Science.gov

Sample records for les jets turbulents

  1. Application of a RG hybrid RANS/LES model to swirling confined turbulent jets

    NASA Astrophysics Data System (ADS)

    de Langhe, C.; Merci, B.; Dick, E.

    A renormalization group (RG) based hybrid RANS/LES model is validated for turbulent swirling confined jets. The results are compared with the experimental data of Dellenback et al. (1988, Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA Journal, 26(6), 669 681) and results for the same flows of an unsteady second-moment closure RANS simulation. A general quality/cost comparison is made between the hybrid RANS/LES and the second-moment closure simulations. In the final section, the hybrid RANS/LES result is further compared to a detached-eddy simulation, dynamic -equation LES and dynamic Smagorinsky LES for one of the flows, and the overall good quality of the RG hybrid RANS/LES model demonstrated.

  2. DNS and LES/FMDF of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Jaberi, Farhad

    2014-11-01

    The ignition and combustion of lean fuel-air mixtures by a turbulent jet flow of hot combustion products injected into various geometries are studied by high fidelity numerical models. Turbulent jet ignition (TJI) is an efficient method for starting and controlling the combustion in complex propulsion systems and engines. The TJI and combustion of hydrogen and propane in various flow configurations are simulated with the direct numerical simulation (DNS) and the hybrid large eddy simulation/filtered mass density function (LES/FMDF) models. In the LES/FMDF model, the filtered form of the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar field. The DNS and LES/FMDF data are used to study the physics of TJI and combustion for different turbulent jet igniter and gas mixture conditions. The results show the very complex and different behavior of the turbulence and the flame structure at different jet equivalence ratios.

  3. LES/FMDF of turbulent jet ignition in a rapid compression machine

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Schock, Harold; Toulson, Elisa; Jaberi, Farhad; CFD; Engine Research Labs, Michigan State University Collaboration

    2015-11-01

    Turbulent Jet Ignition (TJI) is an efficient method for initiating and controlling combustion in combustion systems, e.g. internal combustion engines. It enables combustion in ultra-lean mixtures by utilizing hot product turbulent jets emerging from a pre-chamber combustor as the ignition source for the main combustion chamber. Here, we study the TJI-assisted ignition and combustion of lean methane-air mixtures in a Rapid Compression Machine (RCM) for various flow/combustion conditions with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) computational model. In the LES/FMDF model, the filtered form of compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity, while the FMDF transport equation is solved with a Lagrangian stochastic method to obtain the scalar (species mass fraction and temperature) field. The LES/FMDF data are used to study the physics of TJI and combustion in RCM. The results show the very complex behavior of the reacting flow and the flame structure in the pre-chamber and RCM.

  4. Turbulent opposed-jet flames: A critical benchmark experiment for combustion LES

    SciTech Connect

    Geyer, D.; Dreizler, A.; Janicka, J.; Kempf, A.

    2005-12-01

    Turbulent opposed-jet configurations have gained attention as a challenging test case to validate the mixing and combustion models used in the simulation of turbulent combustion. In general, validation requires comprehensive experimental information on flow and scalar fields, and the emergence of combustion large-eddy simulation (CLES) necessitated more advanced diagnostics. These laser-optical techniques allow measurements not only of single-point statistics but of structural information of the flame, such as correlations, gradients, and structure functions. This paper presents thorough experimental and numerical investigations of one isothermal and two reacting turbulent opposed jets with fuel jets consisting of partially premixed methane. Its focus is on one configuration at and one configuration close to the highest possible Reynolds numbers where flames could be stabilized. The experimental data presented comprise information on axial velocity, main species concentrations, temperature, mixture fraction, scalar dissipation rate, joint probability density functions, and structure functions. These quantities are compared to results of highly resolved CLES to show the configuration's suitability as a critical benchmark for state-of-the art combustion LES.

  5. Turbulent Jets?

    NASA Astrophysics Data System (ADS)

    Wilde, B. H.; Rosen, P. A.; Foster, J. M.; Perry, T. S.; Steinkamp, M. J.; Robey, H. F.; Khokhlov, A. M.; Gittings, M. L.; Coker, R. F.; Keiter, P. A.; Knauer, J. P.; Drake, R. P.; Remington, B. A.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B.; Mehlhorn, T. A.

    2003-10-01

    Over the last few years we have fielded numerous supersonic jet experiments on the NOVA and OMEGA lasers and Sandia's pulsed-power Z-machine in a collaboration between Los Alamos National Laboratory, the Atomic Weapons Establishment, Lawrence Livermore National Laboratory, and Sandia National Laboratory. These experiments are being conducted to help validate our radiation-hydrodynamic codes, especially the newly developing ASC codes. One of the outstanding questions is whether these types of jets should turn turbulent given their high Reynolds number. Recently we have modified our experiments to have more Kelvin-Helmholtz shear, run much later in time and therefore have a better chance of going turbulent. In order to diagnose these large (several mm) jets at very late times ( 1000 ns) we are developing point-projection imaging on both the OMEGA laser, the Sandia Z-Machine, and ultimately at NIF. Since these jets have similar Euler numbers to jets theorized to be produced in supernovae explosions, we are also collaborating with the astrophysics community to help in the validation of their new codes. This poster will present a review of the laser and pulsed-power experiments and a comparison of the data to simulations by the codes from the various laboratories. We will show results of simulations wherein these jets turn highly 3-dimensional and show characteristics of turbulence. With the new data, we hope to be able to validate the sub-grid-scale turbulent mix models (e. g. BHR) that are being incorporated into our codes.*This work is performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory Laboratory under Contract No. W-7405-ENG-36, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460, Sandia National Laboratories under Contract No. DE-AC04-94AL85000, the Office of Naval Research, and the NASA Astrophysical Theory Grant.

  6. Large-eddy simulation of round turbulent jets using the Inertial LES method with multifractal subgrid-scale modeling

    SciTech Connect

    Burton, G

    2007-01-08

    Large-eddy simulation of passive scalar mixing by a fully three-dimensional round incompressible turbulent jet is evaluated using the Inertial LES methodology with multifractal subgrid-scale modeling. The Inertial LES approach involves the direct calculation of the inertial term {ovr u{sub i} u{sub j}} in the filtered incompressible Navier-Stokes equation and the scalar flux term {ovr u{sub j} {phi}} in the filtered advection-diffusion equation, using models for the subgrid velocity field u{sup sgs} and the subgrid scalar-concentration field {phi}{sup sgs}. In this work, the models are based on the multifractal structure of the subgrid enstrophy 2Q{sup sgs}(x,t) {triple_bond} {omega}{sup sgs} {center_dot} {omega}{sup sgs} and scalar-dissipation {chi}{sup sgs} (x,t) {triple_bond} D{del}{phi}{sup sgs} {center_dot} {del}{phi}{sup sgs} fields, respectively. No artificial viscosity or diffusivity constructs are applied and no explicit dealiasing is performed. Numerical errors are controlled by the application of an adaptive backscatter limiter. The present work summarizes the initial evaluation of the Inertial LES approach in the context of the round turbulent jet, including examinations of jet self-similarity and the scale-to-scale distribution of kinetic and scalar energy in the jet far field. These inquiries confirm that the Inertial LES method accurately recovers the large scale structure of this complex turbulent shear flow.

  7. Investigation of Instability Wave Dynamics in High-Speed Turbulent Jets Using LES

    NASA Astrophysics Data System (ADS)

    Ryu, Jaiyoung; Lele, Sanjiva K.

    2007-11-01

    Instability waves have been frequently invoked to explain the dominant noise from high-speed jets. Current methods for predicting jet noise do not, as of yet, use the instability wave formalism. We decompose the results of the large-eddy simulation of high-speed jets (Bodony and Lele, 2005) by Fourier, adjoint (Ryu, Lele and Viswanathan, 2007) and POD methods (Suzuki, 2007) to extract the instability wave contribution to the fluctuations. Three operating conditions are analyzed. Jet instability modes at different frequencies and azimuthal mode numbers as a function of downstream position are traced. The deduced instability wave amplitude and phase dynamics are compared with the predictions of the parabolized stability equations (Cheung, 2007). The least square method is used to provide the amplitude estimate for the linear PSE results. The decomposed LES database shows ``the physics of instability waves'' to a limited extent. The agreement is best for the lowest frequency considered (St=0.1) and for the first azimuthal mode (n=1). For higher St and other modes larger discrepancies are observed.

  8. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that result in having dreams come true. This paper primarily addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. It also addresses the latter problem in discussing what are relevant measures critical for aeroacoustics that should be used in validating LES codes. These new diagnostic techniques deliver measurements and flow statistics of increasing sophistication and capability, but what of their accuracy? And what are the measures to be used in validation? This paper argues that the issue of accuracy be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it is argued that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound.

  9. Validating LES for Jet Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2011-01-01

    Engineers charged with making jet aircraft quieter have long dreamed of being able to see exactly how turbulent eddies produce sound and this dream is now coming true with the advent of large eddy simulation (LES). Two obvious challenges remain: validating the LES codes at the resolution required to see the fluid-acoustic coupling, and the interpretation of the massive datasets that are produced. This paper addresses the former, the use of advanced experimental techniques such as particle image velocimetry (PIV) and Raman and Rayleigh scattering, to validate the computer codes and procedures used to create LES solutions. This paper argues that the issue of accuracy of the experimental measurements be addressed by cross-facility and cross-disciplinary examination of modern datasets along with increased reporting of internal quality checks in PIV analysis. Further, it argues that the appropriate validation metrics for aeroacoustic applications are increasingly complicated statistics that have been shown in aeroacoustic theory to be critical to flow-generated sound, such as two-point space-time velocity correlations. A brief review of data sources available is presented along with examples illustrating cross-facility and internal quality checks required of the data before it should be accepted for validation of LES.

  10. Lifted turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Hammer, Jay A.

    Experiments were conducted on lifted, turbulent jet diffusion flames. An automated technique using a linear photodiode array was implemented to measure the temporal history of the liftoff height h. The measurements enabled accurate determination of the mean liftoff height [...] under a wide range of flow conditions, including several fuels, nozzle diameters, and exit velocities [...]. The results showed an approximately linear relationship between [...] and [...], with a slight dependence on Reynolds number. A strain-rate model for liftoff, based on far-field scaling of turbulent jets, provides an explanation for the linear dependence of [...] on [...]. Measurements were also made in which the nozzle fluid contained varying amounts of air, where it was found that the slope of the [...] vs. [...] line increases faster than predicted by far-field scaling of turbulent jets. The discrepancy is attributed to near-field effects.The amplitudes of the fluctuations in h were found to be of the order of the local large scale of the jet. There is a slight increase in normalized fluctuation level [...] with [...], and there is some variation of [...] with fuel type. The time scales of the fluctuations of h were found to be considerably longer than the local large-scale time of the turbulence [...]. By using fuels of different chemical times to vary [...], the measured correlation time [...] normalized by [...] was found to collapse with Richardson number [...]. Experiments in which the nozzles were oriented horizontally showed no change in [...], however. Additional experiments were conducted to investigate alternative explanations for the variation of [...] with [...]. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t), dismissing the possibility that a feedback mechanism from L to h controls the fluctuations of h. Although I(t) is highly

  11. Towards LES Models of Jets and Plumes

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, N. N.

    2000-01-01

    As pointed out by Rodi standard integral solutions for jets and plumes developed for discharge into infinite, quiescent ambient are difficult to extend to complex situations, particularly in the presence of boundaries such as the sea floor or ocean surface. In such cases the assumption of similarity breaks down and it is impossible to find a suitable entrainment coefficient. The models are also incapable of describing any but the most slowly varying unsteady motions. There is therefore a need for full time-dependent modeling of the flow field for which there are three main approaches: (1) Reynolds averaged numerical simulation (RANS), (2) large eddy simulation (LES), and (3) direct numerical simulation (DNS). Rodi applied RANS modeling to both jets and plumes with considerable success, the test being a match with experimental data for time-averaged velocity and temperature profiles as well as turbulent kinetic energy and rms axial turbulent velocity fluctuations. This model still relies on empirical constants, some eleven in the case of the buoyant jet, and so would not be applicable to a partly laminar plume, may have limited use in the presence of boundaries, and would also be unsuitable if one is after details of the unsteady component of the flow (the turbulent eddies). At the other end of the scale DNS modeling includes all motions down to the viscous scales. Boersma et al. have built such a model for the non-buoyant case which also compares well with measured data for mean and turbulent velocity components. The model demonstrates its versatility by application to a laminar flow case. As its name implies, DNS directly models the Navier-Stokes equations without recourse to subgrid modeling so for flows with a broad spectrum of motions (high Re) the cost can be prohibitive - the number of required grid points scaling with Re(exp 9/4) and the number of time steps with Re(exp 3/4). The middle road is provided by LES whereby the Navier-Stokes equations are formally

  12. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  13. Large Eddy Simulation of Multiple Turbulent Round Jets

    NASA Astrophysics Data System (ADS)

    Balajee, G. K.; Panchapakesan, Nagangudy

    2015-11-01

    Turbulent round jet flow was simulated as a large eddy simulation with OpenFoam software package for a jet Reynolds number of 11000. The intensity of the fluctuating motion in the incoming nozzle flow was adjusted so that the initial shear layer development compares well with available experimental data. The far field development of averages of higher order moments up to fourth order were compared with experiments. The agreement is good indicating that the large eddy motions were being computed satisfactorily by the simulation. Turbulent kinetic energy budget as well as the quality of the LES simulations were also evaluated. These conditions were then used to perform a multiple turbulent round jets simulation with the same initial momentum flux. The far field of the flow was compared with the single jet simulation and experiments to test approach to self similarity. The evolution of the higher order moments in the development region where the multiple jets interact were studied. We will also present FTLE fields computed from the simulation to educe structures and compare it with those educed by other scalar measures. Support of AR&DB CIFAAR, and VIRGO cluster at IIT Madras is gratefully acknowledged.

  14. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean

  15. Large Scale Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1997-01-01

    Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities

  16. Lattice Boltzmann LES for MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Flint, Chris; Vahala, George; Vahala, Linda; Soe, Min

    2015-11-01

    Dellar's lattice Boltzmann (LB) model of 2D incompressible MHD introduced both a scalar velocity and vector magnetic distribution functions, which automatically enforces div B = 0 through the trace of an antisymmetric perturbed tensor. In the Smagorinsky LES model, the filtered Reynolds stresses are modeled by mean field gradient terms, with ad hoc closure eddy transport terms. Ansumali et. al. have developed an LES for Navier-Stokes turbulence by filtering the underlying mesoscopic LB. The filtered LB equations are then subjected to the Chapman-Enskog expansion. A Smagorinsky-like LES is recovered with no ad hoc assumptions other than the subgrid terms contribute only at the transport time scales. Here we extend these ideas to 2D MHD turbulence. The DNS data base is being generated from a multiple relaxation time (MRT) model with a quasi-entropic analytic scheme introduced recently by Karlin et. al. (2014) based on splitting the moment representation into various subgroups. Work supported by NSF, DoD.

  17. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  18. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  19. Synchrotron brightness distribution of turbulent radio jets

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Bridle, A. H.; Chan, K. L.

    1981-01-01

    Radio jets are considered as turbulent mixing regions and it is proposed that the essential small scale viscous dissipation in these jets is by emission of MHD waves and by their subsequent strong damping due, at least partly, to gyro-resonant acceleration of supra-thermal particles. A formula relating the synchrotron surface brightness of a radio jet to the turbulent power input is deduced from physical postulates, and is tested against the data for NGC315 and 3C31 (NGC383). The predicted brightness depends essentially on the collimation behavior of the jet, and, to a lesser extent, on the CH picture of a 'high' nozzle with accelerating flow. The conditions for forming a large scale jet at a high nozzle from a much smaller scale jet are discussed. The effect of entrainment on the prediction is discussed with the use of similarity solutions. Although entrainment is inevitably associated with the turbulent jet, it may or may not be a dominant factor depending on the ambient density profile.

  20. Ray Traces Through Unsteady Jet Turbulence

    NASA Technical Reports Server (NTRS)

    Freund, J. B.; Fleischman, T. G.

    2002-01-01

    Results of an ongoing effort to quantify the role turbulence in scattering sound in jets are reported. Using a direct numerical simulation database to provide the flow data, ray paths traced through the mean flow are compared with those traced through the actual time evolving turbulent flow. Significant scattering by the turbulence is observed. The most notable effect is that upstream traveling waves that are trapped in the potential core by the mean flow, which acts as a wave guide, easily escape in the turbulent flow. A crude statistical estimate based on ray number density suggests that directivity is modified by the turbulence, but no rigorous treatment of non-uniformities in the high-frequency approximation is attempted.

  1. Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane

    NASA Astrophysics Data System (ADS)

    Gomez, Luis Fernando

    Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.

  2. Formation and inflammation of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Chen, D. Y.; Oppenheim, A. K.

    1984-01-01

    The formation and inflammation of a planar, turbulent jet in an incompressible medium is modeled numerically by the use of the random vortex method amended by a flame propagation algorithm. The results demonstrate the dominant influence of turbulent eddies and their interactions upon the development of the jet. Its growth is shown to consist of three stages: formation of small eddies, pairing of eddies with the same sign of circulation, and pairing of eddies of opposite signs. On this basis a number of features of the jet mechanism are revealed, namely penetration, engulfment, entrainment, and intermittency. Two cases of inflammation are considered. In one, the jet is ignited at the center of the orifice, the solution tracing its own inflammation. In the other, combustion is initiated across its full cross section, the results modeling the action of a turbulent torch as it spreads the flame into the combustible surroundings. In both cases the flow field is still dominated by the turbulent eddies and their interactions. However, the coherence among them is encumbered as a consequence of expansion due to the exothermicity of the combustion process.

  3. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  4. LES/RANS Simulation of a Supersonic Reacting Wall Jet

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Boles, John A.; Baurle, Robert A.

    2010-01-01

    This work presents results from large-eddy / Reynolds-averaged Navier-Stokes (LES/RANS) simulations of the well-known Burrows-Kurkov supersonic reacting wall-jet experiment. Generally good agreement with experimental mole fraction, stagnation temperature, and Pitot pressure profiles is obtained for non-reactive mixing of the hydrogen jet with a non-vitiated air stream. A lifted flame, stabilized between 10 and 22 cm downstream of the hydrogen jet, is formed for hydrogen injected into a vitiated air stream. Flame stabilization occurs closer to the hydrogen injection location when a three-dimensional combustor geometry (with boundary layer development resolved on all walls) is considered. Volumetric expansion of the reactive shear layer is accompanied by the formation of large eddies which interact strongly with the reaction zone. Time averaged predictions of the reaction zone structure show an under-prediction of the peak water concentration and stagnation temperature, relative to experimental data and to results from a Reynolds-averaged Navier-Stokes calculation. If the experimental data can be considered as being accurate, this result indicates that the present LES/RANS method does not correctly capture the cascade of turbulence scales that should be resolvable on the present mesh. Instead, energy is concentrated in the very largest scales, which provide an over-mixing effect that excessively cools and strains the flame. Predictions improve with the use of a low-dissipation version of the baseline piecewise parabolic advection scheme, which captures the formation of smaller-scale structures superimposed on larger structures of the order of the shear-layer width.

  5. Multiple Mode Actuation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Pack, LaTunia G.; Seifert, Avi

    2001-01-01

    The effects of multiple mode periodic excitation on the evolution of a circular turbulent jet were studied experimentally. A short, wide-angle diffuser was attached to the jet exit. Streamwise and cross-stream excitations were introduced at the junction between the jet exit and the diffuser inlet on opposing sides of the jet. The introduction of high amplitude, periodic excitation in the streamwise direction enhances the mixing and promotes attachment of the jet shear-layer to the diffuser wall. Cross-stream excitation applied over a fraction of the jet circumference can deflect the jet away from the excitation slot. The two modes of excitation were combined using identical frequencies and varying the relative phase between the two actuators in search of an optimal response. It is shown that, for low and moderate periodic momentum input levels, the jet deflection angles depend strongly on the relative phase between the two actuators. Optimum performance is achieved when the phase difference is pi +/- pi/6. The lower effectiveness of the equal phase excitation is attributed to the generation of an azimuthally symmetric mode that does not produce the required non-axisymmetric vectoring. For high excitation levels, identical phase becomes more effective, while phase sensitivity decreases. An important finding was that with proper phase tuning, two unsteady actuators can be combined to obtain a non-linear response greater than the superposition of the individual effects.

  6. The Aeroacoustics of Turbulent Coanda Wall Jets

    NASA Astrophysics Data System (ADS)

    Lubert, Caroline; Fox, Jason

    2007-11-01

    Turbulent Coanda wall jets have become increasingly widely used in a variety of industrial applications in recent years, due to the substantial flow deflection that they afford. A related characteristic is the enhanced turbulence levels and entrainment they offer, compared with conventional jet flows. This characteristic is, however, generally accompanied by a significant increase in the noise levels associated with devices employing this effect. As a consequence, the potential offered by Coanda devices is yet to be fully realized. This problem provides the impetus for the research detailed in this poster. To date, some work has been done on developing a mathematical model of the Turbulent Mixing Noise emitted by such a device, assuming that the surface adjoining the turbulent flow was essentially 2-D. This poster extends this fundamental model, through a combination of mathematical modeling and acoustical and optical experiments. The effect of a variety of parameters, including nozzle configuration and jet exit velocity will be discussed, and ways of reducing or attenuating the noise generated by such flow, whilst still maintaining the crucial flow characteristics, will be presented.

  7. Extended LES-PaSR model for simulation of turbulent combustion

    NASA Astrophysics Data System (ADS)

    Sabelnikov, V.; Fureby, C.

    2013-03-01

    In this work, a novel model for Large Eddy Simulations (LES) of high Reynolds moderate Damköhler number turbulent flames is proposed. The development is motivated by the need for more accurate and versatile LES combustion models for engineering applications such as jet engines. The model is based on the finite rate chemistry approach in which the filtered species equations of a reduced reaction mechanism are solved prior to closure modeling. The modeling of the filtered reaction rate provides the challenge: as most of the chemical activity, and thus also most of the exothermicity occurs on the subgrid scales, this model needs to be based on the properties of fine-scale turbulence and mixing and Arrhenius chemistry. The model developed here makes use of the similarities with the mathematical treatment of multiphase flows together with the knowledge of fine-scale turbulence and chemistry obtained by Direct Numerical Simulation (DNS) and experiments. In the model developed, equations are proposed for the fine-structure composition and volume fraction that are solved together with the LES equations for the resolved scales. If subgrid convection can be neglected, the proposed model simplifies to the Partially Stirred Reactor (PaSR) model. To validate the proposed LES model, comparisons with experimental data and other LES results are made, using other turbulence chemistry interaction models, for a lean premixed bluff-body stabilized flame.

  8. Simultaneous computation of jet turbulence and noise

    NASA Technical Reports Server (NTRS)

    Berman, C. H.; Ramos, J. I.

    1989-01-01

    The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.

  9. Large Eddy Simulation of a Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Webb, A. T.; Mansour, Nagi N.

    2001-01-01

    Here we present the results of a Large Eddy Simulation of a non-buoyant jet issuing from a circular orifice in a wall, and developing in neutral surroundings. The effects of the subgrid scales on the large eddies have been modeled with the dynamic large eddy simulation model applied to the fully 3D domain in spherical coordinates. The simulation captures the unsteady motions of the large-scales within the jet as well as the laminar motions in the entrainment region surrounding the jet. The computed time-averaged statistics (mean velocity, concentration, and turbulence parameters) compare well with laboratory data without invoking an empirical entrainment coefficient as employed by line integral models. The use of the large eddy simulation technique allows examination of unsteady and inhomogeneous features such as the evolution of eddies and the details of the entrainment process.

  10. Flow topologies and turbulence scales in a jet-in-cross-flow

    NASA Astrophysics Data System (ADS)

    Ruiz, A. M.; Lacaze, G.; Oefelein, J. C.

    2015-04-01

    This paper presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of Su and Mungal ["Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets," J. Fluid Mech. 513(1), 1-45 (2004)]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  11. The deterministic chaos and random noise in turbulent jet

    SciTech Connect

    Yao, Tian-Liang; Liu, Hai-Feng Xu, Jian-Liang; Li, Wei-Feng

    2014-06-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion.

  12. Numerical Study of High-Temperature Jet Flow Using RANS/LES and PANS Formulations

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2005-01-01

    Two multi-scale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k(epsilon)) model with a RANS/LES transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the Partially Averaged Navier-Stokes (PANS) model, where the unresolved kinetic energy parameter (f(sub k)) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for Partial Averaged Navier-Stokes (PANS). It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and equal to one in the viscous sub layer, and when the RANS turbulent viscosity becomes smaller than the LES viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate and turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide valuable tool for accurate jet noise predictions. Solutions from these models are compared to RANS results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid RANS/LES and PANS in simulating such flow phenomena.

  13. Spectral peculiarities of turbulent pulsations of submerged water jets

    NASA Astrophysics Data System (ADS)

    Znamenskaya, I. A.; Koroteeva, E. Yu.; Novinskaya, A. M.; Sysoev, N. N.

    2016-07-01

    The spectra of turbulent jet temperature pulsations at 1-40 Hz frequencies have been experimentally studied based on high-speed thermography of the water boundary layer: the region where an impact jet interacts with a surface transparent to IR radiation, as well as the near-wall region where two submerged jets interact in a disc-shaped tee-joint. It has been indicated that the slopes of the spectra of impact submerged jet turbulent pulsations are close to-5/3 and a double inertial interval exists in a quasi-2D turbulent flow that is formed when two jets mix.

  14. Sedimentation from turbulent jets and plumes

    NASA Astrophysics Data System (ADS)

    Ernst, Gerald G. J.; Sparks, R. Stephen J.; Carey, Steven N.; Bursik, Marcus I.

    1996-03-01

    Theoretical models are developed for the sedimentation from the margins of a particle-laden, axisymmetric, turbulent, buoyant plume, in a still environment and for an axisymmetric turbulent momentum jet. The models assume that the mass of each individual size fraction of sediment carried in a parcel of fluid decreases exponentially with time. For relatively coarse particles, the fallout models predict that the sediment deposition beyond a distance r on the ground expressed in log units should decay linearly with distance away from the vent for the momentum jet and should decrease with r1/3 for the buoyant plume. The exponential decay constant J is proportional to the terminal fall velocity Vt of the particles in both cases and inversely proportional to the square root of the initial momentum flux M0 for the jet fallout (Jj ∝ VtMo-1/2) and to the third power of the initial buoyancy flux Fo for the plume fallout (Jp ∝ VtFo-1/3). Smaller particles are affected by reentrainment caused by the turbulent eddies sweeping ambient fluid back into the plume or jet and thus reincorporating some particles that were released from the flow at greater heights. This is taken into account by introducing a reentrainment coefficient, ϕ, into the theoretical models with the assumption that the coefficient has a constant value for a plume of given strength. In new experiments, fallout occurs from the margins of particle-laden, fresh water, buoyant jets, and plumes in a tank of salty water, and sedimentation is measured on the tank floor. Two experiments were weakly affected by reentrainment and show excellent agreement with the simple theory. For smaller particles and increasingly buoyant plumes and strong jets, particle reentrainment is important. The experimental data are fitted by the new reentrainment theory, confirming that values of the reentrainment coefficient are approximately constant for a given flow. A settling number, β, is defined as the ratio of the characteristic

  15. Coupling Turbulence in Hybrid LES-RANS Techniques

    NASA Technical Reports Server (NTRS)

    Woodruff, Stephen L.

    2011-01-01

    A formulation is proposed for hybrid LES-RANS computations that permits accurate computations during resolution changes, so that resolution may be changed at will in order to employ only as much resolution in each subdomain as is required by the physics. The two components of this formulation, establishing the accuracy of a hybrid model at constant resolutions throughout the RANS-to-LES range and maintaining that accuracy when resolution is varied, are demonstrated for decaying, homogeneous, isotropic turbulence.

  16. Turbulence measurements of lateral jet injection into confined tubular crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments have been conducted to characterize the time-mean and turbulent flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, with no swirl in the crossflow. A six-position single hotwire technique was used to measure the velocities and all turbulent normal and shear stresses. Measurements confirmed that the deflected jet is symmetrical about the vertical plane passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity-ratio infinite crossflow cases.

  17. Behavior of turbulent gas jets in an axisymmetric confinement

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1985-01-01

    The understanding of the mixing of confined turbulent jets of different densities with air is of great importance to many industrial applications, such as gas turbine and Ramjet combustors. Although there have been numerous studies on the characteristics of free gas jets, little is known of the behavior of gas jets in a confinement. The jet, with a diameter of 8.73 mm, is aligned concentrically in a tube of 125 mm diameter, thus giving a confinement ratio of approximately 205. The arrangement forms part of the test section of an open-jet wind tunnel. Experiments are carried out with carbon dioxide, air and helium/air jets at different jet velocities. Mean velocity and turbulence measurements are made with a one-color, one-component laser Doppler velocimeter operating in the forward scatter mode. Measurements show that the jets are highly dissipative. Consequently, equilibrium jet characteristics similar to those found in free air jets are observed in the first two diameters downstream of the jet. These results are independent of the fluid densities and velocities. Decay of the jet, on the other hand, is a function of both the jet fluid density and momentum. In all the cases studied, the jet is found to be completely dissipated in approximately 30 jet diameters, thus giving rise to a uniform flow with a very high but constant turbulence field across the confinement.

  18. Survey of Turbulence Models for the Computation of Turbulent Jet Flow and Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, N.

    1999-01-01

    The report presents an overview of jet noise computation utilizing the computational fluid dynamic solution of the turbulent jet flow field. The jet flow solution obtained with an appropriate turbulence model provides the turbulence characteristics needed for the computation of jet mixing noise. A brief account of turbulence models that are relevant for the jet noise computation is presented. The jet flow solutions that have been directly used to calculate jet noise are first reviewed. Then, the turbulent jet flow studies that compute the turbulence characteristics that may be used for noise calculations are summarized. In particular, flow solutions obtained with the k-e model, algebraic Reynolds stress model, and Reynolds stress transport equation model are reviewed. Since, the small scale jet mixing noise predictions can be improved by utilizing anisotropic turbulence characteristics, turbulence models that can provide the Reynolds stress components must now be considered for jet flow computations. In this regard, algebraic stress models and Reynolds stress transport models are good candidates. Reynolds stress transport models involve more modeling and computational effort and time compared to algebraic stress models. Hence, it is recommended that an algebraic Reynolds stress model (ASM) be implemented in flow solvers to compute the Reynolds stress components.

  19. Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan

    Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation. To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (theta) where the cell sizes are of the order DelrDeltheta. We use a conservative finite volume based approach to remove the severe time step restriction imposed by the CFL condition by merging cells in the azimuthal direction. In addition, fluxes in the radial direction are computed with an implicit scheme to allow cells to be clustered along the jet's shear layer. This method is validated and used to perform the large scale turbulent reacting simulation. The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the

  20. Flow topologies and turbulence scales in a jet-in-cross-flow

    DOE PAGESBeta

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensivemore » characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.« less

  1. Flow topologies and turbulence scales in a jet-in-cross-flow

    SciTech Connect

    Oefelein, Joseph C.; Ruiz, Anthony M.; Lacaze, Guilhem

    2015-04-03

    This study presents a detailed analysis of the flow topologies and turbulence scales in the jet-in-cross-flow experiment of [Su and Mungal JFM 2004]. The analysis is performed using the Large Eddy Simulation (LES) technique with a highly resolved grid and time-step and well controlled boundary conditions. This enables quantitative agreement with the first and second moments of turbulence statistics measured in the experiment. LES is used to perform the analysis since experimental measurements of time-resolved 3D fields are still in their infancy and because sampling periods are generally limited with direct numerical simulation. A major focal point is the comprehensive characterization of the turbulence scales and their evolution. Time-resolved probes are used with long sampling periods to obtain maps of the integral scales, Taylor microscales, and turbulent kinetic energy spectra. Scalar-fluctuation scales are also quantified. In the near-field, coherent structures are clearly identified, both in physical and spectral space. Along the jet centerline, turbulence scales grow according to a classical one-third power law. However, the derived maps of turbulence scales reveal strong inhomogeneities in the flow. From the modeling perspective, these insights are useful to design optimized grids and improve numerical predictions in similar configurations.

  2. LES of turbulent lifted CH4 /H2 flames using a novel FGM-PDF model

    NASA Astrophysics Data System (ADS)

    Abtahizadeh, S. Ebrahim; van Oijen, Jeroen; Bastiaans, Rob; de Goey, Philip

    2014-11-01

    This study reports on numerical investigations of preferential diffusion effects on flame stabilization of turbulent lifted flames using LES with a FGM-PDF approach. The experimental test case is the Delft JHC burner to study Mild combustion; a clean combustion concept. In this burner, CH4 based fuel has been enriched from 0 to 25% of H2. Since the main stabilization mechanism of these turbulent flames is autoignition, the developed numerical model should be able to predict this complex event. Furthermore, addition of hydrogen makes modeling even more challenging due to its preferential diffusion effects. These effects are increasingly important since autoignition is typically initiated at very small mixture fractions where molecular diffusion is comparable to turbulence transport (eddy viscosity). In this study, first, a novel numerical model is developed based on the Flamelet Generated Manifolds (FGM) to account for preferential diffusion effects in autoignition. Afterwards, the developed FGM approach is implemented in LES of the H2 enriched turbulent lifted jet flames. Main features of these turbulent lifted flames such as the formation of ignition kernels and stabilization mechanisms are thoroughly analyzed and compared with the measurements of OH chemiluminescence. The authors gratefully acknowledge the financial support of the Dutch Technology Foundation (STW) under Project No. 10414.

  3. LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Wu, Hao; Ihme, Matthias

    2015-11-01

    The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.

  4. Turbulence Associated With Broadband Shock Noise in Hot Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2008-01-01

    Time-Resolved Particle Image Velocimetry (TRPIV) has been applied to a series of jet flows to measure turbulence statistics associated with broadband shock associated noise (BBSN). Data were acquired in jets of Mach numbers 1.05, 1.185, and 1.4 at different temperatures. Both convergent and ideally expanded nozzles were tested, along with a convergent nozzle modified to minimize screech. Key findings include the effect of heat on shock structure and jet decay, the increase in turbulent velocity when screech is present, and the relative lack of spectral detail associated with the enhanced turbulence.

  5. Turbulence effects on hemolysis by revisiting experiments with LES computations

    NASA Astrophysics Data System (ADS)

    Ozturk, Mesude; O'Rear, Edgar; Papavassiliou, Dimitrios

    2015-11-01

    Determining mechanically stimulated red blood cell trauma as a function of turbulence properties is required to design prosthetic heart devices. Because blood is typically exposed to turbulence in such devices, the design of prosthetic heart devices depends on determining the effect of turbulent stresses on hemolysis. While turbulent stresses increase hemolysis when cells are exposed to them, turbulent flow characteristics in the vicinity of lysed blood cells, and the mechanism of cell damage remains uncertain. In this work, LES computations are used to investigate the effect of turbulent eddy structure on cell damage. The flow was simulated for classic Couette and capillary tube experiments, in order to examine the relation between hemolysis turbulence properties related to the dissipation of turbulent kinetic energy. The hypothesis tested is that eddies that are close in size with the erythrocytes are the ones that are responsible for hemolysis, rather than Reynolds stresses or viscous stresses. We define extensive measures, like the eddy areas for small eddies comparable to the size of the red blood cells, to provide a more general understanding of the mechanical cause of blood trauma.

  6. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to

  7. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  8. Micro-jets in confined turbulent cross flow

    SciTech Connect

    Kelman, J.B.; Greenhalgh, D.A.; Whiteman, M.

    2006-03-01

    The mixing of sub-millimetre diameter jets issuing into a turbulent cross flow is examined with a combination of laser diagnostic techniques. The cross flow stream is in a confined duct and the micro-jet issue from the sides of injector vanes. A range of cross jet momentum ratios, cross flow temperatures and turbulence intensities are investigated to examine the influence on the jet mixing. Methane, seeded with acetone, was used to measure the concentrations of the jets and the mixing of the jet fluid in the duct. Unlike previous jet in cross flow work, mixing appears to be dominated by the free stream turbulence, rather than the cross jet momentum ratios. Temperature increases in the free stream appear to increase the rate of mixing in the duct, despite the associated decrease in the Reynolds number. The dominance of the free stream turbulence in controlling the mixing is of particular interest in respect of gas turbine injection systems, as the cross jet momentum ratio is insufficient in defining the mixing process. (author)

  9. Naturally occurring and forced azimuthal modes in a turbulent jet

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Rice, Edward J.; Reshotko, Eli

    1991-01-01

    Naturally occurring instability modes in an axisymmetric jet were studied using the modal frequency technique. The evolution of the modal spectrum was obtained for a jet with a Reynolds number based on a diameter of 400,000 for both laminar and turbulent nozzle boundary layers. In the early evolution of the jet the axisymmetric mode was predominant, with the azimuthal modes growing rapidly but dominating only the end of the potential core. The growth of the azimuthal was observed closer to the nozzle exit for the jet in the laminar boundary layer case than for the turbulent. Target modes for efficient excitation of the jet were determined and two cases of excitation were studied. First, a jet was excited simultaneously by two helical modes, m equals plus 1 and m equals minus 1 at a Strouhal number based on jet diameter of 0.15 and the axisymmetric mode, m equals 0 at a jet diameter of 0.6. Second, m equals plus one and m equals minus 1 at jet diameter equals 0.3 and m equals 0 at jet diameter equals 0.6 were excited simultaneously. The downstream evolution of the hydrodynamic modes and the spreading rate of the jet were documented for each case. Higher jet spreading rates, accompanied by distorted jet cross sections were observed for the cases where combinations of axisymmetric and helical forcings were applied.

  10. Adaptive LES Methodology for Turbulent Flow Simulations

    SciTech Connect

    Oleg V. Vasilyev

    2008-06-12

    Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence

  11. Modeling of Turbulence Effect on Liquid Jet Atomization

    NASA Technical Reports Server (NTRS)

    Trinh, H. P.

    2007-01-01

    Recent studies indicate that turbulence behaviors within a liquid jet have considerable effect on the atomization process. Such turbulent flow phenomena are encountered in most practical applications of common liquid spray devices. This research aims to model the effects of turbulence occurring inside a cylindrical liquid jet to its atomization process. The two widely used atomization models Kelvin-Helmholtz (KH) instability of Reitz and the Taylor analogy breakup (TAB) of O'Rourke and Amsden portraying primary liquid jet disintegration and secondary droplet breakup, respectively, are examined. Additional terms are formulated and appropriately implemented into these two models to account for the turbulence effect. Results for the flow conditions examined in this study indicate that the turbulence terms are significant in comparison with other terms in the models. In the primary breakup regime, the turbulent liquid jet tends to break up into large drops while its intact core is slightly shorter than those without turbulence. In contrast, the secondary droplet breakup with the inside liquid turbulence consideration produces smaller drops. Computational results indicate that the proposed models provide predictions that agree reasonably well with available measured data.

  12. Establishing Consensus Turbulence Statistics for Hot Subsonic Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James; Werner, Mark P.

    2010-01-01

    Many tasks in fluids engineering require knowledge of the turbulence in jets. There is a strong, although fragmented, literature base for low order statistics, such as jet spread and other meanvelocity field characteristics. Some sources, particularly for low speed cold jets, also provide turbulence intensities that are required for validating Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) codes. There are far fewer sources for jet spectra and for space-time correlations of turbulent velocity required for aeroacoustics applications, although there have been many singular publications with various unique statistics, such as Proper Orthogonal Decomposition, designed to uncover an underlying low-order dynamical description of turbulent jet flow. As the complexity of the statistic increases, the number of flows for which the data has been categorized and assembled decreases, making it difficult to systematically validate prediction codes that require high-level statistics over a broad range of jet flow conditions. For several years, researchers at NASA have worked on developing and validating jet noise prediction codes. One such class of codes, loosely called CFD-based or statistical methods, uses RANS CFD to predict jet mean and turbulent intensities in velocity and temperature. These flow quantities serve as the input to the acoustic source models and flow-sound interaction calculations that yield predictions of far-field jet noise. To develop this capability, a catalog of turbulent jet flows has been created with statistics ranging from mean velocity to space-time correlations of Reynolds stresses. The present document aims to document this catalog and to assess the accuracies of the data, e.g. establish uncertainties for the data. This paper covers the following five tasks: Document acquisition and processing procedures used to create the particle image velocimetry (PIV) datasets. Compare PIV data with hotwire and laser Doppler

  13. Effect of VGs on a turbulent hydrogen jet

    NASA Astrophysics Data System (ADS)

    Senouci, M.; Hibbo, H.; Hammoudi, B.; Kadi, M.; Imine, B.

    2016-03-01

    The aim of this study is to investigate numerically the effects of four vortices on the dynamic, scalar, and turbulent fields of the hydrogen jet. These vortices, which appear in the vicinities of the nozzle, are created by the vortex generators (VGs), and they are assembled with periodicity or symmetry in order, respectively, to give four vortices of the same or opposite direction. A second-order Reynolds stress model is used to investigate asymmetric turbulent jet. The results indicate that the presence of the vortex near the emission jet section noticeably enhances mixing to ensure a good combustion.

  14. Spectra and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1951-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through band-pass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectra of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined.

  15. Spectrums and Diffusion in a Round Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1950-01-01

    In a round turbulent jet at room temperature, measurement of the shear correlation coefficient as a function of frequency (through bandpass filters) has given a rather direct verification of Kolmogoroff's local-isotropy hypothesis. One-dimensional power spectrums of velocity and temperature fluctuations, measured in unheated and heated jets, respectively, have been contrasted. Under the same conditions, the two corresponding transverse correlation functions have been measured and compared. Finally, measurements have been made of the mean thermal wakes behind local (line) heat sources in the unheated turbulent jet, and the order of magnitude of the temperature fluctuations has been determined. (author)

  16. Understanding and predicting soot generation in turbulent non-premixed jet flames.

    SciTech Connect

    Wang, Hai; Kook, Sanghoon; Doom, Jeffrey; Oefelein, Joseph Charles; Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.; Pickett, Lyle M.

    2010-10-01

    This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model

  17. On self-preserving, variable-density, turbulent free jets

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Liu, T. M.

    1986-01-01

    Published experimental data on incompressible, compresible, free binary, and confined binary turbulent axisymmetric jet flows are compiled and characterized, and the effect of varying turbulent diffusivity across the mixing region of a free jet is investigated analytically, applying the similarity-solution approach of So and Hwang (1986) to the self-preserving region. It is shown that closed-form solutions, represented by Gaussian error functions and having the turbulent Reynolds number and a profile-shape factor as free parameters, can be obtained if the turbulent diffusivities of momentum, mass, or heat are assumed to be different and to vary in both the streamwise and radial directions. An entrainment function uniquely related to the turbulent Reynolds number is derived, and good agreement between theoretical predictions and experimental measurements is demonstrated in graphs.

  18. Large Eddy Simulation Of Gravitational Effects In Transitional And Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Jaberi, Farhad A.; Givi, Peyman

    2003-01-01

    The influence of gravity on the spatial and the compositional structures of transitional and turbulent hydrocarbon diffusion flames are studies via large eddy simulation (LES) and direct numerical simulation (DNS) of round and planar jets. The subgrid-scale (SGS) closures in LES are based on the filtered mass density function (FMDF) methodology. The FMDF represents the joint probability density function (PDF) of the SGS scalars, and is obtained by solving its transport equation. The fundamental advantage of LES/FMDF is that it accounts for the effects of chemical reaction and buoyancy exactly. The methodology is employed for capturing some of the fundamental influences of gravity in equilibrium flames via realistic chemical kinetic schemes. Some preliminary investigation of the gravity effects in non-equilibrium flames is also conducted, but with idealized chemical kinetics models.

  19. Large eddy simulation of spark ignition in a turbulent methane jet

    SciTech Connect

    Lacaze, G.; Richardson, E.; Poinsot, T.

    2009-10-15

    Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally. (author)

  20. Interaction of a round turbulent jet with a thermocline

    NASA Astrophysics Data System (ADS)

    Ezhova, Ekaterina; Cenedese, Claudia; Brandt, Luca

    2016-04-01

    Vertical turbulent jets serve as the models of numerous flows both in nature and industry including convective cloud flows in the atmosphere, effluents from submerged wastewater outfall systems in the ocean, pollutant discharge from industrial chimneys, subglacial discharge. We investigate the dynamics of an axisymmetric vertical turbulent jet in a stratified fluid with two layers of different temperature separated by a thermocline. This configuration is a typical model of the upper thermocline layer of lakes and pycnocline in oceans as well as thermal inversions in the atmosphere. In general, turbulent jets in nature and industry originate from the mixed sources of buoyancy and momentum. However, when the source is located far enough from the pycnocline, the jet mixes effectively with the surrounding fluid and the density of the flow at the pycnocline entrance tends to the density of the lower layer of stratification. Dynamics of such a flow in the pycnocline can be modelled employing a neutrally buoyant turbulent jet with the positive vertical momentum. We study the behaviour of a vertical round turbulent jet in an unconfined stratified environment by means of well-resolved large eddy simulation. We consider two cases: when the thermocline width is small and of the same order with the jet diameter at the thermocline entrance. Mean jet penetration, stratified turbulent entrainment and jet oscillations as well as the generation of internal waves are quantified. The mean jet penetration is predicted well by a simple model based on the conservation of the jet volume, momentum and buoyancy fluxes. The entrainment coefficient for the thin thermocline is consistent with the theoretical model for a two-layer stratification with a sharp interface, while for the thick thermocline entrainment is larger at low Froude numbers. For the thick thermocline we demonstrate the presence of a secondary horizontal flow in the upper thermocline, resulting in the entrainment of fluid

  1. Characteristics of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    Three dimensional turbulent jets in crossflow at low to medium jet-to-crossflow velocity ratios are computed with a finite volume numerical procedure which utilizes a second-moment closure model to approximate the Reynolds stresses. A multigrid method is used to accelerate the convergence rate of the procedure. Comparison of the computations to measured data show good qualitative agreement. All trends are correctly predicted, though there is some uncertainty on the height of penetration of the jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.

  2. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  3. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  4. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size

  5. Turbulent Mixing of an Angled Jet in Various Mainstream Conditions

    NASA Astrophysics Data System (ADS)

    Ryan, Kevin; Coletti, Filippo; Elkins, Christopher; Eaton, John

    2013-11-01

    The angled jet in crossflow has been studied in detail with specific emphasis on the turbulent mixing of the jet fluid with the mainstream flow. The interaction of the upstream boundary layer with the jet shear layer results in complex vortex patterns that cause large mean distortion of the jet and rapid turbulent mixing. Most previous studies have been conducted in flat plate flows with little attention paid to the characteristics of the boundary layer. The present study examines the effect of mainstream geometric changes on the jet trajectory, counter-rotating vortex pair strength, and turbulent mixing. Seven cases were examined including flat plate boundary layers with three different thicknesses, adverse and favorable pressure gradient cases, and flows with concave and convex streamwise curvature. Full field, 3D mean velocity and scalar concentration fields were measured using magnetic resonance imaging (MRI) techniques in a water flow. The distortion of the streamtube initiated at the hole exit was examined for each of the seven cases. The degree of mixing was quantified by measuring the amount of mainstream fluid entrained into the jet as well as the turbulent diffusivity as a function of streamwise position.

  6. A computational study of spatially evolving turbulent plane jets

    NASA Astrophysics Data System (ADS)

    Stanley, Scott Alan

    1998-09-01

    Turbulent plane jets are prototypical free shear flows of practical interest in propulsion, combustion and environmental flows. While considerable experimental research has been performed on planar jets, very few computational studies exist. To the author's knowledge, this is the first computational study of planar turbulent jets utilizing direct numerical simulation. Non-uniform, fourth-order compact derivatives in space and a low storage fourth-order Runge-Kutta integration scheme in time are used to numerically solve the compressible Navier-Stokes equations. Characteristic 'nonreflecting' boundary conditions are coupled with characteristic inflow boundary conditions to allow forcing at the inflow. Up to 2.3 million grid points are used. Two-dimensional simulations are initially performed in order to evaluate their relevance to turbulent jets. It is found that they behave in a fashion fundamentally different than is observed experimentally for planar jets. This difference is due to a two-dimensional vortex dipole instability which unrealistically dominates these simulations. A detailed study of the spatial development of a three- dimensional turbulent jet has been performed. Profiles of the mean velocity field and Reynolds stresses achieve self-similarity rapidly and compare very well with experimental data. The self-similar jet growth rate, K1u = 0.094, and centerline velocity decay rate, C1u = 0.208, are in good agreement with the typical experimental values, K1u = 0.100 and C1u = 0.189, of Gutmark and Wygnanski. The downstream growth of the centerline fluctuation intensities match the experimental evolution, although there are small differences due to the sensitivity of jets to the upstream conditions. The development of the initial shear layer instability as well as the downstream transition to the jet column mode at the end of the potential core is captured well. The evolution of the mixing process in turbulent planar jets is studied through analysis of the

  7. Temperature-Corrected Model of Turbulence in Hot Jet Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Massey, Steven J.; Elmiligui, Alaa

    2007-01-01

    An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k-epsilon model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, underpredict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.

  8. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  9. Modellingthe Turbulent Mixing Noise Associated with Coanda Jets

    NASA Astrophysics Data System (ADS)

    Smith, Caroline

    2004-11-01

    Turbulent Mixing Noise (TMN) is a primary high-frequency noise source in aeronautical and aerospace applications that utilize the Coanda effect, due to the enhanced turbulence levels and entrainment that devices employing this effect generally offer when compared with conventional jet flows. A theory, previously developed to predict the TMN emitted by unit volume of jet-type shear-layer turbulence close to a rigid plane, is extended to predict the aeroacoustic characteristics of a three-dimensional turbulent flow over a particular Coanda surface. The ability to accurately predict this significant source of high frequency acoustic radiation will allow investigation of modifications to basic Coanda devices, so that the benefits of such devices can be fully exploited, without this unfortunate side effect.

  10. Development of turbulent variable density mixing in jets with coflow

    NASA Astrophysics Data System (ADS)

    Charonko, John; Prestridge, Kathy

    2015-11-01

    Fully turbulent jets with coflow at two density ratios (At=0.1 & 0.6) were studied as a statistically stationary system for improving our understanding of variable density mixing in turbulent flows. The exit Reynolds number was matched for both flows at ~19,000 and simultaneous planar PIV and acetone PLIF measurements were acquired so the coupled evolution of the velocity and density statistics could be examined in terms of density-weighted average quantities. Measurements were taken over 10,000 snapshots of the flow at three locations to insure statistical convergence, and the spatial resolution (288 μm) was at or below the Taylor microscale. In agreement with our previous work at lower Reynolds numbers, for large density ratios turbulent kinetic energy and Reynolds stresses are preserved or increased with downstream distance, contrasting with the behavior at low density ratios. Furthermore, in regions where the buoyancy effects began dominating the initial momentum-driven flow (~30 jet diameters), the jet is still not developing toward a self-similar state. Instead, a region of homogeneous turbulence appeared to establish itself in the center of the jet even for the lower density ratio condition, in contrast with classical results for single-fluid jets.

  11. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  12. Acetone PLIF concentration measurements in a submerged round turbulent jet

    NASA Astrophysics Data System (ADS)

    Kravtsov, Z. D.; Chikishev, L. M.; Dulin, V. M.

    2016-10-01

    Transport of passive scalar in near-field of a submerged turbulent jet, was studied experimentally by using the planar laser-induced fluorescence technique. The jet issued from a round pipe with the inner diameter and length of 21 mm and 700 mm, respectively. Three cases of Reynolds numbers were studied: Re=3000, 6000, and 9000. Vapor of acetone, mixed to the jet flow, served as a passive fluorescent tracer. The paper describes data processing utilized to convert intensity of fluorescence images to the instantaneous concentration.

  13. Mixing by turbulent buoyant jets in slender containers

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Nath, C.; Fernando, H. J. S.

    2012-10-01

    A turbulent buoyant jet injected vertically into a slender cylinder containing a stratified fluid is investigated experimentally. The working fluid is water, and salt is used to change its density to obtain either a positively or negatively buoyant jet. The interest is the vertical density distribution in container and its dependence on time and other parameters. For each case (lighter or heavier jet) the experimental data could be collapsed into a ‘universal’ time dependent behavior, when properly non-dimensionalized. A theoretical model is advanced to explain the results. Possible applications include refilling of crude oil into U.S. strategic petroleum reserves caverns.

  14. Noise prediction of a subsonic turbulent round jet using the lattice-Boltzmann method

    PubMed Central

    Lew, Phoi-Tack; Mongeau, Luc; Lyrintzis, Anastasios

    2010-01-01

    The lattice-Boltzmann method (LBM) was used to study the far-field noise generated from a Mach, Mj=0.4, unheated turbulent axisymmetric jet. A commercial code based on the LBM kernel was used to simulate the turbulent flow exhausting from a pipe which is 10 jet radii in length. Near-field flow results such as jet centerline velocity decay rates and turbulence intensities were in agreement with experimental results and results from comparable LES studies. The predicted far field sound pressure levels were within 2 dB from published experimental results. Weak unphysical tones were present at high frequency in the computed radiated sound pressure spectra. These tones are believed to be due to spurious sound wave reflections at boundaries between regions of varying voxel resolution. These “VR tones” did not appear to bias the underlying broadband noise spectrum, and they did not affect the overall levels significantly. The LBM appears to be a viable approach, comparable in accuracy to large eddy simulations, for the problem considered. The main advantages of this approach over Navier–Stokes based finite difference schemes may be a reduced computational cost, ease of including the nozzle in the computational domain, and ease of investigating nozzles with complex shapes. PMID:20815448

  15. Splattering during turbulent liquid jet impingement on solid targets

    SciTech Connect

    Bhunia, S.K.; Lienhard, J.H. V . Dept. of Mechanical Engineering)

    1994-06-01

    In turbulent liquid jet impingement, a spray of droplets often breaks off of the liquid layer formed on the target. This splattering of liquid alters the efficiencies of jet impingement heat transfer processes and chemical containment safety devices, and leads to problems of aerosol formation in jet impingement cleaning processes. In this paper, the authors present a more complete study of splattering and improved correlations that extend and supersede the previous reports on this topic. The authors report experimental results on the amount of splattering for jets of water, isopropanol-water solutions, and soap-water mixtures. Jets were produced by straight tube nozzles of diameter 0.8--5.8 mm, with fully developed turbulent pipe-flow upstream of the nozzle exist. These experiments cover Weber numbers between 130--31,000, Reynolds numbers between 2,700--98,000, and nozzle-to-target separations of 0.2 [<=]l/d[<=]125. Splattering of up to 75 percent of the incoming jet liquid is observed. The results show that only the Weber number and l/d affect the fraction of jet liquid splattered. The presence of surfactants does not alter the splattering. A new correlation for the onset condition for splattering is given. In addition, the authors establish the range of applicability of the model of Lienhard et al. and the authors provide a more accurate set of coefficients for their correlation.

  16. The development of an axisymmetric curved turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Gregory-Smith, D. G.; Hawkins, M. J.

    1991-12-01

    An experimental study has been carried out of the low speed Coanda wall jet with both streamwise and axisymmetric curvature. A single component laser Doppler technique was used, and by taking several orientations at a given point, values of the three mean velocities and five of the six Reynolds stresses were obtained. The lateral divergence and convex streamwise curvature both enhanced the turbulence in the outer part of the jet compared with a plane two-dimensional wall jet. The inner layer exhibited a large separation of the positions of maximum velocity and zero shear stress. It was found that the streamwise mean velocity profile became established very rapidly downstream of the slot exit. The profile appeared fairly similar at later downstream positions, but the mean radial velocity and turbulence parameters showed the expected nonself preservation of the flow. Removal of the streamwise curvature resulted in a general return of the jet conditions toward those expected of a plane wall jet. The range and accuracy of the data may be used for developing turbulence models and computational techniques for this type of flow.

  17. Intermittency in non-homogeneous Wake and Jet Turbulence

    NASA Astrophysics Data System (ADS)

    Mahjoub, O. B.; Sekula, E.; Redondo, J. M.

    2010-05-01

    The scale to scale transfer and the structure functions are calculated and from these the intermittency parametres [1[3]. The estimates of turbulent diffusivity could also be measured. Some two point correlations and time lag calculations are used to investigate the local mixedness [4,5] and the temporal and spatial integral length scales obtained from both Lagrangian and Eulerian correlations and functions. We compare these results with both theoretical and experimental ones in the Laboratory with a wind tunnel at the wake of a grid or cillinder with and withoutand a near Wall. The a theoretical description of how to simulate intermittency following the model of Babiano et al. (1996) and the role of locality in higher order exponents is applied to the different flows. The information about turbulent jets is needed in several configurations providing basic information about the turbulent free jet, the circular jet and the turbulent wall jet. The experimental measurements of turbulent velocity is based on Acoustic Doppler Velocimeter measurements of the jet centerline and off centered radial positions in the tank at several distances from the wall. Spectral and structure function analysis are useful to determine the flow mixing ability using also flow visualization [6,7]. Results of experiments include the velocity distribution, entrainment angle of the jets, jet and wake average and fluctuating velocity, PDF's, Skewness and Kurthosis, velocity and vorticity standard deviation, boundary layers function and turbulence intensity . Different range of Wake and Jet flows show a maximum of turbulent intensity at a certain distance from the wall as it breaks the flow simmetry and adds large scale vorticity in the different experiments, these efects are also believed to occur in Geo-Astrophysical flows. [1] Babiano, A. (2002), On Particle dispersion processes in two-dimensional turbulence. In Turbulent mixing in geophysical flows. Eds. Linden P.F. and Redondo J.M., p. 2

  18. Multiple mapping conditioning of velocity in turbulent jet flames

    SciTech Connect

    Vaishnavi, P.; Kronenburg, A.

    2010-10-15

    Multiple mapping conditioning (MMC) has emerged as a new approach to model turbulent reacting flows. This study revises the standard MMC closure for velocity in turbulent jet flows from linearity in the reference space to linearity in the composition space. This modeling amendment ensures that the standard velocity model in conditional moment closure studies can now be used for MMC computation as well. A simplified model for the velocity-dependence of MMC drift coefficients is derived without loss of generality and is implemented for the revised velocity closure. Modeling results have been corroborated against the Direct Numerical Simulation database of a spatially evolving, planar turbulent jet flame. The revised model shows marked improvement over standard MMC closure in predicting velocity statistics close to the nozzle. (author)

  19. Turbulence Statistics of a Buoyant Jet in a Stratified Environment

    NASA Astrophysics Data System (ADS)

    McCleney, Amy Brooke

    Using non-intrusive optical diagnostics, turbulence statistics for a round, incompressible, buoyant, and vertical jet discharging freely into a stably linear stratified environment is studied and compared to a reference case of a neutrally buoyant jet in a uniform environment. This is part of a validation campaign for computational fluid dynamics (CFD). Buoyancy forces are known to significantly affect the jet evolution in a stratified environment. Despite their ubiquity in numerous natural and man-made flows, available data in these jets are limited, which constrain our understanding of the underlying physical processes. In particular, there is a dearth of velocity field data, which makes it challenging to validate numerical codes, currently used for modeling these important flows. Herein, jet near- and far-field behaviors are obtained with a combination of planar laser induced fluorescence (PLIF) and multi-scale time-resolved particle image velocimetry (TR-PIV) for Reynolds number up to 20,000. Deploying non-intrusive optical diagnostics in a variable density environment is challenging in liquids. The refractive index is strongly affected by the density, which introduces optical aberrations and occlusions that prevent the resolution of the flow. One solution consists of using index matched fluids with different densities. Here a pair of water solutions - isopropanol and NaCl - are identified that satisfy these requirements. In fact, they provide a density difference up to 5%, which is the largest reported for such fluid pairs. Additionally, by design, the kinematic viscosities of the solutions are identical. This greatly simplifies the analysis and subsequent simulations of the data. The spectral and temperature dependence of the solutions are fully characterized. In the near-field, shear layer roll-up is analyzed and characterized as a function of initial velocity profile. In the far-field, turbulence statistics are reported for two different scales, one

  20. Evaluation of Turbulence-Model Performance as Applied to Jet-Noise Prediction

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    1998-01-01

    The accurate prediction of jet noise is possible only if the jet flow field can be predicted accurately. Predictions for the mean velocity and turbulence quantities in the jet flowfield are typically the product of a Reynolds-averaged Navier-Stokes solver coupled with a turbulence model. To evaluate the effectiveness of solvers and turbulence models in predicting those quantities most important to jet noise prediction, two CFD codes and several turbulence models were applied to a jet configuration over a range of jet temperatures for which experimental data is available.

  1. Measurements of turbulent inclined plane dual jets

    NASA Astrophysics Data System (ADS)

    Wang, C. S.; Lin, Y. F.; Sheu, M. J.

    1993-11-01

    Measurements of mean velocities, flow direction, velocity fluctuations and Reynolds shear stress were made with a split film probe of hot wire anemometer to investigate the interactions created by two air jets issuing from two identical plane inclined nozzles. The reverse flow was detected by using the split film probe and observed by flow visualization. Experimental results with an inclined angle of 9° are presented in the paper. Some experimental results with an inclined angle of 27° are presented to investigate the effect of inclination on the flow field. Mean velocities approach self-preservation in both the converging region and the combining region. Velocity fluctuations and Reynolds shear stress approach self-preservation in the combining region only. The spreads of jet and the square of the decay of maximum mean velocity increase linearly as the distance from the nozzle exit increases.

  2. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.

    2005-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. Two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O Rourke et al, are further extended to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. This paper describes theoretical development of the current models, called "T-blob" and "T-TAB", for primary and secondary breakup respectivety. Several assessment studies are also presented in this paper.

  3. Evaluation of Turbulence-Model Performance in Jet Flows

    NASA Technical Reports Server (NTRS)

    Woodruff, S. L.; Seiner, J. M.; Hussaini, M. Y.; Erlebacher, G.

    2001-01-01

    The importance of reducing jet noise in both commercial and military aircraft applications has made jet acoustics a significant area of research. A technique for jet noise prediction commonly employed in practice is the MGB approach, based on the Lighthill acoustic analogy. This technique requires as aerodynamic input mean flow quantities and turbulence quantities like the kinetic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for predicting these aerodynamic inputs. Two modern Navier-Stokes flow solvers, coupled with several modern turbulence models, are evaluated by comparison with experiment for their ability to predict mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further investigation. Another comparison with similar intent is discussed by Barber et al. The ultimate goal of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient, nozzle exhaust systems being developed in NASA focused programs. These programs address a broad range of complex nozzle geometries operating in high temperature, compressible, flows. Seiner et al. previously discussed the jet configuration examined here. This convergent-divergent nozzle with an exit diameter of 3.6 inches was designed for an exhaust Mach number of 2.0 and a total temperature of 1680 F. The acoustic and aerodynamic data reported by Seiner et al. covered a range of jet total temperatures from 104 F to 2200 F at the fully-expanded nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature profiles. Computations were performed independently with two computational fluid dynamics (CFD) codes, ISAAC and PAB3D. Turbulence models employed include the k-epsilon model, the Gatski-Speziale algebraic-stress model and the Girimaji model, with and without the Sarkar compressibility correction. Centerline values of mean velocity and mean temperature are

  4. Microtearing turbulence limiting the JET-ILW pedestal

    NASA Astrophysics Data System (ADS)

    Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Jenko, F.; Told, D.; Görler, T.; Saarelma, S.

    2016-10-01

    The first nonlinear gyrokinetic turbulence simulations that quantitatively reproduce experimental transport levels in an H-mode pedestal are reported. In the JET-ILW (ITER-like wall) pedestal, the bulk of the transport in the steep gradient region is caused by the turbulence driven by the microtearing mode (MTM). Kinetic ballooning modes are found to be in a second-stability regime. With contributions from the neoclassical and electron temperature gradient driven transport, the MTM mechanism reproduces, quantitatively, the experimental power balance across most of the pedestal.

  5. Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet.

    PubMed

    Westerweel, Jerry; Petracci, Alberto; Delfos, René; Hunt, Julian C R

    2011-02-28

    The turbulent/non-turbulent interface of a jet is characterized by sharp jumps ('discontinuities') in the conditional flow statistics relative to the interface. Experiments were carried out to measure the conditional flow statistics for a non-isothermal jet, i.e. a cooled jet. These experiments are complementary to previous experiments on an isothermal Re=2000 jet, where, in the present experiments on a non-isothermal jet, the thermal diffusivity is intermediate to the diffusivity of momentum and the diffusivity of mass. The experimental method is a combined laser-induced fluorescence/particle image velocimetry method, where a temperature-sensitive fluorescent dye (rhodamine 6G) is used to measure the instantaneous temperature fluctuations. The results show that the cooled jet can be considered to behave like a self-similar jet without any significant buoyancy effects. The detection of the interface is based on the instantaneous temperature, and provides a reliable means to detect the interface. Conditional flow statistics reveal the superlayer jump in the conditional vorticity and in the temperature.

  6. The effect of background turbulence on differential diffusion in a turbulent jet

    NASA Astrophysics Data System (ADS)

    Lavertu, Thomas; Gaskin, Susan

    2005-11-01

    Whenever multiple scalars of unequal molecular diffusivities are mixed in a turbulent flow, differential diffusion may occurootnotetextSaylor, J.R. and Sreenivasan, K.R., 1998. Phys. Fluids, 10, p. 1135.. The present work studies differential diffusion of two scalars in a round, turbulent (water) jet of Reynolds numbers up to ReD(≡UjD/ν) 10,600. The jet issues into an approximately isotropic, turbulent background flow generated by a random synthetic jet arrayootnotetextVariano, E.A., Bodenschatz, E., and Cowen, E.A., 2004. Exp. Fluids, 37, p. 613.. By means of laser-induced fluorescence, punctual concentration measurements are made radially across the jet's cross-section, yielding instantaneous concentrations of each scalar (c1 and c2). Statistics of the instantaneous, normalized concentration difference (z ≡c2/ - c1/ ) are employed to quantify the effects of differential diffusion. The effect of the background turbulence on the differential diffusion will be discussed. In particular, these results will be compared with previous work done in a quiescent background.

  7. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct numerical simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial.helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moser are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  8. Effect of Swirl on Turbulent Structures in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Rao, Ram Mohan; Lundgren, Thomas S.

    1998-01-01

    Direct Numerical Simulation (DNS) is used to study the mechanism of generation and evolution of turbulence structures in a temporally evolving supersonic swirling round jet and also to examine the resulting acoustic radiations. Fourier spectral expansions are used in the streamwise and azimuthal directions and a 1-D b-spline Galerkin representation is used in the radial direction. Spectral-like accuracy is achieved using this numerical scheme. Direct numerical simulations, using the b-spline spectral method, are carried out starting from mean flow initial conditions which are perturbed by the most unstable linear stability eigenfunctions. It is observed that the initial helical instability waves evolve into helical vortices which eventually breakdown into smaller scales of turbulence. 'Rib' structures similar to those seen in incompressible mixing layer flow of Rogers and Moserl are observed. The jet core breakdown stage exhibits increased acoustic radiations.

  9. Large-eddy simulation of axially-rotating, turbulent pipe and particle-laden swirling jet flows

    NASA Astrophysics Data System (ADS)

    Castro, Nicolas D.

    The flows of fully-developed turbulent rotating pipe and particle-laden swirling jet emitted from the pipe into open quiescent atmosphere are investigated numerically using Large-Eddy Simulation (LES). Simulations are performed at various rotation rates and Reynolds numbers, based on bulk velocity and pipe diameter, of 5.3x103, 12x103, and 24x103, respectively. Time-averaged LES results are compared with experimental and simulation data from previous studies. Pipe flow results confirm observations in previous studies, such as the deformation of the turbulent mean axial velocity profile towards the laminar Poiseuille-profile, with increased rotation. The Reynolds stress anisotropy tensor shows a redistribution due to pipe rotation. The axial component near the wall is suppressed, whereas the tangential component is amplified, as rotation is increased. The anisotropy invariant map also shows a movement away from the one-component limit in the viscous sublayer, with increased rotation. Exit conditions for the pipe flow simulation are utilized as inlet conditions for the jet flow simulation. Jet flow without swirl and at a swirl rate of S=0.5 is investigated. Swirl is observed to change the characteristics of the jet flow field, leading to an increase in jet spread and velocity decay and a corresponding decrease in the jet potential core. Lagrangian tracking with one way coupling is used to analyze particle dispersion in the jet flow. Three particle diameter sizes are investigated: 10, 100, and 500μm, which correspond to Stokes numbers of 0.06, 6, and 150, respectively. Particles are injected with an initial velocity set equal to the instantaneous fluid phase flow velocities at the jet inlet. The results show that, in the absence of swirl, particle dispersion is inversely proportional to particle size. With the addition of swirl, particle evolution is much more complicated. Largely unaffected by turbulent structures, the largest particles maintain their initial radial

  10. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.

  11. Experimental study of highly turbulent isothermal opposed-jet flows

    NASA Astrophysics Data System (ADS)

    Coppola, Gianfilippo; Gomez, Alessandro

    2010-10-01

    Opposed-jet flows have been shown to provide a valuable means to study a variety of combustion problems, but have been limited to either laminar or modestly turbulent conditions. With the ultimate goal of developing a burner for laboratory flames reaching turbulence regimes of relevance to practical systems, we characterized highly turbulent, strained, isothermal, opposed-jet flows using particle image velocimetry (PIV). The bulk strain rate was kept at 1250 s-1 and specially designed and properly positioned turbulence generation plates in the incoming streams boosted the turbulence intensity to well above 20%, under conditions that are amenable to flame stabilization. The data were analyzed with proper orthogonal decomposition (POD) and a novel statistical analysis conditioned to the instantaneous position of the stagnation surface. Both POD and the conditional analysis were found to be valuable tools allowing for the separation of the truly turbulent fluctuations from potential artifacts introduced by relatively low-frequency, large-scale instabilities that would otherwise partly mask the turbulence. These instabilities cause the stagnation surface to wobble with both an axial oscillation and a precession motion about the system axis of symmetry. Once these artifacts are removed, the longitudinal integral length scales are found to decrease as one approaches the stagnation line, as a consequence of the strained flow field, with the corresponding outer scale turbulent Reynolds number following a similar trend. The Taylor scale Reynolds number is found to be roughly constant throughout the flow field at about 200, with a value virtually independent of the data analysis technique. The novel conditional statistics allowed for the identification of highly convoluted stagnation lines and, in some cases, of strong three-dimensional effects, that can be screened, as they typically yield more than one stagnation line in the flow field. The ability to lock on the

  12. Numerical Simulation of Liquid Jet Atomization Including Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Chen, C. P.; Balasubramanyam, M. S.

    2005-01-01

    This paper describes numerical implementation of a newly developed hybrid model, T-blob/T-TAB, into an existing computational fluid dynamics (CFD) program for primary and secondary breakup simulation of liquid jet atomization. This model extend two widely used models, the Kelvin-Helmholtz (KH) instability of Reitz (blob model) and the Taylor-Analogy-Breakup (TAB) secondary droplet breakup by O'Rourke and Amsden to include turbulence effects. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic scales and the initial flow conditions. For the secondary breakup, an additional turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. Several assessment studies are presented and the results indicate that the existing KH and TAB models tend to under-predict the product drop size and spray angle, while the current model provides superior results when compared with the measured data.

  13. Microburst Simulation via Vortex-Ring and Turbulent Jet Models.

    NASA Astrophysics Data System (ADS)

    Wan, Tung

    Microbursts, suggested as primary causes of many aircraft fatal crashes, are the subject of this research. A microburst, or low-level intense wind shear, is generated by a thunderstorm or a small rain cloud, and presents hazardous conditions for aircraft during take-off and landing maneuvers. Recently released data show that a microburst resembles a transient vortex ring. Three microburst models have been constructed in this study. First, the turbulent jet model encompasses a free jet at high altitude and a wall jet near the ground surface. Second, the vortex ring model is a combination of a primary and an image vortex ring, with an inviscid -viscous interaction at the central axial and surface regions. An unsteady version of this model is also provided by solving the trajectory equation with the Direct Formal Integration (DFI) method or with the Runge-Kutta method. Third and finally, the complete unsteady microburst model equations (conservation of mass, momentum, and energy), or what has been referred to as the Navier-Stokes model formulation, are solved by the successive over relaxation method. Results show that the microburst can be simulated accurately by impulsive turbulent jet at high altitude and a transient vortex ring in mid-air and near the ground surface. In addition to improved understanding of the physical nature of microbursts, the models presented here can also be used for flight simulation and the pilot training purposes.

  14. Probing Turbulence and Acceleration at Relativistic Shocks in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Boettcher, Markus; Summerlin, Errol J.

    2016-04-01

    Acceleration at relativistic shocks is likely to be important in various astrophysical jet sources, including blazars and other radio-loud active galaxies. An important recent development for blazar science is the ability of Fermi-LAT data to pin down the power-law index of the high energy portion of emission in these sources, and therefore also the index of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra including X-ray band and Fermi data can be used to probe diffusive acceleration in relativistic, oblique, MHD shocks in blazar jets. The spectral index of the non-thermal particle distributions resulting from Monte Carlo simulations of shock acceleration, and the fraction of thermal particles accelerated to non-thermal energies, depend sensitively on the particles' mean free path scale, and also on the mean magnetic field obliquity to the shock normal. We investigate the radiative synchrotron/Compton signatures of thermal and non-thermal particle distributions generated from the acceleration simulations. Important constraints on the frequency of particle scattering and the level of field turbulence are identified for the jet sources Mrk 501, AO 0235+164 and Bl Lacertae. Results suggest the interpretation that turbulence levels decline with remoteness from jet shocks, with a significant role for non-gyroresonant diffusion.

  15. An entrainment model for the turbulent jet in a coflow

    NASA Astrophysics Data System (ADS)

    Enjalbert, Nicolas; Galley, David; Pierrot, Laurent

    2009-09-01

    The entrainment hypothesis was introduced by G.I. Taylor to describe one-dimensionally the development of turbulent jets issuing into a stagnant or coflowing environment. It relates the mass flow rate of surrounding fluid entrained into the jet to the characteristic velocity difference between the jet and the coflow. A model based on this hypothesis along with axial velocity assumed to follow a realistic Gaussian distribution is presented. It possesses an implicit analytical solution, and its results are compared and shown to be fully equivalent to previously published models that are rather based on a spreading hypothesis. All of them are found to be in agreement with experimental results, on a wide range of downstream positions and for various coflow intensities. To cite this article: N. Enjalbert et al., C. R. Mecanique 337 (2009).

  16. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  17. Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.

    2016-09-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.

  18. On the Two Components of Turbulent Mixing Noise from Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Golebiowski, Michel; Seiner, J. M.

    1996-01-01

    It is argued that because of the lack of intrinsic length and time scales in the core part of the jet flow, the radiated noise spectrum of a high-speed jet should exhibit similarity. A careful analysis of all the axisymmetric supersonic jet noise spectra in the data-bank of the Jet Noise Laboratory of the NASA Langley Research Center has been carried out. Two similarity spectra, one for the noise from the large turbulence structures/instability waves of the jet flow, the other for the noise from the fine-scale turbulence, are identified. The two similarity spectra appear to be universal spectra for axisymmetric jets. They fit all the measured data including those from subsonic jets. Experimental evidence are presented showing that regardless of whether a jet is supersonic or subsonic the noise characteristics and generation mechanisms are the same. There is large turbulence structures/instability waves noise from subsonic jets. This noise component can be seen prominently inside the cone of silence of the fine-scale turbulence noise near the jet axis. For imperfectly expanded supersonic jets, a shock cell structure is formed inside the jet plume. Measured spectra are provided to demonstrate that the presence of a shock cell structure has little effect on the radiated turbulent mixing noise. The shape of the noise spectrum as well as the noise intensity remain practically the same as those of a fully expanded jet. However, for jets undergoing strong screeching, there is broadband noise amplification for both turbulent mixing noise components. It is discovered through a pilot study of the noise spectrum of rectangular and elliptic supersonic jets that the turbulent mixing noise of these jets is also made up of the same two noise components found in axisymmetric jets. The spectrum of each individual noise component also fits the corresponding similarity spectrum of axisymmetric jets.

  19. Computations of Complex Three-Dimensional Turbulent Free Jets

    NASA Technical Reports Server (NTRS)

    Wilson, Robert V.; Demuren, Ayodeji O.

    1997-01-01

    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.

  20. Oscillations of a Turbulent Jet Incident Upon an Edge

    SciTech Connect

    J.C. Lin; D. Rockwell

    2000-09-19

    For the case of a jet originating from a fully turbulent channel flow and impinging upon a sharp edge, the possible onset and nature of coherent oscillations has remained unexplored. In this investigation, high-image-density particle image velocimetry and surface pressure measurements are employed to determine the instantaneous, whole-field characteristics of the turbulent jet-edge interaction in relation to the loading of the edge. It is demonstrated that even in absence of acoustic resonant or fluid-elastic effects, highly coherent, self-sustained oscillations rapidly emerge above the turbulent background. Two clearly identifiable modes of instability are evident. These modes involve large-scale vortices that are phase-locked to the gross undulations of the jet and its interaction with the edge, and small-scale vortices, which are not phase-locked. Time-resolved imaging of instantaneous vorticity and velocity reveals the form, orientation, and strength of the large-scale concentrations of vorticity approaching the edge in relation to rapid agglomeration of small-scale vorticity concentrations. Such vorticity field-edge interactions exhibit rich complexity, relative to the simplified pattern of vortex-edge interaction traditionally employed for the quasi-laminar edgetone. Furthermore, these interactions yield highly nonlinear surface pressure signatures. The origin of this nonlinearity, involving coexistence of multiple frequency components, is interpreted in terms of large- and small-scale vortices embedded in distributed vorticity layers at the edge. Eruption of the surface boundary layer on the edge due to passage of the large-scale vortex does not occur; rather apparent secondary vorticity concentrations are simply due to distension of the oppositely-signed vorticity layer at the tip of the edge. The ensemble-averaged turbulent statistics of the jet quickly take on an identity that is distinct from the statistics of the turbulent boundary layer in the channel

  1. Transition to turbulence and noise radiation in heated coaxial jet flows

    NASA Astrophysics Data System (ADS)

    Gloor, Michael; Bühler, Stefan; Kleiser, Leonhard

    2016-04-01

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35∘. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for rmic > 40R1, where rmic is the distance from the end of the potential core and R1 is the core-jet radius, a perfect 1/rmic decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  2. Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

  3. The effect of boundary-layer turbulence on mixing in heated jets

    NASA Astrophysics Data System (ADS)

    Strykowski, P. J.; Russ, S.

    1992-05-01

    The mixing properties of a heated axisymmetric jet at a density ratio of 0.55 were examined for initially laminar and turbulent separated boundary layers. Initially laminar jets displayed large intermittent spread rates with half-angles up to 45° and a corresponding rapid decay of the streamwise velocity and temperature on the jet axis. When the boundary layer was disturbed upstream of the nozzle exit, creating an initially turbulent separated layer, the jet mixing was significantly reduced. Flow visualization revealed that the turbulent conditions eliminated the intermittent nature of the jet spreading, producing constant spreading rates at half-angles near 10°.

  4. The effect of boundary-layer turbulence on mixing in heated jets

    NASA Astrophysics Data System (ADS)

    Strykowski, P. J.; Russ, S.

    1992-05-01

    The mixing properties of a heated axisymmetric jet at a density ratio of 0.55 were examined for initially laminar and turbulent separated boundary layers. Initially laminar jets displayed large intermittent spread rates with half-angles up to 45 deg and a corresponding rapid decay af the streamwise velocity and temperature on the jet axis. When the boundary layer was disturbed upstream of the nozzle exit, creating an initially turbulent separated layer, the jet mixing was significantly reduced. Flow visualization revealed that the turbulent conditions eliminated the intermittent nature of the jet spreading, producing constant spreading rates at half-angles near 10 deg.

  5. Employing Taylor and Heisenberg subfilter viscosities to simulate turbulent statistics in LES models

    NASA Astrophysics Data System (ADS)

    Degrazia, G. A.; Rizza, U.; Puhales, F. S.; Welter, G. S.; Acevedo, O. C.; Maldaner, S.

    2012-02-01

    A turbulent subfilter viscosity for Large Eddy Simulation (LES) based on the Taylor statistical diffusion theory is proposed. This viscosity is described in terms of a velocity variance and a time scale, both associated to the inertial subrange. This new subfilter viscosity contains a cutoff wavenumber kc, presenting an identical form (differing by a constant) to the Heisenberg subfilter viscosity. Therefore, both subfilter viscosities are described in terms of a sharp division between large and small wavenumbers of a turbulent flow and, henceforth, Taylor and Heisenberg subfilter viscosities are in agreement with the sharp Fourier filtering operation, frequently employed in LES models. Turbulent statistics of different orders, generated from atmospheric boundary layer simulations employing both Taylor and Heisenberg subfilter viscosities have been compared with observations and results provided by other simulations. The comparison shows that the LES model utilizing the approaches of Taylor and Heisenberg reproduces these turbulent statistics correctly in different vertical regions of a planetary convective boundary layer (CBL).

  6. DNS of a turbulent lifted DME jet flame

    DOE PAGESBeta

    Minamoto, Yuki; Chen, Jacqueline H.

    2016-05-07

    A three-dimensional direct numerical simulation (DNS) of a turbulent lifted dimethyl ether (DME) slot jet flame was performed at elevated pressure to study interactions between chemical reactions with low-temperature heat release (LTHR), negative temperature coefficient (NTC) reactions and shear generated turbulence in a jet in a heated coflow. By conditioning on mixture fraction, local reaction zones and local heat release rate, the turbulent flame is revealed to exhibit a “pentabrachial” structure that was observed for a laminar DME lifted flame [Krisman et al., (2015)]. The propagation characteristics of the stabilization and triple points are also investigated. Potential stabilization points, spatialmore » locations characterized by preferred temperature and mixture fraction conditions, exhibit autoignition characteristics with large reaction rate and negligible molecular diffusion. The actual stabilization point which coincides with the most upstream samples from the pool of potential stabilization points fovr each spanwise location shows passive flame structure with large diffusion. The propagation speed along the stoichiometric surface near the triple point is compared with the asymptotic value obtained from theory [Ruetsch et al., (1995)]. At stoichiometric conditions, the asymptotic and averaged DNS values of flame displacement speed deviate by a factor of 1.7. However, accounting for the effect of low-temperature species on the local flame speed increase, these two values become comparable. In conclusion, this suggests that the two-stage ignition influences the triple point propagation speed through enhancement of the laminar flame speed in a configuration where abundant low-temperature products from the first stage, low-temperature ignition are transported to the lifted flame by the high-velocity jet.« less

  7. Cinema particle image velocimetry investigation of turbulent jet flame stabilization

    NASA Astrophysics Data System (ADS)

    Upatnieks, Ansis

    A new cinema PIV system was developed and used to study the physical phenomena of non-premixed turbulent jet flame stabilization. The system offers an unprecedented combination of image acquisition rate (8000/s), sequence length (4000) and resolution (equivalent to 1K x 1.5K pixels) that provides finely resolved yet extraordinarily lengthy time histories of the evolution of velocity fields in laboratory-scale gas-phase turbulent flows. These measurements provide quantitative information concerning the dynamics of turbulence and combustion that is not available from conventional experimental techniques or computational simulations. For example, time histories of the interaction between turbulent vortex structures and the flame thermal boundary are observed. Gas and flame velocities are obtained simultaneously, yielding direct measurements of flame propagation velocities. The gas and flame velocities are highly correlated, suggesting strong interaction between the velocity field and the flame. The gas and propagation velocities at the flame base remain close to premixed laminar burning velocities (SL), which are three to four times smaller than the velocities in corresponding non-reacting cases. Strong reverse flow is observed upstream of the flame base, suggesting that the velocity reduction is caused by heat release-induced dilatation. These observations suggest that the dilatation velocity field plays a dominant role in stabilization by reducing incident gas velocities to levels at which laminar premixed, triple, or edge flames can be sustained.

  8. Large eddy simulation of a plane turbulent wall jet

    NASA Astrophysics Data System (ADS)

    Dejoan, A.; Leschziner, M. A.

    2005-02-01

    The mean-flow and turbulence properties of a plane wall jet, developing in a stagnant environment, are studied by means of large eddy simulation. The Reynolds number, based on the inlet velocity Uo and the slot height b, is Re=9600, corresponding to recent well-resolved laser Doppler velocimetry and pulsed hot wire measurements of Eriksson et al. The relatively low Reynolds number and the high numerical resolution adopted (8.4 million nodes) allow all scales larger than about 10 Kolmogorov lengths to be captured. Of particular interest are the budgets for turbulence energy and Reynolds stresses, not available from experiments, and their inclusion sheds light on the processes which play a role in the interaction between the near-wall layer and the outer shear layer. Profiles of velocity and turbulent Reynolds stresses in the self-similar region are presented in inner and outer scaling and compared to experimental data. Included are further results for skin friction, evolution of integral quantities and third-order moments. Good agreement is observed, in most respects, between the simulated flow and the corresponding experiment. The budgets demonstrate, among a number of mechanisms, the decisive role played by turbulent transport (via the third moments) in the interaction region, across which information is transmitted between the near-wall layer and the outer layer.

  9. The near field behavior of turbulent gas jets in a long confinement

    NASA Technical Reports Server (NTRS)

    So, Ronald M. C.; Ahmed, Saad A.; Yu, M. H.

    1987-01-01

    The near-field behavior of a turbulent gas jet (8.73 mm in diameter) in a long confinement was studied using a test rig with a confinement area ratio of about 205 and a length-to-jet diameter ratio of about 1700. Experiments were carried out with CO2, air, and He/air jets at different jet velocities, using a laser Doppler velocimeter for velocity and turbulence measurements and hot-wire anemometers for a detailed examination of the turbulent shear field of an air jet. The air column inside the tunnel was seen to be first compressed by the jet and then to be slowly pushed out of the tunnel, causing the jet to spread rapidly and to decay quickly. As a result, an equilibrium turbulence field is established in the first two diameters of the jet which bears a similarity to that found in self-preserving turbulent free jets and jets in short confinement. However, in contrast to the cases of the two latter jet types, the near field of jets in a long confinement is independent of jet fluid densities and velocities.

  10. Aeroacoustics of Turbulent Jets: Flow Structure, Noise Sources, and Control

    NASA Astrophysics Data System (ADS)

    Gutmark, Ephraim Jeff; Callender, Bryan William; Martens, Steve

    The paper reviews research performed to advance the understanding of state-of-the-art technologies capable of reducing coaxial jet noise simulating the exhaust flow of turbofan engines. The review focuses on an emerging jet noise passive control technology known as chevron nozzles. The fundamental physical mechanisms responsible for the acoustic benefits provided by these nozzles are discussed. Additionally, the relationship between these physical mechanisms and some of the primary chevron geometric parameters are highlighted. Far-field acoustic measurements over a wide range of nozzle operating conditions illustrated the ability of the chevron nozzles to provide acoustic benefits. Detailed mappings of the acoustic near-field provided more insight into the chevron noise suppression mechanisms by successfully identifying two primary chevron effects consistent with the results of the far-field measurements: chevrons penetration and shear velocity across them. Mean and turbulence data identified the physical flow mechanisms responsible for the effects documented in the far- and near-field studies.

  11. Noise generated by a thin wing in a turbulent jet.

    NASA Technical Reports Server (NTRS)

    Davis, S. S.

    1973-01-01

    Linearized equations of motion describing a compressible, unsteady, viscous gas under the influence of an externally applied fluctuating force field are examined. The response of the medium is split into a near-field viscous wake mode and a far-field acoustic wave mode. The resulting modal equations are then used to predict both the undulating viscous wake and the far-field acoustic wave emitted by a thin wing (modeled by a dipole force field) in a cylindrical slug jet. The directivity pattern of the acoustic wave which propagates into the quiescent region beyond the jet is compared with available experiments. The peak frequency of the broad-band noise generated by upstream turbulence is also calculated and compared to published data.

  12. Experiments with Turbulent Jets at Mach Number 0.9

    NASA Technical Reports Server (NTRS)

    Agui, Juan; Andreopoulos, Yiannis; Davis, David O. (Technical Monitor)

    2001-01-01

    A systematic investigation of the structure of turbulent jets before their interaction with shock or expansion waves was undertaken during the last year. In particular compressibility and density effects in circular jets issuing in still air were investigated experimentally. Jets with nitrogen, helium, and krypton gases at 0.3, 0.6, and 0.9 Mach numbers were investigated in detail. Particle Image Velocimetry technique was developed, tested, and used to obtain qualitative information of the two-dimensional velocity field on a plane inside the flow field, which was illuminated by a laser sheet. The motion of particles was recorded by a CCD camera, which was appropriately triggered to capture two images within a fraction of a microsecond. Statistical averaging of the data at each location reduced the large amount of acquired data. It was found that the spreading rate of the jets was reduced with increased Mach numbers or increased density ratio. It was also found that decay rates of centerline Mach numbers are higher in gases with reduced density ratio. Mach number fluctuations appear to decrease with increasing Mach number of the flow. It has been proposed that the reason for this behavior is the reduction of vortex stretching activities with increased Mach number.

  13. Development of a methodology for LES of Turbulent Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Gnanaskandan, Aswin

    The objective of this dissertation is to develop a numerical methodology for large eddy simulation of multiphase cavitating flows on unstructured grids and apply it to study two cavitating flow problems. The multiphase medium is represented using a homogeneous mixture model that assumes thermal equilibrium between the liquid and vapor phases. We develop a predictor-corrector approach to solve the governing Navier Stokes equations for the liquid/vapor mixture, together with the transport equation for the vapor mass fraction. While a non-dissipative and symmetric scheme is used in the predictor step, a novel characteristic-based filtering scheme with a second order TVD filter is developed for the corrector step to handle shocks and material discontinuities in non-ideal gases and mixtures. Additionally, a sensor based on vapor volume fraction is proposed to localize dissipation to the vicinity of discontinuities. The scheme is first validated for one dimensional canonical problems to verify its accuracy in predicting jump conditions across material discontinuities and shocks. It is then applied to two turbulent cavitating flow problems - over a hydrofoil and over a wedge. Our results show that the simulations are in good agreement with experimental data for the above tested cases, and that the scheme can be successfully applied to RANS, LES and DNS methodologies. We first study cavitation over a circular cylinder at two different Reynolds numbers (Re = 200 and 3900 based on cylinder diameter and free stream velocity) and four different cavitation numbers (sigma = 2.0, 1.0, 0.7 and 0.5). Large Eddy Simulation (LES) is employed at the higher Reynolds number and Direct Numerical Simulations (DNS) at the lower Reynolds number. The unsteady characteristics of the flow are found to be altered significantly by cavitation. It is observed that the simulated cases fall into two different cavitation regimes: cyclic and transitional. Cavitation is seen to significantly influence

  14. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  15. Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Mehta, Ranjan S.

    Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure. Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with

  16. An experimental study of turbulent flow in attachment jet combustors by LDV

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wu, Cheng-Kang

    1993-12-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width.

  17. One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet

    SciTech Connect

    Gupta, Kamlesh G.; Echekki, Tarek

    2011-02-15

    The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

  18. Large eddy simulation of a lifted turbulent jet flame

    SciTech Connect

    Ferraris, S.A.; Wen, J.X.

    2007-09-15

    The flame index concept for large eddy simulation developed by Domingo et al. [P. Domingo, L. Vervisch, K. Bray, Combust. Theory Modell. 6 (2002) 529-551] is used to capture the partially premixed structure at the leading point and the dual combustion regimes further downstream on a turbulent lifted flame, which is composed of premixed and nonpremixed flame elements each separately described under a flamelet assumption. Predictions for the lifted methane/air jet flame experimentally tested by Mansour [M.S. Mansour, Combust. Flame 133 (2003) 263-274] are made. The simulation covers a wide domain from the jet exit to the far flow field. Good agreement with the data for the lift-off height and the mean mixture fraction has been achieved. The model has also captured the double flames, showing a configuration similar to that of the experiment which involves a rich premixed branch at the jet center and a diffusion branch in the outer region which meet at the so-called triple point at the flame base. This basic structure is contorted by eddies coming from the jet exit but remains stable at the lift-off height. No lean premixed branches are observed in the simulation or and experiment. Further analysis on the stabilization mechanism was conducted. A distinction between the leading point (the most upstream point of the flame) and the stabilization point was made. The later was identified as the position with the maximum premixed heat release. This is in line with the stabilization mechanism proposed by Upatnieks et al. [A. Upatnieks, J. Driscoll, C. Rasmussen, S. Ceccio, Combust. Flame 138 (2004) 259-272]. (author)

  19. Radiation characteristics and turbulence-radiation interactions in sooting turbulent jet flames

    NASA Astrophysics Data System (ADS)

    HASH(0x3416010), R. S.; HASH(0x33f0c38), M. F.; Haworth, D. C.

    2010-03-01

    A comprehensive modeling strategy including detailed chemistry, soot and radiation models coupled with state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions is applied to various luminous turbulent jet flames. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O2 to 55% O2). All simulations are carried out with a single set of physical and numerical parameters (model constants). A Lagrangian particle Monte Carlo method is used to solve a modeled joint probability density function (PDF) transport equation, which allows accurate closure for turbulence-chemistry interactions including nonlinear soot subprocesses. Radiation is calculated using a particle-based photon Monte Carlo method that is coupled with the PDF method to accurately account for both emission and absorption turbulence-radiation interactions (TRI). Line-by-line databases are used for accurate spectral radiative properties of CO2 and H2O; soot radiative properties also are modeled as nongray. For the flames that have been investigated, soot emission can be almost 45% of the total emission, even when the peak soot volume fraction is of the order of a few parts-per-million (ppm) and up to 99% of soot emission can escape the domain without re-absorption. Turbulence-radiation interactions have a strong effect on the net radiative heat loss from these sooting flames. For a given temperature, species and soot distribution, TRI increases emission from the flames by 30-60%, and the net heat loss from the flame increases by 45-90% when accounting for TRI. This is higher than the corresponding increase in radiative heat loss due to TRI in nonsooting flames. Absorption TRI was found to be negligible in these laboratory-scale sooting flames with soot levels on the order of a few ppm, but may be

  20. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  1. Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, Terrence

    2016-01-01

    Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.

  2. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil

    NASA Astrophysics Data System (ADS)

    Nishino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-12-01

    Large-eddy simulations are performed of a turbulent Coanda jet separating from a rounded trailing edge of a simplified circulation control airfoil model. The freestream Reynolds number based on the airfoil chord is 0.49×106, the jet Reynolds number based on the jet slot height is 4470, and the ratio of the peak jet velocity to the freestream velocity is 3.96. Three different grid resolutions are used to show that their effect is very small on the mean surface pressure distribution, which agrees very well with experiments, as well as on the mean velocity profiles over the Coanda surface. It is observed that the Coanda jet becomes fully turbulent just downstream of the jet exit, accompanied by asymmetric alternating vortex shedding behind a thin (but blunt) jet blade splitting the jet and the external flow. A number of "backward-tilted" hairpin vortices (i.e., the head of each hairpin being located upstream of the legs) are observed around the outer edge of the jet over the Coanda surface. These hairpins create strong upwash between the legs and weak downwash around them, contributing to turbulent mixing of the high-momentum jet below the hairpins and the low-momentum external flow above them. The probability density distribution of velocity fluctuations is shown to be highly asymmetric in this region, consistent with the observation that the hairpin vortices create strong upwash and weak downwash. Turbulent structures inside the jet, its spreading rate, and self-similarity are also discussed.

  3. Emission of sound from axisymmetric turbulence convected by a mean flow with application to jet noise

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.

    1972-01-01

    A model, based on Lighthill's theory, for predicting aerodynamic noise from a turbulent shear flow is developed. This model is a generalization of the one developed by Ribner. Unlike Ribner's model, it does not require that the turbulent correlations factor into space and time-dependent parts. It replaces his assumption of isotropic. turbulence by the more realistic one of axisymmetric turbulence. The implications of the model for jet noise are discussed.

  4. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  5. ANALYSIS OF TURBULENT MIXING JETS IN LARGE SCALE TANK

    SciTech Connect

    Lee, S; Richard Dimenna, R; Robert Leishear, R; David Stefanko, D

    2007-03-28

    Flow evolution models were developed to evaluate the performance of the new advanced design mixer pump for sludge mixing and removal operations with high-velocity liquid jets in one of the large-scale Savannah River Site waste tanks, Tank 18. This paper describes the computational model, the flow measurements used to provide validation data in the region far from the jet nozzle, the extension of the computational results to real tank conditions through the use of existing sludge suspension data, and finally, the sludge removal results from actual Tank 18 operations. A computational fluid dynamics approach was used to simulate the sludge removal operations. The models employed a three-dimensional representation of the tank with a two-equation turbulence model. Both the computational approach and the models were validated with onsite test data reported here and literature data. The model was then extended to actual conditions in Tank 18 through a velocity criterion to predict the ability of the new pump design to suspend settled sludge. A qualitative comparison with sludge removal operations in Tank 18 showed a reasonably good comparison with final results subject to significant uncertainties in actual sludge properties.

  6. Investigation of differential diffusion in turbulent jet flows using planar laser Rayleigh scattering

    SciTech Connect

    Dibble, Robert W.; Long, Marshall B.

    2005-12-01

    A series of laser Rayleigh-scattering experiments has been performed to investigate the effects of differential molecular diffusion in turbulent nonreacting jet flows. A turbulent jet of a mixture of Freon and H{sub 2} exiting into coflowing air was studied at various Reynolds numbers. In laminar flow, Rayleigh scattering clearly showed H{sub 2} diffusing ahead of Freon. In turbulent flow, the instantaneous Rayleigh images showed differential diffusion at the many interfaces between jet fluid and entrained air. Yet, ensemble averages of instantaneous images showed no average diffusion of H{sub 2} ahead of Freon.

  7. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  8. Effects of turbulence and carrier fluid on simple, turbulent spray jet flames

    SciTech Connect

    Staarner, Sten H.; Gounder, James; Masri, Assaad R.

    2005-12-01

    This paper presents simultaneous LIF images of OH and the two-phase acetone fuel concentration as well as detailed single-point phase-Doppler measurements of velocity and droplet flux in three turbulent spray flames of acetone. This work forms part of a larger program to study spray jets and flames in a simple, well-defined geometry, aimed at providing a platform for developing and validating predictive tools for such flows. Spray flames that use nitrogen or air as droplet carrier are investigated and issues of flow field, droplet dispersion, size distribution, and evaporation are addressed. The joint OH/acetone concentration images reveal a substantial similarity to premixed flame behavior when the carrier stream is air. When the carrier is nitrogen, the reaction zone has a diffusion flame structure. There is no indication of individual droplet burning. The results show that evaporation occurs close to the jet centerline rather than in the outer shear layer. Turbulence does not have a significant impact on the evaporation rates. A small fraction of the droplets escapes the reaction zone unburned along the centerline and persists far downstream of the flame tip. The proportion of this droplet residue increases with shorter residence times as observed for the higher velocity flame.

  9. Predictive wall model and LES applied to the flat-plate turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Inoue, M.; Mathis, R.; Marusic, I.; Pullin, D. I.

    2011-11-01

    An empirical inner-outer wall model (Mathis et al, JFM 2011) is used, together with time series of stream-wise, resolved-scale velocities within the logarithmic region obtained from large-eddy simulations (LES), to calculate turbulence intensities u ̲ ' 2 /uτ2 in the inner region of the zero-pressure gradient turbulent boundary layer. Comparisons are made of the LES-wall-model results with both equivalent predictions using experimental time series, and also with direct experimental measurements at Reτ = 7 , 300 , 13 , 600 and 19 , 000 . LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers within a gap in log (Reτ) space between laboratory measurements and surface-layer, atmospheric experiments.

  10. RANS/PDF and LES/FDF for prediction of turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    Yilmaz, Server Levent

    Probability density function (PDF) and filtered density function (FDF) methodologies are developed and implemented, respectively, for Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) of turbulent premixed flames. RANS predictions are made of a lean premixed bluff-body flame via the joint velocity-scalar-frequency PDF model. LES of a premixed Bunsen-burner flame is conducted via the scalar FDF methodology. Both simulations employ finite rate kinetics via a reduced methane chemistry mechanism to account for combustion. Prediction results are compared with experimental data, and are shown to capture some of the intricate physics of turbulent premixed combustion. Keywords. large eddy simulation, filtered density function, Reynolds-averaged Navier-Stokes, probability density function, turbulent reacting flows, lean premixed combustion.

  11. Development of a Hybrid RANS/LES Method for Turbulent Mixing Layers

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    Significant research has been underway for several years in NASA Glenn Research Center's nozzle branch to develop advanced computational methods for simulating turbulent flows in exhaust nozzles. The primary efforts of this research have concentrated on improving our ability to calculate the turbulent mixing layers that dominate flows both in the exhaust systems of modern-day aircraft and in those of hypersonic vehicles under development. As part of these efforts, a hybrid numerical method was recently developed to simulate such turbulent mixing layers. The method developed here is intended for configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. Interest in Large Eddy Simulation (LES) methods have increased in recent years, but applying an LES method to calculate the wide range of turbulent scales from small eddies in the wall-bounded regions to large eddies in the mixing region is not yet possible with current computers. As a result, the hybrid method developed here uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall-bounded regions entering a mixing section and uses a LES procedure to calculate the mixing-dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. With this technique, closure for the RANS equations is obtained by using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The LES equations are closed using the Smagorinsky subgrid scale model. Although the function of the Cebeci-Smith model to replace all of the turbulent stresses is quite different from that of the Smagorinsky subgrid model, which only replaces the small subgrid turbulent stresses, both are eddy viscosity models and both are derived at least in part from mixing-length theory. The similar formulation of these two models enables the RANS

  12. A New LES/PDF Method for Computational Modeling of Turbulent Reacting Flows

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Muradoglu, Metin; Pope, Stephen B.

    2013-11-01

    A new LES/PDF method is developed for computational modeling of turbulent reacting flows. The open source package, OpenFOAM, is adopted as the LES solver and combined with the particle-based Monte Carlo method to solve the LES/PDF model equations. The dynamic Smagorinsky model is employed to account for the subgrid-scale motions. The LES solver is first validated for the Sandia Flame D using a steady flamelet method in which the chemical compositions, density and temperature fields are parameterized by the mean mixture fraction and its variance. In this approach, the modeled transport equations for the mean mixture fraction and the square of the mixture fraction are solved and the variance is then computed from its definition. The results are found to be in a good agreement with the experimental data. Then the LES solver is combined with the particle-based Monte Carlo algorithm to form a complete solver for the LES/PDF model equations. The in situ adaptive tabulation (ISAT) algorithm is incorporated into the LES/PDF method for efficient implementation of detailed chemical kinetics. The LES/PDF method is also applied to the Sandia Flame D using the GRI-Mech 3.0 chemical mechanism and the results are compared with the experimental data and the earlier PDF simulations. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant No. 111M067.

  13. Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets

    NASA Astrophysics Data System (ADS)

    Antonia, R. A.; Satyaprakash, B. R.; Hussain, A. K. M. F.

    1980-04-01

    The rate of turbulent dissipation and the turbulent Reynolds number along the axes of a turbulent plane jet and three circular jets is measured in order to confirm universal relations between the turbulent dissipation rate and the streamwise position derived from the necessary requirements for self-preservation. Flow velocity was determined by a hot-wire anemometer located in a plane jet with exit Reynolds numbers of 20,400 and 42,800 and circular jets with exit Reynolds numbers of 55,600, 109,000 and 471,000. The universal relation for circular jets is found to be valid in the position/diameter ratio range of 20 to 140 in a large range of jet Reynolds numbers, while that for plane jets is confirmed in the range 30 to 160. For either type of jet, the turbulence Reynolds number is found to be proportional to 2.3 times the square root of the local Reynolds number, which is based on local velocity and length scales.

  14. Analysis of noise produced by an orderly structure of turbulent jets

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1973-01-01

    The orderly structure which has been observed recently by numerous researchers within the transition region of subsonic turbulent jets is analyzed to reveal its noise-producing potential. For a circular jet, this structure is molded as a train of toroidal vortex rings which are formed near the jet exit and propagate downstream. The noise produced by the model is evaluated from a reformulation of Lighthill's expression for the far-field acoustic density, which emphasizes the importance of the vorticity within the turbulent flow field. It is shown that the noise production occurs mainly close to the jet exit and depends primarily upon temporal changes in the toroidal radii. The analysis suggests that the process of formation of this regular structure may also be an important contribution of the high-frequency jet noise. These results may be helpful in the understanding of jet-noise generation and in new approaches to jet-noise suppression.

  15. Interaction of a turbulent-jet noise source with transverse modes in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Baumeister, K. J.; Ingard, K. U.

    1978-01-01

    A turbulent jet was used to excite transverse acoustic modes in a rectangular duct. The pressure spectrum showed asymmetric singularities (pressure spikes) at the resonant frequencies of the duct modes. This validates previously published theoretical results. These pressure spikes occurred over a range of jet velocities, orientations, and inlet turbulence levels. At the frequency of the spike, the measured transverse pressure shape matched the resonant mode shape.

  16. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  17. Laminar and turbulent nozzle-jet flows and their acoustic near-field

    SciTech Connect

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    2014-08-15

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and the sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.

  18. Vorticity, turbulence production, and turbulence induced accelerations in a rectangular jet as measured using 3-D LDA

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    The flow field of a rectangular jet with a 4:1 aspect ratio (50.4 x 12.7 mm) was studied at a Reynolds number of 100,000 (Mach number 0.09) using a 3-D laser Doppler anemometer system. Measurements were performed along the major and minor axis planes and at various downstream cross-sections of the jet. The mean velocity vector and entire Reynolds stress tensor were measured and presented in a previous publication. The present work presents the vorticity vector, turbulence production, and turbulence induced acceleration vector distributions which were calculated from the previously presented data.

  19. Structure of three-dimensional turbulent offset jets with small offset distances

    NASA Astrophysics Data System (ADS)

    Agelin-Chaab, Martin; Tachie, Mark

    2009-11-01

    An offset jet is a jet that discharges into a medium above a wall which is offset by a certain distance. The ``Coanda effect'' forces the offset jet to deflect towards the wall and eventually attaches itself to the wall. The only detailed study of three-dimensional offset jets (3DOJs) did not report the flow field in the region from the jet exit to the point where the jet attaches itself to the wall. In this region flow reversal is expected. Velocity measurements of 3DOJs were conducted using particle image velocimetry. The 3DOJs have different jet exit offset distances (h) normalized by the jet exit diameter (d) of h/d = 0.5 to 4. The Reynolds numbers based on the jet exit velocities and jet exit diameters were 5000, 10000 and 20000. The detailed flow fields of the 3DOJs were examined in terms of mean velocities, and one-point turbulence statistics. In view of the wide range of length and temporal scales that are present in turbulent flows, multi-point turbulence statistics such as two-point velocity correlations and proper orthogonal decomposition are used to document the salient features of 3DOJs.

  20. Large Eddy Simulation/Probability Density Function Modeling of a Turbulent CH4/H2/N2 Jet Flame

    SciTech Connect

    Wang, Haifeng; Pope, Stephen B.

    2011-01-01

    In this work, we develop the large-eddy simulation (LES)/probability density function (PDF) simulation capability for turbulent combustion and apply it to a turbulent CH{sub 4}/H{sub 2}/N{sub 2} jet flame (DLR Flame A). The PDF code is verified to be second-order accurate with respect to the time-step size and the grid size in a manufactured one-dimensional test case. Three grids (64×64×16,192×192×48,320×320×80)(64×64×16,192×192×48,320×320×80) are used in the simulations of DLR Flame A to examine the effect of the grid resolution. The numerical solutions of the resolved mixture fraction, the mixture fraction squared, and the density are duplicated in the LES code and the PDF code to explore the numerical consistency between them. A single laminar flamelet profile is used to reduce the computational cost of treating the chemical reactions of the particles. The sensitivity of the LES results to the time-step size is explored. Both first and second-order time splitting schemes are used for integrating the stochastic differential equations for the particles, and these are compared in the jet flame simulations. The numerical results are found to be sensitive to the grid resolution, and the 192×192×48192×192×48 grid is adequate to capture the main flow fields of interest for this study. The numerical consistency between LES and PDF is confirmed by the small difference between their numerical predictions. Overall good agreement between the LES/PDF predictions and the experimental data is observed for the resolved flow fields and the composition fields, including for the mass fractions of the minor species and NO. The LES results are found to be insensitive to the time-step size for this particular flame. The first-order splitting scheme performs as well as the second-order splitting scheme in predicting the resolved mean and rms mixture fraction and the density for this flame.

  1. LES of a Jet Excited by the Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2011-01-01

    The fluid dynamics of a high-speed jet are governed by the instability waves that form in the free-shear boundary layer of the jet. Jet excitation manipulates the growth and saturation of particular instability waves to control the unsteady flow structures that characterize the energy cascade in the jet.The results may include jet noise mitigation or a reduction in the infrared signature of the jet. The Localized Arc Filament Plasma Actuators (LAFPA) have demonstrated the ability to excite a high-speed jets in laboratory experiments. Extending and optimizing this excitation technology, however, is a complex process that will require many tests and trials. Computational simulations can play an important role in understanding and optimizing this actuator technology for real-world applications. Previous research has focused on developing a suitable actuator model and coupling it with the appropriate computational fluid dynamics (CFD) methods using two-dimensional spatial flow approximations. This work is now extended to three-dimensions (3-D) in space. The actuator model is adapted to a series of discrete actuators and a 3-D LES simulation of an excited jet is run. The results are used to study the fluid dynamics near the actuator and in the jet plume.

  2. Intensity, Scale, and Spectra of Turbulence in Mixing Region of Free Subsonic Jet

    NASA Technical Reports Server (NTRS)

    Laurence, James C

    1956-01-01

    Report presents the results of the measurements of intensity of turbulence, the longitudinal and lateral correlation coefficients, and the spectra of turbulence in a 3.5-inch-diameter free jet measured with hot-wire anemometers at exit Mach numbers from 0.2 to 0.7 and Reynolds numbers from 192,000 to 725,000.

  3. Distorted turbulence submitted to frame rotation: RDT and LES results

    NASA Technical Reports Server (NTRS)

    Godeferd, Fabien S.

    1995-01-01

    The objective of this effort is to carry the analysis of Lee et al. (1990) to the case of shear with rotation. We apply the RDT approximation to turbulence submitted to frame rotation for the case of a uniformly sheared flow and compare its mean statistics to results of high resolution DNS of a rotating plane channel flow. In the latter, the mean velocity profile is modified by the Coriolis force, and accordingly, different regions in the channel can be identified. The properties of the plane pure strain turbulence submitted to frame rotation are, in addition, investigated in spectral space, which shows the usefulness of the spectral RDT approach. This latter case is investigated here. Among the general class of quadratic flows, this case does not follow the same stability properties as the others since the related mean vorticity is zero.

  4. Comprehensive Approaches to Multiphase Flows in Geophysics - Application to nonisothermal, nonhomogenous, unsteady, large-scale, turbulent dusty clouds I. Hydrodynamic and Thermodynamic RANS and LES Models

    SciTech Connect

    S. Dartevelle

    2005-09-05

    The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of

  5. Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets

    NASA Astrophysics Data System (ADS)

    Hoshino, M.

    2014-12-01

    The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.

  6. The formation of turbulent vortex rings by synthetic jets

    NASA Astrophysics Data System (ADS)

    Lawson, J. M.; Dawson, J. R.

    2013-10-01

    An investigation is made into the mechanism of pinch-off for turbulent vortex rings formed by a synthetic jet using time resolved particle image velocimetry measurements in air. During formation, measurements of the material acceleration field show a trailing pressure maximum (TPM) forms behind the vortex core. The adverse pressure gradient behind this TPM inhibits vorticity transport into the ring and the TPM is spatially coincident with the termination of vorticity flux into a control volume moving with the ring. A Lagrangian Coherent Structures (LCS) analysis is shown to be in agreement with the role of the TPM in pinch-off and in identifying the vortex ring before separation. The LCS analysis provides physical insights which form the basis of a revised model of pinch-off, based on kinematics, which predicts the time of formation (formation number) well for the present dataset. The delivery of impulse to the vortex ring is also considered. Two equally important mechanisms are shown to play a role: a material flux and a vortex force. In the case of long maximum stroke ratio, it is demonstrated that a vortex force continues to deliver impulse to the ring after the material flux is terminated at pinch-off and that this contribution may be substantial. This shows that the pinch-off and separation process cannot be considered impulse invariant, which has important implications for unsteady propulsion, present models of vortex ring formation, and existing explanations for vortex ring pinch-off.

  7. Transport of inertial particles in a turbulent premixed jet flame

    NASA Astrophysics Data System (ADS)

    Battista, F.; Picano, F.; Troiani, G.; Casciola, C. M.

    2011-12-01

    The heat release, occurring in reacting flows, induces a sudden fluid acceleration which particles follow with a certain lag, due to their finite inertia. Actually, the coupling between particle inertia and the flame front expansion strongly biases the spatial distribution of the particles, by inducing the formation of localized clouds with different dimensions downstream the thin flame front. A possible indicator of this preferential localization is the so-called Clustering Index, quantifying the departure of the actual particle distribution from the Poissonian, which would correspond to a purely random spatial arrangement. Most of the clustering is found in the flame brush region, which is spanned by the fluctuating instantaneous flame front. The effect is significant also for very light particles. In this case a simple model based on the Bray-Moss-Libby formalism is able to account for most of the deviation from the Poissonian. When the particle inertia increases, the effect is found to increases and persist well within the region of burned gases. The effect is maximum when the particle relaxation time is of the order of the flame front time scale. The evidence of this peculiar source of clustering is here provided by data from a direct numerical simulation of a turbulent premixed jet flame and confirmed by experimental data.

  8. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  9. Further Experiments on the Flow and Heat Transfer in a Heated Turbulent Air Jet

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley; Uberoi, Mahinder S

    1950-01-01

    Measurements have been made of the mean-total-head and mean-temperature fields in a round turbulent jet with various initial temperatures. The results show that the jet spreads more rapidly as its density becomes lower than that of the receiving medium, even when the difference is not sufficiently great to cause dynamic-pressure function. Rough analytical considerations have given the same relative spread. The effective "turbulent Prandtl number" for a section of the fully developed jet was found to be equal to the true (laminar) Prandtl number within the accuracy measurement.

  10. Statistical state dynamics of jet/wave coexistence in beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Farrell, Brian; Ioannou, Petros

    Jets are commonly observed to coexist in the turbulence of planetary atmospheres with planetary scale waves and embedded vortices. These large-scale coherent structures arise and are maintained in the turbulence on time scales long compared to dissipation or advective time scales. The emergence, equilibration at finite amplitude, maintenance and stability of these structures pose fundamental theoretical problems. The emergence of jets and vortices from turbulence is not associated with an instability of the mean flow and their equilibration and stability at finite amplitude does not arise solely from the linear or nonlinear dynamics of these structures in isolation from the turbulence surrounding them. Rather the dynamics of these large-scale structures arises essentially from their cooperative interaction with the small-scale turbulence in which they are embedded. It follows that fundamental theoretical understanding of the dynamics of jets and vortices in turbulence requires adopting the perspective of the statistical state dynamics (SSD) of the entire turbulent state. In this work a theory for the jet/wave coexistence regime is developed using the SSD perspective.

  11. Equilibration of the jet forming instability in barotropic beta-plane turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Bakas, Nikolaos; Ioannou, Petros

    2016-04-01

    Planetary turbulent flows are observed to self-organize into large scale structures such as zonal jets and coherent vortices. Recently, it was shown that a comprehensive understanding of the properties of these large scale structures and of the dynamics underlying their emergence and maintenance is gained through the study of the dynamics of the statistical state of the flow. Previous studies ad-dressed the emergence of the coherent structures in barotropic turbulence and showed the zonal jets emerge as an instability of the Statistical State Dynamics (SSD). In this work, the equilibration of the incipient instabilities and the stability of the equilibrated jets near onset is investigated. It is shown through a weakly nonlinear analysis of the SSD that the amplitude of the jet evolves according to a Ginzburg-Landau equation. The equilibrated jets were found to have a harmonic structure and an amplitude that is an increasing function of the planetary vorticity gradient. It is also shown that most of the equilibrated jets are secondarily unstable and will evolve through jet merging and branching to the stable jets that have a scale close to the most unstable (refering to the jet forming primary instability) emerging jet.

  12. Near field of a transient, acoustically forced transitional and turbulent jets

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Bodony, Daniel

    2011-11-01

    Acoustic liners are widely used to reduce aircraft engine noise. They work by converting acoustic-bound energy into vorticity-bound energy, in the form of a transient jet, at an orifice that is very small relative to the incident sound wavelength. At low sound amplitudes (<130 dB) the forced jet is laminar. At higher amplitudes (> = 150 dB) vortical instabilities appear and the jet becomes turbulent. In this work the behavior of transitional and fully turbulent transient jets are studied using direct numerical simulations of the compressible Navier-Stokes equations. We focus on the near-aperture dynamics of the acoustically-forced fluid by quantifying the jets' phase-averaged properties and linking these to a reduced order dynamical model with the objective of understanding the motion of transient turbulent jets. Results indicate that boundary layer separation from the orifice walls is critical to seeding instabilities within the jets as they develop while at later times disturbances from the previous acoustic cycle reinforce the jets' unsteadiness.

  13. A theoretical and experimental study of turbulent particle-laden jets

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Solomon, A. S. P.; Zhang, Q. F.; Faeth, G. M.

    1983-01-01

    Mean and fluctuating velocities of both phases, particle mass fluxes, particle size distributions in turbulent particle-laden jets were measured. The following models are considered: (1) a locally homogeneous flow (LHF) model, where slip between the phases was neglected; (2) a deterministic separated flow (DSF) model, where slip was considered but effects of particle dispersion by turbulence were ignored; and (3) a stochastic separated flow (SSF) model. The SSF model performed reasonably well with no modifications in the prescriptions for eddy properties from its original calibration. A modified k- model, incorporating direct contributions of interphase transport on turbulence properties (turbulence modulation), was developed within the framework of the SSF model.

  14. High-fidelity Simulation of Jet Noise from Rectangular Nozzles . [Large Eddy Simulation (LES) Model for Noise Reduction in Advanced Jet Engines and Automobiles

    NASA Technical Reports Server (NTRS)

    Sinha, Neeraj

    2014-01-01

    This Phase II project validated a state-of-the-art LES model, coupled with a Ffowcs Williams-Hawkings (FW-H) far-field acoustic solver, to support the development of advanced engine concepts. These concepts include innovative flow control strategies to attenuate jet noise emissions. The end-to-end LES/ FW-H noise prediction model was demonstrated and validated by applying it to rectangular nozzle designs with a high aspect ratio. The model also was validated against acoustic and flow-field data from a realistic jet-pylon experiment, thereby significantly advancing the state of the art for LES.

  15. Theoretical study of the effects of refraction on the noise produced by turbulence in jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1974-01-01

    The production of noise by turbulence in jets is an extremely complex problem. One aspect of that problem, the transmission of acoustic disturbances from the interior of the jet through the mean velocity profile and into the far field is studied. The jet (two-dimensional or circular cylindrical) is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the surrounding fluid and confined to a short length of the jet.

  16. Prediction of Turbulent Jet Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the confrol volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on perfectly expanded hot supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  17. Comparison of Turbulence Models for Nozzle-Afterbody Flows with Propulsive Jets

    NASA Technical Reports Server (NTRS)

    Compton, William B., III

    1996-01-01

    A numerical investigation was conducted to assess the accuracy of two turbulence models when computing non-axisymmetric nozzle-afterbody flows with propulsive jets. Navier-Stokes solutions were obtained for a Convergent-divergent non-axisymmetric nozzle-afterbody and its associated jet exhaust plume at free-stream Mach numbers of 0.600 and 0.938 at an angle of attack of 0 deg. The Reynolds number based on model length was approximately 20 x 10(exp 6). Turbulent dissipation was modeled by the algebraic Baldwin-Lomax turbulence model with the Degani-Schiff modification and by the standard Jones-Launder kappa-epsilon turbulence model. At flow conditions without strong shocks and with little or no separation, both turbulence models predicted the pressures on the surfaces of the nozzle very well. When strong shocks and massive separation existed, both turbulence models were unable to predict the flow accurately. Mixing of the jet exhaust plume and the external flow was underpredicted. The differences in drag coefficients for the two turbulence models illustrate that substantial development is still required for computing very complex flows before nozzle performance can be predicted accurately for all external flow conditions.

  18. Effects of differential diffusion on the flame structure of oxygen enhanced turbulent non-premixed jet flames

    NASA Astrophysics Data System (ADS)

    Dietzsch, Felix; Gauding, Michael; Hasse, Christian

    2014-11-01

    By means of Direct Numerical Simulation we have investigated the influence of differential diffusion for non-premixed oxygen-enhanced turbulent flames. Oxygen-enhanced conversion usually yields higher amounts of H2 as compared to conventional air combustion. It is well known that H2 as a very diffusive species leads to differential diffusion effects. In addition to the diffusive transport mixing processes are also often controlled by turbulent transport. Previous investigations of a turbulent CH4/H2 oxygen-enhanced jet flame have shown that in mixture fraction space it is important to distinguish between regions of equal diffusivities and detailed transport. These findings are of particular interest when performing Large-Eddy simulations applying a flamelet approach. Using this approach a LES study was performed of the aforementioned flame considering differential diffusion. Therefore, flamelet equations including differential diffusion via non-unity constant Lewis numbers were solved. However, this study showed that keeping the non-unity Lewis numbers constant, is not sufficient to capture the diffusion phenomena in this particular flame. Direct Numerical Simulations have been conducted in order to investigate how Lewis numbers are affected in mixture fraction space. Computer resources for this project have been provided by the Gauss Centre for Supercomputing/Leibniz Supercomputing Centre under Grant: pr83xa.

  19. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  20. The effect of exit conditions on the development of an axisymmetric turbulent free jet

    NASA Technical Reports Server (NTRS)

    Kleis, S. J.; Foss, J. F.

    1974-01-01

    The mean flow in the near field of a submerged axisymmetric jet emitting from a plane wall is presented. An experimental configuration to provide a nearly uniform mean velocity profile with a core of homogeneous turbulence of variable intensity and scale was developed. Eight cases with intensity values of 0.004 less than or equal to U prime less than or equal to 0.035 and integral scales up to l sub x/R = 0.28 were investigated using conditional sampling techniques. It was found that the jet exhibits an increasing momentum flux in the near field. Contrary to expectation and the accepted assumption of ambient static pressure in a turbulent jet, results seem to be conclusive and borne out by comparison with published data. Both integral measures, mass and momentum flux ratios, are insensitive to exit turbulence variations, but, the detailed structure (including centerline velocity) variations with exit conditions are systematic and explainable.

  1. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    PubMed

    Whalley, Richard D; Walsh, James L

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  2. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    PubMed Central

    Whalley, Richard D.; Walsh, James L.

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  3. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    NASA Astrophysics Data System (ADS)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  4. An experimental and numerical study into turbulent condensing steam jets in air

    NASA Astrophysics Data System (ADS)

    Oerlemans, S.; Badie, R.; Van Dongen, M. E. H.

    Temperatures, velocities, and droplet sizes are measured in turbulent condensing steam jets produced by a facial sauna, for varying nozzle diameters and varying initial velocities (Re=3,600-9,200). The release of latent heat due to droplet condensation causes the temperature in the two-phase jet to be significantly higher than in a single-phase jet. At some distance from the nozzle, droplets reach a maximum size and start to evaporate again, which results in a change in sign of latent heat release. The distance of maximum size is determined from droplet size measurements. The experimental results are compared with semi-analytical expressions and with a fully coupled numerical model of the turbulent condensing steam jet. The increase in centreline temperature due to droplet condensation is successfully predicted.

  5. On similarity solutions for turbulent and heated round jets

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Hwang, B. C.

    1986-01-01

    Commonly used empirical correlations for incompressible, heated round jets are shown to represent similarity solutions of the governing jet equations. These solutions give rise to self-similar eddy viscosities. Not all the similarity solutions are physically valid because some lead to zero eddy viscosities at the jet centerline. One physically valid solution is found to correlate best with round jet measurements and it gives a Gaussian error function description for the normalized mean velocity and temperature. Heat and momentum fluxes thus calculated are also in good agreement with measurements. Therefore, in addition to the classical similarity solution obtained by assuming constant eddy viscosity, another similarity solution to the jet equations is found where the eddy viscosity is self-similar.

  6. Three-dimensional study of turbulent flow characteristics of an offset plane jet with variable density

    NASA Astrophysics Data System (ADS)

    Assoudi, Ali; Habli, Sabra; Mahjoub Saïd, Nejla; Bournot, Hervé; Le Palec, Georges

    2016-11-01

    An experimental and numerical investigation of the flow field of variable density turbulent offset jet is presented. The velocity measurements are performed using a Velocimetry Laser Doppler technique for an offset height h. Three cases of variable-density turbulent plane jets discharging from a rectangular nozzle into a quiescent medium are studied. The variation density jets considered were revealed at different Reynolds numbers. In the second step of this work, a numerical three-dimensional model of the problem is simulated through the resolution of the Navier-Stokes equations by means of the finite volume method and the Reynolds stress model second-order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzle and both the vertical and horizontal walls is also adopted. A good level of agreement was achieved, between the experiments and the calculations. Once the model validated, our model allowed the evaluation of the influence of the variation density on the characterizing features of the resulting flow filed. It is found that the centerline velocity and concentration of the heavier jet decays much faster than in the two other jets, and a similar behavior for the vertical profiles in the three variable-density jets is well reproduced in the simulation.

  7. Three-dimensional study of turbulent flow characteristics of an offset plane jet with variable density

    NASA Astrophysics Data System (ADS)

    Assoudi, Ali; Habli, Sabra; Mahjoub Saïd, Nejla; Bournot, Hervé; Le Palec, Georges

    2015-12-01

    An experimental and numerical investigation of the flow field of variable density turbulent offset jet is presented. The velocity measurements are performed using a Velocimetry Laser Doppler technique for an offset height h. Three cases of variable-density turbulent plane jets discharging from a rectangular nozzle into a quiescent medium are studied. The variation density jets considered were revealed at different Reynolds numbers. In the second step of this work, a numerical three-dimensional model of the problem is simulated through the resolution of the Navier-Stokes equations by means of the finite volume method and the Reynolds stress model second-order turbulent closure model. A non-uniform mesh system tightened close to the emitting nozzle and both the vertical and horizontal walls is also adopted. A good level of agreement was achieved, between the experiments and the calculations. Once the model validated, our model allowed the evaluation of the influence of the variation density on the characterizing features of the resulting flow filed. It is found that the centerline velocity and concentration of the heavier jet decays much faster than in the two other jets, and a similar behavior for the vertical profiles in the three variable-density jets is well reproduced in the simulation.

  8. Synthetic Jet Interaction With A Turbulent Boundary Layer Flow

    NASA Technical Reports Server (NTRS)

    Smith, Douglas R.

    2002-01-01

    Perhaps one of the more notable advances to have occurred in flow control technology in the last fifteen years is the application of surface-issuing jets for separation control on aerodynamic surfaces. The concept was introduced by Johnston and Night (1990) who proposed using circular jets, skewed and inclined to the wall, to generate streamwise vortices for the purpose of mitigating boundary layer separation. The skew and inclination angles have subsequently been shown to affect the strength and sign of the ensuing vortices. With a non-circular orifice, in addition to skew and inclination, the yaw angle of the major axis of the orifice can influence the flow control effectiveness of the jet. In particular, a study by Chang arid Collins (1997) revealed that a non-circular orifice, yawed relative to the freestream, can be used to control the size and strength of the vortices produced by the control jet. This early work used jets with only a steady injection of mass. Seifert et al. revealed that an unsteady blowing jet, could be as effective at separation control as a steady jet but with less mass flow. Seifert et al. showed that small amplitude blowing oscillations superimposed on a low momentum steady jet Was the most effective approach to delaying separation on a NACA 0015 airfoil at post-stall angles of attack. More recent work suggests that perhaps the most efficient jet control effect comes from a synthetic (oscillatory) jet where the time-averaged mass flux through the orifice is zero, but the net wall normal momentum is non-zero. The control effectiveness of synthetic jets has been demonstrated for several internal and external flow fields used synthetic jet control on a thick, blunt-nosed airfoil to delay stall well beyond the stall angles for the uncontrolled airfoil and with a dramatic increase in the lift-to-drag performance. Amitay et al. used an array of synthetic jets to mitigate flow separation in curved and diffusing ducts. While the control

  9. Comparison of Measured and WRF-LES Turbulence Statistics in a Real Convective Boundary Layer over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Rai, R. K.; Berg, L. K.; Kosovic, B.; Mirocha, J. D.; Pekour, M. S.; Shaw, W. J.

    2015-12-01

    Resolving the finest turbulent scales present in the lower atmosphere using numerical simulations helps to study the processes that occur in the atmospheric boundary layer, such as the turbulent inflow condition to the wind plant and the generation of the wake behind wind turbines. This work employs several nested domains in the WRF-LES framework to simulate conditions in a convectively driven cloud free boundary layer at an instrumented field site in complex terrain. The innermost LES domain (30 m spatial resolution) receives the boundary forcing from two other coarser resolution LES outer domains, which in turn receive boundary conditions from two WRF-mesoscale domains. Wind and temperature records from sonic anemometers mounted at two vertical levels (30 m and 60 m) are compared with the LES results in term of first and second statistical moments as well as power spectra and distributions of wind velocity. For the two mostly used boundary layer parameterizations (MYNN and YSU) tested in the WRF mesoscale domains, the MYNN scheme shows slightly better agreement with the observations for some quantities, such as time averaged velocity and Turbulent Kinetic Energy (TKE). However, LES driven by WRF-mesoscale simulations using either parameterization have similar velocity spectra and distributions of velocity. For each component of the wind velocity, WRF-LES power spectra are found to be comparable to the spectra derived from the measured data (for the frequencies that are accurately represented by WRF-LES). Furthermore, the analysis of LES results shows a noticeable variability of the mean and variance even over small horizontal distances that would be considered sub-grid scale in mesoscale simulations. This observed statistical variability in space and time can be utilized to further analyze the turbulence quantities over a heterogeneous surface and to improve the turbulence parameterization in the mesoscale model.

  10. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  11. Investigation with an Interferometer of the Turbulent Mixing of a Free Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Gooderum, Paul B; Wood, George P; Brevoort, Maurice J

    1950-01-01

    The free turbulent mixing of a supersonic jet of Mach number 1.6 has been experimentally investigated. An interferometer, of which a description is given, was used for the investigation. Density and velocity distributions through the mixing zone have been obtained. It was found that there was similarity in distribution at the cross sections investigated and that, in the subsonic portion of the mixing zone, the velocity distribution fitted the theoretical distribution for incompressible flow. It was found that the rates of spread of the mixing zone both into the jet and into the ambient air were less than those of subsonic jets.

  12. Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2008-01-01

    The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  13. Turbulent transport and length scale measurement experiments with comfined coaxial jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Roback, R.

    1984-01-01

    A three phase experimental study of mixing downstream of swirling and nonswirling confined coaxial jets was conducted to obtain data for the evaluation and improvement of turbulent transport models currently employed in a variety of computational procedures. The present effort was directed toward the acquisition of length scale and dissipation rate data that provide more accurate inlet boundary conditions for the computational procedures and a data base to evaluate the turbulent transport models in the near jet region where recirculation does not occur, and the acquisition of mass and momentum turbulent transport data for a nonswirling flow condition with a blunt inner jet inlet configuration rather than the tapered inner jet inlet. A measurement technique, generally used to obtain approximate integral length and microscales of turbulence and dissipation rates, was computerized. Results showed the dissipation rate varied by 2 1/2 orders of magnitude across the inlet plane, by 2 orders of magnitude 51 mm from the inlet plane, and by 1 order of magnitude at 102 mm from the inlet plane for a nonswirling flow test conditions.

  14. Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector

    NASA Astrophysics Data System (ADS)

    Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.

  15. Density and compressibility effects in turbulent subsonic jets part 1: mean velocity field

    NASA Astrophysics Data System (ADS)

    Wang, Zhexuan; Andreopoulos, Yiannis

    2010-02-01

    The behavior of compressible jets originated from initially turbulent pipe flows issuing in still air has been investigated at three different subsonic Mach numbers, 0.3, 0.6 and 0.9. Helium, nitrogen and krypton gases were used to generate the jet flows and investigate the additional effects of density on the flow structure. Particle image velocimetry, high-frequency response pressure transducers and thermocouples were used to obtain velocity, Mach number and total temperature measurements inside the flow field. The jets were formed at the exit of an adiabatic compressible frictional turbulent pipe flow, which was developing toward its corresponding sonic conditions inside the pipe, and continued to expand within the first four diameters distance after it exited the pipe. Theoretical considerations based on flow self-similarity were used to obtain the decay of Mach number along the centerline of the jets for the first time. It was found that this decay depends on two contributions, one from the velocity field which is inversely proportional to the distance from the exit and one from the thermal field which is proportional to this distance. As a result, a small non-linearity in the variation of the inverse Mach number with downstream distance was found. The decay of the Mach number at the centerline of the axisymmetric jets increases by increasing the initial Mach number at the exit of the flow for all jets. The decay of mean velocity at the centerline of the jets is also higher at higher exit Mach numbers. However, the velocity non-dimensionalized by the exit velocity seems to decrease faster at low exit Mach numbers, suggesting a reduced mixing with increasing exit flow Mach numbers. Helium jets were found to have the largest spreading rate among the three different gas jets used in the present investigation, while krypton jets had the lowest spreading rate. The spreading rate of each gas decreases with increasing its kinetic energy relatively to its internal

  16. Analysis of the effect of initial conditions on the initial development of a turbulent jet

    NASA Technical Reports Server (NTRS)

    Kim, Soong KI; Chung, Myung Kyoon; Cho, Ji Ryong

    1992-01-01

    The effect of the initial condition at the jet exit on the downstream evolution, particularly within the potential core length, were numerically investigated as well as with available experimental data. In order to select the most dependable computational model for the present numerical experiment, a comparative study has been performed with different turbulence models at k-epsilon level, and it was found that the k-epsilon-gammma model yields superior prediction accuracy over other conventional models. The calculated results show that the potential core length and the spreading rate the initial mixing layer are dependent on the initial length scale as well as the turbulent kinetic energy at the jet exit. Such effect of the initial length scale increases with higher initial turbulence level. An empirical parameter has been devised to collapse the calculated data of the potential core length and the spreading rate with various initial conditions onto a single curve.

  17. The noise emitted by turbulent jets in close proximity to solid surfaces

    NASA Astrophysics Data System (ADS)

    Carpenter, P. W.; Parsons, C.

    1986-07-01

    The present calculations of basic directivity patterns for randomly oriented longitudinal and lateral quadrupole types near a rigid plane indicate substantial differences between the two types. By applying Lighthill's (1954) acoustic analogy and extending the Ribner (1969) modeling method for acoustic sources, the basic directivity pattern of the sound generated by a unit volume of jet-type shear layer turbulence near an infinite grid plane is calculated and found to be very different from the corresponding elliptical one obtained by unit volume of free-field shear layer turbulence. The theory is presently applied to an actual turbulent shear flow, in the form of a plane, two-dimensional wall jet, basic aeroacoustic predictions are thereby obtained.

  18. Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2012-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  19. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  20. Computation of a Synthetic Jet in a Turbulent Cross-Flow Boundary Layer

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2004-01-01

    A series of unsteady Reynolds-averaged Navier-Stokes computations are performed for the flow of a synthetic jet issuing into a turbulent boundary layer through a circular orifice. This is one of the validation test cases from a synthetic jet validation workshop held in March 2004. Several numerical parameters are investigated, and the effects of three different turbulence models are explored. Both long-time-averaged and time-dependent phase-averaged results are compared to experiment. On the whole, qualitative comparisons of the mean flow quantities are fairly good. There are many differences evident in the quantitative comparisons. The calculations do not exhibit a strong dependence on the type of turbulence model employed.

  1. LES of turbulent flow past axial flow turbines and turbine arrays: Model development and validation

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Kang, Seokkoo; Yang, Xiaolei; Chamorro, Leonardo; Hill, Craig

    2012-11-01

    We present recent progress towards the numerical simulation of turbulent flows past axial-flow wind and hydrokinetic turbines and farms. For simulating multi-turbine arrays, we combine turbine parameterization approaches (actuator disk and actuator line models) with our curvilinear-immersed boundary (CURVIB) LES model. Simulations are carried out both for aligned and staggered wind farms and the computed results are compared with wind tunnel experiments carried out at the St. Anthony Falls Laboratory (SAFL) atmospheric boundary layer wind tunnel. Turbine geometry resolving simulations also employ the CURVIB-LES solver with a wall model and very fine computational grids. Simulations are reported for a complete model marine turbine mounted at the bottom of a straight open channel and the computed results are compared with laboratory experiments obtained in the SAFL Main Channel. The simulated flowfields are analyzed to elucidate the structure of the turbine wake, identify large-scale instabilities, and quantify the mechanisms of turbulence production in the near and far wakes. This work was supported by US Department of Energy (Grant No. DE-EE0002980, DE-EE0005482), Xcel Energy (Grant No. RD3-42), Verdant Power, Initiative for Renewable Energy & the Environment (Grant No. RO-0004-12), and Minnesota Supercomputing Institute.

  2. Reynolds number influence on statistical behaviors of turbulence in a circular free jet

    NASA Astrophysics Data System (ADS)

    Mi, J.; Xu, M.; Zhou, T.

    2013-07-01

    The present paper examines the effect of Reynolds number on turbulence properties in the transition region of a circular jet issuing from a smoothly contracting nozzle. Hot-wire measurements were performed for this investigation through varying the jet-exit Reynolds number Red (≡ Ujd/ν, where Uj, d, and ν are the jet-exit mean velocity, nozzle diameter, and kinematic viscosity) approximately from Red ≈ 4 × 103 to Red ≈ 2 × 104. Results reveal that the rates of the mean flow decay and spread vary with Reynolds number for Red < 104 and tend to become Reynolds-number independent at Red ≥ 104. Even more importantly, the small-scale turbulence properties, e.g., the mean rate of dissipation of kinetic energy (ɛ), the Kolmogorov and Taylor microscales, are found to vary in different forms over the Red ranges of Red > 104 and Red < 104. Namely, the critical Reynolds number appears to occur at Red,cr ≈ 104 across which the jet turbulence behaves distinctly. Two turbulence regimes are therefore identified: (i) developing or partially developed turbulence at Red < Red,cr and (ii) fully developed turbulence at Red ≥ Red,cr. It is suggested that the energy dissipation rate (DR) can be expressed as \\varepsilon ˜ ν U_c^2 /R^2 in regime (i) and \\varepsilon ˜ U_c^3 /R in regime (ii), where Uc and R are the centerline (or maximum) mean velocity and half-radius at which the mean velocity is 0.5Uc. In addition, the critical Reynolds number appears to vary from flow to flow.

  3. Dynamics of the gas flow turbulent front in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Pei, X.; Ghasemi, M.; Xu, H.; Hasnain, Q.; Wu, S.; Tu, Y.; Lu, X.

    2016-06-01

    In this paper, dynamic characterizations of the turbulent flow field in atmospheric pressure plasma jets (APPJs) are investigated by focusing on the effect of different APPJ parameters, such as gas flow rate, applied voltage, pulse repetition frequency, and time duration of the pulse. We utilize Schlieren photography and photomultiplier tubes (PMT) as a signal triggering of an intensified charge coupled device (ICCD) and also a high speed camera to examine the formation of the turbulent front and its dynamics. The results reveal that the turbulent front will appear earlier and closer to the tube nozzle by increasing the gas flow rate or the applied voltage amplitude. However, the pulse time duration and repetition frequency cannot change the dynamics and formation of the turbulent front. Further investigation shows that every pulse can excite one turbulent front which is created in a specific position in a laminar region and propagates downstream. It seems that the dominating mechanisms responsible for the formation of turbulent fronts in plasma jets might not be ion momentum transfer.

  4. Effect of liquid droplets on turbulence in a round gaseous jet

    NASA Technical Reports Server (NTRS)

    Mostafa, A. A.; Elghobashi, S. E.

    1986-01-01

    The main objective of this investigation is to develop a two-equation turbulence model for dilute vaporizing sprays or in general for dispersed two-phase flows including the effects of phase changes. The model that accounts for the interaction between the two phases is based on rigorously derived equations for turbulence kinetic energy (K) and its dissipation rate epsilon of the carrier phase using the momentum equation of that phase. Closure is achieved by modeling the turbulent correlations, up to third order, in the equations of the mean motion, concentration of the vapor in the carrier phase, and the kinetic energy of turbulence and its dissipation rate for the carrier phase. The governing equations are presented in both the exact and the modeled formes. The governing equations are solved numerically using a finite-difference procedure to test the presented model for the flow of a turbulent axisymmetric gaseous jet laden with either evaporating liquid droplets or solid particles. The predictions include the distribution of the mean velocity, volume fractions of the different phases, concentration of the evaporated material in the carrier phase, turbulence intensity and shear stress of the carrier phase, droplet diameter distribution, and the jet spreading rate. The predictions are in good agreement with the experimental data.

  5. Radiation from Relativistic Jets in Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Hardee, P.; Niemiec, J.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Fishman, G. J.

    2008-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we have investigated long-term particle acceleration associated with an relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations have been performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. The acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to the afterglow emission. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique.

  6. Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames

    SciTech Connect

    Mehta, R.S.; Haworth, D.C.; Modest, M.F.

    2010-05-15

    A comprehensive model for luminous turbulent flames is presented. The model features detailed chemistry, radiation and soot models and state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions. A transported probability density function (PDF) method is used to capture the effects of turbulent fluctuations in composition and temperature. The PDF method is extended to include soot formation. Spectral gas and soot radiation is modeled using a (particle-based) photon Monte Carlo method coupled with the PDF method, thereby capturing both emission and absorption turbulence-radiation interactions. An important element of this work is that the gas-phase chemistry and soot models that have been thoroughly validated across a wide range of laminar flames are used in turbulent flame simulations without modification. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O{sub 2} to 55% O{sub 2}). All simulations are carried out with a single set of physical and numerical parameters (model constants). Uniformly good agreement between measured and computed mean temperatures, mean soot volume fractions and (where available) radiative fluxes is found across all flames. This demonstrates that with the combination of a systematic approach and state-of-the-art physical models and numerical algorithms, it is possible to simulate a broad range of luminous turbulent flames with a single model. (author)

  7. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.

    PubMed

    Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P

    2016-01-01

    3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core. PMID:26967544

  8. Three-dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow.

    PubMed

    Kim, Jin-Tae; Kim, David; Liberzon, Alex; Chamorro, Leonardo P

    2016-02-27

    3D-PTV is a quantitative flow measurement technique that aims to track the Lagrangian paths of a set of particles in three dimensions using stereoscopic recording of image sequences. The basic components, features, constraints and optimization tips of a 3D-PTV topology consisting of a high-speed camera with a four-view splitter are described and discussed in this article. The technique is applied to the intermediate flow field (5 jet at Re ≈ 7,000. Lagrangian flow features and turbulence quantities in an Eulerian frame are estimated around ten diameters downstream of the jet origin and at various radial distances from the jet core. Lagrangian properties include trajectory, velocity and acceleration of selected particles as well as curvature of the flow path, which are obtained from the Frenet-Serret equation. Estimation of the 3D velocity and turbulence fields around the jet core axis at a cross-plane located at ten diameters downstream of the jet is compared with literature, and the power spectrum of the large-scale streamwise velocity motions is obtained at various radial distances from the jet core.

  9. On the prediction of free turbulent jets with swirl using a quadratic pressure-strain model

    NASA Technical Reports Server (NTRS)

    Younis, Bassam A.; Gatski, Thomas B.; Speziale, Charles G.

    1994-01-01

    Data from free turbulent jets both with and without swirl are used to assess the performance of the pressure-strain model of Speziale, Sarkar and Gatski which is quadratic in the Reynolds stresses. Comparative predictions are also obtained with the two versions of the Launder, Reece and Rodi model which are linear in the same terms. All models are used as part of a complete second-order closure based on the solution of differential transport equations for each non-zero component of the Reynolds stress tensor together with an equation for the scalar energy dissipation rate. For non-swirling jets, the quadratic model underestimates the measured spreading rate of the plane jet but yields a better prediction for the axisymmetric case without resolving the plane jet/round jet anomaly. For the swirling axisymmetric jet, the same model accurately reproduces the effects of swirl on both the mean flow and the turbulence structure in sharp contrast with the linear models which yield results that are in serious error. The reasons for these differences are discussed.

  10. A Theory for the Formation and Equilibration of Equatorial Deep Jets from Stratified Turbulence

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2014-12-01

    Equatorial deep jets (EDJs) are persistent, equatorially-trapped zonal jets found between ~500-2000m depth within one degree of the equator in all ocean basins. EDJs have a baroclinic vertical structure characterized by 'stacked' eastward and westward jets oscillating in the vertical with a wavelength of ~500m and amplitudes on the order of 10 cm/s. The spatial structure of the EDJs is strikingly different from that of other geophysical zonal jets such as ocean striations and Jupiter's banded winds, which are not equatorially trapped and are often considered to be essentially barotropic. It is now well-understood that barotropic zonal jets emerge spontaneously from an instability of differentially-rotating turbulence (Constantinou et al. 2014). In contrast, existing theories for EDJs have been based on quite different dynamics, such as interference of equatorially-trapped waves (Wunsch 1977, McCreary 1984) and instability of mixed Rossby-gravity waves (Hua et al. 2008, Eden et al. 2008). In this work, we propose a new theory for the formation and maintenance of EDJs in which EDJs develop spontaneously from stratified turbulence. Using the stochastically-forced Boussinesq model (Smith 2001, Smith & Waleffe 2002), we show that stacked jets form spontaneously from turbulence due to spectrally-nonlocal interactions between internal gravity waves and the zonal mean flow, and that jet formation can be captured using the mean-field (or 'quasilinear') approximation to the dynamics. Using mean field dynamics and an associated second-order statistical closure theory (stochastic structural stability theory, Farrell & Ioannou 2003), we explain how the vertical scale of the EDJs is selected, as well as the role of differential rotation in determining their meridional structure.

  11. Review of literature on local scour under plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Aamir, Mohammad; Ahmad, Zulfequar

    2016-10-01

    Stability of hydraulic structures is threatened by persistent scour downstream of the apron, which renders their foundations exposed. Jets issuing under the sluice gate are turbulent enough to cause significant scour. Extensive study of the jets is, therefore, necessary in order to understand the underlying hydraulics and provide remedial measures. In this paper, a comprehensive review of the investigations on local scour caused by wall jets is presented, including both the classical as well as the prevalent approach. Various aspects of the scour under wall jets have been explained, including the process of scouring, different parameters affecting the maximum scour depth, analysis of flow characteristics within the scour hole and on the apron, time variation of scour depth, rate of sediment removal, and scour depth estimation formulae.

  12. Specific features of a stopped pipe blown by a turbulent jet: Aeroacoustics of the panpipes.

    PubMed

    Auvray, Roman; Fabre, Benoît; Meneses, Felipe; de la Cuadra, Patricio; Lagrée, Pierre-Yves

    2016-06-01

    Flute-like instruments with a stopped pipe were widely used in ancient cultures and continue to be used in many musical expressions throughout the globe. They offer great flexibility in the input control parameters, allowing for large excursions in the flux and in the geometrical configuration for the lips of the instrumentalist. For instance, the transverse offset of the jet axis relative to the labium can be shifted beyond the operational limits found in open-open pipes, and the total jet flux can be increased up to values that produce highly turbulent jets while remaining on the first oscillating regime. Some of the fundamental aspects of the acoustics and hydrodynamics of this kind of instrument are studied, like the instability of the jet wave and the static aerodynamic balance in the resonator. A replica of an Andean siku has been created to observe, through the Schlieren flow visualization, the behavior of both excitation and resonator of the instrument. PMID:27369145

  13. Specific features of a stopped pipe blown by a turbulent jet: Aeroacoustics of the panpipes.

    PubMed

    Auvray, Roman; Fabre, Benoît; Meneses, Felipe; de la Cuadra, Patricio; Lagrée, Pierre-Yves

    2016-06-01

    Flute-like instruments with a stopped pipe were widely used in ancient cultures and continue to be used in many musical expressions throughout the globe. They offer great flexibility in the input control parameters, allowing for large excursions in the flux and in the geometrical configuration for the lips of the instrumentalist. For instance, the transverse offset of the jet axis relative to the labium can be shifted beyond the operational limits found in open-open pipes, and the total jet flux can be increased up to values that produce highly turbulent jets while remaining on the first oscillating regime. Some of the fundamental aspects of the acoustics and hydrodynamics of this kind of instrument are studied, like the instability of the jet wave and the static aerodynamic balance in the resonator. A replica of an Andean siku has been created to observe, through the Schlieren flow visualization, the behavior of both excitation and resonator of the instrument.

  14. Large Eddy Simulation of Gravitational Effects on Transitional and Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Jaberi, Farhad A.

    2001-01-01

    The basic objective of this work is to assess the influence of gravity on "the compositional and the spatial structures" of transitional and turbulent diffusion flames via large eddy simulation (LES), and direct numerical simulation (DNS). The DNS is conducted for appraisal of the various closures employed in LES, and to study the effect of buoyancy on the small scale flow features. The LES is based on our "filtered mass density function"' (FMDF) model. The novelty of the methodology is that it allows for reliable simulations with inclusion of "realistic physics." It also allows for detailed analysis of the unsteady large scale flow evolution and compositional flame structure which is not usually possible via Reynolds averaged simulations.

  15. Scattering from condensates in turbulent jets. [for crossed beam instruments

    NASA Technical Reports Server (NTRS)

    Wilson, L. N.; Dennen, R. S.

    1970-01-01

    An analysis is made of the scattering signal levels to be expected from condensed water vapor droplets for crossed-beam instruments operating in the wavelength region. 18 to 4.3 microns. The results show that scattering should not present a problem for the infrared system operating under conditions typical of the IITRI jet facility. Actual measurements made for comparison indicate that scattering levels are appreciable, and presumably result from oil mist added by the facility air compressors.

  16. LES study of grid-generated turbulent inflow conditions with moderate number of mesh cells at low Re numbers

    NASA Astrophysics Data System (ADS)

    Torrano, I.; Martinez-Agirre, M.; Tutar, M.

    2016-02-01

    A passive grid-generated turbulence technique for generating turbulent inflow conditions in large-eddy simulation (LES) is developed on moderate number of mesh cells and the results are compared with synthetic methods and wind tunnel experiments performed at Reynolds (Re) number of order 100 (based on Taylor microscale). Consistent with previous investigations, it is found that the synthetic methods turbulence dissipate the turbulence kinetic energy very quickly while the present technique represents this decay more accurately. However, this pre-computation method usually requires considerable computational cost. The aim of this study is, therefore, to decrease the computational cost by employing a relatively coarse mesh resolution accompanied with an appropriate wall modelling approach in the solid boundary. The results are within an acceptable accuracy and, therefore, offer a cost-effective solution to generate inflow turbulence parameters for their use in different aerodynamic applications at low Re numbers.

  17. Vector control of two-dimensional turbulent free jet by both-side flaps

    NASA Astrophysics Data System (ADS)

    Enokida, K.; Okamoto, T.

    1985-05-01

    This paper presents an experimental investigation of the characteristics of a two-dimensional turbulent jet deflected by the flaps attached at both sides of the nozzle. It was found that the deflection angle was nearly equal to the flap angle when the flap angle was less than the critical angle and it approached the deflection angle for one-side flap. And the length of potential core, decay of maximum velocity and spread of jet were varied with the flap angle, but were unchanged by the flap width.

  18. Proceedings of the 2004 Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L. (Compiler)

    2007-01-01

    The papers presented here are from the Langley Research Center Workshop on Computational Fluid Dynamics (CFD) Validation of Synthetic Jets and Turbulent Separation Control (nicknamed "CFDVAL2004"), held March 2004 in Williamsburg, Virginia. The goal of the workshop was to bring together an international group of CFD practitioners to assess the current capabilities of different classes of turbulent flow solution methodologies to predict flow fields induced by synthetic jets and separation control geometries. The workshop consisted of three flow-control test cases of varying complexity, and participants could contribute to any number of the cases. Along with their workshop submissions, each participant included a short write-up describing their method for computing the particular case(s). These write-ups are presented as received from the authors with no editing. Descriptions of each of the test cases and experiments are also included.

  19. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2016-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal

  20. Self-similar solution of the problem of a turbulent flow in a round submerged jet

    NASA Astrophysics Data System (ADS)

    Shmidt, A. V.

    2015-05-01

    A mathematical model of the flow in a round submerged turbulent jet is considered. The model includes differential transport equations for the normal components of the Reynolds stress tensor and Rodi's algebraic approximations for shear stresses. A theoretical-group analysis of the examined model is performed, and a reduced self-similar system of ordinary differential equations is derived and solved numerically. It is shown that the calculated results agree with available experimental data.

  1. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code(NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation.

  2. Influence of Turbulence on the Restraint of Liquid Jets by Surface Tension in Microgravity Investigated

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2002-01-01

    Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, surface tension forces must contain jets. To model this phenomenon, a numerical method that tracks the fluid motion and the surface tension forces is required. Jacqmin has developed a phase model that converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly away. Previous attempts at this formulation were criticized for smearing the interface. This can be overcome by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function. The solution of this equation can be rewritten as two coupled Poisson equations that also include the velocity. After the code was implemented in axisymmetric form and verified by several test cases at the NASA Glenn Research Center, the drop tower runs of Aydelott were modeled. Work last year with a laminar model was found to overpredict Aydelott's results, except at the lowest Reynolds number conditions of 400. This year, a simple turbulence model was implemented by adding a turbulent viscosity based on the mixing-length hypothesis and empirical measurements of previous works. Predictions made after this change was implemented have been much closer to experimentally observed flow patterns and geyser heights. Two model runs is shown. The first, without any turbulence correction

  3. Numerical study of particle-vortex interaction and turbulence modulation in swirling jets.

    PubMed

    Gui, Nan; Fan, Jianren; Chen, Song

    2010-11-01

    This study carried out a direct numerical simulation of gas-solid swirling jet flow, focusing on the particle-vortex interaction and mechanisms of turbulence modulation. Two cases of flows with either a constant particle flow rate or a constant particle mass loading are simulated. The typical instantaneous particle-vortex interactions are illustrated and analyzed, as well as the spectrum representations and the projections of them. The results show that the small particles (St<1) and light-mass loadings augment the vortices of the large-scale range in the power spectrum representation by shifting the peaks of wave numbers from small to large values as they pass through the large vortices and break them into smaller scales. The large particles and heavy-mass loadings suppress greatly the large scales of vortices, transferring the turbulent kinetic energy from large to relatively smaller scales of vortices, resulting in turbulence augmentation in the large wave numbers and turbulence attenuation in the range of small wave numbers. Moreover, by comparison between the two cases, it is found that the turbulence modulation is more highly sensitive to the effect of mass loadings rather than the dynamical response property of particles. The well-known knowledge on modulation of turbulence is true under the condition of the same mass loading. However, the situation becomes very complicated when the mass loading changes. Finally, these conclusions are verified by the analysis of energy spectrum and dissipation.

  4. Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1983-01-01

    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  5. Direct numerical simulation of ignition in turbulent n-heptane liquid-fuel spray jets

    SciTech Connect

    Wang, Y.; Rutland, C.J.

    2007-06-15

    Direct numerical simulation was used for fundamental studies of the ignition of turbulent n-heptane liquid-fuel spray jets. A chemistry mechanism with 33 species and 64 reactions was adopted to describe the chemical reactions. The Eulerian method is employed to solve the carrier-gas flow field and the Lagrangian method is used to track the liquid-fuel droplets. Two-way coupling interaction is considered through the exchange of mass, momentum, and energy between the carrier-gas fluid and the liquid-fuel spray. The initial carrier-gas temperature was 1500 K. Six cases were simulated with different droplet radii (from 10 to 30 {mu}m) and two initial velocities (100 and 150 m/s). From the simulations, it was found that evaporative cooling and turbulence mixing play important roles in the ignition of liquid-fuel spray jets. Ignition first occurs at the edges of the jets where the fuel mixture is lean, and the scalar dissipation rate and the vorticity magnitude are very low. For smaller droplets, ignition occurs later than for larger droplets due to increased evaporative cooling. Higher initial droplet velocity enhances turbulence mixing and evaporative cooling. For smaller droplets, higher initial droplet velocity causes the ignition to occur earlier, whereas for larger droplets, higher initial droplet velocity delays the ignition time. (author)

  6. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  7. Large eddy simulation study of turbulent kinetic energy and scalar variance budgets and turbulent/non-turbulent interface in planar jets

    NASA Astrophysics Data System (ADS)

    Watanabe, Tomoaki; Sakai, Yasuhiko; Nagata, Koji; Ito, Yasumasa

    2016-04-01

    Spatially developing planar jets with passive scalar transports are simulated for various Reynolds (Re = 2200, 7000, and 22 000) and Schmidt numbers (Sc = 1, 4, 16, 64, and 128) by the implicit large eddy simulation (ILES) using low-pass filtering as an implicit subgrid-scale model. The budgets of resolved turbulent kinetic energy k and scalar variance < {φ }\\prime 2> are explicitly evaluated from the ILES data except for the dissipation terms, which are obtained from the balance in the transport equations. The budgets of k and < {φ }\\prime 2> in the ILES agree well with the DNS and experiments for both high and low Re cases. The streamwise decay of the mean turbulent kinetic energy dissipation rate obeys the power low obtained by the scaling argument. The mechanical-to-scalar timescale ratio C ϕ is evaluated in the self-similar region. For the high Re case, C ϕ is close to the isotropic value (C ϕ = 2) near the jet centerline. However, when Re is not large, C ϕ is smaller than 2 and depends on the Schmidt number. The T/NT interface is also investigated by using the scalar isosurface. The velocity and scalar fields near the interface depend on the interface orientation for all Re. The velocity toward the interface is observed near the interface facing in the streamwise, cross-streamwise, and spanwise directions in the planar jet in the resolved velocity field.

  8. A simulation of a bluff-body stabilized turbulent premixed flame using LES-PDF

    NASA Astrophysics Data System (ADS)

    Kim, Jeonglae; Pope, Stephen

    2013-11-01

    A turbulent premixed flame stabilized by a triangular cylinder as a flame-holder is simulated. The computational condition matches the Volvo experiments (Sjunnesson et al. 1992). Propane is premixed at a fuel lean condition of ϕ = 0 . 65 . For this reactive simulation, LES-PDF formulation is used, similar to Yang et al. (2012). The evolution of Lagrangian particles is simulated by solving stochastic differential equations modeling transport of the composition PDF. Mixing is modeled by the modified IEM model (Viswanathan et al. 2011). Chemical reactions are calculated by ISAT and for the good load balancing, PURAN distribution of ISAT tables is applied (Hiremath et al. 2012). To calculate resolved density, the two-way coupling (Popov & Pope 2013) is applied, solving a transport equation of resolved specific volume to reduce statistical noise. A baseline calculation shows a good agreement with the experimental measurements in turbulence statistics, temperature, and minor species mass fractions. Chemical reaction does not significantly contribute to the overall computational cost, in contrast to non-premixed flame simulations (Hiremath et al. 2013), presumably due to the restricted manifold of the purely premixed flame in the composition space.

  9. Turbulence Analysis Upstream of a Wind Turbine: a LES Approach to Improve Wind LIDAR Technology

    NASA Astrophysics Data System (ADS)

    Calaf, M.

    2015-12-01

    Traditionally wind turbines learn about the incoming wind conditions by means of a wind vane and a cup anemometer. This approach presents two major limitations: 1) because the measurements are done at the nacelle, behind the rotor blades, the wind observations are perturbed inducing potential missalignement and power losses; 2) no direct information of the incoming turbulence is extracted, limiting the capacity to timely adjust the wind turbine against strong turbulent intensity events. Recent studies have explored the possibility of using wind LIDAR (Light Detection and Ranging) to overcome these limitations (Angelou et al. 2010 and Mikelsen et al., 2013). By installing a wind LIDAR at the nacelle of a wind turbine one can learn about the incoming wind and turbulent conditions ahead of time to timely readjust the turbine settings. Yet several questions remain to be answered such as how far upstream one should measure and what is the appropriate averaging time to extract valuable information. In light of recent results showing the relevance of atmospheric stratification in wind energy applications, it is expected that different averaging times and upstream scanning distances are advised for wind LIDAR measurements. A Large Eddy Simulation (LES) study exploring the use of wind LIDAR technology within a wind farm has been developed. The wind farm consists of an infinite array of horizontal axis wind turbines modeled using the actuator disk with rotation. The model also allows the turbines to dynamically adjust their yaw with the incoming wind vector. The flow is forced with a constant geostrophic wind and a time varying surface temperature reproducing a realistic diurnal cycle. Results will be presented showing the relevance of the averaging time for the different flow characteristics as well as the effect of different upstream scanning distances. While it is observed that within a large wind farm there are no-significant gains in power output by scanning further

  10. Experimental investigation of turbulence modulation in particle-laden coaxial jets by Phase Doppler Anemometry

    SciTech Connect

    Mergheni, M.A. |; Sautet, J.C.; Godard, G.; Ben Ticha, H.; Ben Nasrallah, S.

    2009-03-15

    The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 {mu}m were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows. (author)

  11. Large Eddy Simulation of a cooling impinging jet to a turbulent crossflow

    NASA Astrophysics Data System (ADS)

    Georgiou, Michail; Papalexandris, Miltiadis

    2015-11-01

    In this talk we report on Large Eddy Simulations of a cooling impinging jet to a turbulent channel flow. The impinging jet enters the turbulent stream in an oblique direction. This type of flow is relevant to the so-called ``Pressurized Thermal Shock'' phenomenon that can occur in pressurized water reactors. First we elaborate on issues related to the set-up of the simulations of the flow of interest such as, imposition of turbulent inflows, choice of subgrid-scale model and others. Also, the issue of the commutator error due to the anisotropy of the spatial cut-off filter induced by non-uniform grids is being discussed. In the second part of the talk we present results of our simulations. In particular, we focus on the high-shear and recirculation zones that are developed and on the characteristics of the temperature field. The budget for the mean kinetic energy of the resolved-scale turbulent velocity fluctuations is also discussed and analyzed. Financial support has been provided by Bel V, a subsidiary of the Federal Agency for Nuclear Control of Belgium.

  12. Scalar dissipation rate statistics in turbulent swirling jets

    NASA Astrophysics Data System (ADS)

    Stetsyuk, V.; Soulopoulos, N.; Hardalupas, Y.; Taylor, A. M. K. P.

    2016-07-01

    The scalar dissipation rate statistics were measured in an isothermal flow formed by discharging a central jet in an annular stream of swirling air flow. This is a typical geometry used in swirl-stabilised burners, where the central jet is the fuel. The flow Reynolds number was 29 000, based on the area-averaged velocity of 8.46 m/s at the exit and the diameter of 50.8 mm. The scalar dissipation rate and its statistics were computed from two-dimensional imaging of the mixture fraction fields obtained with planar laser induced fluorescence of acetone. Three swirl numbers, S, of 0.3, 0.58, and 1.07 of the annular swirling stream were considered. The influence of the swirl number on scalar mixing, unconditional, and conditional scalar dissipation rate statistics were quantified. A procedure, based on a Wiener filter approach, was used to de-noise the raw mixture fraction images. The filtering errors on the scalar dissipation rate measurements were up to 15%, depending on downstream positions from the burner exit. The maximum of instantaneous scalar dissipation rate was found to be up to 35 s-1, while the mean dissipation rate was 10 times smaller. The probability density functions of the logarithm of the scalar dissipation rate fluctuations were found to be slightly negatively skewed at low swirl numbers and almost symmetrical when the swirl number increased. The assumption of statistical independence between the scalar and its dissipation rate was valid for higher swirl numbers at locations with low scalar fluctuations and less valid for low swirl numbers. The deviations from the assumption of statistical independence were quantified. The conditional mean of the scalar dissipation rate, the standard deviation of the scalar dissipation rate fluctuations, the weighted probability of occurrence of the mean conditional scalar dissipation rate, and the conditional probability are reported.

  13. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2004-01-01

    A CFD validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result. there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  14. Summary of the 2004 CFD Validation Workshop on Synthetic Jets and Turbulent Separation Control

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Gatski, T. B.; Sellers, W. L., III; Vatsa, V. N.; Viken, S. A.

    2006-01-01

    A computational fluid dynamics (CFD) validation workshop for synthetic jets and turbulent separation control (CFDVAL2004) was held in Williamsburg, Virginia in March 2004. Three cases were investigated: synthetic jet into quiescent air, synthetic jet into a turbulent boundary layer crossflow, and flow over a hump model with no-flow-control, steady suction, and oscillatory control. This paper is a summary of the CFD results from the workshop. Although some detailed results are shown, mostly a broad viewpoint is taken, and the CFD state-of-the-art for predicting these types of flows is evaluated from a general point of view. Overall, for synthetic jets, CFD can only qualitatively predict the flow physics, but there is some uncertainty regarding how to best model the unsteady boundary conditions from the experiment consistently. As a result, there is wide variation among CFD results. For the hump flow, CFD as a whole is capable of predicting many of the particulars of this flow provided that tunnel blockage is accounted for, but the length of the separated region compared to experimental results is consistently overpredicted.

  15. Flow field structure near the reaction zone in turbulent nonpremixed jet flames

    NASA Astrophysics Data System (ADS)

    Gamba, Mirko; Clemens, Noel T.; Ezekoye, Ofodike A.

    2009-11-01

    Quasi-instantaneous pseudo-volumes of the 3D velocity field in the far field of turbulent nonpremixed jet flames are constructed from cinematographic kilohertz-rate stereoscopic PIV applying Taylor's hypothesis. Jet flames at jet exit Reynolds numbers of 8,000-15,000 were considered. The approach enable computation of all nine velocity gradients and the 3D kinematic quantities. 10 Hz OH PLIF imaging was also included to mark the reaction zone. Three-dimensional rendering of regions of intense vorticity and energy dissipation reveals their sheet-like nature and their tendency to exist near the OH layers. Contrary to nonreacting jets, this feature is believed to be a due to the stabilizing effect of heat release and the laminar shear caused by the flame. Single-point statistics of the velocity gradients indicate anisotropy in the flow with strong gradients predominantly in the radial direction. However, the 1D energy spectrum and single-point statistics of the principal strain and strain-vorticity alignment follow the known trends from incompressible turbulence.

  16. On the origin of jets and vortices in turbulent planetary atmospheres.

    NASA Astrophysics Data System (ADS)

    Jougla, Thibault; Dritschel, David G.

    2016-04-01

    Stratified rotating fluids tend to form large scale coherent structures. These structures are present in many different geophysical fluids, for example jet streams in the Earth's atmosphere, the famous and conspicuous jets in the Jovian atmosphere, and oceanic jets like the latent jets and the well-known main currents including the Gulf stream and Kuroshio. Observations, numerical models, and laboratory experiments have sought to explain their origins and their evolutions. To investigate the coexistence, evolution and vertical structure of jets and vortices in turbulent planetary atmospheres, we make use of the widely studied two-layer quasi-geostrophic shallow water model on the β-plane. Numerical simulations at ultra-high resolution are carried out with the Combined Lagrangian Advection Method [1]. Following Panetta 1988 [2], to characterise the pole to equator heating variation on a planet, a vertical shear is imposed and maintained by thermal damping. To crudely represent convection from the bottom layer to the top layer, hetons are constantly added to the flow. Many numerical simulations covering a large range of parameters have been run. The thermal damping and vertical shear dependence has been widely studied and analysed. The baroclinicity of the flow is clearly evident in all cases studied. Moreover, the flow is strongly dependent on thermal damping. There is a competition between baroclinic instabilities trying to reduce the imposed vertical shear and thermal damping trying to maintain the vertical shear. Without any thermal damping, the imposed vertical shear quickly erodes. On the other hand if the thermal damping is very high, the flow is mainly dominated by incoherent, small-scale turbulence. For weaker thermal damping, the competition between baroclinic instability and thermal damping may lead to oscillations between stable and turbulent phases. However, thermal damping does not have a significant impact on the number of homogeneous regions and jets

  17. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    DOE PAGESBeta

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable,more » the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.« less

  18. A Study of Strain Rate Effects for Turbulent Premixed Flames with Application to LES of a Gas Turbine Combustor Model

    SciTech Connect

    Kemenov, Konstantin A.; Calhoon, William H.

    2015-03-24

    Large-scale strain rate field, a resolved quantity which is easily computable in large-eddy simulations (LES), could have profound effects on the premixed flame properties by altering the turbulent flame speed and inducing local extinction. The role of the resolved strain rate has been investigated in a posterior LES study of GE lean premixed dry low NOx emissions LM6000 gas turbine combustor model. A novel approach which is based on the coupling of the lineareddy model with a one-dimensional counter-flow solver has been applied to obtain the parameterizations of the resolved premixed flame properties in terms of the reactive progress variable, the local strain rate measure, and local Reynolds and Karlovitz numbers. The strain rate effects have been analyzed by comparing LES statistics for several models of the turbulent flame speed, i.e, with and without accounting for the local strain rate effects, with available experimental data. The sensitivity of the simulation results to the inflow velocity conditions as well as the grid resolution have been also studied. Overall, the results suggest the necessity to represent the strain rate effects accurately in order to improve LES modeling of the turbulent flame speed.

  19. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    DOE PAGESBeta

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall onmore » the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.« less

  20. Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames

    SciTech Connect

    Sankaran, Ramanan; Hawkes, Evatt R.; Yoo, Chun Sang; Chen, Jacqueline H.

    2015-06-22

    Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

  1. Control of an axisymmetric turbulent wake by a pulsed jet

    NASA Astrophysics Data System (ADS)

    Morrison, J. F.; Qubain, A.

    It has been shown [1] that the axisymmetric wake is dominated by three types of instability mechanism: an axisymmetric "pumping" of the recirculation bubble at very low frequencies, antisymmetric fluctuations induced by a helical vortex structure that forms just downstream of the rear stagnation point and several higher-frequency, axisymmetric instability modes of the separated shear layer. The environmental requirement for drag reduction has placed a greater emphasis on base-pressure recovery of bluff bodies. The active control of separating flow around bluff bodies has tended to focus on 2D bodies [2, 3] demonstrating that large drag reductions are possible, usually by controlled blowing, at frequencies close to the von Kármán shedding frequency. However, in terms of control, 3D bluff bodies have received considerably less attention even though this configuration appears in many practical problems. Even then, active control has tended to focus on the delay of separation [4]. In the present work, we show that the base pressure of a blunt trailing edge may be increased by a high-frequency jet from a zero-net-mass-flux (ZNMF) device.

  2. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayao; Shaddix, Christopher R.; Schefer, Robert W.

    2011-07-01

    Experimental measurements in laboratory-scale turbulent burners with well-controlled boundary and flow configurations can provide valuable data for validating models of turbulence-chemistry interactions applicable to the design and analysis of practical combustors. This paper reports on the design of two canonical nonpremixed turbulent jet burners for use with undiluted gaseous and liquid hydrocarbon fuels, respectively. Previous burners of this type have only been developed for fuels composed of H2, CO, and/or methane, often with substantial dilution. While both new burners are composed of concentric tubes with annular pilot flames, the liquid-fuel burner has an additional fuel vaporization step and an electrically heated fuel vapor delivery system. The performance of these burners is demonstrated by interrogating four ethylene flames and one flame fueled by a simple JP-8 surrogate. Through visual observation, it is found that the visible flame lengths show good agreement with standard empirical correlations. Rayleigh line imaging demonstrates that the pilot flame provides a spatially homogeneous flow of hot products along the edge of the fuel jet. Planar imaging of OH laser-induced fluorescence reveals a lack of local flame extinction in the high-strain near-burner region for fuel jet Reynolds numbers (Re) less than 20 000, and increasingly common extinction events for higher jet velocities. Planar imaging of soot laser-induced incandescence shows that the soot layers in these flames are relatively thin and are entrained into vortical flow structures in fuel-rich regions inside of the flame sheet.

  3. High-Speed Tomographic PIV Measurements of Strain Rate Properties in Turbulent Partially-Premixed Jet Flames

    NASA Astrophysics Data System (ADS)

    Coriton, Bruno; Frank, Jonathan H.

    2014-11-01

    The effects of combustion on the strain rate field in turbulent jets were studied using 10 kHz tomographic particle image velocimetry (TPIV). Measurements were performed in a series of turbulent partially-premixed jet flames with increasing jet Reynolds numbers and increasing probabilities of localized extinction. Properties of the strain rate were analyzed including the relative ratios of principal strain rates, the preferential alignment of the principal strain rates with vorticity, and the strain rate clustering and intermittency. Comparisons with measurements in turbulent air jets revealed the effects of heat release on the structure and dynamics of the strain rate field. This material is based upon work supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  4. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  5. Conjugate heat transfer study of a turbulent slot jet impinging on a moving plate

    NASA Astrophysics Data System (ADS)

    Achari, A. Madhusudana; Das, Manab Kumar

    2016-07-01

    Numerical simulation of the flow field and conjugate heat transfer in an impinging jet with moving impingement plate is one of the important problems as it mimics closely with practical applications in industries. The Yang-Shih version of low Reynolds number k-ɛ model has been used to resolve the flow field and the temperature field in a two-dimensional, steady, incompressible, confined, turbulent slot jet impinging normally on a moving flat plate of finite thickness. The turbulence intensity and the Reynolds number considered at the inlet are 2 % and 15,000, respectively. The bottom face of the impingement plate has been maintained at a constant temperature higher than the nozzle exit temperature. The confinement plate has been considered to be adiabatic. The nozzle-to-surface spacing for the above study has been taken to be 6 and the surface-to-jet velocity ratios have been taken over a range of 0.25-1. The effects of impingement plate motion on the flow field and temperature field have been discussed elaborately with reference to stationary impingement plate. The dependence of flow field and fluid temperature field on impingement plate motion has been analyzed by plotting streamlines, isotherms for different plate speeds. A thorough study of flow characteristics for different surface-to-jet velocity ratios has been carried out by plotting profiles of mean vertical and horizontal components of velocity, pressure distribution, local shear stress distribution. The isotherms in the impingement plate of finite thickness, the distributions of solid-fluid interface temperature, the local Nusselt number, and the local heat flux for different surface-to-jet velocity ratios added to the understanding of conjugate heat transfer phenomenon.

  6. Assessment of Hybrid RANS/LES Turbulence Models for Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.

    2010-01-01

    Predicting the noise from aircraft with exposed landing gear remains a challenging problem for the aeroacoustics community. Although computational fluid dynamics (CFD) has shown promise as a technique that could produce high-fidelity flow solutions, generating grids that can resolve the pertinent physics around complex configurations can be very challenging. Structured grids are often impractical for such configurations. Unstructured grids offer a path forward for simulating complex configurations. However, few unstructured grid codes have been thoroughly tested for unsteady flow problems in the manner needed for aeroacoustic prediction. A widely used unstructured grid code, FUN3D, is examined for resolving the near field in unsteady flow problems. Although the ultimate goal is to compute the flow around complex geometries such as the landing gear, simpler problems that include some of the relevant physics, and are easily amenable to the structured grid approaches are used for testing the unstructured grid approach. The test cases chosen for this study correspond to the experimental work on single and tandem cylinders conducted in the Basic Aerodynamic Research Tunnel (BART) and the Quiet Flow Facility (QFF) at NASA Langley Research Center. These configurations offer an excellent opportunity to assess the performance of hybrid RANS/LES turbulence models that transition from RANS in unresolved regions near solid bodies to LES in the outer flow field. Several of these models have been implemented and tested in both structured and unstructured grid codes to evaluate their dependence on the solver and mesh type. Comparison of FUN3D solutions with experimental data and numerical solutions from a structured grid flow solver are found to be encouraging.

  7. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  8. Wall jet analysis for circulation control aerodynamics. Part 1: Fundamental CFD and turbulence modeling concepts

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.

    1987-01-01

    An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.

  9. Global NOx Measurements in Turbulent Nitrogen-Diluted Hydrogen Jet Flames

    SciTech Connect

    Weiland, N.T.; Strakey, P.A.

    2007-03-01

    Turbulent hydrogen diffusion flames diluted with nitrogen are currently being studied to assess their ability to achieve the DOE Turbine Program’s aggressive emissions goal of 2 ppm NOx in a hydrogen-fueled IGCC gas turbine combustor. Since the unstrained adiabatic flame temperatures of these diluted flames are not low enough to eliminate thermal NOx formation the focus of the current work is to study how the effects of flame residence time and global flame strain can be used to help achieve the stated NOx emissions goal. Dry NOx measurements are presented as a function of jet diameter nitrogen dilution and jet velocity for a turbulent hydrogen/nitrogen jet issuing from a thin-lipped tube in an atmospheric pressure combustor. The NOx emission indices from these experiments are normalized by the flame residence time to ascertain the effects of global flame strain and fuel Lewis Number on the NOx emissions. In addition dilute hydrogen diffusion flame experiments were performed in a high-pressure combustor at 2 4 and 8 atm. The NOx emission data from these experiments are discussed as well as the results from a Computational Fluid Dynamics modeling effort currently underway to help explain the experimental data.

  10. Effect of inlet conditions on the turbulent statistics in a buoyant jet

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Dewan, Anupam

    2015-11-01

    Buoyant jets have been the subject of research due to their technological and environmental importance in many physical processes, such as, spread of smoke and toxic gases from fires, release of gases form volcanic eruptions and industrial stacks. The nature of the flow near the source is initially laminar which quickly changes into turbulent flow. We present large eddy simulation of a buoyant jet. In the present study a careful investigation has been done to study the influence of inlet conditions at the source on the turbulent statistics far from the source. It has been observed that the influence of the initial conditions on the second-order buoyancy terms extends further in the axial direction from the source than their influence on the time-averaged flow and second-order velocity statistics. We have studied the evolution of vortical structures in the buoyant jet. It has been shown that the generation of helical vortex rings in the vicinity of the source around a laminar core could be the reason for the larger influence of the inlet conditions on the second-order buoyancy terms as compared to the second-order velocity statistics.

  11. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.

    2016-02-01

    Pulse-burst Particle Image Velocimetry (PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulent eddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulent eddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Super-sampled velocity spectra to 150 kHz reveal a power-law dependency of -5/3 in the inertial subrange as well as a -1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  12. Noise Sources in a Low-Reynolds-Number Turbulent Jet at Mach 0.9

    NASA Technical Reports Server (NTRS)

    Freund, Jonathan B.

    2001-01-01

    The mechanisms of sound generation in a Mach 0.9, Reynolds number 3600 turbulent jet are investigated by direct numerical simulation. Details of the numerical method are briefly outlined and results are validated against an experiment at the same flow conditions. Lighthill's theory is used to define a nominal acoustic source in the jet, and a numerical solution of Lighthill's equation is compared to the simulation to verify the computational procedures. The acoustic source is Fourier transformed in the axial coordinate and time and then filtered in order to identify and separate components capable of radiating to the far field. This procedure indicates that the peak radiating component of the source is coincident with neither the peak of the full unfiltered source nor that of the turbulent kinetic energy. The phase velocities of significant components range from approximately 5% to 50% of the ambient sound speed which calls into question the commonly made assumption that the noise sources convect at a single velocity. Space-time correlations demonstrate that the sources are not acoustically compact in the streamwise direction and that the portion of the source that radiates at angles greater than 45 deg. is stationary. Filtering non-radiating wavenumber components of the source at single frequencies reveals that a simple modulated wave forms for the source, as might be predicted by linear stability analysis. At small angles from the jet axis the noise from these modes is highly directional, better described by an exponential than a standard Doppler factor.

  13. Jupiter's Zonal Jets and Turbulent Eddies: the Importance of Moist Convective Processes on a Global Scale

    NASA Astrophysics Data System (ADS)

    Young, R. M. B.; Read, P. L.

    2015-12-01

    We present the first results from a general circulation model of Jupiter's weather layer that includes latent heat and moist convective processes on a global scale. This model uses the MITgcm as the dynamical core with additions relevant to Jupiter such as a 2-stream radiation scheme, vertical diffusion, internal heat flux, dry convective adjustment, MHD drag, a simple parametrization of NH3, NH4SH, and H2O cloud formation and subsidence, and, most recently latent heat and moist convective processes. The model has been developed primarily to examine the physical phenomena underlying the formation and maintenance of zonal jets on Jupiter, and the interactions between these and small-scale turbulent eddies, in particular how these depend on moist convective processes. Initial work without moist convection found a strong dependence of the strength and direction of the equatorial jet on the internal heat flux, including a prograde equatorial jet, but not at the speeds observed on the planet. We will also compare our model results against recent analyses of Jupiter's turbulence using kinetic energy spectra and structure functions, which show a clear upscale transfer of energy in the 3rd order structure function on scales larger than a few times the deformation radius.

  14. Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.; Woolsey, Lauren N.

    2015-10-01

    The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.

  15. Video Image Analysis of Turbulent Buoyant Jets Using a Novel Laboratory Apparatus

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Colgan, R. E.; Ferencevych, P. G.

    2012-12-01

    Turbulent buoyant jets play an important role in the transport of heat and mass in a variety of environmental settings on Earth. Naturally occurring examples include the discharges from high-temperature seafloor hydrothermal vents and from some types of subaerial volcanic eruptions. Anthropogenic examples include flows from industrial smokestacks and the flow from the damaged well after the Deepwater Horizon oil leak of 2010. Motivated by a desire to find non-invasive methods for measuring the volumetric flow rates of turbulent buoyant jets, we have constructed a laboratory apparatus that can generate these types of flows with easily adjustable nozzle velocities and fluid densities. The jet fluid comprises a variable mixture of nitrogen and carbon dioxide gas, which can be injected at any angle with respect to the vertical into the quiescent surrounding air. To make the flow visible we seed the jet fluid with a water fog generated by an array of piezoelectric diaphragms oscillating at ultrasonic frequencies. The system can generate jets that have initial densities ranging from approximately 2-48% greater than the ambient air. We obtain independent estimates of the volumetric flow rates using well-calibrated rotameters, and collect video image sequences for analysis at frame rates up to 120 frames per second using a machine vision camera. We are using this apparatus to investigate several outstanding problems related to the physics of these flows and their analysis using video imagery. First, we are working to better constrain several theoretical parameters that describe the trajectory of these flows when their initial velocities are not parallel to the buoyancy force. The ultimate goal of this effort is to develop well-calibrated methods for establishing volumetric flow rates using trajectory analysis. Second, we are working to refine optical plume velocimetry (OPV), a non-invasive technique for estimating flow rates using temporal cross-correlation of image

  16. Simulations of Turbulent Momentum and Scalar Transport in Non-Reacting Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey; Moder, Jeffrey P.

    2015-01-01

    This paper presents the numerical simulations of confined three-dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS); both without and with invoking the APDF or DWFDF equation. When the APDF (ensemble averaged probability density function) or DWFDF (density weighted filtered density function) equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  17. Simulations of Turbulent Momentum and Scalar Transport in Confined Swirling Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Liu, Nan-Suey

    2014-01-01

    This paper presents the numerical simulations of confined three dimensional coaxial water jets. The objectives are to validate the newly proposed nonlinear turbulence models of momentum and scalar transport, and to evaluate the newly introduced scalar APDF and DWFDF equation along with its Eulerian implementation in the National Combustion Code (NCC). Simulations conducted include the steady RANS, the unsteady RANS (URANS), and the time-filtered Navier-Stokes (TFNS) with and without invoking the APDF or DWFDF equation. When the APDF or DWFDF equation is invoked, the simulations are of a hybrid nature, i.e., the transport equations of energy and species are replaced by the APDF or DWFDF equation. Results of simulations are compared with the available experimental data. Some positive impacts of the nonlinear turbulence models and the Eulerian scalar APDF and DWFDF approach are observed.

  18. Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel

    NASA Astrophysics Data System (ADS)

    Xun, Qian-Qiu; Wang, Bing-Chen

    2016-07-01

    In this paper, we investigate the effect of the Coriolis force on the flow field in a rib-roughened channel subjected to either clockwise or counter-clockwise system rotation using hybrid RANS/LES based on wall modelling. A simplified dynamic forcing scheme incorporating backscatter is proposed for the hybrid simulation approach. The flow is characterized by a Reynolds number of Re = 1.5 × 104 and a rotation number Ro ranging from -0.6 to 0.6. The mean flow speed and turbulence level near the roughened wall are enhanced under counter-clockwise rotation and suppressed under clockwise rotation. The Coriolis force significantly influences the stability of the wall shear layer and the free shear layers generated by the ribs. Consequently, it is interesting to observe that the classification of the roughness type relies not only on the pitch ratio, but also on the rotation number in the context of rotating rib-roughened flows. In order to validate the present hybrid approach, the first- and second-order statistical moments of the velocity field obtained from the simulations are thoroughly compared with the available laboratory measurement data.

  19. Proper Orthogonal Decomposition Analysis of Turbulent Jet Impingement on Rib-roughened Surface

    NASA Astrophysics Data System (ADS)

    Lam, Prasanth Anand Kumar; Karaiyan, Arul Prakash; Thermo-Fluid Dynamics Laboratory Team

    2015-11-01

    A Proper Orthogonal Decomposition (POD) analysis on turbulent flow dynamics of confined slot jet impinging on rib-roughened surface is numerically investigated. The data for POD analysis has been obtained by solving mass, momentum and energy equations in Cartesian framework using Streamline Upwind/Petrov-Galerkin Finite element method. Further, turbulent kinetic energy (k) and its dissipation rate (ɛ) are modeled using standard k- ɛ turbulence model with standard wall functions. POD is applied to computational data for a wide range of Reynolds number (Re) = 5000 - 30000 and non-dimensional channel height (H/L) = 0.5 - 4.0 to reveal large scale vortical structures in the flow field. The simulated results demonstrate a better understanding on effect of turbulence and its influence on individual vortical structures for enhancement of heat transfer. The enhancement of heat transfer in stagnation region due to combined effect of oscillation in impingement position caused by large vortical structures and strong acceleration of fluid during impingement is quantified. Furthermore, non-dimensional correlations have been derived for pressure drop and Surface averaged Nusselt number.

  20. Noise, Turbulence, and Thrust of Subsonic Free Jets from Lobed Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Wang, F. Y.

    2002-01-01

    A study of noise benefit, vis-a-vis thrust penalty, and its correlation to turbulence intensities was conducted for free jets issuing from lobed nozzles. Four convergent nozzles with constant exit area were used in the experiments. Three of these were of rectangular lobed configuration having six, ten and fourteen lobes; the fourth was a circular nozzle. Increasing the number of lobes resulted in a progressive reduction in the turbulence intensities as well as in the overall radiated noise. The noise reduction was pronounced at the low frequency end of the spectrum. However, there was an increase in the high frequency noise that rendered the overall benefit less attractive when compared on a scaled-up A-weighted basis. A reduction in noise was accompanied by a commensurate reduction in the turbulent kinetic energy in the flow field. As expected, increasing the number of lobes involved progressive reduction in the thrust coefficient. Among the cases studied, the six-lobed nozzle had the optimum reduction in turbulence and noise with the least thrust penalty.

  1. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  2. Liquid helium inertial jet for comparative study of classical and quantum turbulence

    SciTech Connect

    Duri, D.; Charvin, P.; Rousset, B.; Poncet, J.-M.; Diribarne, P.

    2011-11-15

    We present a new cryogenic wind tunnel facility developed to study the high Reynolds number developed classical or quantum turbulence in liquid {sup 4}He. A stable inertial round jet flow with a Reynolds number of 4 x 10{sup 6} can be sustained in both He I and He II down to a minimum temperature of 1.7 K. The circuit can be pressurized up to 3.5 x 10{sup 5} Pa. The system has been designed to exploit the self-similar properties of the jet far field in order to adapt to the spatial resolution of the existing probes. Multiple and complementary sensors can be simultaneously installed to obtain spatial and time resolved measurements. The technical difficulties and design details are described and the system performance is presented.

  3. Direct numerical simulation of temporally evolving turbulent luminous jet flames with detailed fuel and soot chemistry

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud

    2011-11-01

    Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

  4. Application of crossed beam technology to direct measurements of sound sources in turbulent jets, part 1

    NASA Technical Reports Server (NTRS)

    Wilson, L. N.

    1970-01-01

    The mathematical bases for the direct measurement of sound source intensities in turbulent jets using the crossed-beam technique are discussed in detail. It is found that the problems associated with such measurements lie in three main areas: (1) measurement of the correct flow covariance, (2) accounting for retarded time effects in the measurements, and (3) transformation of measurements to a moving frame of reference. The determination of the particular conditions under which these problems can be circumvented is the main goal of the study.

  5. Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane

    SciTech Connect

    Brookes, S.J.; Moss, J.B.

    1999-01-01

    Turbulent methane/air jet diffusion flames at atmospheric and elevated pressure have been studied experimentally to provide data for coupled thermal radiation and soot production model development and validation. Although methane is only lightly sooting at atmospheric pressure, at elevated pressure the soot yield increases greatly. This allows the creation of a highly radiating flame, of moderate optical depth, within a laboratory scale rig. Spatially resolved flame properties needed for model validation have been measured at 1 and 3 atm. These measurements include detailed maps of mean mixture fraction, mean temperature, mean soot volume fraction, and mean and instantaneous spectrally resolved, path integrated radiation intensity.

  6. A theoretical and numerical investigation of turbulent steam jets in BWR steam blowdown.

    SciTech Connect

    NguyenLe, Q.

    1998-06-26

    The preliminary results of PHOENICS and RELAP5 show that the current numerical models are adequate in predicting steam flow and stratification patterns in the upper Drywell of a BWR containment subsequent to a blow-down event. However, additional modeling is required in order to study detailed local phenomena such as condensation with non-condensables, natural convection, and stratification effects. Analytically, the intermittence modified similarity solutions show great promise. Once {gamma} is accounted for, the jet's turbulent shear stress can be determined with excellent accuracy.

  7. Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets

    SciTech Connect

    Nazarenko, Sergey; Quinn, Brenda

    2009-09-11

    We study quasigeostrophic (QG) and plasma drift turbulence within the Charney-Hasegawa-Mima (CHM) model. We focus on the zonostrophy, an extra invariant in the CHM model, and on its role in the formation of zonal jets. We use a generalized Fjoertoft argument for the energy, enstrophy, and zonostrophy and show that they cascade anisotropically into nonintersecting sectors in k space with the energy cascading towards large zonal scales. Using direct numerical simulations of the CHM equation, we show that zonostrophy is well conserved, and the three invariants cascade as predicted by the Fjoertoft argument.

  8. Effect of Heating on Turbulent Density Fluctuations and Noise Generation From High Speed Jets

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.; Elam, Kristie A.; Mielke, Amy F.; Eck, Dennis G.

    2004-01-01

    Heated jets in a wide range of temperature ratios (TR), and acoustic Mach numbers (Ma) were investigated experimentally using far field microphones and a molecular Rayleigh scattering technique. The latter provided density fluctuations measurements. Two sets of operating conditions were considered: (1) TR was varied between 0.84 and 2.7 while Ma was fixed at 0.9; (2) Ma was varied between 0.6 and 1.48, while TR was fixed at 2.27. The implementation of the molecular Rayleigh scattering technique required dust removal and usage of a hydrogen combustor to avoid soot particles. Time averaged density measurements in the first set of data showed differences in the peripheral density shear layers between the unheated and heated jets. The nozzle exit shear layer showed increased turbulence level with increased plume temperature. Nevertheless, further downstream the density fluctuations spectra are found to be nearly identical for all Mach number and temperature ratio conditions. To determine noise sources a correlation study between plume density fluctuations and far field sound pressure fluctuations was conducted. For all jets the core region beyond the end of the potential flow was found to be the strongest noise source. Except for an isothermal jet, the correlations did not differ significantly with increasing temperature ratio. The isothermal jet created little density fluctuations. Although the far field noise from this jet did not show any exceptional trend, the flow-sound correlations were very low. This indicated that the density fluctuations only acted as a "tracer parameter" for the noise sources.

  9. Quantitative saltwater modeling for validation of sub-grid scale LES turbulent mixing and transport models for fire

    NASA Astrophysics Data System (ADS)

    Maisto, Pietro; Marshall, Andre; Gollner, Michael

    2015-11-01

    A quantitative understanding of turbulent mixing and transport in buoyant flows is indispensable for accurate modeling of combustion, fire dynamics and smoke transport used in both fire safety design and investigation. This study describes the turbulent mixing behavior of scaled, unconfined plumes using a quantitative saltwater modeling technique. An analysis of density difference turbulent fluctuations, captured as the collected images scale down in resolution, allows for the determination of the largest dimension over which LES averaging should be performed. This is important as LES models must assume a distribution for sub-grid scale mixing, such as the ?-PDF distribution. We showed that there is a loss of fidelity in resolving the flow for a cell size above 0 . 54D* ; where D* is a characteristic length scale for the plume. Such a point represents the threshold above which the fluctuations start to monotonically grow. Turbulence statistics were also analyzed in terms of span-wise intermittency and time and space correlation coefficients. An unexpected condition for the core of the plume, where a substantial amount of ambient fluid (fresh water) is found, and the mixing process under buoyant conditions were found depending on the resolution of measurements used.

  10. The application of complex network time series analysis in turbulent heated jets

    SciTech Connect

    Charakopoulos, A. K.; Karakasidis, T. E. Liakopoulos, A.; Papanicolaou, P. N.

    2014-06-15

    In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.

  11. 3D outflow jets originating from turbulence in the reconnection current layer

    NASA Astrophysics Data System (ADS)

    Fujimoto, Keizo

    2016-07-01

    Satellite observations in the Earth's magnetosphere and in solar flares have suggested that the reconnection outflow jets are fully three dimensional, consisting of a series of narrow channels. The jet structure is important in evaluating the energy and flux transport in the reconnection process. Previous theoretical models based on fluid simulations have relied on patchy reconnection where reconnection takes place predominantly in patchy portions of the current layer. The problem of the previous models is that the gross reconnection rate is much smaller than that in the 2D reconnection case. The present study shows a large-scale 3D PIC simulation revealing that the 3D outflow jets are generated through the 3D flux ropes formed in the turbulent electron current layer around the x-line. Reconnection proceeds almost uniformly along the x-line, so that the gross reconnection rate is comparable to that in the 2D reconnection case. The flux ropes and resultant outflow channels have a typical current-aligned scale provided by the wavelength of an electron shear mode that is much larger than the typical kinetic scales. It is found that the structure of the 3D outflow jets obtained in the simulation is consistent with the bursty bulk flow observed in the Earth's magnetotail.

  12. An Experimental Study of the Structure of Turbulent Non-Premixed Jet Flames in Microgravity

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2000-11-01

    The aim of this work is to investigate the structure of transitional and turbulent non-premixed jet flames under microgravity conditions. The microgravity experiments are being conducted using a newly developed drop rig and the University of Texas 1.5 second drop tower. The rig itself measures 16”x33”x38” and contains a co-flowing round jet flame facility, flow control system, CCD camera, and data/image acquisition computer. These experiments are the first phase of a larger study being conducted at the NASA Glenn Research Center 2.2 second drop tower facility. The flames being studied include methane and propane round jet flames at jet exit Reynolds numbers as high as 10,000. The primary diagnostic technique employed is emission imaging of flame luminosity using a relatively high-speed (350 fps) CCD camera. The high-speed images are used to study flame height, flame tip dynamics and burnout characteristics. Results are compared to normal gravity experimental results obtained in the same apparatus.

  13. Modelling of turbulent lifted jet flames using flamelets: a priori assessment and a posteriori validation

    NASA Astrophysics Data System (ADS)

    Ruan, Shaohong; Swaminathan, Nedunchezhian; Darbyshire, Oliver

    2014-03-01

    This study focuses on the modelling of turbulent lifted jet flames using flamelets and a presumed Probability Density Function (PDF) approach with interest in both flame lift-off height and flame brush structure. First, flamelet models used to capture contributions from premixed and non-premixed modes of the partially premixed combustion in the lifted jet flame are assessed using a Direct Numerical Simulation (DNS) data for a turbulent lifted hydrogen jet flame. The joint PDFs of mixture fraction Z and progress variable c, including their statistical correlation, are obtained using a copula method, which is also validated using the DNS data. The statistically independent PDFs are found to be generally inadequate to represent the joint PDFs from the DNS data. The effects of Z-c correlation and the contribution from the non-premixed combustion mode on the flame lift-off height are studied systematically by including one effect at a time in the simulations used for a posteriori validation. A simple model including the effects of chemical kinetics and scalar dissipation rate is suggested and used for non-premixed combustion contributions. The results clearly show that both Z-c correlation and non-premixed combustion effects are required in the premixed flamelets approach to get good agreement with the measured flame lift-off heights as a function of jet velocity. The flame brush structure reported in earlier experimental studies is also captured reasonably well for various axial positions. It seems that flame stabilisation is influenced by both premixed and non-premixed combustion modes, and their mutual influences.

  14. Noise-source turbulence statistics and the noise from a Mach 0.9 jet

    NASA Astrophysics Data System (ADS)

    Freund, J. B.

    2003-06-01

    Turbulence statistics that are relevant to jet noise modeling but difficult to measure in experiments are computed using a previously validated simulation database of a Mach 0.9 cold jet. Initial focus is on fourth-order statistics that are at the core of acoustic analogy based models built on both the Lilley and Lighthill equations. Common simplifications of fourth-order correlations based on normal statistics are found to be accurate. We see that although two-point correlations are well fitted by exponential functions, as is typical of turbulence at all but the lowest Reynolds numbers, the spatially integrated fourth-order space/retarded-time covariances, which are used in the models, are instead very well fitted by Gaussian functions of different widths for different components, which is counter to conventional modeling practice. We also examine the components of Lighthill's analogous noise source that are linear and quadratic in velocity fluctuations, as well as components that are deviations from p'=a∞2ρ'. The spectrum from the linear components is more peaked and more direction dependent than the spectral shape of the quadratic component's noise, which is relatively independent of angle. These two components are also correlated, especially at small angles where their mutual correlation coefficient reaches as low as -0.4, which casts doubt on models that treat these so-called shear noise (linear) and self-noise (quadratic) terms as distinct. The p'-a∞2ρ' contribution is relatively small, but not negligible as might be expected for this nearly isothermal jet. The total radiated power of the quadratic terms is nearly the same as that of all components combined. It is shown that the standard Lighthill framework does not lead to a straight forward designation of what noise comes from what region of the jet.

  15. The influence of large-scale structures on entrainment in a decelerating transient turbulent jet revealed by large eddy simulation

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Musculus, Mark P. B.; Oefelein, Joseph C.

    2012-04-01

    To provide a better understanding of the fluid mechanical mechanisms governing entrainment in decelerating jets, we performed a large eddy simulation (LES) of a transient air jet. The ensemble-averaged LES calculations agree well with the available measurements of centerline velocity, and they reveal a region of increased entrainment that grows as it propagates downstream during deceleration. Within the temporal and spatial domains of the simulation, entrainment during deceleration temporarily increases by roughly a factor of two over that of the quasi-steady jet, and thereafter decays to a level lower than the quasi-steady jet. The LES results also provide large-structure flow details that lend insight into the effects of deceleration on entrainment. The simulations show greater growth and separation of large vortical structures during deceleration. Ambient fluid is engulfed into the gaps between the large-scale structures, causing large-scale indentations in the scalar jet boundary. The changes in the growth and separation of large structures during deceleration are attributed to changes in the production and convection of vorticity. Both the absolute and normalized scalar dissipation rates decrease during deceleration, implying that changes in small-scale mixing during deceleration do not play an important role in the increased entrainment. Hence, the simulations predict that entrainment in combustion devices may be controlled by manipulating the fuel-jet boundary conditions, which affect structures at large scales much more than at small scales.

  16. A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.

    2015-01-01

    This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 900 observation angle, the low-frequency noise could be as much as 10dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite de-correlation region. Numerical predictions, based on three-dimensional RANS solutions for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region increases the low-frequency algebraic decay (the low frequency "rolloff") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal numbers less than 0.1. Secondly, the large-aspectratio theory is able to predict the low-frequency amplification due to the jet

  17. Eulerian dispersion modeling with WRF-LES of plume impingement in neutrally and stably stratified turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Nunalee, Christopher G.; Kosović, Branko; Bieringer, Paul E.

    2014-12-01

    The vast range of space-time scales associated with turbulent flow adjacent to rugged terrain is especially problematic to predictive dispersion modeling in atmospheric boundary layers (ABLs) partly due to the presence of non-linear flow features (e.g., recirculation zones, diffusion enhancement, etc.). It has been suggested that in such ABLs, explicitly modeling large turbulent eddies, through large-eddy simulation (LES), may help to curtail predicted concentration errors. In this work, passive scalars were introduced into the Weather Research and Forecasting (WRF) LES model for the purpose of simulating scalar plume interaction with an isolated terrain feature. Using measurements from the Cinder Cone Butte (CCB) field campaign, we evaluate the ability of WRF-LES to realistically simulate the impingement of Sulfur Hexafluoride (SF6) plumes onto CCB in both neutrally and stably stratified environments. Simulations reveal relatively accurate scalar trajectories with respect to thermal stability, including complex patterns such as plume splitting below the hill dividing streamline. Statistical accuracy varied with case study, but for the neutral case we recorded greater than 50% of predicted 1 h averaged surface concentrations within a factor of 2 of the observations. This metric, along with several others, indicates a performance accuracy similar to, or slightly better than, alternative Reynolds Averaged Navier-Stokes models. For the stably stratified case, the spatial distribution of surface concentrations was captured well; however, a positive concentration bias was observed which degraded quantitative accuracy scores. The variable accuracy of the WRF-LES model with respect to thermal stability is similar to what has been observed in regulatory analytical models (i.e., concentration under predictions in neutral environments and concentration over predictions in stable environments). Possible sources of error and uncertainty included the omission of mesoscale wind

  18. A pulsed jet for generation of turbulent spots in a mach 6 boundary layer

    NASA Astrophysics Data System (ADS)

    Abney, Andrew D.

    Hypersonic vehicles operate in an environment with a high level of boundary-layer pressure fluctuations. The largest of these fluctuations are due to the intermittent passage of turbulent spots within the transition region, and can be sufficiently large to affect internal components of the vehicle. In order to better predict these flow variations, a turbulent spot model could be used. The boundary layer on the Boeing/ AFOSR Mach 6 Quiet Tunnel nozzle-wall provided a convenient location for studying the statistical properties of turbulent spots in a hypersonic boundary layer, including growth rates, convection velocities, and pressure-fluctuation intensities. A valve system was developed to inject a transverse jet of air into the nozzle-wall boundary layer in an attempt to generate controlled spots. The resulting perturbations were characterized. The pressure fluctuations were measured on the tunnel centerline downstream of the perturber. Pressure traces and spectra were examined to determine the effectiveness of the perturber system. The initial perturber system produced disturbances with a duration that was too long. A reduction in perturbation duration was achieved through modification of the perturber electronics. Physical modifications were also made to the valve, with mixed success. The perturbations were of a longer duration and higher initial amplitude than perturbations generated using a pulsed glow perturber in previous studies in the Boeing/AFOSR Mach-6 Quiet Tunnel, including fully turbulent perturbations at the maximum quiet freestream Reynolds number. Inconsistent alignment of the perturber became the largest difficulty in using the device. A new method of aligning the valve was developed. A more effective means of maintaining the alignment during transfer from the alignment tool to the nozzle wall is necessary. Additional reductions to the perturbation duration could be possible by optimizing the geometry of the passage through the nozzle wall

  19. Scattering of wavepackets by a flat plate in the vicinity of a turbulent jet

    NASA Astrophysics Data System (ADS)

    Cavalieri, André V. G.; Jordan, Peter; Wolf, William R.; Gervais, Yves

    2014-12-01

    We present an investigation of the acoustic scattering due to the presence of a flat plate in the vicinity of a turbulent subsonic jet. Experiments have been performed to measure changes in the velocity and sound fields for Mach numbers ranging from 0.4 to 0.6, and for distances between the plate and the jet axis ranging from 1 to 2 jet diameters. Results show only very slight changes in the mean flow induced by the plate, and no differences in the velocity fluctuation amplitudes on the jet centreline, suggesting that wave-packet models derived for jets without installation effects may be representative of the installed case, at least for the jet-plate distances considered here. The acoustic results, on the other hand, include a significant increase in the low-frequency sound radiation, and phase opposition between the shielded and unshielded sides of the plate. There is an exponential decay of the scattered sound with increasing jet-plate distance, suggesting that low-frequency radiation is due to the scattering of evanescent hydrodynamic wavepackets in the jet near field. To model this phenomenon, we calculate sound generation from wave-packet sources in two ways: on one hand we use a tailored Green's function that accounts for the presence of a semi-infinite, rigid flat plate; and, on the other, we solve numerically the Helmholtz equation, with boundary conditions representative of a finite flat plate, using a fast multipole boundary element method. In agreement with the experimental measurements, numerical calculations capture the phase opposition between shielded and unshielded sides, and the scattered sound depends exponentially on the position of the plate. This exponential dependence is related to non-compact effects associated with wavepackets, as compact sources would lead to an algebraic dependence. Acoustic pressure directivities computed for the finite and semi-infinite flat plates agree well where acoustic reflection and diffraction from the trailing

  20. Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame.

    PubMed

    Harley, Jacob L; Rankin, Brent A; Blunck, David L; Gore, Jay P; Gross, Kevin C

    2014-04-15

    This work presents recent measurements of a CH4/H2/N2 turbulent nonpremixed jet flame using an imaging Fourier-transform spectrometer (IFTS). Spatially resolved (128×192 pixels, 0.72  mm/pixel) mean radiance spectra were collected between 1800  cm(-1)≤ν˜≤4500  cm(-1) (2.22  μm≤λ≤5.55  μm) at moderate spectral resolution (δν=16  cm(-1), δλ=20  nm) spanning the visible flame. Higher spectral-resolution measurements (δν=0.25  cm(-1), δλ=0.3  nm) were also captured on a smaller window (8×192) at 20, 40, and 60 diameters above the jet exit and reveal the rotational fine structure associated with various vibrational transitions in CH4, CO2, CO, and H2O. These new imaging measurements compare favorably with existing spectra acquired at select flame locations, demonstrating the capability of IFTS for turbulent combustion studies.

  1. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  2. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    DOE PAGESBeta

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significantmore » asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.« less

  3. Structure of hydrogen-rich transverse jets in a vitiated turbulent flow

    SciTech Connect

    Lyra, Sgouria; Wilde, Benjamin; Kolla, Hemanth; Seitzman, Jerry M.; Lieuwen, Timothy C.; Chen, Jacqueline H.

    2014-11-24

    Our paper reports the results of a joint experimental and numerical study of the flow characteristics and flame structure of a hydrogen rich jet injected normal to a turbulent, vitiated crossflow of lean methane combustion products. Simultaneous high-speed stereoscopic PIV and OH PLIF measurements were obtained and analyzed alongside three-dimensional direct numerical simulations of inert and reacting JICF with detailed H2/COH2/CO chemistry. Both the experiment and the simulation reveal that, contrary to most previous studies of reacting JICF stabilized in low-to-moderate temperature air crossflow, the present conditions lead to a burner-attached flame that initiates uniformly around the burner edge. Significant asymmetry is observed, however, between the reaction zones located on the windward and leeward sides of the jet, due to the substantially different scalar dissipation rates. The windward reaction zone is much thinner in the near field, while also exhibiting significantly higher local and global heat release than the much broader reaction zone found on the leeward side of the jet. The unsteady dynamics of the windward shear layer, which largely control the important jet/crossflow mixing processes in that region, are explored in order to elucidate the important flow stability implications arising in the inert and reacting JICF. The paper concludes with an analysis of the ignition, flame characteristics, and global structure of the burner-attached flame. FurthermoreChemical explosive mode analysis (CEMA) shows that the entire windward shear layer, and a large region on the leeward side of the jet, are highly explosive prior to ignition and are dominated by non-premixed flame structures after ignition. The predominantly mixing limited nature of the flow after ignition is examined by computing the Takeno flame index, which shows that ~70% of the heat release occurs in non-premixed regions.

  4. Effects of Buoyancy on Laminar, Transitional, and Turbulent Gas Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Yousef; Stocker, Dennis P.; Vaughan, David F.; Zhou, Liming; Edelman, Raymond B.

    1993-01-01

    Gas jet diffusion flames have been a subject of research for many years. However, a better understanding of the physical and chemical phenomena occurring in these flames is still needed, and, while the effects of gravity on the burning process have been observed, the basic mechanisms responsible for these changes have yet to be determined. The fundamental mechanisms that control the combustion process are in general coupled and quite complicated. These include mixing, radiation, kinetics, soot formation and disposition, inertia, diffusion, and viscous effects. In order to understand the mechanisms controlling a fire, laboratory-scale laminar and turbulent gas-jet diffusion flames have been extensively studied, which have provided important information in relation to the physico-chemical processes occurring in flames. However, turbulent flames are not fully understood and their understanding requires more fundamental studies of laminar diffusion flames in which the interplay of transport phenomena and chemical kinetics is more tractable. But even this basic, relatively simple flame is not completely characterized in relation to soot formation, radiation, diffusion, and kinetics. Therefore, gaining an understanding of laminar flames is essential to the understanding of turbulent flames, and particularly fires, in which the same basic phenomena occur. In order to improve and verify the theoretical models essential to the interpretation of data, the complexity and degree of coupling of the controlling mechanisms must be reduced. If gravity is isolated, the complication of buoyancy-induced convection would be removed from the problem. In addition, buoyant convection in normal gravity masks the effects of other controlling parameters on the flame. Therefore, the combination of normal-gravity and microgravity data would provide the information, both theoretical and experimental, to improve our understanding of diffusion flames in general, and the effects of gravity on the

  5. Turbulence Measurements on a 2D NACA 0036 with Synthetic Jet Flow Control

    NASA Technical Reports Server (NTRS)

    Wilson, J. S.

    2006-01-01

    An active flow control experiment was conducted on a 2-ft chord NACA 0036 airfoil in a 3-ft by 4-ft Wind Tunnel at Re = 1 x 10(exp 6). The model was equipped with synthetic jet actuators at x/c = 0.30 and 0.65 that provided 120 Hz periodic excitation at a C(sub mu) 0.86% through 0.06-in wide slots. Three different slot con gurations were tested, including a baseline with no slots. Surface pressure data was collected to compare to previous tests and to combine with turbulence data to aid future CFD modeling efforts. Turbulence data, measured by hot-wire, was compared with and without flow control. Pressure data corroborates previous test data and provides more points for CFD validation. Hot-wire results showed ow control reduced the separated wake size and brought the high Reynolds stress shear layer closer to the airfoil surface. The position of this layer to the surface was altered more significantly than the magnitude of the peak stresses. Flow control was shown to increase turbulent energy in the attached boundary layer downstream of the slot but to have little effect upstream. These results provide further justification to continue assessing the potential of active flow control to reduce drag of helicopter airframe components.

  6. On waves in gases. Part I: Acoustics of jets, turbulence, and ducts

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    1986-01-01

    This review on some aspects of waves in gases concentrates first (Part I) on modern research in the acoustics of fluids at rest or in steady or turbulent motion, in free space, in the presence of obstacles, or in ducts. The study of sound, for which the sole restoring force is pressure, will be extended in a later paper (Part II) to include the other three restoring forces, namely, gravity, electromagnetic, and Coriolis forces, leading to current research on internal, magnetic, and inertial waves and their couplings. The Introduction at the beginning of Part I, and the discussion at the end of Part II, concern all four types of waves in gases, and their relevance in physics and engineering. In Part I, the following areas of acoustics are addressed: the generation of noise by turbulence, inhomogeneities or bubbles, in natural and engineering flows, e.g., wind or jets; the scattering of sound by interfaces and diffraction by turbulence, and their effects on spectral and directional redistribution of energy; propagation in ducts, without or with mean flow, e.g., the horns of musical instruments and loudspeakers, and inlets and exhausts of engines; the effects of dissipation and nonlinearity on waves, e.g., in laboratory and engineering shock tubes, and in geophysical and astrophysical conditions. Underlying these topics is the interaction of acoustics with manking, ranging from the processes of human hearing and speech to the reproduction of desirable sounds (music) and reduction of undesirable sounds (noise).

  7. Calculation of 3D turbulent jets in crossflow with a multigrid method and a second-moment closure model

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1990-01-01

    A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.

  8. The ground vortex flow field associated with a jet in a cross flow impinging on a ground plane for uniform and annular turbulent axisymmetric jets. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Cavage, William M.; Kuhlman, John M.

    1993-01-01

    An experimental study was conducted of the impingement of a single circular jet on a ground plane in a cross flow. This geometry is a simplified model of the interaction of propulsive jet exhaust from a V/STOL aircraft with the ground in forward flight. Jets were oriented normal to the cross flow and ground plane. Jet size, cross flow-to-jet velocity ratio, ground plane-to-jet board spacing, and jet exit turbulence level and mean velocity profile shape were all varied to determine their effects on the size of the ground vortex interaction region which forms on the ground plane, using smoke injection into the jet. Three component laser Doppler velocimeter measurements were made with a commercial three color system for the case of a uniform jet with exit spacing equal to 5.5 diameters and cross flow-to-jet velocity ratio equal to 0.11. The flow visualization data compared well for equivalent runs of the same nondimensional jet exit spacing and the same velocity ratio for different diameter nozzles, except at very low velocity ratios and for the larger nozzle, where tunnel blockage became significant. Variation of observed ground vortex size with cross flow-to-jet velocity ratio was consistent with previous studies. Observed effects of jet size and ground plane-to-jet board spacing were relatively small. Jet exit turbulence level effects were also small. However, an annular jet with a low velocity central core was found to have a significantly smaller ground vortex than an equivalent uniform jet at the same values of cross flow-to-jet velocity ratio and jet exit-to-ground plane spacing. This may suggest a means of altering ground vortex behavior somewhat, and points out the importance of proper simulation of jet exit velocity conditions. LV data indicated unsteady turbulence levels in the ground vortex in excess of 70 percent.

  9. Mechanisms of Flame Stabilization and Blowout in a Reacting Turbulent Hydrogen Jet in Cross-Flow

    SciTech Connect

    Kolla, H.; Grout, R. W.; Gruber, A.; Chen, J. H.

    2012-08-01

    The mechanisms contributing to flame stabilization and blowout in a nitrogen-diluted hydrogen transverse jet in a turbulent boundary layer cross-flow (JICF) are investigated using three-dimensional direct numerical simulation (DNS) with detailed chemistry. Non-reacting JICF DNS were performed to understand the relative magnitude and physical location of low velocity regions on the leeward side of the fuel jet where a flame can potentially anchor. As the injection angle is reduced from 90{sup o} to 70{sup o}, the low velocity region was found to diminish significantly, both in terms of physical extent and magnitude, and hence, its ability to provide favorable conditions for flame anchoring and stabilization are greatly reduced. In the reacting JICF DNS a stable flame is observed for 90{sup o} injection angle and, on average, the flame root is in the vicinity of low velocity magnitude and stoichiometric mixture. When the injection angle is smoothly transitioned to 75{sup o} a transient flame blowout is observed. Ensemble averaged quantities on the flame base reveal two phases of the blowout characterized by a kinematic imbalance between flame propagation speed and flow normal velocity. In the first phase dominant flow structures repeatedly draw the flame base closer to the jet centerline resulting in richer-than-stoichiometric mixtures and high velocity magnitudes. In the second phase, in spite of low velocity magnitudes and a return to stoichiometry, due to jet bending and flame alignment normal to the cross-flow, the flow velocity normal to the flame base increases dramatically perpetuating the blowout.

  10. Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames

    SciTech Connect

    Su, L.K.; Sun, O.S.; Mungal, M.G.

    2006-02-01

    Simultaneous planar-laser induced fluorescence (PLIF) and particle image velocimetry (PIV) provide a comprehensive view of the molecular mixing and velocity fields in the stabilization region of turbulent, lifted jet diffusion flames. The Mie scattering medium for PIV is a glycerol-water fog, which evaporates at elevated temperatures and allows inference of the location of the high-temperature interface at the flame base. The jet Reynolds numbers vary from 4400 to 10,700. The mixing and velocity fields upstream of the flame base evolve consistently with nonreacting jet scaling. Conditional statistics of the fuel mole fraction at the instantaneous high-temperature interface show that the flame stabilization point does not generally correspond to the most upstream point on the interface (called here the leading point), because the mixture there is typically too lean to support combustion. Instead, the flame stabilization point lies toward the jet centerline relative to the leading point. Conditional axial velocity statistics indicate that the mean axial velocity at the flame front is {approx}1.8S{sub L}, where S{sub L} is the stoichiometric laminar flame speed. The data also permit determination of the scalar dissipation rates, {chi}, with the results indicating that {chi} values near the high-temperature interfaces do not typically exceed the quenching value. Thus, the flame stabilization process is more consistent with theories based on partial fuel-air premixing than with those dependent on diffusion flame quenching. We propose a description of flame stabilization that depends on the large-scale organization of the mixing field. (author)

  11. Large eddy simulations of a Mach 0.9 jet with fully-turbulent nozzle-exit boundary layer

    NASA Astrophysics Data System (ADS)

    Bres, Guillaume; Ham, Frank; Jordan, Peter

    2014-11-01

    From past studies, it is well known that the state of the nozzle-exit boundary layer is a key parameter for the flow development and noise characteristics of a jet. However, because of the computational cost of simulating high Reynolds number wall-driven turbulence, the nozzle boundary layer is typically assumed to be laminar or weakly disturbed in most jet simulations. This approach often leads to enhanced laminar to turbulent shear-layer transition and increased noise due to vortex pairing. In the present work, large eddy simulations of an isothermal Mach 0.9 jet (Re = 1E6) issued from a convergent-straight nozzle are performed using the compressible flow solver ``Charles'' developed at Cascade Technologies. Localized adaptive mesh refinement, synthetic turbulence and wall modeling are used inside the nozzle to ensure fully turbulent profiles at the nozzle exit. This resulted in significant improvements for the flowfield and sound predictions, compared to the typical approach based on laminar flow assumption in the nozzle. The far-field noise spectra now remarkably match the measurements from the companion experiment conducted at Pprime Institute, within 0.5 dB for most angles and relevant frequencies. As a next step toward better understanding of jet noise, the large transient database collected during the simulation is currently being mined using reduced order modeling and wavepacket analysis. Work supported in part by NAVAIR. Computer allocation provided by DoD HPC centers at ERDC and AFRL.

  12. Comparison of 10kHz TR-PIV and LES near-field data in high speed jets

    NASA Astrophysics Data System (ADS)

    Lewalle, Jacques; Kan, Pinqing

    2012-11-01

    The identification of the sources of noise in high-speed jets may help formulate control strategies, an important unsolved problem. We report on the existence of large intermittent and localized relative phase velocities for near-jet fluctuations, and on the flow patterns that are associated with them (see companion abstract by P. Kan). Here we analyze two data sets. Experimentally, 10 kHz TR-PIV in a Ma = 0 . 6 cold jet (Re = 700,000) yielded two components of velocity, from which we calculate the phase velocities for various indicators (see related abstracts by Z.P. Berger and by M.G. Berry; data provided by Spectral Energies LLC). Similar results are obtained for Ma=0.9 LES results (Re = 400,000, sampling at 80 kHz). The comparison of algorithms and flow patterns vindicates our approach. Correlations with far-field events will also be attempted. Thanks to Guillaume Daviller (Institut PPrime, France) for the LES data, and to the Glauser group at Syracuse University. Thanks for partial support from Spectral Energies LLC (under SBIR grant from AFOSR), Syracuse University and the LCS College.

  13. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames

    SciTech Connect

    Brookes, S.J.; Moss, J.B.

    1999-03-01

    Computational modeling of well-documented jet diffusion flames, burning methane at atmospheric and elevated pressure, is presented. The main emphasis of the work is on the intimate coupling between the soot production of rate and the flame radiative heat loss. This coupling is found to be vital for flame soot prediction. A number of methods for closing soot production source terms in the turbulent flow are presented and assessed. In particular it is shown that the degree of correlation assumed between soot particles and their oxidizing species exerts a large influence on both the growth of the soot and its subsequent burnout. Finally, predictions of the mean radiative emission spectra from these flames are presented.

  14. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    NASA Astrophysics Data System (ADS)

    Fregeau, Mathieu

    This current research project studied the turbulent flame structure, the fuel/air mixing, the combustion characteristics of a nonpremixed pulsed (unsteady) and unpulsed (steady) flame configuration for both normal- and microgravity conditions, as well as the flame emissions in normal gravity. The unsteady flames were fully-modulated, with the fuel flow completely shut off between injection pulses using an externally controlled valve, resulting in the generation of compact puff-like flame structures. Conducting experiments in normal and microgravity environments enabled separate control over the relevant Richardson and Reynolds numbers to clarify the influence of buoyancy on the flame behavior, mixing, and structure. Experiments were performed in normal gravity in the laboratory at the University of Washington and in microgravity using the NASA GRC 2.2-second Drop Tower facility. High-speed imaging, as well as temperature and emissions probes were used to determine the large-scale structure dynamics, the details of the flame structure and oxidizer entrainment, the combustion temperatures, and the exhaust emissions of the pulsed and steady flames. Of particular interest was the impact of changes in flame structure due to pulsing on the combustion characteristics of this system. The turbulent flame puff celerity (i.e., the bulk velocity of the puffs) was strongly impacted by the jet-off time, increasing markedly as the time between pulses was decreased, which caused the degree of puff interaction to increase and the strongly-pulsed flame to more closely resemble a steady flame. This increase occurred for all values of injection time as well as for constant fuelling rate and in both the presence and absence of buoyancy. The removal of positive buoyancy in microgravity resulted in a decrease in the flame puff celerity in all cases, amounting to as much as 40%, for both constant jet injection velocity and constant fuelling rate. The mean flame length of the strongly

  15. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution

  16. On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets

    NASA Astrophysics Data System (ADS)

    Bodony, Daniel J.; Lele, Sanjiva K.

    2005-08-01

    The results of a series of large-eddy simulations of heated and unheated jets using approximately 106 grid points are presented. The computations were performed on jets at operating conditions originally investigated by Tanna in the late 1970s [H. K. Tanna, "An experimental study of jet noise Part I: Turbulent mixing noise," J. Sound Vib., 50, 405 (1977)]. Three acoustic Mach numbers are investigated (Uj/a∞=0.5, 0.9, and 1.5) at cold (constant stagnation temperature) and heated conditions (Tj/T∞=1.8, 2.7, and 2.3, respectively). The jets' initial annular shear layers are thick relative to experimental jets and are quasi-laminar with superimposed disturbances from linear instability theory. It is observed that qualitative changes in the jets' mean- and turbulent field structure with Uj and Tj are consistent with previous experimental data. However, the jets exhibit a faster centerline mean velocity decay rate relative to the existing data, with a corresponding 3-4 % over-prediction of the peak root-mean-square level. The acoustic pressure fluctuations in the far field are analyzed in detail. The accuracy of the overall sound pressure level predictions is found to be a strong function of the jet Mach number, with the lowest speed jets being the least accurate. At all conditions the peak acoustic frequency occurs at approximately St =fDj/Uj=0.25. The limited resolution of the computations is shown to impact the radiated sound by yielding effectively low-pass filtered versions of the experimental spectra, with a maximum frequency of St ≈1.2.

  17. An Evaluation of Linear Instability Waves as Sources of Sound in a Supersonic Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Colonius, Tim; Freund, Jonathan B.

    2002-01-01

    Mach wave radiation from supersonic jets is revisited to better quantify the extent to which linearized equations represent the details of the actual mechanism. To this end, we solve the linearized Navier-Stokes equations (LNS) with precisely the same mean flow and inflow disturbances as a previous direct numerical simulation (DNS) of a perfectly expanded turbulent M = 1.92 jet. We restrict our attention to the first two azimuthal modes, n = 0 and n = 1, which constitute most of the acoustic field. The direction of peak radiation and the peak Strouhal number matches the DNS reasonably well, which is in accord with previous experimental justification of the linear theory. However, it is found that the sound pressure level predicted by LNS is significantly lower than that from DNS. In order to investigate the discrepancy, individual frequency components of the solution are examined. These confirm that near the peak Strouhal number, particularly for the first helical mode n = 1, the amplification of disturbances in the LNS closely matches the DNS. However, away from the peak frequency (and generally for the azimuthal mode n = 0), modes in the LNS are damped while those in the DNS grow at rates comparable to those at the peak Strouhal number.

  18. Turbulent crude oil jets in crossflow: holographic measurements of droplet size distributions

    NASA Astrophysics Data System (ADS)

    Xue, Xinzhi; Murphy, David; Katz, Joseph

    2015-11-01

    Buoyant, immiscible jets and plumes are created by subsurface oil well blowouts. In this experimental study, high speed visualizations and digital holography follow vertical crude oil turbulent jets of varying Reynolds and Ohnesorge numbers, all falling in the atomization range, while being towed in a towing tank generating `crossflows' at varying crossflow-to-exit speed velocity ratios. The droplet size distributions are measured using a submerged miniature holographic microscopy system, enabling comparison between the plume behavior and the droplet size distributions. Due to variations in rise-velocity with droplet size, the shape and dispersion rate of the plume depends on the interfacial tension. Hence, the crude oil plume rises faster than a `control' miscible oil analog with the same density and viscosity. Premixing the oil with dispersant (Corexit 9500A) at dispersant to oil (DOR) ratios of 1:100 and 1:25 reduces the oil-seawater interfacial tension by up to two orders of magnitude, promoting formation of micro-droplets. Hence, the plume rises at a slower rate, with the large droplets rapidly escaping, leaving smaller ones behind. Furthermore, for the DOR 1:25 case, some of the microdroplets are entrained into the vortices prominent in the wake region under the plume. Funding provided by the Gulf of Mexico Research Initiative.

  19. Magnetic Influences on Turbulent Heating and Jet Production in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2015-12-01

    The heating of the solar wind from open-field regions in the corona is the subject of an ongoing body of work in the solar physics community. We present recent progress to understand the role of Alfvén-wave-driven turbulence in flux tubes open to the heliosphere. Our models use three-dimensional, time-dependent forms of the reduced magnetohydrodynamics equations to find the resulting properties of the solar wind. We use the BRAID model (van Ballegooijen et al., 2011) on open flux tubes that epitomize the most common magnetic structures in the corona: a polar coronal hole, an open flux tube on the boundary of an equatorial streamer, and one that neighbors a strong active region. Our results agree with prior work using the time-steady, one-dimensional ZEPHYR model (Cranmer et al., 2007; Woolsey and Cranmer, 2014). In addition, the time dependence in BRAID lets us explore the bursty, nanoflare-like nature of the heating in these flux tubes. We find that the transient heating can be captured into separate events with an average energy of 1022 erg, with a maximum energy of 1025 erg. The bursty heating lead us to pursue a better understanding of the physical processes responsible for the network jets seen in IRIS data (see e.g. Tian et al., 2014). We search for correlations between the supergranular magnetic field properties—using the Helioseismic and Magnetic Imager aboard SDO—and jet productivity to make better estimates of the mass and energy budget of these small-scale features and to find evidence of the mechanisms responsible for the network jets.

  20. Inlet turbulence intensity level and cross-stream distribution effects on the heat transfer in plane wall jets

    NASA Technical Reports Server (NTRS)

    Adeniji-Fashola, A. A.

    1989-01-01

    The effect of the turbulence intensity level and its cross-stream distribution at the inlet on the numerical prediction of the heat transfer in a two-dimensional turbulent-wall jet was investigated. The investigation was carried out within the framework of the standard kappa-epsilon turbulence model. The predicted Nusselt number showed the influence of the turbulence intensity level and its cross-stream distribution at the inlet to be significant but restricted to the first 15 slot widths from the inlet slot. Beyond this location, all the predictions were observed to collapse onto a single curve which exhibited a maximum over-prediction of about 30 percent when compared with the available experimental data.

  1. Optimization and Modeling of Noise Reduction for Turbulent Jets with Induced Asymmetry

    NASA Astrophysics Data System (ADS)

    Rostamimonjezi, Sara

    This project relates to the development of next-generation high-speed aircraft that are efficient and environmentally compliant. The emphasis of the research is on reducing noise from high-performance engines that will power these aircraft. A strong component of engine noise is jet mixing noise that comes from the turbulent mixing process between the high-speed exhaust flow of the engine and the atmosphere. The fan flow deflection method (FFD) suppresses jet noise by deflecting the fan stream downward, by a few degrees, with respect to the core stream. This reduces the convective Mach number of the primary shear layer and turbulent kinetic energy in the downward direction and therefore reduces the noise emitted towards the ground. The redistribution of the fan stream is achieved with inserting airfoil-shaped vanes inside the fan duct. Aerodynamic optimization of FFD has been done by Dr. Juntao Xiong using a computational fluid dynamics code to maximize reduction of noise perceived by the community while minimizing aerodynamic losses. The optimal vane airfoils are used in a parametric experimental study of 50 4-vane deflector configurations. The vane chord length, angle of attack, and azimuthal location are the parameters studied in acoustic optimization. The best vane configuration yields a reduction in cumulative (downward + sideline) effective perceived noise level (EPNL) of 5.3 dB. The optimization study underscores the sensitivity of FFD to deflector parameters and the need for careful design in the practical implementation of this noise reduction approach. An analytical model based on Reynolds Averaged Navier Stokes (RANS) and acoustic analogy is developed to predict the spectral changes from a known baseline in the direction of peak emission. A generalized form for space-time correlation is introduced that allows shapes beyond the traditional exponential forms. Azimuthal directivity based on the wavepacket model of jet noise is integrated with the acoustic

  2. Experimental study of vorticity-strain rate interaction in turbulent partially-premixed jet flames using tomographic particle image velocimetry

    DOE PAGESBeta

    Coriton, Bruno; Frank, Jonathan H.

    2016-02-16

    In turbulent flows, the interaction between vorticity, ω, and strain rate, s, is considered a primary mechanism for the transfer of energy from large to small scales through vortex stretching. The ω-s coupling in turbulent jet flames is investigated using tomographic particle image velocimetry (TPIV). TPIV provides a direct measurement of the three-dimensional velocity field from which ω and s are determined. The effects of combustion and mean shear on the ω-s interaction are investigated in turbulent partially premixed methane/air jet flames with high and low probabilities of localized extinction as well as in a non-reacting isothermal air jet withmore » Reynolds number of approximately 13,000. Results show that combustion causes structures of high vorticity and strain rate to agglomerate in highly correlated, elongated layers that span the height of the probe volume. In the non-reacting jet, these structures have a more varied morphology, greater fragmentation, and are not as well correlated. The enhanced spatiotemporal correlation of vorticity and strain rate in the stable flame results in stronger ω-s interaction characterized by increased enstrophy and strain-rate production rates via vortex stretching and straining, respectively. The probability of preferential local alignment between ω and the eigenvector of the intermediate principal strain rate, s2, which is intrinsic to the ω-s coupling in turbulent flows, is larger in the flames and increases with the flame stability. The larger mean shear in the flame imposes a preferential orientation of ω and s2 tangential to the shear layer. The extensive and compressive principal strain rates, s1 and s3, respectively, are preferentially oriented at approximately 45° with respect to the jet axis. As a result, the production rates of strain and vorticity tend to be dominated by instances in which ω is parallel to the s1¯-s2¯ plane and orthogonal to s3¯.« less

  3. The effect of turbulence on the stability of liquid jets and the resulting droplet size distributions. Third quarterly technical report, July 1, 1993--September 30, 1993

    SciTech Connect

    Mansour, A.; Chigier, N.

    1993-12-01

    Laminar and turbulent columns of liquids issuing from capillary tubes were studied in order to determine the effects of turbulence on the stability of liquid jets and to establish the influence of liquid turbulence on droplet size distributions after breakup. Two capillary tubes were chosen with diameters D{sub 1}=3.0mm and D{sub 2}=1.2mm; jet Reynolds numbers were 1000--30000, and 400--7200. For water injection into stagnant air, stability curve is bounded by a laminar portion, where a jet radius and {delta}{sub o} initial disturbance amplitude, and a fully developed turbulent portion characterized by high initial disturbance amplitude (ln(a/{delta}{sub o,T}) {approximately} 4.85). In the transition region, ln(a/{delta}{sub o}) is not single valued; it decreases with increasing Reynolds number. In absence of aerodynamic effects, turbulent jets are as stable as laminar jets. For this breakup mode turbulence propagates initial disturbances with amplitudes orders of magnitude larger than laminar jets ({delta}{sub o,T}=28{times}10{sup 6} {delta}{sub o,L}). Growth rates of initial disturbances are same for both laminar and turbulent columns with theoretical Weber values. Droplet size distribution is bi-modal; the number ratio of large (> D/2), to small (< D/2) droplets is 3 and independent of Reynolds number. For laminar flow optimum wavelength ({lambda}{sub opt}) corresponding to fastest growing disturbance is equal to 4.45D, exactly the theoretical Weber value. For turbulent flow conditions, the turbulent column segments. Typically, segments with lengths of one to several wavelengths, detach from the liquid jet. The long ligaments contract under the action of surface tension, resulting in droplet sizes larger than predicted by Rayleigh and Weber. For turbulent flow conditions, {lambda}{sub opt} = 9.2D, about 2 times the optimum Weber wavelength.

  4. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    NASA Astrophysics Data System (ADS)

    Boxx, Isaac G.

    An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect

  5. Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xu, M.; Pollard, A.; Mi, J.

    2013-05-01

    This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in the jet at 15 < x/De < 40, where De denotes the exit equivalent diameter, and for an exit Reynolds number of Re = 50 000. The Taylor microscale Reynolds number Rλ varies from about 70 to 450 in the present study. The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere Publishing Corp., Washington, DC, 1990), pp. 911-931] is discussed and applied to estimate the intermittency factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically, m varies with γ following m=mt+(lnγ-0.0173)1/2, where mt denotes the spectral exponent found in fully turbulent regions.

  6. Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet.

    PubMed

    Zhang, J; Xu, M; Pollard, A; Mi, J

    2013-05-01

    This study investigates by experiment the dependence of the inertial-range exponent m of the streamwise velocity spectrum on the external intermittency factor γ (≡ the fraction of time the flow is fully turbulent) and the mean shear S in a turbulent square jet. Velocity measurements were made using hot-wire anemometry in the jet at 15 < x/D(e) < 40, where D(e) denotes the exit equivalent diameter, and for an exit Reynolds number of Re = 50,000. The Taylor microscale Reynolds number R(λ) varies from about 70 to 450 in the present study. The TERA (turbulent energy recognition algorithm) method proposed by Falco and Gendrich [in Near-Wall Turbulence: 1988 Zoran Zariç Memorial Conference, edited by S. J. Kline and N. H. Afgan (Hemisphere Publishing Corp., Washington, DC, 1990), pp. 911-931] is discussed and applied to estimate the intermittency factor from velocity signals. It is shown that m depends strongly on γ but negligibly on S. More specifically, m varies with γ following m=m(t)+(lnγ(-0.0173))(1/2), where m(t) denotes the spectral exponent found in fully turbulent regions. PMID:23767622

  7. Ultra-High Throughput Synthesis of Nanoparticles with Homogeneous Size Distribution Using a Coaxial Turbulent Jet Mixer

    PubMed Central

    2015-01-01

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  8. Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer.

    PubMed

    Lim, Jong-Min; Swami, Archana; Gilson, Laura M; Chopra, Sunandini; Choi, Sungyoung; Wu, Jun; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C

    2014-06-24

    High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296

  9. Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Heimpel, Moritz; Aurnou, Jonathan

    2007-04-01

    The origin of zonal jets on the jovian planets has long been a topic of scientific debate. In this paper we show that deep convection in a spherical shell can generate zonal flow comparable to that observed on Jupiter and Saturn, including a broad prograde equatorial jet and multiple alternating jets at higher latitudes. We present fully turbulent, 3D spherical numerical simulations of rapidly rotating convection with different spherical shell geometries. The resulting global flow fields tend to be segregated into three regions (north, equatorial, and south), bounded by the tangent cylinder that circumscribes the inner boundary equator. In all of our simulations a strong prograde equatorial jet forms outside the tangent cylinder, whereas multiple jets form in the northern and southern hemispheres, inside the tangent cylinder. The jet scaling of our numerical models and of Jupiter and Saturn is consistent with the theory of geostrophic turbulence, which we extend to include the effect of spherical shell geometry. Zonal flow in a spherical shell is distinguished from that in a full sphere or a shallow layer by the effect of the tangent cylinder, which marks a reversal in the sign of the planetary β-parameter and a jump in the Rhines length. This jump is manifest in the numerical simulations as a sharp equatorward increase in jet widths—a transition that is also observed on Jupiter and Saturn. The location of this transition gives an estimate of the depth of zonal flow, which seems to be consistent with current models of the jovian and saturnian interiors.

  10. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    SciTech Connect

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both

  11. Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

    DOE PAGESBeta

    Karami, Shahram; Hawkes, Evatt R.; Talei, Mohsen; Chen, Jacqueline H.

    2015-07-23

    A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow andmore » relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Suet al.(Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse

  12. Centerline Depletion in Direct-Chill Cast Aluminum Alloys: The Avalanche Effect and Its Consequence for Turbulent Jet Casting

    NASA Astrophysics Data System (ADS)

    Wagstaff, Samuel R.; Allanore, Antoine

    2016-10-01

    Avalanche dynamics of sedimenting grains in direct-chill casting of aluminum ingots is investigated as a primary driving force for centerline segregation. An analytical model predicting the importance of avalanche events as a function of casting parameters is proposed and validated with prior art results. New experimental results investigating the transient and steady-state centerline segregation of DC casting with a turbulent jet are reported.

  13. Centerline Depletion in Direct-Chill Cast Aluminum Alloys: The Avalanche Effect and Its Consequence for Turbulent Jet Casting

    NASA Astrophysics Data System (ADS)

    Wagstaff, Samuel R.; Allanore, Antoine

    2016-07-01

    Avalanche dynamics of sedimenting grains in direct-chill casting of aluminum ingots is investigated as a primary driving force for centerline segregation. An analytical model predicting the importance of avalanche events as a function of casting parameters is proposed and validated with prior art results. New experimental results investigating the transient and steady-state centerline segregation of DC casting with a turbulent jet are reported.

  14. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 2; JeNo Users' Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Wolter, John D.; Koch, L. Danielle

    2009-01-01

    JeNo (Version 1.0) is a Fortran90 computer code that calculates the far-field sound spectral density produced by axisymmetric, unheated jets at a user specified observer location and frequency range. The user must provide a structured computational grid and a mean flow solution from a Reynolds-Averaged Navier Stokes (RANS) code as input. Turbulence kinetic energy and its dissipation rate from a k-epsilon or k-omega turbulence model must also be provided. JeNo is a research code, and as such, its development is ongoing. The goal is to create a code that is able to accurately compute far-field sound pressure levels for jets at all observer angles and all operating conditions. In order to achieve this goal, current theories must be combined with the best practices in numerical modeling, all of which must be validated by experiment. Since the acoustic predictions from JeNo are based on the mean flow solutions from a RANS code, quality predictions depend on accurate aerodynamic input.This is why acoustic source modeling, turbulence modeling, together with the development of advanced measurement systems are the leading areas of research in jet noise research at NASA Glenn Research Center.

  15. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames

    SciTech Connect

    Lee, Seong-Young; Turns, Stephen R.; Santoro, Robert J.

    2009-12-15

    This paper presents results from an investigation of soot formation in turbulent, non-premixed, C{sub 2}H{sub 4}/air jet flames. Tests were conducted using a H{sub 2}-piloted burner with fuel issuing from a 2.18 mm i.d. tube into quiescent ambient air. A range of test conditions was studied using the initial jet velocity (16.2-94.1 m/s) as a parameter. Fuel-jet Reynolds numbers ranged from 4000 to 23,200. Planar laser-induced incandescence (LII) was employed to determine soot volume fractions, and laser-induced fluorescence (LIF) was used to measure relative hydroxyl radical (OH) concentrations and polycyclic aromatic hydrocarbons (PAHs) concentrations. Extensive information on the structure of the soot and OH fields was obtained from two-dimensional imaging experiments. Quantitative measurements were obtained by employing the LII and LIF techniques independently. Imaging results for soot, OH, and PAH show the existence of three soot formation/oxidation regions: a rapid soot growth region, in which OH and soot particles lie in distinctly different radial locations; a mixing-dominated region controlled by large-scale motion; and a soot-oxidation region in which the OH and soot fields overlap spatially, resulting in the rapid oxidation of soot particles. Detailed quantitative analyzes of soot volume fractions and OH and soot zone thicknesses were performed along with the temperature measurement using the N{sub 2}-CARS system. Measurements of OH and soot zone thicknesses show that the soot zone thickness increases linearly with axial distance in the soot formation region, whereas the OH zone thickness is nearly constant in this region. The OH zone thickness then rapidly increases with downstream distance and approximately doubles in the soot-oxidation region. Probability density functions also were obtained for soot volume fractions and OH concentrations. These probability density functions clearly define the spatial relationships among the OH, PAH concentrations, the

  16. Effective Jet Properties for the Prediction of Turbulent Mixing Noise Reduction by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Lonergan, Michael J.

    2007-01-01

    A one-dimensional control volume formulation is developed for the determination of jet mixing noise reduction due to water injection. The analysis starts from the conservation of mass, momentum and energy for the control volume, and introduces the concept of effective jet parameters (jet temperature, jet velocity and jet Mach number). It is shown that the water to jet mass flow rate ratio is an important parameter characterizing the jet noise reduction on account of gas-to-droplet momentum and heat transfer. Two independent dimensionless invariant groups are postulated, and provide the necessary relations for the droplet size and droplet Reynolds number. Results are presented illustrating the effect of mass flow rate ratio on the jet mixing noise reduction for a range of jet Mach number and jet Reynolds number. Predictions from the model show satisfactory comparison with available test data on supersonic jets. The results suggest that significant noise reductions can be achieved at increased flow rate ratios.

  17. Prediction of Turbulence-Generated Noise in Unheated Jets. Part 1; JeNo Technical Manual (Version 1.0)

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James; Georgiadis, Nicholas

    2005-01-01

    The model-based approach, used by the JeNo code to predict jet noise spectral directivity, is described. A linearized form of Lilley's equation governs the non-causal Green s function of interest, with the non-linear terms on the right hand side identified as the source. A Reynolds-averaged Navier-Stokes (RANS) solution yields the required mean flow for the solution of the propagation Green s function in a locally parallel flow. The RANS solution also produces time- and length-scales needed to model the non-compact source, the turbulent velocity correlation tensor, with exponential temporal and spatial functions. It is shown that while an exact non-causal Green s function accurately predicts the observed shift in the location of the spectrum peak with angle as well as the angularity of sound at low to moderate Mach numbers, the polar directivity of radiated sound is not entirely captured by this Green s function at high subsonic and supersonic acoustic Mach numbers. Results presented for unheated jets in the Mach number range of 0.51 to 1.8 suggest that near the peak radiation angle of high-speed jets, a different source/Green s function convolution integral may be required in order to capture the peak observed directivity of jet noise. A sample Mach 0.90 heated jet is also discussed that highlights the requirements for a comprehensive jet noise prediction model.

  18. Large eddy simulation of soot formation in a turbulent non-premixed jet flame

    SciTech Connect

    El-Asrag, Hossam; Menon, Suresh

    2009-02-15

    A recently developed subgrid model for soot dynamics [H. El-Asrag, T. Lu, C.K. Law, S. Menon, Combust. Flame 150 (2007) 108-126] is used to study the soot formation in a non-premixed turbulent flame. The model allows coupling between reaction, diffusion and soot (including soot diffusion and thermophoretic forces) processes in the subgrid domain without requiring ad hoc filtering or model parameter adjustments. The combined model includes the entire process, from the initial phase, when the soot nucleus diameter is much smaller than the mean free path, to the final phase, after coagulation and aggregation, where it can be considered in the continuum regime. A relatively detailed but reduced kinetics for ethylene-air is used to simulate an experimentally studied non-premixed ethylene/air jet diffusion flame. Acetylene is used as a soot precursor species. The soot volume fraction order of magnitude, the location of its maxima, and the soot particle size distribution are all captured reasonably. Along the centerline, an initial region dominated by nucleation and surface growth is established followed by an oxidation region. The diffusion effect is found to be most important in the nucleation regime, while the thermophoretic forces become more influential downstream of the potential core in the oxidation zone. The particle size distribution shows a log-normal distribution in the nucleation region, and a more Gaussian like distribution further downstream. Limitations of the current approach and possible solution strategies are also discussed. (author)

  19. Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2010-07-15

    Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgrid strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be

  20. LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Colucci, P. J.; Jaberi, F. A.; Givi, P.

    1996-01-01

    A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.

  1. Shear layer structure of a low speed jet. Ph.D. Thesis. Final Report, 28 Jun. 1974 - 31 Dec. 1975; [measurements of field pressure and turbulent velocity functions

    NASA Technical Reports Server (NTRS)

    Petersen, R. A.

    1976-01-01

    A series of measurements of near field pressures and turbulent velocity fluctuations were made in a low speed jet with a Reynolds number near 50,000 in order to investigate more quantitatively the character and behavior of the large scale structures and their interactions with each other. The near field measurements were modelled according to the vortex pairing hypothesis to deduce the distribution of pairings along the jet axis and the variances about the mean locations. The hodograph plane description of turbulence was explored in some detail, and a complex correlation quantity was synthesized which has useful properties for turbulence in the presence of mean shear.

  2. The entrainment rate for a row of turbulent jets. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Gordon, Eliott B.; Greber, Isaac

    1990-01-01

    Entrainment rates for a row of isothermal circular air jets issuing into a quiescent environment are found by integrating velocity distributions measured by a linearized hot-wire anemometer. Jet spacing to jet diameter ratios of 2.5, 5, 10, and 20 are studied at jet Reynold's numbers ranging from 5110 to 12070. Velocity distributions are determined at regular downstream intervals at axial distances equal to 16.4 to 164 jet diameters from the jet source. The entrainment rates for the four spacing configurations vary monotonically with increasing spacing/diameter between the limiting case of the slot jet entrainment rate (where the jet spacing to diameter ratio is zero) and the circular jet entrainment rate (in which the spacing to diameter ratio is infinity).

  3. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    SciTech Connect

    Yoo, C. S.; Richardson, E.; Sankaran, R.; Chen, J. H.

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damköhler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453–481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic ‘saw-tooth’ shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

  4. A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow

    SciTech Connect

    Yoo, Chun S

    2011-01-01

    Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

  5. High Order Numerical Methods for LES of Turbulent Flows with Shocks

    NASA Technical Reports Server (NTRS)

    Kotov, D. V.; Yee, H. C.; Hadjadj, A.; Wray, A.; Sjögreen, B.

    2014-01-01

    Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a comparative study of different approaches to reduce this loss of accuracy within the framework of the dynamic Germano SGS model. One of the possible approaches is to apply Harten's subcell resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid points adjacent to the exact shock location. The other considered approach is local disabling of the SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence interaction problem for comparison of the considered modifications of the SGS filtering procedure. For the considered test case both approaches show a similar improvement in the accuracy near the shock.

  6. Implicit LES of Turbulent, Separated Flow: Wall-Mounted Hump Configuration

    NASA Technical Reports Server (NTRS)

    Sekhar, Susheel; Mansour, Nagi N.; Caubilla, David Higuera

    2015-01-01

    Direct simulations (ILES) of turbulent, separated flow over the wall-mounted hump configuration is conducted to investigate the physics of separated flows. A chord-based Reynolds number of Re(sub c) = 47,500 is set up, with a turbulent in flow of Re(sub theta) = 1,400 (theta/c = 3%). FDL3DI, a code that solves the compressible Navier-Stokes equations using high- order compact-difference scheme and filter, with the standard recycling/rescaling method of turbulence generation, is used. Two different configurations of the upper-wall are analyzed, and results are compared with both a higher Re(sub c) (= 936,000, Re(sub theta) = 7,200, theta/c = 0.77%) experiment for major flow features, and RANS (k-omega SST) results. A lower Rec allows for DNS-like mesh resolution, and an adequately wide span. Both ILES and RANS show delayed reattachment compared to experiment, and significantly higher skin friction in the forebody of the hump, as expected. The upper-wall shape influences the C(sub p) distribution only. Results from this study are being used to setup higher Rec (lower theta/c) ILES.

  7. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  8. LES of turbulent separated flow over NACA0015 at Reynolds number 1,600,000-toward the separation control by a DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Sato, Makoto; Asada, Kengo; Nonomura, Taku; Kawai, Soshi; Aono, Hikaru; Yakeno, Aiko; Fujii, Kozo

    2013-11-01

    Large eddy simulation of a separated flow over NACA0015 at Reynolds number 1,600,000 with angle of attack 20.1 deg. is conducted to clarify the feature of turbulent separation at high Reynolds number. The grid point is approximately 1 billion, and a high order scheme is used in this simulation. The LES result agrees with experiment data in terms of the laminar-separation bubble region, the locations of reattachment point and second separation point and Cp distribution. In the turbulent separated flow of this simulation, the laminar-separation bubble is formed near the leading edge with turbulent transition, then turbulent boundary layer develops over the airfoil surface and the flow is separated as turbulent separation. Here, streamwise velocities in the attached region correspond to the profile of turbulent boundary layer. In addition, flow structures at Re = 1,600,000 are compared to those at Re = 63,000 about the turbulent transition, separation behavior, the space scale, time scale and so on. The most unstable frequency of the laminar separation flow at Re = 1,600,000 is 10-20 times of that of Re = 63,000 The flow scale at transition point of Re = 1,600,000 is about 1/15 times of that of Re = 63,000.

  9. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  10. A numerical method for DNS/LES of turbulent reacting flows

    SciTech Connect

    Doom, Jeff; Hou, Yucheng; Mahesh, Krishnan

    2007-09-10

    A spatially non-dissipative, implicit numerical method to simulate turbulent reacting flows over a range of Mach numbers, is described. The compressible Navier-Stokes equations are rescaled so that the zero Mach number equations are discretely recovered in the limit of zero Mach number. The dependent variables are co-located in space, and thermodynamic variables are staggered from velocity in time. The algorithm discretely conserves kinetic energy in the incompressible, inviscid, non-reacting limit. The chemical source terms are implicit in time to allow for stiff chemical mechanisms. The algorithm is readily extended to complex chemical mechanisms. Numerical examples using both simple and complex chemical mechanisms are presented.

  11. Experimental investigation of a free-surface turbulent jet with Coanda effect

    NASA Astrophysics Data System (ADS)

    Miozzi, M.; Lalli, F.; Romano, G. P.

    2010-07-01

    The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure ( i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.

  12. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    NASA Astrophysics Data System (ADS)

    Khavaran, A.; Krejsa, E. A.; Kim, C. M.

    1992-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  13. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    NASA Astrophysics Data System (ADS)

    Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.

    1991-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  14. Efficient implicit LES method for the simulation of turbulent cavitating flows

    NASA Astrophysics Data System (ADS)

    Egerer, Christian P.; Schmidt, Steffen J.; Hickel, Stefan; Adams, Nikolaus A.

    2016-07-01

    We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flow field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.

  15. On the influence of the correlation between enthalpy defect and mixture fraction in sooting turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Burot, Daria; Nmira, Fatiha; Consalvi, Jean-Louis

    2016-11-01

    The effects of the cross correlation between mixture fraction and enthalpy defect on flames structure and radiative heat transfer are investigated using a hybrid Stochastic Eulerian Field/flamelet model. An ethylene turbulent jet diffusion flame is simulated by considering or not this correlation. Model results show that mixture fraction and enthalpy defect are strongly correlated in the region located downstream the peak of temperature. Neglecting this correlation affects the flame structure in a non-negligible manner in this part of the flame. In addition, the radiative loss and the radiative flux are significantly enhanced when the correlation is disregarded.

  16. Simulating flame lift-off characteristics of diesel and biodiesel fuels using detailed chemical-kinetic mechanisms and LES turbulence model.

    SciTech Connect

    Som, S; Longman, D. E.; Luo, Z; Plomer, M; Lu, T; Senecal, P.K.; Pomraning, E

    2012-01-01

    Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.

  17. Wind Tunnel Testing of a Hydrogen Jet in a Turbulent Crossflow Altered by a Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Fontaine, Ryan; Retter, Jonathan; Freund, Jonathan; Glumac, Nick; Elliott, Gregory

    2015-11-01

    It has been demonstrated that plasmas can fundamentally alter the combustion process. The radical production can decrease combustion timescales and the body force produced by the driving electric currents can improve fuel/oxidizer mixing and alter the shape of the steady state flame. We study these mechanisms for a fuel jet exhausting into a well-characterized turbulent cross-flow of air acted upon by a Dielectric Barrier Discharge (DBD) plasma produced at the jet exit. The fuel is hydrogen diluted in cases with N2 and Ar. Laser breakdown provides the energy deposition for ignition above the jet. The likelihood of sustained ignition for various fuel compositions and cross-flow conditions is considered along with flame properties once ignited both under the influence of the DBD plasma and without. Additionally, the effect of the DBD on flame blow-off is investigated. The jet is varied from low-momentum ratios (~ 10-4) to high (~ 1) to alter the relative contributions of the body forces and radical production on the combustion process. This system is studied to quantify the effect of the DBD plasma and discover opportunities for control. This material is supported by the DOE, NNSA, Award DE-NA0002374.

  18. An experimental and numerical study of confined non-reacting and reacting turbulent jets to facilitate homogeneous combustion in industrial furnaces

    NASA Astrophysics Data System (ADS)

    Lee, Insu

    Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle

  19. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    NASA Astrophysics Data System (ADS)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL < 6, but are substantially larger for xL > 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying

  20. On the appearance of a system of ring vortices in the mixing layer of axially symmetric turbulent jets under acoustic action

    NASA Astrophysics Data System (ADS)

    Pimshtein, V. G.

    2016-07-01

    The shadow visualization method is applied to study the process of loss of stability of the mixing layer of a subsonic axially symmetric turbulent jet under longitudinal internal action of saw-tooth sound waves of finite amplitude. Such action leads to the formation of a system of ring vortices in the mixing layer at the frequency of its intrinsic instability. The interaction of the vortices can be accompanied by sound emission. A similar phenomenon is also observed in turbulent jets for small supercritical pressure fluctuations on a nozzle.

  1. Monte Carlo method of radiative transfer applied to a turbulent flame modeling with LES

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Gicquel, Olivier; Veynante, Denis; Taine, Jean

    2009-06-01

    Radiative transfer plays an important role in the numerical simulation of turbulent combustion. However, for the reason that combustion and radiation are characterized by different time scales and different spatial and chemical treatments, the radiation effect is often neglected or roughly modelled. The coupling of a large eddy simulation combustion solver and a radiation solver through a dedicated language, CORBA, is investigated. Two formulations of Monte Carlo method (Forward Method and Emission Reciprocity Method) employed to resolve RTE have been compared in a one-dimensional flame test case using three-dimensional calculation grids with absorbing and emitting media in order to validate the Monte Carlo radiative solver and to choose the most efficient model for coupling. Then the results obtained using two different RTE solvers (Reciprocity Monte Carlo method and Discrete Ordinate Method) applied on a three-dimensional flame holder set-up with a correlated-k distribution model describing the real gas medium spectral radiative properties are compared not only in terms of the physical behavior of the flame, but also in computational performance (storage requirement, CPU time and parallelization efficiency). To cite this article: J. Zhang et al., C. R. Mecanique 337 (2009).

  2. Data-driven LES of turbulence and solute transport in a natural stream

    NASA Astrophysics Data System (ADS)

    Khosronejad, Ali; Kozarek, Jessica; Hansen, Amy; Guentzel, Kristopher; Hondzo, Miki; Wilcock, Peter; Guala, Michele; Finlay, Jacques; Sotiropoulos, Fotis; St. Anthony Falls Lab Team; Utah State University Team

    2014-11-01

    We develop and validate a coupled 3D numerical model for carrying out high-resolution large-eddy simulations of turbulence and solute transport for a conservative tracer in a natural stream, the Eagle Creek, located ~30 miles south of Minneapolis, Minnesota. We employ the Curvilinear Immersed Boundary method along with a convection-diffusion module to simulate the transient transport of momentum and contaminant concentrations. The detailed geometry of the stream, which is about 135 m long, 2.5 m wide, and 0.2 cm deep is surveyed and used as the simulation domain. The geometry and position of large woody debris in the channel were included in the simulation to account for their effect on the transport of momentum and concentration. The numerical simulation is carried out on a grid with 25 million nodes under two tracer injection conditions, including a pulse and a plateau release. Comprehensive field measurement data is used to validate the flow and concentration field. It is shown that the simulations can accurately capture the spatial and temporal characteristics of the solute transport processes observed in the field and resolve the underlying physical phenomena at unprecedented resolution. This work was supported by NSF Grants EAR-0120914 and Univ. of Minnesota Supercomputing Institute.

  3. Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Jaishree, J.; Haworth, D. C.

    2012-06-01

    Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method

  4. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    DOE PAGESBeta

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization aremore » located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that hydrogen

  5. Effect of fuel composition and differential diffusion on flame stabilization in reacting syngas jets in turbulent cross-flow

    SciTech Connect

    Minamoto, Yuki; Kolla, Hemanth; Grout, Ray W.; Gruber, Andrea; Chen, Jacqueline H.

    2015-07-24

    Here, three-dimensional direct numerical simulation results of a transverse syngas fuel jet in turbulent cross-flow of air are analyzed to study the influence of varying volume fractions of CO relative to H2 in the fuel composition on the near field flame stabilization. The mean flame stabilizes at a similar location for CO-lean and CO-rich cases despite the trend suggested by their laminar flame speed, which is higher for the CO-lean condition. To identify local mixtures having favorable mixture conditions for flame stabilization, explosive zones are defined using a chemical explosive mode timescale. The explosive zones related to flame stabilization are located in relatively low velocity regions. The explosive zones are characterized by excess hydrogen transported solely by differential diffusion, in the absence of intense turbulent mixing or scalar dissipation rate. The conditional averages show that differential diffusion is negatively correlated with turbulent mixing. Moreover, the local turbulent Reynolds number is insufficient to estimate the magnitude of the differential diffusion effect. Alternatively, the Karlovitz number provides a better indicator of the importance of differential diffusion. A comparison of the variations of differential diffusion, turbulent mixing, heat release rate and probability of encountering explosive zones demonstrates that differential diffusion predominantly plays an important role for mixture preparation and initiation of chemical reactions, closely followed by intense chemical reactions sustained by sufficient downstream turbulent mixing. The mechanism by which differential diffusion contributes to mixture preparation is investigated using the Takeno Flame Index. The mean Flame Index, based on the combined fuel species, shows that the overall extent of premixing is not intense in the upstream regions. However, the Flame Index computed based on individual contribution of H2 or CO species reveals that

  6. Supersonic jet and crossflow interaction: Computational modeling

    NASA Astrophysics Data System (ADS)

    Hassan, Ez; Boles, John; Aono, Hikaru; Davis, Douglas; Shyy, Wei

    2013-02-01

    The supersonic jet-in-crossflow problem which involves shocks, turbulent mixing, and large-scale vortical structures, requires special treatment for turbulence to obtain accurate solutions. Different turbulence modeling techniques are reviewed and compared in terms of their performance in predicting results consistent with the experimental data. Reynolds-averaged Navier-Stokes (RANS) models are limited in prediction of fuel structure due to their inability to accurately capture unsteadiness in the flow. Large eddy simulation (LES) is not yet practical due to prohibitively large grid requirement near the wall. Hybrid RANS/LES can offer reasonable compromise between accuracy and efficiency. The hybrid models are based on various approaches such as explicit blending of RANS and LES, detached eddy simulation (DES), and filter-based multi-scale models. In particular, they can be used to evaluate the turbulent Schmidt number modeling techniques used in jet-in-crossflow simulations. Specifically, an adaptive approach can be devised by utilizing the information obtained from the resolved field to help assign the value of turbulent Schmidt number in the sub-filter field. The adaptive approach combined with the multi-scale model improves the results especially when highly refined grids are needed to resolve small structures involved in the mixing process.

  7. Large Eddy Simulations and Turbulence Modeling for Film Cooling

    NASA Technical Reports Server (NTRS)

    Acharya, Sumanta

    1999-01-01

    The objective of the research is to perform Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) for film cooling process, and to evaluate and improve advanced forms of the two equation turbulence models for turbine blade surface flow analysis. The DNS/LES were used to resolve the large eddies within the flow field near the coolant jet location. The work involved code development and applications of the codes developed to the film cooling problems. Five different codes were developed and utilized to perform this research. This report presented a summary of the development of the codes and their applications to analyze the turbulence properties at locations near coolant injection holes.

  8. Phase contrast ultrashort TE: A more reliable technique for measurement of high-velocity turbulent stenotic jets.

    PubMed

    O'Brien, Kieran R; Myerson, Saul G; Cowan, Brett R; Young, Alistair A; Robson, Matthew D

    2009-09-01

    Accurate measurement of peak velocity is critical to the assessment of patients with stenotic valvular disease. Conventional phase contrast (PC) methods for imaging high-velocity jets in aortic stenosis are susceptible to intravoxel dephasing signal loss, which can result in unreliable measurements. The most effective method for reducing intravoxel dephasing is to shorten the echo time (TE); however, the amount that TE can be shortened in conventional sequences is limited. A new sequence incorporating velocity-dependent slice excitation and ultrashort TE (UTE) centric radial readout trajectories is proposed that reduces TE from 2.85 to 0.65 ms. In a high-velocity stenotic jet phantom, a conventional sequence had >5% flow error at a flow rate of only 400 mL/s (velocity >358 cm/s), whereas the PC-UTE showed excellent agreement (<5% error) at much higher flow rates (1080 mL/s, 965 cm/s). In vivo feasibility studies demonstrated that by measuring velocity over a shorter time the PC-UTE approach is more robust to intravoxel dephasing signal loss. It also has less inherent higher-order motion encoding. This sequence therefore demonstrates potential as a more robust method for measuring peak velocity and flow in high-velocity turbulent stenotic jets.

  9. Experimental study of turbulence in isothermal jet impingement at intermediate plate spacings

    NASA Astrophysics Data System (ADS)

    Landfried, D. Tyler; Valentino, Alex; Mazumdar, Sagnik; Jana, Anirban; Kimber, Mark

    2013-11-01

    One fundamental problem in fluid dynamics is that of the axisymmetric round flow impinging on a plate placed some distance downstream of the jet. Impinging jets have a rich history of applications including small plate spacings, H/D ~ 1, such as encountered in electronics cooling, or large plate spacings, H/D ~ 102, such as vertical takeoff aircrafts and rocket engines. However, intermediate plate spacings, such as the lower plenum of the next generation nuclear reactors, are not typically studied. In this paper, an experimental study is conducted investigating the effect of the impingement plate on the flow behavior compared to the near free jet behavior when the plate is removed. Using air as the working fluid, a single jet is considered at jet Reynolds numbers of 10000, 20000, and 30000. A three-wire anemometer probe is used to quantify the mean components of velocities as well as the Reynolds stress and the third-order moments in the flow field at various distances between the jet outlet and the impingement plate. When present, the impingement plate is placed a distance of 8, 11, 14, and 17 diameters downstream of the jet. Additionally trends in the kinetic energy and dissipation are investigated for validation with numerical models.

  10. A laboratory investigation into the influence of a rigid vegetation on the evolution of a round turbulent jet discharged within a cross flow.

    PubMed

    Malcangio, Daniela; Mossa, Michele

    2016-05-15

    The study of buoyant jets, those between pure jets and plumes, has been carried out with ever greater frequency over recent years due to its application in different practical engineering fields, i.e. appropriate design of outfalls for the disposal of municipal and industrial waste waters. The dispersion of waste and the related dilution of pollutants are governed by the mean-flow and turbulence characteristics of the resulting jets, which themselves depend on environmental conditions. The present study deals with how a uniform cross-stream with a channel bed surface covered by rigid emergent stems affects the behaviour of a circular turbulent buoyant jet. The time-averaged temperature and velocity fields are investigated in order to understand jet diffusion and penetration within the ambient fluid. The examination and comparison of the measured scalar and vector quantities show that the presence of emergent vegetation in the receiving environment affects both the average flow field and the jet structure, reducing the mean channel velocity, with a notable increase in jet penetration height and dilution compared to the test case without vegetation. This result is confirmed by the several vertical profiles of the mean scalar concentration and the normalized vertical velocity component along the channel centre plane. Moreover, the rigid emergent vegetation and its driven instabilities promote a distortion of the mean concentration and normalized axial velocity component profiles in the trajectory-based coordinate system.

  11. Estimation of Broadband Shock Noise Reduction in Turbulent Jets by Water Injection

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Lonerjan, Michael J.

    2008-01-01

    The concept of effective jet properties introduced by the authors (AIAA-2007-3645) has been extended to the estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise are manifest.

  12. Turbulence

    NASA Astrophysics Data System (ADS)

    Frisch, Uriel

    1996-01-01

    Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.

  13. A Theory for Emergence of Equatorial Deep Jets from Turbulence based on Statistical Mean State Dynamics

    NASA Astrophysics Data System (ADS)

    Fitzgerald, J.; Farrell, B.

    2013-12-01

    Equatorial deep jets (EDJs) are persistent, zonally-coherent jets found within one degree of the equator in all ocean basins (Luyten and Swallow, 1976). The jets are characterized by a vertically oscillating ('stacked') structure between ~500-2000m depth, with jet amplitudes on the order of 10 cm/s superimposed upon a large-scale background shear flow. EDJs are a striking feature of the equatorial climate system and play an important role in equatorial ocean transport. However, the physical mechanism responsible for the presence of EDJs remains uncertain. Previous theoretical models for EDJs have suggested mechanisms involving the reflection and constructive interference of equatorially trapped waves (Wunsch 1977, McCreary 1984) and the instability of mixed Rossby-gravity waves with EDJs as the fastest-growing eigenfunction (Hua et al. 2008, Eden et al. 2008). In this work we explore the jet formation mechanism and the parameter dependence of EDJ structure in the idealized theoretical model of the stochastically-driven equatorial beta plane. The model is formulated in three ways: 1) Fully nonlinear equations of motion 2) Quasilinear (or mean-field) dynamics 3) Statistical state dynamics employing a second order closure method (stochastic structural stability theory). Results from the three models are compared, and the implications for both the jet formation and equilibration mechanisms, as well as the role of eddy-eddy nonlinearity in the EDJ system, are discussed.

  14. Theoretical study of refraction effects on noise produced by turbulent jets

    NASA Technical Reports Server (NTRS)

    Graham, E. W.; Graham, B. B.

    1975-01-01

    The transmission of acoustic disturbances from the interior of a jet into the ambient air is studied. The jet is assumed infinitely long with mean velocity profile independent of streamwise location. The noise generator is a sequence of transient sources drifting with the local fluid and confined to a short length of the jet. In Part 1, supersonic jets are considered. Numerical results for mean-square pressure versus angle in the far-field show unexpected peaks which are very sharp. Analysis of simplified models indicates that these are complex quasi-resonant effects which appear to the stationary observer in a high frequency range. The peaks are real for the idealized model, but would be smoothed by mathematical integration over source position, velocity, and frequency. Subsonic jets were considered in part 2, and a preliminary study of the near-field was attempted. Mean-square radial displacements (or mean radial energy flow or space-time correlations of radial pressure gradient) are first found for very simple cases. The most difficult case studied is a sequence of transient sources at the center of a uniform-velocity circular cylindrical jet. Here a numerical triple integration is required and seems feasible although only preliminary results for mean square radial displacement are now available. These preliminary results show disturbances decreasing with increasing radial distance, and with increasing distance upstream and downstream from the source. A trend towards greater downstream disturbances appears even in the near field.

  15. MODELING AND EXPERIMENTAL EVALUATION OF AN AEROSOL GENERATOR FOR VERY HIGH NUMBER CURRENTS BASED ON A FREE TURBULENT JET. (R827354C008)

    EPA Science Inventory

    In this paper we report on theoretical and experimental work on aerosol formation in a free turbulent jet. A hot DEHS vapor issues through a circular nozzle into slowly moving cold air. Vapor concentration and temperatures are such that particles are formed via homogeneous nuc...

  16. Quasi 1-D Analysis of a Circular, Compressible, Turbulent Jet Laden with Water Droplets. Appendix C

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Recent experimental studies indicate that presence of small amount of liquid droplets reduces the Overall Sound Pressure Level (OASPL) of a jet. Present study is aimed at numerically investigating the effect of liquid particles on the overall flow quantities of a heated, compressible round jet. The jet is assumed perfectly expanded. A quasi-1D model was developed for this purpose which uses area-averaged quantities that satisfy integral conservation equations. Special attention is given to represent the early development region since it is acoustically important. Approximate velocity and temperature profiles were assumed in this region to evaluate entrainment rate. Experimental correlations were used to obtain spreading rate of shear layer. The base flow thus obtained is then laden with water droplets at the exit of the nozzle. Mass, momentum and energy coupling between the two phases is represented using empirical relations. Droplet size and mass loading are varied to observe their effect on flow variables.

  17. Turbulent two-dimensional jet flow and its effect on laser beam degradation

    NASA Technical Reports Server (NTRS)

    Catalano, G. D.; Cudahy, G. F.; Vankuren, J. T.; Wright, H. E.

    1980-01-01

    An experiment in which visible wavelength lasers traversed a well-documented two dimensional jet was conducted. Temperature perturbations varied from 0.25 to 1.80 K and velocity fluctuations ranged from 9.2 to 30.8 m/sec. Measured central spot intensities were as low as 18% of the undisturbed beam, depending on jet Mach number, beam position theory and experiment was two percent in terms of far field intensity. To supplement the flow field information, a laser Doppler velocimeter was developed to measure both mean and fluctuating velocities and a photo correlator was used as a signal processor.

  18. Development of imaging Fourier-transform spectroscopy for the characterization of turbulent jet flames

    NASA Astrophysics Data System (ADS)

    Harley, Jacob L.

    Recent advances in computational models to simulate turbulent, reactive flow fields have outpaced the ability to collect highly constraining data---throughout the entire flow field---for validating and improving such models. In particular, the ability to quantify in three dimensions both the mean scalar fields (i.e. temperature & species concentrations) and their respective fluctuation statistics via hyperspectral imaging would be a game-changing advancement in combustion diagnostics, with high impact in both validation and improvement efforts for computational combustion models. This research effort establishes imaging Fourier- transform spectrometry (IFTS) as a valuable tool (which complements laser diagnostics) for the study of turbulent combustion. Specifically, this effort (1) demonstrates that IFTS can be used to quantitatively measure spatially resolved spectra from a canonical turbulent flame; (2) establishes the utility of quantile spectra in first-ever quantitative comparisons between measured and modeled turbulent radiation interaction (TRI); (3) develops a simple onion-peeling-like spectral inversion methodology suitable for estimating radial scalar distributions in axisymmetric, optically-thick flames; (4) builds understanding of quantile spectra and demonstrates proof of concept for their use in estimating scalar fluctuation statistics.

  19. Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames

    SciTech Connect

    Zhao, xinyu; Haworth, D. C.; Huckaby, E. David

    2012-01-01

    Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.

  20. Direct simulation of melting a cryogenic surface with a two-dimensional axisymmetric turbulent superheated vapor jet

    NASA Astrophysics Data System (ADS)

    Baran, Adam J.

    This dissertation presents original research into the melting process of a downward facing cryogenic solid hydrogen surface subject to a two dimensional axisymmetric jet impingement flow of superheated hydrogen vapor. The motivation for the study is to investigate concepts of storing rocket propellants as a solid and rapidly melting the solid for liquid propellant delivery to a rocket engine. The present study considers a more favorable liquid removal arrangement than prior (1970s) experiments which melted solid hydrogen at the bottom of a cryostat. This is a numerical study that involves computation fluid dynamic (CFD) simulation of four distinct physical phenomena: (1) melting, (2) jet impingement heat transfer (JIHT), (3) multiphase transport, and (4) film breakup/droplet formation. The volume of fluid (VOF) method is used with the V2F turbulence model in a commercial CFD Navier-Stokes solver (FLUENT) to investigate the multiphase nature of melt transport and its interaction with the vapor stream; i.e., the phenomena relevant to effective heat transfer between the vapor and the melting interface. The goal of the research is: (1) to develop a numerical method to study the problem and (2) evaluate several simple configurations to begin investigating relevant phenomena for the purpose of enhancing melting rate. Many options exist for the vapor to interact with the solid surface. The scope of this initial research is limited to a steady jet of single phase superheated hydrogen vapor at fixed jet exit conditions (T = 525 R and Re = 11,000) at a fixed jet standoff ( H/D = 1.0). Condensation/vaporization are not considered. Although film breakup/droplet formation is a phenomenon where two dimensional features evolve into three dimensional events, this phenomenon is approximated as two dimensional to allow a computationally tractable problem for this initial study. Calculations are performed validating the numerical method for melting and JIHT against known results

  1. Imaging of molecular mixing in a gas-phase turbulent jet by collisional energy-transfer fluorescence

    SciTech Connect

    Winter, M.; Hermanson, J.C.; Dobbs, G.M. )

    1992-01-01

    This work explores the viability of collisional energy-transfer fluorescence imaging as a technique to resolve molecular mixing in gas-phase flows. This approach relies on a fluorescent seed species becoming mixed with a different seed species capable of absorbing laser light and being promoted to an electronically excited state. In these experiments, biacetyl fluorescence is excited via energy transfer from excited-state toluene molecules, thus providing a direct indication of the degree of molecular mixing. Calibration experiments were performed in which illumination of a test volume containing molecularly mixed biacetyl/toluene vapor induces emission not observed for biacetyl vapor or toluene vapor only, verifying the energy-transfer mechanism. Planar imaging using energy-transfer fluorescence was applied to exmine the molecular mixing characteristics of a turbulent, coflowing nitrogen jet which contained biacetyl in the central jet and toluene in the coflow. Comparison is made with the results of planar LIF imaging of the dilution of a passive scalar. 17 refs.

  2. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    SciTech Connect

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  3. LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil

    NASA Technical Reports Server (NTRS)

    Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

    2010-01-01

    This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

  4. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise about Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the airframe and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large flat plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position.The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non-dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  5. The Prediction and Analysis of Jet Flows and Scattered Turbulent Mixing Noise About Flight Vehicle Airframes

    NASA Technical Reports Server (NTRS)

    Miller, Steven A.

    2014-01-01

    Jet flows interacting with nearby surfaces exhibit a complex behavior in which acoustic and aerodynamic characteristics are altered. The physical understanding and prediction of these characteristics are essential to designing future low noise aircraft. A new approach is created for predicting scattered jet mixing noise that utilizes an acoustic analogy and steady Reynolds-averaged Navier-Stokes solutions. A tailored Green's function accounts for the propagation of mixing noise about the air-frame and is calculated numerically using a newly developed ray tracing method. The steady aerodynamic statistics, associated unsteady sound source, and acoustic intensity are examined as jet conditions are varied about a large at plate. A non-dimensional number is proposed to estimate the effect of the aerodynamic noise source relative to jet operating condition and airframe position. The steady Reynolds-averaged Navier-Stokes solutions, acoustic analogy, tailored Green's function, non- dimensional number, and predicted noise are validated with a wide variety of measurements. The combination of the developed theory, ray tracing method, and careful implementation in a stand-alone computer program result in an approach that is more first principles oriented than alternatives, computationally efficient, and captures the relevant physics of fluid-structure interaction.

  6. Stable, high-order SBP-SAT finite difference operators to enable accurate simulation of compressible turbulent flows on curvilinear grids, with application to predicting turbulent jet noise

    NASA Astrophysics Data System (ADS)

    Byun, Jaeseung; Bodony, Daniel; Pantano, Carlos

    2014-11-01

    Improved order-of-accuracy discretizations often require careful consideration of their numerical stability. We report on new high-order finite difference schemes using Summation-By-Parts (SBP) operators along with the Simultaneous-Approximation-Terms (SAT) boundary condition treatment for first and second-order spatial derivatives with variable coefficients. In particular, we present a highly accurate operator for SBP-SAT-based approximations of second-order derivatives with variable coefficients for Dirichlet and Neumann boundary conditions. These terms are responsible for approximating the physical dissipation of kinetic and thermal energy in a simulation, and contain grid metrics when the grid is curvilinear. Analysis using the Laplace transform method shows that strong stability is ensured with Dirichlet boundary conditions while weaker stability is obtained for Neumann boundary conditions. Furthermore, the benefits of the scheme is shown in the direct numerical simulation (DNS) of a Mach 1.5 compressible turbulent supersonic jet using curvilinear grids and skew-symmetric discretization. Particularly, we show that the improved methods allow minimization of the numerical filter often employed in these simulations and we discuss the qualities of the simulation.

  7. Laser Raman Diagnostics in Subsonic and Supersonic Turbulent Jet Diffusion Flames.

    NASA Astrophysics Data System (ADS)

    Cheng, Tsarng-Sheng

    1991-02-01

    UV spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. For the first time, simultaneous measurements of temperature, major species (H_2, O_2, N_2, H_2O), and minor species (OH) concentrations are made with a "single" narrowband KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat -flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. UV Raman measurements in the subsonic lifted turbulent diffusion flame indicate that fuel and oxidizer are in rich, premixed, and unignited conditions in the center core of the lifted flame base. The unignited mixtures are due to rapid turbulent mixing that affects chemical reaction. Combustion occurs in an intermittent annular turbulent flame brush with strong finite-rate chemistry effects. The OH radical exists in sub-equilibrium and super-equilibrium concentrations. Major species and temperature are found with non-equilibrium values. Further downstream the super-equilibrium OH radicals decay toward equilibrium through slow three-body recombination reactions. In the supersonic lifted flame, a little reaction occurs upstream of the flame base, due to shock wave interactions and mixing with hot vitiated air. The strong turbulent mixing and total enthalpy fluctuations lead to temperature, major, and minor species concentrations with non-equilibrium values. Combustion occurs farther downstream of the lifted region. Slow

  8. The spatial and temporal structure of thermal fluctuations associated with a vertical turbulent jet impinging a water surface: laboratory experiments and field observations

    NASA Astrophysics Data System (ADS)

    Judd, K. Peter; Savelyev, Ivan B.; Smith, Geoffrey B.; Marmorino, George

    2012-06-01

    Infrared imaging, in both laboratory and field settings, has become a vital tool in diagnosing near-surface thermalhydrodynamic phenomena such as convective cells, accumulation of surfactant, and coherent turbulent structures. In this presentation, we initially focus on a laboratory scale (0.01-1m) subsurface vertical turbulent water jet that serves as a canonical flow. The jet has a slightly elevated temperature thus the warmer fluid serves as a passive marker. Infrared image sequences of the surface thermal field were collected for various water jet flow rates and for both "clean" and surfactant-contaminated surface conditions. Turbulent characteristics of the near-surface flow field were measured by means of Digital Particle Image Velocimetry (DPIV), and these are used to examine the statistical nature of the coupled thermal-hydrodynamic field. An analog of the laboratory jet is the discharge of power-plant cooling water through a vertical pipe on the ocean floor. High-resolution airborne infrared imagery has recently been acquired of such a discharge (from the Huntington Beach Generating Station, CA), and these data are compared with the laboratory results in an attempt to understand striking spatial patterns discovered on the ocean surface.

  9. Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 2: Navier-Stokes calculations of swirling and nonswirling confined coaxial jets

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1986-01-01

    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two-component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two-component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage of the axial mass transport. The large scale structures were found to convect downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

  10. Ensemble Diffraction Measurements of Spray Combustion in a Novel Vitiated Coflow Turbulent Jet Flame Burner

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Hamano, Y.; Chen, J. Y.; Dibble, R. W.; Acosta, F.; Holve, D.

    2000-01-01

    An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a

  11. Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Ku, Jerry C.; Tong, LI; Sun, Jun; Greenberg, Paul S.; Griffin, Devon W.

    1993-01-01

    Most practical combustion processes, as well as fires and explosions, exhibit some characteristics of turbulent diffusion flames. For hydrocarbon fuels, the presence of soot particles significantly increases the level of radiative heat transfer from flames. In some cases, flame radiation can reach up to 75 percent of the heat release by combustion. Laminar diffusion flame results show that radiation becomes stronger under reduced gravity conditions. Therefore, detailed soot formation and radiation must be included in the flame structure analysis. A study of sooting turbulent diffusion flames under reduced-gravity conditions will not only provide necessary information for such practical issues as spacecraft fire safety, but also develop better understanding of fundamentals for diffusion combustion. In this paper, a summary of the work to date and of future plans is reported.

  12. Unlocking the Keys to Vortex/Flame Interactions in Turbulent Gas-Jet Diffusion Flames--Dynamic Behavior Explored on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stocker, Dennis P.

    1999-01-01

    Most combustion processes in industrial applications (e.g., furnaces and engines) and in nature (e.g., forest fires) are turbulent. A better understanding of turbulent combustion could lead to improved combustor design, with enhanced efficiency and reduced emissions. Despite its importance, turbulent combustion is poorly understood because of its complexity. The rapidly changing and random behavior of such flames currently prevents detailed analysis, whether experimentally or computationally. However, it is possible to learn about the fundamental behavior of turbulent flames by exploring the controlled interaction of steady laminar flames and artificially induced flow vortices. These interactions are an inherent part of turbulent flames, and understanding them is essential to the characterization of turbulent combustion. Well-controlled and defined experiments of vortex interaction with laminar flames are not possible in normal gravity because of the interference of buoyancy- (i.e., gravity) induced vortices. Therefore, a joint microgravity study was established by researchers from the Science and Technology Development Corp. and the NASA Lewis Research Center. The experimental study culminated in the conduct of the Turbulent Gas-Jet Diffusion Flames (TGDF) Experiment on the STS-87 space shuttle mission in November 1997. The fully automated hardware, shown in photo, was designed and built at Lewis. During the mission, the experiment was housed in a Get Away Special (GAS) canister in the cargo bay.

  13. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    SciTech Connect

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing, both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.

  14. Influence of swirl on the initial merging zone of a turbulent annular jet

    NASA Astrophysics Data System (ADS)

    Vanierschot, M.; Van den Bulck, E.

    2008-10-01

    This paper presents an extensive study of the influence of swirl on the initial region of an annular jet. A total of five different swirl numbers S are investigated: one at zero swirl, one at low swirl (S=0.18), two at intermediate swirl (S =0.37 and 0.57), and one at high swirl (S=0.74). The flow fields are measured using the stereoscopic particle image velocimetry (PIV) technique. A detailed study on the accuracy of the PIV measurements is presented, including a validation with laser Doppler anemometry data. In this way a detailed set of accurate data is presented of the three components of velocity and the root-mean square value of their fluctuations in a plane through the central axis of the geometry. Despite its simple geometry, the immediate flow field of an annular jet is very complex. The concentric central tube of the nozzle acts as a bluff body to the flow, thus creating a central recirculation zone (CRZ) behind it. At low swirl numbers the swirl induced pressure gradients alter the structure of the CRZ significantly, increasing its complexity. The CRZ becomes toroidal and the jet fluid is entrained near the apex. At intermediate swirl numbers a vortex breakdown bubble appears downstream which moves upstream with increasing swirl. At high swirl, the CRZ and breakdown bubble merge which creates a complex and highly anisotropic flow field.

  15. Turbulent eddies in a compressible jet in crossflow measured using pulse-burst particle image velocimetry

    DOE PAGESBeta

    Beresh, Steven J.; Wagner, Justin L.; Henfling, John F.; Spillers, Russell Wayne; Pruett, Brian Owen Matthew

    2016-01-01

    Pulse-burst Particle Image Velocimetry(PIV) has been employed to acquire time-resolved data at 25 kHz of a supersonic jet exhausting into a subsonic compressible crossflow. Data were acquired along the windward boundary of the jet shear layer and used to identify turbulenteddies as they convect downstream in the far-field of the interaction. Eddies were found to have a tendency to occur in closely spaced counter-rotating pairs and are routinely observed in the PIV movies, but the variable orientation of these pairs makes them difficult to detect statistically. Correlated counter-rotating vortices are more strongly observed to pass by at a larger spacing,more » both leading and trailing the reference eddy. This indicates the paired nature of the turbulenteddies and the tendency for these pairs to recur at repeatable spacing. Velocity spectra reveal a peak at a frequency consistent with this larger spacing between shear-layer vortices rotating with identical sign. The spatial scale of these vortices appears similar to previous observations of compressible jets in crossflow. Furthermore,super-sampled velocity spectra to 150 kHz reveal a power-law dependency of –5/3 in the inertial subrange as well as a –1 dependency at lower frequencies attributed to the scales of the dominant shear-layer eddies.« less

  16. 2D numerical simulation of impinging jet onto the concave surface by k - w - overline{{v2 }} - f turbulence model

    NASA Astrophysics Data System (ADS)

    Seifi, Zeinab; Nazari, Mohammad Reza; Khalaji, Erfan

    2016-03-01

    In the present article, the characteristics of turbulent jet impinging onto a concave surface is studied using k - w - overline{{v2 }} - f turbulence model. Dependent parameters such as inlet Reynolds number (2960 < Re < 12,000), nozzle-plate distance (4 < H/B < 10), concavity (D/B = 30, 60) of confined and unconfined impinging jet are scrutinized to find out whether this approach would bring any privileges compared to other investigations or not. The obtained results indicate better performance in low nozzle-plate distance in comparison with those mentioned in other literatures. Furthermore, the average Nusselt number of confined impinging jet overtakes unconfined one (similar circumstances) while this trend will decline as relative concavity increases. Moreover, local heat transfer of stagnation area and wall jet goes up and down through nozzle-plate distance enhancement respectively. Finally, the effects of sinusoidal pulsed inlet profile on heat transfer of unconfined impinging jet indicate direct affiliation of amplitude and neutral impact of frequency on Nusselt number distribution.

  17. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  18. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations

    NASA Astrophysics Data System (ADS)

    Du, Yongle

    Jet noise simulations have been performed for a military-style baseline nozzle and a chevron nozzle with design Mach numbers of Md = 1:5 operating at several off-design conditions. The objective of the current numerical study is to provide insight into the noise generation mechanisms of shock-containing supersonic hot jets and the noise reduction mechanisms of chevron nozzles. A hybrid methodology combining advanced CFD technologies and the acoustic analogy is used for supersonic jet noise simulations. Unsteady Reynolds-averaged Navier-Stokes (URANS) equations are solved to predict the turbulent noise sources in the jet flows. A modified version of the Detached Eddy Simulation (DES) approach is used to avoid excessive damping of fine scale turbulent fluctuations. A multiblock structured mesh topology is used to represent complex nozzle geometries, including the faceted inner contours and finite nozzle thickness. A block interface condition is optimized for the complex multiblock mesh topology to avoid the centerline singularity. A fourth-order Dispersion-Relation-Preserving (DRP) scheme is used for spatial discretization. To enable efficient calculations, a dual time-stepping method is used in addition to parallel computation using MPI. Both multigrid and implicit residual smoothing are used to accelerate the convergence rate of sub-iterations in the fictitious time domain. Noise predictions are made with the permeable surface Ffowcs Williams and Hawkings (FWH) solution. All the numerical methods have been implemented in the jet flow simulation code "CHOPA" and the noise prediction code "PSJFWH". The computer codes have been validated with several benchmark cases. A preliminary study has been performed for an under-expanded baseline nozzle jet with Mj = 1:56 to validate the accuracy of the jet noise simulations. The results show that grid refinement around the jet potential core and the use of a lower artificial dissipation improve the resolution of the predicted

  19. Effect of wind turbulence and shear on landing performance of jet transports

    NASA Technical Reports Server (NTRS)

    Blick, E. F.; Mccarthy, J.; Bensch, R. R.; Sarabudla, N. R.

    1978-01-01

    Computer simulations of a Boeing 727 class aircraft landing in turbulence were developed by programming the longitudinal aircraft equations of motion into a digital computer with various input values of vertical and horizontal wind speeds. Turbulent wind data was fed to the computer in one-second intervals. The computer computed in one-second intervals the aircraft speed, altitude, horizontal distance traveled, rate-of-descent, pitch attitude, glide path angle (from edge of runway) and elevator angle. All computer runs were made in the 'stick-fixed' mode. The RMS values of altitude and velocity perturbations (from equilibrium) were found to be large when horizontal wind gusts had sinusoidal components at or near the phugoid (long period) frequency. Maximum RMS altitude deviations occurred when the vertical wind had sinusoidal components which were 1/10 to 1/5 of the phugoid frequency. When real wind data (obtained from NCAR Queen Air) were used as input winds good correlations were found to exist between RMS velocity perturbations and both horizontal and vertical wind shears.

  20. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames

    NASA Technical Reports Server (NTRS)

    Cheng, T. S.; Wehrmeyer, J. A.; Pitz, R. W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H2, O2, N2, H2O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. The single shot measurement precision for concentration and temperature measurement is 5 to 10 pct. Calibration constants and bandwidth factors are determined from the flat burner measurements and used in a data reduction program to arrive at temperature and species concentration measurements. These simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  1. Laser Raman diagnostics in subsonic and supersonic turbulent jet diffusion flames. Final Report

    SciTech Connect

    Cheng, T.S.; Wehrmeyer, J.A.; Pitz, R.W.

    1991-01-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering combined with laser-induced predissociative fluorescence (LIPF) is developed for temperature and multi-species concentration measurements. Simultaneous measurements of temperature, major species (H{sub 2}, O{sub 2}, N{sub 2}, H{sub 2}O), and minor species (OH) concentrations are made with a 'single' narrow band KrF excimer laser in subsonic and supersonic lifted turbulent hydrogen-air diffusion flames. The UV Raman system is calibrated with a flat-flame diffusion burner operated at several known equivalence ratios from fuel-lean to fuel-rich. Temperature measurements made by the ratio of Stokes/anti-Stokes signal and by the ideal gas law are compared. Single-shot uncertainties for temperature and concentration measurements are analyzed with photon statistics. Calibration constants and bandwidth factors are used in the data reduction program to arrive at temperature and species concentration measurements. The results of these measurements are presented, and these simultaneous measurements of temperature and multi-species concentrations allow a better understanding of the complex turbulence-chemistry interactions and provide information for the input and validation of CFD models.

  2. Real-Time Visualizations of Turbulence Structures of High Speed Jets

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Hileman, James; Samimy, Mo; Lempert, Walter

    2000-11-01

    A real-time flow visualization technique has been developed and used to capture the evolution of large-scale structures in a Mach 1.3 axisymmetric jet. The technique relies on Mie scattering of laser light formed into a sheet by condensed water particles in the mixing layer of the jet. The technique can produce a series of up to 32 images, with two consecutive images separated by as little as 1 μ s. The technique utilizes a home built Nd:YAG laser that operates at 532 nm and can emit a burst of 32 pulses separated by as short as 1 μ s (i.e. 1 MHz). This burst of pulses is repeated at 10 Hz. Pulse energies are on the order of 5 mJ/pulse. A high-speed digital camera is used to capture images of the flow. The result is a 'movie' of the flow field, which covers on the order of 100 μ s of the evolution. Preliminary results, which show the formation and development of both axisymmetric and helical structures, can be found in Thurow et al. (AIAA-2000-0659) and can be downloaded (including a few movies) from http://rclsgi.eng.ohio-state.edu/ samimy/GDTL/GDTL.htm.

  3. Three dimensional analysis of turbulent steam jets in enclosed structures : a CFD approach.

    SciTech Connect

    Ishii, M.; NguyenLe, Q.

    1999-04-20

    This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data.

  4. Transport de particules massives dans un fluide turbulent: Application a l'erosion due au sable sur les parois d'une turbine hydraulique

    NASA Astrophysics Data System (ADS)

    Bergeron, Stephen

    Le transport de particules massives par un champ turbulent est un vaste domaine de la mécanique des fluides. Il possède de nombreuses applications comme par exemple le transport de sable dans une turbine hydraulique. En raison de la dureté des grains de quartz et des grandes vitesses de collision avec les parois métalliques, un phénomène d'érosion intensif se produit. Les dommages résultants peuvent diminuer le rendement de la turbine au cours des quelques mois suivant la mise en opération. L'objectif de cette thèse est de mettre au point un outil permettant de prédire ces zones d'érosion. Ce projet de recherche en contexte industriel a été réalisé en collaboration avec la compagnie General Electric Hydro du Canada. Dans un régime hautement turbulent, il est possible d'obtenir une expression suffisamment générale en utilisant une formulation partiellement empirique: l'équation de Basset- Boussinesq-Oseen modifiée. Ce choix de modèle tient compte du niveau de précision recherché et de la méthode numérique employée afin de résoudre la phase fluide. Il permet aussi d'éliminer plusieurs ambiguïtés fréquemment rencontrées dans la littérature et implementées dans certains codes commerciaux courants. La formulation mathématique du problème est effectuée dans un espace mixte Euler-Lagrange. Les paramètres dynamiques sont relies au type de particules et à l'intensité de la turbulence. Le code numérique résultant est le plus performant développé à ce jour (août 1998). Les trajectoires de plusieurs centaines de milliers de particules peuvent être simulées et visualisées de manière interactive sur une station de travail (SGI R4K, R8K et R10K). L'utilisateur du logiciel est libre de se déplacer dans l'espace à l'aide d'un environnement similaire a un ``simulateur de vol''. Il peut ainsi analyser les détails du processus d'érosion de même que l'écoulement du fluide dans la turbine. Les zones d'érosion obtenues à l

  5. Temperature, Oxygen, and Soot-Volume-Fraction Measurements in a Turbulent C2H4-Fueled Jet Flame

    SciTech Connect

    Kearney, Sean P.; Guildenbecher, Daniel Robert; Winters, Caroline; Farias, Paul Abraham; Grasser, Thomas W.; Hewson, John C.

    2015-09-01

    We present a detailed set of measurements from a piloted, sooting, turbulent C 2 H 4 - fueled diffusion flame. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (CARS) is used to monitor temperature and oxygen, while laser-induced incandescence (LII) is applied for imaging of the soot volume fraction in the challenging jet-flame environment at Reynolds number, Re = 20,000. Single-laser shot results are used to map the mean and rms statistics, as well as probability densities. LII data from the soot-growth region of the flame are used to benchmark the soot source term for one-dimensional turbulence (ODT) modeling of this turbulent flame. The ODT code is then used to predict temperature and oxygen fluctuations higher in the soot oxidation region higher in the flame.

  6. Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model

    NASA Astrophysics Data System (ADS)

    Krappel, Timo; Ruprecht, Albert; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander

    2014-03-01

    The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.

  7. Turbulent transport analysis of JET H-mode and hybrid plasmas using QuaLiKiz and Trapped Gyro Landau Fluid

    NASA Astrophysics Data System (ADS)

    Baiocchi, B.; Garcia, J.; Beurskens, M.; Bourdelle, C.; Crisanti, F.; Giroud, C.; Hobirk, J.; Imbeaux, F.; Nunes, I.; Contributors, JET; EU-ITM ITER Scenario Modelling Group

    2015-03-01

    The physical transport processes at the basis of JET typical inductive H-mode scenarios and advanced hybrid regimes, with improved thermal confinement, are analyzed by means of some of the newest and more sophisticated quasi-linear transport models: trapped gyro Landau fluid (TGLF) and QuaLiKiz. The temporal evolution of JET pulses is modelled by CRONOS where the turbulent transport is modelled by either QuaLiKiz or TGLF. Both are first principle models with a more comprehensive physics than the models previously developed and therefore allow the analysis of the physics at the basis of the investigated scenarios. For H-modes, ion temperature gradient (ITG) modes are found to be dominant and the transport models are able to properly reproduce temperature profiles in self-consistent simulations. However, for hybrid regimes, in addition to ITG trapped electron modes (TEM) are also found to be important and different physical mechanisms for turbulence reduction play a decisive role. Whereas E × B flow shear and plasma geometry have a limited impact on turbulence, the presence of a large population of fast ions, quite important in low density regimes, can stabilize core turbulence mainly when the electromagnetic effects are taken into account. The TGLF transport model properly captures these mechanisms and correctly reproduces temperatures.

  8. Analysis of the Injection of a Heated, Turbulent Jet into a Moving Mainstream, with Emphasis on a Thermal Discharge in a Waterway. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ., Blacksburg

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.

    1972-01-01

    An experimental and theoretical investigation was undertaken to study the trajectory and growth of thermal effluents having a range of discharge velocities and temperatures. The discharge of a turbulent effluent into a waterway was mathematically modeled as a submerged jet injection process by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the location and size of the effluent with respect to the discharge point. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the effluent were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  9. Effect of Charge Relaxation in Three-Dimensional Numerical Simulations of Turbulent Primary Atomization of Electrically Charged Liquid Jets

    NASA Astrophysics Data System (ADS)

    Courtine, Emilien; van Poppel, Bret; Daily, John; Desjardins, Olivier

    2012-11-01

    Electrohydrodynamics (EHD) is an interdisciplinary topic that describes the complex interaction between fluid mechanics and electric fields. In the context of combustion applications, EHD may enable improved spray control and finer atomization so that fuel injection schemes can be inexpensively developed for small engines. Moreover, EHD may provide efficient enhancements to hydrocarbon fuel atomization that could benefit a much broader range of engines and non-combustion applications. In this work, high-fidelity numerical simulations of an electrically charged kerosene jet undergoing turbulent atomization are presented. The simulations make use of first-principle-based methods designed to accurately represent the interfacial stresses and discontinuities. Under the assumption of a large electric Reynolds number, it can be appropriate to assume that the charges do not have time to relax to the liquid-gas interface, and that they do not drift within the liquid volume. Alternatively, one can solve a free charge conservation equation to fully account for charge drift. These two approaches are compared in details, and the role of charge drift in EHD atomization is analyzed. The implementation of the charge transport equation, which is discontinuous in nature, is discussed as well.

  10. Simultaneous Laser Raman-rayleigh-lif Measurements and Numerical Modeling Results of a Lifted Turbulent H2/N2 Jet Flame in a Vitiated Coflow

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Chen, J. Y.; Dibble, R. W.; Myhrvold, T.; Karpetis, A. N.; Barlow, R. S.

    2002-01-01

    An experiment and numerical investigation is presented of a lifted turbulent H2/N2 jet flame in a coflow of hot, vitiated gases. The vitiated coflow burner emulates the coupling of turbulent mixing and chemical kinetics exemplary of the reacting flow in the recirculation region of advanced combustors. It also simplifies numerical investigation of this coupled problem by removing the complexity of recirculating flow. Scalar measurements are reported for a lifted turbulent jet flame of H2/N2 (Re = 23,600, H/d = 10) in a coflow of hot combustion products from a lean H2/Air flame ((empty set) = 0.25, T = 1,045 K). The combination of Rayleigh scattering, Raman scattering, and laser-induced fluorescence is used to obtain simultaneous measurements of temperature and concentrations of the major species, OH, and NO. The data attest to the success of the experimental design in providing a uniform vitiated coflow throughout the entire test region. Two combustion models (PDF: joint scalar Probability Density Function and EDC: Eddy Dissipation Concept) are used in conjunction with various turbulence models to predict the lift-off height (H(sub PDF)/d = 7,H(sub EDC)/d = 8.5). Kalghatgi's classic phenomenological theory, which is based on scaling arguments, yields a reasonably accurate prediction (H(sub K)/d = 11.4) of the lift-off height for the present flame. The vitiated coflow admits the possibility of auto-ignition of mixed fluid, and the success of the present parabolic implementation of the PDF model in predicting a stable lifted flame is attributable to such ignition. The measurements indicate a thickened turbulent reaction zone at the flame base. Experimental results and numerical investigations support the plausibility of turbulent premixed flame propagation by small scale (on the order of the flame thickness) recirculation and mixing of hot products into reactants and subsequent rapid ignition of the mixture.

  11. LES investigation of the transport and decay of various-strengths wake vortices in ground effect and subjected to a turbulent crosswind

    NASA Astrophysics Data System (ADS)

    Bricteux, L.; Duponcheel, M.; De Visscher, I.; Winckelmans, G.

    2016-06-01

    This study is concerned with the investigation of two-vortex systems (2VS) of various strengths that are released near the ground and evolve in the presence of a turbulent crosswind. We analyze the physics of the vortices interactions with the turbulent wind and with the ground during the rebound phase, and that lead to the fully developed turbulent flow and interactions. The transport and decay of the vortices are also analyzed. The turbulent wind itself is obtained by direct numerical simulation using a half channel flow. The flow is then supplemented with the 2VS, using vortices with a circulation distribution that is representative of vortices after roll-up of a near wake. The vortex strengths, Γ0, are such that ReΓ = Γ0/ν = 2.0 × 104 for the baseline; there is then a case with twice weaker vortices, and a case with twice stronger vortices. The simulations are run in wall-resolved Large Eddy Simulation (LES) mode. The baseline is in line with the wall-resolved LES study of a similar case [A. Stephan et al., "Aircraft wake-vortex decay in ground proximity - Physical mechanisms and artificial enhancement," J. Aircr. 50(4), 1250-1260 (2013)]. They highlighted the significant effect that the near-wall streaks of the wind have on the development of instabilities in the secondary vortices, and the ensuing turbulence. Our analysis complements theirs by also showing the significant effect that the wind turbulent structures, away from the ground and that are stretched by the primary vortices, also have on the destabilization of the secondary vortices. Comparisons are also made with the most recent study [F. N. Holzäpfel et al., "Wind impact on single vortices and counter-rotating vortex pairs in ground proximity," in 7th AIAA Atmospheric and Space Environments Conference, AIAA Aviation (American Institute of Aeronautics and Astronautics, 2015)], where ReΓ = 2.0 × 104 for all cases and where it is the wind intensity that is varied. Diagnostics on the vortex

  12. Simulation of a Wall-Bounded Flow using a Hybrid LES/RAS Approach with Turbulence Recycling

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Mcdaniel, James; Baurle, Robert A.

    2012-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/ Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters the three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case, and these comparisons indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. The effect of turbulence recycling on the solution is illustrated by performing coarse grid simulations with and without inflow turbulence recycling. Two shock sensors, one of Ducros and one of Larsson, are assessed for use with the hybridized inviscid flux reconstruction scheme.

  13. Soot volume fraction in a piloted turbulent jet non-premixed flame of natural gas

    SciTech Connect

    Qamar, N.H.; Alwahabi, Z.T.; King, K.D.; Chan, Q.N.; Nathan, G.J.; Roekaerts, D.

    2009-07-15

    Planar laser-induced incandescence (LII) has been used to measure soot volume fraction in a well-characterised, piloted, turbulent non-premixed flame known as the ''Delft Flame III''. Simulated Dutch natural gas was used as the fuel to produce a flame closely matching those in which a wide range of previous investigations, both experimental and modelling, have been performed. The LII method was calibrated using a Santoro-style burner with ethylene as the fuel. Instantaneous and time-averaged data of the axial and radial soot volume fraction distributions of the flame are presented here along with the Probability Density Functions (PDFs) and intermittency. The PDFs were found to be well-characterised by a single exponential distribution function. The distribution of soot was found to be highly intermittent, with intermittency typically exceeding 97%, which increases measurement uncertainty. The instantaneous values of volume fraction are everywhere less than the values in strained laminar flames. This is consistent with the soot being found locally in strained flame sheets that are convected and distorted by the flow. (author)

  14. Extreme events in a vortex gas simulation of a turbulent half-jet

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Pathikonda, Gokul; Narasimha, Roddam

    2012-11-01

    Extensive simulations [arXiv:1008.2876v1 [physics.flu-dyn], BAPS.2010.DFD.LE.4] have shown that the temporally evolving vortex gas mixing layer has 3 regimes, including one which has a universal spreading rate. The present study explores the development of spatially evolving mixing layers, using a vortex gas model based on Basu et al. (1995 Appl. Math. Modelling). The effects of the velocity ratio (r) are analyzed via the most extensive simulations of this kind till date, involving up to 10000 vortices and averaging over up to 1000 convective times. While the temporal limit is approached as r approaches unity, striking features such as extreme events involving coherent structures, bending, deviation of the convection velocity from mean velocity, spatial feedback and greater sensitivity to downstream and free stream boundary conditions are observed in the half-jet (r = 0) limit. A detailed statistical analysis reveals possible causes for the large scatter across experiments, as opposed to the commonly adopted explanation of asymptotic dependence on initial conditions. Supported in part by contract no. Intel/RN/4288.

  15. Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame

    SciTech Connect

    Kanga, D.M.; Fernandez, V.; Culick, F.E.C.; Ratner, A.

    2009-01-15

    This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)

  16. Large-eddy simulations of contrails in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Picot, J.; Paoli, R.; Thouron, O.; Cariolle, D.

    2014-11-01

    In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES) coupled to a Lagrangian particle tracking method to treat the ice phase. This is the first paper where fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere lower stratosphere. The initial flow-field is composed by the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail decent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex break-up dominates over background turbulence at the end of the vortex regime and dominates the mixing with ambient air. This results in global microphysical characteristics such as ice mass and optical depth that are be slightly affected by the intensity of atmospheric turbulence. On the other hand, the background humidity and temperature have a first order effect on the survival of ice crystals and particle size distribution, which is in line with recent and ongoing studies in the literature.

  17. Generation of Alfvénic waves and turbulence in reconnection jets

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro; Higashimori, Katsuaki

    2015-05-01

    The magnetohydrodynamic linear stability with the localized bulk flow oriented parallel to the neutral sheet is investigated, by including the Hall effect and the guide magnetic field. We observe three different unstable modes: a "streaming tearing" mode at a slow flow speed, a "streaming sausage" mode at a medium flow speed, and a "streaming kink" mode at a fast flow speed. The streaming tearing and sausage modes have a standard tearing mode-like structure with symmetric density fluctuations in the neutral sheet, while the kink mode has an asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing magnetic Reynolds number, while the growth rates of the sausage and kink modes do not depend strongly on the Reynolds number. The sausage and kink modes can be unstable for not only super-Alfvénic flow but also sub-Alfvénic flow when the lobe density is low. The wavelengths of these unstable modes are of the same order of magnitude as the thickness of the plasma sheet. Their maximum growth rates are higher than that of a standard tearing mode, and under a strong guide magnetic field, the growth rates of the sausage and kink modes are enhanced, while under a weak guide magnetic field, they are suppressed. For a thin plasma sheet with the Hall effect, the fluctuations of the streaming modes can exist over the plasma sheet. These unstable modes may be regarded as being one of the processes generating Alfvénic turbulence in the plasma sheet during magnetic reconnection.

  18. Large Eddy Simulation of a Film Cooling Flow Injected from an Inclined Discrete Cylindrical Hole into a Crossflow with Zero-Pressure Gradient Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Johnson, Perry L.; Shyam, Vikram

    2012-01-01

    A Large Eddy Simulation (LES) is performed of a high blowing ratio (M = 1.7) film cooling flow with density ratio of unity. Mean results are compared with experimental data to show the degree of fidelity achieved in the simulation. While the trends in the LES prediction are a noticeable improvement over Reynolds-Averaged Navier-Stokes (RANS) predictions, there is still a lack a spreading on the underside of the lifted jet. This is likely due to the inability of the LES to capture the full range of influential eddies on the underside of the jet due to their smaller structure. The unsteady structures in the turbulent coolant jet are also explored and related to turbulent mixing characteristics

  19. Laser Raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H{sub 2}/CO{sub 2} fuel

    SciTech Connect

    Smith, L.L.; Dibble, R.W.; Talbot, L.; Barlow, R.S.; Carter, C.D.

    1994-01-01

    This paper explores effects of differential diffusion in nonpremixed turbulent jet flames. Pulsed Raman scattering spectroscopy is used to measure temperature and species concentrations in chemically reacting jets of H{sub 2}/CO{sub 2} into air, over a range of jet Reynolds numbers from 1,000 to 30,000 based on cold jet fluid properties. Results show significant effects of differential diffusion at all jet Reynolds numbers considered. Differential diffusion between H{sub 2} and C0{sub 2} produces differences between the hydrogen element mixture fraction ({xi}{sub H}) and the carbon element mixture fraction ({xi}{sub c}). The greatest effects occur on the rich side of stoichiometric, where {xi}{sub H} is observed to be smaller than {xi}{sub C} at all Reynolds numbers. Differential diffusion between H{sub 2} and H{sub 2}O creates a net flux of hydrogen element toward the stoichiometric contour and causes a local maximum in {xi}H that occurs near the stoichiometric condition. A differential diffusion variable {sup Z}H is defined as the difference between {xi}{sub H} and {xi}{sub C}. The variance Of {sup Z}H conditional on {xi}{sub C} also shows that differential diffusion effects are greatest on the rich side of the flame. Conditional variances of {sup Z}H are largest at intermediate Reynolds numbers.

  20. Modeling of turbulent chemical reaction

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  1. Turbulence Characteristics of Swirling Flowfields. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jackson, T. W.

    1983-01-01

    Combustor design phenomena; recirculating flows research; single-wire, six-orientation, eddy dissipation rate, and turbulence modeling measurement; directional sensitivity (DS); calibration equipment, confined jet facility, and hot-wire instrumentation; effects of swirl, strong contraction nozzle, and expansion ratio; and turbulence parameters; uncertain; and DS in laminar jets; turbulent nonswirling jets, and turbulent swirling jets are discussed.

  2. CAA for Jet Noise Physics

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda

    2001-01-01

    Dr. Mankbadi summarized recent CAA results. Examples of the effect of various boundary condition schemes on the computed acoustic field, for a point source in a uniform flow, were shown. Solutions showing the impact of inflow excitations on the result were also shown. Results from a large eddy simulation, using a fourth-order MacCormack scheme with a Smagorinsky sub-grid turbulence model, were shown for a Mach 2.1 unheated jet. The results showed that the results were free from spurious modes. Results were shown for a Mach 1.4 jet using LES in the near field and the Kirchhoff method for the far field. Predicted flow field characteristics were shown to be in good agreement with data and predicted far field directivities were shown to be in qualitative agree with experimental measurements.

  3. Turbulent heat flux measurement in a non-reacting round jet, using BAM:Eu2+ phosphor thermography and particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Lee, Hyunchang; Böhm, Benjamin; Sadiki, Amsini; Dreizler, Andreas

    2016-07-01

    Turbulent mixing is highly important in flows that involve heat and mass transfer. Information on turbulent heat flux is needed to validate the mixing models implemented in numerical simulations. The calculation of turbulent heat fluxes requires instantaneous information on temperature and velocity. Even using minimally intrusive laser optical methods, simultaneous measurement of temperature and velocity is still a challenge. In this study, thermographic phosphor particles are used for simultaneous thermometry and velocimetry: conventional particle image velocimetry is combined with temperature-dependent spectral shifts of BAM:Eu2+ phosphor particles upon UV excitation. The novelty of this approach is the analysis of systematic errors and verification using the well-known properties of a heated turbulent jet issuing into a low velocity, cold coflow. The analysis showed that systematic errors caused by laser fluence, multiple scattering, or preferential signal absorption can be reduced such that reliable measurement of scalar fluxes becomes feasible, which is a prerequisite for applying the method to more complex heat transfer problems.

  4. Effects of micro-ramp on transverse jet in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Zhang, Yujie; Liu, Weidong; Wang, Bo; Sun, Mingbo

    2016-10-01

    The effects of micro-ramp on the characteristics of transverse jet were investigated by the LES simulation at Mach 2.7, with recycling-rescaling method applied to reproduce the turbulent boundary layer. The transverse nitrogen jet in front of micro-ramp and behind micro-ramp were studied by comparison with plate jet. It is found that the micro-ramp can improve the penetration height obviously, while placing jet orifice behind micro-ramp, due to the low freestream momentum in ramp wake. On the other hand, when placing the jet orifice in front of micro-ramp, the improvement in penetration is quite slight, because most injection is above the boundary layer and micro-ramp has little influence on the main flow. It is also observed that unlike the periodic Kevin Helmholtz (K-H) vortices appeared in ramp wake, the periodic K-H vortices are not achieved in jet cases.

  5. The effects of actuation frequency on the separation control over an airfoil using a synthetic jet

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Okada, K.; Nonomura, T.; Fujii, K.

    2015-06-01

    The simulation of separation control using a synthetic jet (SJ) is conducted around an NACA (National Advisory Committee for Aeronautics) 0015 airfoil by large-eddy simulation (LES) with a compact difference scheme. The synthetic jet is installed at the leading edge of the airfoil and the effects of an actuation frequency F+ (normalized by chord length and velocity of freestream) are observed. The lift-drag coefficient is recovered the most for F+ = 6. The relationship between momentum addition by turbulent mixing and large vortex structures is investigated using a phase-averaging procedure based on F+. The Reynolds shear stress is decomposed into periodic and turbulent components where the turbulent components are found to be dominant on the airfoil. The strong turbulent components appear near the large vortex structures that are observed in phase- and span-averaged flow fields.

  6. Simultaneous Raman-Rayleigh-LIF Measurements and Numerical Modeling Results of a Lifted H2/N2 Turbulent Jet Flame in a Vitiated Coflow

    NASA Technical Reports Server (NTRS)

    Cabra, R.; Chen, J. Y.; Dibble, R. W.; Hamano, Y.; Karpetis, A. N.; Barlow, R. S.

    2002-01-01

    An experimental and numerical investigation is presented of a H2/N2 turbulent jet flame burner that has a novel vitiated coflow. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces. Additionally, since the vitiated gases are coflowing, the burner allows for exploration of recirculation chemistry without the corresponding fluid mechanics of recirculation. Thus the vitiated coflow burner design facilitates the development of chemical kinetic combustion models without the added complexity of recirculation fluid mechanics. Scalar measurements are reported for a turbulent jet flame of H2/N2 in a coflow of combustion products from a lean ((empty set) = 0.25) H2/Air flame. The combination of laser-induced fluorescence, Rayleigh scattering, and Raman scattering is used to obtain simultaneous measurements of the temperature, major species, as well as OH and NO. Laminar flame calculation with equal diffusivity do agree when the premixing and preheating that occurs prior to flame stabilization is accounted for in the boundary conditions. Also presented is an exploratory pdf model that predicts the flame's axial profiles fairly well, but does not accurately predict the lift-off height.

  7. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    NASA Astrophysics Data System (ADS)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  8. Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Nagata, K.

    2016-08-01

    We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.

  9. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  10. Measurement of the Root Mean Square (RMS) Temperature Fluctuations of a Turbulent Plane Jet Using an Optical Method

    NASA Astrophysics Data System (ADS)

    Borji, S.; Benzirar, M.; Sabri, L.; Bouabdellaoui, M.

    2016-07-01

    The purpose of this paper is to reach the root mean square (RMS) value of the fluctuating temperature along a jet plane by examining only the impact produced by a laser beam after having traversed the heated jet of air. This model is based on the Einstein-Fokker-Planck-Kolmogorov (EFPK) equation, which helped us to determine the value of the jet diffusion coefficient defined as a proportionality factor between the mean square of the deflection angle fluctuations and the length of the corresponding finite laser beam path. The numerical method of calculation in our work uses the value of the localized diffusion coefficient. This plays an essential role in measuring along the RMS of the temperature fluctuations. The obtained values are compared to the experimental measurements.

  11. Interphase Momentum and Heat Exchange in Turbulent Dust-Laden Plasma Jet under Continuous Radial Powder Injection

    SciTech Connect

    Solonenko, Oleg P.; Smirnov, Audrey V.

    2006-05-05

    Potential possibilities of an advanced approach based on the usage of DC cascade torch providing an axially symmetric plasma jet outflow, and continuous radial injection of powder into a plasma flow are discussed. Comparison is made of the results, obtained using two models of interphase heat and momentum exchange between polydisperse alumina particles and air plasma jet, other factors being the same. The widely used model of gradientless particles' heating was applied for computing the two-phase plasma jets' temperature and velocity fields. The model is compared with corresponding model of gradient particle heating computed by using an efficient numerical method developed. Calculations were conducted under different scales of dense loading conditions to estimate the maximum productivity of plasma spray process.

  12. Heat transfer measurements and CFD simulations of an impinging jet

    NASA Astrophysics Data System (ADS)

    Petera, Karel; Dostál, Martin

    2016-03-01

    Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.

  13. Control of unsteadiness of a shock wave/turbulent boundary layer interaction by using a pulsed-plasma-jet actuator

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Venkateswaran; Raja, Laxminarayan L.; Clemens, Noel T.

    2012-07-01

    A pulsed-plasma jet actuator is used to control the unsteady motion of the separation shock of a shock wave/boundary layer interaction formed by a compression ramp in a Mach 3 flow. The actuator is based on a plasma-generated synthetic jet and is configured as an array of three jets that can be injected normal to the cross-flow, pitched, or pitched and skewed. The typical peak jet exit velocity of the actuators is about 300 m/s and the pulsing frequencies are a few kilohertz. A study of the interaction between the pulsed-plasma jets and the shock/boundary layer interaction was performed in a time-resolved manner using 10 kHz schlieren imaging. When the actuator, pulsed at StL ≈ 0.04 (f = 2 kHz), was injected into the upstream boundary layer, the separation shock responded to the plasma jet by executing a rapid upstream motion followed by a gradual downstream recovery motion. Schlieren movies of the interaction showed that the separation shock unsteadiness was locked to the pulsing frequency of the actuator, with amplitude of about one boundary layer thickness. Wall-pressure measurements made under the intermittent region showed about a 30% decrease in the overall magnitude of the pressure fluctuations in the low-frequency band associated with unsteady large-scale motion of the separated flow. Furthermore, by increasing the pulsing frequency to 3.3 kHz, the amplitude of the separation shock oscillation was reduced to less than half the boundary layer thickness. Investigation into the effect of the actuator location on the shock wave/boundary layer interaction (SWBLI) showed qualitatively and quantitatively that the actuator placed upstream of the separation shock caused significant modification to the SWBLI unsteadiness, whereas injection from inside the separation bubble did not cause a noticeable effect.

  14. Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in a heated coflow: flame stabilization and structure

    SciTech Connect

    Chen, Jackie; Sankaran, Ramanan; Yoo, Chun S

    2009-01-01

    Direct numerical simulation (DNS) of the near field of a three-dimensional spatially developing turbulent lifted hydrogen jet flame in heated coflow is performed with a detailed mechanism to determine the stabilization mechanism and the flame structure. The DNS was performed at a jet Reynolds number of 11,000 with over 940 million grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. A chemical flux analysis shows the occurrence of near-isothermal chemical chain branching preceding thermal runaway upstream of the stabilization point, indicative of hydrogen auto-ignition in the second limit. The Damkoehler number and key intermediate-species behaviour near the leading edge of the lifted flame also verify that auto-ignition occurs at the flame base. At the lifted-flame base, it is found that heat release occurs predominantly through ignition in which the gradients of reactants are opposed. Downstream of the flame base, both rich-premixed and non-premixed flames develop and coexist with auto-ignition. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base. In particular, the relative position of the flame base and the coherent flow structure induces a cyclic motion of the flame base in the transverse and axial directions about a mean lift-off height. This is confirmed by Lagrangian tracking of key scalars, heat release rate and velocity at the stabilization point.

  15. Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow

    NASA Technical Reports Server (NTRS)

    Boles, John A.; Edwards, Jack R.; Baurle, Robert A.

    2008-01-01

    A computational study of transverse sonic injection of air and helium into a Mach 1.98 cross-flow is presented. A hybrid large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) turbulence model is used, with the two-equation Menter baseline (Menter-BSL) closure for the RANS part of the flow and a Smagorinsky-type model for the LES part of the flow. A time-dependent blending function, dependent on modeled turbulence variables, is used to shift the closure from RANS to LES. Turbulent structures are initiated and sustained through the use of a recycling / rescaling technique. Two higher-order discretizations, the Piecewise Parabolic Method (PPM) of Colella and Woodward, and the SONIC-A ENO scheme of Suresh and Huyhn are used in the study. The results using the hybrid model show reasonably good agreement with time-averaged Mie scattering data and with experimental surface pressure distributions, even though the penetration of the jet into the cross-flow is slightly over-predicted. The LES/RANS results are used to examine the validity of commonly-used assumptions of constant Schmidt and Prandtl numbers in the intense mixing zone downstream of the injection location.

  16. Large-eddy simulation of cavitating nozzle and jet flows

    NASA Astrophysics Data System (ADS)

    Örley, F.; Trummler, T.; Hickel, S.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    We present implicit large-eddy simulations (LES) to study the primary breakup of cavitating liquid jets. The considered configuration, which consists of a rectangular nozzle geometry, adopts the setup of a reference experiment for validation. The setup is a generic reproduction of a scaled-up automotive fuel injector. Modelling of all components (i.e. gas, liquid, and vapor) is based on a barotropic two-fluid two-phase model and employs a homogenous mixture approach. The cavitating liquid model assumes thermodynamic- equilibrium. Compressibility of all phases is considered in order to capture pressure wave dynamics of collapse events. Since development of cavitation significantly affects jet break-up characteristics, we study three different operating points. We identify three main mechanisms which induce primary jet break-up: amplification of turbulent fluctuations, gas entrainment, and collapse events near the liquid-gas interface.

  17. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH{sub 2}O in a piloted premixed jet flame

    SciTech Connect

    Li, Z.S.; Li, B.; Sun, Z.W.; Alden, M.; Bai, X.S.

    2010-06-15

    High resolution planar laser-induced fluorescence (PLIF) was applied to investigate the local flame front structures of turbulent premixed methane/air jet flames in order to reveal details about turbulence and flame interaction. The targeted turbulent flames were generated on a specially designed coaxial jet burner, in which low speed stoichiometric gas mixture was fed through the outer large tube to provide a laminar pilot flame for stabilization of the high speed jet flame issued through the small inner tube. By varying the inner tube flow speed and keeping the mixture composition as that of the outer tube, different flames were obtained covering both the laminar and turbulent flame regimes with different turbulent intensities. Simultaneous CH/CH{sub 2}O, and also OH PLIF images were recorded to characterize the influence of turbulence eddies on the reaction zone structure, with a spatial resolution of about 40 {mu}m and temporal resolution of around 10 ns. Under all experimental conditions, the CH radicals were found to exist only in a thin layer; the CH{sub 2}O were found in the inner flame whereas the OH radicals were seen in the outer flame with the thin CH layer separating the OH and CH{sub 2}O layers. The outer OH layer is thick and it corresponds to the oxidation zone and post-flame zone; the CH{sub 2}O layer is thin in laminar flows; it becomes broad at high speed turbulent flow conditions. This phenomenon was analyzed using chemical kinetic calculations and eddy/flame interaction theory. It appears that under high turbulence intensity conditions, the small eddies in the preheat zone can transport species such as CH{sub 2}O from the reaction zones to the preheat zone. The CH{sub 2}O species are not consumed in the preheat zone due to the absence of H, O, and OH radicals by which CH{sub 2}O is to be oxidized. The CH radicals cannot exist in the preheat zone due to the rapid reactions of this species with O{sub 2} and CO{sub 2} in the inner-layer of the

  18. Large-eddy simulation of contrail evolution in the vortex phase and its interaction with atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Picot, J.; Paoli, R.; Thouron, O.; Cariolle, D.

    2015-07-01

    In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES) coupled to a Lagrangian particle tracking method to treat the ice phase. In this paper, fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere and lower stratosphere. The initial flow field is composed of the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail descent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex breakup dominates over background turbulence until the end of the vortex regime and controls the mixing with ambient air. This results in mean microphysical characteristics such as ice mass and optical depth that are slightly affected by the intensity of atmospheric turbulence. However, the background humidity and temperature have a first-order effect on the survival of ice crystals and particle size distribution, which is in line with recent studies.

  19. Numerical Investigation of the Control of Separation from Curved and Blunt Trailing Edges Using DNS and LES

    NASA Astrophysics Data System (ADS)

    Fasel, Hermann F.

    2002-07-01

    Wall jets over a curved wall geometry (Coanda flows) are investigated using DNS and turbulence modeling. In experiments large coherent structures have enhanced the effectiveness of wall jets in delaying or preventing flow separation on airfoils. Understanding the behavior of these structures is essential for utilizing wall jets for separation control. The research objective is to investigate curvature effects on large coherent structures, in particular the development of longitudinal (Goertler-type) vortices and their interaction with 2D vortices. The focus is on Coanda cylinders using two computational approaches. With the Flow Simulation Methodology (FSM), a turbulent wall jet is computed over a cylinder segment on a body-fitted grid. In FSM, the contribution of the turbulence model depends on the grid resolution relative to a local turbulent length scale. For a flat-plate reference case, FSM is employed as DNS, LES, and URANS. In all cases the large 2D vortices are captured. For the curved-wall geometry, FSM is employed as a DNS. Goertler-type vortices emerge in the simulation but remain weak due to the narrow computational domain. In the second approach, Coanda flows including nozzle and separated region are computed using immersed boundary techniques (IBT). The feasibility of IBT for Coanda Flows is established.

  20. The influence of geometry on jet plume development

    NASA Astrophysics Data System (ADS)

    Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.

    2012-07-01

    Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.

  1. Influence of large-scale motion on turbulent transport for confined coaxial jets. Volume 1: Analytical analysis of the experimental data using conditional sampling

    NASA Technical Reports Server (NTRS)

    Brondum, D. C.; Bennett, J. C.

    1986-01-01

    The existence of large scale coherent structures in turbulent shear flows has been well documented. Discrepancies between experimental and computational data suggest a necessity to understand the roles they play in mass and momentum transport. Using conditional sampling and averaging on coincident two component velocity and concentration velocity experimental data for swirling and nonswirling coaxial jets, triggers for identifying the structures were examined. Concentration fluctuation was found to be an adequate trigger or indicator for the concentration-velocity data, but no suitable detector was located for the two component velocity data. The large scale structures are found in the region where the largest discrepancies exist between model and experiment. The traditional gradient transport model does not fit in this region as a result of these structures. The large scale motion was found to be responsible for a large percentage downstream at approximately the mean velocity of the overall flow in the axial direction. The radial mean velocity of the structures was found to be substantially greater than that of the overall flow.

  2. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  3. Calibration, Data Acquisition, and Post Analysis of Turbulent Fluid Flow in a Calibration Jet Using Hot-wire Anemometry

    NASA Technical Reports Server (NTRS)

    Moreno, Michelle

    2004-01-01

    The Turbine Branch concentrates on the following areas: Computational Fluid Dynamics (CFD), and implementing experimental procedures to obtain physical modeling data. Hot-wire Anemometry is a valuable tool for obtaining physical modeling data. Hot-wire Anemometry is likely to remain the principal research tool for most turbulent air/gas flow studies. The Hot-wire anemometer consists of a fine wire heated by electric current. When placed in a fluid stream, the hot-wire loses heat to the fluid by forced convection. In forced convection, energy transfer is due to molecular motion imposed by an extraneous force moving fluid parcels. When the hot-wire is in "equilibrium", the rate of heat input to the wire is equal to the rate of heat loss at the wire ends. The equality between heat input and heat loss is the basis for King s equation, which relates the electrical parameters of the hot-wire to the flow parameters of the fluid. Hot-wire anemometry is based on convective heat transfer from a heated wire element placed in a fluid flow. Any change in the fluid flow condition that affects the heat transfer from the heated element will be detected virtually instantaneously by a constant-temperature Hot-wire anemometry system. The system implemented for this research is the IFA 300. The system is a fully-integrated, thermal anemometer-based system that measures mean and fluctuating velocity components in air, water, and other fluids. It also measures turbulence and makes localized temperature measurements. A constant-temperature anemometer is a bridge and amplifier circuit that controls a tiny wire at constant temperature. As a fluid flow passes over the heated sensor, the amplifier senses the bridge off-balance and adjusts the voltage to the top of the bridge, keeping the bridge in balance. The voltage on top of the bridge can then be related to the velocity of the flow. The bridge voltage is sensitive to temperature as well as velocity and so the built-in thermocouple

  4. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  5. Unstructured Large Eddy Simulations of Hot Supersonic Jets from a Chevron Nozzle

    NASA Astrophysics Data System (ADS)

    Brès, Guillaume; Nichols, Joseph; Lele, Sanjiva; Ham, Frank

    2012-11-01

    Large eddy simulations (LES) are performed for heated supersonic turbulent jets issued from a converging-diverging round nozzle with chevrons. The unsteady flow processes and shock/turbulence interactions are investigated with the unstructured compressible flow solver ``Charles'' developed at Cascade Technologies. In this study, the complex geometry of the nozzle and chevrons (12 counts, 6° penetration) are explicitly included in the computational domain using unstructured body-fitted mesh and adaptive grid refinement. Sound radiation from the jet is computed using an efficient frequency-domain implementation of the Ffowcs Williams-Hawkings equation. Noise predictions are compared to experimental measurements carried out at the United Technologies Research Center for the same nozzle and operating conditions. The initial blind comparisons show good agreement in terms of spectra shape and levels for both the near-field and far-field noise. The current results show that the simulations accurately capture the main flow and noise features, including the shock cells, broadband shock-associated noise and turbulent mixing noise. Additional analysis of the large database generated by the LES is ongoing, to further investigate jet noise sources and chevron effects. This work is supported by NAVAIR grant N68335-11-C-0026 managed by Dr. John Spyropoulos. The simulations were carried out at DoD supercomputer facilities in ERDC and AFRL as part of the HPC Challenge Project NAWCP30952C5.

  6. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  7. Les noyaux actifs de galaxies

    NASA Astrophysics Data System (ADS)

    Camenzind, Max; Boucher, A.

    Découverts il y a plus de 30 ans, les quasars et les radiogalaxies sont des galaxies particulières qui manifestent en leur centre une activité intense. Cet ouvrage se consacre aux principales questions de la physique des noyaux actifs en les illustrant par de récentes données. Y sont traités les domaines suivants: les noyaux des galaxies actives, la théorie des trous noirs en rotation et de leurs disques d'accrétion, l'origine des raies d'émission et les jets des galaxies actives. Fournissant une introduction génerale à la terminologie, cet ouvrage s'adresse aussi bien aux étudiants en astronomie qu'aux astrophysiciens.

  8. High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows

    NASA Astrophysics Data System (ADS)

    Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.

    2014-07-01

    In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission

  9. Exploring Vertical Turbulence Structure in Neutrally and Stably Stratified Flows Using the Weather Research and Forecasting-Large-Eddy Simulation (WRF-LES) Model

    NASA Astrophysics Data System (ADS)

    Udina, Mireia; Sun, Jielun; Kosović, Branko; Soler, Maria Rosa

    2016-11-01

    Following Sun et al. (J Atmos Sci 69(1):338-351, 2012), vertical variations of turbulent mixing in stably stratified and neutral environments as functions of wind speed are investigated using the large-eddy simulation capability in the Weather Research and Forecasting model. The simulations with a surface cooling rate for the stable boundary layer (SBL) and a range of geostrophic winds for both stable and neutral boundary layers are compared with observations from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99). To avoid the uncertainty of the subgrid scheme, the investigation focuses on the vertical domain when the ratio between the subgrid and the resolved turbulence is small. The results qualitatively capture the observed dependence of turbulence intensity on wind speed under neutral conditions; however, its vertical variation is affected by the damping layer used in absorbing undesirable numerical waves at the top of the domain as a result of relatively large neutral turbulent eddies. The simulated SBL fails to capture the observed temperature variance with wind speed and the observed transition from the SBL to the near-neutral atmosphere with increasing wind speed, although the vertical temperature profile of the simulated SBL resembles the observed profile. The study suggests that molecular thermal conduction responsible for the thermal coupling between the surface and atmosphere cannot be parameterized through the Monin-Obukhov bulk relation for turbulent heat transfer by applying the surface radiation temperature, as is common practice when modelling air-surface interactions.

  10. Exploring Vertical Turbulence Structure in Neutrally and Stably Stratified Flows Using the Weather Research and Forecasting-Large-Eddy Simulation (WRF-LES) Model

    NASA Astrophysics Data System (ADS)

    Udina, Mireia; Sun, Jielun; Kosović, Branko; Soler, Maria Rosa

    2016-07-01

    Following Sun et al. (J Atmos Sci 69(1):338-351, 2012), vertical variations of turbulent mixing in stably stratified and neutral environments as functions of wind speed are investigated using the large-eddy simulation capability in the Weather Research and Forecasting model. The simulations with a surface cooling rate for the stable boundary layer (SBL) and a range of geostrophic winds for both stable and neutral boundary layers are compared with observations from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99). To avoid the uncertainty of the subgrid scheme, the investigation focuses on the vertical domain when the ratio between the subgrid and the resolved turbulence is small. The results qualitatively capture the observed dependence of turbulence intensity on wind speed under neutral conditions; however, its vertical variation is affected by the damping layer used in absorbing undesirable numerical waves at the top of the domain as a result of relatively large neutral turbulent eddies. The simulated SBL fails to capture the observed temperature variance with wind speed and the observed transition from the SBL to the near-neutral atmosphere with increasing wind speed, although the vertical temperature profile of the simulated SBL resembles the observed profile. The study suggests that molecular thermal conduction responsible for the thermal coupling between the surface and atmosphere cannot be parameterized through the Monin-Obukhov bulk relation for turbulent heat transfer by applying the surface radiation temperature, as is common practice when modelling air-surface interactions.

  11. Recent advances in turbulence prediction

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    Turbulence in the upper troposphere and the lower stratosphere (8-14 kilometers in altitude) is a well-known aviation hazard; it is the major cause of injuries and occasional fatalities to passengers and crew members on commercial aircraft. Jet streams, thunderstorms, flow over mountains, and even the passage of other aircraft cause turbulence. However, the lack of precise observational data (which is still mainly from pilots reporting turbulence) and a clear understanding of the processes that cause turbulence make it difficult to accurately forecast aviation-scale turbulence. Hence, upper troposphere and lower stratosphere turbulence forecasting is an area of active research.

  12. Jet stream related observations by MST radars

    NASA Technical Reports Server (NTRS)

    Gage, K. S.

    1983-01-01

    An overview of the jet stream and its observation by MST radar is presented. The climatology and synoptic and mesoscale structure of jet streams is briefly reviewed. MST radar observations of jet stream winds, and associated waves and turbulence are then considered. The possibility of using a network of ST radars to track jet stream winds in near real time is explored.

  13. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1993-01-01

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  14. Control of jet noise

    NASA Astrophysics Data System (ADS)

    Schreck, Stefan

    This reports describes experiments conducted at the High-Speed Jet Facility at the University of Southern California on supersonic jets. The goal of the study was to develop methods for controlling the noise emitted from supersonic jets by passive and/or active means. Work by Seiner et al (1991) indicates that eddy Mach wave radiation is the dominant noise source in a heated high speed jet. Eddy Mach radiation is caused by turbulent eddies traveling at supersonic speed in the shear layer of the jet. The convection velocity of the eddies decays with increasing distance from the nozzle exit due to the mixing of the jet stream with the ambient fluid. Once the convection speed reaches subsonic velocities, eddy Mach wave radiation ceases. To control noise, a rapid decay of the convection velocity is desired. This may be accomplished by enhanced mixing in the jet. In this study, small aspect ratio rectangular jet nozzles were tested. A flapping mode was noticed in the jets. By amplifying screech components of the jets and destabilizing the jet columns with a collar device, the flapping mode was excited. The result was a rapid decay of the jet velocity. A reduction in eddy Mach radiation in rectangular supersonic jets may be achieved with this device.

  15. CAA for Jet Noise Physics: Issues and Recent Progress

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda

    2001-01-01

    Dr. Mankbadi summarized recent CAA results. Examples of the effect of various boundary condition schemes on the computed acoustic field, for a point source in a uniform flow, were shown. Solutions showing the impact of inflow excitations on the result were also shown. Results from a large eddy simulation, using a fourth-order MacCormack scheme with a Smagorinsky sub-grid turbulence model, were shown for a Mach 2.1 unheated jet. The results showed that the results were free from spurious modes. Results were shown for a Mach 1.4 jet using LES in the near field and the Kirchhoff method for the far field. Predicted flow field characteristics were shown to be in good agreement with data and predicted far field directivities were shown to be in qualitative agree with experimental measurements.

  16. Investigation of two plane parallel jets

    NASA Astrophysics Data System (ADS)

    Elbanna, H.; Gahin, S.; Rashed, M. I. I.

    1983-07-01

    Flow measurements made downstream from two air jets are reported. The exit Re was 20,000 and turbulence was kept to 1 pct. X-wire constant temperature anemometers were employed to measure the mean velocities and the three component turbulent intensities. Data were gathered on the flowfield of both a single jet and from two jets. A velocity profile from two jets was found to be similar to that of a single jet, with the combined jets width spreading linearly downstream as a single jet, but with a slightly lower spread angle. The turbulent velocity fluctuations were, however, dissimilar up to 120 nozzle diameters downstream. Finally, the maximum shear stress was nearly the same with two jets as with one jet.

  17. Large-eddy simulations of turbulent flows in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  18. Large eddy simulation of the near-field vortex dynamics in starting square jet transitioning into steady state

    NASA Astrophysics Data System (ADS)

    Ghasemi, A.; Roussinova, V.; Barron, R. M.; Balachandar, R.

    2016-08-01

    Large eddy simulation (LES) is carried out to study the vortex dynamics in the near-field of a starting turbulent square jet as well as its evolution into a developed steady jet. Simulations are conducted at Reynolds numbers (Re = UjD/υ) of 8000 and 45 000 based on the nozzle hydraulic diameter (" separators=" D ) and jet velocity (Uj). A Reynolds stress model was used to simulate the internal flow in the nozzle which provided the inlet conditions for the LES of the jet. To validate the simulations, turbulence statistics are compared with experimental results available for a steady square jet. Evaluation of the probability density function, skewness, and flatness of the centerline streamwise velocity (Uc) shows deviation from the Gaussian distribution in the near-field. Evolution of the self-induced deformation of the leading vortex ring is investigated to further clarify the role of axis-switching. The axis-switching is initiated earlier at low Reynolds number while the completion of the axis-switching process occurred at the same dimensionless time for both Reynolds numbers. The role of pressure distribution on vortex ring deformation is investigated. It is shown that the influence of pressure-induced azimuthal instability tends to deform a two-dimensional vortex ring topology into a three-dimensional one and revert back to a two-dimensional character again. The break-down and diffusion of the tip of the vortex are also studied. Evolution of the shear layer from a starting jet to a developed jet is studied in terms of the vorticity field. For a starting jet, entrainment is shown to occur in the presence of corner hairpin vortices.

  19. Mathematical and Numerical Modeling of Turbulent Flows.

    PubMed

    Vedovoto, João M; Serfaty, Ricardo; Da Silveira Neto, Aristeu

    2015-01-01

    The present work is devoted to the development and implementation of a computational framework to perform numerical simulations of low Mach number turbulent flows over complex geometries. The algorithm under consideration is based on a classical predictor-corrector time integration scheme that employs a projection method for the momentum equations. The domain decomposition strategy is adopted for distributed computing, displaying very satisfactory levels of speed-up and efficiency. The Immersed Boundary Methodology is used to characterize the presence of a complex geometry. Such method demands two separate grids: An Eulerian, where the transport equations are solved with a Finite Volume, second order discretization and a Lagrangian domain, represented by a non-structured shell grid representing the immersed geometry. The in-house code developed was fully verified by the Method of Manufactured Solutions, in both Eulerian and Lagrangian domains. The capabilities of the resulting computational framework are illustrated on four distinct cases: a turbulent jet, the Poiseuille flow, as a matter of validation of the implemented Immersed Boundary methodology, the flow over a sphere covering a wide range of Reynolds numbers, and finally, with the intention of demonstrating the applicability of Large Eddy Simulations - LES - in an industrial problem, the turbulent flow inside an industrial fan. PMID:26131642

  20. Measurement and Empirical Correlation of Transpiration-Cooling Parameters on a 25 degree Cone in a Turbulent Boundary Layer in Both Free Flight and a Hot-Gas Jet

    NASA Technical Reports Server (NTRS)

    Walton, Thomas E., Jr.; Rashis, Bernard

    1961-01-01

    Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.

  1. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.

  2. Large-eddy simulation of crackle in heated supersonic jets

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Lele, Sanjiva K.; Ham, Frank E.; Martens, Steve; Spyropoulos, John T.

    2012-11-01

    Crackle noise from heated supersonic jets is characterized by the presence of strong positive pressure impulses resulting in a strongly skewed far-field pressure signal (Ffowcs Williams et al., 1975). These strong positive pressure impulses are associated with N-shaped waveforms involving a shock-like compression, and thus is very annoying to observers when it occurs. In this talk, the origins of these N-shaped waveforms is investigated through high-fidelity large-eddy simulations (LES) applied to an over-expanded supersonic jet issuing from a faceted military-style nozzle. Two different levels of heating are considered. From the LES, we observe N-shaped waves associated with crackle to emerge directly from the jet turbulence. Furthermore, even at this extreme near-field location, we find that the emergent waves are already well-organized, having correlation over significant azimuthal distances. Computational resources were provided by a DoD HPCMP Challenge Project allocation at the ERDC and AFRL supercomputing centers.

  3. A high-fidelity method to analyze perturbation evolution in turbulent flows

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, S.; Gaitonde, Datta V.

    2016-04-01

    Small perturbation propagation in fluid flows is usually examined by linearizing the governing equations about a steady basic state. It is often useful, however, to study perturbation evolution in the unsteady evolving turbulent environment. Such analyses can elucidate the role of perturbations in the generation of coherent structures or the production of noise from jet turbulence. The appropriate equations are still the linearized Navier-Stokes equations, except that the linearization must be performed about the instantaneous evolving turbulent state, which forms the coefficients of the linearized equations. This is a far more difficult problem since in addition to the turbulent state, its rate of change and the perturbation field are all required at each instant. In this paper, we develop and use a novel technique for this problem by using a pair (denoted "baseline" and "twin") of simultaneous synchronized Large-Eddy Simulations (LES). At each time-step, small disturbances whose propagation characteristics are to be studied, are introduced into the twin through a forcing term. At subsequent time steps, the difference between the two simulations is shown to be equivalent to solving the forced Navier-Stokes equations, linearized about the instantaneous turbulent state. The technique does not put constraints on the forcing, which could be arbitrary, e.g., white noise or other stochastic variants. We consider, however, "native" forcing having properties of disturbances that exist naturally in the turbulent environment. The method then isolates the effect of turbulence in a particular region on the rest of the field, which is useful in the study of noise source localization. The synchronized technique is relatively simple to implement into existing codes. In addition to minimizing the storage and retrieval of large time-varying datasets, it avoids the need to explicitly linearize the governing equations, which can be a very complicated task for viscous terms or

  4. Aircraft Dynamic Modeling in Turbulence

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Cunninham, Kevin

    2012-01-01

    A method for accurately identifying aircraft dynamic models in turbulence was developed and demonstrated. The method uses orthogonal optimized multisine excitation inputs and an analytic method for enhancing signal-to-noise ratio for dynamic modeling in turbulence. A turbulence metric was developed to accurately characterize the turbulence level using flight measurements. The modeling technique was demonstrated in simulation, then applied to a subscale twin-engine jet transport aircraft in flight. Comparisons of modeling results obtained in turbulent air to results obtained in smooth air were used to demonstrate the effectiveness of the approach.

  5. Thermal striping in nuclear reactors: POD analysis of LES simulations and experiment

    NASA Astrophysics Data System (ADS)

    Merzari, Elia; Alvarez, Andres; Marin, Oana; Obabko, Aleksandr; Lomperski, Steve; Aithal, Shashi

    2015-11-01

    Thermal fatigue caused due to thermal striping impacts design and analyses of a wide-range of industrial apparatus. This phenomena is of particular significance in nuclear reactor applications, primarily in sodium cooled fast reactors. In order to conduct systematic analyses of the thermal striping phenomena a simplified experimental set-up was designed and built at Argonne National Laboratory. In this set-up two turbulent jets with a temperature difference of about 20K were mixed in a rectangular tank. The jets entered the tank via 2 hexagonal inlets. Two different inlet geometries were studied, both experimentally and via high-fidelity LES simulations. Proper Orthogonal Decomposition (POD) was performed on the turbulent velocity field in the tank to identify the most dominant energetic modes. The POD analyses of the experimental data in both inlet geometrical configurations were compared with LES simulations. Detailed POD analyses are presented to highlight the impact of geometry on the velocity and thermal fields. These can be correlated with experimental and numerical data to assess the impact of thermal striping on the design of the upper plenum of sodium-cooled nuclear reactors. ALCF.

  6. LES of cavitating flow inside a Diesel injector including dynamic needle movement

    NASA Astrophysics Data System (ADS)

    Örley, F.; Hickel, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    We perform large-eddy simulations (LES) of the turbulent, cavitating flow inside a 9-hole solenoid common-rail injector including jet injection into gas during a full injection cycle. The liquid fuel, vapor, and gas phases are modelled by a homogeneous mixture approach. The cavitation model is based on a thermodynamic equilibrium assumption. The geometry of the injector is represented on a Cartesian grid by a conservative cut-element immersed boundary method. The strategy allows for the simulation of complex, moving geometries with sub-cell resolution. We evaluate the effects of needle movement on the cavitation characteristics in the needle seat and tip region during opening and closing of the injector. Moreover, we study the effect of cavitation inside the injector nozzles on primary jet break-up.

  7. Fluid dynamics and noise emission associated with supersonic jets

    NASA Technical Reports Server (NTRS)

    Seiner, John M.

    1992-01-01

    Methods have long been sought to find an efficient means for reduction of jet noise using either active or passive turbulence control measures. Progress in this area is limited by unclear understanding of the physical supersonic jet noise source mechanisms as they relate to the jet plume turbulence structure. These mechanisms have been extensively studied using round jets. This paper shows that jets with nonround jet exit geometry can provide beneficial noise reduction relative to round jets. Both the fluid dynamic structure and noise of several nonround jets are examined in the paper.

  8. Active turbulence in active nematics

    NASA Astrophysics Data System (ADS)

    Thampi, S. P.; Yeomans, J. M.

    2016-07-01

    Dense, active systems show active turbulence, a state characterised by flow fields that are chaotic, with continually changing velocity jets and swirls. Here we review our current understanding of active turbulence. The development is primarily based on the theory and simulations of active liquid crystals, but with accompanying summaries of related literature.

  9. Experimental Investigation of Particle Deagglomeration using Turbulence

    NASA Astrophysics Data System (ADS)

    Köksoy, Çaǧatay; Ertunç, Özgür; Hüttner, Sebastian; Wachtel, Herbert; Delgado, Antonio

    2011-12-01

    The effect of turbulence on powder aerosol deagglomeration was investigated. Two impinging jets were used to generate turbulence. Lactose particles, whose fully dispersed fine particle fraction (FPF) - number percentage of the particles whose diameter smaller than 5 μm- is above 90 %, were applied as aerosol powder. The particle size distribution after the dispersion unit were measured by using phase Doppler anemometer (PDA) and turbulence level were quantified at the impingement point of two jets with laser Doppler anemometer. As the turbulence level increases turbulent time and length scales decrease, and the ratio of fine particle fraction (FPF) increases from 36% to 86%.

  10. Protostellar Outflow Evolution in Turbulent Environments

    SciTech Connect

    Cunningham, A; Frank, A; Carroll, J; Blackman, E; Quillen, A

    2008-04-11

    The link between turbulence in star formatting environments and protostellar jets remains controversial. To explore issues of turbulence and fossil cavities driven by young stellar outflows we present a series of numerical simulations tracking the evolution of transient protostellar jets driven into a turbulent medium. Our simulations show both the effect of turbulence on outflow structures and, conversely, the effect of outflows on the ambient turbulence. We demonstrate how turbulence will lead to strong modifications in jet morphology. More importantly, we demonstrate that individual transient outflows have the capacity to re-energize decaying turbulence. Our simulations support a scenario in which the directed energy/momentum associated with cavities is randomized as the cavities are disrupted by dynamical instabilities seeded by the ambient turbulence. Consideration of the energy power spectra of the simulations reveals that the disruption of the cavities powers an energy cascade consistent with Burgers-type turbulence and produces a driving scale-length associated with the cavity propagation length. We conclude that fossil cavities interacting either with a turbulent medium or with other cavities have the capacity to sustain or create turbulent flows in star forming environments. In the last section we contrast our work and its conclusions with previous studies which claim that jets can not be the source of turbulence.

  11. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    NASA Astrophysics Data System (ADS)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  12. Large-eddy simulation of cavitating nozzle flow and primary jet break-up

    SciTech Connect

    Örley, F. Trummler, T.; Mihatsch, M. S.; Schmidt, S. J.; Adams, N. A.; Hickel, S.

    2015-08-15

    We employ a barotropic two-phase/two-fluid model to study the primary break-up of cavitating liquid jets emanating from a rectangular nozzle, which resembles a high aspect-ratio slot flow. All components (i.e., gas, liquid, and vapor) are represented by a homogeneous mixture approach. The cavitating fluid model is based on a thermodynamic-equilibrium assumption. Compressibility of all phases enables full resolution of collapse-induced pressure wave dynamics. The thermodynamic model is embedded into an implicit large-eddy simulation (LES) environment. The considered configuration follows the general setup of a reference experiment and is a generic reproduction of a scaled-up fuel injector or control valve as found in an automotive engine. Due to the experimental conditions, it operates, however, at significantly lower pressures. LES results are compared to the experimental reference for validation. Three different operating points are studied, which differ in terms of the development of cavitation regions and the jet break-up characteristics. Observed differences between experimental and numerical data in some of the investigated cases can be caused by uncertainties in meeting nominal parameters by the experiment. The investigation reveals that three main mechanisms promote primary jet break-up: collapse-induced turbulent fluctuations near the outlet, entrainment of free gas into the nozzle, and collapse events inside the jet near the liquid-gas interface.

  13. Annual Research Briefs - 2000: Center for Turbulence Research

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This report contains the 2000 annual progress reports of the postdoctoral Fellows and visiting scholars of the Center for Turbulence Research (CTR). It summarizes the research efforts undertaken under the core CTR program. Last year, CTR sponsored sixteen resident Postdoctoral Fellows, nine Research Associates, and two Senior Research Fellows, hosted seven short term visitors, and supported four doctoral students. The Research Associates are supported by the Departments of Defense and Energy. The reports in this volume are divided into five groups. The first group largely consists of the new areas of interest at CTR. It includes efficient algorithms for molecular dynamics, stability in protoplanetary disks, and experimental and numerical applications of evolutionary optimization algorithms for jet flow control. The next group of reports is in experimental, theoretical, and numerical modeling efforts in turbulent combustion. As more challenging computations are attempted, the need for additional theoretical and experimental studies in combustion has emerged. A pacing item for computation of nonpremixed combustion is the prediction of extinction and re-ignition phenomena, which is currently being addressed at CTR. The third group of reports is in the development of accurate and efficient numerical methods, which has always been an important part of CTR's work. This is the tool development part of the program which supports our high fidelity numerical simulations in such areas as turbulence in complex geometries, hypersonics, and acoustics. The final two groups of reports are concerned with LES and RANS prediction methods. There has been significant progress in wall modeling for LES of high Reynolds number turbulence and in validation of the v(exp 2) - f model for industrial applications.

  14. Stirring turbulence with turbulence

    NASA Astrophysics Data System (ADS)

    van de Water, Willem; Ergun Cekli, Hakki; Joosten, Rene

    2011-11-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the large eddies in the wind-tunnel turbulence. A large mismatch of these times creates a flow with interesting statistics, but it is not turbulence.

  15. Large-eddy simulation/PDF modeling of a non-premixed CO/H2 temporally evolving jet flame

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Haifeng; Pope, Stephen B.; Chen, Jacqueline H.

    2011-11-01

    We report a large-eddy simulation (LES)/probability density function (PDF) study of a non-premixed CO/H2 temporally evolving planar jet flame at Re = 9079 and Da = 0.011 with skeletal chemistry. The flame exhibits strong turbulence- chemistry interactions resulting in local extinction followed by re-ignition. In this study, the filtered velocity field in LES is computed using the NGA code (Desjardins et al., 2008) and the PDF transported equations with the modified Curl's mixing model are solved by the new highly-scalable HPDF code (Wang and Pope, 2011) with second order accuracy in space and time. The performance of the hybrid LES/PDF methodology is assessed through detailed a posteriori comparisons with DNS of the same flame (Hawkes et al., 2007). The comparison shows good agreement of the temporal evolution of the temperature and mass fractions of major chemical species, as well as the prediction of local extinction and re-ignition. In addition, the effects of the subgrid scale model, the mixing model, and grid resolution on turbulence-chemistry interactions are investigated to improve the capabilities of LES/PDF. Supported in part by the CEFRC funded by the DOE.

  16. Turbulence Measurements of Separate Flow Nozzles with Mixing Enhancement Features

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2002-01-01

    Comparison of turbulence data taken in three separate flow nozzles, two with mixing enhancement features on their core nozzle, shows how the mixing enhancement features modify turbulence to reduce jet noise. The three nozzles measured were the baseline axisymmetric nozzle 3BB, the alternating chevron nozzle, 3A12B, with 6-fold symmetry, and the flipper tab nozzle 3T24B also with 6-fold symmetry. The data presented show the differences in turbulence characteristics produced by the geometric differences in the nozzles, with emphasis on those characteristics of interest in jet noise. Among the significant findings: the enhanced mixing devices reduce turbulence in the jet mixing region while increasing it in the fan/core shear layer, the ratios of turbulence components are significantly altered by the mixing devices, and the integral lengthscales do not conform to any turbulence model yet proposed. These findings should provide guidance for modeling the statistical properties of turbulence to improve jet noise prediction.

  17. Improved engine wall models for Large Eddy Simulation (LES)

    NASA Astrophysics Data System (ADS)

    Plengsaard, Chalearmpol

    Improved wall models for Large Eddy Simulation (LES) are presented in this research. The classical Werner-Wengle (WW) wall shear stress model is used along with near-wall sub-grid scale viscosity. A sub-grid scale turbulent kinetic energy is employed in a model for the eddy viscosity. To gain better heat flux results, a modified classical variable-density wall heat transfer model is also used. Because no experimental wall shear stress results are available in engines, the fully turbulent developed flow in a square duct is chosen to validate the new wall models. The model constants in the new wall models are set to 0.01 and 0.8, respectively and are kept constant throughout the investigation. The resulting time- and spatially-averaged velocity and temperature wall functions from the new wall models match well with the law-of-the-wall experimental data at Re = 50,000. In order to study the effect of hot air impinging walls, jet impingement on a flat plate is also tested with the new wall models. The jet Reynolds number is equal to 21,000 and a fixed jet-to-plate spacing of H/D = 2.0. As predicted by the new wall models, the time-averaged skin friction coefficient agrees well with experimental data, while the computed Nusselt number agrees fairly well when r/D > 2.0. Additionally, the model is validated using experimental data from a Caterpillar engine operated with conventional diesel combustion. Sixteen different operating engine conditions are simulated. The majority of the predicted heat flux results from each thermocouple location follow similar trends when compared with experimental data. The magnitude of peak heat fluxes as predicted by the new wall models is in the range of typical measured values in diesel combustion, while most heat flux results from previous LES wall models are over-predicted. The new wall models generate more accurate predictions and agree better with experimental data.

  18. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  19. Estudi de la dependéncia energética de les diferéncies entre jets de quarks i gluons utilitzant el detector DELPHI de LEP

    NASA Astrophysics Data System (ADS)

    Garcia, S. Marti i.

    1995-11-01

    Three jet events arising from decays of the Z^0 boson, collected by the DELPHI detector at LEP, were used to measure differences in the properties of quark and gluon jet fragmentation. Gluon jets were anti-tagged in bbar{b}g events, by identifiying b quark jets with high purities. Unbiased quark jets came from events qbar{q}γ with two jets plus one photon. A comparison of quark and gluon jet properties in different energy ranges was performed for the first time and within the same detector. The average value of the ratio of the mean charged multiplicities of gluon and quark jets was measured to be [ 1.232 ± 0.026 ({esta.}) ± 0.018 ({sist.}) ] where the fraction of b-quark initiates jets was 11% and the Durham jet finding algorithm has been used for the selection of three jet events. In agreement with QCD an increase of this ratio with energy was observed at a 3sigma level. A further dependence of this ratio related with the angular acceptance of the algorithm used to reconstruct jets was also measured. Gluon jets have a broader energy and particle flow around its jet axis than quark jets of equivalent energy. The string effect has been observed in fully symmetric three-jet events. The ratio R_γ of the charged particles flow in the qbar{q} inter-jet region of the qbar{q}g and qbar{q}γ samples was measured in agreement with the perturbative QCD expectation [ frac{(N_{qq})_{qbar{q}g}}{(N_{qq})_{qbar{q}γ}} = 0.058 ± 0.06 ({stat.+sist.}) ] The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. A value for

  20. Progress Towards an LES Wall Model Including Unresolved Roughness

    NASA Astrophysics Data System (ADS)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  1. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  2. Turbulence Modeling Verification and Validation

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2014-01-01

    Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important

  3. Stirring turbulence with turbulence

    NASA Astrophysics Data System (ADS)

    Cekli, Hakki Ergun; Joosten, René; van de Water, Willem

    2015-12-01

    We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.

  4. Collimation and Stability of Three Dimensional Jets

    NASA Astrophysics Data System (ADS)

    Hardee, P. E.; Clarke, D. A.; Howell, D. A.

    1993-12-01

    Three-dimensional numerical simulations of cylindrical jets established in equilibrium with a surrounding uniform medium have been performed. Large scale structures such as helical twisting of the jet, elliptical distortion and bifurcation of the jet, and triangular distortion and trifurcation of the jet have been seen in the simulations. The grid resolution has been sufficient to allow the development of structures on smaller scales and has revealed higher order distortions of the jet surface and complex structure internal to the jet. However, smaller scale surface distortion and internal jet structure do not significantly modify the large scale dynamics. It is the large scale surface distortions and accompanying filamentation that dominate the jet dynamics. Decollimation occurs as the jet bifurcates or trifurcates. Jets with density less than the immediately surrounding medium rapidly decollimate and expand as the jet filaments into multiple streams leading to shock heating and mass entrainment. The resulting morphology resembles a turbulent plume and might be relevant to some FRI type radio sources. Jet densities higher than the immediately surrounding medium are required to produce FRII type radio source jet morphology and protostellar jet morphology. Thus, while jets may be denser or lighter than the external medium through which they propagate, it is the conditions in the cocoon or lobe around the jet that governs the dynamics far behind the jet front. This work was supported by NSF grant AST-8919180, EPSCoR grant EHR-9108761 and NSF-REU grant AST-9300413.

  5. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets: Experimental Data Archive

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important. This is the supplemental CD-ROM

  6. Flow Control Under Low-Pressure Turbine Conditions Using Pulsed Jets

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Ibrahim, Mounir B.

    2012-01-01

    This publication is the final report of research performed under an NRA/Cooperative Interagency Agreement, and includes a supplemental CD-ROM with detailed data. It is complemented by NASA/CR-2012-217416 and NASA/CR-2012-217417 which include a Ph.D. Dissertation and an M.S. thesis respectively, performed under this contract. In this study the effects of unsteady wakes and flow control using vortex generator jets (VGJs) were studied experimentally and computationally on the flow over the L1A low pressure turbine (LPT) airfoil. The experimental facility was a six passage linear cascade in a low speed wind tunnel at the U.S. Naval Academy. In parallel, computational work using the commercial code FLUENT (ANSYS, Inc.) was performed at Cleveland State University, using Unsteady Reynolds Averaged Navier Stokes (URANS) and Large Eddy Simulations (LES) methods. In the first phase of the work, the baseline flow was documented under steady inflow conditions without flow control. URANS calculations were done using a variety of turbulence models. In the second phase of the work, flow control was added using steady and pulsed vortex generator jets. The VGJs successfully suppressed separation and reduced aerodynamic losses. Pulsed operation was more effective and mass flow requirements are very low. Numerical simulations of the VGJs cases showed that URANS failed to capture the effect of the jets. LES results were generally better. In the third phase, effects of unsteady wakes were studied. Computations with URANS and LES captured the wake effect and generally predicted separation and reattachment to match the experiments. Quantitatively the results were mixed. In the final phase of the study, wakes and VGJs were combined and synchronized using various timing schemes. The timing of the jets with respect to the wakes had some effect, but in general once the disturbance frequency was high enough to control separation, the timing was not very important.

  7. Simulation of a hot coaxial jet: Direct noise prediction and flow-acoustics correlations

    NASA Astrophysics Data System (ADS)

    Bogey, Christophe; Barré, Sébastien; Juvé, Daniel; Bailly, Christophe

    2009-03-01

    A coaxial jet originating from parallel coplanar pipe nozzles is computed by a compressible large eddy simulation (LES) using low-dissipation and low-dispersion schemes in order to determine its acoustic field and to study noise generation mechanisms. The jet streams are at high velocities, the primary stream is heated, and the Reynolds number based on the primary velocity and the secondary diameter is around 106. High levels of turbulence intensity are also specified at the nozzle exit. The jet aerodynamic field and the near-pressure field are both obtained directly from the LES. The far-field noise is calculated by solving the linear acoustic equations, from the unsteady LES data on a cylindrical surface surrounding the jet. A good agreement is observed in terms of directivity, levels, and narrow-band spectra with noise measurements carried out during the EU project CoJeN for a coaxial jet displaying same stream velocities and temperatures, coplanar nozzle outlets with identical area ratio, and a high Reynolds number. However, certainly due to differences in the properties of the nozzle-exit boundary layers with respect to the experiment, some unexpected peaks are noticed in the simulation spectra. They are attributed to the development of a Von Kármán street in the inner mixing layer and to vortex pairings in the outer shear layer. High correlation levels are also calculated between the pressure waves radiated in the downstream direction and flow quantities such as axial velocity, vorticity norm, density, and temperature, taken around the end of the primary and secondary potential cores. Noise generation in the coaxial jet therefore appears significant around the end of the two potential cores. These flow regions are characterized by intermittency, a dominant Strouhal number, and variations in the convection velocity as similarly found in single jets. The use of density or temperature to compute flow-noise correlations finally seems appropriate for a heated

  8. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  9. Large eddy simulations of turbulent flows on graphics processing units: Application to film-cooling flows

    NASA Astrophysics Data System (ADS)

    Shinn, Aaron F.

    Computational Fluid Dynamics (CFD) simulations can be very computationally expensive, especially for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) of turbulent ows. In LES the large, energy containing eddies are resolved by the computational mesh, but the smaller (sub-grid) scales are modeled. In DNS, all scales of turbulence are resolved, including the smallest dissipative (Kolmogorov) scales. Clusters of CPUs have been the standard approach for such simulations, but an emerging approach is the use of Graphics Processing Units (GPUs), which deliver impressive computing performance compared to CPUs. Recently there has been great interest in the scientific computing community to use GPUs for general-purpose computation (such as the numerical solution of PDEs) rather than graphics rendering. To explore the use of GPUs for CFD simulations, an incompressible Navier-Stokes solver was developed for a GPU. This solver is capable of simulating unsteady laminar flows or performing a LES or DNS of turbulent ows. The Navier-Stokes equations are solved via a fractional-step method and are spatially discretized using the finite volume method on a Cartesian mesh. An immersed boundary method based on a ghost cell treatment was developed to handle flow past complex geometries. The implementation of these numerical methods had to suit the architecture of the GPU, which is designed for massive multithreading. The details of this implementation will be described, along with strategies for performance optimization. Validation of the GPU-based solver was performed for fundamental bench-mark problems, and a performance assessment indicated that the solver was over an order-of-magnitude faster compared to a CPU. The GPU-based Navier-Stokes solver was used to study film-cooling flows via Large Eddy Simulation. In modern gas turbine engines, the film-cooling method is used to protect turbine blades from hot combustion gases. Therefore, understanding the physics of

  10. The acoustics of turbulent flow

    NASA Astrophysics Data System (ADS)

    Rimskii-Korsakov, A. V.

    Papers are presented on such topics as the excitation of sound by small perturbations of entropy and vorticity in spatially nonuniform flows of a compressible ideal gas; the aeroacoustic characteristics of acoustically excited jets; the noise intensity and spectrum in a turbulent boundary layer on a flat plate; sound refraction in a turbulent shear flow; and the spectrum of spatial correlations of turbulent pressure pulsations at a wall at high Reynolds numbers. Consideration is also given to a comparative study of the acoustic fields of air and helium jets at subsonic outflow speeds; the effect of external boundary layer flow on jet-noise characteristics; wing-profile noise in turbulent flow; sound emission from an unsteady boundary layer; and the sound-field characteristics of a moving source (with application to aircraft-noise analysis). The effect of a sound field on coherent structures in turbulent flow, aerodynamic forces causing fan vibration and noise, and a silencer for a jet-aircraft powerplant are also examined. For individual items see A84-28803 to A84-28820

  11. Crossflow Mixing of Noncircular Jets

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1995-01-01

    An experimental investigation has been conducted of the isothermal mixing of a turbulent jet injected perpendicular to a uniform crossflow through several different types of sharp-edged orifices. Jet penetration and mixing was studied using planar Mie scattering to measure time-averaged mixture fraction distributions of circular, square, elliptical, and rectangular orifices of equal geometric area injected into a constant velocity crossflow. Hot-wire anemometry was also used to measure streamwise turbulence intensity distributions at several downstream planes. Mixing effectiveness was determined using (1) a spatial unmixedness parameter based on the variance of the mean jet concentration distributions and (2) by direct comparison of the planar distributions of concentration and of turbulence intensity. No significant difference in mixing performance was observed for the six configurations based on comparison of the mean properties.

  12. A High-Resolution Capability for Large-Eddy Simulation of Jet Flows

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2011-01-01

    A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.

  13. Jet Measurements for Development of Jet Noise Prediction Tools

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2006-01-01

    The primary focus of my presentation is the development of the jet noise prediction code JeNo with most examples coming from the experimental work that drove the theoretical development and validation. JeNo is a statistical jet noise prediction code, based upon the Lilley acoustic analogy. Our approach uses time-average 2-D or 3-D mean and turbulent statistics of the flow as input. The output is source distributions and spectral directivity.

  14. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  15. Two-fluid models of turbulence

    NASA Technical Reports Server (NTRS)

    Spalding, D. B.

    1985-01-01

    The defects of turbulence models are summarized and the importance of so-called nongradient diffusion in turbulent fluxes is discussed. The mathematical theory of the flow of two interpenetrating continua is reviewed, and the mathematical formulation of the two fluid model is outlined. Results from plane wake, axisymmetric jet, and combustion studies are shown.

  16. Turbulent mixing condensation nucleus counter

    NASA Astrophysics Data System (ADS)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  17. Calculation of Turbulent Expansion Processes

    NASA Technical Reports Server (NTRS)

    Tollmien, Walter

    1945-01-01

    On the basis of certain formulas recently established by L. Prandtl for the turbulent interchange of momentum in stationary flows, various cases of "free turbulence" - that is, of flows without boundary walls - are treated in the present report. Prandtl puts the apparent shearing stress introduced by the turbulent momentum interchange. This present report deals first with the mixing of an air stream of uniform velocity with the adjacent still air, than with the expansion or diffusion of an air jet in the surrounding air space.

  18. Artificial neural networks based subgrid chemistry model for turbulent reactive flow simulations

    NASA Astrophysics Data System (ADS)

    Sen, Baris A.

    Computational analysis of turbulent reactive flow applications requires resolution of the wide range of scales both in time and space from a flow modeling perspective. From a thermo-chemistry point of view, information regarding the radical chemical species is needed in order to capture flame-turbulence interactions accurately. A detailed investigation of all of these processes is time consuming. Thus, there is a need for speeding-up the computations by using the state-of-the art modeling capabilities. This study seeks to answer this problem and focuses in particular on the chemical kinetics calculations. The new approach proposed here is based on incorporating the artificial neural network (ANN) based modeling of the chemical kinetics into the large eddy simulation (LES) of reactive flows. Two separate and new ANN based modeling approaches relevant to the LES are proposed within the thesis work. Here, the first approach depends on employing ANN to predict the species instantaneous reaction rates as a function of the thermochemical state vector ( ẇi = ANN(Yk, T)). The second one is based on using ANN specifically to predict the spatially filtered chemical source terms in the LES modeling as a function of the filtered thermo-chemical state vector and flow quantities ( ẇ¯ i = ANN(Ỹk, T˜, ReDelta, 6Ỹi 6x )). First part of the thesis work dealt with testing different thermo-chemical tabulation techniques that can be used in connection with the ANN approach for the LES. Basically, three distinct methods (and tools) are developed here: thermo-chemical tables based on (i) laminar flames, (ii) laminar flame-vortex interactions (FVI) and (iii) laminar flame-turbulence interactions (FTI). Results based on premixed flame-vortex-turbulence interaction simulations showed that the tables generated based on the second and third approaches are capable of representing the actual thermo-chemical state-space accessed by the LES. Once the tabulation procedure and the ANN

  19. Turbulence Modeling Workshop

    NASA Technical Reports Server (NTRS)

    Rubinstein, R. (Editor); Rumsey, C. L. (Editor); Salas, M. D. (Editor); Thomas, J. L. (Editor); Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    Advances in turbulence modeling are needed in order to calculate high Reynolds number flows near the onset of separation and beyond. To this end, the participants in this workshop made the following recommendations. (1) A national/international database and standards for turbulence modeling assessment should be established. Existing experimental data sets should be reviewed and categorized. Advantage should be taken of other efforts already under-way, such as that of the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) consortium. Carefully selected "unit" experiments will be needed, as well as advances in instrumentation, to fill the gaps in existing datasets. A high priority should be given to document existing turbulence model capabilities in a standard form, including numerical implementation issues such as grid quality and resolution. (2) NASA should support long-term research on Algebraic Stress Models and Reynolds Stress Models. The emphasis should be placed on improving the length-scale equation, since it is the least understood and is a key component of two-equation and higher models. Second priority should be given to the development of improved near-wall models. Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) would provide valuable guidance in developing and validating new Reynolds-averaged Navier-Stokes (RANS) models. Although not the focus of this workshop, DNS, LES, and hybrid methods currently represent viable approaches for analysis on a limited basis. Therefore, although computer limitations require the use of RANS methods for realistic configurations at high Reynolds number in the foreseeable future, a balanced effort in turbulence modeling development, validation, and implementation should include these approaches as well.

  20. A filtered tabulated chemistry model for LES of premixed combustion

    SciTech Connect

    Fiorina, B.; Auzillon, P.; Darabiha, N.; Gicquel, O.; Veynante, D.; Vicquelin, R.

    2010-03-15

    A new modeling strategy called F-TACLES (Filtered Tabulated Chemistry for Large Eddy Simulation) is developed to introduce tabulated chemistry methods in Large Eddy Simulation (LES) of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes as LES should tend toward Direct Numerical Simulation (DNS). The filtered flame structure is mapped using 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy balance equations are carefully addressed in a fully compressible formulation. The methodology is first applied to 1-D filtered laminar flames, showing the ability of the model to recover the laminar flame speed and the correct chemical structure when the flame wrinkling is completely resolved. The model is then extended to turbulent combustion regimes by including subgrid scale wrinkling effects in the flame front propagation. Finally, preliminary tests of LES in a 3-D turbulent premixed flame are performed. (author)

  1. Jet flow on ribbed curved surfaces

    NASA Astrophysics Data System (ADS)

    Lashkov, Iu. A.; Sokolova, I. N.; Shumilkina, E. A.

    1992-02-01

    The objective of the study was to investigate the possibility of using microribbing to reduce turbulent friction in Coanda flows over curved surfaces. It is shown that ribs make it possible to reduce the effect of a jet impinging on an obstacle and to prevent the Coanda effect when jet attachment is undesirable. The optimal rib parameters are determined.

  2. Large eddy simulation of supersonic twin-jet impingement using a fifth-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Toh, Hoong Thiam

    A three-dimensional flow field produced by supersonic twin-jet impingement is studied using a large eddy simulation (LES). The numerical model consists of two parallel axisymmetric jets of diameter D*, 3 D* apart, issuing from a plane which is at a distance H* = 4D* above the ground. The jet diameter D*, mean velocity W*o , mean density r*o and mean temperature T*o at the jet center in the exit plane are used as reference values. The Mach number and Reynolds number of the jets are M = 1.5 and Re = 5.5 x 105, respectively. This model is closely related to the experimental setup of Elavarasan et al. [23]. The three-dimensional time-dependent compressible Navier-Stokes equations are solved using the method of lines. The convective terms are discretized using a fifth-order WENO scheme, whereas the viscous terms are discretized using a fourth-order central-differencing scheme. A low-storage five-stage fourth-order Runge-Kutta scheme is used to advance the solution in time. Code verification is achieved by comparison with flat-plate boundary-layer linear stability analysis, and computational data by Bendiks et al. [5] for a compressible turbulent round jet. Instantaneous flow, mean flow and Reynolds stresses for the twin-jet impingement are presented and discussed. The results reveal the existence of flapping behavior in the fountain. The flapping fountain is the vortical structure formed by the alternating merging of a primary vortex tube with a secondary vortex tube induced by the neighboring primary vortex tube. The nondimensional period of flapping is found to be 7D*/ W*o . High unsteadiness and strong interaction between the fountain and the jets are also observed. Due to the high diffusion and spreading rate of the fountain, the interaction between the fountain and the jets is only significant up to a height which is less than 3D*. It is found that the mean peak velocity in the fountain is 0.40406 W*o and it occurs at 0.536607D* from the ground. The suitability of

  3. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  4. Numerical and physical instabilities in massively parallel LES of reacting flows

    NASA Astrophysics Data System (ADS)

    Poinsot, Thierry

    LES of reacting flows is rapidly becoming mature and providing levels of precision which can not be reached with any RANS (Reynolds Averaged) technique. In addition to the multiple subgrid scale models required for such LES and to the questions raised by the required numerical accurcay of LES solvers, various issues related the reliability, mesh independence and repetitivity of LES must still be addressed, especially when LES is used on massively parallel machines. This talk discusses some of these issues: (1) the existence of non physical waves (known as `wiggles' by most LES practitioners) in LES, (2) the effects of mesh size on LES of reacting flows, (3) the growth of rounding errors in LES on massively parallel machines and more generally (4) the ability to qualify a LES code as `bug free' and `accurate'. Examples range from academic cases (minimum non-reacting turbulent channel) to applied configurations (a sector of an helicopter combustion chamber).

  5. Computation of turbulent boundary layer flows with an algebraic stress turbulence model

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook; Chen, Yen-Sen

    1986-01-01

    An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.

  6. Structure and modeling of turbulence

    SciTech Connect

    Novikov, E.A.

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  7. Rayleigh Light Scattering for Concentration Measurements in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Pitts, William M.

    1996-01-01

    Despite intensive research over a number of years, an understanding of scalar mixing in turbulent flows remains elusive. An understanding is required because turbulent mixing has a pivotal role in a wide variety of natural and technologically important processes. As an example, the mixing and transport of pollutants in the atmosphere and in bodies of water are often dependent on turbulent mixing processes. Turbulent mixing is also central to turbulent combustion which underlies most hydrocarbon energy use in modern societies as well as in unwanted fire behavior. Development of models for combusting flows is therefore crucial, however, an understanding of scalar mixing is required before useful models of turbulent mixing and, ultimately, turbulent combustion can be developed. An important subset of turbulent flows is axisymmetric turbulent jets and plumes because they are relatively simple to generate, and because the provide an appropriate test bed for the development of general theories of turbulent mixing which can be applied to more complex geometries and flows. This paper focuses on a number of experimental techniques which have been developed at the National Institute of Standards and Development for measuring concentration in binary axisymmetric turbulent jets. In order to demonstrate the value of these diagnostics, some of the more important results from earlier and on-going investigations are summarized. Topics addressed include the similarity behavior of variable density axisymmetric jets, the behavior of absolutely unstable axisymmetric helium jets, and the role of large scale structures and scalar dissipation in these flows.

  8. The Aeroacoustics of Supersonic Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    1994-01-01

    Instability waves have been established as the dominant source of mixing noise radiating into the downstream arc of a supersonic jet when the waves have phase velocities that are supersonic relative to ambient conditions. Recent theories for supersonic jet noise have used the concepts of growing and decaying linear instability waves for predicting radiated noise. This analysis is extended to the prediction of noise radiation from supersonic coaxial jets. Since the analysis requires a known mean flow and the coaxial jet mean flow is not described easily in terms of analytic functions, a numerical prediction is made for its development. The Reynolds averaged, compressible, boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed for the effects of velocity and temperature ratios and Mach number. Both normal and inverted velocity profile coaxial jets are considered. Comparisons with measurements for both single and coaxial jets show good agreement. The results from mean flow and stability calculations are used to predict the noise radiation from coaxial jets with different operating conditions. Comparisons are made between different coaxial jets and a single equivalent jet with the same total thrust, mass flow, and exit area. Results indicate that normal velocity profile jets can have noise reductions compared to the single equivalent jet. No noise reductions are found for inverted velocity profile jets operated at the minimum noise condition compared to the single equivalent jet. However, it is inferred that changes in area ratio may provide noise reduction benefits for inverted velocity profile jets.

  9. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  10. Etude du champ magnetique dans les nuages moleculaires

    NASA Astrophysics Data System (ADS)

    Houde, Martin

    2001-12-01

    Ce travail est une étude du champ magnétique duns l'environnement circumstellaire des étoiles jeunes. Il a pour origine la certitude qu'avait l'auteur qu'il se devait d'être possible de détecter la présence d'un champ magnétique, et de possiblement le caractériser, par le biais d'observations de profils spectraux d'espèces moléculaires ioniques. Il en découle donc qu'un des buts principaux était de prouver que cela est effectivement possible. La thèse comporte alors des éléments théoriques et expérimentaux qui sont à la fois complémentaires et intimement liés. L'aspect théorique est basé sur l'interaction mutuelle que des particules neutres et chargées peuvent avoir l'une sur l'autre daps un plasma faiblement ionisé comme ceux existants daps les nuages moléculaires sites de formation stellaire. Il appert que la présence d'un champ magnétique a un effet direct sur le comportement des ions (via la force de Lorentz) et indirect sur les molécules neutres (via les nombreuses collisions entre les deux types de particules). Une telle interaction est, comme il est maintenant bien connu, présente dans les premières étapes de la formation dune étoile. Il s'agit bien sûr de la diffusion ambipolaire. Nous montrerons qu'il existe cependant un autre type de diffusion, jusqu'ici inconnue, qui se manifeste plus tard au tours de l'évolution des nuages moléculaires. Celle-ci peut avoir un effet dramatique sur l'apparence des profils spectraux (de rotation moléculaire) des espèces ioniques lorsque comparés à ceux qu'exhibent des espèces neutres coexistantes. Mais pour ce faire, il doit y avoir existence de mouvements organisés (des flots ou jets) de matière ou encore la présence de turbulence dans les régions considérées. Une distribution de vélocité du type maxwellienne ne révèlera pas la présence du champ magnétique. Les observations, qui ont pour but de confirmer la théorie, se situent dans le domaine des longueurs d

  11. Turbulence and instabilities

    NASA Astrophysics Data System (ADS)

    Belotserkovskii, Oleg

    2001-06-01

    The main principles for constructing of mathematical models for fully developed free shear turbulence and hydrodynamic instabilities are considered in the report. Such a “rational” modeling is applied for a variety of unsteady multidimensional problems. For the wide class of phenomena, by the large Reynolds numbers within the low-frequency and inertial intervals of turbulent motion, the effect of molecular viscosity and of the small elements of flow in the largest part of perturbation domain are not practically essential neither for the general characteristics of macroscopic structures of the flow developed, nor the flow pattern as a whole. This makes it possible not to take into consideration the effects of molecular viscosity when studying the dynamics of large vortices, and to implement the study of those on the basis of models of the ideal gas (using the methods of “rational” averaging, but without application of semi-empirical models of turbulence). Among the problems, which have been studied by such a way, there are those of the jet-type flow in the wake behind the body, the motions of ship frames with stern shearing, the formation of anterior stalling zones by the flow about blunted bodies with jets or needles directed to meet the flow, etc. As applications the problems of instability development and of spreading of smoke cloud from large-scale source of the fire are considered.

  12. Multilevel turbulence simulations

    SciTech Connect

    Tziperman, E.

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  13. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  14. Grid-dependent Convection in WRF-LES

    NASA Astrophysics Data System (ADS)

    Simon, J. S.; Zhou, B.; Chow, F. K.

    2014-12-01

    Traditional numerical weather prediction (NWP) models parameterize boundary layer turbulence with planetary boundary layer (PBL) schemes, which assume a coarse [O(10 km)] grid resolution. Newer NWP models also have the ability to be large-eddy simulation (LES) models, which use a grid resolution that is sufficiently fine to resolve energy-containing eddies. The range in resolution-space between the maximum appropriate resolution for an LES closure and the minimum appropriate resolution for a PBL scheme is the turbulent gray zone, or the terra incognita. PBL schemes are designed for grid spacings that are much larger than the energy-containing eddies, typically considered to be of the same scale as the PBL depth [O(1 km)], to be contained in the sub-grid scale (SGS). LES closures are designed for a resolution that explicitly resolves the most energetic eddies, leaving the SGS turbulence approximately isotropic. The resolution limit for LES remains largely unexamined for atmospheric flows despite its dynamical significance and the increasing use of atmospheric LES models.Here we examine the grid-dependence of the Weather Research and Forecasting model in LES mode (WRF-LES). We attempt to identify the symptoms of approaching the turbulent gray zone with WRF-LES under primarily convective conditions using the Wangara Day 33 case. Grid-dependence is evaluated by considering the development of the stability profile, the onset of resolved convection, higher-order statistical profiles, and turbulence spectra. Also considered are the effects of isotropic mixing length-scales, domain extent and spatially heterogeneous surface fluxes. We find that resolved convection is often too coarse to be physically realistic when the resolution falls within the gray zone.

  15. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1987-01-01

    A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.

  16. Evolution of turbulent fields in explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B.; Ferguson, R.E.; Chien, K.Y.; Collins, J.P.; Lyons, M.L.

    1993-12-01

    Explosions always contain turbulent mixing regions, e.g.: boundary layers, shear layers, wall jets and unstable interfaces. The inherent unsteadiness of turbulent mixing in explosions, and the lack of sufficient data, pose insurmountable difficulties for turbulence modeling of such flows. Proposed here is a direct numerical simulation approach-where the three-dimensional (3-D) conservation laws are integrated via a high-order Godunov method. Adaptive Mesh Refinement (AMR) is used to Capture the convective mixing processes on the computational grid. Then, an azimuthal-averaging operator is applied to the 3-D solution-in order to extract the instantaneous mean and fluctuating components of the turbulent field. This methodology is applied to the numerical simulation of the turbulent wall jet and dusty boundary layer flow induced by a point explosion above a ground surface. Principal results include the evolution of the turbulent velocity field near the surface. During the wall jet phase, the mean profiles resemble our previous two-dimensional calculations, while the velocity fluctuation profiles and Reynolds stress profiles are qualitatively similar to measurements of self-preserving wall jets. During the boundary layer phase, the mean velocity profile evolved with time, e.g.: initially it agreed with measurements of a dusty boundary layer behind a shock; at intermediate times it resembled the dusty boundary layer profiles measured in a wind tunnel; while at late times, it approached a l/7 power-law profile. Velocity fluctuation profiles were qualitatively similar to those measured for a turbulent boundary layer on a fiat plate. The methodology can be used to predict the evolution of other turbulent fields such as dust clouds, axisymmetric jets, fireball instabilities, and dusty boundary layers in shock tube and wind tunnel flows.

  17. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  18. Fuzzy jets

    DOE PAGESBeta

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  19. Characterization of Mesoscale Variability in WRF - a Coastal Low-Level Jet Case Study

    NASA Astrophysics Data System (ADS)

    Tay, K.; Lundquist, J. K.; Skote, M.; Koh, T. Y.

    2014-12-01

    Mesoscale weather models have increasingly been featured in wind resource assessment development. The incorporation of real meteorological conditions into such assessments allow a more realistic, physical determination of the wind loads that will be experienced within a wind farm site. Large-Eddy Simulation (LES) confers the advantage of representing finer scale turbulence, such as wake effects. However, nesting LES within real mesoscale simulations is still in the nascent stage of development. One of the difficulties lies in providing accurate mesoscale forcing boundaries for the LES domain. This study aims to characterize the mesoscale variability in WRF to lay the groundwork for future mesoscale-LES nested simulations. A low-level jet (LLJ) event that was observed during the CBLAST-Low 2001 campaign (07 Aug to 09 Aug) provides a robust case study to test the capabilities of and characterize the mesoscale variabilities in WRF. The dynamical interaction of a frontal passage with a stable boundary layer over a coastal region makes this an interesting and challenging case for real mesoscale simulation and future LES nested simulations. Sensitivities to vertical resolution, PBL schemes and initial forcing datasets were tested. This presentation will describe and explain the factors that influence the simulation of this frontal passage and the resulting LLJ. The initial forcing datasets have a major influence on spatial and temporal characteristics, as seen in Figure 1, introducing larger differences than the PBL schemes do. Furthermore, the mesoscale simulation also showed a strong dependence on the vertical resolution: increasing the vertical resolution within the atmospheric boundary layer resulted in a more accurate vertical profile for wind speed. Lastly, the simulations did show a dependency on the PBL scheme selected however, the variability between PBL schemes were not large, especially compared to the variability introduced by the boundary and initial

  20. Combat aircraft jet engine noise studies

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Fournier, G.; Pianko, M.

    Methods of noise prediction and attenuation, based on results obtained in civil applications are presented. Input data for directivity and radiation forecasts are given by measurements of vane and blade pressure fluctuations, and by modal analysis of the spinning waves propagating in the inlet duct. Attention is given to sound generation mechanisms for subsonic and supersonic single jets and bypass jets. Prediction methods, based on Lighthill's equation (tensor due to the turbulence), are discussed, and the various means of jet noise reduction are reviewed. The CEPRA 19 anechoic wind tunnel, which is primarily designed for studying the jet noise radiated in the far field with flight effects is described.

  1. Turbulence modeling for separated flow

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1994-01-01

    Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.

  2. LES versus DNS: A comparative study

    NASA Technical Reports Server (NTRS)

    Shtilman, L.; Chasnov, J. R.

    1992-01-01

    We have performed Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) of forced isotropic turbulence at moderate Reynolds numbers. The subgrid scale model used in the LES is based on an eddy viscosity which adjusts instantaneously the energy spectrum of the LES to that of the DNS. The statistics of the large scales of the DNS (filtered DNS field or fDNS) are compared to that of the LES. We present results for the transfer spectra, the skewness and flatness factors of the velocity components, the PDF's of the angle between the vorticity and the eigenvectors of the rate of strain, and that between the vorticity and the vorticity stretching tensor. The above LES statistics are found to be in good agreement with those measured in the fDNS field. We further observe that in all the numerical measurements, the trend was for the LES field to be more gaussian than the fDNS field. Future research on this point is planned.

  3. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  4. Prediction and analysis of jet pump cavitation using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Zi, Hai; Zhou, Lingjiu; Meng, Long

    2015-12-01

    3D LES numerical simulations were performed to investigate cavitation performance inside a jet pump. The results were found to match the test data most closely. The cavitation characteristics of the jet pump were then analyzed using changes in the inlet and outlet pressure to isolate its effect on cavitation. Both results shows that the increase of the inlet pressure generally increases the Renolds number but decrease the cavitation number, thus aggravate cavitation. The closing of the outlet valve increase the outlet pressure but decrease the flowrate ratio, resulting in the increase of velocity difference and vorticity in the mixing layer. So the cavitation first declines and then grows. The cavities appear slender and extended longer in the throat with high flowrate ratio. Conversely, the cavities look short and located in the front part of the throat with low flowrate ratio. Flow analysis indicated that the turbulence behavior in the shear layer and the overall mean pressure has great influence on the local pressure in jet pump, which reveal the reason of different cavitation shape observed in experiment.

  5. Grid-dependent Convection in WRF-LES

    NASA Astrophysics Data System (ADS)

    Simon, Jason; Zhou, Bowen; Chow, Fotini

    2014-11-01

    Traditional numerical weather prediction (NWP) models parameterize the boundary layer with planetary boundary layer (PBL) schemes, which assume a coarse resolution so that energy-containing eddies are nearly exclusively sub-grid scale (SGS). Newer NWP models can also be used as large-eddy simulation (LES) models, which use a grid resolution that is sufficiently fine to resolve energy-containing eddies. For atmospheric flows the energy-containing eddies are typically on the scale of the PBL depth [O(1 km)]. The range of resolutions between the maximum appropriate resolution for LES and the minimum for PBL schemes is the turbulent gray zone, or terra incognita. The resolution limit for atmospheric LES is largely unexamined despite its dynamical significance. Here we examine the Weather Research and Forecasting model in LES mode (WRF-LES). We attempt to identify the symptoms of the turbulent gray zone with WRF-LES under primarily convective conditions using the Wangara Day 33 case. Grid-dependence, a signal of the gray zone, is evaluated by considering the stability profile, resolved convection, higher-order statistical profiles, and turbulence spectra. Also considered are the effects of isotropic mixing length-scales, domain extent and spatially heterogeneous surface fluxes.

  6. Reduced order modeling of wall turbulence

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2015-11-01

    Modeling turbulent flow near a wall is a pacing item in computational fluid dynamics for aerospace applications and geophysical flows. Gradual progress has been made in statistical modeling of near wall turbulence using the Reynolds averaged equations of motion, an area of research where John Lumley has made numerous seminal contributions. More recently, Lumley and co-workers pioneered dynamical systems modeling of near wall turbulence, and demonstrated that the experimentally observed turbulence dynamics can be predicted using low dimensional dynamical systems. The discovery of minimal flow unit provides further evidence that the near wall turbulence is amenable to reduced order modeling. The underlying rationale for potential success in using low dimensional dynamical systems theory is based on the fact that the Reynolds number is low in close proximity to the wall. Presumably for the same reason, low dimensional models are expected to be successful in modeling of the laminar/turbulence transition region. This has been shown recently using dynamic mode decomposition. Furthermore, it is shown that the near wall flow structure and statistics in the late and non-linear transition region is strikingly similar to that in higher Reynolds number fully developed turbulence. In this presentation, I will argue that the accumulated evidence suggests that wall modeling for LES using low dimensional dynamical systems is a profitable avenue to pursue. The main challenge would be the numerical integration of such wall models in LES methodology.

  7. Plasma turbulence

    SciTech Connect

    Horton, W.; Hu, G.

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  8. LES-based evaluation of a microjet noise reduction concept in static and flight conditions

    NASA Astrophysics Data System (ADS)

    Shur, Mikhail L.; Spalart, Philippe R.; Strelets, Mikhail Kh.

    2011-08-01

    The Large-Eddy Simulation (LES) numerical system established since 2002 for jet-noise computation is first evaluated in terms of recent gains in accuracy with increased computer resources, and is then used to explore the relatively new "microjet" noise-reduction concept (injection of high-pressure microjets in the vicinity of the main jet nozzle exit), which currently attracts attention in the aeroacoustic community. The simulations, which are carried out with an emulation of the microjets by specially designed distributed sources of mass, momentum, and energy in the governing equations, are found to capture the essential features of the flow/turbulence and the far-field noise alteration by the microjets observed in experiments, and to reveal the subtle flow features responsible for the effect of injection on noise. They also confirm the experimental observation that in static conditions microjets provide a noise reduction comparable with that from chevrons in the low-frequency range, and probably have a less pronounced high-frequency penalty. This positive evaluation of the microjets concept is, however, mitigated by the far less favorable results of simulations in flight conditions, which were never studied experimentally. The latter results, which are awaiting an experimental verification, make a practical use of the concept in its current form rather unlikely.

  9. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  10. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  11. Eulerian Time-Domain Filtering for Spatial LES

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    Eulerian time-domain filtering seems to be appropriate for LES (large eddy simulation) of flows whose large coherent structures convect approximately at a common characteristic velocity; e.g., mixing layers, jets, and wakes. For these flows, we develop an approach to LES based on an explicit second-order digital Butterworth filter, which is applied in,the time domain in an Eulerian context. The approach is validated through a priori and a posteriori analyses of the simulated flow of a heated, subsonic, axisymmetric jet.

  12. LES of large wind farm during a diurnal cycle: Analysis of Energy and Scalar flux budgets

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Calaf, M.; Parlange, M. B.

    2014-12-01

    With an expanding role of wind energy in satisfying energy demands around the world, wind farms are covering increasingly larger surfaces to the point where interaction between wind farms and the atmospheric boundary layer (ABL) might have significant implications. Furthermore, many wind farm sites lie over existing farmland for which water is a precious resource. In this context, a relevant question yet to be fully understood, is whether large wind farms alter near surface temperatures and evaporation rates and if so, by how much. In the present study, Large Eddy Simulation (LES) of a geostrophic wind driven ABL with two active scalars, temperature and specific humidity, in the presence of Coriolis forces with an embedded wind farm are performed. Multiple 'synthetic' diurnal cycles are simulated by imposing a time-varying surface temperature and specific humidity. Wind turbines are modeled using the "actuator disk" approach along with the flexibility to reorient according to varying flow directions. LES is performed using the "pseudo-spectral" approach implying that an infinitely large wind farm is simulated. Comparison of simulations with and without wind farms show clear differences in vertical profiles of horizontal velocity magnitude and direction, turbulent kinetic energy and scalar fluxes. To better understand these differences, a detailed analysis of the constituent terms of budget equations of mean and turbulent kinetic energy and sensible and latent heat fluxes has been performed for different stratification regimes as the ABL evolves during the diurnal cycle. The analyses help explain the effect of wind farms on the characteristics of the low-level jet, depth of the stable boundary layer, formation and growth of the convective boundary layer (CBL) and scalar fluxes at the surface.

  13. Ejector Noise Suppression with Auxiliary Jet Injection

    NASA Technical Reports Server (NTRS)

    Berman, Charles H.; Andersen, Otto P., Jr.

    1997-01-01

    An experimental program to reduce aircraft jet turbulence noise investigated the interaction of small auxiliary jets with a larger main jet. Significant reductions in the far field jet noise were obtained over a range of auxiliary jet pressures and flow rates when used in conjunction with an acoustically lined ejector. While the concept is similar to that of conventional ejector suppressors that use mechanical mixing devices, the present approach should improve thrust and lead to lower weight and less complex noise suppression systems since no hardware needs to be located in the main jet flow. A variety of auxiliary jet and ejector configurations and operating conditions were studied. The best conditions tested produced peak to peak noise reductions ranging from 11 to 16 dB, depending on measurement angle, for auxiliary jet mass flows that were 6.6% of the main jet flow with ejectors that were 8 times the main jet diameter in length. Much larger reductions in noise were found at the original peak frequencies of the unsuppressed jet over a range of far field measurement angles.

  14. Water Jetting

    NASA Astrophysics Data System (ADS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water