a slot nozzle at different pressures in the injected jet and the crossflow. Calculations on grids with different resolutions use the Spalart-Allmaras turbulence model, the k- ɛ model, the k- ω model, and the SST model. Based on a comparison of the calculated and experimental data on the wall pressure distribution, the length of the recirculation area, and the depth of jet penetration into the supersonic flow, conclusions are made on the accuracy of the calculation results for the different turbulence models and the applicability of these models to similar problems.

  18. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    SciTech Connect

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  19. Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.

    2010-01-01

    Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.

  20. An experimental study of dilution and mixing with turbulent jets in crossflows

    NASA Astrophysics Data System (ADS)

    Moawad, Ahmed Kamal

    This thesis is written in the paper format and includes three contributions. The first contribution presents the results of an experimental study on the dilution of circular non-buoyant turbulent surface jets of diameter d, discharged perpendicularly into relatively deep crossflows with depth D in the mixing region. The jet velocity was varied from 2.1 to 12.3 times the velocity of the crossflow. Concentration measurements were carried out as far as x/d = 630, where x is the distance downstream from the nozzle along the crossflow. Minimum dilutions of about 100 were attained in this mixing region. A general correlation has been developed to predict the minimum dilution in terms of the transformed distance /alpha x/d where α is the ratio of the jet to crossflow velocity. The concentration profiles in the vertical and the transverse directions were found to be similar. Expressions were developed to describe the growth of the width and thickness of the deflected jets. The effect of some submergence of the jet nozzle on the minimum dilution was also investigated. The second contribution presents the results of a laboratory study on the mixing characteristics of circular non-buoyant multiple jets discharged into relatively deep river-like crossflows. Experiments were performed for the velocity ratio α varying from 3.5 to 10 where α is the ratio of the jet to that of the crossflow. The concentration profiles in the vertical as well as the lateral directions in the planes of maximum concentration were found to be similar. A minimum dilution up to 80 reached the mixing region. It was found that the minimum dilution decreased with the increase of the velocity ratio α and the increase of the number of ports. Increase of the spacing between ports resulted in a considerable enhancement of the dilution. The trajectory of the multiple jets was identified based on the location of the maximum concentration. The results of an experimental study on rapid mixing and dilution with

  1. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.

    PubMed

    Zhang, Jiayao; Shaddix, Christopher R; Schefer, Robert W

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H(2), CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20,000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  2. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  3. Mean Velocity, Turbulence Intensity and Turbulence Convection Velocity Measurements for a Convergent Nozzle in a Free Jet Wind Tunnel. Comprehensive Data Report

    NASA Technical Reports Server (NTRS)

    Mccolgan, C. J.; Larson, R. S.

    1977-01-01

    The effect of flight on the mean flow and turbulence properties of a 0.056m circular jet were determined in a free jet wind tunnel. The nozzle exit velocity was 122 m/sec, and the wind tunnel velocity was set at 0, 12, 37, and 61 m/sec. Measurements of flow properties including mean velocity, turbulence intensity and spectra, and eddy convection velocity were carried out using two linearized hot wire anemometers. This report contains the raw data and graphical presentations. The final technical report includes a description of the test facilities, test hardware, along with significant test results and conclusions.

  4. Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate

    NASA Astrophysics Data System (ADS)

    Achari, A. Madhusudana; Das, Manab Kumar

    2017-03-01

    Numerical simulation of the flow field and conjugate heat transfer in an impinging jet with moving impingement plate is one of the important problems as it mimics closely with practical applications in industries. The Yang-Shih version of low Reynolds number k-ɛ model has been used to resolve the flow field and the temperature field in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a moving flat plate of finite thickness. The turbulence intensity and the Reynolds number considered at the inlet are 2 % and 15,000, respectively. The bottom face of the impingement plate has been maintained at a constant temperature higher than the nozzle exit temperature. The confinement plate has been considered to be adiabatic. The nozzle-to-surface spacing for the above study has been taken to be 6 and the surface-to-jet velocity ratios have been taken over a range of 0.25-1. The effects of impingement plate motion on the flow field and temperature field have been discussed elaborately with reference to stationary impingement plate. The dependence of flow field and fluid temperature field on impingement plate motion has been analyzed by plotting streamlines, isotherms for different plate speeds. A thorough study of flow characteristics for different surface-to-jet velocity ratios has been carried out by plotting profiles of mean vertical and horizontal components of velocity, pressure distribution, local shear stress distribution. The isotherms in the impingement plate of finite thickness, the distributions of solid-fluid interface temperature, the local Nusselt number, and the local heat flux for different surface-to-jet velocity ratios added to the understanding of conjugate heat transfer phenomenon.

  5. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  6. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  7. Numerical investigation on the jet pump performance based on different turbulence models

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Long, X. P.

    2012-11-01

    This paper aims to figure out the influence of turbulence model and wall boundary condition on the simulation of performance and flow field of jet pumps. And then try to find out one combination of turbulence model and wall treatment method that gives out more accurate performance prediction and reasonable internal flow details. Six turbulence models, (namely the three k-epsilon, the standard and SST k-omega, and Reynolds stress models) and two wall treatment methods (standard wall functions and enhanced wall treatment) were involved. A jet pump model used in an experiment was chosen as the simulation prototype. The static pressure distribution along the wall and the performance data from the experiment were used as the reference data for validating with those from the simulation results. It is found that all the ten combinations agree well with the experiment data when the volumetric flow ratio is low, however, none of them could give a performance prediction with errors less than 10% under the lager flow ratio work conditions. The errors between predicted results by several combinations and the experiment data were lowered to be less than 5% under all the working conditions by adjusting the model constants.

  8. DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA

    SciTech Connect

    Cranmer, Steven R.; Woolsey, Lauren N.

    2015-10-10

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.

  9. Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Woolsey, Lauren N.

    2015-10-01

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.

  10. Adjoint-based minimization of the sound radiated by a Mach 1.3 turbulent jet

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Bodony, Daniel; Freund, Jonathan

    2010-11-01

    A control optimization using the adjoint of the perturbed and linearized Navier--Stokes equations is applied to a simulation of a Mach 1.3 turbulent jet to reduce its radiated sound. The solution of the adjoint system provides gradient information for a minimization algorithm to circumvent the flow complexity and reduce the sound directly. Comparisons between the loud and the perturbed-but-quiet versions of the same jet are examined to identify sound mechanisms. The overall algorithm is designed such that the control can be optimized with degrees of freedom comparable to that of the numerical discretization or with constraints on its spatial or temporal profiles to reflect hardware limitations. The large-eddy simulation of the uncontrolled, baseline jet is carried out in curvilinear coordinates using a non-dissipative high-order finite-difference. The far-field sound is computed using a Ffowcs Williams and Hawkings surface. Turbulence and far-field sound statistics agree with experimental data. An unconstrained optimal control reduces the sound cost functional by 17%. The far-field sound is reduced at all angles with a maximum reduction of 2.7dB in the peak radiation direction. Constraining the control in actuator-like zones shows a similar result. Optimizations are ongoing.

  11. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet

    SciTech Connect

    Hussein, H.J.; Capp, S.P.; George, W.K.

    1994-01-01

    The turbulent flow resulting from a top-hat jet exhausting into a large room was investigated. The Reynolds number based on exit conditions was approximately 10(exp 5). Velocity moments to third order were obtained using flying and stationary hot-wire and burst-mode laser-Doppler anemometry (LDA) techniques. The entire room was fully seeded for the LDA measurements. The measurements are shown to satisfy the differential and integral momentum equations for a round jet in an infinite environment. The results differ substantially from those reported by some earlier investigators, both in the level and shape of the profiles. These differences are attributed to the smaller enclosures used in the earlier works and the recirculation within them. Also, the flying hot-wire and burst-mode LDA measurements made here differ from the stationary wire measurements, especially the higher moments and away from the flow centreline. These differences are attributed to the cross-flow and rectification errors on the latter at the high turbulence intensities present in this flow (30% minimum at centreline). The measurements are used, together with recent dissipation measurements, to compute the energy balance for the jet, and an attempt is made to estimate the pressure-velocity and pressure-strain rate correlations.

  12. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  13. Fine-scale features in the far-field of a turbulent jet

    NASA Astrophysics Data System (ADS)

    Buxton, Oliver; Ganapathisubramani, Bharathram

    2008-11-01

    The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.

  14. Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9

    NASA Technical Reports Server (NTRS)

    Freund, Jonathan B.

    2001-01-01

    The mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent jet are investigated by direct numerical simulation. Details of the numerical method are briefly outlined and results are validated against an experiment at the same flow conditions. Lighthill's theory is used to define a nominal acoustic source in the jet, and a numerical solution of Lighthill's equation is compared to the simulation to verify the computational procedures. The acoustic source is Fourier transformed in the axial coordinate and time and then filtered in order to identify and separate components capable of radiating to the far field. This procedure indicates that the peak radiating component of the source is coincident with neither the peak of the full unfiltered source nor that of the turbulent kinetic energy. The phase velocities of significant components range from approximately 5% to 50% of the ambient sound speed which calls into question the commonly made assumption that the noise sources convect at a single velocity. Space-time correlations demonstrate that the sources are not acoustically compact in the streamwise direction and that the portion of the source that radiates at angles greater than 45 deg. is stationary. Filtering non-radiating wavenumber components of the source at single frequencies reveals that a simple modulated wave forms for the source, as might be predicted by linear stability analysis. At small angles from the jet axis the noise from these modes is highly directional, better described by an exponential than a standard Doppler factor.

  15. The effects of turbulent jet flows on plant cell suspension cultures

    PubMed

    MacLoughlin; Malone; Murtagh; Kieran

    1998-06-20

    Cell suspensions of Morinda citrifolia were subjected to turbulent flow conditions in a submerged jet apparatus, to investigate their hydrodynamic shear susceptibility. The suspensions were exposed to repeated, pressure-driven passages through a submerged jet. Two nozzles, of 1 mm and 2 mm diameter, were employed. Average energy dissipation rates were in the range 10(3)-10(5) W/kg and cumulative energy dissipation in the range 10(5)-10(7) J/m3. System response to the imposed conditions was evaluated in terms of suspension viability (determined using a dye exclusion technique) and variations in both chain length distribution and maximum chain length. Viability loss was well-described by a first-order model, and a linear relationship was identified between the specific death rate constant and the average energy dissipation rate. This relationship was consistent with results obtained using the same suspension cultures in a turbulent capillary flow device. Morphological measurements indicated that exposure to the hydrodynamic environment generated in the jet resulted in a significant reduction in both the average and maximum chain lengths, and the reduction in the maximum chain length was identified as an appropriate measure of sustained damage. Analysis of both viability and chain length in terms of cumulative energy dissipated revealed good agreement with results reported by other authors for morphologically different plant cell systems. Copyright 1998 John Wiley & Sons, Inc.

  16. Video Image Analysis of Turbulent Buoyant Jets Using a Novel Laboratory Apparatus

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Colgan, R. E.; Ferencevych, P. G.

    2012-12-01

    Turbulent buoyant jets play an important role in the transport of heat and mass in a variety of environmental settings on Earth. Naturally occurring examples include the discharges from high-temperature seafloor hydrothermal vents and from some types of subaerial volcanic eruptions. Anthropogenic examples include flows from industrial smokestacks and the flow from the damaged well after the Deepwater Horizon oil leak of 2010. Motivated by a desire to find non-invasive methods for measuring the volumetric flow rates of turbulent buoyant jets, we have constructed a laboratory apparatus that can generate these types of flows with easily adjustable nozzle velocities and fluid densities. The jet fluid comprises a variable mixture of nitrogen and carbon dioxide gas, which can be injected at any angle with respect to the vertical into the quiescent surrounding air. To make the flow visible we seed the jet fluid with a water fog generated by an array of piezoelectric diaphragms oscillating at ultrasonic frequencies. The system can generate jets that have initial densities ranging from approximately 2-48% greater than the ambient air. We obtain independent estimates of the volumetric flow rates using well-calibrated rotameters, and collect video image sequences for analysis at frame rates up to 120 frames per second using a machine vision camera. We are using this apparatus to investigate several outstanding problems related to the physics of these flows and their analysis using video imagery. First, we are working to better constrain several theoretical parameters that describe the trajectory of these flows when their initial velocities are not parallel to the buoyancy force. The ultimate goal of this effort is to develop well-calibrated methods for establishing volumetric flow rates using trajectory analysis. Second, we are working to refine optical plume velocimetry (OPV), a non-invasive technique for estimating flow rates using temporal cross-correlation of image

  17. Quantitative saltwater modeling for validation of sub-grid scale LES turbulent mixing and transport models for fire

    NASA Astrophysics Data System (ADS)

    Maisto, Pietro; Marshall, Andre; Gollner, Michael

    2015-11-01

    A quantitative understanding of turbulent mixing and transport in buoyant flows is indispensable for accurate modeling of combustion, fire dynamics and smoke transport used in both fire safety design and investigation. This study describes the turbulent mixing behavior of scaled, unconfined plumes using a quantitative saltwater modeling technique. An analysis of density difference turbulent fluctuations, captured as the collected images scale down in resolution, allows for the determination of the largest dimension over which LES averaging should be performed. This is important as LES models must assume a distribution for sub-grid scale mixing, such as the ?-PDF distribution. We showed that there is a loss of fidelity in resolving the flow for a cell size above 0 . 54D* ; where D* is a characteristic length scale for the plume. Such a point represents the threshold above which the fluctuations start to monotonically grow. Turbulence statistics were also analyzed in terms of span-wise intermittency and time and space correlation coefficients. An unexpected condition for the core of the plume, where a substantial amount of ambient fluid (fresh water) is found, and the mixing process under buoyant conditions were found depending on the resolution of measurements used.

  18. How to Alleviate Jet Lag/The Chronobiotic Substances (Comment reduire les effects du decalage horaire: les substances chronobioktiques)

    DTIC Science & Technology

    2002-11-01

    We performed a real world study on jet lag called "operation Pegasus" that confirmed the hastening effect of melatonin on resynchronisation in a...M, English J, Marks V, Arendt JH. Some effects of jet lag and their alleviation by melatonin . Ergonomics 1987; 30(9): 1379-1393. 16. Arendt J...phase-response curve. Chronobiology International 1992; 9:380-392. 19. Middleton B, Arendt J, Stone B. Complex effects of melatonin on human circadian

  19. Simulations of Turbulent Momentum and Scalar Transport in Non-Reacting Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation. When the APDF (ensemble averaged probability density function) or DWFDF (density weighted filtered density function) equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  20. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2014-01-01

    This paper presents the numerical simulations of confined three dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS) with and without invoking the APDF or DWFDF equation. When the APDF or DWFDF equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  1. Application and comparison of two SGS models in large eddy simulation of free turbulent jet flow

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Su, Mingde

    1999-03-01

    Large eddy simulations of spatially evolved turbulent round jets were presented. The two SGS models called the standard Smagorinsky's eddy viscosity model and the non-eddy viscosity stimulated small scale (SSS) model developed by Shah & Ferziger were applied. The Reynolds number of the flow was taken as 10000 based on the orifice diameter and the axial velocity in the orifice. The comparison between these two models showed that the standard Smagorinsky's viscosity model with Smagorinsky's constant of 0.1 underestimated the turbulent intensity, while the SSS model showed a better agreement with the experiment. Also the SSS model was used to investigate the development of vortex. The convective boundary condition at the outflow boundary was adopted to ensure less effect of noise on the upstream.

  2. Turbulence measurements in a swirling confined jet flowfield using a triple hot-wire probe

    NASA Technical Reports Server (NTRS)

    Janjua, S. I.; Mclaughlin, D. K.

    1982-01-01

    An axisymmetric swirling confined jet flowfield, similar to that encountered in gas turbine combustors was investigated using a triple hot-wire probe. The raw data from the three sensors were digitized using ADC's and stored on a Tektronix 4051 computer. The data were further reduced on the computer to obtain time-series for the three instantaneous velocity components in the flowfield. The time-mean velocities and the turbulence quantities were deduced. Qualification experiments were performed and where possible results compared with independent measurements. The major qualification experiments involved measurements performed in a non-swirling flow compared with conventional X-wire measurements. In the swirling flowfield, advantages of the triple wire technique over the previously used multi-position single hot-wire method are noted. The measurements obtained provide a data base with which the predictions of turbulence models in a recirculating swirling flowfield can be evaluated.

  3. Noise, Turbulence, and Thrust of Subsonic Free Jets from Lobed Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Wang, F. Y.

    2002-01-01

    A study of noise benefit, vis-a-vis thrust penalty, and its correlation to turbulence intensities was conducted for free jets issuing from lobed nozzles. Four convergent nozzles with constant exit area were used in the experiments. Three of these were of rectangular lobed configuration having six, ten and fourteen lobes; the fourth was a circular nozzle. Increasing the number of lobes resulted in a progressive reduction in the turbulence intensities as well as in the overall radiated noise. The noise reduction was pronounced at the low frequency end of the spectrum. However, there was an increase in the high frequency noise that rendered the overall benefit less attractive when compared on a scaled-up A-weighted basis. A reduction in noise was accompanied by a commensurate reduction in the turbulent kinetic energy in the flow field. As expected, increasing the number of lobes involved progressive reduction in the thrust coefficient. Among the cases studied, the six-lobed nozzle had the optimum reduction in turbulence and noise with the least thrust penalty.

  4. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  5. Similarity of Turbulent Energy Scale Budget Equation of a Round Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2014-11-01

    A novel extension to the similarity-based form of the transport equation for the second-order velocity structure function of <(δq) 2 > along the jet centreline (see Danaila et al., 2004) has been obtained. This new self-similar equation has the desirable benefit of requiring less extensive measurements to calculate the inhomogeneous (decay and production) terms of the transport equation. According to this equation, the normalized third-order structure function can be uniquely determined when the normalized second-order structure function, the power-law exponent of and the decay rate constants of and are available. In addition, on the basis of the current similarity analysis, the similarity assumptions in combination with power-law decay of mean velocity (U ~(x -x0) - 1) are strong enough to imply power-law decay of fluctuations ( ~(x -x0) m). The similarity solutions are then tested against new experimental data, which were taken along the centreline of a round jet at ReD = 50 , 000 . For the present set of initial conditions, exhibits a power-law behaviour with m = - 1 . 83 . This work was supported by grants from NSERC (Canada).

  6. Direct numerical simulation of temporally evolving turbulent luminous jet flames with detailed fuel and soot chemistry

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud

    2011-11-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  7. Liquid helium inertial jet for comparative study of classical and quantum turbulence

    SciTech Connect

    Duri, D.; Charvin, P.; Rousset, B.; Poncet, J.-M.; Diribarne, P.

    2011-11-15

    We present a new cryogenic wind tunnel facility developed to study the high Reynolds number developed classical or quantum turbulence in liquid {sup 4}He. A stable inertial round jet flow with a Reynolds number of 4 x 10{sup 6} can be sustained in both He I and He II down to a minimum temperature of 1.7 K. The circuit can be pressurized up to 3.5 x 10{sup 5} Pa. The system has been designed to exploit the self-similar properties of the jet far field in order to adapt to the spatial resolution of the existing probes. Multiple and complementary sensors can be simultaneously installed to obtain spatial and time resolved measurements. The technical difficulties and design details are described and the system performance is presented.

  8. Localized flame extinction and re-ignition in turbulent jet ignition assisted combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Jaberi, Farhad; Computational Fluid Dynamics Laboratory Team

    2016-11-01

    Direct numerical simulations (DNS) of turbulent jet ignition (TJI)-assisted combustion of ultra-lean fuel-air is performed in a three-dimensional planar jet configuration. TJI is a novel ignition enhancement method which facilitates the combustion of lean and ultra-lean mixtures by rapidly exposing them to high temperature combustion products. Fully compressible gas dynamics and species equations are solved with high order finite difference methods. The hydrogen-air reaction is simulated with a detailed chemical kinetics mechanism consisting of 9 species and 38 elementary reactions. The interesting phenomena involved in TJI combustion including localized premixed flame extinction/re-ignition and simultaneous premixed/non-premixed flames are investigated by using the flame heat release, temperature, species concentrations, and a newly defined TJI progress variable.

  9. Investigation of the turbulent wake flow of generic launcher configurations via a zonal RANS/LES method

    NASA Astrophysics Data System (ADS)

    Statnikov, V.; Meiß, J.-H.; Meinke, M.; Schröder, W.

    2013-09-01

    A numerical analysis of the turbulent wake flow of a generic space launcher at supersonic freestream conditions (Ma∞ = 6.0 and Re D = 1.7 × 106) is performed using a zonal RANS/LES method. To investigate the influence of various components of a rocket model on the base flow, three supported wind tunnel configurations with the same main body geometry and different aft-body extensions consisting of a blunt base, a nozzle dummy, and a full flowing underexpanded TIC nozzle (Mae = 2.52, p e/ p ∞ = 100) are considered. Flow topologies for three cases are described in detail including an estimate of the impact of the wind tunnel model support on the flow field. To validate the applied numerical method, the computed flow fields are compared to experimental data from high-speed schlieren measurements provided by DLR Cologne. The influence of the used aft-body extensions on the steady-state and dynamic base flow characteristics is evaluated by a detailed analysis and comparison of the pressure distribution and its spectra along the base and nozzle walls for three investigated configurations. The numerical findings are compared to experimental wall pressure oscillation measurements provided by DLR Cologne. The major results are the non-negligible influence of the model support on the wake even on the strut averted side, the base drag reduction effect of the aft-expanding jet plume consisting of an increase of the base pressure level from p/p_∞≈0.2-0.25 (blunt base and nozzle dummy configurations) up to p/p_∞≈0.7 leading to a decrease of the base pressure drag coefficient from C Dp base = 0.032 to 0.012 correspondingly, and the identified dominant low-frequency modes of the base pressure oscillations at Sr D ≈ 0.05, Sr D ≈ 0.1, and Sr D ≈ 0.2 also detected in the experiments.

  10. Application of crossed beam technology to direct measurements of sound sources in turbulent jets, part 1

    NASA Technical Reports Server (NTRS)

    Wilson, L. N.

    1970-01-01

    The mathematical bases for the direct measurement of sound source intensities in turbulent jets using the crossed-beam technique are discussed in detail. It is found that the problems associated with such measurements lie in three main areas: (1) measurement of the correct flow covariance, (2) accounting for retarded time effects in the measurements, and (3) transformation of measurements to a moving frame of reference. The determination of the particular conditions under which these problems can be circumvented is the main goal of the study.

  11. Effect of collector configuration on test section turbulence levels in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Molloy, John K.; Barna, P. Stephen

    1992-01-01

    Flow quality studies in the Langley 14- by 22-Foot Subsonic Tunnel indicated periodic flow pulsation at discrete frequencies in the test section when the tunnel operated in an open-jet configuration. To alleviate this problem, experiments were conducted in a 1/24-scale model of the full-scale tunnel to evaluate the turbulence reduction potential of six collector configurations. As a result of these studies, the original bell-mouth collector of the 14- by 22-Foot Subsonic Tunnel was replaced by a collector with straight walls, and a slot was incorporated between the trailing edge of the collector and the entrance of the diffuser.

  12. A theoretical and numerical investigation of turbulent steam jets in BWR steam blowdown.

    SciTech Connect

    NguyenLe, Q.

    1998-06-26

    The preliminary results of PHOENICS and RELAP5 show that the current numerical models are adequate in predicting steam flow and stratification patterns in the upper Drywell of a BWR containment subsequent to a blow-down event. However, additional modeling is required in order to study detailed local phenomena such as condensation with non-condensables, natural convection, and stratification effects. Analytically, the intermittence modified similarity solutions show great promise. Once {gamma} is accounted for, the jet's turbulent shear stress can be determined with excellent accuracy.

  13. Analysis of turbulent nonisothermal mixing between a jet and cooler ambient water using thermal imagery

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.; Cardenas, M. Bayani; Bennett, Philip C.

    2011-07-01

    We apply turbulence analysis techniques to high-frequency (16 Hz), high-resolution (1.5 mm pixels) thermal infrared images to analyze spatial and temporal scales of mixing between discharging hot spring water (˜60°C) and a stream (˜10°C) at Breitenbush Hot Springs, Oregon. Optical flow velocimetry of the images provides insight to the transient two-dimensional flow fields of the plumes; correlation of these data sets through space and time indicates the timescales and length scales of turbulent structures within the mixing fluids. We positioned the 7.5 cm diameter discharge pipe so that hot spring water exited along either the surface or bottom of the 15 cm deep stream, conditions hereafter referred to as "shallow" or "deep." During shallow discharge, hot water exits as a jet with length scales of ˜15 cm. During deep discharge, hot water reaches the surface as a region with ˜15 cm length scale ˜20 cm downstream of the inlet. The average temperatures and ratio of thermal variation to turbulent timescale provide a measure of mixing intensity and a means of comparing mixing rates throughout the region of interest. Lateral mixing at the surface dominates during shallow discharge, whereas the most efficient mixing during deep discharge occurs beneath the surface. The largest eddy diffusivities in both scenarios occur downstream of the jet and rising plume, suggesting that those structures must break apart for efficient mixing to occur. The coupled use of thermal imaging technology and optical velocimetry permits quantitative analysis of turbulent mixing in the field at a level of detail rarely achieved.

  14. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  15. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  16. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  17. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  18. The application of complex network time series analysis in turbulent heated jets.

    PubMed

    Charakopoulos, A Κ; Karakasidis, T E; Papanicolaou, P N; Liakopoulos, A

    2014-06-01

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  19. Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation

    NASA Astrophysics Data System (ADS)

    Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver

    2014-03-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.

  20. A new view on the M 87 jet origin: Turbulent loading leading to large-scale episodic wiggling

    NASA Astrophysics Data System (ADS)

    Britzen, S.; Fendt, C.; Eckart, A.; Karas, V.

    2017-05-01

    opening angle. In this paper we present evidence for two different operating modes of the jet of M 87. The jet switches between two phases: i) the jet ridge line is at least double or the jet axis is displaced vertically, and ii) an unperturbed phase where the jet ridge line remains almost straight but is smoothly curved and the jet components are aligned along a classical jet axis. The mode change occurs every couple of years. Between the two operating modes, a transition phase is visible. Conclusions: The M 87 jet visible at 15 GHz probes a different physical zone compared to the standard blazar-zone we tend to see in AGN jets. The most likely scenario explaining the observed phenomena is a turbulent mass loading into the jet, most probably due to local, fast reconnection processes driven by turbulence of a tangled magnetic field, which is either generated in the accretion disk or the disk corona. In addition, on large scales, a global magnetic structure is required to channel the turbulent flow into what evolves into a large-scale jet. Large-scale jet instabilities may explain the curved pattern of the observed jet flow.

  1. Effect of pressure on high Karlovitz number lean turbulent premixed hydrogen-enriched methane-air flames using LES

    NASA Astrophysics Data System (ADS)

    Cicoria, David; Chan, C. K.

    2017-07-01

    Large eddy simulation (LES) is employed to investigate the effect of pressure on lean CH4-H2-air turbulent premixed flames at high Karlovitz number for mixtures up to 60% of hydrogen in volume. The subfilter combustion term representing the interaction between turbulence and chemistry is modelled using the PaSR model, along with complex chemistry using a skeletal mechanism based on GRI-MECH3.0. The influence of pressure at high turbulence levels is studied by means of the local flame structure, and the assessment of species formation inside the flame. Results show that the ratio of turbulent flame thickness to laminar flame thickness δt/δu increases faster with pressure, and increases with the fraction of hydrogen in the mixture, leading to higher ratio of turbulent to laminar flame speed. The flame displays smaller structures and higher degree of wrinkling at higher pressure. Final species of CO2 and H2O formation is almost independent of pressure. For intermediate species CO and OH, an increase in pressure at constant volume fraction of hydrogen β leads to a decrease of emission of these species.

  2. Numerical study of an impinging jet to a turbulent channel flow in a T-Junction configuration

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2016-11-01

    In this talk we report on Large Eddy Simulations of an impinging planar jet to a turbulent channel flow in a T-Junction configuration. Due to its capacity for mixing and heat transfer enhancement, this type of flow is encountered in various industrial applications. In particular, our work is related to the emergency cooling systems of pressurized water reactors. As is well known, this type of flow is dominated by a large separation bubble downstream the jet impingement location. Secondary regions of flow separation are predicted both upstream and downstream the impinging jet. We describe how these separation regions interact with the shear layer that is formed by the injection of the jet to the crossflow, and how they affect the mixing process. In our talk we further examine the influence of the jet's velocity to characteristic quantities of the jet, such as penetration length and expansion angle, as well as to the first and second-order statistics of the flow.

  3. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  4. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, S. J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  5. Scattering of wavepackets by a flat plate in the vicinity of a turbulent jet

    NASA Astrophysics Data System (ADS)

    Cavalieri, André V. G.; Jordan, Peter; Wolf, William R.; Gervais, Yves

    2014-12-01

    We present an investigation of the acoustic scattering due to the presence of a flat plate in the vicinity of a turbulent subsonic jet. Experiments have been performed to measure changes in the velocity and sound fields for Mach numbers ranging from 0.4 to 0.6, and for distances between the plate and the jet axis ranging from 1 to 2 jet diameters. Results show only very slight changes in the mean flow induced by the plate, and no differences in the velocity fluctuation amplitudes on the jet centreline, suggesting that wave-packet models derived for jets without installation effects may be representative of the installed case, at least for the jet-plate distances considered here. The acoustic results, on the other hand, include a significant increase in the low-frequency sound radiation, and phase opposition between the shielded and unshielded sides of the plate. There is an exponential decay of the scattered sound with increasing jet-plate distance, suggesting that low-frequency radiation is due to the scattering of evanescent hydrodynamic wavepackets in the jet near field. To model this phenomenon, we calculate sound generation from wave-packet sources in two ways: on one hand we use a tailored Green's function that accounts for the presence of a semi-infinite, rigid flat plate; and, on the other, we solve numerically the Helmholtz equation, with boundary conditions representative of a finite flat plate, using a fast multipole boundary element method. In agreement with the experimental measurements, numerical calculations capture the phase opposition between shielded and unshielded sides, and the scattered sound depends exponentially on the position of the plate. This exponential dependence is related to non-compact effects associated with wavepackets, as compact sources would lead to an algebraic dependence. Acoustic pressure directivities computed for the finite and semi-infinite flat plates agree well where acoustic reflection and diffraction from the trailing

  6. Effects of mean shear and scalar initial length scale on three-scalar mixing in turbulent coaxial jets

    NASA Astrophysics Data System (ADS)

    Tong, Chenning; Li, Wei; Yuan, Mengyuan; Carter, Campbell

    2016-11-01

    We investigate three-scalar mixing in a turbulent coaxial jet, in which a center jet and an annular flow, consisting of acetone-doped air and ethylene respectively, are mixed with the co-flow air. We investigate the effects of the velocity and length scale ratios of the annular flow to the center jet. Planar laser-induced fluorescence and Rayleigh scattering are employed to image the scalars. The results show that the velocity ratio alters the relative mean shear rates in the mixing layers between the center jet and the annular flow and between the annular flow and the co-flow, modifying the scalar fields through mean-flow advection, turbulent transport, and small-scale mixing. The length scale ratio determines the degree of separation between the center jet and the co-flow. The results show that while varying the velocity ratio can alter the mixing characteristics qualitatively, varying the annulus width only has quantitative effects. The evolution of the mean scalar profiles are dominated by the mean-flow advection, while the shape of the joint probability density function is largely determined by the turbulent transport and molecular diffusion. The results in the present study have implications for understanding and modeling multiscalar mixing in turbulent reactive flows. Supported by NSF.

  7. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    NASA Astrophysics Data System (ADS)

    Pouransari, Z.; Biferale, L.; Johansson, A. V.

    2015-02-01

    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar, and reactive species fields are studied using their probability density functions (PDFs) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor, the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damköhler numbers are examined and the comparison revealed that the Damköhler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow.

  8. Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame.

    PubMed

    Harley, Jacob L; Rankin, Brent A; Blunck, David L; Gore, Jay P; Gross, Kevin C

    2014-04-15

    This work presents recent measurements of a CH4/H2/N2 turbulent nonpremixed jet flame using an imaging Fourier-transform spectrometer (IFTS). Spatially resolved (128×192 pixels, 0.72  mm/pixel) mean radiance spectra were collected between 1800  cm(-1)≤ν˜≤4500  cm(-1) (2.22  μm≤λ≤5.55  μm) at moderate spectral resolution (δν=16  cm(-1), δλ=20  nm) spanning the visible flame. Higher spectral-resolution measurements (δν=0.25  cm(-1), δλ=0.3  nm) were also captured on a smaller window (8×192) at 20, 40, and 60 diameters above the jet exit and reveal the rotational fine structure associated with various vibrational transitions in CH4, CO2, CO, and H2O. These new imaging measurements compare favorably with existing spectra acquired at select flame locations, demonstrating the capability of IFTS for turbulent combustion studies.

  9. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    SciTech Connect

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

  10. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    DOE PAGES

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; ...

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less

  11. Imaging of diluted turbulent ethylene flames stabilized on a Jet in Hot Coflow (JHC) burner

    SciTech Connect

    Medwell, Paul R.; Kalt, Peter A.M.; Dally, Bassam B.

    2008-01-15

    The spatial distributions of the hydroxyl radical (OH), formaldehyde (H{sub 2}CO), and temperature imaged by laser diagnostic techniques are presented using a Jet in Hot Coflow (JHC) burner. The measurements are of turbulent nonpremixed ethylene jet flames, either undiluted or diluted with hydrogen (H{sub 2}), air or nitrogen (N{sub 2}). The fuel jet issues into a hot and highly diluted coflow at two O{sub 2} levels and a fixed temperature of 1100 K. These conditions emulate those of moderate or intense low oxygen dilution (MILD) combustion. Ethylene is an important species in the oxidation of higher-order hydrocarbon fuels and in the formation of soot. Under the influence of the hot and diluted coflow, soot is seen to be suppressed. At downstream locations, surrounding air is entrained which results in increases in reaction rates and a spatial mismatch between the OH and H{sub 2}CO surfaces. In a very low O{sub 2} coflow, a faint outline of the reaction zone is seen to extend to the jet exit plane, whereas at a higher coflow O{sub 2} level, the flames visually appear lifted. In the flames that appear lifted, a continuous OH surface is identified that extends to the jet exit. At the ''lift-off'' height a transition from weak to strong OH is observed, analogous to a lifted flame. H{sub 2}CO is also seen upstream of the transition point, providing further evidence of the occurrence of preignition reactions in the apparent lifted region of these flames. The unique characteristics of these particular cases has led to the term transitional flame. (author)

  12. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  13. Effect of solid particles on the turbulent flow of a round gaseous jet, a mathematical and experimental study

    NASA Astrophysics Data System (ADS)

    Elghobashi, S. E.

    1981-10-01

    Progress in mathematical and experimental studies aimed at modeling and measuring flow rates for the two-phase gases with dispersed particles in turbulent flows of jets is reported. Exact transport equations of mass and momentum for the two phases, the carrier fluid's kinetic energy of turbulence, and its dissipation rate were derived for incompressible two-phase flows. In the area of clear air jet measurements, attempts were made to obtain two-dimensional measurements of the clear air jet using a two-color, bragg cell shifted laser velocimeter. A complete data set for the streamwise component of mean velocity and turbulence intensity and some data for tangential velocity components were recorded and are included. These data were obtained using a recently modified software package for two-component data acquisition. The data for streamwise flow were compared with the available data for circular jet flow. The agreement was good in the inner half of the jet while some scatter was observed in the outer region of the jet.

  14. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  15. Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.

    2017-01-01

    Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.

  16. Turbulence Measurements on a 2D NACA 0036 with Synthetic Jet Flow Control

    NASA Technical Reports Server (NTRS)

    Wilson, J. S.

    2006-01-01

    An active flow control experiment was conducted on a 2-ft chord NACA 0036 airfoil in a 3-ft by 4-ft Wind Tunnel at Re = 1 x 10(exp 6). The model was equipped with synthetic jet actuators at x/c = 0.30 and 0.65 that provided 120 Hz periodic excitation at a C(sub mu) 0.86% through 0.06-in wide slots. Three different slot con gurations were tested, including a baseline with no slots. Surface pressure data was collected to compare to previous tests and to combine with turbulence data to aid future CFD modeling efforts. Turbulence data, measured by hot-wire, was compared with and without flow control. Pressure data corroborates previous test data and provides more points for CFD validation. Hot-wire results showed ow control reduced the separated wake size and brought the high Reynolds stress shear layer closer to the airfoil surface. The position of this layer to the surface was altered more significantly than the magnitude of the peak stresses. Flow control was shown to increase turbulent energy in the attached boundary layer downstream of the slot but to have little effect upstream. These results provide further justification to continue assessing the potential of active flow control to reduce drag of helicopter airframe components.

  17. On waves in gases. Part I: Acoustics of jets, turbulence, and ducts

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    1986-01-01

    This review on some aspects of waves in gases concentrates first (Part I) on modern research in the acoustics of fluids at rest or in steady or turbulent motion, in free space, in the presence of obstacles, or in ducts. The study of sound, for which the sole restoring force is pressure, will be extended in a later paper (Part II) to include the other three restoring forces, namely, gravity, electromagnetic, and Coriolis forces, leading to current research on internal, magnetic, and inertial waves and their couplings. The Introduction at the beginning of Part I, and the discussion at the end of Part II, concern all four types of waves in gases, and their relevance in physics and engineering. In Part I, the following areas of acoustics are addressed: the generation of noise by turbulence, inhomogeneities or bubbles, in natural and engineering flows, e.g., wind or jets; the scattering of sound by interfaces and diffraction by turbulence, and their effects on spectral and directional redistribution of energy; propagation in ducts, without or with mean flow, e.g., the horns of musical instruments and loudspeakers, and inlets and exhausts of engines; the effects of dissipation and nonlinearity on waves, e.g., in laboratory and engineering shock tubes, and in geophysical and astrophysical conditions. Underlying these topics is the interaction of acoustics with manking, ranging from the processes of human hearing and speech to the reproduction of desirable sounds (music) and reduction of undesirable sounds (noise).

  18. Jet model for slot film cooling with effect of free-stream and coolant turbulence

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.

    1986-01-01

    An analysis was performed utilizing the model of a wall jet for obtaining equations that will predict slot film-cooling efficiency under conditions of variable turbulence intensity, flow, and temperature. The analysis, in addition to assessing the effects of the above variables, makes a distinction between an initial region and a fully developed region. Such a distinction is important in determining the role that the turbulence intensity of the coolant plays in effecting film-cooling effectiveness in the area of the slot exit. The results of the analysis were used in the correlation of the results of a well-designed film-cooling experiment. The result of the analysis and experiment was equations that predicted film-cooling efficiency within + or - 4% average deviation for lateral free-stream turbulence intensities up to 24% and blowing rates up to 1.9. These equations should be useful in determining the optimum quantity of cooling air requried for protecting the wall of a combustor.

  19. Calculation of 3D turbulent jets in crossflow with a multigrid method and a second-moment closure model

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1990-01-01

    A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.

  20. Vorticity and large-scale structures in the transition region of a turbulent jet

    NASA Astrophysics Data System (ADS)

    Weisgraber, Todd Heinrich

    Though the existence of large-scale structures in the near and far field of jets has been demonstrated, their exact nature in the self-similar region is still open to debate. Furthermore, the evolution of these structures in the transition region is not well understood. In this thesis, a hybrid experimental-numerical approach is developed to investigate the flow structure of the jet transition region. The spatial-temporal characteristics of these large eddies and their effect on local entrainment are examined. The velocity field in planes normal and parallel to the jet axis are measured using the digital particle image velocimetry (DPIV) technique with a computationally efficient algorithm designed to minimize sub-pixel bias. The numerics employ a second order projection method with adaptive mesh refinement to simulate a natural unforced jet. The link between the experiments and numerics is provided by a temporal sequence of DPIV nozzle velocity data which serves as the inflow boundary condition to the computation. Successful comparisons of the development of near-field primary and secondary structures validate the simulation. The mean jet growth rate is identical to the experiments. Analysis of the experimental data with a proper orthogonal decomposition identifies and reveals the evolution of large-scale structures. After the first pairing the rings develop a tilting instability which is amplified by the interaction of adjacent rings. After the potential core, the inclined rings have a unique time scale and are responsible for a significant fraction of the local turbulent transport and rapid growth of the jet. Further downstream, beginning at nine diameters, the rings evolve into a flow that alternates between ejection and entrainment of fluid. This motion persists through the remainder of the transition region and increases its contribution to lateral mixing with downstream distance. The time scale governing the inward and outward flow oscillations increases

  1. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways.

    PubMed

    Lin, Ching-Long; Tawhai, Merryn H; McLennan, Geoffrey; Hoffman, Eric A

    2007-08-01

    A computational fluid dynamics technique is applied to understand the relative importance of the upper and intra-thoracic airways and their role in determining central airflow patterns with particular attention paid to the importance of turbulence. The geometry of the human upper respiratory tract is derived from volumetric scans of a volunteer imaged via multidetector-row computed tomography. Geometry 1 consists of a mouthpiece, the mouth, the oropharynx, the larynx, and the intra-thoracic airways of up to six generations. Geometry 2 comprises only the intra-thoracic airways. The results show that a curved sheet-like turbulent laryngeal jet is observed only in geometry 1 with turbulence intensity in the trachea varying from 10% to 20%, whereas the turbulence in geometry 2 is negligible. The presence of turbulence is found to increase the maximum localised wall shear stress by three-folds. The proper orthogonal decomposition analysis reveals that the regions of high turbulence intensity are associated with Taylor-Görtler-like vortices. We conclude that turbulence induced by the laryngeal jet could significantly affect airway flow patterns as well as tracheal wall shear stress. Thus, airflow modeling, particularly subject specific evaluations, should consider upper as well as intra-thoracic airway geometry.

  2. Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. 2. Application in LES of Sandia flames D and E

    SciTech Connect

    Ihme, Matthias; Pitsch, Heinz

    2008-10-15

    An extension of the flamelet/progress variable (FPV) model for the prediction of extinction and reignition is applied in large-eddy simulation (LES) of flames D and E of the Sandia piloted turbulent jet flame series. This model employs a presumed probability density function (PDF), in which the marginal PDF of a reactive scalar is modeled by a statistically most likely distribution. This provides two advantages. First of all, the shape of the distribution depends on chemical and mixing time-scale information, and second, an arbitrary number of moments can be enforced. This model was analyzed in an a priori study in the first part of this work. In the present LES application, the first two moments of mixture fraction and reaction progress variable are used to constrain the shape of the presumed PDF. Transport equations for these quantities are solved, and models for the residual scalar dissipation rates, which appear as unclosed terms in the equations for the scalar variances, are provided. Statistical flow field quantities for axial velocity, mixture fraction, and temperature, obtained from the extended FPV model, are in good agreement with experimental data. Mixture-fraction-conditioned data, conditional PDFs, and burning indices are computed and compared with the delta-function flamelet closure model, which employs a Dirac distribution as a model for the marginal PDF of the reaction progress parameter. The latter model considerably underpredicts the amount of local extinction, which shows that the consideration of second-moment information in the presumed PDF of the reaction progress parameter is important for the accurate prediction of extinction and reignition. Mixture-fraction-conditioned results obtained from the extended FPV model are in good agreement with experimental data; however, the overprediction of the consumption of fuel and oxidizer on the fuel-rich side results in an overprediction of minor species. The predictions for the conditional PDFs and

  3. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  4. Investigating the Structures of Turbulence in a Multi-Stream, Rectangular, Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew S.

    Supersonic flight has become a standard for military aircraft, and is being seriously reconsidered for commercial applications. Engine technologies, enabling increased mission capabilities and vehicle performance, have evolved nozzles into complex geometries with intricate flow features. These engineering solutions have advanced at a faster rate than the understanding of the flow physics, however. The full consequences of the flow are thus not known, and using predictive tools becomes exceedingly difficult. Additionally, the increasing velocities associated with supersonic flight exacerbate the preexisting jet noise problem, which has troubled the engineering community for nearly 65 years. Even in the simplest flows, the full consequences of turbulence, e.g. noise production, are not fully understood. For composite flows, the fluid mechanics and acoustic properties have been studied even less sufficiently. Before considering the aeroacoustic problem, the development, structure, and evolution of the turbulent flow-field must be considered. This has prompted an investigation into the compressible flow of a complex nozzle. Experimental evidence is sought to explain the stochastic processes of the turbulent flow issuing from a complex geometry. Before considering the more complicated configuration, an experimental campaign of an axisymmetric jet is conducted. The results from this study are presented, and guide research of the primary flow under investigation. The design of a nozzle representative of future engine technologies is then discussed. Characteristics of this multi-stream rectangular supersonic nozzle are studied via time-resolved schlieren imaging, stereo PIV measurements, dynamic pressure transducers, and far-field acoustics. Experiments are carried out in the anechoic chamber at Syracuse University, and focus primarily on the flow-field. An extensive data set is generated, which reveals a detailed view of a very complex flow. Shear, shock waves, unequal

  5. Large eddy simulations of a Mach 0.9 jet with fully-turbulent nozzle-exit boundary layer

    NASA Astrophysics Data System (ADS)

    Bres, Guillaume; Ham, Frank; Jordan, Peter

    2014-11-01

    From past studies, it is well known that the state of the nozzle-exit boundary layer is a key parameter for the flow development and noise characteristics of a jet. However, because of the computational cost of simulating high Reynolds number wall-driven turbulence, the nozzle boundary layer is typically assumed to be laminar or weakly disturbed in most jet simulations. This approach often leads to enhanced laminar to turbulent shear-layer transition and increased noise due to vortex pairing. In the present work, large eddy simulations of an isothermal Mach 0.9 jet (Re = 1E6) issued from a convergent-straight nozzle are performed using the compressible flow solver ``Charles'' developed at Cascade Technologies. Localized adaptive mesh refinement, synthetic turbulence and wall modeling are used inside the nozzle to ensure fully turbulent profiles at the nozzle exit. This resulted in significant improvements for the flowfield and sound predictions, compared to the typical approach based on laminar flow assumption in the nozzle. The far-field noise spectra now remarkably match the measurements from the companion experiment conducted at Pprime Institute, within 0.5 dB for most angles and relevant frequencies. As a next step toward better understanding of jet noise, the large transient database collected during the simulation is currently being mined using reduced order modeling and wavepacket analysis. Work supported in part by NAVAIR. Computer allocation provided by DoD HPC centers at ERDC and AFRL.

  6. Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow

    SciTech Connect

    Kolla, H.; Grout, R. W.; Gruber, A.; Chen, J. H.

    2012-08-01

    The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90{sup o} to 70{sup o}, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90{sup o} injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75{sup o} a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.

  7. Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames

    SciTech Connect

    Su, L.K.; Sun, O.S.; Mungal, M.G.

    2006-02-01

    Simultaneous planar-laser induced fluorescence (PLIF) and particle image velocimetry (PIV) provide a comprehensive view of the molecular mixing and velocity fields in the stabilization region of turbulent, lifted jet diffusion flames. The Mie scattering medium for PIV is a glycerol-water fog, which evaporates at elevated temperatures and allows inference of the location of the high-temperature interface at the flame base. The jet Reynolds numbers vary from 4400 to 10,700. The mixing and velocity fields upstream of the flame base evolve consistently with nonreacting jet scaling. Conditional statistics of the fuel mole fraction at the instantaneous high-temperature interface show that the flame stabilization point does not generally correspond to the most upstream point on the interface (called here the leading point), because the mixture there is typically too lean to support combustion. Instead, the flame stabilization point lies toward the jet centerline relative to the leading point. Conditional axial velocity statistics indicate that the mean axial velocity at the flame front is {approx}1.8S{sub L}, where S{sub L} is the stoichiometric laminar flame speed. The data also permit determination of the scalar dissipation rates, {chi}, with the results indicating that {chi} values near the high-temperature interfaces do not typically exceed the quenching value. Thus, the flame stabilization process is more consistent with theories based on partial fuel-air premixing than with those dependent on diffusion flame quenching. We propose a description of flame stabilization that depends on the large-scale organization of the mixing field. (author)

  8. The influence of large-scale motion on turbulent transport for confined coaxial jets

    NASA Technical Reports Server (NTRS)

    Brondum, D. C.; Bennett, J. C.

    1984-01-01

    The existence of large-scale coherent structures in turbulent shear flows has been well documented in the literature. The importance of these structures in flow entrainment, momentum transport and mass transport in the shear layer has been suggested by several researchers. Comparisons between existing models and experimental data for shear flow in confined coaxial jets reinforce the necessity of further investigation of the large scale structures. These comparisons show the greatest discrepancy between prediction and actual results in the developing flow region where the large scales exist. It was also observed that the momentum transport rate comparisons were very bad. Finally, Schetz has reviewed mixing flows and concluded that large-scale structures were essential aspects of future modeling efforts.

  9. Simulations of localized extinction in turbulent CH 4 jet flames using a Lagrangian model for reactedness

    NASA Astrophysics Data System (ADS)

    Koutmos, P.

    2000-02-01

    2D Large Eddy Simulations of turbulent CH 4 jet flames exhibiting significant finite-rate chemistry effects are presented. A partial equilibrium/two-scalar exponential PDF combustion submodel is applied at the subgrid level. An anisotropic eddy-viscosity and an equation for the SGS energy model the Subgrid motions. Independence of the PDF scalars is avoided and their correlations are obtained from scale-similarity assumptions. Extinction is accounted by comparing the local Damkohler against a "critical" local limit related to the Gibson scale and the reaction zone thickness. The post-extinction and reignition regimes are modeled via a Lagrangian reactedness equation (IEM). Comparisons between simulations and measurements suggested the capability of the method to represent several trends in the partial extinction and reignition behavior observed in the experiments.

  10. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  11. LES of Scalar transport in a turbulent katabatic flow along a curved slope in the context of stably stratified atmospheric boundary layer.

    NASA Astrophysics Data System (ADS)

    Brun, Christophe; Chollet, Jean Pierre

    2010-05-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow. This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered. A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Fedorovith and Shapiro 2009) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a curved slope with stable stratification, including passive scalar transport. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the ground surface, with a special refinement down to 1 m in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency 0.01

  12. Mass and momentum turbulent transport experiments with swirling confined coaxial jets. II

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1986-01-01

    An experimental study of mixing downstream of swirling coaxial jets discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter and laser induced fluorescence techniques was employed to obtain mean and fluctuating velocity and concentration distributions at selected axial and radial locations throughout the flow field. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. Simultaneous two component velocity and concentration/velocity measurements provided data which were used to determine the average momentum and mass transport rates for each of three measurement planes. Mixing for swirling flows occurred in several steps of axial and radial mean convective flow and was completed in one-third the length required for nonswirling flow. Comparison of the mass and momentum transport processes for swirling and nonswirling flows indicated that large differences existed in these processes between the two flows.

  13. Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method

    NASA Astrophysics Data System (ADS)

    Consalvi, Jean-Louis; Nmira, Fatiha; Burot, Daria

    2016-03-01

    The stochastic Eulerian field method is applied to simulate 12 turbulent C1-C3 hydrocarbon jet diffusion flames covering a wide range of Reynolds numbers and fuel sooting propensities. The joint scalar probability density function (PDF) is a function of the mixture fraction, enthalpy defect, scalar dissipation rate and representative soot properties. Soot production is modelled by a semi-empirical acetylene/benzene-based soot model. Spectral gas and soot radiation is modelled using a wide-band correlated-k model. Emission turbulent radiation interactions (TRIs) are taken into account by means of the PDF method, whereas absorption TRIs are modelled using the optically thin fluctuation approximation. Model predictions are found to be in reasonable agreement with experimental data in terms of flame structure, soot quantities and radiative loss. Mean soot volume fractions are predicted within a factor of two of the experiments whereas radiant fractions and peaks of wall radiative fluxes are within 20%. The study also aims to assess approximate radiative models, namely the optically thin approximation (OTA) and grey medium approximation. These approximations affect significantly the radiative loss and should be avoided if accurate predictions of the radiative flux are desired. At atmospheric pressure, the relative errors that they produced on the peaks of temperature and soot volume fraction are within both experimental and model uncertainties. However, these discrepancies are found to increase with pressure, suggesting that spectral models describing properly the self-absorption should be considered at over-atmospheric pressure.

  14. Influence of Aerodynamic Strain Rate on Local Extinction in Turbulent Non-premixed Jet Flames

    NASA Astrophysics Data System (ADS)

    Ramachandran, Aravind; Narayanaswamy, Venkateswaran; Lyons, Kevin

    2016-11-01

    2-D velocity field measurements obtained from Particle Image Velocimetry (PIV) are used to obtain aerodynamic strain rate information in regions of local extinction in lifted turbulent non-premixed methane jet flames in coflow. Diluting the coflow to reduce the oxygen molefraction results in increased occurrences of local extinction. Statistical analysis is performed to correlate regions of high local strain rate with local extinctions in both air coflow and diluted coflow cases to study the influence of strain rate against vortical structures in extinguishing the flame front. A comparison is also made with heated and vitiated coflow cases, where autoignition is a flame stabilization mechanism and influenced by local strain rate. At high jet exit velocities (Ux > > Ur), the out-of-plane strain rate component can be neglected but the convection of extinguished pockets into the measurement plane needs to be resolved by stereoscopic (3-D) measurements which will be done in a future work. This work has been supported by the U.S. Army Research Office (Contracts W911NF1210140 and W911NF1610087) Dr. Ralph Anthenien, Technical Monitor, ARO.

  15. Turbulent Jet-Edge and Cavity Flows: Assessment Via Cinema Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Chang; Rockwell, Donald

    1998-11-01

    Although quasi-laminar jet-edge and cavity oscillations have been addressed extensively in recent decades, the issue arises as to whether self-sustained, quasi-coherent oscillations are attainable in presence of a fully-developed turbulent inflow. The nature of such oscillations is characterized using an integrated cinema particle image velocimetry-pressure measurement system. This approach employs a high framing rate camera in conjunction with a scanning-laser version of high-image-density particle image velocimetry, with the goal of generating space-time representations of the flow. Simultaneously, instantaneous pressures along the impingement surface of the wedge/edge are acquired. This approach allows the instantaneous velocity and vorticity fields to be interpreted in relation to the instantaneous surface loading. Highly coherent oscillations of the jet-edge system are attainable; on the other hand, the cavity configuration exhibits a degree of coherence with pronounced amplitude and frequency modulations. http://www.lehigh.edu/dept/mecheng/inmem/research/rfluids/index.html

  16. An Evaluation of Linear Instability Waves as Sources of Sound in a Supersonic Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Colonius, Tim; Freund, Jonathan B.

    2002-01-01

    Mach wave radiation from supersonic jets is revisited to better quantify the extent to which linearized equations represent the details of the actual mechanism. To this end, we solve the linearized Navier-Stokes equations (LNS) with precisely the same mean flow and inflow disturbances as a previous direct numerical simulation (DNS) of a perfectly expanded turbulent M = 1.92 jet. We restrict our attention to the first two azimuthal modes, n = 0 and n = 1, which constitute most of the acoustic field. The direction of peak radiation and the peak Strouhal number matches the DNS reasonably well, which is in accord with previous experimental justification of the linear theory. However, it is found that the sound pressure level predicted by LNS is significantly lower than that from DNS. In order to investigate the discrepancy, individual frequency components of the solution are examined. These confirm that near the peak Strouhal number, particularly for the first helical mode n = 1, the amplification of disturbances in the LNS closely matches the DNS. However, away from the peak frequency (and generally for the azimuthal mode n = 0), modes in the LNS are damped while those in the DNS grow at rates comparable to those at the peak Strouhal number.

  17. Jets or vortices—What flows are generated by an inverse turbulent cascade?

    NASA Astrophysics Data System (ADS)

    Frishman, Anna; Laurie, Jason; Falkovich, Gregory

    2017-03-01

    An inverse cascade, energy transfer to progressively larger scales, is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole is expected. Using direct numerical simulations, we show that in fact neither is the box symmetry respected nor the largest scale realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, however, can neither be deduced from the largest-available-scale argument, nor from the often employed maximum-entropy principle or quasilinear approximation.

  18. An improved integral model for plane and round turbulent buoyant jets

    NASA Astrophysics Data System (ADS)

    Yannopoulos, P. C.

    The integral momentum and tracer equations for the mean motion with the turbulence contribution in momentum and tracer fluxes are integrated on the centreline of either plane or round buoyant jets, using suitable assumptions for the spreading coefficients and a closing function, and unified first- and second-order solutions are derived in the entire buoyancy range for mean axial velocities and mean concentrations. Comparisons to experimental data in the literature validate the model and show that second-order solutions deviate less than first-order solutions. Both types are used in conjunction with the integral continuity and kinetic energy equations for the mean motion to determine the variation of the local Richardson and Froude numbers, dispersion ratio, bulk dilution, dilution ratio, entrainment coefficient and mean velocity, kinetic energy flux and its gradient for the mean motion; and the variations of these quantities are evaluated using reported experimental or theoretical data. Finally, the variation of the product of kinetic energy flux and the local Richardson number is examined and a universal constant for both plane and round buoyant jets is revealed, leading to a unified definition of the local Richardson number, which is independent of the flow and mixing geometry and could be useful. Simple computational programming and good overall agreement make the proposed model a very promising tool for laboratory and field studies, outfall design and validation of numerical models.

  19. DNS of a turbulent, self-igniting n-dodecane / air jet

    NASA Astrophysics Data System (ADS)

    Borghesi, Giulio; Chen, Jacqueline

    2016-11-01

    A direct numerical simulation of a turbulent, self-igniting temporal jet between n-dodecane and diluted air at p =25 bar has been conducted to clarify certain aspects of diesel engine combustion. The thermodynamics conditions were selected to result in a two-stage ignition event, in which low- and high-temperature chemical reactions play an equally important role during the ignition process. Jet parameters were tuned to yield a target ignition Damkohler number of 0.4, a value representative of conditions found in diesel spray flames. Chemical reactions were described by a 35-species reduced mechanism, including both the low- and high-temperature reaction pathways of n-dodecane. The present work focuses on the influence of low-temperature chemistry on the overall ignition transient. We also study the structure of the flames formed at the end of the autoignition transient. Recent studies on diluted dimethyl ether / air flames at pressure and temperature conditions similar to those investigated in this work revealed the existence of tetra- and penta-brachial flames, and it is of interest to determine whether similar flame structures also exist when diesel-like fuels are used.

  20. Modeling primary break-up of turbulent liquid jets in cross-flow using detailed numerical simulations

    NASA Astrophysics Data System (ADS)

    Pai, Madhusudan; Desjardins, Olivier; Pitsch, Heinz

    2008-11-01

    Combustion efficiency and pollutant emissions from internal combustion engines and gas turbines are determined by the atomization of the liquid fuel. When injected into a quiescent or moving ambient gas, the liquid jet develops instabilities due to various causes (such as aerodynamic effects, pressure fluctuations and cavitation) which in turn lead to the primary break-up of the liquid jet. The ability to understand and accurately quantify these instabilities can provide avenues to model liquid primary break-up. Such statistics are accessible only in accurate numerical simulations of liquid jet break-up. A spectrally-refined interface (SRI) tracking method for interface transport coupled to an accurate and robust Navier-Stokes/Ghost-fluid method solver is employed to perform detailed numerical simulations of liquid-jets in cross-flow. For validation purposes, predictions from the numerical simulations for the liquid-column trajectory and liquid-jet penetration are compared with experimental datasets. Statistics of energy fluctuations due to turbulence and aerodynamic instabilities in the liquid jet, and the impact of these fluctuations on the shedding of ligaments and droplets from the surface of the liquid jet are quantified. Based on the results from the numerical simulations, a framework for modeling primary break-up of liquid jets is proposed.

  1. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE PAGES

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...

    2017-07-07

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  2. Inlet turbulence intensity level and cross-stream distribution effects on the heat transfer in plane wall jets

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.

    1989-01-01

    The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.

  3. Modeling and large-eddy simulation (LES) of a turbulent boundary layer over linearly-varying surface roughness

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Pullin, D. I.; Cheng, W.

    2016-11-01

    An empirical model is presented, after Rotta (1962), that describes the development of a fully-developed turbulent boundary layer in the presence of surface roughness with nominal roughness length-scale ks that varies with stream-wise distance x. For Rex =Ue (x) x / ν large, use is made of the log-wake model of the local turbulent mean-velocity profile that contains the Hama roughness correction ΔU+ (ks+) for the asymptotic, fully rough regime. It is shown that the skin friction coefficient Cf is constant in x only for ks = αx , where α is a dimensionless number. For Ue (x) = Axm , this then gives a two-parameter (α , m) family of solutions for boundary-layer flows that are self similar in the variable z / (α x) where z is the wall-normal co-ordinate. Trends observed in this model are supported by wall-modeled LES of the zero-pressure-gradient turbulent boundary layer (m = 0) at very large Rex . It is argued that the present results suggest that, in the sense that Cf is spatially constant and independent of Rex , this class of flows can be interpreted as providing the asymptotically-rough equivalent of Moody-like diagrams for boundary layers in the presence of small-scale roughness. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.

  4. Magnetic Influences on Turbulent Heating and Jet Production in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2015-12-01

    The heating of the solar wind from open-field regions in the corona is the subject of an ongoing body of work in the solar physics community. We present recent progress to understand the role of Alfvén-wave-driven turbulence in flux tubes open to the heliosphere. Our models use three-dimensional, time-dependent forms of the reduced magnetohydrodynamics equations to find the resulting properties of the solar wind. We use the BRAID model (van Ballegooijen et al., 2011) on open flux tubes that epitomize the most common magnetic structures in the corona: a polar coronal hole, an open flux tube on the boundary of an equatorial streamer, and one that neighbors a strong active region. Our results agree with prior work using the time-steady, one-dimensional ZEPHYR model (Cranmer et al., 2007; Woolsey and Cranmer, 2014). In addition, the time dependence in BRAID lets us explore the bursty, nanoflare-like nature of the heating in these flux tubes. We find that the transient heating can be captured into separate events with an average energy of 1022 erg, with a maximum energy of 1025 erg. The bursty heating lead us to pursue a better understanding of the physical processes responsible for the network jets seen in IRIS data (see e.g. Tian et al., 2014). We search for correlations between the supergranular magnetic field properties—using the Helioseismic and Magnetic Imager aboard SDO—and jet productivity to make better estimates of the mass and energy budget of these small-scale features and to find evidence of the mechanisms responsible for the network jets.

  5. Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry

    NASA Astrophysics Data System (ADS)

    Rostamimonjezi, Sara

    This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic

  6. Turbulence measurements in the vicinity of a strong polar jet during POLSTRACC/GWLCYCLE II/SALSA, 2016

    NASA Astrophysics Data System (ADS)

    Bramberger, Martina; Dörnbrack, Andreas; Rapp, Markus; Gemsa, Steffen; Raynor, Kevin

    2017-04-01

    In January 2016, the combined POLar STRAtosphere in a Changing Climate (POLSTRACC), Investigation of the life cycle of gravity waves (GW-LCYCLE) II and Seasonality of Air mass transport and origin in the Lowermost Stratosphere (SALSA) campaign, shortly abbreviated as PGS, took place in Kiruna, Sweden. During this campaign, on 31 January 2016, a strong polar jet with horizontal wind speeds up to 100 m/s was located above northern Great Britain. The research flight PGS12 lead the High Altitude LOng range (HALO) aircraft right above the jet streak of this polar jet, a region which is known from theoretical studies for prevalent turbulence. Here, we present a case study in which high-resolution in-situ aircraft measurements are employed to analyse and quantify turbulence in the described region with parameters such as e.g. turbulent kinetic energy and the eddy dissipation rate. This analysis is supported by idealized numerical simulations to determine involved processes for the generation of turbulence. Complementing, forecasts and operational analyses of the integrated forecast system (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) are used to thoroughly analyze the meteorological situation.

  7. Experimental validation of potential and turbulent flow models for a two-dimensional jet enhanced exhaust hood.

    PubMed

    Kulmala, I

    2000-01-01

    A two-dimensional jet-reinforced slot exhaust hood was modeled using a mathematical model based on potential flow theory and with a computational fluid dynamics (CFD) model using the standard k-epsilon model for turbulence closure. The accuracy of the calculations was verified by air velocity and capture efficiency measurements. The comparisons show that, for normal operating conditions, both the models predicted the mean airflows in front of the hood well. However, the CFD model gave more realistic results in the jet flow region and also of the short-circuiting flow. Both models became increasingly inaccurate when the ratio of the supply jet momentum to the exhaust flow rate increased. The jet enhancement proved to be a very efficient way to increase the effective control range of exhaust hoods. Controlled air movements can be created at distances that are two to three times larger than with conventional suction alone without increasing the exhaust flow rate.

  8. The thermal and hydrodynamic structure of a turbulent buoyant jet on clean and contaminated free-surfaces

    NASA Astrophysics Data System (ADS)

    Judd, K. Peter; Savelyev, Ivan; Smith, Geoffrey

    2011-11-01

    The thermal and hydrodynamic structure of a turbulent buoyant jet impinging normal to clean and contaminated free-surfaces was examined experimentally for fixed jet depth, reduced gravity and several Reynolds numbers. The objective of this investigation is to describe the resulting interaction and morphology of the surface thermal structures. Fluid for the jet is supplied from a gravity feed whose ambient temperature is several degrees above the receiving fluid of a large water basin. Thus the warmer fluid serves as a passive marker. The spatial and temporal characteristics of the surface thermal field were mapped using a mid-wave infrared imager sensitive to radiation in the 3-5 micron band and with an NEDT of 25 mK. As the Reynolds number and/or the degree of contamination are changed, noticeable structural changes were observed in the thermal field around the core and the outer turbulent/non- turbulent regions. Additionally, the subsurface jet was simultaneously interrogated using DPIV and the surface thermal structures are discussed in light of the resulting characteristics of the flow field.

  9. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGES

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  10. Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet.

    PubMed

    Zhang, J; Xu, M; Pollard, A; Mi, J

    2013-05-01

    This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in the jet at 15 < x/D(e) < 40, where D(e) denotes the exit equivalent diameter, and for an exit Reynolds number of Re = 50,000. The Taylor microscale Reynolds number R(λ) varies from about 70 to 450 in the present study. The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere Publishing Corp., Washington, DC, 1990), pp. 911-931] is discussed and applied to estimate the intermittency factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically, m varies with γ following m=m(t)+(lnγ(-0.0173))(1/2), where m(t) denotes the spectral exponent found in fully turbulent regions.

  11. Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xu, M.; Pollard, A.; Mi, J.

    2013-05-01

    This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in the jet at 15 < x/De < 40, where De denotes the exit equivalent diameter, and for an exit Reynolds number of Re = 50 000. The Taylor microscale Reynolds number Rλ varies from about 70 to 450 in the present study. The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere Publishing Corp., Washington, DC, 1990), pp. 911-931] is discussed and applied to estimate the intermittency factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically, m varies with γ following m=mt+(lnγ-0.0173)1/2, where mt denotes the spectral exponent found in fully turbulent regions.

  12. LES of spatially developing turbulent boundary layer over a concave surface

    NASA Astrophysics Data System (ADS)

    Arolla, Sunil; Durbin, Paul

    2013-11-01

    We revisit the problem of spatially developing turbulent boundary layer over a concave surface. Unlike previous investigations, we simulate the combined effects of curvature-induced pressure gradients as well as streamline curvature on the turbulence. Our focus is on investigating the response of the turbulent boundary layer to the sudden onset of curvature and the destabilizing influence of concave surface in the presence of pressure gradients. This is of interest for evaluating the turbulence closure models. Numerical simulations have been performed using the large eddy simulation framework in OpenFOAM. The dynamic Smagorinsky model is used to account for the sub-grid scale stresses. A variant of the recycling and rescaling method is used to generate the inflow turbulence. At the beginning of the curve, the momentum thickness Reynolds number is 1300 and the ratio of boundary layer thickness to the radius of curvature is δ0 / R = 0 . 055 . The radial profiles of the mean velocity and turbulence statistics at different locations along the concave surface are presented. In addition, the secondary flow structures observed are reported.

  13. Two-beam femtosecond rotational CARS for one-dimensional thermometry in a turbulent, sooting jet flame

    NASA Astrophysics Data System (ADS)

    Richardson, Daniel R.; Roy, Sukesh; Gord, James R.; Kearney, Sean P.

    2017-02-01

    Single-laser-shot femtosecond rotational coherent anti-Stokes Raman scattering (fs-RCARS) temperature measurements are performed across a 6-mm line in a turbulent, sooting ethylene jet flame to characterize temperature gradients. A 60- fs pulse is used to excite many rotational Raman transitions in N2, and a 160-ps pulse is used to probe the Raman coherence. The spatial resolution of the measurements is 500 μm in the direction of beam propagation and 50 μm in the transverse directions. Measurements have been performed at multiple locations in the jet flame, and the measured temperature are similar to previously recorded point measurements. Future work will include performing simultaneous laser-induced incandescence (LII) measurements to measure soot volume fraction to perform joint statistical analysis of the sooting turbulent flame.

  14. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer.

    PubMed

    Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C

    2014-06-24

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production.

  15. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  16. Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Heimpel, Moritz; Aurnou, Jonathan

    2007-04-01

    The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.

  17. Approximate Deconvolution and Explicit Filtering For LES of a Premixed Turbulent Jet Flame

    DTIC Science & Technology

    2014-09-19

    circle in Fig. 2), which peaks at c = 0.75 in the non-filtered flame, thus on the burnt gas side, moves towards c̃ = 0.5 with mod- erate filtering...and even on the fresh gas side for larger filter widths (Fig. 2(b)), a shift that is reinforced here by the fact that the terms have been divided by...filtered density to examine the time derivative of temperature (Eq. (15)). The SGS convective term (Triangle) is pos- itive in the fresh gas and negative

  18. A Hybrid URANS/LES Approach Used for Simulations of Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Fraňa, Karel; Stiller, Jörg

    A hybrid model based on the unsteady Reynolds averaged Navier-Stokes approach represented by the one-equation Spalart-Allmaras model and the Large Eddy Simulation called Detached Eddy Simulation (DES) was applied for turbulent flow simulations. This turbulent approach was implemented into the flow solver based on the Finite-Element Method with pressure stabilized and streamlines upwind Petrov-Galerkin stabilization techniques. The effectiveness and robustness of this updated solver is successfully demonstrated at benchmark calculation represented by an unsteady turbulent flow past a cylinder at Reynolds number 3900. Results such as velocity fields and the flow periodicity, Reynolds stress tensor and eddy viscosity and pressure coefficient distributions are discussed and relatively good agreement was found to direct numerical simulations and experiments.

  19. Dynamic subgrid-scale modeling for LES of particle-laden turbulent flows

    NASA Astrophysics Data System (ADS)

    Bassenne, Maxime; Ilhwan Park, George; Urzay, Javier; Moin, Parviz

    2016-11-01

    A new dynamic model is proposed for large-eddy simulations of small inertial particles in turbulent flows. The model is simple, involves no significant computational overhead, and is flexible enough to be deployed in any type of flow solvers and grids, including unstructured setups. The approach does not require any tunable parameters and is based on the use of elliptic differential filters. Particle laden isotropic turbulence and turbulent channel flow are considered. Improved agreement with direct numerical simulation results are observed in the dispersed-phase statistics. The comparisons include analyses of particle acceleration, local carrier-phase velocity, turbophoresis, and preferential-concentration metrics. PSAAP-II Center at Stanford (DoE Grant #107908).

  20. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE PAGES

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; ...

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  1. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitat