Sample records for lethal factor protease

  1. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    PubMed

    Bachran, Christopher; Leppla, Stephen H

    2016-07-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery.

  2. Blue light treatment of Pseudomonas aeruginosa: Strong bactericidal activity, synergism with antibiotics and inactivation of virulence factors.

    PubMed

    Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw

    2017-08-18

    Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.

  3. Purification and biophysical characterization of the core protease domain of anthrax lethal factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gkazonis, Petros V.; Dalkas, Georgios A.; Chasapis, Christos T.

    2010-06-04

    Anthrax lethal toxin (LeTx) stands for the major virulence factor of the anthrax disease. It comprises a 90 kDa highly specific metalloprotease, the anthrax lethal factor (LF). LF possesses a catalytic Zn{sup 2+} binding site and is highly specific against MAPK kinases, thus representing the most potent native biomolecule to alter and inactivate MKK [MAPK (mitogen-activated protein kinase) kinases] signalling pathways. Given the importance of the interaction between LF and substrate for the development of anti-anthrax agents as well as the potential treatment of nascent tumours, the analysis of the structure and dynamic properties of the LF catalytic site aremore » essential to elucidate its enzymatic properties. Here we report the recombinant expression and purification of a C-terminal part of LF (LF{sub 672-776}) that harbours the enzyme's core protease domain. The biophysical characterization and backbone assignments ({sup 1}H, {sup 13}C, {sup 15}N) of the polypeptide revealed a stable, well folded structure even in the absence of Zn{sup 2+}, suitable for high resolution structural analysis by NMR.« less

  4. Properties of proteolytic toxin of Vibrio anguilolarum from diseased flounder

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Lan; Chen, Shi-Yong; Zhang, Pei-Jun

    2002-12-01

    Extracellular products (ECP) produced by Vibrio anguillarum strain M3 originally isolated from diseased flounder ( Paralichthys olivaceus) were prepared. ECP of M3 showed gelatinase, casinase, amylase and haemolytic activity on agarose plates. High protease activity against azocasin was detected. Bacterium M2 showed highest growth and protease activity at 25°C. The protease present in ECP showed maximal activity at pH 8 and 55°C; was completely inactivated by application of 80°C heat for 30 min; was completely inhibited by EDTA and HgCl2, and was partially inhibited by PMSF, SDS, MnCl2 and iodoacetic acid; but not inhibited by CaCl2 and MgCl2. The ECP was toxic to flounder fish at LD50 values of 3.1 μg protein/g body weight. The addition of HgCl2 and application of heat at 50°C decreased the lethal toxicity of ECP. When heated at 100°C, ECP lethality to flounder was completely inhibited. After intramuscular injection of ECP into flounder, it showed evident histopathological changes including necrosis of muscle, extensive deposition of haemosiderin in the spleen, dilated blood vessels congested with numerious lymphocytes in the liver. These results showed that ECP protease was a lethal factor produced by the bacterium V. anguillarum M3.

  5. Plasmids encoding therapeutic agents

    DOEpatents

    Keener, William K [Idaho Falls, ID

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  6. Gold nanoparticles-based protease assay

    PubMed Central

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-01-01

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range. PMID:16537471

  7. Gold nanoparticles-based protease assay.

    PubMed

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-03-14

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range.

  8. The Anthrax Protective Antigen (PA63) Bound Conformation of a Peptide Inhibitor of the Binding of Lethal Factor to PA63: As Determined by trNOESY NMR and Molecular Modelling

    DTIC Science & Technology

    2004-01-01

    cleavage site for the furin protease.1 due to the formation of black skin lesions.1 The name Domain 2 is involved in pore formation and contains a now...the binding protomer, which proteolytic cleavage by furin , or a furin -like protease, interacts with a toxin-specific receptor located on the at a...How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000, 82, 427- 446. (4) Swaminathan , S.; Eswaramoorthy, S. Structural

  9. Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor*

    PubMed Central

    Kobayashi, Hidetomo; Utsunomiya, Hiroko; Yamanaka, Hiroyasu; Sei, Yoshihisa; Katunuma, Nobuhiko; Okamoto, Keinosuke; Tsuge, Hideaki

    2009-01-01

    The anaerobic bacterium Aeromonas sobria is known to cause potentially lethal septic shock. We recently proposed that A. sobria serine protease (ASP) is a sepsis-related factor that induces vascular leakage, reductions in blood pressure via kinin release, and clotting via activation of prothrombin. ASP preferentially cleaves peptide bonds that follow dibasic amino acid residues, as do Kex2 (Saccharomyces cerevisiae serine protease) and furin, which are representative kexin family proteases. Here, we revealed the crystal structure of ASP at 1.65 Å resolution using the multiple isomorphous replacement method with anomalous scattering. Although the overall structure of ASP resembles that of Kex2, it has a unique extra occluding region close to its active site. Moreover, we found that a nicked ASP variant is cleaved within the occluding region. Nicked ASP shows a greater ability to cleave small peptide substrates than the native enzyme. On the other hand, the cleavage pattern for prekallikrein differs from that of ASP, suggesting the occluding region is important for substrate recognition. The extra occluding region of ASP is unique and could serve as a useful target to facilitate development of novel antisepsis drugs. PMID:19654332

  10. INTER-ALPHA INHIBITOR PROTEINS: A NOVEL THERAPEUTIC STRATEGY FOR EXPERIMENTAL ANTHRAX INFECTION

    PubMed Central

    Opal, Steven M.; Lim, Yow-Pin; Cristofaro, Patricia; Artenstein, Andrew W.; Kessimian, Noubar; DelSesto, David; Parejo, Nicolas; Palardy, John E.; Siryaporn, Edward

    2010-01-01

    Human inter-alpha-inhibitor proteins (IaIp) are endogenous human plasma proteins that function as serine protease inhibitors. IaIp can block the systemic release of proteases in sepsis and block furin-mediated assembly of protective antigen, an essential stop in the intracellular delivery of the anthrax exotoxins, lethal toxin and edema toxin. IaIp administered on hour or up to 24 hours after spore challenge with Bacillus anthracis Sterne strain protected mice from lethality if administered with antimicrobial therapy (p<.001). These human plasma proteins possess combined actions against anthrax as general inhibitors of excess serine proteases in sepsis and specific inhibitors of anthrax toxin assembly. IaIp could represent a novel adjuvant therapy for the treatment of established anthrax infection. PMID:20523269

  11. Purification of a toxic metalloprotease produced by the pathogenic Photobacterium damselae subsp. piscicida isolated from cobia (Rachycentron canadum).

    PubMed

    Liu, Ping-Chung; Chuang, Wen-Hsiao; Lee, Kuo-Kau

    2011-01-01

    The aim of the present study was to purify and characterize a toxic protease secreted by the pathogenic Photobacterium damselae subsp. piscicida strain CP1 originally isolated from diseased cobia (Rachycentron canadum). The toxin isolated by anion exchange chromatography, was a metalloprotease, inhibited by L-cysteine, ethylenediaminetetraacetic acid (EDTA), ethylene glycol-bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA), 1,10-phenanthroline, N-tosyl-L-phenylalanine-chloromethyl ketone (TPCK), and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK), and showed maximal activity at pH 6.0-8.0 and an apparent molecular mass of about 34.3 kDa. The toxin was also completely inhibited by HgCl2, and partially by sodium dodecyl sulfate (SDS) and CuCl2. The extracellular products and the partially purified protease were lethal to cobia with LD50 values of 1.26 and 6.8 microg protein/g body weight, respectively. The addition of EDTA completely inhibited the lethal toxicity of the purified protease, indicating that this metalloprotease was a lethal toxin produced by the bacterium.

  12. Anthrax Pathogenesis.

    PubMed

    Moayeri, Mahtab; Leppla, Stephen H; Vrentas, Catherine; Pomerantsev, Andrei P; Liu, Shihui

    2015-01-01

    Anthrax is caused by the spore-forming, gram-positive bacterium Bacillus anthracis. The bacterium's major virulence factors are (a) the anthrax toxins and (b) an antiphagocytic polyglutamic capsule. These are encoded by two large plasmids, the former by pXO1 and the latter by pXO2. The expression of both is controlled by the bicarbonate-responsive transcriptional regulator, AtxA. The anthrax toxins are three polypeptides-protective antigen (PA), lethal factor (LF), and edema factor (EF)-that come together in binary combinations to form lethal toxin and edema toxin. PA binds to cellular receptors to translocate LF (a protease) and EF (an adenylate cyclase) into cells. The toxins alter cell signaling pathways in the host to interfere with innate immune responses in early stages of infection and to induce vascular collapse at late stages. This review focuses on the role of anthrax toxins in pathogenesis. Other virulence determinants, as well as vaccines and therapeutics, are briefly discussed.

  13. Targeting the membrane-anchored serine protease testisin with a novel engineered anthrax toxin prodrug to kill tumor cells and reduce tumor burden

    PubMed Central

    Martin, Erik W.; Buzza, Marguerite S.; Driesbaugh, Kathryn H.; Liu, Shihui; Fortenberry, Yolanda M.; Leppla, Stephen H.; Antalis, Toni M.

    2015-01-01

    The membrane-anchored serine proteases are a unique group of trypsin-like serine proteases that are tethered to the cell surface via transmembrane domains or glycosyl-phosphatidylinositol-anchors. Overexpressed in tumors, with pro-tumorigenic properties, they are attractive targets for protease-activated prodrug-like anti-tumor therapies. Here, we sought to engineer anthrax toxin protective antigen (PrAg), which is proteolytically activated on the cell surface by the proprotein convertase furin to instead be activated by tumor cell-expressed membrane-anchored serine proteases to function as a tumoricidal agent. PrAg's native activation sequence was mutated to a sequence derived from protein C inhibitor (PCI) that can be cleaved by membrane-anchored serine proteases, to generate the mutant protein PrAg-PCIS. PrAg-PCIS was resistant to furin cleavage in vitro, yet cytotoxic to multiple human tumor cell lines when combined with FP59, a chimeric anthrax toxin lethal factor-Pseudomonas exotoxin fusion protein. Molecular analyses showed that PrAg-PCIS can be cleaved in vitro by several serine proteases including the membrane-anchored serine protease testisin, and mediates increased killing of testisin-expressing tumor cells. Treatment with PrAg-PCIS also potently attenuated the growth of testisin-expressing xenograft tumors in mice. The data indicates PrAg can be engineered to target tumor cell-expressed membrane-anchored serine proteases to function as a potent tumoricidal agent. PMID:26392335

  14. Inhibition of anthrax lethal factor by ssDNA aptamers.

    PubMed

    Lahousse, Mieke; Park, Hae-Chul; Lee, Sang-Choon; Ha, Na-Reum; Jung, In-Pil; Schlesinger, Sara R; Shackelford, Kaylin; Yoon, Moon-Young; Kim, Sung-Kun

    2018-05-15

    Anthrax is caused by Bacillus anthracis, a bacterium that is able to secrete the toxins protective antigen, edema factor and lethal factor. Due to the high level of secretion from the bacteria and its severe virulence, lethal factor (LF) has been sought as a biomarker for detecting bacterial infection and as an effective target to neutralize toxicity. In this study, we found three aptamers, and binding affinity was determined by fluorescently labeled aptamers. One of the aptamers exhibited high affinity, with a K d value of 11.0 ± 2.7 nM, along with low cross reactivity relative to bovine serum albumin and protective antigen. The therapeutic functionality of the aptamer was examined by assessing the inhibition of LF protease activity against a mitogen-activated protein kinase kinase. The aptamer appears to be an effective inhibitor of LF with an IC 50 value of 15 ± 1.5 μM and approximately 85% cell viability, suggesting that this aptamer provides a potential clue for not only development of a sensitive diagnostic device of B. anthracis infection but also the design of novel inhibitors of LF. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The Hag-protease-II is a fibrin(ogen)ase from Hippasa agelenoides spider venom gland extract: purification, characterization and its role in hemostasis.

    PubMed

    Devaraja, S; Girish, K S; Gowtham, Y N J; Kemparaju, K

    2011-02-01

    The current study describes the biochemical, biophysical and pharmacological properties of Hag-protease-II from Hippasa agelenoides spider venom gland extract. The Hag-protease-II was purified to homogeneity using gel filtration and ion-exchange chromatography. The molecular mass was found to be 28.749 kDa by MALDI-TOF mass spectrometry. PMSF abolished the activity while EDTA, EGTA, IAA and 1, 10-phenanthrolene did not. Hag-protease-II hydrolyzed casein, fibrinogen and fibrin, however it did not hydrolyze gelatin, fibronectin and collagen types- I and IV. It was non-lethal and devoid of hemorrhagic, myotoxic and edema forming activities. It dose dependently reduced re-calcification time of citrated human plasma. Strikingly; the Hag-protease-II coagulated the factor X deficient congenital human plasma. It hydrolyzed Bβ-chain but, did not degrade Aα- and γ-chains of fibrinogen while, it hydrolyzed α-polymer and α-chain but not the β-chain and γ-γ dimers of partially cross-linked fibrin clot. The Hag-protease-II induced aggregation of human platelets in PRP dose dependently, however it did not interfere in collagen induced aggregation of PRP and washed human platelets. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Defect of Hepatocyte Growth Factor Activator Inhibitor Type 1/Serine Protease Inhibitor, Kunitz Type 1 (Hai-1/Spint1) Leads to Ichthyosis-Like Condition and Abnormal Hair Development in Mice

    PubMed Central

    Nagaike, Koki; Kawaguchi, Makiko; Takeda, Naoki; Fukushima, Tsuyoshi; Sawaguchi, Akira; Kohama, Kazuyo; Setoyama, Mitsuru; Kataoka, Hiroaki

    2008-01-01

    Hepatocyte growth factor activator inhibitor type 1 (HAI-1)/serine protease inhibitor, Kunitz type 1 (SPINT1) is a membrane-bound, serine proteinase inhibitor initially identified as an inhibitor of hepatocyte growth factor activator. It also inhibits matriptase and prostasin, both of which are membrane-bound serine proteinases that have critical roles in epidermal differentiation and function. In this study, skin and hair phenotypes of mice lacking the Hai-1/Spint1 gene were characterized. Previously, we reported that the homozygous deletion of Hai-1/Spint1 in mice resulted in embryonic lethality attributable to impaired placental development. To test the role of Hai-1/Spint1 in mice, the placental function of Hai-1/Spint1-mutant mice was rescued. Injection of Hai-1/Spint1+/+ blastocysts with Hai-1/Spint1−/− embryonic stem cells successfully generated high-chimeric Hai-1/Spint1−/− embryos (B6Hai-1−/−High) with normal placentas. These embryos were delivered without apparent developmental abnormalities, confirming that embryonic lethality of Hai-1/Spint1−/− mice was caused by placental dysfunction. However, newborn B6Hai-1−/−High mice showed growth retardation and died by 16 days. These mice developed scaly skin because of hyperkeratinization, reminiscent of ichthyosis, and abnormal hair shafts that showed loss of regular cuticular septation. The interfollicular epidermis showed acanthosis with enhanced Akt phosphorylation. Immunoblot analysis revealed altered proteolytic processing of profilaggrin in Hai-1/Spint1-deleted skin with impaired generation of filaggrin monomers. These findings indicate that Hai-1/Spint1 has critical roles in the regulated keratinization of the epidermis and hair development. PMID:18832587

  17. Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants

    PubMed Central

    Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil

    2013-01-01

    Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830

  18. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex,more » resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.« less

  19. Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.

    PubMed Central

    Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R

    1997-01-01

    Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617

  20. Oxidative stress in freshwater fish, Labeo rohita as a biomarker of malathion exposure.

    PubMed

    Patil, Vineetkumar K; David, Muniswamy

    2013-12-01

    This study examined the effect of lethal (4.5 μg/l) and sublethal (0.45 μg/l) malathion levels on oxidative stress responses of the freshwater edible fish, Labeo rohita. Fish were exposed to lethal (1-4 days) and sublethal (1, 5, 10, and 15 days) periods. In the present study, catalase and protease activity, hydrogen peroxide, malondialdehyde, protein carbonyls, and free amino acids levels increased in the gill, liver, and kidney tissues of fish exposed to lethal and sublethal concentrations of malathion except protein content. Time- and concentration-dependent induction/reduction of the above parameters by lethal and sublethal concentrations of malathion was observed in the tissues (the gill, liver, and kidney) of L. rohita. Thus, the results clearly infer oxidative damage and decline in antioxidant defense due to malathion-induced oxidative stress.

  1. A low molecular weight serine protease: Purification and characterization from Hippasa agelenoides (funnel web) spider venom gland extract.

    PubMed

    Devaraja, S; Nagaraju, S; Mahadeswaraswamy, Y H; Girish, K S; Kemparaju, K

    2008-07-01

    Despite the long history [Kaiser, E., 1956. Enzymatic activity of spider venoms. In: Buckley, E.E., Porges, N. (Eds.), Venoms. American Association for the Advancement of Science, Washington, DC, pp. 91-93] on proteolytic activity, no study so far claims the isolation of a serine protease from the spider venom/venom gland extract. Therefore, the present study describes the isolation and characterization of a low molecular weight serine protease from Hippasa agelenoides venom gland extract. The protease (Hag-protease) was purified to homogeneity using the combination of gel-permeation and ion-exchange chromatography. The molecular mass was found to be 16.350 kDa by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Hag-protease was optimally active at pH 7.5 and temperature of 37 degrees C. PMSF abolished the enzyme activity while EDTA, EGTA, IAA, 1, 10-phenanthrolene did not. It hydrolyzed proteins such as casein, fibronectin and collagen type-I dose dependently but did not degrade gelatin and collagen type-IV. The isolated protease was non-lethal and devoid of hemorrhagic, myotoxic and edema forming activities. The light microscopy of Hag-protease treated skin tissue sections at the site of injection showed extensive damage of extracellular matrix (ECM) of hypodermis without causing any damage to blood vessels and capillaries. Similar damage of ECM of muscle tissue sections without affecting myocytes was noticed. Hag-protease was found to be procoagulant in property when studied plasma recalcification time.

  2. Calpain chronicle--an enzyme family under multidisciplinary characterization.

    PubMed

    Sorimachi, Hiroyuki; Hata, Shoji; Ono, Yasuko

    2011-01-01

    Calpain is an intracellular Ca2+-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) discovered in 1964. It was also called CANP (Ca2+-activated neutral protease) as well as CASF, CDP, KAF, etc. until 1990. Calpains are found in almost all eukaryotes and a few bacteria, but not in archaebacteria. Calpains have a limited proteolytic activity, and function to transform or modulate their substrates' structures and activities; they are therefore called, "modulator proteases." In the human genome, 15 genes--CAPN1, CAPN2, etc.--encode a calpain-like protease domain. Their products are calpain homologs with divergent structures and various combinations of functional domains, including Ca2+-binding and microtubule-interaction domains. Genetic studies have linked calpain deficiencies to a variety of defects in many different organisms, including lethality, muscular dystrophies, gastropathy, and diabetes. This review of the study of calpains focuses especially on recent findings about their structure-function relationships. These discoveries have been greatly aided by the development of 3D structural studies and genetic models.

  3. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.

    Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamicmore » plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.« less

  4. Anthrax toxin.

    PubMed

    Bhatnagar, R; Batra, S

    2001-01-01

    Anthrax is primarily a disease of herbivores caused by gram-positive, aerobic, spore-forming Bacillus anthracis. Humans are accidental hosts through the food of animal origin and animal products. Anthrax is prevelant in most parts of the globe, and cases of anthrax have been reported from almost every country. Three forms of the disease have been recognized: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). The major virulence factors of Bacillus anthracis are a poly-D glutamic acid capsule and a three-component protein exotoxin. The genes coding for the toxin and the enzymes responsible for capsule production are carried on plasmid pXO1 and pXO2, respectively. The three proteins of the exotoxin are protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). The toxins follow the A-B model with PA being the B moeity and LF/EF, the alternative A moeities. LF and EF are individually nontoxic, but in combination with PA form two toxins causing different pathogenic responses in animals and cultured cells. PA + LF forms the lethal toxin and PA + EF forms the edema toxin. During the process of intoxication, PA binds to the cell surface receptor and is cleaved at the sequence RKKR (167) by cell surface proteases such as furin generating a cell-bound, C-terminal 63 kDa protein (PA63). PA63 possesses a binding site to which LF or EF bind with high affinity. The complex is then internalized by receptor-mediated endocytosis. Acidification of the vesicle leads to instertion of PA63 into the endosomal membrane and translocation of LF/EF across the bilayer into the cytosol where they exert their toxic effects. EF has a calcium- and calmodulin-dependent adenylate cyclase activity. Recent reports indicate that LF is a protease that cleaves the amino terminus of mitogen-activated protein kinase kinases 1 and 2 (MAPKK1 and 2), and this cleavage inactivates MAPKK1 and thus inhibits the mitogen-activated protein kinase signal transduction pathway. We describe in detail the studies so far done on unraveling the molecular mechanisms of pathogenesis of Bacillus anthracis.

  5. Identification of the cellular receptor for anthrax toxin

    NASA Astrophysics Data System (ADS)

    Bradley, Kenneth A.; Mogridge, Jeremy; Mourez, Michael; Collier, R. John; Young, John A. T.

    2001-11-01

    The tripartite toxin secreted by Bacillus anthracis, the causative agent of anthrax, helps the bacterium evade the immune system and can kill the host during a systemic infection. Two components of the toxin enzymatically modify substrates within the cytosol of mammalian cells: oedema factor (OF) is an adenylate cyclase that impairs host defences through a variety of mechanisms including inhibiting phagocytosis; lethal factor (LF) is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase and causes lysis of macrophages. Protective antigen (PA), the third component, binds to a cellular receptor and mediates delivery of the enzymatic components to the cytosol. Here we describe the cloning of the human PA receptor using a genetic complementation approach. The receptor, termed ATR (anthrax toxin receptor), is a type I membrane protein with an extracellular von Willebrand factor A domain that binds directly to PA. In addition, a soluble version of this domain can protect cells from the action of the toxin.

  6. Tripeptidyl peptidase II promotes fat formation in a conserved fashion.

    PubMed

    McKay, Renée M; McKay, James P; Suh, Jae Myoung; Avery, Leon; Graff, Jonathan M

    2007-12-01

    Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner.

  7. Tripeptidyl peptidase II promotes fat formation in a conserved fashion

    PubMed Central

    McKay, Renée M; McKay, James P; Suh, Jae Myoung; Avery, Leon; Graff, Jonathan M

    2007-01-01

    Tripeptidyl peptidase II (TPPII) is a multifunctional and evolutionarily conserved protease. In the mammalian hypothalamus, TPPII has a proposed anti-satiety role affected by degradation of the satiety hormone cholecystokinin 8. Here, we show that TPPII also regulates the metabolic homoeostasis of Caenorhabditis elegans; TPPII RNA interference (RNAi) decreases worm fat stores. However, this occurs independently of feeding behaviour and seems to be a function within fat-storing tissues. In mammalian cell culture, TPPII stimulates adipogenesis and TPPII RNAi blocks adipogenesis. The pro-adipogenic action of TPPII seems to be independent of protease function, as catalytically inactive TPPII also increases adipogenesis. Mice that were homozygous for an insertion in the Tpp2 locus were embryonic lethal. However, Tpp2 heterozygous mutants were lean compared with wild-type littermates, although food intake was normal. These findings indicate that TPPII has central and peripheral roles in regulating metabolism and that TPPII actions in fat-storing tissues might be an ancient function carried out in a protease-independent manner. PMID:17932511

  8. Anti-biofilm activity of Marula - a study with the standardized bark extract.

    PubMed

    Sarkar, Ratul; Chaudhary, Sushil K; Sharma, Amrita; Yadav, Kirendra K; Nema, Neelesh K; Sekhoacha, Mamello; Karmakar, Sanmoy; Braga, Fernão C; Matsabisa, Motlalepula Gilbert; Mukherjee, Pulok K; Sen, Tuhinadri

    2014-05-28

    Marula (Sclerocarya birrea; family - Anacardiaceae) is an African plant, which enjoys wide socio-economic importance particularly in southern part of Africa. The fruits are consumed as food and also as alcoholic beverage (cream liquor). In different parts of Africa, the decoction of the bark is traditionally used for the treatment of dysentery, diarrhoea, and various other infectious conditions. The aim of the study was to investigate the anti-biofilm properties of the methanol extract of Marula bark (stem bark of Sclerocarya birrea), with a view towards combating the emergence of antimicrobial resistance often associated with bacterial biofilms. The standardized methanol extract was initially tested for its antimicrobial property. The crystal violet assay was used for evaluating anti-biofilm (biofilm formation by Pseudomonas aeuginosa) activity. Further in order to study the mechanism of anti-biofilm activity, the same was evaluated for understanding its role on various quorums sensing mediated phenomenon (swarming motility assay, protease and pyoverdin assay) that are known to be associated with the formation of biofilms and pathogenicity. The methanol extract showed no inhibition of bacterial growth up to a concentration of 200 µg/ml. Interestingly, the sample produced anti-biofilm activity (around 75% decrease; 100 µg/ml) at sub-lethal concentration. Further it also significantly reduced the QS mediated swarming motility. The release of various virulent factors (protease and pyoverdin) was found to be lowered when pre-treated with the extract. The present study illustrates the anti-biofilm property Sclerocarya birrea. The standardized extract significantly disrupted the quorum sensing mediated production of biofilm formation and also inhibited swarming ability of the cells. The extract displayed a regulatory role on the secretion of protease and pyoverdin, two QS dependent pathogenic factors found in Pseudomonas aeruginosa. This study also validates the ethnobotanical use of Marula. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Sequence editing by Apolipoprotein B RNA-editing catalytic component-B and epidemiological surveillance of transmitted HIV-1 drug resistance

    PubMed Central

    Gifford, Robert J.; Rhee, Soo-Yon; Eriksson, Nicolas; Liu, Tommy F.; Kiuchi, Mark; Das, Amar K.; Shafer, Robert W.

    2008-01-01

    Design Promiscuous guanine (G) to adenine (A) substitutions catalysed by apolipoprotein B RNA-editing catalytic component (APOBEC) enzymes are observed in a proportion of HIV-1 sequences in vivo and can introduce artifacts into some genetic analyses. The potential impact of undetected lethal editing on genotypic estimation of transmitted drug resistance was assessed. Methods Classifiers of lethal, APOBEC-mediated editing were developed by analysis of lentiviral pol gene sequence variation and evaluated using control sets of HIV-1 sequences. The potential impact of sequence editing on genotypic estimation of drug resistance was assessed in sets of sequences obtained from 77 studies of 25 or more therapy-naive individuals, using mixture modelling approaches to determine the maximum likelihood classification of sequences as lethally edited as opposed to viable. Results Analysis of 6437 protease and reverse transcriptase sequences from therapy-naive individuals using a novel classifier of lethal, APOBEC3G-mediated sequence editing, the polypeptide-like 3G (APOBEC3G)-mediated defectives (A3GD) index’, detected lethal editing in association with spurious ‘transmitted drug resistance’ in nearly 3% of proviral sequences obtained from whole blood and 0.2% of samples obtained from plasma. Conclusion Screening for lethally edited sequences in datasets containing a proportion of proviral DNA, such as those likely to be obtained for epidemiological surveillance of transmitted drug resistance in the developing world, can eliminate rare but potentially significant errors in genotypic estimation of transmitted drug resistance. PMID:18356601

  10. A novel interplay between the ubiquitin–proteasome system and serine proteases during Drosophila development.

    PubMed

    Lipinszki, Zoltán; Klement, Eva; Hunyadi-Gulyas, Eva; Medzihradszky, Katalin F; Márkus, Róbert; Pál, Margit; Deák, Péter; Udvardy, Andor

    2013-09-15

    The concentrations of the Drosophila proteasomal and extraproteasomal polyubiquitin receptors fluctuate in a developmentally regulated fashion. This fluctuation is generated by a previously unidentified proteolytic activity. In the present paper, we describe the purification, identification and characterization of this protease (endoproteinase I). Its expression increases sharply at the L1-L2 larval stages, remains high until the second half of the L3 stage, then declines dramatically. This sharp decrease coincides precisely with the increase of polyubiquitin receptor concentrations in late L3 larvae, which suggests a tight developmental co-regulation. RNAi-induced down-regulation of endoproteinase I results in pupal lethality. Interestingly, we found a cross-talk between the 26S proteasome and this larval protease: transgenic overexpression of the in vivo target of endoproteinase I, the C-terminal half of the proteasomal polyubiquitin receptor subunit p54/Rpn10 results in transcriptional down-regulation of endoproteinase I and consequently a lower level of proteolytic elimination of the polyubiquitin receptors. Another larval protease, Jonah65A-IV, which degrades only unfolded proteins and exhibits similar cross-talk with the proteasome has also been purified and characterized. It may prevent the accumulation of polyubiquitylated proteins in larvae contrary to the low polyubiquitin receptor concentration.

  11. Fermentation, Purification, and Characterization of Protective Antigen from a Recombinant, Avirulent Strain of Bacillus anthracis

    PubMed Central

    Farchaus, J. W.; Ribot, W. J.; Jendrek, S.; Little, S. F.

    1998-01-01

    Bacillus anthracis, the etiologic agent for anthrax, produces two bipartite, AB-type exotoxins, edema toxin and lethal toxin. The B subunit of both exotoxins is an Mr 83,000 protein termed protective antigen (PA). The human anthrax vaccine currently licensed for use in the United States consists primarily of this protein adsorbed onto aluminum oxyhydroxide. This report describes the production of PA from a recombinant, asporogenic, nontoxigenic, and nonencapsulated host strain of B. anthracis and the subsequent purification and characterization of the protein product. Fermentation in a high-tryptone, high-yeast-extract medium under nonlimiting aeration produced 20 to 30 mg of secreted PA per liter. Secreted protease activity under these fermentation conditions was low and was inhibited more than 95% by the addition of EDTA. A purity of 88 to 93% was achieved for PA by diafiltration and anion-exchange chromatography, while greater than 95% final purity was achieved with an additional hydrophobic interaction chromatography step. The purity of the PA product was characterized by reversed-phase high-pressure liquid chromatography, sodium dodecyl sulfate (SDS)-capillary electrophoresis, capillary isoelectric focusing, native gel electrophoresis, and SDS-polyacrylamide gel electrophoresis. The biological activity of the PA, when combined with excess lethal factor in the macrophage cell lysis assay, was comparable to previously reported values. PMID:9501438

  12. Potent antitumor activity of a urokinase-activated engineered anthrax toxin

    NASA Astrophysics Data System (ADS)

    Liu, Shihui; Aaronson, Hannah; Mitola, David J.; Leppla, Stephen H.; Bugge, Thomas H.

    2003-01-01

    The acquisition of cell-surface urokinase plasminogen activator activity is a hallmark of malignancy. We generated an engineered anthrax toxin that is activated by cell-surface urokinase in vivo and displays limited toxicity to normal tissue but broad and potent tumoricidal activity. Native anthrax toxin protective antigen, when administered with a chimeric anthrax toxin lethal factor, Pseudomonas exotoxin fusion protein, was extremely toxic to mice, causing rapid and fatal organ damage. Replacing the furin activation sequence in anthrax toxin protective antigen with an artificial peptide sequence efficiently activated by urokinase greatly attenuated toxicity to mice. In addition, the mutation conferred cell-surface urokinase-dependent toxin activation in vivo, as determined by using a panel of plasminogen, plasminogen activator, plasminogen activator receptor, and plasminogen activator inhibitor-deficient mice. Surprisingly, toxin activation critically depended on both urokinase plasminogen activator receptor and plasminogen in vivo, showing that both proteins are essential cofactors for the generation of cell-surface urokinase. The engineered toxin displayed potent tumor cell cytotoxicity to a spectrum of transplanted tumors of diverse origin and could eradicate established solid tumors. This tumoricidal activity depended strictly on tumor cell-surface plasminogen activation. The data show that a simple change of protease activation specificity converts anthrax toxin from a highly lethal to a potent tumoricidal agent.

  13. The lethal cargo of Myxococcus xanthus outer membrane vesicles.

    PubMed

    Berleman, James E; Allen, Simon; Danielewicz, Megan A; Remis, Jonathan P; Gorur, Amita; Cunha, Jack; Hadi, Masood Z; Zusman, David R; Northen, Trent R; Witkowska, H Ewa; Auer, Manfred

    2014-01-01

    Myxococcus xanthus is a bacterial micro-predator known for hunting other microbes in a wolf pack-like manner. Outer membrane vesicles (OMVs) are produced in large quantities by M. xanthus and have a highly organized structure in the extracellular milieu, sometimes occurring in chains that link neighboring cells within a biofilm. OMVs may be a vehicle for mediating wolf pack activity by delivering hydrolytic enzymes and antibiotics aimed at killing prey microbes. Here, both the protein and small molecule cargo of the OMV and membrane fractions of M. xanthus were characterized and compared. Our analysis indicates a number of proteins that are OMV-specific or OMV-enriched, including several with putative hydrolytic function. Secondary metabolite profiling of OMVs identifies 16 molecules, many associated with antibiotic activities. Several hydrolytic enzyme homologs were identified, including the protein encoded by MXAN_3564 (mepA), an M36 protease homolog. Genetic disruption of mepA leads to a significant reduction in extracellular protease activity suggesting MepA is part of the long-predicted (yet to date undetermined) extracellular protease suite of M. xanthus.

  14. Clinical use of a rapid collagen binding assay for von Willebrand factor cleaving protease in patients with thrombotic thrombocytopenic purpura.

    PubMed

    Rick, Margaret E; Moll, Stephan; Taylor, Mark A; Krizek, Dennis M; White, Gilbert C; Aronson, David L

    2002-10-01

    A simple collagen binding assay (CBA) for measuring activity of the von Willebrand factor cleaving protease in clinical samples is described, and results of fifty masked plasmapheresis samples rom patients with TTP/HUS and other diseases are presented. There was 97.5% concordance between the CBA and a multimer gel assay. The CBA identified low protease activity in 78% of patients who had a clinical syndrome consistent with TTP/HUS and in 2 of 10 sick controls, giving it a positive predictive value of 0.94. The heterogeneity regarding the presence or absence of vWF protease activity in patients with TTP/HUS was confirmed by finding a low negative predictive value of 0.50 with the CBA. The CBA detected inhibitors of the protease in 26 of 29 patients (90%) with TTP/HUS and low protease activity levels. The CBA is a useful clinical assay for examining von Willebrand factor protease activity and detecting inhibitors against the protease.

  15. Recombinant expression and purification of a tumor-targeted toxin in Bacillus anthracis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachran, Christopher; Abdelazim, Suzanne; Fattah, Rasem J.

    Highlights: Black-Right-Pointing-Pointer Non-infectious and protease-deficient Bacillus anthracis protein expression system. Black-Right-Pointing-Pointer Successful expression and purification of a tumor-targeted fusion protein drug. Black-Right-Pointing-Pointer Very low endotoxin contamination of purified protein. Black-Right-Pointing-Pointer Efficient protein secretion simplifies purification. Black-Right-Pointing-Pointer Functional anti-tumor fusion protein purified. -- Abstract: Many recombinant therapeutic proteins are purified from Escherichia coli. While expression in E. coli is easily achieved, some disadvantages such as protein aggregation, formation of inclusion bodies, and contamination of purified proteins with the lipopolysaccharides arise. Lipopolysaccharides have to be removed to prevent inflammatory responses in patients. Use of the Gram-positive Bacillus anthracis as an expression hostmore » offers a solution to circumvent these problems. Using the multiple protease-deficient strain BH460, we expressed a fusion of the N-terminal 254 amino acids of anthrax lethal factor (LFn), the N-terminal 389 amino acids of diphtheria toxin (DT389) and human transforming growth factor alpha (TGF{alpha}). The resulting fusion protein was constitutively expressed and successfully secreted by B. anthracis into the culture supernatant. Purification was achieved by anion exchange chromatography and proteolytic cleavage removed LFn from the desired fusion protein (DT389 fused to TGF{alpha}). The fusion protein showed the intended specific cytotoxicity to epidermal growth factor receptor-expressing human head and neck cancer cells. Final analyses showed low levels of lipopolysaccharides, originating most likely from contamination during the purification process. Thus, the fusion to LFn for protein secretion and expression in B. anthracis BH460 provides an elegant tool to obtain high levels of lipopolysaccharide-free recombinant protein.« less

  16. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications

    PubMed Central

    Couture, Frédéric; D’Anjou, François; Day, Robert

    2012-01-01

    There is increasing interest in the therapeutic targeting of proteases for the treatment of important diseases. Additionally new protein-based therapeutic strategies have the potential to widen the available treatments against these pathologies. In the last decade, accumulated evidence has confirmed that the family of proteases known as proprotein convertases (PCs) are potential targets for viral infections, osteoarthritis, cancer and cardiovascular disease, among others. Nevertheless, there are still many unanswered questions about the relevance of targeting PCs in a therapeutic context, especially regarding the anticipated secondary effects of treatment, considering the observed embryonic lethality of some PC knockout mice. In this review, the benefits of PCs as pharmacological targets will be discussed, with focus on concepts and strategies, as well as on the state of advancement of actual and future inhibitors. PMID:22308173

  17. Synthesis and Biological Evaluation of Botulinum Neurotoxin A Protease Inhibitors

    PubMed Central

    Li, Bing; Pai, Ramdas; Cardinale, Steven C.; Butler, Michelle M.; Peet, Norton P.; Moir, Donald T.; Bavari, Sina; Bowlin, Terry L.

    2010-01-01

    NSC 240898 was previously identified as a botulinum neurotoxin A light chain (BoNT/A LC) endopeptidase inhibitor by screening the National Cancer Institute Open Repository diversity set. Two types of analogs have been synthesized and shown to inhibit BoNT/A LC in a FRET-based enzyme assay, with confirmation in an HPLC-based assay. These two series of compounds have also been evaluated for inhibition of anthrax lethal factor (LF), an unrelated metalloprotease, to examine enzyme specificity of the BoNT/A LC inhibition. The most potent inhibitor against BoNT/A LC in these two series is compound 12 (IC50 = 2.5 µM, FRET assay), which is 4.4-fold more potent than the lead structure, and 11.2-fold more selective for BoNT/A LC versus the anthrax LF metalloproteinase. Structure-activity relationship studies have revealed structural features important to potency and enzyme specificity. PMID:20155918

  18. The ectromelia virus SPI-2 protein causes lethal mousepox by preventing NK cell responses.

    PubMed

    Melo-Silva, Carolina R; Tscharke, David C; Lobigs, Mario; Koskinen, Aulikki; Wong, Yik Chun; Buller, R Mark; Müllbacher, Arno; Regner, Matthias

    2011-11-01

    Ectromelia virus (ECTV) is a natural pathogen of mice that causes mousepox, and many of its genes have been implicated in the modulation of host immune responses. Serine protease inhibitor 2 (SPI-2) is one of these putative ECTV host response modifier proteins. SPI-2 is conserved across orthopoxviruses, but results defining its mechanism of action and in vivo function are lacking or contradictory. We studied the role of SPI-2 in mousepox by deleting the SPI-2 gene or its serine protease inhibitor reactive site. We found that SPI-2 does not affect viral replication or cell-intrinsic apoptosis pathways, since mutant viruses replicate in vitro as efficiently as wild-type virus. However, in the absence of SPI-2 protein, ECTV is attenuated in mousepox-susceptible mice, resulting in lower viral loads in the liver, decreased spleen pathology, and substantially improved host survival. This attenuation correlates with more effective immune responses in the absence of SPI-2, including an earlier serum gamma interferon (IFN-γ) response, raised serum interleukin 18 (IL-18), increased numbers of granzyme B(+) CD8(+) T cells, and, most notably, increased numbers and activation of NK cells. Both virus attenuation and the improved immune responses associated with SPI-2 deletion from ECTV are lost when mice are depleted of NK cells. Consequently, SPI-2 renders mousepox lethal in susceptible strains by preventing protective NK cell defenses.

  19. Role of hepsin in factor VII activation in zebrafish.

    PubMed

    Khandekar, Gauri; Jagadeeswaran, Pudur

    2014-01-01

    Factor VII, the initiator of the extrinsic coagulation cascade, circulates in human plasma mainly in its zymogen form, factor VII and in small amounts in its activated form, factor VIIa. However, the mechanism of initial generation of factor VIIa is not known despite intensive research using currently available model systems. Earlier findings suggested serine proteases factor VII activating protease and hepsin play a role in activating factor VII, however, it has remained controversial. In this paper we estimated the levels of factor VIIa and factor VII for the first time in zebrafish adult population and also reevaluated the role of the above two serine proteases in activating factor VII in vivo using zebrafish as a model system. Knockdown of factor VII activating protease and hepsin was performed followed by assaying for their effect on factor VIIa concentration and extrinsic coagulation as measured by the kinetic prothrombin time. Factor VII activating protease knockdown showed no change in kinetic prothrombin time and no effect on factor VIIa levels while hepsin knockdown increased the kinetic prothrombin time and significantly reduced the factor VIIa plasma levels. Our results thus indicate that hepsin plays a physiologically important role in factor VII activation and hemostasis in zebrafish. © 2013.

  20. USP22 regulates oncogenic signaling pathways to drive lethal cancer progression.

    PubMed

    Schrecengost, Randy S; Dean, Jeffry L; Goodwin, Jonathan F; Schiewer, Matthew J; Urban, Mark W; Stanek, Timothy J; Sussman, Robyn T; Hicks, Jessica L; Birbe, Ruth C; Draganova-Tacheva, Rossitza A; Visakorpi, Tapio; DeMarzo, Angelo M; McMahon, Steven B; Knudsen, Karen E

    2014-01-01

    Increasing evidence links deregulation of the ubiquitin-specific proteases 22 (USP22) deubitiquitylase to cancer development and progression in a select group of tumor types, but its specificity and underlying mechanisms of action are not well defined. Here we show that USP22 is a critical promoter of lethal tumor phenotypes that acts by modulating nuclear receptor and oncogenic signaling. In multiple xenograft models of human cancer, modeling of tumor-associated USP22 deregulation demonstrated that USP22 controls androgen receptor accumulation and signaling, and that it enhances expression of critical target genes coregulated by androgen receptor and MYC. USP22 not only reprogrammed androgen receptor function, but was sufficient to induce the transition to therapeutic resistance. Notably, in vivo depletion experiments revealed that USP22 is critical to maintain phenotypes associated with end-stage disease. This was a significant finding given clinical evidence that USP22 is highly deregulated in tumors, which have achieved therapeutic resistance. Taken together, our findings define USP22 as a critical effector of tumor progression, which drives lethal phenotypes, rationalizing this enzyme as an appealing therapeutic target to treat advanced disease.

  1. Immobilized Hydrolytic Enzymes Exhibit Antibiofilm Activity Against Escherichia coli at Sub-Lethal Concentrations.

    PubMed

    Villa, Federica; Secundo, Francesco; Polo, Andrea; Cappitelli, Francesca

    2015-07-01

    The effects of two commercially available immobilized enzymes (namely the glycosidase pectinase and the protease subtilisin A) at sub-lethal concentrations were investigated in terms of their influence on biofilm genesis, on the composition of the biofilm matrix, and their antibiotic synergy against Escherichia coli biofilm, used as a model system of bacterial biofilms. The best antibiofilm performance of solid-supported hydrolases was obtained at the surface concentration of 0.022 and 0.095 U/cm(2) with a reduction of 1.2 and 2.3 log CFU/biofilm for pectinase and subtilisin, respectively. At these enzyme surface concentrations, the biocatalysts affected the structural composition of the biofilm matrix, impacting biofilm thickness. Finally, the immobilized hydrolases enhanced biofilm sensitivity to a clinically relevant concentration of the antibiotic ampicillin. At the final antibiotic concentration of 0.1 mg/ml, a reduction of 2 and 3.5 log10 units in presence of 0.022 Upectinase/cm(2) and 0.095 Usubtilisin/cm(2) was obtained, respectively, in comparison the antibiotic alone. Immobilized pectinase and subtilisin at sub-lethal concentrations demonstrated a great potential for antibiofilm applications.

  2. Murine Coronavirus Ubiquitin-Like Domain Is Important for Papain-Like Protease Stability and Viral Pathogenesis

    PubMed Central

    Mielech, Anna M.; Deng, Xufang; Chen, Yafang; Kindler, Eveline; Wheeler, Dorthea L.; Mesecar, Andrew D.; Thiel, Volker; Perlman, Stanley

    2015-01-01

    ABSTRACT Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis. PMID:25694594

  3. Activated protein C: biased for translation.

    PubMed

    Griffin, John H; Zlokovic, Berislav V; Mosnier, Laurent O

    2015-05-07

    The homeostatic blood protease, activated protein C (APC), can function as (1) an antithrombotic on the basis of inactivation of clotting factors Va and VIIIa; (2) a cytoprotective on the basis of endothelial barrier stabilization and anti-inflammatory and antiapoptotic actions; and (3) a regenerative on the basis of stimulation of neurogenesis, angiogenesis, and wound healing. Pharmacologic therapies using recombinant human and murine APCs indicate that APC provides effective acute or chronic therapies for a strikingly diverse range of preclinical injury models. APC reduces the damage caused by the following: ischemia/reperfusion in brain, heart, and kidney; pulmonary, kidney, and gastrointestinal inflammation; sepsis; Ebola virus; diabetes; and total lethal body radiation. For these beneficial effects, APC alters cell signaling networks and gene expression profiles by activating protease-activated receptors 1 and 3. APC's activation of these G protein-coupled receptors differs completely from thrombin's activation mechanism due to biased signaling via either G proteins or β-arrestin-2. To reduce APC-associated bleeding risk, APC variants were engineered to lack >90% anticoagulant activity but retain normal cell signaling. Such a neuroprotective variant, 3K3A-APC (Lys191-193Ala), has advanced to clinical trials for ischemic stroke. A rich data set of preclinical knowledge provides a solid foundation for potential translation of APC variants to future novel therapies. © 2015 by The American Society of Hematology.

  4. Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye.

    PubMed

    Li, Cuiping; Yu, Huahua; Liu, Song; Xing, Ronge; Guo, Zhanyong; Li, Pengcheng

    2005-12-15

    In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn(2+), Mg(2+), and Mn(2+) in sodium phosphate buffer (0.02M, pH 8.0) could increase protease activity. Mn(2+) had the best effects among the three metal cations and the effect was about 20 times of that of Zn(2+) or Mg(2+) and its maximal protease activity was 2.3x10(5)U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.

  5. A Novel Apoptotic Protease Activated in Human Breast Cancer Cells After Poisoning Topoisomerase I

    DTIC Science & Technology

    1999-10-01

    menadione and 1,2-naphthoquinones suggested that either one-electron reduction enzymes (p450 or b5R) or two-electron reductases (e.g., NQO1) may be...transfectants were also prevent by dicoumarol. Surprisingly, the responses of NQ01-containing compared to NQ01- deficient MDA-MB-468 cells to menadione ...exposures were opposite those of B-lap. NQ01-expressing MIDA-MB-468 cells were extremely resistant to menadione -induced apoptosis, PARP cleavage and lethality

  6. Preliminary Fractionation of Tiger Rattlesnake (Crotalus tigris) Venom

    DTIC Science & Technology

    1990-01-31

    J., ZEPEDA , 11. and SCtIWARTZMAN, R. J. (1988) Gyroxin, a toxin from the venom of Crot( _ d !1rissus j!2.rificius, is a thrombin-like enzyme. Toxicon...had low protease activity, lacked hemolytic activity and had an i.p. D 5 0 , of 0.070 mg/kg for mice. Lethal fractions obtained by anion and cation...L.. d . Lerrfic and C ihi IU±L WEINSTEIN et al. (1985) reported the presence of a toxin antigenically related to mojave toxin in £, ligris venom. The

  7. A cathepsin L-like protease from Strongylus vulgaris: an orthologue of Caenorhabditis elegans CPL-1.

    PubMed

    Ultaigh, Sinéad Nic An; Carolan, James C; Britton, Collette; Murray, Linda; Ryan, Michael F

    2009-04-01

    Cathespin L-like proteases (CPLs), characterized from a wide range of helminths, are significant in helminth biology. For example, in Caenorhabditis elegans CPL is essential for embryogenesis. Here, we report a cathepsin L-like gene from three species of strongyles that parasitize the horse, and describe the isolation of a cpl gene (Sv-cpl-1) from Strongylus vulgaris, the first such from equine strongyles. It encodes a protein of 354 amino acids with high similarity to other parasitic Strongylida (90-91%), and C.elegans CPL-1 (87%), a member of the same Clade. As S.vulgaris cpl-1 rescued the embryonic lethal phenotype of the C.elegans cpl-1 mutant, these genes may be orthologues, sharing the same function in each species. Targeting Sv-CPL-1 might enable novel control strategies by decreasing parasite development and transmission.

  8. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis

    PubMed Central

    van Waardenburg, Robert C.A.M.

    2016-01-01

    Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1−/− and Atm−/− mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3’- and 5’-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways. PMID:27747316

  9. Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis.

    PubMed

    van Waardenburg, Robert C A M

    2016-01-01

    Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H 493 R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.

  10. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  11. Anthrax lethal factor inhibitors as potential countermeasure of the infection.

    PubMed

    Kumar, B V S Suneel; Malik, Siddharth; Grandhi, Pradeep; Dayam, Raveendra; Sarma, J A R P

    2014-01-01

    Anthrax Lethal Factor (LF) is a zinc-dependent metalloprotease, one of the virulence factor of anthrax infection. Three forms of the anthrax infection have been identified: cutaneous (through skin), gastrointestinal (through alimentary tract), and pulmonary (by inhalation of spores). Anthrax toxin is composed of protective antigen (PA), lethal factor (LF), and edema factor (EF). Protective antigen mediates the entry of Lethal Factor/Edema Factor into the cytosol of host cells. Lethal factor (LF) inactivates mitogen-activated protein kinase kinase inducing cell death, and EF is an adenylyl cyclase impairing host defenses. In the past few years, extensive studies are undertaken to design inhibitors targeting LF. The current review focuses on the small molecule inhibitors targeting LF activity and its structure activity relationships (SAR).

  12. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors

    PubMed Central

    de Souza, Devandir Antonio; Borges, Antonio Carlos; Santana, Ana Carolina; Oliver, Constance; Jamur, Maria Célia

    2015-01-01

    Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7) in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization. PMID:26633538

  13. Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications

    PubMed Central

    Carroll, Ian M; Maharshak, Nitsan

    2013-01-01

    Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894

  14. A Strategy To Isolate Modifiers of Caenorhabditis elegans Lethal Mutations: Investigating the Endoderm Specifying Ability of the Intestinal Differentiation GATA Factor ELT-2.

    PubMed

    Wiesenfahrt, Tobias; Duanmu, Jingjie; Snider, Frances; Moerman, Don; Au, Vinci; Li-Leger, Erica; Flibotte, Stephane; Parker, Dylan M; Marshall, Craig J; Nishimura, Erin Osborne; Mains, Paul E; McGhee, James D

    2018-05-04

    The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p :: elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p :: elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82 , was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p :: elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10 -4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations. Copyright © 2018 Wiesenfahrt et al.

  15. Roles of HAUSP-mediated p53 regulation in central nervous system development.

    PubMed

    Kon, N; Zhong, J; Kobayashi, Y; Li, M; Szabolcs, M; Ludwig, T; Canoll, P D; Gu, W

    2011-08-01

    The deubiquitinase HAUSP (herpesvirus-associated ubiquitin-specific protease; also called USP7) has a critical role in regulating the p53-Mdm2 (murine double minute 2) pathway. By using the conventional knockout approach, we previously showed that hausp inactivation leads to early embryonic lethality. To fully understand the physiological functions of hausp, we have generated mice lacking hausp specifically in the brain and examined the impacts of this manipulation on brain development. We found that deletion of hausp in neural cells resulted in neonatal lethality. The brains from these mice displayed hypoplasia and deficiencies in development, which were mainly caused by p53-mediated apoptosis. Detailed analysis also showed an increase of both p53 levels and p53-dependent transcriptional activation in hausp knockout brains. Notably, neural cell survival and brain development of hausp-mutant mice can largely be restored in the p53-null background. Nevertheless, in contrast to the case of mdm2- and mdm4 (murine double minute 4)-mutant mice, inactivation of p53 failed to completely rescue the neonatal lethality of these hausp-mutant mice. These results indicate that HAUSP-mediated p53 regulation is crucial for brain development, and also suggest that both the p53-dependent and the p53-independent functions of HAUSP contribute to the neonatal lethality of hausp-mutant mice.

  16. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane

    PubMed Central

    Lei, Jennifer; Priddy, Lauren B.; Lim, Jeremy J.; Massee, Michelle; Koob, Thomas J.

    2017-01-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair. PMID:28224047

  17. Identification of Extracellular Matrix Components and Biological Factors in Micronized Dehydrated Human Amnion/Chorion Membrane.

    PubMed

    Lei, Jennifer; Priddy, Lauren B; Lim, Jeremy J; Massee, Michelle; Koob, Thomas J

    2017-02-01

    Objective: The use of bioactive extracellular matrix (ECM) grafts such as amniotic membranes is an attractive treatment option for enhancing wound repair. In this study, the concentrations, activity, and distribution of matrix components, growth factors, proteases, and inhibitors were evaluated in PURION ® Processed, micronized, dehydrated human amnion/chorion membrane (dHACM; MiMedx Group, Inc.). Approach: ECM components in dHACM tissue were assessed by using immunohistochemical staining, and growth factors, cytokines, proteases, and inhibitors were quantified by using single and multiplex ELISAs. The activities of proteases that were native to the tissue were determined via gelatin zymography and EnzChek ® activity assay. Results: dHACM tissue contained the ECM components collagens I and IV, hyaluronic acid, heparin sulfate proteoglycans, fibronectin, and laminin. In addition, numerous growth factors, cytokines, chemokines, proteases, and protease inhibitors that are known to play a role in the wound-healing process were quantified in dHACM. Though matrix metalloproteinases (MMPs) were present in dHACM tissues, inhibitors of MMPs overwhelmingly outnumbered the MMP enzymes by an overall molar ratio of 28:1. Protease activity assays revealed that the MMPs in the tissue existed primarily either in their latent form or complexed with inhibitors. Innovation: This is the first study to characterize components that function in wound healing, including inhibitor and protease content and activity, in micronized dHACM. Conclusion: A variety of matrix components and growth factors, as well as proteases and their inhibitors, were identified in micronized dHACM, providing a better understanding of how micronized dHACM tissue can be used to effectively promote wound repair.

  18. The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal

    PubMed Central

    Vergis, James M.; Wiener, Michael C.

    2011-01-01

    Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (Enterokinase, Factor Xa, Human Rhinovirus 3C Protease, SUMOstar, Tobacco Etch Virus Protease, and Thrombin) by use of a panel of ninety-four individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and Factor Xa were only affected by a small number of detergents, making them good choices as well. PMID:21539919

  19. Recombinant expression and antigenic properties of a 32-kilodalton extracellular alkaline protease, representing a possible virulence factor from Aspergillus fumigatus.

    PubMed Central

    Moser, M; Menz, G; Blaser, K; Crameri, R

    1994-01-01

    A 32-kDa nonglycosylated alkaline protease (EC 3.4.1.14) with elastolytic activity, secreted by the opportunistic pathogen Aspergillus fumigatus ATCC 42202, is suggested to be a virulence factor of this fungus. The enzyme is a serine protease of the subtilisin family, and its cDNA nucleotide sequence has recently been reported. We have cloned the cDNA encoding the mature protease into a high-level Escherichia coli expression plasmid and produced the recombinant protease as a fusion protein with a six-adjacent-histidine affinity tag at the carboxy terminus. Subsequently, the recombinant protease was purified to homogeneity, with affinity chromatography yielding 30 to 40 mg of recombinant protease per liter of E. coli culture. Refolded recombinant protease, in comparison with native protease, demonstrated weak enzymatic activity but similar immunochemical characteristics as analyzed by antigen-specific enzyme-linked immunosorbent assay (ELISA), competition ELISA, and immunoblotting assays. To assess the allergenic potential of the protease, sera from patients with allergic bronchopulmonary aspergillosis and sera from healthy control individuals were analyzed by ELISA and immunoblotting techniques. Sera from patients with allergic bronchopulmonary aspergillosis did not have protease-specific immunoglobulin E (IgE) antibodies and, remarkably, did not show significantly elevated protease-specific IgG antibody levels compared with those in sera from healthy control individuals. This suggests that the alkaline protease from A. fumigatus does not elicit IgE antibodies and has weak immunogenicity, a property which may explain fungus persistence in allergic individuals. Images PMID:8112866

  20. Blood Biomarkers in Idiopathic Pulmonary Fibrosis.

    PubMed

    Guiot, Julien; Moermans, Catherine; Henket, Monique; Corhay, Jean-Louis; Louis, Renaud

    2017-06-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal lung disease of unknown origin whose incidence has been increasing over the latest decade partly as a consequence of population ageing. New anti-fibrotic therapy including pirfenidone and nintedanib have now proven efficacy in slowing down the disease. Nevertheless, diagnosis and follow-up of IPF remain challenging. This review examines the recent literature on potentially useful blood molecular and cellular biomarkers in IPF. Most of the proposed biomarkers belong to chemokines (IL-8, CCL18), proteases (MMP-1 and MMP-7), and growth factors (IGBPs) families. Circulating T cells and fibrocytes have also gained recent interest in that respect. Up to now, though several interesting candidates are profiling there has not been a single biomarker, which proved to be specific of the disease and predictive of the evolution (decline of pulmonary function test values, risk of acute exacerbation or mortality). Large scale multicentric studies are eagerly needed to confirm the utility of these biomarkers.

  1. Co-evolution of insect proteases and plant protease inhibitors.

    PubMed

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  2. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis

    PubMed Central

    Kryczka, Jakub

    2017-01-01

    Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633

  3. Activated entomopathogenic nematode infective juveniles release lethal venom proteins

    PubMed Central

    Macchietto, Marissa; Baldwin, James; Mortazavi, Ali

    2017-01-01

    Entomopathogenic nematodes (EPNs) are unique parasites due to their symbiosis with entomopathogenic bacteria and their ability to kill insect hosts quickly after infection. It is widely believed that EPNs rely on their bacterial partners for killing hosts. Here we disproved this theory by demonstrating that the in vitro activated infective juveniles (IJs) of Steinernema carpocapsae (a well-studied EPN species) release venom proteins that are lethal to several insects including Drosophila melanogaster. We confirmed that the in vitro activation is a good approximation of the in vivo process by comparing the transcriptomes of individual in vitro and in vivo activated IJs. We further analyzed the transcriptomes of non-activated and activated IJs and revealed a dramatic shift in gene expression during IJ activation. We also analyzed the venom proteome using mass spectrometry. Among the 472 venom proteins, proteases and protease inhibitors are especially abundant, and toxin-related proteins such as Shk domain-containing proteins and fatty acid- and retinol-binding proteins are also detected, which are potential candidates for suppressing the host immune system. Many of the venom proteins have conserved orthologs in vertebrate-parasitic nematodes and are differentially expressed during IJ activation, suggesting conserved functions in nematode parasitism. In summary, our findings strongly support a new model that S. carpocapsae and likely other Steinernema EPNs have a more active role in contributing to the pathogenicity of the nematode-bacterium complex than simply relying on their symbiotic bacteria. Furthermore, we propose that EPNs are a good model system for investigating vertebrate- and human-parasitic nematodes, especially regarding the function of excretory/secretory products. PMID:28426766

  4. Soluble factor(s) from bone marrow cells can rescue lethally irradiated mice by protecting endogenous hematopoietic stem cells.

    PubMed

    Zhao, Yi; Zhan, Yuxia; Burke, Kathleen A; Anderson, W French

    2005-04-01

    Ionizing radiation-induced myeloablation can be rescued via bone marrow transplantation (BMT) or administration of cytokines if given within 2 hours after radiation exposure. There is no evidence for the existence of soluble factors that can rescue an animal after a lethal dose of radiation when administered several hours postradiation. We established a system that could test the possibility for the existence of soluble factors that could be used more than 2 hours postirradiation to rescue animals. Animals with an implanted TheraCyte immunoisolation device (TID) received lethal-dose radiation and then normal bone marrow Lin- cells were loaded into the device (thereby preventing direct interaction between donor and recipient cells). Animal survival was evaluated and stem cell activity was tested with secondary bone marrow transplantation and flow cytometry analysis. Donor cell gene expression of five antiapoptotic cytokines was examined. Bone marrow Lin- cells rescued lethally irradiated animals via soluble factor(s). Bone marrow cells from the rescued animals can rescue and repopulate secondary lethally irradiated animals. Within the first 6 hours post-lethal-dose radiation, there is no significant change of gene expression of the known radioprotective factors TPO, SCF, IL-3, Flt-3 ligand, and SDF-1. Hematopoietic stem cells can be protected in lethally irradiated animals by soluble factors produced by bone marrow Lin- cells.

  5. Role of tissue factor and protease-activated receptors in a mouse model of endotoxemia.

    PubMed

    Pawlinski, Rafal; Pedersen, Brian; Schabbauer, Gernot; Tencati, Michael; Holscher, Todd; Boisvert, William; Andrade-Gordon, Patricia; Frank, Rolf Dario; Mackman, Nigel

    2004-02-15

    Sepsis is associated with a systemic activation of coagulation and an excessive inflammatory response. Anticoagulants have been shown to inhibit both coagulation and inflammation in sepsis. In this study, we used both genetic and pharmacologic approaches to analyze the role of tissue factor and protease-activated receptors in coagulation and inflammation in a mouse endotoxemia model. We used mice expressing low levels of the procoagulant molecule, tissue factor (TF), to analyze the effects of TF deficiency either in all tissues or selectively in hematopoietic cells. Low TF mice had reduced coagulation, inflammation, and mortality compared with control mice. Similarly, a deficiency of TF expression by hematopoietic cells reduced lipopolysaccharide (LPS)-induced coagulation, inflammation, and mortality. Inhibition of the down-stream coagulation protease, thrombin, reduced fibrin deposition and prolonged survival without affecting inflammation. Deficiency of either protease activated receptor-1 (PAR-1) or protease activated receptor-2 (PAR-2) alone did not affect inflammation or survival. However, a combination of thrombin inhibition and PAR-2 deficiency reduced inflammation and mortality. These data demonstrate that hematopoietic cells are the major pathologic site of TF expression during endotoxemia and suggest that multiple protease-activated receptors mediate crosstalk between coagulation and inflammation.

  6. Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms*

    PubMed Central

    GALLI, STEPHEN J.; STARKL, PHILIPP; MARICHAL, THOMAS; TSAI, MINDY

    2017-01-01

    Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell–derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell’s viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance. PMID:28790503

  7. Lethal neonatal meningoencephalitis caused by multi-drug resistant, highly virulent Escherichia coli.

    PubMed

    Iqbal, Junaid; Dufendach, Kevin R; Wellons, John C; Kuba, Maria G; Nickols, Hilary H; Gómez-Duarte, Oscar G; Wynn, James L

    2016-01-01

    Neonatal meningitis is a rare but devastating condition. Multi-drug resistant (MDR) bacteria represent a substantial global health risk. This study reports on an aggressive case of lethal neonatal meningitis due to a MDR Escherichia coli (serotype O75:H5:K1). Serotyping, MDR pattern and phylogenetic typing revealed that this strain is an emergent and highly virulent neonatal meningitis E. coli isolate. The isolate was resistant to both ampicillin and gentamicin; antibiotics currently used for empiric neonatal sepsis treatment. The strain was also positive for multiple virulence genes including K1 capsule, fimbrial adhesion fimH, siderophore receptors iroN, fyuA and iutA, secreted autotransporter toxin sat, membrane associated proteases ompA and ompT, type II polysaccharide synthesis genes (kpsMTII) and pathogenicity-associated island (PAI)-associated malX gene. The presence of highly-virulent MDR organisms isolated in neonates underscores the need to implement rapid drug resistance diagnostic methods and should prompt consideration of alternate empiric therapy in neonates with Gram negative meningitis.

  8. The relationship between protease/anti-protease profile, angiogenesis and re-epithelialisation in acute burn wounds.

    PubMed

    Caulfield, Robert H; Tyler, Michael P H; Austyn, Jon M; Dziewulski, Peter; McGrouther, Duncan A

    2008-06-01

    In the management of partial thickness burns, it is difficult to balance between conservative management and surgical intervention. Our hypothesis was that a triangular relationship exists between protease/anti-protease profile at the burn wound surface, angiogenesis and re-epithelialisation. By manipulation of the biochemical profile at the wound level, we determined to affect the nature and extent of angiogenesis and resulting re-epithelialisation. We performed a randomised longitudinal observational study on partial thickness burns in adult patients presenting to two regional burns units. Our results demonstrated that a high-protease wound environment is associated with lower levels of the angiogenic factor VEGF, a lower more uniform change in wound bloodflow and a uniform well healed wound with an architecturally normal epidermis. In addition, we found that a low protease wound environment is associated with higher levels of the angiogenic factor VEGF, a higher wound bloodflow throughout the wound healing period and a more chaotic, hypercellular, overkeratinised, and chaotic thickened epidermis.

  9. Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases.

    PubMed Central

    Reinholdt, J; Kilian, M

    1991-01-01

    Bacterial immunoglobulin A1 (IgA1) proteases cleaving IgA1 and secretory IgA1 molecules in the hinge region are believed to be important virulence factors. Previous studies have indicated that IgA of humans, gorillas, and chimpanzees are the exclusive substrates of these enzymes. In a recent study, IgA from the rhesus monkey was found to be susceptible to the IgA1 protease activity of Streptococcus pneumoniae. In an attempt to reproduce this observation, we found that neither five isolates of S. pneumoniae nor other IgA1 protease-producing bacteria representing different cleavage specificities caused cleavage of rhesus monkey IgA. Hence, the rhesus monkey does not appear to be a suitable animal model for studies of IgA1 proteases as virulence factors. Images PMID:2037384

  10. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  11. Development of marine biotechnology as a resource for novel proteases and their role in modern biotechnology.

    PubMed

    Homaei, Ahmad; Lavajoo, Fatemeh; Sariri, Reyhaneh

    2016-07-01

    Marine environment consists of the largest sources diversified genetic pool of material with an enormous potential for a wide variety of enzymes including proteases. A protease hydrolyzes the peptide bond and most of proteases possess many industrial applications. Marine proteases differ considerably from those found in internal or external organs of invertebrates and vertebrates. In common with all enzymes, external factors such as temperature, pH and type of media are important for the activity, catalytic efficiency, stability and proper functioning of proteases. In this review valuable characteristics of proteases in marine organisms and their applications are gathered from a wide literature survey. Considering their biochemical significance and their increasing importance in biotechnology, a thorough understanding of marine proteases functioning could be of prime importance. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior*

    PubMed Central

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H.; Muyldermans, Serge; Declerck, Paul J.; Huang, Mingdong; Andreasen, Peter A.; Ngo, Jacky Chi Ki

    2016-01-01

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30–40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. PMID:27226628

  13. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi.

    PubMed

    Li, Youshan; Zhao, Ping; Liu, Huawei; Guo, Xiaomeng; He, Huawei; Zhu, Rui; Xiang, Zhonghuai; Xia, Qingyou

    2015-02-01

    Entomopathogenic fungi penetrate the insect cuticle using their abundant hydrolases. These hydrolases, which include cuticle-degrading proteases and chitinases, are important virulence factors. Our recent findings suggest that many serine protease inhibitors, especially TIL-type protease inhibitors, are involved in insect resistance to pathogenic microorganisms. To clarify the molecular mechanism underlying this resistance to entomopathogenic fungi and identify novel genes to improve the silkworm antifungal capacity, we conducted an in-depth study of serine protease inhibitors. Here, we cloned and expressed a novel silkworm TIL-type protease inhibitor, BmSPI39. In activity assays, BmSPI39 potently inhibited the virulence protease CDEP-1 of Beauveria bassiana, suggesting that it might suppress the fungal penetration of the silkworm integument by inhibiting the cuticle-degrading proteases secreted by the fungus. Phenol oxidase activation studies showed that melanization is involved in the insect immune response to fungal invasion, and that fungus-induced excessive melanization is suppressed by BmSPI39 by inhibiting the fungal cuticle-degrading proteases. To better understand the mechanism involved in the inhibition of fungal virulence by protease inhibitors, their effects on the germination of B. bassiana conidia was examined. BmSPI38 and BmSPI39 significantly inhibited the germination of B. bassiana conidia. Survival assays showed that BmSPI38 and BmSPI39 markedly improved the survival rates of silkworms, and can therefore be used as targeted resistance proteins in the silkworm. These results provided new insight into the molecular mechanisms whereby insect protease inhibitors confer resistance against entomopathogenic fungi, suggesting their potential application in medicinal or agricultural fields. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 76 FR 53480 - Prospective Grant of Exclusive License: Conjugate Vaccines Against B. anthracis

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    .... anthracis Protective Antigen (PA), Lethal Factor (LF) and Edema Factor (EF)'', U.S. Patent Application... catalytic proteins known as ``lethal factor'' (LF) and ``edema factor'' (EF). Although production of an...

  15. Factors Associated with Increased Risk for Lethal Violence in Intimate Partner Relationships among Ethnically Diverse Black Women

    PubMed Central

    Sabri, Bushra; Stockman, Jamila K.; Campbell, Jacquelyn C.; O’Brien, Sharon; Campbell, Doris; Callwood, Gloria B.; Bertrand, Desiree; Sutton, Lorna W.; Hart-Hyndman, Greta

    2014-01-01

    The purpose of this study was to identify factors associated with increased risk for lethal violence among ethnically diverse Black women in Baltimore, Maryland (MD) and the US Virgin Islands (USVI). Women with abuse experiences (n=456) were recruited from primary care, prenatal or family planning clinics in Baltimore, MD and St. Thomas and St. Croix, USVI. Logistic regression was used to examine factors associated with the risk for lethal violence among abused women. Factors independently related to increased risk of lethal violence included fear of abusive partners, PTSD symptoms, and use of legal resources. These factors must be considered in assessing safety needs of Black women in abusive relationships. PMID:25429191

  16. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin

    PubMed Central

    Leu, Chia-Hsing; Yang, Mei-Lin; Chung, Nai-Hui; Huang, Yen-Jang; Su, Yu-Chu; Chen, Yi-Cheng; Lin, Chia-Cheng; Shieh, Gia-Shing; Chang, Meng-Ya; Wang, Shainn-Wei; Chang, Yao; Chao, Julie; Chao, Lee

    2015-01-01

    Proteolytic cleavage of the hemagglutinin (HA) of influenza virus by host trypsin-like proteases is required for viral infectivity. Some serine proteases are capable of cleaving influenza virus HA, whereas some serine protease inhibitors (serpins) inhibit the HA cleavage in various cell types. Kallikrein-related peptidase 1 (KLK1, also known as tissue kallikrein) is a widely distributed serine protease. Kallistatin, a serpin synthesized mainly in the liver and rapidly secreted into the circulation, forms complexes with KLK1 and inhibits its activity. Here, we investigated the roles of KLK1 and kallistatin in influenza virus infection. We show that the levels of KLK1 increased, whereas those of kallistatin decreased, in the lungs of mice during influenza virus infection. KLK1 cleaved H1, H2, and H3 HA molecules and consequently enhanced viral production. In contrast, kallistatin inhibited KLK1-mediated HA cleavage and reduced viral production. Cells transduced with the kallistatin gene secreted kallistatin extracellularly, which rendered them more resistant to influenza virus infection. Furthermore, lentivirus-mediated kallistatin gene delivery protected mice against lethal influenza virus challenge by reducing the viral load, inflammation, and injury in the lung. Taking the data together, we determined that KLK1 and kallistatin contribute to the pathogenesis of influenza virus by affecting the cleavage of the HA peptide and inflammatory responses. This study provides a proof of principle for the potential therapeutic application of kallistatin or other KLK1 inhibitors for influenza. Since proteolytic activation also enhances the infectivity of some other viruses, kallistatin and other kallikrein inhibitors may be explored as antiviral agents against these viruses. PMID:26149981

  17. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer.

    PubMed

    Kataoka, Hiroaki; Kawaguchi, Makiko; Fukushima, Tsuyoshi; Shimomura, Takeshi

    2018-03-01

    The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  18. Ribosomal elongation factor 4 promotes cell death associated with lethal stress.

    PubMed

    Li, Liping; Hong, Yuzhi; Luan, Gan; Mosel, Michael; Malik, Muhammad; Drlica, Karl; Zhao, Xilin

    2014-12-09

    Ribosomal elongation factor 4 (EF4) is highly conserved among bacteria, mitochondria, and chloroplasts. However, the EF4-encoding gene, lepA, is nonessential and its deficiency shows no growth or fitness defect. In purified systems, EF4 back-translocates stalled, posttranslational ribosomes for efficient protein synthesis; consequently, EF4 has a protective role during moderate stress. We were surprised to find that EF4 also has a detrimental role during severe stress: deletion of lepA increased Escherichia coli survival following treatment with several antimicrobials. EF4 contributed to stress-mediated lethality through reactive oxygen species (ROS) because (i) the protective effect of a ΔlepA mutation against lethal antimicrobials was eliminated by anaerobic growth or by agents that block hydroxyl radical accumulation and (ii) the ΔlepA mutation decreased ROS levels stimulated by antimicrobial stress. Epistasis experiments showed that EF4 functions in the same genetic pathway as the MazF toxin, a stress response factor implicated in ROS-mediated cell death. The detrimental action of EF4 required transfer-messenger RNA (tmRNA, which tags truncated proteins for degradation and is known to be inhibited by EF4) and the ClpP protease. Inhibition of a protective, tmRNA/ClpP-mediated degradative activity would allow truncated proteins to indirectly perturb the respiratory chain and thereby provide a potential link between EF4 and ROS. The connection among EF4, MazF, tmRNA, and ROS expands a pathway leading from harsh stress to bacterial self-destruction. The destructive aspect of EF4 plus the protective properties described previously make EF4 a bifunctional factor in a stress response that promotes survival or death, depending on the severity of stress. Translation elongation factor 4 (EF4) is one of the most conserved proteins in nature, but it is dispensable. Lack of strong phenotypes for its genetic knockout has made EF4 an enigma. Recent biochemical work has demonstrated that mild stress may stall ribosomes and that EF4 can reposition stalled ribosomes to resume proper translation. Thus, EF4 protects cells from moderate stress. Here we report that EF4 is paradoxically harmful during severe stress, such as that caused by antimicrobial treatment. EF4 acts in a pathway that leads to excessive accumulation of reactive oxygen species (ROS), thereby participating in a bacterial self-destruction that occurs when cells cannot effectively repair stress-mediated damage. Thus, EF4 has two opposing functions-at low-to-moderate levels of stress, the protein is protective by allowing stress-paused translation to resume; at high-levels of stress, EF4 helps bacteria self-destruct. These data support the existence of a bacterial live-or-die response to stress. Copyright © 2014 Li et al.

  19. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    PubMed

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2018-06-01

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. Inhibition of polymorphonuclear leukocyte function by Legionella pneumophila exoproducts.

    PubMed

    Sahney, N N; Lambe, B C; Summersgill, J T; Miller, R D

    1990-08-01

    Total exoproducts (relative molecular mass greater than 10,000) from wild-type strains of Legionella pneumophila markedly inhibited human polymorphonuclear leukocyte (PMN) superoxide anion generation, at sub-lethal concentrations, in response to four stimuli [1.7, 0, 0.6 and 3.4% of control for zymosan activated particles (ZAP), phorbol myristate acetate (PMA), calcium ionophore (A 23187), and formyl-methionyl-leucyl-phenylalanine (fMLP), respectively]. PMN chemotaxis towards fMLP and spontaneous migration, were also dramatically inhibited (2.8 and 2.9% of buffer-treated controls, respectively). In contrast, total exoproducts from the cas-1 strain of L. pneumophila, a protease-deficient mutant generated by ethyl methane sulfonate mutagenesis, failed to inhibit PMN superoxide production in response to ZAP and PMA and only partially inhibited PMN response to A 23187 and fMLP. PMN spontaneous migration was unaffected by treatment with total exoproducts from the mutant, while directed chemotaxis was partially inhibited (51.4%). These data demonstrated that L. pneumophila total exoproducts, primarily protease had significant inhibitory effects on normal PMN function and may play an important contributory role in the pathogenesis of legionnaire's disease.

  1. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  2. A Camelid-derived Antibody Fragment Targeting the Active Site of a Serine Protease Balances between Inhibitor and Substrate Behavior.

    PubMed

    Kromann-Hansen, Tobias; Oldenburg, Emil; Yung, Kristen Wing Yu; Ghassabeh, Gholamreza H; Muyldermans, Serge; Declerck, Paul J; Huang, Mingdong; Andreasen, Peter A; Ngo, Jacky Chi Ki

    2016-07-15

    A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    PubMed

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  4. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.

    PubMed

    Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.

  5. Comparative one-factor-at-a-time, response surface (statistical) and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate.

    PubMed

    Singh, Santosh K; Singh, Sanjay K; Tripathi, Vinayak R; Khare, Sunil K; Garg, Satyendra K

    2011-12-28

    Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. The pre-screening medium amended with optimized (w/v) 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml(-1) at 72 h incubation. Enzyme production increased to 431 Uml(-1) when Mg2+ (0.01%, w/v) was supplemented. Optimization of physical factors further enhanced protease to 514 Uml(-1) at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH), thereafter predicted by response surface methodology yielded 617 U protease ml(-1) at glucose 1.25% (w/v), yeast extract 0.5% (w/v), MgSO4 0.01% (w/v) and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml(-1) at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml(-1)) in protease production compared to un-optimized conditions (65 Uml(-1)). This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium.

  6. The effect of desolvation on the binding of inhibitors to HIV-1 protease and cyclin-dependent kinases: Causes of resistance.

    PubMed

    Fong, Clifford W

    2016-08-01

    Studies of the cyclin-dependent kinase inhibitors and HIV-1 protease inhibitors have confirmed that ligand-protein binding is dependent on desolvation effects. It has been found that a four parameter linear model incorporating desolvation energy, lipophilicity, dipole moment and molecular volume of the ligands is a good model to describe the binding between ligands and kinases or proteases. The resistance shown by MDR proteases to the anti-viral drugs is multi-faceted involving varying changes in desolvation, lipophilicity and dipole moment interaction compared to the non-resistant protease. Desolvation has been shown to be the dominant factor influencing the effect of inhibitors against the cyclin-dependent kinases, but lipophilicity and dipole moment are also significant factors. The model can differentiate between the inhibitory activity of CDK2/cycE, CDK1/cycB and CDK4/cycD enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1.

    PubMed

    Newman, Zachary L; Printz, Morton P; Liu, Shihui; Crown, Devorah; Breen, Laura; Miller-Randolph, Sharmina; Flodman, Pamela; Leppla, Stephen H; Moayeri, Mahtab

    2010-05-20

    Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1.

  8. Optimization of Serine Protease Purification from Mango (Mangifera indica cv. Chokanan) Peel in Polyethylene Glycol/Dextran Aqueous Two Phase System

    PubMed Central

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md. Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000–12,000 g·mol−1), tie line length (−3.42–35.27%), NaCl (−2.5–11.5%) and pH (4.5–10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol−1 of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing. PMID:22489172

  9. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    PubMed

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  10. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  11. Lifestyle and dietary factors in the prevention of lethal prostate cancer

    PubMed Central

    Wilson, Kathryn M; Giovannucci, Edward L; Mucci, Lorelei A

    2012-01-01

    The prevention of lethal prostate cancer is a critical public health challenge that would improve health and reduce suffering from this disease. In this review, we discuss the evidence surrounding specific lifestyle and dietary factors in the prevention of lethal prostate cancer. We present a summary of evidence for the following selected behavioral risk factors: obesity and weight change, physical activity, smoking, antioxidant intake, vitamin D and calcium, and coffee intake. PMID:22504869

  12. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.

    PubMed

    Massberg, Steffen; Grahl, Lenka; von Bruehl, Marie-Luise; Manukyan, Davit; Pfeiler, Susanne; Goosmann, Christian; Brinkmann, Volker; Lorenz, Michael; Bidzhekov, Kiril; Khandagale, Avinash B; Konrad, Ildiko; Kennerknecht, Elisabeth; Reges, Katja; Holdenrieder, Stefan; Braun, Siegmund; Reinhardt, Christoph; Spannagl, Michael; Preissner, Klaus T; Engelmann, Bernd

    2010-08-01

    Blood neutrophils provide the first line of defense against pathogens but have also been implicated in thrombotic processes. This dual function of neutrophils could reflect an evolutionarily conserved association between blood coagulation and antimicrobial defense, although the molecular determinants and in vivo significance of this association remain unclear. Here we show that major microbicidal effectors of neutrophils, the serine proteases neutrophil elastase and cathepsin G, together with externalized nucleosomes, promote coagulation and intravascular thrombus growth in vivo. The serine proteases and extracellular nucleosomes enhance tissue factor- and factor XII-dependent coagulation in a process involving local proteolysis of the coagulation suppressor tissue factor pathway inhibitor. During systemic infection, activation of coagulation fosters compartmentalization of bacteria in liver microvessels and reduces bacterial invasion into tissue. In the absence of a pathogen challenge, neutrophil-derived serine proteases and nucleosomes can contribute to large-vessel thrombosis, the main trigger of myocardial infarction and stroke. The ability of coagulation to suppress pathogen dissemination indicates that microvessel thrombosis represents a physiological tool of host defense.

  13. D-enantiomeric peptides that eradicate wild-type and multi-drug resistant biofilms and protect against lethal Pseudomonas aeruginosa infections

    PubMed Central

    de la Fuente-Núñez, César; Reffuveille, Fany; Mansour, Sarah C.; Reckseidler-Zenteno, Shauna L.; Hernández, Diego; Brackman, Gilles; Coenye, Tom; Hancock, Robert E.W.

    2015-01-01

    SUMMARY In many infections, bacteria form surface-associated communities known as biofilms that are substantially more resistant to antibiotics than their planktonic counterparts. Based on the design features of active anti-biofilm peptides, we made a series of related 12-amino acid L-, D- and retro-inverso derivatives. Specific D-enantiomeric peptides were the most potent at inhibiting biofilm development and eradicating pre-formed biofilms of seven species of wild-type and multiply antibiotic resistant Gram-negative pathogens. Moreover, these peptides showed strong synergy with conventional antibiotics, reducing the antibiotic concentrations required for complete biofilm inhibition by up to 64-fold. As shown previously for 1018, these D-amino acid peptides targeted the intracellular stringent response signal (p)ppGpp. The most potent peptides DJK-5 and DJK-6 protected invertebrates from lethal P. aeruginosa infections, and were considerably more active than a previously described L-amino acid peptide 1018. Thus, the protease resistant peptides produced here were more effective both in vitro and in vivo. PMID:25699603

  14. Clinical application of a rapid method using agarose gel electrophoresis and Western blotting to evaluate von Willebrand factor protease activity.

    PubMed

    Kirzek, D M; Rick, M E

    2001-03-01

    A method for evaluating the activity of the von Willebrand factor (vWF) protease is described, and a clinical application is illustrated. The procedure utilizes gel electrophoresis, Western blotting, and luminographic detection methods to evaluate the distribution of vWF multimers before and after incubation of clinical samples under conditions that favor proteolysis by this enzyme. Physiologically, the high-molecular-weight multimers of vWF are cleaved by the vWF protease under conditions of high shear stress in parts of the arterial circulation; cleavage of vWF multimers is also observed after exposure of vWF to denaturing agents in vitro and thus can serve as a laboratory test for the activity of the protease. vWF protease activity is decreased or absent in patients with thrombotic thrombocytopenic purpura due to an inhibiting autoantibody, and this leads to high levels of noncleaved vWF and to life-threatening thrombosis, thrombocytopenia and anemia. The assay evaluates the activity of the protease by assessing the cleavage of vWF multimers after patient plasmas are incubated in vitro under denaturing conditions. With the use of these electrophoresis and Western blotting techniques, patient plasmas can be rapidly assessed for the activity of the vWF protease which may aid in the treatment strategy for these patients.

  15. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses.

    PubMed

    Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto

    2014-05-01

    Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti-IAV drugs. Such drugs could also be effective for many other respiratory viruses, including the recently emerged Middle East respiratory syndrome (MERS) coronavirus, because they are also activated by TMPRSS2 in vitro. Consequently, the present paper could have a large impact on the battle against respiratory virus infections and contribute greatly to human health.

  16. Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design*

    PubMed Central

    Kerr, Iain D.; Lee, Ji H.; Farady, Christopher J.; Marion, Rachael; Rickert, Mathias; Sajid, Mohammed; Pandey, Kailash C.; Caffrey, Conor R.; Legac, Jennifer; Hansell, Elizabeth; McKerrow, James H.; Craik, Charles S.; Rosenthal, Philip J.; Brinen, Linda S.

    2009-01-01

    Cysteine proteases of the papain superfamily are implicated in a number of cellular processes and are important virulence factors in the pathogenesis of parasitic disease. These enzymes have therefore emerged as promising targets for antiparasitic drugs. We report the crystal structures of three major parasite cysteine proteases, cruzain, falcipain-3, and the first reported structure of rhodesain, in complex with a class of potent, small molecule, cysteine protease inhibitors, the vinyl sulfones. These data, in conjunction with comparative inhibition kinetics, provide insight into the molecular mechanisms that drive cysteine protease inhibition by vinyl sulfones, the binding specificity of these important proteases and the potential of vinyl sulfones as antiparasitic drugs. PMID:19620707

  17. [Pathogenic factors of vibrios with special emphasis on Vibrio vulnificus].

    PubMed

    Shinoda, Sumio

    2005-07-01

    Bacteria of the genus Vibrio are normal habitants of the aquatic environment and play roles for biocontrole of aquatic ecosystem, but some species are believed to be human pathogens. These species can be classified into two groups according to the types of diseases they cause: the gastrointestinal infections and the extraintestinal infections. The pathogenic species produce various pathogenic factors including enterotoxin, hemolysin, cytotoxin, protease, siderophore, adhesive factor, and hemagglutinin. We studied various pathogenic factors of vibrios with special emphasis on protease and hemolysin of V. vulnificus. V. vulnificus is now recognized as being among the most rapidly fatal of human pathogens, although the infection is appeared in patients having underlying disease(s) such as liver dysfunction, alcoholic cirrhosis or haemochromatosis. V. vulnificus protease (VVP) is thought to be a major toxic factor causing skin damage in the patients having septicemia. VVP is a metalloprotease and degrades a number of biologically important proteins including elastin, fibrinogen, and plasma proteinase inhibitors of complement components. VVP causes skin damages through activation of the Factor XII-plasma kallikrein-kinin cascade and/or exocytotic histamine release from mast cells, and a haemorrhagic lesion through digestion of the vascular basement membrane. Thus, the protease is the most probable candidate for tissue damage and bacterial invasion during an infection. Pathogenic roles and functional mechanism of other factors including hemolysins of V. vulnificus and V. mimicus are also shown in this review article.

  18. Mechanisms of Hepatocyte Growth Factor Activation in Cancer Tissues

    PubMed Central

    Kawaguchi, Makiko; Kataoka, Hiroaki

    2014-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) plays critical roles in cancer progression through its specific receptor, MET. HGF/SF is usually synthesized and secreted as an inactive proform (pro-HGF/SF) by stromal cells, such as fibroblasts. Several serine proteases are reported to convert pro-HGF/SF to mature HGF/SF and among these, HGF activator (HGFA) and matriptase are the most potent activators. Increased activities of both proteases have been observed in various cancers. HGFA is synthesized mainly by the liver and secreted as an inactive pro-form. In cancer tissues, pro-HGFA is likely activated by thrombin and/or human kallikrein 1-related peptidase (KLK)-4 and KLK-5. Matriptase is a type II transmembrane serine protease that is expressed by most epithelial cells and is also synthesized as an inactive zymogen. Matriptase activation is likely to be mediated by autoactivation or by other trypsin-like proteases. Recent studies revealed that matriptase autoactivation is promoted by an acidic environment. Given the mildly acidic extracellular environment of solid tumors, matriptase activation may, thus, be accelerated in the tumor microenvironment. HGFA and matriptase activities are regulated by HGFA inhibitor (HAI)-1 (HAI-1) and/or HAI-2 in the pericellular microenvironment. HAIs may have an important role in cancer cell biology by regulating HGF/SF-activating proteases. PMID:25268161

  19. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.

    PubMed

    Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N

    2000-02-29

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.

  20. Species Origin of Genomic Factors in Nicotiana nudicaulis Watson Controlling Hybrid Lethality in Interspecific Hybrids between N. nudicaulis Watson and N. tabacum L

    PubMed Central

    Liu, Hongshuo; Marubashi, Wataru

    2014-01-01

    Hybrid lethality is expressed at 28°C in the cross Nicotiana nudicaulis×N. tabacum. The S subgenome of N. tabacum has been identified as controlling this hybrid lethality. To clarify the responsible genomic factor(s) of N. nudicaulis, we crossed N. trigonophylla (paternal progenitor of N. nudicaulis) with N. tabacum, because hybrids between N. sylvestris (maternal progenitor of N. nudicaulis) and N. tabacum are viable when grown in a greenhouse. In the cross N. trigonophylla×N. tabacum, approximately 50% of hybrids were vitrified, 20% were viable, and 20% were nonviable at 28°C. To reveal which subgenome of N. tabacum was responsible for these phenotypes, we crossed N. trigonophylla with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT). In the cross N. sylvestris×N. trigonophylla, we confirmed that over half of hybrids of N. sylvestris×N. trigonophylla were vitrified, and none of the hybrids of N. trigonophylla×N. tomentosiformis were. The results imply that the S subgenome, encoding a gene or genes inducing hybrid lethality in the cross between N. nudicaulis and N. tabacum, has one or more genomic factors that induce vitrification. Furthermore, in vitrified hybrids of N. trigonophylla×N. tabacum and N. sylvestris×N. trigonophylla, we found that nuclear fragmentation, which progresses during expression of hybrid lethality, was accompanied by vitrification. This observation suggests that vitrification has a relationship to hybrid lethality. Based on these results, we speculate that when N. nudicaulis was formed approximately 5 million years ago, several causative genomic factors determining phenotypes of hybrid seedlings were inherited from N. trigonophylla. Subsequently, genome downsizing and various recombination-based processes took place. Some of the causative genomic factors were lost and some became genomic factor(s) controlling hybrid lethality in extant N. nudicaulis. PMID:24806486

  1. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.

    PubMed

    Fun, Axel; van Maarseveen, Noortje M; Pokorná, Jana; Maas, Renée Em; Schipper, Pauline J; Konvalinka, Jan; Nijhuis, Monique

    2011-08-24

    Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.

  2. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases.

    PubMed

    Ceuleers, Hannah; Van Spaendonk, Hanne; Hanning, Nikita; Heirbaut, Jelena; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; De Man, Joris G; De Meester, Ingrid; De Winter, Benedicte Y

    2016-12-21

    Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein.

  3. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases

    PubMed Central

    Ceuleers, Hannah; Van Spaendonk, Hanne; Hanning, Nikita; Heirbaut, Jelena; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; De Man, Joris G; De Meester, Ingrid; De Winter, Benedicte Y

    2016-01-01

    Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein. PMID:28058009

  4. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    PubMed Central

    Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  5. Emerging roles for diverse intramembrane proteases in plant biology.

    PubMed

    Adam, Zach

    2013-12-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/γ-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interplay of PDZ and protease domain of DegP ensures efficient elimination of misfolded proteins

    PubMed Central

    Krojer, Tobias; Pangerl, Karen; Kurt, Juliane; Sawa, Justyna; Stingl, Christoph; Mechtler, Karl; Huber, Robert; Ehrmann, Michael; Clausen, Tim

    2008-01-01

    Aberrant proteins represent an extreme hazard to cells. Therefore, molecular chaperones and proteases have to carry out protein quality control in each cellular compartment. In contrast to the ATP-dependent cytosolic proteases and chaperones, the molecular mechanisms of extracytosolic factors are largely unknown. To address this question, we studied the protease function of DegP, the central housekeeping protein in the bacterial envelope. Our data reveal that DegP processively degrades misfolded proteins into peptides of defined size by employing a molecular ruler comprised of the PDZ1 domain and the proteolytic site. Furthermore, peptide binding to the PDZ domain transforms the resting protease into its active state. This allosteric activation mechanism ensures the regulated and rapid elimination of misfolded proteins upon folding stress. In comparison to the cytosolic proteases, the regulatory features of DegP are established by entirely different mechanisms reflecting the convergent evolution of an extracytosolic housekeeping protease. PMID:18505836

  7. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    PubMed

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  8. [WHO programs "Acute Myocardial Infarction Register", MONICA: thirty years (1977-2006) of epidemiological studies of myocardial infarction in a high-risk population].

    PubMed

    Gafarov, V V; Gafarova, A V

    2011-01-01

    To reveal 30 year (1977-2006) trends of myocardial infarction (MI) morbidity, lethality and mortality in population of the West Siberia megapolis (Novosibirsk). WHO programs "Acute Myocardial Infarction Register (AMIR) and MONICA covered 3 districts of Novosibirsk. MI morbidity in 25-64 year old population of Novosibirsk (high-risk population) in Russia is one of the highest in the world. MI morbidity was stable for 30 years excluding in 1988, 1994 and 1998 when it rose and in 2002-2004, 2006 when it lowered. Changes in mortality and lethality resemble changes in morbidity trend excluding 1977-1978 (fall) and 2002-2005 (rise). Prehospital mortality and lethality were much higher than those in hospital. Mortality and lethality in 1988, 1994, 1998 and 2002-2005 increased due to prehospital lethality and mortality, while it decreased in 1977-1978 due to hospital one. Reduction of mortality and lethality in stable MI morbidity shows improvement of medical care for MI patients, increased lethality and mortality in MI morbidity decline reflect deterioration of such care. Changes in behavioral and somatic factors of cardiovascular risk in population of Novosibirsk for 30 years were not observed while psychosocial risk factors gain a significant importance. By indirect indications, MI morbidity, mortality and lethality mark growing social stress in the population. MI mortality is 2-3 times higher than that of alcohol and is a basic factor of mortality increase in the population of Russia. MI morbidity, mortality and lethality are markers of social stress in population.

  9. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus) Waste: A Potential Low Cost of the Enzyme

    PubMed Central

    ABD Manap, Mohd Yazid; Zohdi, Nor Khanani

    2014-01-01

    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe2+ and Zn2+, while protease activity was increased in the presence of Ca2+ and Mg2+ and Cu2+ by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications. PMID:25328883

  10. Effectiveness of Non-Lethal Capabilities in a Maritime Environment

    DTIC Science & Technology

    2006-09-01

    demonstrates both the space filling properties for quantitative factors of the NOLH and the lack of correlation between the factors. 27 Figure 12 ...11 b. Optical Dazzler ........................................................................ 12 c...Warning Munitions................................................................. 12 2. Lethal Capabilities

  11. Microbial Biosensor for the Detection of Protease-Virulent Factors from Pathogens

    DTIC Science & Technology

    2017-04-28

    cleavage in the extracellular space. The cleavage of TCS receptor protein would abolish the kinase activity responsible for the phosphorylation of the...cytoplasmic response regulator, AgrA, which functions as a transcriptional activator . As the cell-based protease biosensor response requires over...to AIP; AgrC is a AIP receptor that phosphorylates AgrA, an activator for P2 and P3. Protein-based protease biosensor construction To facilitate

  12. Effects of space flight factors on Drosophila.

    PubMed

    Dubinin, N P; Glembotsky, Y L; Vaulina, E N; Grozdova, T Y; Kamshilova, E M; Ivaschenko, N I; Kholikova, I A; Nechitailo, G S; Mashinsky, A L; Iordanishvili, E K

    1973-01-01

    Drosophila melanogaster flies of strain D-32 were exposed aboard the Soyuz 10 spaceship. An insert with a nutritional medium and insects was placed in a small on-board thermostat (Biotherm II) providing a constant temperature (24 degrees C +/- 1 degree) for Drosophila development. The frequency of dominant lethals was determined in the females. Dominant, autosomal and sex-linked recessive lethals were estimated in hatching virgin males and females; the time of hatching was rigorously fixed. Sex-linked recessive lethals were related to certain stages of gametogenesis. The 1-5 oocyte stage showed an increased sensitivity to space-flight factors as regards the frequency of both dominant and recessive lethals.

  13. Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries.

    PubMed

    Kumar, A Ganesh; Nagesh, N; Prabhakar, T G; Sekaran, G

    2008-05-01

    The untanned proteinaceous tannery solid waste, animal fleshing (ANFL), was used as a substrate for acid protease production by Synergistes sp. The strain was isolated from an anaerobic digester used for the treatment of tannery solid waste and was selected for its enhanced protease production at activity 350-420 U/ml. The optimum pH was in the acidic range of 5.5-6.5 and optimum temperature was in mesophilic range of 25-35 degrees C. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the zymogram analyses of the purified protein indicated an estimated molecular mass of 60 kDa. This protease could be classified as aspartic protease based on its inhibition by aspartate type protease inhibitor pepstatin and on non-inhibition by 1,10-phenanthroline, EDTA, EGTA and phenylmethylsulfonyl fluoride. The degradation of ANFL was confirmed by Gas Chromatography-Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance Spectroscopy (H1 NMR) and Scanning Electron Microscopy (SEM) analyses. In this study we found that the activity of acid protease depended on factors such as calcium concentration, pH and temperature. Based on these lines of evidence, we postulate that this protease is a highly catalytic novel protease of its type.

  14. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors.

    PubMed

    Kuster, Christian J; Von Elert, Eric

    2013-01-01

    It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids' tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC(-) contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC(-), the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease inhibitors.

  15. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.

    PubMed

    Soltes, Garner R; Martin, Nicholas R; Park, Eunhae; Sutterlin, Holly A; Silhavy, Thomas J

    2017-10-15

    Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process. IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics. Copyright © 2017 American Society for Microbiology.

  16. Factor V activation and inactivation by venom proteases.

    PubMed

    Rosing, J; Govers-Riemslag, J W; Yukelson, L; Tans, G

    2001-01-01

    Blood coagulation factor V is a single-chain glycoprotein with M(r) = 330,000 which plays an important role in the procoagulant and anticoagulant pathways. Thrombin activates factor V into factor Va, a two-chain molecule which is composed of a heavy (M(r) = 105,000) and a light chain (M(r) = 71,000/74,000). Factor Va accelerates factor Xa-catalysed prothrombin activation more than 1,000-fold and under physiological conditions the cofactor activity of factor Va in prothrombin activation is down-regulated by activated protein C. Factor V can also be activated by a wide variety of snake venoms (e.g. from Vipera species, Naja naja oxiana, Bothrops atrox) and by proteases present in the bristles of a South American caterpillar (Lonomia achelous). Some venoms, notably of Vipera lebetina turanica and Lonomia achelous, contain proteases that are able to inactivate factor V or factor Va. Venom factor V activators are excellent tools in studying the structure-function relationship of factor V(a) and they are also used in diagnostic tests for quantification of plasma factor V levels and for the screening of defects in the protein C pathway. In this review, the structural and functional properties of animal venom factor V activators and inactivators is described. Copyright 2002 S. Karger AG, Basel

  17. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  18. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.

    PubMed

    Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique

    2010-10-01

    Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.

  19. Candidate nematicidal proteins in a new Pseudomonas veronii isolate identified by its antagonistic properties against Xiphinema index.

    PubMed

    Canchignia, Hayron; Altimira, Fabiola; Montes, Christian; Sánchez, Evelyn; Tapia, Eduardo; Miccono, María; Espinoza, Daniel; Aguirre, Carlos; Seeger, Michael; Prieto, Humberto

    2017-03-17

    The nematode Xiphinema index affects grape vines and transmits important viruses associated with fanleaf degeneration. Pseudomonas spp. are an extensive bacterial group in which important biodegradation and/or biocontrol properties can occur for several strains in the group. The aim of this study was to identify new Pseudomonas isolates with antagonist activity against X. index. Forty bacterial isolates were obtained from soil and root samples from Chilean vineyards. Thirteen new fluorescent pseudomonads were found and assessed for their antagonistic capability. The nematicide Pseudomonas protegens CHA0 was used as a control. Challenges of nematode individuals in King's B semi-solid agar Petri dishes facilitated the identification of the Pseudomonas veronii isolate R4, as determined by a 16S rRNA sequence comparison. This isolate was as effective as CHA0 as an antagonist of X. index, although it had a different lethality kinetic. Milk-induced R4 cultures exhibited protease and lipase activities in cell supernatants using both gelatin/tributyrin Petri dish assays and zymograms. Three proteins with these activities were isolated and subjected to mass spectrometry. Amino acid partial sequences enabled the identification of a 49-kDa protease similar to metalloprotease AprA and two lipases of 50 kDa and 69 kDa similar to LipA and ExoU, respectively. Electron microscopy analyses of challenged nematodes revealed degraded cuticle after R4 supernatant treatment. These results represent a new and unexplored property in this species associated with the presence of secretable lipases and protease, similar to characterized enzymes present in biocontrol pseudomonads.

  20. Flap flexibility amongst plasmepsins I, II, III, IV, and V: Sequence, structural, and molecular dynamics analyses.

    PubMed

    McGillewie, Lara; Soliman, Mahmoud E

    2015-09-01

    Herein, for the first time, we comparatively report the opening and closing of apo plasmepsin I - V. Plasmepsins belong the aspartic protease family of enzymes, and are expressed during the various stages of the P. falciparum lifecycle, the species responsible for the most lethal and virulent malaria to infect humans. Plasmepsin I, II, IV and HAP degrade hemoglobin from infected red blood cells, whereas plasmepsin V transport proteins crucial to the survival of the malaria parasite across the endoplasmic reticulum. Flap-structures covering the active site of aspartic proteases (such as HIV protease) are crucial to the conformational flexibility and dynamics of the protein, and ultimately control the binding landscape. The flap-structure in plasmepsins is made up of a flip tip in the N-terminal lying perpendicular to the active site, adjacent to the flexible loop region in the C-terminal. Using molecular dynamics, we propose three parameters to better describe the opening and closing of the flap-structure in apo plasmepsins. Namely, the distance, d1, between the flap tip and the flexible region; the dihedral angle, ϕ, to account for the twisting motion; and the TriCα angle, θ1. Simulations have shown that as the flap-structure twists, the flap and flexible region move apart opening the active site, or move toward each other closing the active site. The data from our study indicate that of all the plasmepsins investigated in the present study, Plm IV and V display the highest conformational flexibility and are more dynamic structures versus Plm I, II, and HAP. © 2015 Wiley Periodicals, Inc.

  1. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R.

    PubMed

    Mechri, Sondes; Kriaa, Mouna; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Bouacem, Khelifa; Bouanane-Darenfed, Amel; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-08-01

    In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO 4 ) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fully human antibodies against the Protease-Activated Receptor-2 (PAR-2) with anti-inflammatory activity.

    PubMed

    Giblin, Patricia; Boxhammer, Rainer; Desai, Sudha; Kroe-Barrett, Rachel; Hansen, Gale; Ksiazek, John; Panzenbeck, Maret; Ralph, Kerry; Schwartz, Racheline; Zimmitti, Clare; Pracht, Catrin; Miller, Sandra; Magram, Jeanne; Litzenburger, Tobias

    2011-01-01

    PAR-2 belongs to a family of G-protein coupled Protease-Activated Receptors (PAR) which are activated by specific proteolytic cleavage in the extracellular N-terminal region. PAR-2 is activated by proteases such as trypsin, tryptase, proteinase 3, factor VIIa, factor Xa and is thought to be a mediator of inflammation and tissue injury, where elevated levels of proteases are found. Utilizing the HuCAL GOLD® phage display library we generated fully human antibodies specifically blocking the protease cleavage site in the N-terminal domain. In vitro affinity optimization resulted in antibodies with up to 1000-fold improved affinities relative to the original parental antibodies with dissociation constants as low as 100 pM. Corresponding increases in potency were observed in a mechanistic protease cleavage assay. The antibodies effectively inhibited PAR-2 mediated intracellular calcium release and cytokine secretion in various cell types stimulated with trypsin. In addition, the antibodies demonstrated potent inhibition of trypsin induced relaxation of isolated rat aortic rings ex vivo. In a short term mouse model of inflammation, the trans vivo DTH model, anti-PAR-2 antibodies showed inhibition of the inflammatory swelling response. In summary, potent inhibitors of PAR-2 were generated which allow further assessment of the role of this receptor in inflammation and evaluation of their potential as therapeutic agents.

  3. Preparation of anchovy (Engraulis japonicus) protein hydrolysates with high free radical-scavenging activity using endogenous and commercial enzymes.

    PubMed

    He, Silian; Wang, Fanghua; Ning, Zhengxiang; Yang, Bo; Wang, Yonghua

    2014-12-01

    Anchovy protein hydrolysates with high free radical-scavenging activity were prepared by endogenous and commercial enzymes. Various hydrolytic factors (commercial protease composition, protease concentration, temperature, and reaction time) were optimized. Using a single-factor experiment, three commercial proteases (Protamex, Flavourzyme 500 MG, and Alcalase 2.4 L) were selected for further optimization using a simplex lattice design. The optimum composition of Protamex:Flavourzyme 500 MG:Alcalase 2.4 L was found to be 1.1:1.0:0.9. The hydrolytic conditions (commercial protease concentration, temperature, and reaction time) for the optimum protease composition were optimized using a Box-Behnken design. The optimum hydrolytic conditions were as follows: total commercial protease concentration of 3.27%, pH of 7.5, temperature of 55.4℃, and reaction time of 2.7 h. Under these conditions, hydrolysate with a 1, 1-diphenyl-2-picryhydrazyl scavenging activity of 84.7% was obtained. Meanwhile, a degree of hydrolysis of 33.2% and high protein nitrogen recovery of 87.5% were achieved. The amino acid composition of the hydrolysates demonstrated that they have high nutritional value, thereby suggesting that the hydrolysates have potential to be used as raw material for functional food. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos

    PubMed Central

    Schmökel, Verena; Memar, Nadin; Wiekenberg, Anne; Trotzmüller, Martin; Schnabel, Ralf; Döring, Frank

    2016-01-01

    Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)–treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L–like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease–causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms. PMID:26773047

  5. A new fusion protein platform for quantitatively measuring activity of multiple proteases

    PubMed Central

    2014-01-01

    Background Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. Results We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. Conclusion The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity. PMID:24649897

  6. Fibrinolytic and procoagulant activities of Yersinia pestis and Salmonella enterica.

    PubMed

    Korhonen, T K

    2015-06-01

    Pla of the plague bacterium Yersinia pestis and PgtE of the enteropathogen Salmonella enterica are surface-exposed, transmembrane β-barrel proteases of the omptin family that exhibit a complex array of interactions with the hemostatic systems in vitro, and both proteases are established virulence factors. Pla favors fibrinolysis by direct activation of plasminogen, inactivation of the serpins plasminogen activator inhibitor-1 and α2-antiplasmin, inactivation of the thrombin-activable fibrinolysis inhibitor, and activation of single-chain urokinase. PgtE is structurally very similar but exhibits partially different functions and differ in expression control. PgtE proteolysis targets control aspects of fibrinolysis, and mimicry of matrix metalloproteinases enhances cell migration that should favor the intracellular spread of the bacterium. Enzymatic activity of both proteases is strongly influenced by the environment-induced variations in lipopolysaccharide that binds to the β-barrel. Both proteases cleave the tissue factor pathway inhibitor and thus also express procoagulant activity. © 2015 International Society on Thrombosis and Haemostasis.

  7. Site-Specific 64Cu Labeling of the Serine Protease, Active Site Inhibited Factor Seven Azide (FVIIai-N3), Using Copper Free Click Chemistry.

    PubMed

    Jeppesen, Troels E; Kristensen, Lotte K; Nielsen, Carsten H; Petersen, Lars C; Kristensen, Jesper B; Behrens, Carsten; Madsen, Jacob; Kjaer, Andreas

    2018-01-17

    A method for site-specific radiolabeling of the serine protease active site inhibited factor seven (FVIIai) with 64 Cu has been applied using a biorthogonal click reaction. FVIIai binds to tissue factor (TF), a trans-membrane protein involved in hemostasis, angiogenesis, proliferation, cell migration, and survival of cancer cells. First a single azide moiety was introduced in the active site of this 50 kDa protease. Then a NOTA moiety was introduced via a strain promoted azide-alkyne reaction and the corresponding conjugate was labeled with 64 Cu. Binding to TF and the stability was evaluated in vitro. TF targeting capability of the radiolabeled conjugate was tested in vivo by positron emission tomography (PET) imaging in pancreatic human xenograft cancer mouse models with various TF expressions. The conjugate showed good stability (>91% at 16 h), an immunoreactivity of 93.5%, and a mean tumor uptake of 2.1 ± 0.2%ID/g at 15 h post injection. In conclusion, FVIIai was radiolabeled with 64 Cu in single well-defined position of the protein. This method can be utilized to prepare conjugates from serine proteases with the label at a specific position.

  8. Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.

    PubMed

    Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris

    2011-01-01

    Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.

  9. Release of digestive enzymes from the crustacean hepatopancreas: effect of vertebrate gastrointestinal hormones.

    PubMed

    Resch-Sedlmeier, G; Sedlmeier, D

    1999-06-01

    Vertebrate gastrointestinal hormones were tested on their ability to liberate digestive enzymes from the crustacean midgut gland. CCK-8 (desulfated form), gastrin, bombesin, secretin, and substance P were detected to release enzymes. Maximal concentrations observed were 5 nM CCK for protease release, 1 nM gastrin for protease and 100 nM for amylase release, 100 nM bombesin for protease release, 10 nM secretin for amylase and protease release, and 100 nM substance P for protease release. Unlike in vertebrates, glucagon was unable to stimulate enzyme release in crustaceans, this also applies to the counterpart insulin. These results may support the assumption that Crustacea possess endogenous factors resembling the above mentioned vertebrate hormones, at least in such a way that the appropriate receptors have the capacity to accept these hormones.

  10. Multiple roles of the coagulation protease cascade during virus infection.

    PubMed

    Antoniak, Silvio; Mackman, Nigel

    2014-04-24

    The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.

  11. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Diane E.; Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA; Hoover, Benjamin

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6more » syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor activity of protease-activated anthrax toxins were evaluated. • All anthrax toxin variants exhibited potent systemic anti-tumor activity in mice. • A dual MMP/uPA-activated anthrax toxin displayed a superior safety profile. • Clinical development of a dual MMP/uPA-activated anthrax toxin is feasible.« less

  12. A Pseudomonas aeruginosa strain isolated from a contact lens-induced acute red eye (CLARE) is protease-deficient.

    PubMed

    Estrellas, P S; Alionte, L G; Hobden, J A

    2000-03-01

    Pseudomonas aeruginosa proteases are thought to be important virulence factors in the pathogenesis of corneal disease. This study examined protease production from two strains of P. aeruginosa responsible for two very distinct clinical diseases: strain Paer1, isolated from a Contact Lens-induced Acute Red Eye (CLARE), and strain KEI 1025, isolated from a corneal ulcer. Strains were compared to a laboratory strain (ATCC 19660) known to produce severe keratitis in experimentally infected mice for protease production and for ocular virulence. Protease production was examined with colorimetric assays, gelatin zymography and western blots. Elastase A activity was quantitated with a staphylolytic assay. Ocular virulence was examined using a mouse scratch model of keratitis. In contrast to strains KEI 1025 or ATCC 19660, Paer1 was unable to produce enzymatically active elastase A, elastase, and protease IV. All three strains produced active alkaline protease. Strains KEI 1025 and ATCC 19660 produced a fulminant keratitis in mice whereas Paer1 produced a mild transient infection. Restoration of elastase activity in Paer1 via genetic complementation did not result in a virulent phenotype. Co-infection of mouse eyes with strains Paer1 and ATCC 19660 resulted in the eventual loss of Paer1 from corneal tissue. These studies suggest that P. aeruginosa elastase A and/or protease IV, but not alkaline protease or elastase, contribute to the ocular virulence of this organism.

  13. Psychosocial influences on prisoner suicide: a case-control study of near-lethal self-harm in women prisoners.

    PubMed

    Marzano, Lisa; Hawton, Keith; Rivlin, Adrienne; Fazel, Seena

    2011-03-01

    We examined the psychosocial influences on female prisoner suicide by carrying out a study of near-lethal self-harm. We interviewed 60 women prisoners who had recently engaged in near-lethal self-harm (cases) and 60 others who had never carried out near-lethal acts in prison (controls) from all closed female prison establishments in England and Wales, using mixed quantitative and qualitative methods. We gathered information on socio-demographic and criminological variables, life events and childhood trauma, exposure to suicidal behaviour, contributory and precipitating factors for near-lethal self-harm, social support and psychological characteristics. While socio-demographic factors were only modestly associated with near-lethal self-harm, being on remand, in single cell accommodation, and reporting negative experiences of imprisonment were strong correlates. Recent life events and past trauma, including different forms of childhood abuse, were also significantly associated with near-lethal self-harm, as were a family history of suicide and high scores on measures of depression, aggression, impulsivity and hostility, and low levels of self-esteem and social support. Our findings underline the importance of both individual and prison-related factors for suicide in custody, and hence the need for a comprehensive approach to suicide prevention in women's prisons. Given the multiple needs of female prisoners at-risk of self-harm and suicide, complex psychosocial interventions are likely to be required, including interventions for abused and bereaved women, and initiatives to improve staff-prisoner relationships and reduce bullying. The findings of this research may provide insights into factors leading to suicidal behaviour in other forensic and institutional settings, such as detention centres and psychiatric hospitals, and may assist in developing suicide prevention policies for prisoners and other at-risk populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Prevention of Suicidal Behavior in Prisons

    PubMed Central

    2016-01-01

    Abstract. Background: Worldwide, prisoners are at high risk of suicide. Research on near-lethal suicide attempts can provide important insights into risk and protective factors, and inform suicide prevention initiatives in prison. Aims: To synthesize findings of research on near-lethal attempts in prisons, and consider their implications for suicide prevention policies and practice, in the context of other research in custody and other settings. Method: We searched two bibliographic indexes for studies in any language on near-lethal and severe self-harm in prisoners, supplemented by targeted searches over the period 2000–2014. We extracted information on risk factors descriptively. Data were not meta-analyzed owing to heterogeneity of samples and methods. Results: We identified eight studies reporting associations between prisoner near-lethal attempts and specific factors. The latter included historical, prison-related, and clinical factors, including psychiatric morbidity and comorbidity, trauma, social isolation, and bullying. These factors were also identified as important in prisoners' own accounts of what may have contributed to their attempts (presented in four studies). Conclusion: Factors associated with prisoners' severe suicide attempts include a range of potentially modifiable clinical, psychosocial, and environmental factors. We make recommendations to address these factors in order to improve detection, management, and prevention of suicide risk in prisoners. PMID:27278569

  15. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages.

    PubMed

    van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K

    2015-03-01

    We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Optimization of novel and greener approach for the coproduction of uricase and alkaline protease in Bacillus licheniformis by Box-Behnken model.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-01-02

    This study explores a novel concept of coproduction of uricase and alkaline protease by Bacillus licheniformis using single substrate in single step. Seven local bacterial strains were screened for uricase production, amongst which B. licheniformis is found to produce highest uricase along with alkaline protease. Optimization of various factors influencing maximum enzyme coproduction by B. licheniformis is performed. Maximum enzyme productivity of 0.386 U/mL uricase and 0.507 U/mL alkaline protease is obtained at 8 hr of incubation period, 1% (v/v) inoculum, and at 0.2% (w/v) uric acid when the organism is cultivated at 25°C, 180 rpm, in a media containing xylose as a carbon source, urea as a nitrogen source, and initial pH of 9.5. The statistical experimental design method of Box-Behnken was further applied to obtain optimal concentration of significant parameters such as pH (9.5), uric acid concentration (0.1%), and urea concentration (0.05%). The maximum uricase and alkaline protease production by B. licheniformis using Box-Behnken design was 0.616 and 0.582 U/mL, respectively, with 1.6- and 1.13-fold increase as compared to one factor at a time optimized media. This study will be useful to develop an economic, commercially viable, and scalable process for simultaneous production of uricase and protease enzymes.

  17. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    PubMed

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens

    PubMed Central

    Stella, Nicholas A.; Hunt, Kristin M.; Brothers, Kimberly M.; Zhang, Liang; Thibodeau, Patrick H.

    2015-01-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. PMID:25939509

  19. Plastidial NAD-Dependent Malate Dehydrogenase: A Moonlighting Protein Involved in Early Chloroplast Development Through its Interaction with an FtsH12-FtsHi Protease Complex.

    PubMed

    Schreier, Tina B; Antoine, Cléry; Schläfli, Michael; Galbier, Florian; Stadler, Martha; Demarsy, Emilie; Albertini, Daniele; Maier, Benjamin A; Kessler, Felix; Hörtensteiner, Stefan; Zeeman, Samuel C; Kötting, Oliver

    2018-06-22

    Malate dehydrogenases (MDH) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Novel cathepsin B and cathepsin B-like cysteine protease of Naegleria fowleri excretory-secretory proteins and their biochemical properties.

    PubMed

    Lee, Jinyoung; Kim, Jong-Hyun; Sohn, Hae-Jin; Yang, Hee-Jong; Na, Byoung-Kuk; Chwae, Yong-Joon; Park, Sun; Kim, Kyongmin; Shin, Ho-Joon

    2014-08-01

    Naegleria fowleri causes a lethal primary amoebic meningoencephalitis (PAM) in humans and experimental animals, which leads to death within 7-14 days. Cysteine proteases of parasites play key roles in nutrient uptake, excystment/encystment, host tissue invasion, and immune evasion. In this study, we cloned N. fowleri cathepsin B (nfcpb) and cathepsin B-like (nfcpb-L) genes from our cDNA library of N. fowleri. The full-length sequences of genes were 1,038 and 939 bp (encoded 345 and 313 amino acids), and molecular weights were 38.4 and 34 kDa, respectively. Also, nfcpb and nfcpb-L showed a 56 and 46 % identity to Naegleria gruberi cathepsin B and cathepsin B-like enzyme, respectively. Recombinant NfCPB (rNfCPB) and NfCPB-L (rNfCPB-L) proteins were expressed by the pEX5-NT/TOPO vector that was transformed into Escherichia coli BL21, and they showed 38.4 and 34 kDa bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis using their respective antibodies. Proteolytic activity of refolded rNfCPB and rNfCPB-L was maximum at a pH of 4.5, and the most effective substrate was Z-LR-MCA. rNfCPB and rNfCPB-L showed proteolytic activity for several proteins such as IgA, IgG, IgM, collagen, fibronectin, hemoglobin, and albumin. These results suggested that NfCPB and NfCPB-L cysteine protease are important components of the N. fowleri ESP, and they may play important roles in host tissue invasion and immune evasion as pathogens that cause N. fowleri PAM.

  1. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  2. High-density lipoproteins protect endothelial cells from tumor necrosis factor-alpha-induced apoptosis.

    PubMed

    Sugano, M; Tsuchida, K; Makino, N

    2000-06-16

    High-density lipoproteins (HDL) levels have been shown to be inversely correlated with coronary heart disease, but the mechanisms of the direct protective effect of HDL on endothelial cells are not fully understood. The apoptosis of endothelial cells induced by cytokines and/or oxidized low-density lipoproteins, etc. may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis. Here we report that HDL prevent the apoptosis of human umbilical venous endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) via an inhibition of CPP32-like protease activity. The incubation of HUVECs with TNF-alpha significantly increased the CPP32-like protease activity, and induced apoptosis. Preincubation of HUVECs with HDL before incubation with TNF-alpha significantly suppressed the increase in the CPP32-like protease activity, preventing apoptosis in a concentration-dependent manner. These results suggest that HDL prevent the suicide pathway leading to apoptosis of endothelial cells by decreasing the CPP32-like protease activity and that HDL thus play a protective role against the "response-to-injury" hypothesis of atherogenesis. Copyright 2000 Academic Press.

  3. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  4. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients

    PubMed Central

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard

    2018-01-01

    Background & aims The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Method Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Results Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin–the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Conclusion Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to characterise IBS. PMID:29529042

  5. Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.

    PubMed

    Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A

    2009-09-01

    Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.

  6. Neuropathogenic Escherichia coli K1 does not exhibit proteolytic activities to exert its pathogenicity.

    PubMed

    Iqbal, Junaid; Rajani, Mehak; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-05-01

    Proteases are well-known virulence factors that promote survival, pathogenesis and immune evasion of many pathogens. Several lines of evidence suggest that the blood-brain barrier permeability is a prerequisite in microbial invasion of the central nervous system. Because proteases are frequently associated with vascular permeability by targeting junctional proteins, here it is hypothesized that neuropathogenic Escherichia coli K1 exhibit proteolytic activities to exert its pathogenicity. Zymographic assays were performed using collagen and gelatin as substrates. The lysates of whole E. coli K1 strain E44, or E. coli K-12 strain HB101 were tested for proteolytic activities. The conditioned media were prepared by incubating bacteria in RPMI-1640 in the presence or absence of serum. The cell-free supernatants were collected and tested for proteases in zymography as mentioned above. Additionally, proteolytic degradation of host immune factors was determined by co-incubating conditioned media with albumin/immunoglobulins using protease assays. When collagen or gelatin were used as substrates in zymographic assays, neither whole bacteria nor conditioned media exhibited proteolytic activities. The conditioned media of neuropathogenic E. coli K1 strain E44, or E. coli K-12 strain HB101 did not affect degradation of albumin and immunoglobulins using protease assays. Neither zymographic assays nor protease assays detected proteolytic activities in either the whole bacteria or conditioned media of E. coli K1 strain E44 and E. coli K-12 strain HB101. These findings suggest that host cell monolayer disruptions and immune evasion strategies are likely independent of proteolytic activities of neuropathogenic E. coli K1.

  7. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma

    PubMed Central

    Svalina, Matthew N.; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A.; Settelmeyer, Teagan P.; Young, Michael C.; Peckham, Jennifer L.; Cho, Yoon-Jae; Michalek, Joel E.; Hernandez, Brian S.; Berlow, Noah E.; Jackson, Melanie; Guillaume, Daniel J.; Selden, Nathan R.; Bigner, Darell D.; Nazemi, Kellie J.; Green, Sarah C.; Corless, Christopher L.; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P.; Woltjer, Randall; Keller, Charles

    2016-01-01

    Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma. PMID:27255663

  8. IGF1R as a Key Target in High Risk, Metastatic Medulloblastoma.

    PubMed

    Svalina, Matthew N; Kikuchi, Ken; Abraham, Jinu; Lal, Sangeet; Davare, Monika A; Settelmeyer, Teagan P; Young, Michael C; Peckham, Jennifer L; Cho, Yoon-Jae; Michalek, Joel E; Hernandez, Brian S; Berlow, Noah E; Jackson, Melanie; Guillaume, Daniel J; Selden, Nathan R; Bigner, Darell D; Nazemi, Kellie J; Green, Sarah C; Corless, Christopher L; Gultekin, Sakir; Mansoor, Atiya; Rubin, Brian P; Woltjer, Randall; Keller, Charles

    2016-06-03

    Risk or presence of metastasis in medulloblastoma causes substantial treatment-related morbidity and overall mortality. Through the comparison of cytokines and growth factors in the cerebrospinal fluid (CSF) of metastatic medulloblastoma patients with factors also in conditioned media of metastatic MYC amplified medulloblastoma or leptomeningeal cells, we were led to explore the bioactivity of IGF1 in medulloblastoma by elevated CSF levels of IGF1, IGF-sequestering IGFBP3, IGFBP3-cleaving proteases (MMP and tPA), and protease modulators (TIMP1 and PAI-1). IGF1 led not only to receptor phosphorylation but also accelerated migration/adhesion in MYC amplified medulloblastoma cells in the context of appropriate matrix or meningothelial cells. Clinical correlation suggests a peri-/sub-meningothelial source of IGF-liberating proteases that could facilitate leptomeningeal metastasis. In parallel, studies of key factors responsible for cell autonomous growth in MYC amplified medulloblastoma prioritized IGF1R inhibitors. Together, our studies identify IGF1R as a high value target for clinical trials in high risk medulloblastoma.

  9. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-06-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis.

  10. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed Central

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis. Images PMID:8500876

  11. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  12. The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress.

    PubMed

    Curtis, Thomas D; Takeuchi, Ippei; Gram, Lone; Knudsen, Gitte M

    2017-01-13

    A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σ B ). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σ B operon in L. monocytogenes is the TA system mazEF , which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a Δ mazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus , we found that the mazEF locus did not affect transcription of genes within the σ B operon, but MazEF effected the expression of the σ B -dependent genes opuCA and lmo0880 , with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus , suggesting a novel mode of action for MazEF in L. monocytogenes.

  13. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis.

    PubMed

    Dilkes, Brian P; Spielman, Melissa; Weizbauer, Renate; Watson, Brian; Burkart-Waco, Diana; Scott, Rod J; Comai, Luca

    2008-12-09

    The molecular mechanisms underlying lethality of F1 hybrids between diverged parents are one target of speciation research. Crosses between diploid and tetraploid individuals of the same genotype can result in F1 lethality, and this dosage-sensitive incompatibility plays a role in polyploid speciation. We have identified variation in F1 lethality in interploidy crosses of Arabidopsis thaliana and determined the genetic architecture of the maternally expressed variation via QTL mapping. A single large-effect QTL, DR. STRANGELOVE 1 (DSL1), was identified as well as two QTL with epistatic relationships to DSL1. DSL1 affects the rate of postzygotic lethality via expression in the maternal sporophyte. Fine mapping placed DSL1 in an interval encoding the maternal effect transcription factor TTG2. Maternal parents carrying loss-of-function mutations in TTG2 suppressed the F1 lethality caused by paternal excess interploidy crosses. The frequency of cellularization in the endosperm was similarly affected by both natural variation and ttg2 loss-of-function mutants. The simple genetic basis of the natural variation and effects of single-gene mutations suggests that F1 lethality in polyploids could evolve rapidly. Furthermore, the role of the sporophytically active TTG2 gene in interploidy crosses indicates that the developmental programming of the mother regulates the viability of interploidy hybrid offspring.

  14. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  15. The roles of cysteine proteases and phytocystatins in development and germination of cereal seeds.

    PubMed

    Szewińska, Joanna; Simińska, Joanna; Bielawski, Wiesław

    2016-12-01

    Proteolysis is an important process for development and germination of cereal seeds. Among the many types of proteases identified in plants are the cysteine proteases (CPs) of the papain and legumain families, which play a crucial role in hydrolysing storage proteins during seed germination as well as in processing the precursors of these proteins and the inactive forms of other proteases. Moreover, all of the tissues of cereal seeds undergo progressive degradation via programed cell death, which is integral to their growth. In view of the important roles played by proteases, their uncontrolled activity could be harmful to the development of seeds and young seedlings. Thus, the activities of these enzymes are regulated by intracellular inhibitors called phytocystatins (PhyCys). The phytocystatins inhibit the activity of proteases of the papain family, and the presence of an additional motif in their C-termini allows them to also regulate the activity of members of the legumain family. A balance between the levels of cysteine proteases and phytocystatins is necessary for proper cereal seed development, and this is maintained through the antagonistic activities of gibberellins (GAs) and abscisic acid (ABA), which regulate the expression of the corresponding genes. Transcriptional regulation of cysteine proteases and phytocystatins is determined by cis-acting elements located in the promoters of these genes and by the expression of their corresponding transcription factors (TFs) and the interactions between different TFs. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Expanding proteome coverage with orthogonal-specificity α-Lytic proteases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage by cleavage at sequences complimentary to trypsin may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type alpha-lytic protease (WaLP), and an active site mutant of WaLP, M190A alpha-lytic protease (MaLP). We assess several relevant factors including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. Bymore » combining data from separate digestions with trypsin, LysC, WaLP, and MaLP, proteome coverage was increased 101% compared to trypsin digestion alone. To demonstrate how the gained sequence coverage can access additional PTM information, we show identification of a number of novel phosphorylation sites in the S. pombe proteome and include an illustrative example from the protein MPD2, wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.« less

  17. Galectin-3 Is a Target for Proteases Involved in the Virulence of Staphylococcus aureus.

    PubMed

    Elmwall, Jonas; Kwiecinski, Jakub; Na, Manli; Ali, Abukar Ahmed; Osla, Veronica; Shaw, Lindsey N; Wang, Wanzhong; Sävman, Karin; Josefsson, Elisabet; Bylund, Johan; Jin, Tao; Welin, Amanda; Karlsson, Anna

    2017-07-01

    Staphylococcus aureus is a major cause of skin and soft tissue infection. The bacterium expresses four major proteases that are emerging as virulence factors: aureolysin (Aur), V8 protease (SspA), staphopain A (ScpA), and staphopain B (SspB). We hypothesized that human galectin-3, a β-galactoside-binding lectin involved in immune regulation and antimicrobial defense, is a target for these proteases and that proteolysis of galectin-3 is a novel immune evasion mechanism. Indeed, supernatants from laboratory strains and clinical isolates of S. aureus caused galectin-3 degradation. Similar proteolytic capacities were found in Staphylococcus epidermidis isolates but not in Staphylococcus saprophyticus Galectin-3-induced activation of the neutrophil NADPH oxidase was abrogated by bacterium-derived proteolysis of galectin-3, and SspB was identified as the major protease responsible. The impact of galectin-3 and protease expression on S. aureus virulence was studied in a murine skin infection model. In galectin-3 +/+ mice, SspB-expressing S. aureus caused larger lesions and resulted in higher bacterial loads than protease-lacking bacteria. No such difference in bacterial load or lesion size was detected in galectin-3 -/- mice, which overall showed smaller lesion sizes than the galectin-3 +/+ animals. In conclusion, the staphylococcal protease SspB inactivates galectin-3, abrogating its stimulation of oxygen radical production in human neutrophils and increasing tissue damage during skin infection. Copyright © 2017 American Society for Microbiology.

  18. The Spl Serine Proteases Modulate Staphylococcus aureus Protein Production and Virulence in a Rabbit Model of Pneumonia

    PubMed Central

    Salgado-Pabon, Wilmara; Meyerholz, David K.; White, Mark J.; Schlievert, Patrick M.

    2016-01-01

    ABSTRACT The Spl proteases are a group of six serine proteases that are encoded on the νSaβ pathogenicity island and are unique to Staphylococcus aureus. Despite their interesting biochemistry, their biological substrates and functions in virulence have been difficult to elucidate. We found that an spl operon mutant of the community-associated methicillin-resistant S. aureus USA300 strain LAC induced localized lung damage in a rabbit model of pneumonia, characterized by bronchopneumonia observed histologically. Disease in the mutant-infected rabbits was restricted in distribution compared to that in wild-type USA300-infected rabbits. We also found that SplA is able to cleave the mucin 16 glycoprotein from the surface of the CalU-3 lung cell line, suggesting a possible mechanism for wild-type USA300 spreading pneumonia to both lungs. Investigation of the secreted and surface proteomes of wild-type USA300 and the spl mutant revealed multiple alterations in metabolic proteins and virulence factors. This study demonstrates that the Spls modulate S. aureus physiology and virulence, identifies a human target of SplA, and suggests potential S. aureus targets of the Spl proteases. IMPORTANCE Staphylococcus aureus is a versatile human pathogen that produces an array of virulence factors, including several proteases. Of these, six proteases called the Spls are the least characterized. Previous evidence suggests that the Spls are expressed during human infection; however, their function is unknown. Our study shows that the Spls are required for S. aureus to cause disseminated lung damage during pneumonia. Further, we present the first example of a human protein cut by an Spl protease. Although the Spls were predicted not to cut staphylococcal proteins, we also show that an spl mutant has altered abundance of both secreted and surface-associated proteins. This work provides novel insight into the function of Spls during infection and their potential ability to degrade both staphylococcal and human proteins. PMID:27747296

  19. Plastid intramembrane proteolysis.

    PubMed

    Adam, Zach

    2015-09-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has not surpassed plant biology. Nevertheless, reports on RIP in plants, and especially in chloroplasts, are still scarce. Of the four different families of intramembrane proteases, only two have been linked to chloroplasts so far, rhomboids and site-2 proteases (S2Ps). The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology, probably due to perturbations in jasmonic acid biosynthesis, which occurs in chloroplasts. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development, through a yet unknown mechanism. To date, the only known substrate of RIP in chloroplasts is a PHD transcription factor, located in the envelope. Upon proteolytic cleavage by an unknown protease, the soluble N-terminal domain of this protein is released from the membrane and relocates to the nucleus, where it activates the transcription of the ABA response gene ABI4. Continuing studies on these proteases and substrates, as well as identification of the genes responsible for different chloroplast mutant phenotypes, are expected to shed more light on the roles of intramembrane proteases in chloroplast biology. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    PubMed Central

    Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan

    2011-01-01

    Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785

  1. Serine proteases in rodent hippocampus.

    PubMed

    Davies, B J; Pickard, B S; Steel, M; Morris, R G; Lathe, R

    1998-09-04

    Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.

  2. Approach toward enhancement of halophilic protease production by Halobacterium sp. strain LBU50301 using statistical design response surface methodology.

    PubMed

    Chuprom, Julalak; Bovornreungroj, Preeyanuch; Ahmad, Mehraj; Kantachote, Duangporn; Dueramae, Sawitree

    2016-06-01

    A new potent halophilic protease producer, Halobacterium sp. strain LBU50301 was isolated from salt-fermented fish samples ( budu ) and identified by phenotypic analysis, and 16S rDNA gene sequencing. Thereafter, sequential statistical strategy was used to optimize halophilic protease production from Halobacterium sp. strain LBU50301 by shake-flask fermentation. The classical one-factor-at-a-time (OFAT) approach determined gelatin was the best nitrogen source. Based on Plackett - Burman (PB) experimental design; gelatin, MgSO 4 ·7H 2 O, NaCl and pH significantly influenced the halophilic protease production. Central composite design (CCD) determined the optimum level of medium components. Subsequently, an 8.78-fold increase in corresponding halophilic protease yield (156.22 U/mL) was obtained, compared with that produced in the original medium (17.80 U/mL). Validation experiments proved the adequacy and accuracy of model, and the results showed the predicted value agreed well with the experimental values. An overall 13-fold increase in halophilic protease yield was achieved using a 3 L laboratory fermenter and optimized medium (231.33 U/mL).

  3. Lysosome trafficking is necessary for EGF-driven invasion and is regulated by p38 MAPK and Na+/H+ exchangers.

    PubMed

    Dykes, Samantha S; Steffan, Joshua J; Cardelli, James A

    2017-10-04

    Tumor invasion through a basement membrane is one of the earliest steps in metastasis, and growth factors, such as Epidermal Growth Factor (EGF) and Hepatocyte Growth Factor (HGF), stimulate this process in a majority of solid tumors. Basement membrane breakdown is one of the hallmarks of invasion; therefore, tumor cells secrete a variety of proteases to aid in this process, including lysosomal proteases. Previous studies demonstrated that peripheral lysosome distribution coincides with the release of lysosomal cathepsins. Immunofluorescence microscopy, western blot, and 2D and 3D cell culture techniques were performed to evaluate the effects of EGF on lysosome trafficking and cell motility and invasion. EGF-mediated lysosome trafficking, protease secretion, and invasion is regulated by the activity of p38 mitogen activated protein kinase (MAPK) and sodium hydrogen exchangers (NHEs). Interestingly, EGF stimulates anterograde lysosome trafficking through a different mechanism than previously reported for HGF, suggesting that there are redundant signaling pathways that control lysosome positioning and trafficking in tumor cells. These data suggest that EGF stimulation induces peripheral (anterograde) lysosome trafficking, which is critical for EGF-mediated invasion and protease release, through the activation of p38 MAPK and NHEs. Taken together, this report demonstrates that anterograde lysosome trafficking is necessary for EGF-mediated tumor invasion and begins to characterize the molecular mechanisms required for EGF-stimulated lysosome trafficking.

  4. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    PubMed

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice.

    PubMed

    Bandara, Aloka B; DeShazer, David; Inzana, Thomas J; Sriranganathan, Nammalwar; Schurig, Gerhardt G; Boyle, Stephen M

    2008-09-01

    Burkholderia mallei is the etiologic agent of glanders in solipeds (horses, mules and donkeys), and incidentally in carnivores and humans. Little is known about the molecular mechanisms of B. mallei pathogenesis. The putative carboxy-terminal processing protease (CtpA) of B. mallei is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. All species and isolates of Burkholderia carry a highly conserved copy of ctpA. We studied the involvement of CtpA on growth, cell morphology, persistence, and pathogenicity of B. mallei. A sucrose-resistant strain of B. mallei was constructed by deleting a major portion of the sacB gene of the wild type strain ATCC 23344 by gene replacement, and designated as strain 23344DeltasacB. A portion of the ctpA gene (encoding CtpA) of strain 23344DeltasacB was deleted by gene replacement to generate strain 23344DeltasacBDeltactpA. In contrast to the wild type ATCC 23344 or the sacB mutant 23344DeltasacB, the ctpA mutant 23344DeltasacBDeltactpA displayed altered cell morphologies with partially or fully disintegrated cell envelopes. Furthermore, relative to the wild type, the ctpA mutant displayed slower growth in vitro and less ability to survive in J774.2 murine macrophages. The expression of mRNA of adtA, the gene downstream of ctpA was similar among the three strains suggesting that disruption of ctpA did not induce any polar effects. As with the wild type or the sacB mutant, the ctpA mutant exhibited a dose-dependent lethality when inoculated intraperitoneally into CD1 mice. The CD1 mice inoculated with a non-lethal dose of the ctpA mutant produced specific serum immunoglobulins IgG1 and IgG2a and were partially protected against challenge with wild type B. mallei ATCC 23344. These findings suggest that CtpA regulates in vitro growth, cell morphology and intracellular survival of B. mallei, and a ctpA mutant protects CD1 mice against glanders.

  6. Examining the impact of psychiatric diagnosis and comorbidity on the medical lethality of adolescent suicide attempts.

    PubMed

    McManama O'Brien, Kimberly H; Berzin, Stephanie C

    2012-08-01

    Specific psychiatric diagnoses and comorbidity patterns were examined to determine if they were related to the medical lethality of suicide attempts among adolescents presenting to an urban general hospital (N=375). Bivariate analysis showed that attempters with substance abuse disorders had higher levels of lethality than attempters without substance abuse. Regression results indicated having depression comorbid with any other diagnosis was not associated with medical lethality. However, having a substance abuse disorder was associated with higher suicide attempt lethality, highlighting the importance of substance abuse as a risk factor for lethal suicide attempts in adolescents. This finding stimulates critical thinking around the understanding of suicidal behavior in youth and the development and implementation of treatment strategies for suicidal adolescents with substance abuse disorders. © 2012 The American Association of Suicidology.

  7. Nematicidal activity of three novel extracellular proteases of the nematophagous fungus Monacrosporium sinense.

    PubMed

    Soares, Filippe E F; Braga, Fabio R; Araújo, Jackson V; Geniêr, Hugo L A; Gouveia, Angélica S; Queiroz, José H

    2013-04-01

    Extracellular proteases are an important virulence factor for the nematophagous fungi Monacrosporium. The objective of this study was to optimize, purify, partially characterize, and to evaluate the nematicidal activity of the proteases produced by the nematophagous fungus Monacrosporium sinense (SF53) by solid-state fermentation. Wheat bran was used as substrate for protease production. The variables moisture, pH, incubation time, temperature, glucose, yeast extract, and the number of conidia were tested for their influences on protease production by SF53. To determine the optimal level of the selected variables the central composite design was applied. The crude extract obtained was purified in two steps, an ion exchange chromatography and a gel excision. SDS-PAGE and zymogram were performed for analysis of the purification process. Proteolytic activity was also tested at different pHs and temperatures. In the in vitro assay, the nematicidal activity of the three proteases was evaluated. pH and incubation time showed a significant effect (p<0.05) on production of protease. The highest value of activity was 38.0 (U/ml) under the conditions of pH 5.0 and incubation time of 211 h. SF53 produced three different proteases (Ms1, Ms2, and Ms3) which were directly purified from the zymogram. Ms1, Ms2, and Ms3 showed the following percentage of reduction (p<0.05) on the number of Panagrellus redivivus compared to control after 24 h: 76.8, 68.1, and 92.1%. This is the first report of the use of proteases of the isolate SF53 on a phytonematode, which may be a research tool in future works.

  8. Isolation, characterization and exploring biotechnological potential of halophilic archaea from salterns of western India.

    PubMed

    Singh, Aparna; Singh, Anil Kumar

    2018-01-01

    Thirteen halophilic archaea were isolated from Kandla and Bhayander salt pans. These isolates were grouped into three different genera Halobacterium, Haloferax and Haloarcula based on morphological and biochemical characterization, polar lipid analysis, Amplified 16S rDNA restriction analysis (ARDRA) and 16S rDNA sequence analysis. Biochemical characterization suggested the ability of isolates to produce protease, amylase and poly-hydroxybutyrate (PHB) indicating their biotechnological potential. The isolates were further screened for the amount of extracellular protease produced. Halobacterium sp. SP1(1) showed significant protease production compared to other isolates. Protease producing ability of the isolate was influenced by several factors such as NaCl concentration, type of protein source, metal ions and surfactants, and presence of amino acid supplements in the production medium. Soybean flour, FeCl 3 and dicotylsulfosuccinate were found to increase protease production by 2.36, 1.54 and 1.26 folds, respectively compared to production in basal medium. Effect of organic solvents used in paints (n-decane, n-undecane and n-dodecane) was also investigated on protease production by the isolate. Protease production by Halobacterium sp. SP1(1) was enhanced by 1.2 folds in presence of n-decane compared to control. Furthermore, the ability of isolate to hydrolyse fish protein was investigated using three different edible fishes (Pomfret, Flat fish and Seer fish) as sole protein source. Pomfret was found to be a good protein source for protease production by the isolate. These results revealed that Halobacterium sp. SP1(1) may have potential for paint-based antifouling coating preparations and fish sauce preparation by virtue of its extracellular protease.

  9. A peptide-based approach to evaluate the adaptability of influenza A virus to humans based on its hemagglutinin proteolytic cleavage site

    PubMed Central

    Straus, Marco R.; Whittaker, Gary R.

    2017-01-01

    Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes. PMID:28358853

  10. A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W

    PubMed Central

    van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther

    2012-01-01

    Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455

  11. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  12. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens.

    PubMed

    Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang; Brothers, Kimberly M; Kowalski, Regis P; Huang, Jean J; Thibodeau, Patrick H; Shanks, Robert M Q

    Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Structural basis for the unfolding of anthrax lethal factor by protective antigen oligomers

    PubMed Central

    Feld, Geoffrey K.; Thoren, Katie L.; Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Greenberg, Shoshana G.; Williams, Evan R.; Krantz, Bryan A.

    2011-01-01

    The protein transporter, anthrax lethal toxin, is comprised of protective antigen (PA), a transmembrane translocase, and lethal factor (LF), a cytotoxic enzyme. Following assembly into holotoxin complexes, PA forms an oligomeric channel that unfolds LF and translocates it into the host cell. We report the crystal structure of the core of a lethal toxin complex to 3.1-Å resolution; the structure contains a PA octamer bound to four LF PA-binding domains (LFN). The first α helix and β strand of each LFN unfold and dock into a deep amphipathic cleft on the surface of the PA octamer, which we call the α clamp. The α clamp possesses nonspecific polypeptide binding activity and is functionally relevant to efficient holotoxin assembly, PA octamer formation, and LF unfolding and translocation. This structure provides insight on the mechanism of translocation-coupled protein unfolding. PMID:21037566

  14. Does ethnicity matter in risk and protective factors for suicide attempts and suicide lethality?

    PubMed Central

    Choo, Carol C.; Harris, Keith M.; Chew, Peter K. H.; Ho, Roger C.

    2017-01-01

    This study explored ethnic differences in risk and protective factors for suicide attempts, for the major ethnic groups in Singapore, and ethnic differences in prediction of lethality. Three years of medical records related to suicide attempters (N = 666) who were admitted to the emergency department of a large teaching hospital in Singapore were subjected to analysis. Of the sample, 69.2% were female, 30.8% male; 63.8% Chinese, 15.8% Indian, and 15.0% Malay. Indians were over-represented in this sample, as compared with the ethnic distribution in the general population. Ages ranged from 10 to 85 years old (M = 29.7, SD = 16.1). Ethnic differences were found in risk and protective factors, and perceived lethality of suicide attempts. All available variables were subjected to regression analyses for Chinese, Indian and Malay attempters to arrive at parsimonious models for prediction of perceived lethality. The findings were discussed in regards to implications in assessment of suicide risk and primary prevention for the multiethnic society in Singapore. PMID:28426687

  15. Dengue viral protease interaction with NF-κB inhibitor α/β results in endothelial cell apoptosis and hemorrhage development.

    PubMed

    Lin, Jung-Chen; Lin, Shih-Ching; Chen, Wen-Yu; Yen, Yu-Ting; Lai, Chin-Wen; Tao, Mi-Hua; Lin, Yi-Ling; Miaw, Shi-Chuen; Wu-Hsieh, Betty A

    2014-08-01

    Hemorrhagic manifestations occur frequently accompanying a wide range of dengue disease syndromes. Much work has focused on the contribution of immune factors to the pathogenesis of hemorrhage, but how dengue virus (DENV) participates in the pathogenic process has never been explored. Although there is no consensus that apoptosis is the basis of vascular permeability in human dengue infections, we showed in dengue hemorrhage mouse model that endothelial cell apoptosis is important to hemorrhage development in mice. To explore the molecular basis of the contribution of DENV to endothelial cell death, we show in this study that DENV protease interacts with cellular IκBα and IκBβ and cleaves them. By inducing IκBα and IκBβ cleavage and IκB kinase activation, DENV protease activates NF-κB, which results in endothelial cell death. Intradermal inoculation of DENV protease packaged in adenovirus-associated virus-9 induces endothelial cell death and dermal hemorrhage in mice. Although the H51 activity site is not involved in the interaction between DENV protease and IκB-α/β, the enzymatic activity is critical to the ability of DENV protease to induce IκBα and IκBβ cleavage and trigger hemorrhage development. Moreover, overexpression of IκBα or IκBβ protects endothelial cells from DENV-induced apoptosis. In this study, we show that DENV protease participates in the pathogenesis of dengue hemorrhage and discover IκBα and IκBβ to be the new cellular targets that are cleaved by DENV protease. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. Staphopains Modulate Staphylococcus aureus Biofilm Integrity

    PubMed Central

    Mootz, Joe M.; Malone, Cheryl L.; Shaw, Lindsey N.

    2013-01-01

    Staphylococcus aureus is a known cause of chronic biofilm infections that can reside on medical implants or host tissue. Recent studies have demonstrated an important role for proteinaceous material in the biofilm structure. The S. aureus genome encodes many secreted proteases, and there is growing evidence that these enzymes have self-cleavage properties that alter biofilm integrity. However, the specific contribution of each protease and mechanism of biofilm modulation is not clear. To address this issue, we utilized a sigma factor B (ΔsigB) mutant where protease activity results in a biofilm-negative phenotype, thereby creating a condition where the protease(s) responsible for the phenotype could be identified. Using a plasma-coated microtiter assay, biofilm formation was restored to the ΔsigB mutant through the addition of the cysteine protease inhibitor E-64 or by using Staphostatin inhibitors that specifically target the extracellular cysteine proteases SspB and ScpA (called Staphopains). Through construction of gene deletion mutants, we determined that an sspB scpA double mutant restored ΔsigB biofilm formation, and this recovery could be replicated in plasma-coated flow cell biofilms. Staphopain levels were also found to be decreased under biofilm-forming conditions, possibly allowing biofilm establishment. The treatment of S. aureus biofilms with purified SspB or ScpA enzyme inhibited their formation, and ScpA was also able to disperse an established biofilm. The antibiofilm properties of ScpA were conserved across S. aureus strain lineages. These findings suggest an underappreciated role of the SspB and ScpA cysteine proteases in modulating S. aureus biofilm architecture. PMID:23798534

  17. Identification and biochemical characterization of small-molecule inhibitors of west nile virus serine protease by a high-throughput screen.

    PubMed

    Mueller, Niklaus H; Pattabiraman, Nagarajan; Ansarah-Sobrinho, Camilo; Viswanathan, Prasanth; Pierson, Theodore C; Padmanabhan, R

    2008-09-01

    West Nile virus and dengue virus are mosquito-borne flaviviruses that cause a large number of human infections each year. No vaccines or chemotherapeutics are currently available. These viruses encode a serine protease that is essential for polyprotein processing, a required step in the viral replication cycle. In this study, a high-throughput screening assay for the West Nile virus protease was employed to screen approximately 32,000 small-molecule compounds for identification of inhibitors. Lead inhibitor compounds with three distinct core chemical structures (1 to 3) were identified. In a secondary screening of selected compounds, two compounds, belonging to the 8-hydroxyquinoline family (compounds A and B) and containing core structure 1, were identified as potent inhibitors of the West Nile virus protease, with K(i) values of 3.2 +/- 0.3 microM and 3.4 +/- 0.6 microM, respectively. These compounds inhibited the dengue virus type 2 protease with K(i) values of 28.6 +/- 5.1 microM and 30.2 +/- 8.6 microM, respectively, showing some selectivity in the inhibition of these viral proteases. However, the compounds show no inhibition of cellular serine proteases, trypsin, or factor Xa. Kinetic analysis and molecular docking of compound B onto the known crystal structure of the West Nile virus protease indicate that the inhibitor binds in the substrate-binding cleft. Furthermore, compound B was capable of inhibiting West Nile virus RNA replication in cultured Vero cells (50% effective concentration, 1.4 +/- 0.4 microM; selectivity index, 100), presumably by inhibition of polyprotein processing.

  18. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice

    USDA-ARS?s Scientific Manuscript database

    Previously, twelve protease-deficient mutants of Xanthomonas oryzae pv. oryzicola (Xoc) RS105 strain were recovered from a Tn5-tagged mutant library. In the current study, the Tn5 insertion site in each mutant was mapped. Mutations in genes encoding components of the type II secretion apparatus, cAM...

  19. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis.

    PubMed

    Pawar, Shweta V; Rathod, Virendra K

    2018-07-01

    Low energy ultrasound irradiation was used to enhance co-production of enzymes uricase and alkaline protease using Bacillus licheniformis NRRL 14209. Production of uricase and alkaline protease was evaluated for different ultrasound parameters such as ultrasound power, time of irradiation, duty cycle and growth stage of organisms at which irradiation is carried out. Maximum uricase production of 0.825 U/mL and alkaline protease of 0.646 U/mL have been obtained when fermentation broth was irradiated at 6 h of growth stage with 60 W power for 15 min of duration having 40% of duty cycle. The enzyme yield was found to be enhanced by a factor of 1.9-3.8 and 1.2-2.2 for uricase and alkaline protease respectively. Nevertheless, intracellular uricase was also observed in a fermentation broth after ultrasonic process intensification. The results indicate the effectiveness of low frequency ultrasound in improving enzyme yields with a vision of commercial applicability of the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFα

    PubMed Central

    Wunderle, Lina; Knopf, Julia D.; Kühnle, Nathalie; Morlé, Aymeric; Hehn, Beate; Adrain, Colin; Strisovsky, Kvido; Freeman, Matthew; Lemberg, Marius K.

    2016-01-01

    Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes. PMID:27264103

  1. The influence of different submerged cultivation conditions on mycelial biomass and protease production by Lentinus citrinus Walleyn et Rammeloo DPUA 1535 (Agaricomycetideae).

    PubMed

    Kirsch, Larissa de Souza; Pinto, Ana Carolina dos Santos; Porto, Tatiana Souza; Porto, Ana Lúcia Figueiredo; Teixeira, Maria Francisca Simas

    2011-01-01

    The influence of different carbon and nitrogen sources, pH of the culture medium, and temperature and period of cultivation on mycelial biomass production and protease activity by Lentinus citrinus DPUA 1535 were investigated in submerged culture. A 2(5) full factorial design with three central points was employed, and the results showed that at a significance level of 95% only nitrogen source and temperature were statistically significant for mycelial biomass production. On the other hand, for protease activity all factors and some interactions were significant, and the temperature and nitrogen source had the most significant effect. The best condition for mycelial biomass production (5.76 mg mL(-1)) and protease activity (32.3 U mL(-1)) was obtained in medium formulated with 0.5% soluble starch, 0.2% gelatin, pH 7.0, 25 degrees C, in 5 days.

  2. Substrate specificity of the ubiquitin and Ubl proteases

    PubMed Central

    Ronau, Judith A; Beckmann, John F; Hochstrasser, Mark

    2016-01-01

    Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families. PMID:27012468

  3. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG*

    PubMed Central

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G.; von Pawel-Rammingen, Ulrich

    2016-01-01

    Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873

  4. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG.

    PubMed

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G; von Pawel-Rammingen, Ulrich

    2016-04-08

    Streptococcus suisis a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. ZoonoticS. suisinfections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease ofS. suisthat exclusively cleaves porcine IgM and represents the first virulence factor described, linkingS. suisto pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease ofS. suisthat exclusively targets porcine IgG. This enzyme, designated IgdE forimmunoglobulinG-degradingenzyme ofS. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that allS. suisstrains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressedin vivoduring infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Lipase, protease, and biofilm as the major virulence factors in staphylococci isolated from acne lesions.

    PubMed

    Saising, Jongkon; Singdam, Sudarat; Ongsakul, Metta; Voravuthikunchai, Supayang Piyawan

    2012-08-01

    Staphylococci involve infections in association with a number of bacterial virulence factors. Extracellular enzymes play an important role in staphylococcal pathogenesis. In addition, biofilm is known to be associated with their virulence. In this study, 149 staphylococcal isolates from acne lesions were investigated for their virulence factors including lipase, protease, and biofilm formation. Coagulase-negative staphylococci were demonstrated to present lipase and protease activities more often than coagulase-positive staphylococci. A microtiter plate method (quantitative method) and a Congo red agar method (qualitative method) were comparatively employed to assess biofilm formation. In addition, biofilm forming ability was commonly detected in a coagulase-negative group (97.7%, microtiter plate method and 84.7%, Congo red agar method) more frequently than in coagulase-positive organisms (68.8%, microtiter plate method and 62.5%, Congo red agar method). This study clearly confirms an important role for biofilm in coagulasenegative staphylococci which is of serious concern as a considerable infectious agent in patients with acnes and implanted medical devices. The Congo red agar method proved to be an easy method to quickly detect biofilm producers. Sensitivity of the Congo red agar method was 85.54% and 68.18% and accuracy was 84.7% and 62.5% in coagulase-negative and coagulase-positive staphylococci, respectively, while specificity was 50% in both groups. The results clearly demonstrated that a higher percentage of coagulasenegative staphylococci isolated from acne lesions exhibited lipase and protease activities, as well as biofilm formation, than coagulase-positive staphylococci.

  6. Effect of serine-type protease of Candida spp. isolated from linear gingival erythema of HIV-positive children: critical factors in the colonization.

    PubMed

    Portela, Maristela B; Souza, Ivete P R; Abreu, Celina M; Bertolini, Martinna; Holandino, Carla; Alviano, Celuta S; Santos, André L S; Soares, Rosangela M A

    2010-11-01

      There are several kinds of oral soft tissue lesions that are common manifestations observed in human immunodeficiency virus (HIV)-infected children; for example, linear gingival erythema (LGE) that is a distinctive fiery red band along the margin of the gingivae. The etiology and pathogenesis of LGE are questionable, but a candidal origin has been suggested. Proteases are key virulence attributes produced by a variety of pathogenic fungi, including Candida. The objective of the present study is to identify the protease production in Candida species including, C. albicans (n=5), C. dubliniensis (n=1) and C. tropicalis (n=1), isolated directly from typical LGE lesions observed in six HIV-positive children, and also to test the effect of a serine protease inhibitor on the interaction of Candida spp. and epithelial cells in vitro. The ability of Candida strains to release proteases in the culture supernatant fluids was visualized by gelatin-SDS-PAGE. Gel strips containing 30-fold concentrated supernatant (1.5×10(8) yeasts) were incubated at 37°C for 48 h in 50 mM sodium phosphate buffer, pH 5.5. The concentrated supernatants were also incubated with fibronectin, laminin, immunoglobulin G, bovine serum albumin and human serum albumin. The effect of serine protease inhibitor on the interaction of Candida spp. and epithelial cells (MA 104) was measured after pre-treatment of fungi with the inhibitor (phenylmethylsulphonyl fluoride, PMSF). All the extracellular proteases were completely inhibited by PMSF, identifying these activities as serine-type proteases. Interestingly, a common 62-kDa serine protease was observed in all Candida strains. The culture supernatants, rich in serine protease activities, cleaved several soluble proteinaceous substrates. Additionally, we demonstrated that pre-treatment of C. albicans, C. dubliniensis and C. tropicalis with PMSF diminished the interaction with epithelial cells. Collectively, our results show that Candida spp. isolated from LGE lesions produced and secreted serine proteases and these enzymes may be involved in the initial colonization events. © 2010 John Wiley & Sons A/S.

  7. Ophiophagus hannah venom: proteome, components bound by Naja kaouthia antivenin and neutralization by N. kaouthia neurotoxin-specific human ScFv.

    PubMed

    Danpaiboon, Witchuda; Reamtong, Onrapak; Sookrung, Nitat; Seesuay, Watee; Sakolvaree, Yuwaporn; Thanongsaksrikul, Jeeraphong; Dong-din-on, Fonthip; Srimanote, Potjanee; Thueng-in, Kanyarat; Chaicumpa, Wanpen

    2014-05-13

    Venomous snakebites are an important health problem in tropical and subtropical countries. King cobra (Ophiophagus hannah) is the largest venomous snake found in South and Southeast Asia. In this study, the O. hannah venom proteome and the venom components cross-reactive to N. kaouthia monospecific antivenin were studied. O. hannah venom consisted of 14 different protein families, including three finger toxins, phospholipases, cysteine-rich secretory proteins, cobra venom factor, muscarinic toxin, L-amino acid oxidase, hypothetical proteins, low cysteine protein, phosphodiesterase, proteases, vespryn toxin, Kunitz, growth factor activators and others (coagulation factor, endonuclease, 5'-nucleotidase). N. kaouthia antivenin recognized several functionally different O. hannah venom proteins and mediated paratherapeutic efficacy by rescuing the O. hannah envenomed mice from lethality. An engineered human ScFv specific to N. kaouthia long neurotoxin (NkLN-HuScFv) cross-neutralized the O. hannah venom and extricated the O. hannah envenomed mice from death in a dose escalation manner. Homology modeling and molecular docking revealed that NkLN-HuScFv interacted with residues in loops 2 and 3 of the neurotoxins of both snake species, which are important for neuronal acetylcholine receptor binding. The data of this study are useful for snakebite treatment when and where the polyspecific antivenin is not available. Because the supply of horse-derived antivenin is limited and the preparation may cause some adverse effects in recipients, a cocktail of recombinant human ScFvs for various toxic venom components shared by different venomous snakes, exemplified by the in vitro produced NkLN-HuScFv in this study, should contribute to a possible future route for an improved alternative to the antivenins.

  8. ETV5 transcription factor is overexpressed in ovarian cancer and regulates cell adhesion in ovarian cancer cells.

    PubMed

    Llauradó, Marta; Abal, Miguel; Castellví, Josep; Cabrera, Sílvia; Gil-Moreno, Antonio; Pérez-Benavente, Asumpció; Colás, Eva; Doll, Andreas; Dolcet, Xavier; Matias-Guiu, Xavier; Vazquez-Levin, Mónica; Reventós, Jaume; Ruiz, Anna

    2012-04-01

    Epithelial ovarian cancer is the most lethal gynecological malignancy and the fifth leading cause of cancer deaths in women in the Western world. ETS transcription factors are known to act as positive or negative regulators of the expression of genes that are involved in various biological processes, including those that control cellular proliferation, differentiation, apoptosis, tissue remodeling, angiogenesis and transformation. ETV5 belongs to the PEA3 subfamily. PEA3 subfamily members are able to activate the transcription of proteases, matrix metalloproteinases and tissue inhibitor of metalloproteases, which is central to both tumor invasion and angiogenesis. Here, we examined the role of the ETV5 transcription factor in epithelial ovarian cancer and we found ETV5 was upregulated in ovarian tumor samples compared to ovarian tissue controls. The in vitro inhibition of ETV5 decreased cell proliferation in serum-deprived conditions, induced EMT and cell migration and decreased cell adhesion to extracellular matrix components. ETV5 inhibition also decreased cell-cell adhesion and induced apoptosis in anchorage-independent conditions. Accordingly, upregulation of ETV5 induced the expression of cell adhesion molecules and enhanced cell survival in a spheroid model. Our findings suggest that the overexpression of ETV5 detected in ovarian cancer cells may contribute to ovarian tumor progression through the ability of ETV5 to enhance proliferation of ovarian cancer cells. In addition, upregulation of ETV5 would play a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity by protecting ovarian cancer cells from apoptosis and by increasing the adhesion of ovarian cancer cells to the peritoneal wall through the regulation of cell adhesion molecules. Copyright © 2011 UICC.

  9. Rapid and general profiling of protease specificity by using combinatorial fluorogenic substrate libraries

    PubMed Central

    Harris, Jennifer L.; Backes, Bradley J.; Leonetti, Francesco; Mahrus, Sami; Ellman, Jonathan A.; Craik, Charles S.

    2000-01-01

    A method is presented for the preparation and use of fluorogenic peptide substrates that allows for the configuration of general substrate libraries to rapidly identify the primary and extended specificity of proteases. The substrates contain the fluorogenic leaving group 7-amino-4-carbamoylmethylcoumarin (ACC). Substrates incorporating the ACC leaving group show kinetic profiles comparable to those with the traditionally used 7-amino-4-methylcoumarin (AMC) leaving group. The bifunctional nature of ACC allows for the efficient production of single substrates and substrate libraries by using 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase synthesis techniques. The approximately 3-fold-increased quantum yield of ACC over AMC permits reduction in enzyme and substrate concentrations. As a consequence, a greater number of substrates can be tolerated in a single assay, thus enabling an increase in the diversity space of the library. Soluble positional protease substrate libraries of 137,180 and 6,859 members, possessing amino acid diversity at the P4-P3-P2-P1 and P4-P3-P2 positions, respectively, were constructed. Employing this screening method, we profiled the substrate specificities of a diverse array of proteases, including the serine proteases thrombin, plasmin, factor Xa, urokinase-type plasminogen activator, tissue plasminogen activator, granzyme B, trypsin, chymotrypsin, human neutrophil elastase, and the cysteine proteases papain and cruzain. The resulting profiles create a pharmacophoric portrayal of the proteases to aid in the design of selective substrates and potent inhibitors. PMID:10869434

  10. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    PubMed

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  11. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi).

    PubMed

    Aoki, Kenji; Matsubara, Sayaka; Umeda, Mayo; Tachibanac, Shusaku; Doi, Mikiharu; Takenaka, Shinji

    2013-04-01

    Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito. © 2012 Society of Chemical Industry.

  12. 3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7

    PubMed Central

    Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo

    2015-01-01

    ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321

  13. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1

    PubMed Central

    El Rayes, Tina; Catena, Raúl; Lee, Sharrell; Stawowczyk, Marcin; Joshi, Natasha; Fischbach, Claudia; Powell, Charles A.; Dannenberg, Andrew J.; Altorki, Nasser K.; Gao, Dingcheng; Mittal, Vivek

    2015-01-01

    Inflammation is inextricably associated with primary tumor progression. However, the contribution of inflammation to tumor outgrowth in metastatic organs has remained underexplored. Here, we show that extrinsic inflammation in the lungs leads to the recruitment of bone marrow-derived neutrophils, which degranulate azurophilic granules to release the Ser proteases, elastase and cathepsin G, resulting in the proteolytic destruction of the antitumorigenic factor thrombospondin-1 (Tsp-1). Genetic ablation of these neutrophil proteases protected Tsp-1 from degradation and suppressed lung metastasis. These results provide mechanistic insights into the contribution of inflammatory neutrophils to metastasis and highlight the unique neutrophil protease–Tsp-1 axis as a potential antimetastatic therapeutic target. PMID:26668367

  14. Exploration of peptides that fit into the thermally vibrating active site of cathepsin K protease by alternating artificial intelligence and molecular simulation

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-08-01

    Eighteen tripeptides that fit into the thermally vibrating active site of cathepsin K were discovered by alternating artificial intelligence and molecular simulation. The 18 tripeptides fit the active site better than the cysteine protease inhibitor E64, and a better inhibitor of cathepsin K could be designed considering these tripeptides. Among the 18 tripeptides, Phe-Arg-Asp and Tyr-Arg-Asp fit the active site the best and their structural similarity should be considered in the design process. Interesting factors emerged from the structure of the decision tree, and its structural information will guide exploration of potential inhibitor molecules for proteases.

  15. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  16. EVALUATING THE PREDICTIVE VALIDITY OF SUICIDAL INTENT AND MEDICAL LETHALITY IN YOUTH

    PubMed Central

    Sapyta, Jeffrey; Goldston, David B.; Erkanli, Alaattin; Daniel, Stephanie S.; Heilbron, Nicole; Mayfield, Andrew; Treadway, S. Lyn

    2012-01-01

    Objectives To examine whether suicidal intent and medical lethality of past suicide attempts are predictive of future attempts, the association between intent and lethality, and the consistency of these characteristics across repeated attempts among youth. Method Suicide attempts in a 15-year prospective study of 180 formerly psychiatrically hospitalized adolescents (Mage at hospitalization = 14.83; 51% female; 80% Caucasian) were characterized using the Subjective Intent Rating Scale and Lethality of Attempt Rating Scale. Anderson-Gill recurrent events survival models and generalized estimating equations were used to assess predictive validity. Generalized linear models were used to examine stability of characteristics across attempts. Results Neither intent nor lethality from the most recent attempt predicted future attempts. The highest level of intent and most severe lethality of attempts during the follow-up predicted subsequent attempts, but the degree to which highest intent and most severe lethality contributed to prediction after considering methods of suicide attempts, past number of attempts, or psychiatric diagnoses was mixed. Across successive attempts, there was little consistency in reported characteristics. Intent and lethality were related to each other only for attempts occurring in early adulthood. Conclusions Highest intent and lethality were better predictors of future attempts than intent and lethality of the most recent attempt. However, these characteristics should only be considered as predictors within the context of other factors. For youth, clinicians should not infer true intent from the lethality of attempts, nor assume that characteristics of future suicide attempts will be similar to previous attempts. PMID:22250854

  17. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    PubMed

    Faller, Nicolas; Gautschi, Ivan; Schild, Laurent

    2014-01-01

    Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  18. Structure of the aspartic protease from Rous sarcoma retrovirus refined at 2-A resolution.

    PubMed

    Jaskólski, M; Miller, M; Rao, J K; Leis, J; Wlodawer, A

    1990-06-26

    The structure of Rous sarcoma virus protease has been solved by multiple isomorphous replacement in the crystal form belonging to space group P3(1)21, with unit-cell parameters a = 88.95 A and c = 78.90 A. The enzyme belongs to the family of aspartic proteases with two identical subunits composing the active homodimer. The noncrystallographic dyad relating these two subunits was identified after preliminary tracing in the MIR map and was used for phase improvement by electron-density averaging. Structure refinement resulted in a model that included 1772 protein atoms and 252 water molecules, with an R factor of 0.144 for data extending to 2 A. The secondary structure of a retroviral protease molecule closely resembles that of a single domain in pepsin-like aspartic proteases and consists of several beta-strands and of one well-defined and one distorted alpha-helix. The dimer interface is composed of the N- and C-terminal chains from both subunits which are intertwined to form a well-ordered four-stranded antiparallel beta-sheet. In each monomer, the catalytic triad (Asp-Ser-Gly) is located in a loop that forms a part of the psi-structure characteristic to all aspartic proteases. The position of a water molecule between the active-site aspartate residues and the general scheme of H bonding within the active site bear close resemblance to those in pepsin-like aspartic proteases and therefore suggest a similar enzymatic mechanism. The binding cleft over the active site is covered by two flap arms, one from each monomer, which are partially disordered. The retroviral protease dimer has been compared with several enzymes of cellular origin, with chains aligning to an rms deviation of 1.90 A or better.

  19. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031) under Solid State Fermentation and Its Biochemical Characterization.

    PubMed

    Alhelli, Amaal M; Abdul Manap, Mohd Yazid; Mohammed, Abdulkarim Sabo; Mirhosseini, Hamed; Suliman, Eilaf; Shad, Zahra; Mohammed, Nameer Khairulla; Meor Hussin, Anis Shobirin

    2016-11-11

    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500-10,000 g/mol), PEG concentration (9%-20%), concentrations of NaCl (0%-10%) and the citrate buffer (8%-16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% ( w / w ) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant ( p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R²). Similarly, the predicted and observed values displayed no significant ( p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 ° C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.

  20. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031) under Solid State Fermentation and Its Biochemical Characterization

    PubMed Central

    Alhelli, Amaal M.; Abdul Manap, Mohd Yazid; Mohammed, Abdulkarim Sabo; Mirhosseini, Hamed; Suliman, Eilaf; Shad, Zahra; Mohammed, Nameer Khairulla; Meor Hussin, Anis Shobirin

    2016-01-01

    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500–10,000 g/mol), PEG concentration (9%–20%), concentrations of NaCl (0%–10%) and the citrate buffer (8%–16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R2). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening. PMID:27845736

  1. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  2. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.

    PubMed

    Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P

    2013-03-01

    Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  3. Novel Scabies Mite Serpins Inhibit the Three Pathways of the Human Complement System

    PubMed Central

    Mika, Angela; Reynolds, Simone L.; Mohlin, Frida C.; Willis, Charlene; Swe, Pearl M.; Pickering, Darren A.; Halilovic, Vanja; Wijeyewickrema, Lakshmi C.; Pike, Robert N.; Blom, Anna M.; Kemp, David J.; Fischer, Katja

    2012-01-01

    Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage. PMID:22792350

  4. Metabolic complications associated with HIV protease inhibitor therapy.

    PubMed

    Nolan, David

    2003-01-01

    HIV protease inhibitors were introduced into clinical practice over 7 years ago as an important component of combination antiretroviral drug regimens which in many ways revolutionised the treatment of HIV infection. The significant improvements in prognosis that have resulted from the use of these regimens, combined with the need for lifelong treatment, have increasingly focused attention on the adverse effects of antiretroviral drugs and on the metabolic complications of HIV protease inhibitors in particular. In this review, the cluster of metabolic abnormalities characterised by triglyceride-rich dyslipidaemia and insulin resistance associated with HIV protease inhibitor therapy are considered, along with implications for cardiovascular risk in patients affected by these complications. Toxicity profiles of individual drugs within the HIV protease inhibitor class are examined, as there is an increased recognition of significant intra-class differences both in terms of absolute risk of metabolic complications as well as the particular metabolic phenotype associated with these drugs. Guidelines for clinical assessment and treatment are emphasised, along with pathophysiological mechanisms that may provide a rational basis for the treatment of metabolic complications. Finally, these drug-specific effects are considered within the context of HIV-specific effects on lipid metabolism as well as lifestyle factors that have contributed to a rapidly increasing incidence of similar metabolic syndromes in the general population. These data highlight the importance of individualising patient management in terms of choice of antiretroviral regimen, assessment of metabolic outcomes and use of therapeutic interventions, based on the assessment of baseline (pre-treatment) metabolic status as well as the presence of potentially modifiable cardiovascular risk factors.

  5. Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    PubMed Central

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678

  6. Acquisition of complement inhibitor serine protease factor I and its cofactors C4b-binding protein and factor H by Prevotella intermedia.

    PubMed

    Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M

    2012-01-01

    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.

  7. Lethality of First Contact Dysentery Epidemics on Pacific Islands

    PubMed Central

    Shanks, G. Dennis

    2016-01-01

    Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. PMID:27185765

  8. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  9. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  10. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  11. Cytoplasmic proteasomes are not indispensable for cell growth in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Hikaru; Arai, Naoko; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp

    2013-07-05

    Highlights: •We succeeded to control the proteasome localization by the anchor-away technique. •Nuclear proteasome-depleted cells showed a lethal phenotype. •Cytoplasmic proteasomes are not indispensable for cell growth in dividing cells. -- Abstract: The 26S proteasome is an essential protease complex responsible for the degradation of ubiquitinated proteins in eukaryotic cells. In rapidly proliferating yeast cells, proteasomes are mainly localized in the nucleus, but the biological significance of the proteasome localization is still unclear. In this study, we investigated the relationship between the proteasome localization and the functions by the anchor-away technique, a ligand-dependent sequestration of a target protein into specificmore » compartment(s). Anchoring of the proteasome to the plasma membrane or the ribosome resulted in conditional depletion of the nuclear proteasomes, whereas anchoring to histone resulted in the proteasome sequestration into the nucleus. We observed that the accumulation of ubiquitinated proteins in all the proteasome-targeted cells, suggesting that both the nuclear and cytoplasmic proteasomes have proteolytic functions and that the ubiquitinated proteins are produced and degraded in each compartment. Consistent with previous studies, the nuclear proteasome-depleted cells exhibited a lethal phenotype. In contrast, the nuclear sequestration of the proteasome resulted only in a mild growth defect, suggesting that the cytoplasmic proteasomes are not basically indispensable for cell growth in rapidly growing yeast cells.« less

  12. Transcriptomic analysis of inbreeding depression in cold-sensitive Drosophila melanogaster shows upregulation of the immune response.

    PubMed

    Vermeulen, C J; Sørensen, P; Kirilova Gagalova, K; Loeschcke, V

    2013-09-01

    In sexually reproducing species, increased homozygosity often causes a decline in fitness, called inbreeding depression. Recently, researchers started describing the functional genomic changes that occur during inbreeding, both in benign conditions and under environmental stress. To further this aim, we have performed a genome-wide gene expression study of inbreeding depression, manifesting as cold sensitivity and conditional lethality. Our focus was to describe general patterns of gene expression during inbreeding depression and to identify specific processes affected in our line. There was a clear difference in gene expression between the stressful restrictive environment and the benign permissive environment in both the affected inbred line and the inbred control line. We noted a strong inbreeding-by-environment interaction, whereby virtually all transcriptional differences between lines were found in the restrictive environment. Functional annotation showed enrichment of transcripts coding for serine proteases and their inhibitors (serpins and BPTI/Kunitz family), which indicates activation of the innate immune response. These genes have previously been shown to respond transcriptionally to cold stress, suggesting the conditional lethal effect is associated with an exaggerated cold stress response. The set of differentially expressed genes significantly overlapped with those found in three other studies of inbreeding depression, demonstrating that it is possible to detect a common signature across different genetic backgrounds. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Next-Generation Bacillus anthracis Live Attenuated Spore Vaccine Based on the htrA- (High Temperature Requirement A) Sterne Strain

    PubMed Central

    Chitlaru, Theodor; Israeli, Ma’ayan; Bar-Haim, Erez; Elia, Uri; Rotem, Shahar; Ehrlich, Sharon; Cohen, Ofer; Shafferman, Avigdor

    2016-01-01

    Anthrax is a lethal disease caused by the gram-positive spore-producing bacterium Bacillus anthracis. Live attenuated vaccines, such as the nonencapsulated Sterne strain, do not meet the safety standards mandated for human use in the Western world and are approved for veterinary purposes only. Here we demonstrate that disrupting the htrA gene, encoding the chaperone/protease HtrA (High Temperature Requirement A), in the virulent Bacillus anthracis Vollum strain results in significant virulence attenuation in guinea pigs, rabbits and mice, underlying the universality of the attenuated phenotype associated with htrA knockout. Accordingly, htrA disruption was implemented for the development of a Sterne-derived safe live vaccine compatible with human use. The novel B. anthracis SterneΔhtrA strain secretes functional anthrax toxins but is 10–104-fold less virulent than the Sterne vaccine strain depending on animal model (mice, guinea pigs, or rabbits). In spite of this attenuation, double or even single immunization with SterneΔhtrA spores elicits immune responses which target toxaemia and bacteremia resulting in protection from subcutaneous or respiratory lethal challenge with a virulent strain in guinea pigs and rabbits. The efficacy of the immune-protective response in guinea pigs was maintained for at least 50 weeks after a single immunization. PMID:26732659

  14. The role of protease activation of inflammation in allergic respiratory diseases.

    PubMed

    Reed, Charles E; Kita, Hirohito

    2004-11-01

    Extracellular endogenous proteases, as well as exogenous proteases from mites and molds, react with cell-surface receptors in the airways to generate leukocyte infiltration and to amplify the response to allergens. Stimulation leads to increased intracellular Ca ++ and gene transcription. The most thoroughly investigated receptors, protease-activated receptors (PARs), are 7-transmembrane proteins coupled to G proteins. PARs are widely distributed on the cells of the airways, where they contribute to the inflammation characteristic of allergic diseases. PAR stimulation of epithelial cells opens tight junctions, causes desquamation, and produces cytokines, chemokines, and growth factors. They degranulate eosinophils and mast cells. Proteases contract bronchial smooth muscle and cause it to proliferate. PARs also promote maturation, proliferation, and collagen production of fibroblast precursors and mature fibroblasts. PAR-2, apparently the most important of the 4 PARs that have been characterized, is increased on the epithelium of patients with asthma. Trypsin, a product of injured epithelial cells, and mast cell tryptase are potent activators of PAR-2. Mast cell chymase activates PAR-1. Proteases from mites and molds appear to act through similar receptors. They amplify IgE production to allergens, degranulate eosinophils, and can generate inflammation, even in the absence of IgE. Proteases produced by Aspergillus species to support its growth are presumably responsible for the exuberant IgE, IgG, and granulomatous response of allergic bronchopulmonary aspergillosis. Similar proteases from molds germinating on the respiratory mucosa have been recently been implicated in the pathogenesis of chronic hyperplastic rhinitis and polyps and, by extension, of intrinsic asthma. Finally, proteases from mites and fungi growing in damp, water-damaged buildings might be the basis for the increased prevalence in these buildings of rhinitis, asthma, and other respiratory diseases. Future research promises to promote our understanding of the pathogenesis of allergic respiratory diseases and point the way to new therapies.

  15. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone

    PubMed Central

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R.; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure. PMID:26046527

  16. Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.

    PubMed

    Thekkiniath, Jose; Zabet-Moghaddam, Masoud; Kottapalli, Kameswara Rao; Pasham, Mithun R; San Francisco, Susan; San Francisco, Michael

    2015-01-01

    Batrachochytrium dendrobatidis (Bd), a chytrid fungus, has increasingly been implicated as a major factor in the worldwide decline of amphibian populations. The fungus causes chytridiomycosis in susceptible species leading to massive die-offs of adult amphibians. Although Bd infects the keratinized mouthparts of tadpoles and negatively affects foraging behavior, these infections are non-lethal. An important morphogen controlling amphibian metamorphosis is thyroid hormone (T3). Tadpoles may be infected with Bd and the fungus may be exposed to T3 during metamorphosis. We hypothesize that exposure of Bd to T3 may induce the expression of factors associated with host colonization and pathogenicity. We utilized a proteomics approach to better understand the dynamics of the Bd-T3 interaction. Using liquid chromatography-mass spectrometry (LC-MS), we generated a data set of a large number of cytoplasmic and membrane proteins following exposure of Bd to T3. From these data, we identified a total of 263 proteins whose expression was significantly changed following T3 exposure. We provide evidence for expression of an array of proteins that may play key roles in both genomic and non-genomic actions of T3 in Bd. Additionally, our proteomics study shows an increase in several proteins including proteases and a class of uncommon crinkler and crinkler-like effector proteins suggesting their importance in Bd pathogenicity as well as those involved in metabolism and energy transfer, protein fate, transport and stress responses. This approach provides insights into the mechanistic basis of the Bd-amphibian interaction following T3 exposure.

  17. Tumour necrosis factor α secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice.

    PubMed

    Sendler, Matthias; Dummer, Annegret; Weiss, Frank U; Krüger, Burkhard; Wartmann, Thomas; Scharffetter-Kochanek, Karin; van Rooijen, Nico; Malla, Sudarshan Ravi; Aghdassi, Ali; Halangk, Walter; Lerch, Markus M; Mayerle, Julia

    2013-03-01

    Acute pancreatitis has long been considered a disorder of pancreatic self-digestion, in which intracellular activation of digestive proteases induces tissue injury. Chemokines, released from damaged pancreatic cells then attract inflammatory cells, whose systemic action ultimately determines the disease severity. In the present work the opposite mechanism is investigated; that is, whether and how inflammatory cells can activate intracellular proteases. Using mice either deficient for the CD18-α subunit of the membrane attack complex-1 (MAC-1) complex or tumour necrosis factor (TNF)α, as well as after depletion of leucocyte subpopulations, pancreatitis was induced by 7-hourly caerulein injections (50 μg/kg, intraperitoneally). Pancreatic acini were coincubated in vitro from wild-type and cathepsin-B-deficient animals with phorbol-12-myristate-13-acetate (PMA)-activated neutrophils and macrophages, caerulein or TNFα, and activities of trypsin, cathepsin-B and caspase-3 were measured, as well as necrosis using fluorogenic substrates. TNFα was inhibited with monospecific antibodies. Deletion of CD18 prevented transmigration of leucocytes into the pancreas during pancreatitis, greatly reduced disease severity and abolished digestive protease activation. Depletion of neutrophils and macrophages equally reduced premature trypsinogen activation and disease severity. In vitro activated neutrophils and macrophages directly induced premature protease activation and cell death in pancreatic acini and stimulation of acini with TNFα induced caspase-3 activation and necrosis via a cathepsin-B and calcium-dependent mechanism. Neutralising antibodies against TNFα and genetic deletion of TNFα prevented leucocyte-induced trypsin activity and necrosis in isolated acini. The soluble inflammatory cell mediator TNFα directly induces premature protease activation and necrosis in pancreatic acinar cells. This activation depends on calcium and cathepsin-B activity. The findings from the present work further suggest that targeting TNFα, for which pharmaceutical agents are readily available, could be an effective treatment strategy that directly addresses the cellular causes of pancreatitis.

  18. Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease

    PubMed Central

    Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.

    2002-01-01

    Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384

  19. Deadly Lessons: Understanding Lethal School Violence.

    ERIC Educational Resources Information Center

    Moore, Mark H., Ed.; Petrie, Carol V., Ed.; Braga, Anthony A., Ed.; McLaughlin, Brenda L., Ed.

    This collection of papers is the outcome of the National Academies' effort to glean information from six different case studies of student-perpetrated school shootings. Part 1, "Case Studies of Lethal School Violence," includes: "The Copycat Factor: Mental Illness, Guns, and the Shooting Incident at Heritage High School, Rockdale…

  20. [Screening of full human anthrax lethal factor neutralizing antibody in transgenic mice].

    PubMed

    Wang, Xiaolin; Chi, Xiangyang; Liu, Ju; Liu, Weicen; Liu, Shuling; Qiu, Shunfang; Wen, Zhonghua; Fan, Pengfei; Liu, Kun; Song, Xiaohong; Fu, Ling; Zhang, Jun; Yu, Changming

    2016-11-25

    Anthrax is a highly lethal infectious disease caused by the spore-forming bacterium Bacillus anthracis. The major virulence factor of B. anthracis consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA binds with LF to form lethal toxin (LT), and PA binds with EF to form edema toxin (ET). Antibiotics is hard to work in advanced anthrax infections, because injuries and deaths of the infected are mainly caused by lethal toxin (LT). Thus, the therapeutic neutralizing antibody is the most effective treatment of anthrax. Currently most of the anthrax toxin antibodies are monoclonal antibodies (MAbs) for PA and US FDA has approved ABTHRAX humanized PA monoclonal antibody for the treatment of inhalational anthrax. Once B. anthracis was artificially reconstructed or PA had mutations within recognized neutralization epitopes, anti-PA MAbs would no longer be effective. Therefore, anti-LF MAbs is an important supplement for anthrax treatment. Most of the anti-LF antibodies are murine or chimeric antibodies. By contrast, fully human MAbs can avoid the high immunogenicity of murine antibodies. First, we used LF to immunize the transgenic mice and used fluorescent cell sorting to get antigen-specific memory B cells from transgenic mice spleen lymphocytes. By single cell PCR method, we quickly found two strains of anti-LF MAbs with binding activity, 1D7 and 2B9. Transiently transfected Expi 293F cells to obtain MAbs protein after purification. Both 1D7 and 2B9 efficiently neutralized LT in vitro, and had good synergistic effect when mixed with anti-PA MAbs. In summary, combining the advantages of transgenic mice, fluorescent cell sorting and single-cell PCR methods, this study shows new ideas and methods for the rapid screening of fully human monoclonal antibodies.

  1. Molecular models of NS3 protease variants of the Hepatitis C virus.

    PubMed

    da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F

    2005-01-21

    Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants inhibitors. All models in the database are publicly accessible via our interactive website, providing us with large amount of structural models for use in protein-ligand docking analysis.

  2. Arginine-specific gingipains from Porphyromonas gingivalis deprive protective functions of secretory leucocyte protease inhibitor in periodontal tissue

    PubMed Central

    Into, T; Inomata, M; Kanno, Y; Matsuyama, T; Machigashira, M; Izumi, Y; Imamura, T; Nakashima, M; Noguchi, T; Matsushita, K

    2006-01-01

    Chronic periodontitis is correlated with Porphyromonas gingivalis infection. In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil-derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P. gingivalis infection. The addition of vesicles of P. gingivalis decreased the amount of SLPI in the media of primary human gingival keratinocytes compared to untreated cultures. We therefore investigated how arginine-specific gingipains (Rgps) affect the functions of SLPI, because Rgps are the major virulence factors in the vesicles and cleave a wide range of in-host proteins. We found that Rgps digest SLPI in vitro, suppressing the release of SLPI. Rgps proteolysis of SLPI disrupted SLPI functions, which normally suppresses neutrophil elastase and neutralizes pro-inflammatory effects of bacterial cell wall compounds in cultured human gingival fibroblasts. The protease inhibitory action of SLPI was not exerted towards Rgps. These results suggest that Rgps reduce the protective effects of SLPI on neutrophil proteases and bacterial proinflammatory compounds, by which disease in gingival tissue may be accelerated at the sites with P. gingivalis infection. PMID:16907925

  3. Transcription factor activating protein 4 is synthetically lethal and a master regulator of MYCN-amplified neuroblastoma. | Office of Cancer Genomics

    Cancer.gov

    Despite the identification of MYCN amplification as an adverse prognostic marker in neuroblastoma, MYCN inhibitors have yet to be developed. Here, by integrating evidence from a whole-genome shRNA library screen and the computational inference of master regulator proteins, we identify transcription factor activating protein 4 (TFAP4) as a critical effector of MYCN amplification in neuroblastoma, providing a novel synthetic lethal target.

  4. Cleavage of the NF-κB Family Protein p65/RelA by the Chlamydial Protease-like Activity Factor (CPAF) Impairs Proinflammatory Signaling in Cells Infected with Chlamydiae*

    PubMed Central

    Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg

    2010-01-01

    Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296

  5. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca(2+)-signaling factor for mammalian cells.

    PubMed

    Burleigh, B A; Andrews, N W

    1995-03-10

    Trypomastigotes, the infective stages of the intracellular parasite Trypanosoma cruzi, induce rapid and repetitive cytosolic free Ca2+ transients in fibroblasts. Buffering or depletion of intracellular free Ca2+ inhibits cell entry by trypomastigotes, indicating a role for this signaling event in invasion. We show here that the majority of the Ca(2+)-signaling activity is associated with the soluble fraction of parasites disrupted by sonication. Distinct cell types from different species are responsive to this soluble factor, and intracellular free Ca2+ transients occur rapidly and reach concentrations comparable to responses induced by thrombin and bombesin. The Ca(2+)-signaling activity does not bind concanavalin A and is strongly inhibited by a specific subset of protease inhibitors. The only detectable protease in the fractions with Ca(2+)-signaling activity is an unusual alkaline peptidase of 120 kDa, to which no function had been previously assigned. The activity of the protease and cell invasion by trypomastigotes are blocked by the same specific inhibitors that impair Ca(2+)-signaling, suggesting that the enzyme is required for generating the response leading to infection. We demonstrate that the 120-kDa peptidase is not sufficient for triggering Ca(2+)-signaling, possibly being involved in the processing of precursors present only in infective trypomastigotes. These findings indicate a biological function for a previously identified unusual protozoan protease and provide the first example of a proteolytically generated parasite factor with characteristics of a mammalian hormone.

  6. Suicide Lethality: A Concept Analysis.

    PubMed

    DeBastiani, Summer; De Santis, Joseph P

    2018-02-01

    Suicide is a significant health problem internationally. Those who complete suicide may have different behaviors and risk factors than those who attempt a non-fatal suicide. The purpose of this article is to analyze the concept of suicide lethality and propose a clear definition of the concept through the identification of antecedents, attributes, and consequences. A literature search for articles published in the English language between 1970 and 2016 was conducted using MEDLINE, the Cochrane Library, Pubmed, Psychlit, Ovid, PsycINFO, and Proquest. The bibliographies of all included studies were also reviewed to identify additional relevant citations. A concept analysis was conducted on the literature findings using six stages of Walker and Avant's method. The concept analysis differentiated between suicide, lethality, suicidal behavior, and suicide lethality. Presence of a suicide plan or a written suicide note was not found to be associated with the majority of completed suicides included in the definition of suicide lethality. There are a few scales that measure the lethality of a suicide attempt, but none that attempt to measure the concept of suicide lethality as described in this analysis. Clarifying the concept of suicide lethality encourages awareness of the possibility of different suicidal behaviors associated with different suicide outcomes and will inform the development of future nursing interventions. A clearer definition of the concept of suicide lethality will guide clinical practice, research, and policy development aimed at suicide prevention.

  7. The involvement of the cysteine proteases of Clonorchis sinensis metacercariae in excystment.

    PubMed

    Li, Shunyu; Chung, Young-Bae; Chung, Byung-Suk; Choi, Min-Ho; Yu, Jae-Ran; Hong, Sung-Tae

    2004-05-01

    The effects of trypsin, bile, trypsin-bile, pepsin, dithiothreitol (DTT) and metacercarial excretory-secretory product (ESP) on the in vitro excystment of Clonorchis sinensis metacercariae were investigated. The majority of metacercariae excysted immediately in trypsin-bile in PBS solution, a process which was complete after 30 min of incubation. When incubated in metacercarial ESP in PBS, excystment was potentiated in the presence of 5 mM DTT, but was inhibited dose-dependently by a cysteine protease inhibitor, iodoacetic acid. Two active protease bands of 28 and 40 kDa were identified in the ESP of metacercariae by gelatin substrate SDS-PAGE. Scanning electron microscopy demonstrated that the larvae in solutions of DTT and ESP migrated through a small hole on the metacercarial wall, whereas larvae were liberated by entire wall disruption in trypsin solution. These results suggest that trypsin is a major extrinsic factor of the rapid excystment of C. sinensis metacercariae, and that endogenous cysteine proteases are also involved in metacercarial excystment. Copyright 2004 Springer-Verlag

  8. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance

    PubMed Central

    Guilhelmelli, Fernanda; Vilela, Nathália; Albuquerque, Patrícia; Derengowski, Lorena da S.; Silva-Pereira, Ildinete; Kyaw, Cynthia M.

    2013-01-01

    Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them. PMID:24367355

  9. Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms.

    PubMed

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J

    2015-10-01

    Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell's viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic type 2 (Th2) immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Testing the "toxin hypothesis of allergy": Mast cells, IgE, and innate and acquired immune responses to venoms*

    PubMed Central

    Tsai, Mindy; Starkl, Philipp; Marichal, Thomas; Galli, Stephen J.

    2015-01-01

    Summary Work in mice indicates that innate functions of mast cells, particularly degradation of venom toxins by mast cell-derived proteases, can enhance resistance to certain arthropod or reptile venoms. Recent reports indicate that acquired Th2 immune responses associated with the production of IgE antibodies, induced by Russell’s viper venom or honeybee venom, or by a component of honeybee venom, bee venom phospholipase 2 (bvPLA2), can increase the resistance of mice to challenge with potentially lethal doses of either of the venoms or bvPLA2. These findings support the conclusion that, in contrast to the detrimental effects associated with allergic Th2 immune responses, mast cells and IgE-dependent immune responses to venoms can contribute to innate and adaptive resistance to venom-induced pathology and mortality. PMID:26210895

  11. Determinants of the lethality of climate-related disasters in the Caribbean Community (CARICOM): a cross-country analysis

    PubMed Central

    Andrewin, Aisha N.; Rodriguez-Llanes, Jose M.; Guha-Sapir, Debarati

    2015-01-01

    Floods and storms are climate-related hazards posing high mortality risk to Caribbean Community (CARICOM) nations. However risk factors for their lethality remain untested. We conducted an ecological study investigating risk factors for flood and storm lethality in CARICOM nations for the period 1980–2012. Lethality - deaths versus no deaths per disaster event- was the outcome. We examined biophysical and social vulnerability proxies and a decadal effect as predictors. We developed our regression model via multivariate analysis using a generalized logistic regression model with quasi-binomial distribution; removal of multi-collinear variables and backward elimination. Robustness was checked through subset analysis. We found significant positive associations between lethality, percentage of total land dedicated to agriculture (odds ratio [OR] 1.032; 95% CI: 1.013–1.053) and percentage urban population (OR 1.029, 95% CI 1.003–1.057). Deaths were more likely in the 2000–2012 period versus 1980–1989 (OR 3.708, 95% CI 1.615–8.737). Robustness checks revealed similar coefficients and directions of association. Population health in CARICOM nations is being increasingly impacted by climate-related disasters connected to increasing urbanization and land use patterns. Our findings support the evidence base for setting sustainable development goals (SDG). PMID:26153115

  12. Sub-lethal oxidative stress induces lysosome biogenesis via a lysosomal membrane permeabilization-cathepsin-caspase 3-transcription factor EB-dependent pathway.

    PubMed

    Leow, San Min; Chua, Shu Xian Serene; Venkatachalam, Gireedhar; Shen, Liang; Luo, Le; Clement, Marie-Veronique

    2017-03-07

    Here we provide evidence to link sub-lethal oxidative stress to lysosome biogenesis. Exposure of cells to sub-lethal concentrations of exogenously added hydrogen peroxide resulted in cytosol to nuclear translocation of the Transcription Factor EB (TFEB), the master controller of lysosome biogenesis and function. Nuclear translocation of TFEB was dependent upon the activation of a cathepsin-caspase 3 signaling pathway, downstream of lysosomal membrane permeabilization and accompanied by a significant increase in lysosome numbers as well as induction of TFEB-dependent lysosome-associated genes expression such as Ctsl, Lamp2 and its spliced variant Lamp2a, Neu1and Ctsb and Sqstm1 and Atg9b. The effects of sub-lethal oxidative stress on lysosomal gene expression and biogenesis were rescued upon gene silencing of caspase 3 and TFEB. Notably, caspase 3 activation was not associated with phenotypic hallmarks of apoptosis, evidenced by the absence of caspase 3 substrate cleavage, such as PARP, Lamin A/C or gelsolin. Taken together, these data demonstrate for the first time an unexpected and non-canonical role of a cathepsin-caspase 3 axis in the nuclear translocation of TFEB leading to lysosome biogenesis under conditions of sub-lethal oxidative stress.

  13. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    PubMed Central

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  14. CCAAT/Enhancer Binding Protein–α Regulates the Protease/Antiprotease Balance Required for Bronchiolar Epithelium Regeneration

    PubMed Central

    Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A.

    2012-01-01

    Many transcription factors that regulate lung morphogenesis during development are reactivated to mediate repairs of the injured adult lung. We hypothesized that CCAAT/enhancer binding protein–α (C/EBPα), a transcription factor critical for perinatal lung maturation, regulates genes required for the normal repair of the bronchiolar epithelium after injury. Transgenic CebpαΔ/Δ mice, in which Cebpa was conditionally deleted from Clara cells and Type II cells after birth, were used in this study. Airway injury was induced in mice by the intraperitoneal administration of naphthalene to ablate bronchiolar epithelial cells. Although the deletion of C/EBPα did not influence lung structure and function under unstressed conditions, C/EBPα was required for the normal repair of terminal bronchiolar epithelium after naphthalene injury. To identify cellular processes that are influenced by C/EBPα during repair, mRNA microarray was performed on terminal bronchiolar epithelial cells isolated by laser-capture microdissection. Normal repair of the terminal bronchiolar epithelium was highly associated with the mRNAs regulating antiprotease activities, and their induction required C/EBPα. The defective deposition of fibronectin in CebpαΔ/Δ mice was associated with increased protease activity and delayed differentiation of FoxJ1-expressing ciliated cells. The fibronectin and ciliated cells were restored by the intratracheal treatment of CebpαΔ/Δ mice with the serine protease inhibitor. In conclusion, C/EBPα regulates the expression of serine protease inhibitors that are required for the normal increase of fibronectin and the restoration of ciliated cells after injury. Treatment with serine protease inhibitor may aid in the recovery of injured bronchiolar epithelial cells, and prevent common chronic lung diseases. PMID:22652201

  15. The kunitz protease inhibitor domain of protease nexin-2 inhibits factor XIa and murine carotid artery and middle cerebral artery thrombosis

    PubMed Central

    Wu, Wenman; Li, Hongbo; Navaneetham, Duraiswamy; Reichenbach, Zachary W.; Tuma, Ronald F.

    2012-01-01

    Coagulation factor XI (FXI) plays an important part in both venous and arterial thrombosis, rendering FXIa a potential target for the development of antithrombotic therapy. The kunitz protease inhibitor (KPI) domain of protease nexin-2 (PN2) is a potent, highly specific inhibitor of FXIa, suggesting its possible role in the inhibition of FXI-dependent thrombosis in vivo. Therefore, we examined the effect of PN2KPI on thrombosis in the murine carotid artery and the middle cerebral artery. Intravenous administration of PN2KPI prolonged the clotting time of both human and murine plasma, and PN2KPI inhibited FXIa activity in both human and murine plasma in vitro. The intravenous administration of PN2KPI into WT mice dramatically decreased the progress of FeCl3-induced thrombus formation in the carotid artery. After a similar initial rate of thrombus formation with and without PN2KPI treatment, the propagation of thrombus formation after 10 minutes and the amount of thrombus formed were significantly decreased in mice treated with PN2KPI injection compared with untreated mice. In the middle cerebral artery occlusion model, the volume and fraction of ischemic brain tissue were significantly decreased in PN2KPI-treated compared with untreated mice. Thus, inhibition of FXIa by PN2KPI is a promising approach to antithrombotic therapy. PMID:22674803

  16. Expression and integrity of dermatopontin in chronic cutaneous wounds: a crucial factor in impaired wound healing.

    PubMed

    Krishnaswamy, Venkat Raghavan; Manikandan, Mayakannan; Munirajan, Arasambattu Kannan; Vijayaraghavan, Doraiswamy; Korrapati, Purna Sai

    2014-12-01

    Chronic cutaneous wound (CCW) is a major health care burden wherein the healing process is slow or rather static resulting in anatomical and functional restriction of the damaged tissue. Dysregulated expression and degradation of matrix proteins, growth factors and cytokines contribute to the disrupted and uncoordinated healing process of CCW. Therefore, therapeutic approaches for effective management of CCW should be focused towards identifying and manipulating the molecular defects, such as reduced bioavailability of the pro-healing molecules and elevated activity of proteases. This study essentially deals with assessing the expression and integrity of an extracellular matrix protein, Dermatopontin (DPT), in CCW using real-time quantitative reverse transcriptase PCR and immunological techniques. The results indicate that, despite DPT's high mRNA expression, the protein levels are markedly reduced in both CCW tissue and its exudate. To elucidate the cause for this contradiction in mRNA and protein levels, the stability of DPT is analyzed in the presence of wound exudates and various proteases that are naturally elevated in CCW. DPT was observed to be degraded at higher rates when incubated with certain recombinant proteases or chronic wound exudate. In conclusion, the susceptibility of DPT protein to specific proteases present at high levels in the wound milieu resulted in the degradation of DPT, thus leading to impaired healing response in CCW.

  17. Protective effects of granulocyte colony-stimulating factor on endotoxin shock in mice with retrovirus-induced immunodeficiency syndrome.

    PubMed

    Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y

    1997-10-01

    Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.

  18. Interleukin-10 protects neonatal mice from lethal group B streptococcal infection.

    PubMed Central

    Cusumano, V; Genovese, F; Mancuso, G; Carbone, M; Fera, M T; Teti, G

    1996-01-01

    We investigated the role of interleukin-10 (IL-10) in a neonatal mouse model of lethal group B streptococci (GBS) sepsis. Plasma IL-10 levels significantly increased at 24 and 48 h after GBS inoculation. Neutralization of IL-10 with specific antibodies had no effect on lethality. Administration of recombinant IL-10 at 20 or 4 h before challenge, but not at later times, resulted in decreased tumor necrosis factor alpha levels and improved survival. IL-10 could be potentially useful for the treatment of GBS sepsis. PMID:8698523

  19. Dissection of the Human Multipotent Adult Progenitor Cell Secretome by Proteomic Analysis

    PubMed Central

    van't Hof, Wouter; Newell, Laura F.; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Raber, Amy; Bogaerts, Annelies; Pinxteren, Jef; Deans, Robert J.; Maziarz, Richard T.

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are adult adherent stromal stem cells currently being assessed in acute graft versus host disease clinical trials with demonstrated immunomodulatory capabilities and the potential to ameliorate detrimental autoimmune and inflammation-related processes. Our previous studies documented that MAPCs secrete factors that play a role in regulating T-cell activity. Here we expand our studies using a proteomics approach to characterize and quantify MAPC secretome components secreted over 72 hours in vitro under steady-state conditions and in the presence of the inflammatory triggers interferon-γ and lipopolysaccharide, or a tolerogenic CD74 ligand, RTL1000. MAPCs differentially responded to each of the tested stimuli, secreting molecules that regulate the biological activity of the extracellular matrix (ECM), including proteins that make up the ECM itself, proteins that regulate its construction/deconstruction, and proteins that serve to attach and detach growth factors from ECM components for redistribution upon appropriate stimulation. MAPCs secreted a wide array of proteases, some detectable in their zymogen forms. MAPCs also secreted protease inhibitors that would regulate protease activity. MAPCs secreted chemokines and cytokines that could provide molecular guidance cues to various cell types, including neutrophils, macrophages, and T cells. In addition, MAPCs secreted factors involved in maintenance of a homeostatic environment, regulating such diverse programs as innate immunity, angiogenesis/angiostasis, targeted delivery of growth factors, and the matrix-metalloprotease cascade. PMID:23981727

  20. Lethality of First Contact Dysentery Epidemics on Pacific Islands.

    PubMed

    Shanks, G Dennis

    2016-08-03

    Infectious diseases depopulated many isolated Pacific islands when they were first exposed to global pathogen circulation from the 18th century. Although the mortality was great, the lack of medical observers makes determination of what happened during these historical epidemics largely speculative. Bacillary dysentery caused by Shigella is the most likely infection causing some of the most lethal island epidemics. The fragmentary historical record is reviewed to gain insight into the possible causes of the extreme lethality that was observed during first-contact epidemics in the Pacific. Immune aspects of the early dysentery epidemics and postmeasles infection resulting in subacute inflammatory enteric disease suggest that epidemiologic isolation was the major lethality risk factor on Pacific islands in the 19th century. Other possible risk factors include human leukocyte antigen homogeneity from a founder effect and pathogen-induced derangement of immune tolerance to gut flora. If this analysis is correct, then Pacific islands are currently at no greater risk of emerging disease epidemics than other developing countries despite their dark history. © The American Society of Tropical Medicine and Hygiene.

  1. [Analysis of risk factors of fatal outcome in pregnant and puerperant patients with severe H1N1 influenza].

    PubMed

    Zabolotskikh, I B; Penzhoian, G A; Musaeva, T S; Goncharenko, S I

    2010-01-01

    As well as previous epidemics and pandemias of influenza, the 2009 H1N1 influenza pandemia increases the risk of severe illness in pregnant. Data were reported for 28 pregnant and 2 postpartum women who have been hospitalized in ICUs of Krasnodar Region with H1N1 influenza diagnosis. The laboratory tests for H1N1 were negative in 53.3% of suspected cases of H1N1 influenza (16 of 30). The major lethal risk factor in pregnant with H1N1 influenza is a development of septic shock with low PaO2\\FiO2 ratio (less than 140) and high Murray's Acute Lung Injury Score (higher than 2.5). High Apache II, Apache III, SAPS 2, SAPS 3 and SOFA scores are the additional lethal risk factors. Lethal outcomes were more frequent in the end of the second trimester of pregnancy.

  2. Alveolar Macrophages Play a Key Role in Cockroach-Induced Allergic Inflammation via TNF-α Pathway

    PubMed Central

    Kim, Joo Young; Sohn, Jung Ho; Choi, Je-Min; Lee, Jae-Hyun; Hong, Chein-Soo; Lee, Joo-Shil; Park, Jung-Won

    2012-01-01

    The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR)-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF)-α. We determined whether the serine protease in German cockroach extract (GCE) enhances TNF-α production by alveolar macrophages through the PAR-2 pathway and whether the TNF-α production affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNF-α production were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR), inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL)-5, IL-13 and TNF-α production in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model. PMID:23094102

  3. The Three Streptomyces lividans HtrA-Like Proteases Involved in the Secretion Stress Response Act in a Cooperative Manner

    PubMed Central

    Vicente, Rebeca L.; Gullón, Sonia; Marín, Silvia; Mellado, Rafael P.

    2016-01-01

    Overproduction of Sec-proteins in S. lividans accumulates misfolded proteins outside of the cytoplasmic membrane where the accumulated proteins interfere with the correct functioning of the secretion machinery and with the correct cell functionality, triggering the expression in S. lividans of a CssRS two-component system which regulates the degradation of the accumulated protein, the so-called secretion stress response. Optimization of secretory protein production via the Sec route requires the identification and characterisation of quality factors involved in this process. The phosphorylated regulator (CssR) interacts with the regulatory regions of three genes encoding three different HtrA-like proteases. Individual mutations in each of these genes render degradation of the misfolded protein inoperative, and propagation in high copy number of any of the three proteases encoding genes results on indiscriminate alpha-amylase degradation. None of the proteases could complement the other two deficiencies and only propagation of each single copy protease gene can restore its own deficiency. The obtained results strongly suggest that the synthesis of the three HtrA-like proteases needs to be properly balanced to ensure the effective degradation of misfolded overproduced secretory proteins and, at the same time, avoid negative effects in the secreted proteins and the secretion machinery. This is particularly relevant when considering the optimisation of Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application. PMID:27977736

  4. Culture Condition Optimization and Pilot Scale Production of the M12 Metalloprotease Myroilysin Produced by the Deep-Sea Bacterium Myroides profundi D25.

    PubMed

    Shao, Xuan; Ran, Li-Yuan; Liu, Chang; Chen, Xiu-Lan; Zhang, Xi-Ying; Qin, Qi-Long; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-06-29

    The protease myroilysin is the most abundant protease secreted by marine sedimental bacterium Myroides profundi D25. As a novel elastase of the M12 family, myroilysin has high elastin-degrading activity and strong collagen-swelling ability, suggesting its promising biotechnological potential. Because myroilysin cannot be maturely expressed in Escherichia coli, it is important to be able to improve the production of myroilysin in the wild strain D25. We optimized the culture conditions of strain D25 for protease production by using single factor experiments. Under the optimized conditions, the protease activity of strain D25 reached 1137 ± 53.29 U/mL, i.e., 174% of that before optimization (652 ± 23.78 U/mL). We then conducted small scale fermentations of D25 in a 7.5 L fermentor. The protease activity of strain D25 in small scale fermentations reached 1546.4 ± 82.65 U/mL after parameter optimization. Based on the small scale fermentation results, we further conducted pilot scale fermentations of D25 in a 200 L fermentor, in which the protease production of D25 reached approximately 1100 U/mL. These results indicate that we successfully set up the small and pilot scale fermentation processes of strain D25 for myroilysin production, which should be helpful for the industrial production of myroilysin and the development of its biotechnological potential.

  5. Interaction between FMDV Lpro and transcription factor ADNP is required for viral replication

    USDA-ARS?s Scientific Manuscript database

    The foot-and-mouth disease virus (FMDV) leader protease (Lpro) inhibits host translation and transcription affecting the expression of several factors involved in innate immunity. In this study, we have identified the host transcription factor ADNP (activity dependent neuroprotective protein) as an ...

  6. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation.

    PubMed

    Galloway, Summer E; Reed, Mark L; Russell, Charles J; Steinhauer, David A

    2013-02-01

    The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.

  8. Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation

    PubMed Central

    Galloway, Summer E.; Reed, Mark L.; Russell, Charles J.; Steinhauer, David A.

    2013-01-01

    The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species. PMID:23459660

  9. Biochemical characterization of recombinant Enterovirus 71 3C protease with fluorogenic model peptide substrates and development of a biochemical assay.

    PubMed

    Shang, Luqing; Zhang, Shumei; Yang, Xi; Sun, Jixue; Li, Linfeng; Cui, Zhengjie; He, Qiuhong; Guo, Yu; Sun, Yuna; Yin, Zheng

    2015-04-01

    Enterovirus 71 (EV71), a primary pathogen of hand, foot, and mouth disease (HFMD), affects primarily infants and children. Currently, there are no effective drugs against HFMD. EV71 3C protease performs multiple tasks in the viral replication, which makes it an ideal antiviral target. We synthesized a small set of fluorogenic model peptides derived from cleavage sites of EV71 polyprotein and examined their efficiencies of cleavage by EV71 3C protease. The novel peptide P08 [(2-(N-methylamino)benzoyl) (NMA)-IEALFQGPPK(DNP)FR] was determined to be the most efficiently cleaved by EV71 3C protease, with a kinetic constant kcat/Km of 11.8 ± 0.82 mM(-1) min(-1). Compared with literature reports, P08 gave significant improvement in the signal/background ratio, which makes it an attractive substrate for assay development. A Molecular dynamics simulation study elaborated the interactions between substrate P08 and EV71 3C protease. Arg39, which is located at the bottom of the S2 pocket of EV71 3C protease, may participate in the proteolysis process of substrates. With an aim to evaluate EV71 3C protease inhibitors, a reliable and robust biochemical assay with a Z' factor of 0.87 ± 0.05 was developed. A novel compound (compound 3) (50% inhibitory concentration [IC50] = 1.89 ± 0.25 μM) was discovered using this assay, which effectively suppressed the proliferation of EV 71 (strain Fuyang) in rhabdomyosarcoma (RD) cells with a highly selective index (50% effective concentration [EC50] = 4.54 ± 0.51 μM; 50% cytotoxic concentration [CC50] > 100 μM). This fast and efficient assay for lead discovery and optimization provides an ideal platform for anti-EV71 drug development targeting 3C protease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host

    PubMed Central

    Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo. PMID:28107409

  11. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    PubMed

    Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  12. Abnormalities of peptide metabolism in Alzheimer disease.

    PubMed

    Panchal, Maï; Rholam, Mohamed; Brakch, Noureddine

    2004-10-01

    The steady-state level of peptide hormones represents a balance between their biosynthesis and proteolytic processing by convertases and their catabolism by proteolytic enzymes. Low levels of neuropeptide Y, somatostatin and corticotropin-releasing factor, described in Alzheimer disease (AD), were related to a defect in proteolytic processing of their protein precursors. In contrast the abundance of beta-amyloid peptides, the major protein constituents of senile plaques is likely related to inefficient catabolism. Therefore, attention is mainly focused on convertases that generate active peptides and counter-regulatory proteases that are involved in their catabolism. Some well-described proteases such as NEP are thought to be involved in beta-amyloid catabolism. The search of other possible candidates represents a primary effort in the field. A variety of vascular risk factors such as diabetes, hypertension and arteriosclerosis suggest that the functional vascular defect contributes to AD pathology. It has also been described that beta-amyloid peptides potentiate endothelin-1 induced vasoconstriction. In this review, we will critically evaluate evidence relating proteases implicated in amyloid protein precursor proteolytic processing and beta-amyloid catabolism.

  13. Seasonal variation in abiotic factors and ferulic acid toxicity in snail-attractant pellets against the intermediate host snail Lymnaea acuminata.

    PubMed

    Agrahari, P; Singh, D K

    2013-11-01

    Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.

  14. Certhrax Toxin, an Anthrax-related ADP-ribosyltransferase from Bacillus cereus*

    PubMed Central

    Visschedyk, Danielle; Rochon, Amanda; Tempel, Wolfram; Dimov, Svetoslav; Park, Hee-Won; Merrill, A. Rod

    2012-01-01

    We identified Certhrax, the first anthrax-like mART toxin from the pathogenic G9241 strain of Bacillus cereus. Certhrax shares 31% sequence identity with anthrax lethal factor from Bacillus anthracis; however, we have shown that the toxicity of Certhrax resides in the mART domain, whereas anthrax uses a metalloprotease mechanism. Like anthrax lethal factor, Certhrax was found to require protective antigen for host cell entry. This two-domain enzyme was shown to be 60-fold more toxic to mammalian cells than anthrax lethal factor. Certhrax localizes to distinct regions within mouse RAW264.7 cells by 10 min postinfection and is extranuclear in its cellular location. Substitution of catalytic residues shows that the mART function is responsible for the toxicity, and it binds NAD+ with high affinity (KD = 52.3 ± 12.2 μm). We report the 2.2 Å Certhrax structure, highlighting its structural similarities and differences with anthrax lethal factor. We also determined the crystal structures of two good inhibitors (P6 (KD = 1.7 ± 0.2 μm, Ki = 1.8 ± 0.4 μm) and PJ34 (KD = 5.8 ± 2.6 μm, Ki = 9.6 ± 0.3 μm)) in complex with Certhrax. As with other toxins in this family, the phosphate-nicotinamide loop moves toward the NAD+ binding site with bound inhibitor. These results indicate that Certhrax may be important in the pathogenesis of B. cereus. PMID:22992735

  15. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    PubMed Central

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  16. The Pseudomonas aeruginosa Periplasmic Protease CtpA Can Affect Systems That Impact Its Ability To Mount Both Acute and Chronic Infections

    PubMed Central

    Seo, Jin

    2013-01-01

    Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence. PMID:24082078

  17. Substrate adaptation of Trichophyton rubrum secreted endoproteases.

    PubMed

    Chen, Jian; Yi, Jinling; Liu, Li; Yin, Songchao; Chen, Rongzhang; Li, Meirong; Ye, Congxiu; Zhang, Yu-qing; Lai, Wei

    2010-02-01

    Trichophyton rubrum is the most common pathogen caused the dermatophytosis of nail and skin in human. The secreted proteases were considered to be the most important virulence factors. However, the substrates adaptation of T. rubrum secreted proteases is largely unknown. For the first time, we use the keratins from human nail and skin stratum corneum as the growth medium to investigate the different expression patterns of T. rubrum secreted endoproteases genes. During grow in both keratin-containing media SUB7 and MEP2 were the highest expressed gene in each family. These results indicated that SUB7 and MEP2 may be the dominant endoproteases secreted by T. rubrum during host infection and the other proteases may play a supplementary role. The direct comparison of T. rubrum grown on skin and nail medium showed different substrate favorite of secreted endoproteases. The genes MEP2, SUB5, SUB2 and SUB3 were more active during growth in skin medium, possibly these proteases have a higher affinity for skin original keratins. While the structures of SUB1, SUB4, and MEP4 maybe more suitable for the degradation of nail original keratins. This work presents useful molecular details for further understanding the pathogenesis of secreted proteases and the wide adaptation of T. rubrum.

  18. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  19. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins.

    PubMed

    Geng, Ce; Nie, Xiangtao; Tang, Zhichao; Zhang, Yuyang; Lin, Jian; Sun, Ming; Peng, Donghai

    2016-04-27

    Plant-parasitic nematodes (PPNs) cause serious harm to agricultural production. Bacillus firmus shows excellent control of PPNs and has been produced as a commercial nematicide. However, its nematicidal factors and mechanisms are still unknown. In this study, we showed that B. firmus strain DS-1 has high toxicity against Meloidogyne incognita and soybean cyst nematode. We sequenced the whole genome of DS-1 and identified multiple potential virulence factors. We then focused on a peptidase S8 superfamily protein called Sep1 and demonstrated that it had toxicity against the nematodes Caenorhabditis elegans and M. incognita. The Sep1 protein exhibited serine protease activity and degraded the intestinal tissues of nematodes. Thus, the Sep1 protease of B. firmus is a novel biocontrol factor with activity against a root-knot nematode. We then used C. elegans as a model to elucidate the nematicidal mechanism of Sep1, and the results showed that Sep1 could degrade multiple intestinal and cuticle-associated proteins and destroyed host physical barriers. The knowledge gained in our study will lead to a better understanding of the mechanisms of B. firmus against PPNs and will aid in the development of novel bio-agents with increased efficacy for controlling PPNs.

  20. Psychosocial Characteristics and Social Networks of Suicidal Prisoners: Towards a Model of Suicidal Behaviour in Detention

    PubMed Central

    Rivlin, Adrienne; Hawton, Keith; Marzano, Lisa; Fazel, Seena

    2013-01-01

    Prisoners are at increased risk of suicide. Investigation of both individual and environmental risk factors may assist in developing suicide prevention policies for prisoners and other high-risk populations. We conducted a matched case-control interview study with 60 male prisoners who had made near-lethal suicide attempts in prison (cases) and 60 male prisoners who had not (controls). We compared levels of depression, hopelessness, self-esteem, impulsivity, aggression, hostility, childhood abuse, life events (including events occurring in prison), social support, and social networks in univariate and multivariate models. A range of psychosocial factors was associated with near-lethal self-harm in prisoners. Compared with controls, cases reported higher levels of depression, hopelessness, impulsivity, and aggression, and lower levels of self-esteem and social support (all p values <0.001). Adverse life events and criminal history factors were also associated with near-lethal self-harm, especially having a prior prison spell and having been bullied in prison, both of which remained significant in multivariate analyses. The findings support a model of suicidal behaviour in prisoners that incorporates imported vulnerability factors, clinical factors, and prison experiences, and underscores their interaction. Strategies to reduce self-harm and suicide in prisoners should include attention to such factors. PMID:23922671

  1. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2

    PubMed Central

    Szláma, György; Trexler, Mária; Patthy, László

    2013-01-01

    Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2. Structured digital abstract Furin cleaves Promyostatin by protease assay (View interaction) myostatin binds to PRO by surface plasmon resonance (View interaction) BMP-1 cleaves Promyostatin by protease assay (View interaction) ACR IIB physically interacts with Latent Myostatin by surface plasmon resonance (View interaction) Promyostatin and Promyostatin bind by comigration in gel electrophoresis (View interaction) WFIKKN1 binds to Latent Myostatin by pull down (View interaction) ACR IIB binds to Mature Myostatin by surface plasmon resonance (View Interaction: 1, 2, 3) WFIKKN1 binds to Myostatin Prodomain by surface plasmon resonance (View Interaction: 1, 2, 3) PMID:23829672

  2. The Roles of Fibroblast Growth Factor (FGF)-23, α-Klotho and Furin Protease in Calcium and Phosphate Homeostasis : A Mini-Review.

    PubMed

    Mattoo, Roshan L

    2014-01-01

    The roles of calcitonin, parathormone and calcitriol in the regulation of plasma calcium and phosphate are well-established. However, in autosomal-dominant hypophosphatemic rickety patients, studies have revealed normal plasma levels of calcium, associated with normal thyroid and parathyroid functions, but decreased levels of phosphate and calcitriol despite adequate reserves of vitamin D. Also, in tumoral calcinosis, persistent hyperphosphatemia with increased levels of 1,25(OH)2D3 have been observed. These studies indicate the involvement of factors other than the ones already known. The first decade of this century/millennium has led to the discovery of the involvement of fibroblast growth factor-23, furin protease and α-klotho in the homeostasis of calcium and phosphate, which is the subject of this mini-review.

  3. Combinatorial Enzyme Design Probes Allostery and Cooperativity in the Trypsin Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Michael J.; Di Cera, Enrico; St. Louis-MED)

    2010-06-14

    Converting one enzyme into another is challenging due to the uneven distribution of important amino acids for function in both protein sequence and structure. We report a strategy for protein engineering allowing an organized mixing and matching of genetic material that leverages lower throughput with increased quality of screens. Our approach successfully tested the contribution of each surface-exposed loop in the trypsin fold alone and the cooperativity of their combinations towards building the substrate selectivity and Na{sup +}-dependent allosteric activation of the protease domain of human coagulation factor Xa into a bacterial trypsin. As the created proteases lack additional proteinmore » domains and protein co-factor activation mechanism requisite for the complexity of blood coagulation, they are stepping-stones towards further understanding and engineering of artificial clotting factors.« less

  4. Rescue of the mouse DDK syndrome by parent-of-origin-dependent modifiers.

    PubMed

    Ideraabdullah, Folami Y; Kim, Kuikwon; Pomp, Daniel; Moran, Jennifer L; Beier, David; de Villena, Fernando Pardo-Manuel

    2007-02-01

    When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.

  5. The role of protease-activated receptors PAR-1 and PAR-2 in the repair of 16HBE 14o(-) epithelial cell monolayers in vitro.

    PubMed

    Ewen, D; Clarke, S L; Smith, J R; Berger, C; Salmon, G; Trevethick, M; Shute, J K

    2010-03-01

    We recently reported that repair following mechanical wounding of epithelial cell layers in vitro is dependent on fibrin formation and the activity of locally expressed coagulation cascade proteins. Serine proteases of the coagulation cascade are an important group of protease-activated receptor (PAR) activators and PAR-1 to 4 are expressed by the normal bronchial epithelium. We tested the hypothesis that activation of PAR-1 and PAR-2 by coagulation cascade proteases stimulates epithelial repair via effects on fibrin formation. Using mechanically wounded 16HBE 14o(-) epithelial cell layers in culture, we investigated the effect of PAR-1 and PAR-2 agonist peptides, control partially scrambled peptides and PAR-neutralizing antibodies on the rate of repair and fibrin formation. Coagulation factors in culture supernatants were measured by immunoblot. RT-PCR was used to investigate PAR-1, PAR-2 and PGE2 receptor (EP-1 to EP-4) expression in this model and qRT-PCR to quantify responses to wounding. Additionally, we investigated the effect of exogenously added factor Xa (FXa) and neutrophil elastase and the influence of PGE2 and indomethacin on the repair response. PAR-1 and PAR-2 peptide agonists stimulated the rate of repair and enhanced the formation of a fibrin provisional matrix to support the repair process. Conversely, PAR-neutralizing antibodies inhibited repair. Under serum-free culture conditions, 16HBE 14o(-) cells expressed EP-2 and EP-3, but not EP-1 or EP-4, receptors. Wounding induced an increased expression of EP-3 but did not alter EP-2, PAR-1 or PAR-2 expression. In the absence of PAR agonists, there was no evidence for a role for PGE2 in fibrin formation or the repair process. Indomethacin attenuated fibrin formation in wounded cultures only in the presence of the PAR-2 peptide. FXa stimulated epithelial repair while neutrophil elastase reduced the levels of coagulation factors and inhibited repair. Locally expressed serine proteases of the coagulation cascade activate PAR-1 and PAR-2 to enhance fibrin formation and bronchial epithelial repair.

  6. Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events.

    PubMed

    Tidball, James G; Wehling-Henricks, Michelle

    2004-12-01

    Duchenne muscular dystrophy (DMD) is a progressive, lethal, muscle wasting disease that affects 1 of 3500 boys born worldwide. The disease results from mutation of the dystrophin gene that encodes a cytoskeletal protein associated with the muscle cell membrane. Although gene therapy will likely provide the cure for DMD, it remains on the distant horizon, emphasizing the need for more rapid development of palliative treatments that build on improved understanding of the complex pathology of dystrophin deficiency. In this review, we have focused on therapeutic strategies that target downstream events in the pathologic progression of DMD. Much of this work has been developed initially using the dystrophin-deficient mdx mouse to explore basic features of the pathophysiology of dystrophin deficiency and to test potential therapeutic interventions to slow, reverse, or compensate for functional losses that occur in muscular dystrophy. In some cases, the initial findings in the mdx model have led to clinical treatments for DMD boys that have produced improvements in muscle function and quality of life. Many of these investigations have concerned interventions that can affect protein balance in muscle, by inhibiting specific proteases implicated in the DMD pathology, or by providing anabolic factors or depleting catabolic factors that can contribute to muscle wasting. Other investigations have exploited the use of anti-inflammatory agents that can reduce the contribution of leukocytes to promoting secondary damage to dystrophic muscle. A third general strategy is designed to increase the regenerative capacity of dystrophic muscle and thereby help retain functional muscle mass. Each of these general approaches to slowing the pathology of dystrophin deficiency has yielded encouragement and suggests that targeting downstream events in dystrophinopathy can yield worthwhile, functional improvements in DMD.

  7. Antiretroviral drugs and acute pancreatitis in HIV/AIDS patients: is there any association? A literature review

    PubMed Central

    Oliveira, Natalia Mejias; Ferreira, Felipe Augusto Yamauti; Yonamine, Raquel Yumi; Chehter, Ethel Zimberg

    2014-01-01

    ABSTRACT In HIV-seropositive individuals, the incidence of acute pancreatitis may achieve 40% per year, higher than the 2% found in the general population. Since 1996, when combined antiretroviral therapy, known as HAART (highly active antiretroviral therapy), was introduced, a broad spectrum of harmful factors to the pancreas, such as opportunistic infections and drugs used for chemoprophylaxis, dropped considerably. Nucleotide analogues and metabolic abnormalities, hepatic steatosis and lactic acidosis have emerged as new conditions that can affect the pancreas. To evaluate the role of antiretroviral drugs to treat HIV/AIDS in a scenario of high incidence of acute pancreatitis in this population, a systematic review was performed, including original articles, case reports and case series studies, whose targets were HIV-seropositive patients that developed acute pancreatitis after exposure to any antiretroviral drugs. This association was confirmed after exclusion of other possible etiologies and/or a recurrent episode of acute pancreatitis after re-exposure to the suspected drug. Zidovudine, efavirenz, and protease inhibitors are thought to lead to acute pancreatitis secondary to hyperlipidemia. Nucleotide reverse transcriptase inhibitors, despite being powerful inhibitors of viral replication, induce a wide spectrum of side effects, including myelotoxicity and acute pancreatitis. Didanosine, zalcitabine and stavudine have been reported as causes of acute and chronic pancreatitis. They pose a high risk with cumulative doses. Didanosine with hydroxyurea, alcohol or pentamidine are additional risk factors, leading to lethal pancreatitis, which is not a frequent event. In addition, other drugs used for prophylaxis of AIDS-related opportunistic diseases, such as sulfamethoxazole-trimethoprim and pentamidine, can produce necrotizing pancreatitis. Despite comorbidities that can lead to pancreatic involvement in the HIV/AIDS population, antiretroviral drug-induced pancreatitis should always be considered in the diagnosis of patients with abdominal pain and elevated pancreatic enzymes. PMID:24728257

  8. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3.

    PubMed

    Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2017-06-01

    The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. Copyright © 2017 Yoshikawa et al.

  9. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3

    PubMed Central

    Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio

    2017-01-01

    ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3 proteins by both Vif and a viral protease. Furthermore, the Vif proteins of an FIV subtype (subtype B) have attenuated their anti-APOBEC3 activity through evolution. Our findings can be a clue to elucidate the complicated evolutionary processes by which lentiviruses adapt to mammals. PMID:28331087

  10. Impact of acute alcohol consumption on lethality of suicide methods.

    PubMed

    Park, C Hyung Keun; Yoo, Seong Ho; Lee, Jaewon; Cho, Sung Joon; Shin, Min-Sup; Kim, Eun Young; Kim, Se Hyun; Ham, Keunsoo; Ahn, Yong Min

    2017-05-01

    The influence of acute alcohol consumption on the factors related to suicide remains understudied. Thus, the present study investigated the relationship between blood alcohol content (BAC) and the lethality of suicide methods. Autopsy data on 315 South Korean suicide completers with a positive BAC were collected from a nationwide pool between May 2015 and November 2015, and the methods were dichotomised as suicide methods of low lethality (SMLL; drug/chemical overdose and sharp objects, n=67) and suicide methods of high lethality (SMHL; everything else, n=243). BAC at the time of autopsy and various suicide-related factors of these two groups were compared with logistic regression analyses. Compared to suicide completers with a BAC in the lowest range of 0.011-0.049%, suicide completers with a BAC in the range of 0.150-0.199% were more likely to use SMHL (odds ratio [OR]: 3.644, 95% confidence interval [CI]: 1.221-10.874). Additionally, the adoption of SMHL was significantly associated with the absence of a psychiatric illness (OR: 0.433, 95% CI: 0.222-0.843) and a younger age; the OR for high BAC among subjects in their 40s was 0.266 (95% CI: 0.083-0.856); in their 50s, 0.183 (95% CI: 0.055-0.615); and in their 60s, 0.057 (95% CI: 0.015-0.216). The relationship between BAC and suicide method lethality was represented by a bell-shaped pattern in which suicide methods of high lethality were more likely to be used by suicide completers with mid-range BAC levels. The increased impulsivity and impairments in particular executive functions, including planning and organization, associated with acute alcohol use may influence the selection of a particular suicide method based on its lethality. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Social Network Analysis of Crowds

    DTIC Science & Technology

    2009-08-06

    crowd responses to non-lethal weapons d tan sys ems – Prior, existing social relationships – Real time social interactions – Formal/informal...Crowd Behavior Testbed Layout Video Cameras on Trusses Importance of Social Factors • Response to non-lethal weapons fire depends on social ... relationships among crowd members – Pre-existing Personal Relationships – Ongoing Real Time Social Interactions – Formal/Informal Hierarchies • Therefore

  12. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  13. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism.

    PubMed

    Lee, Young Ah; Nam, Young Hee; Min, Arim; Kim, Kyeong Ah; Nozaki, Tomoyoshi; Saito-Nakano, Yumiko; Mirelman, David; Shin, Myeong Heon

    2014-01-01

    Entamoeba histolytica is an extracellular tissue parasite causing colitis and occasional liver abscess in humans. E. histolytica-derived secretory products (SPs) contain large amounts of cysteine proteases (CPs), one of the important amoebic virulence factors. Although tissue-residing mast cells play an important role in the mucosal inflammatory response to this pathogen, it is not known whether the SPs induce mast cell activation. In this study, when human mast cells (HMC-1 cells) were stimulated with SPs collected from pathogenic wild-type amoebae, interleukin IL-8 mRNA expression and production were significantly increased compared with cells incubated with medium alone. Inhibition of CP activity in the SPs with heat or the CP inhibitor E64 resulted in significant reduction of IL-8 production. Moreover, SPs obtained from inhibitors of cysteine protease (ICP)-overexpressing amoebae with low CP activity showed weaker stimulatory effects on IL-8 production than the wild-type control. Preincubation of HMC-1 cells with antibodies to human protease-activated receptor 2 (PAR2) did not affect the SP-induced IL-8 production. These results suggest that cysteine proteases in E. histolytica-derived secretory products stimulate mast cells to produce IL-8 via a PAR2-independent mechanism, which contributes to IL-8-mediated tissue inflammatory responses during the early phase of human amoebiasis. © Y.A. Lee et al., published by EDP Sciences, 2014.

  14. Functional assembly of intrinsic coagulation proteases on monocytes and platelets. Comparison between cofactor activities induced by thrombin and factor Xa

    PubMed Central

    1992-01-01

    Generation of coagulation factor Xa by the intrinsic pathway protease complex is essential for normal activation of the coagulation cascade in vivo. Monocytes and platelets provide membrane sites for assembly of components of this protease complex, factors IXa and VIII. Under biologically relevant conditions, expression of functional activity by this complex is associated with activation of factor VIII to VIIIa. In the present studies, autocatalytic regulatory pathways operating on monocyte and platelet membranes were investigated by comparing the cofactor function of thrombin-activated factor VIII to that of factor Xa-activated factor VIII. Reciprocal functional titrations with purified human factor VIII and factor IXa were performed at fixed concentrations of human monocytes, CaCl2, factor X, and either factor IXa or factor VIII. Factor VIII was preactivated with either thrombin or factor Xa, and reactions were initiated by addition of factor X. Rates of factor X activation were measured using chromogenic substrate specific for factor Xa. The K1/2 values, i.e., concentration of factor VIIIa at which rates were half maximal, were 0.96 nM with thrombin- activated factor VIII and 1.1 nM with factor Xa-activated factor VIII. These values are close to factor VIII concentration in plasma. The Vsat, i.e., rates at saturating concentrations of factor VIII, were 33.3 and 13.6 nM factor Xa/min, respectively. The K1/2 and Vsat values obtained in titrations with factor IXa were not significantly different from those obtained with factor VIII. In titrations with factor X, the values of Michaelis-Menten coefficients (Km) were 31.7 nM with thrombin- activated factor VIII, and 14.2 nM with factor Xa-activated factor VIII. Maximal rates were 23.4 and 4.9 nM factor Xa/min, respectively. The apparent catalytic efficiency was similar with either form of factor VIIIa. Kinetic profiles obtained with platelets as a source of membrane were comparable to those obtained with monocytes. These kinetic profiles are consistent with a 1:1 stoichiometry for the functional interaction between cofactor and enzyme on the surface of monocytes and platelets. Taken together, these results indicate that autocatalytic pathways connecting the extrinsic, intrinsic, and common coagulation pathways can operate efficiently on the monocyte membrane. PMID:1613461

  15. Quality of Clotting Factor Activity in Fresh Frozen Plasma at Thaw with a Microwave System and after Storage at 4 degrees C for 48 Hours.

    PubMed

    Kuta, Piotr; Hauck-Dlimi, Barbara; Strobel, Julian; Zimmermann, Robert; Eckstein, Reinhold

    2016-01-01

    Uncontrolled hemorrhage in polytrauma patients usually results in rapid need of blood products. Despite the shorter thawing times of microwave devices for heating fresh frozen plasma (FFP), their use has remained controversial, and just a few laboratory analyses have been published on this topic. The aim of this study was to analyse the quality of clotting factors immediately after thawing FFP with a microwave device and after 48-hour post thaw storage at 4 degrees C. 24 FFP units of all four ABO blood groups (six of each blood group) were thawed with a Transfusio-therm 2000 and later stored at 4 degrees C for 48 hours. Samples were drawn aseptically and investigated on various clotting factors and protein proteases (fibrinogen, antithrombin, FII, FV, FVII, FVIII, FIX, FX, FXI, FXIII, vWF antigen and activity, protein S, and protein C) using standard coagulation and chromogenic assays immediately after thawing and again after a 48-hour storage period at 4 degrees C. All units were tested for both anaerobic and aerobic microbial contamination using standard operating procedures immediately after thawing. After thawing, all coagulation factors and protein protease activities were within normal ranges. Blood group O individuals had approximately 25% lower plasma levels of vWF antigen and activity. After a 48-hour storage period at 4 degrees C, FVIII and FIX activities declined significantly in all blood groups, whereas the remaining clotting factors remained comparably stable. Immediately after rapid thawing using a microwave system, all FFP units contained adequate coagulation factor activities to maintain hemostatic activity at the time of product thaw. The post thaw refrigerated storage caused an anticipated decrease in factor VIII and IX activities, but retained normal coagulation factor levels of many plasma proteins. Therefore we conclude that the Transfusio-therm 2000 has no clinically significant influence on the activity of clotting factors and plasma proteases in FFP units.

  16. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  17. Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate).

    PubMed

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Camila Souza; Brandão, Romero Marcos Pedrosa; de Campos-Takaki, Galba Maria; Teixeira, José Antônio Couto; Porto, Tatiana Souza; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2016-07-01

    A fibrinolytic protease from M. subtilissimus UCP 1262 was recovered and partially purified by polyethylene glycol (PEG)/sodium sulfate aqueous two-phase systems (ATPS). The simultaneous influence of PEG molar mass, PEG concentration and sulfate concentration on the enzyme recovery was first investigated using a 2(3) full factorial design, and the Response Surface Methodology used to identify the optimum conditions for enzyme extraction by ATPS. Once the best PEG molar mass for the process had been selected (6000g/mol), a two-factor central composite rotary design was applied to better evaluate the effects of the other two independent variables. The fibrinolytic enzyme was shown to preferentially partition to the bottom phase with a partition coefficient (K) ranging from 0.2 to 0.7. The best results in terms of enzyme purification were obtained with the system formed by 30.0% (w/w) PEG 6000g/mol and 13.2% (w/w) sodium sulfate, which ensured a purification factor of 10.0, K of 0.2 and activity yield of 102.0%. SDS-PAGE and fibrin zymography showed that the purified protease has a molecular mass of 97kDa and an apparent isoelectric point of 5.4. When submitted to assays with different substrates and inhibitors, it showed selectivity for succinyl-l-ala-ala-pro-l-phenylalanine-p-nitroanilide and was almost completely inhibited by phenylmethylsulfonyl fluoride, behaving as a chymotrypsin-like protease. At the optimum temperature of 37°C, the enzyme residual activity was 94 and 68% of the initial one after 120 and 150min of incubation, respectively. This study demonstrated that M. subtilissimus protease has potent fibrinolytic activity compared with similar enzymes produced by solid-state fermentation, therefore it may be used as an agent for the prevention and therapy of thrombosis. Furthermore, it appears to have the advantages of low cost production and simple purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Axis of evil: molecular mechanisms of cancer metastasis.

    PubMed

    Bogenrieder, Thomas; Herlyn, Meenhard

    2003-09-29

    Although the genetic basis of tumorigenesis may vary greatly between different cancer types, the cellular and molecular steps required for metastasis are similar for all cancer cells. Not surprisingly, the molecular mechanisms that propel invasive growth and metastasis are also found in embryonic development, and to a less perpetual extent, in adult tissue repair processes. It is increasingly apparent that the stromal microenvironment, in which neoplastic cells develop, profoundly influences many steps of cancer progression, including the ability of tumor cells to metastasize. In carcinomas, the influences of the microenvironment are mediated, in large part, by bidirectional interactions (adhesion, survival, proteolysis, migration, immune escape mechanisms lymph-/angiogenesis, and homing on target organs) between epithelial tumor cells and neighboring stromal cells, such as fibroblasts as well as endothelial and immune cells. In this review, we summarize recent advances in understanding the molecular mechanisms that govern this frequently lethal metastatic progression along an axis from primary tumor to regional lymph nodes to distant organ sites. Affected proteins include growth factor signaling molecules, chemokines, cell-cell adhesion molecules (cadherins, integrins) as well as extracellular proteases (matrix metalloproteinases). We then discuss promising new therapeutic approaches targeting the microenvironment. We note, however, that there is still too little knowledge of how the many events are coordinated and integrated by the cancer cell, with conspiratorial help by the stromal component of the host. Before drug development can proceed with a legitimate chance of success, significant gaps in basic knowledge need to be filled.

  19. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    PubMed Central

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  20. Manipulation of Neutrophils by Porphyromonas gingivalis in the Development of Periodontitis

    PubMed Central

    Sochalska, Maja; Potempa, Jan

    2017-01-01

    The pathogenesis of the chronic periodontal disease is associated with a skewed host inflammatory response to periodontal pathogens, such as Porphyromonas gingivalis, that accounts for the majority of periodontal tissue damage. Neutrophils are the most abundant leukocytes in periodontal pockets and depending on the stage of the disease, also plentiful PMNs are present in the inflamed gingival tissue and the gingival crevice. They are the most efficient phagocytes and eliminate pathogens by a variety of means, which are either oxygen-dependent or -independent. However, these secretory lethal weapons do not strictly discriminate between pathogens and host tissue. Current studies describe conflicting findings about neutrophil involvement in periodontal disease. On one hand literature indicate that hyper-reactive neutrophils are the main immune cell type responsible for this observed tissue damage and disease progression. Deregulation of neutrophil survival and functions, such as chemotaxis, migration, secretion of antimicrobial peptides or enzymes, and production of reactive oxygen species, contribute to observed tissue injury and the clinical signs of periodontal disease. On the other hand neutrophils deficiencies in patients and mice also result in periodontal phenotype. Therefore, P. gingivalis represents a periodontal pathogen that manipulates the immune responses of PMNs, employing several virulence factors, such as gingipains, serine proteases, lipid phosphatases, or fimbriae. This review will sum up studies devoted to understanding different strategies utilized by P. gingivalis to manipulate PMNs survival and functions in order to inhibit killing by a granular content, prolong inflammation, and gain access to nutrient resources. PMID:28589098

  1. Endotoxin activity of Moraxella osloensis against the grey garden slug, Deroceras reticulatum.

    PubMed

    Tan, Li; Grewal, Parwinder S

    2002-08-01

    Moraxella osloensis is a gram-negative bacterium associated with Phasmarhabditis hermaphrodita, a slug-parasitic nematode that has prospects for biological control of mollusk pests, especially the grey garden slug, Deroceras reticulatum. This bacterium-feeding nematode acts as a vector that transports M. osloensis into the shell cavity of the slug, and the bacterium is the killing agent in the nematode-bacterium complex. We discovered that M. osloensis produces an endotoxin(s), which is tolerant to heat and protease treatments and kills the slug after injection into the shell cavity. Washed or broken cells treated with penicillin and streptomycin from 3-day M. osloensis cultures were more pathogenic than similar cells from 2-day M. osloensis cultures. However, heat and protease treatments and 2 days of storage at 22 degrees C increased the endotoxin activity of the young broken cells but not the endotoxin activity of the young washed cells treated with the antibiotics. This suggests that there may be a proteinaceous substance(s) that is structurally associated with the endotoxin(s) and masks its toxicity in the young bacterial cells. Moreover, 2 days of storage of the young washed bacterial cells at 22 degrees C enhanced their endotoxin activity if they were not treated with the antibiotics. Furthermore, purified lipopolysaccharide (LPS) from the 3-day M. osloensis cultures was toxic to slugs, with an estimated 50% lethal dose of 48 microg per slug, thus demonstrating that the LPS of M. osloensis is an endotoxin that is active against D. reticulatum. This appears to be the first report of a biological toxin that is active against mollusks.

  2. Substrate optimization and clinical validation of reporter peptides for MS-based protease profiling in serum specimens: a new approach for diagnosis of malignant disease.

    PubMed

    Yepes, Diego; Jacob, Anette; Dauber, Marc; Costina, Victor; Hofheinz, Ralf; Neumaier, Michael; Findeisen, Peter

    2011-07-01

    The progression of many solid tumors is characterized by the release of tumor-associated proteases, such as cancer procoagulant, MMP2 and MMP7. Consequently, the detection of tumor-specific proteolytic activity in serum specimens has recently been proposed as a new diagnostic tool in oncology. However, tumor-associated proteases are highly diluted in serum specimens and it is challenging to identify substrates that are specifically cleaved. In this study, we describe the systematic optimization of a synthetic peptide substrate using a positional scanning synthetic combinatorial library (PS-SCL) approach. The initial reporter peptide (RP) comprises of the cleavage site, WKPYDAAD, that is part of the coagulation factor X, the natural substrate of the tumor-associated cysteine protease cancer procoagulant (EC 3.4.22.26). Specifically, the amino acid substitution of aspartatic acid (D) in position P1' against asparagine (N) improved the processing of respective RPs in serum specimens from patients with colorectal tumors compared to healthy controls. Proteolytic fragments of RPs accumulated during prolonged incubation with serum specimens and were quantified with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Finally, the optimized RP with the cleaved motif WKPYNAAD was combined with the RPs, VPLSLTMG and IPVSLRSG, that were cleaved by the tumor-associated proteases, MMP2 and MMP7, respectively. The diagnostic accuracy of MS-based protease profiling was evaluated for this triplex RP mix in a cohort of 50 serum specimens equally divided into colorectal cancer patients and healthy control individuals. Multiparametric analysis showed an AUC value of 0.90 for the receiver operating characteristic curve and was superior to the classification accuracy of the single markers. Our results demonstrate that RPs for MS-based protease profiling can systematically be optimized with a PS-SCL. Furthermore, the combination of different RPs can additionally increase the classification accuracy of functional protease profiling, and this in turn could lead to improved diagnosis, monitoring and prognosis of malignant disease.

  3. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the basis for a next generation production host, since the strain has still a large potential for further genetic engineering. The final amylase titer of 65% in reference to B. licheniformis protease titer suggests that the developed B. pumilus expression platform is also suitable for an efficient production of non-proteolytic enzymes reaching a final titer of several grams per liter without complex process modifications.

  4. Toxic Effect of Staphylococcal Lysins for Goldfish1

    PubMed Central

    Kaplan, Milton T.; Appleman, Milo D.

    1963-01-01

    Goldfish died within 24 hr after intraperitoneal injections of 0.2 ml of Seitz filtrates of hemolytic Staphylococcus aureus cultures grown on Dolman and Wilson medium under increased CO2 pressure for 72 to 96 hr. Two lethal toxins differing in heat sensitivity, antigenicity, and degree of toxicity were demonstrated. Studies of the relationship between the lethal factors and the hemolysins in the filtrates suggested that α- and β-lysin were responsible for the lethal effects. Filtrates of nonhemolytic staphylococcal cultures were innocuous. Goldfish were suitable animals for detecting toxicity in staphylococcal culture filtrates and for quantitative studies of the toxins. The results were highly reproducible. PMID:14030754

  5. Role of decoy molecules in neuronal ischemic preconditioning

    PubMed Central

    Panneerselvam, Mathivadhani; Patel, Piyush M.; Roth, David M.; Kidd, Michael W.; Chin-Lee, Blake; Head, Brian P.; Niesman, Ingrid R.; Inoue, Satoki; Patel, Hemal H.; Davis, Daniel P.

    2011-01-01

    Decoy receptors bind with TNF related apoptosis inducing ligands (TRAIL) but do not contain the cytoplasmic domains necessary to transduce apoptotic signals. We hypothesized that decoy receptors may confer neuronal protection against lethal ischemia after ischemic preconditioning (IPC). Mixed cortical neurons were exposed to IPC one day prior to TRAIL treatment or lethal ischemia. IPC increased decoy receptor but reduced death receptor expression compared to lethal ischemia. IPC-induced increase in decoy receptor expression was reduced by prior treatment with CAPE, a nuclear factor-kappa B inhibitor (NFκB). Expression of decoy molecules, dependent on NFκB, may mediate neuronal survival induced by IPC. PMID:21315738

  6. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  7. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment.

    PubMed

    Roman, Yblin E; De Schamphelaere, Karel A C; Nguyen, Lien T H; Janssen, Colin R

    2007-11-15

    Five benthic organisms commonly used for sediment toxicity testing were chronically (28 to 35 days) exposed to copper in standard laboratory-formulated sediment (following Organization for Economic Cooperation and Development guidelines) and lethal and sub-lethal toxicities were evaluated. Sub-lethal endpoints considered were reproduction and biomass production for Lumbriculus variegatus, growth and reproduction for Tubifex tubifex, growth and emergence for Chironomus riparius, and growth for Gammarus pulex and Hyalella azteca. Expressed on whole-sediment basis the observed lethal sensitivity ranking (from most to least sensitive) was: G. pulex>L. variegatus>H. azteca=C. riparius=T. tubifex, with median chronic lethal concentrations (LC50) between 151 and 327 mg/kg dry wt. The sub-lethal sensitivity ranking (from most to least sensitive, with the most sensitive endpoint between parentheses): C. riparius (emergence)>T. tubifex (reproduction)=L. variegatus (reproduction)>G. pulex (growth)>H. azteca (growth), with median effective concentrations (EC50) between 59.2 and 194 mg/kg dry wt. No observed effect concentrations (NOEC) or 10% effective concentrations (EC10) for the five benthic invertebrates were used to perform a preliminary risk assessment for copper in freshwater sediment by means of (a) the "assessment factor approach" or (b) the statistical extrapolation approach (species sensitivity distribution). Depending on the data (NOEC or EC10) and the methodology used, we calculated a Predicted No Effect Concentration (PNEC) for sediment between 3.3 and 47.1 mg Cu/dry wt. This range is similar to the range of natural (geochemical) background concentrations of copper in sediments in Europe, i.e. 90% of sediments have a concentration between 5 and 49 mg Cu/kg dry wt. A detailed analysis of the outcome of this preliminary exercise highlighted that multiple issues need to be explored for achieving a scientifically more sound risk assessment and for the development of robust sediment quality criteria for copper, including (i) the use of the assessment factor approach vs. the statistical extrapolation approach, (ii) the importance of bioavailability modifying factors (e.g., organic carbon, acid volatile sulfide), and (iii) the influence of prevailing geochemical (bioavailable) background concentrations on the copper sensitivity of local benthic biota.

  8. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis.

    PubMed

    Zigler, Maya; Kamiya, Takafumi; Brantley, Emily C; Villares, Gabriel J; Bar-Eli, Menashe

    2011-11-01

    Progression of melanoma is dependent on cross-talk between tumor cells and the adjacent microenvironment. The thrombin receptor, protease-activated receptor-1 (PAR-1), plays a key role in exerting this function during melanoma progression. PAR-1 and its activating factors, which are expressed on tumor cells and the surrounding stroma, induce not only coagulation but also cell signaling, which promotes the metastatic phenotype. Several adhesion molecules, cytokines, growth factors, and proteases have recently been identified as downstream targets of PAR-1 and have been shown to modulate interactions between tumor cells and the microenvironment in the process of melanoma growth and metastasis. Inhibiting such interactions by targeting PAR-1 could potentially be a useful therapeutic modality for melanoma patients. ©2011 AACR.

  9. APP processing and the APP-KPI domain involvement in the amyloid cascade.

    PubMed

    Menéndez-González, M; Pérez-Pinera, P; Martínez-Rivera, M; Calatayud, M T; Blázquez Menes, B

    2005-01-01

    Alternative APP mRNA splicing can generate isoforms of APP containing a Kunitz protease inhibitor (KPI) domain. KPI is one of the main serine protease inhibitors. Protein and mRNA KPI(+)APP levels are elevated in Alzheimer's disease (AD) brain and are associated with increased amyloid beta deposition. In the last years increasing evidence on multiple points in the amyloid cascade where KPI(+)APP is involved has been accumulated, admitting an outstanding position in the pathogenesis of AD to the KPI domain. This review focuses on the APP processing, the molecular activity of KPI and its physiological and pathological roles and the KPI involvement in the amyloid cascade through the nerve growth factor, the lipoprotein receptor-related protein, the tumor necrosis factor-alpha converting enzyme and the Notch1 protein.

  10. Neural ECM proteases in learning and synaptic plasticity.

    PubMed

    Tsilibary, Effie; Tzinia, Athina; Radenovic, Lidija; Stamenkovic, Vera; Lebitko, Tomasz; Mucha, Mariusz; Pawlak, Robert; Frischknecht, Renato; Kaczmarek, Leszek

    2014-01-01

    Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.

  11. Engineering Protein Allostery: 1.05 Å Resolution Structure and Enzymatic Properties of a Na[superscript +]-activated Trypsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Michael J.; Carrell, Christopher J.; Di Cera, Enrico

    2008-05-28

    Some trypsin-like proteases are endowed with Na{sup +}-dependent allosteric enhancement of catalytic activity, but this important mechanism has been difficult to engineer in other members of the family. Replacement of 19 amino acids in Streptomyces griseus trypsin targeting the active site and the Na{sup +}-binding site were found necessary to generate efficient Na{sup +} activation. Remarkably, this property was linked to the acquisition of a new substrate selectivity profile similar to that of factor Xa, a Na{sup -} activated protease involved in blood coagulation. The X-ray crystal structure of the mutant trypsin solved to 1.05 {angstrom} resolution defines the engineeredmore » Na{sup +} site and active site loops in unprecedented detail. The results demonstrate that trypsin can be engineered into an efficient allosteric protease, and that Na+ activation is interwoven with substrate selectivity in the trypsin scaffold.« less

  12. Leukemia inhibitory factor protects against experimental lethal Escherichia coli septic shock in mice.

    PubMed Central

    Waring, P M; Waring, L J; Billington, T; Metcalf, D

    1995-01-01

    Leukemia inhibitory factor (LIF) has recently been associated with septic shock in humans. In this study we sought to determine, in mice, the role of LIF in septic shock. During sublethal endotoxemia, serum LIF levels, as determined by radio-receptor competition assay, peaked at 2 h and were low (3 ng/ml), whereas in lethal Escherichia coli septic shock serum LIF levels rose progressively (> 30 ng/ml) in the premorbid phase coincident with the development of tissue injury. Single i.v. injections of high doses (up to 50 micrograms per mouse) of recombinant murine LIF had no obvious acute detrimental effects, whereas continued i.p. administration (30 micrograms per mouse per day) for 3-4 days induced a fatal catabolic state without evidence of preceding hemodynamic collapse or shock. Simultaneous or subsequent administration of high doses of LIF had no effect on mortality from sublethal and lethal E. coli septic shock, whereas prior administration conferred significant protection against lethality (P << 0.001 by log-rank test), an effect that was dose and interval dependent. This protective effect resembled endotoxin tolerance and was characterized by suppression of E. coli-induced serum tumor necrosis factor concentration (P < 0.05), reduction in the number of viable bacteria (P < 0.05), and prevention of sepsis-induced tissue injury. These observations suggest that systemic LIF production is part of the host response to both endotoxin and sepsis-induced tissue injury. Images Fig. 2 Fig. 5 PMID:7877978

  13. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis.

    PubMed

    Braga-Silva, L A; Santos, A L S

    2011-01-01

    Mycoses are still one of the most problematic illnesses worldwide, especially affecting immunocompromised individuals. The development of novel antifungal drugs is becoming more demanding every day, since existing drugs either have too many side effects or they tend to lose effectiveness due to the resistant fungal strains. In this scenario, Candida albicans is still the main fungal pathogen isolated in hospitals. Pathogenicity results essentially from modifications of the host defense mechanisms that secondarily initiate transformations in the fungal behavior. The pathogenesis of C. albicans is multifactorial and different virulence attributes are important during the various stages of infection. Some virulence factors, like the secreted aspartic proteases (Saps), play a role in several infection stages and the inhibition of one of the many stages may contribute to the containment of the pathogen and thus should help in the treatment of disease. Therefore, Saps are potential targets for the development of novel anti-C. albicans drugs. Herein, we review the beneficial properties of pepstatin A and aspartic-type protease inhibitors used in the anti-human immunodeficiency virus chemotherapy on C. albicans, with particular emphasis in the effects on Sap activity, proliferation, morphogenesis (yeasts into mycelia transformation), ultrastructural architecture, adhesion to mammalian cells and abiotic materials, modulation of unrelated virulence factors (e.g., surface glycoconjugates, lipases and sterol), experimental candidiasis infection as well as synergistic properties when conjugated with classical antifungals. Collectively, these positive findings have stimulated the search for novel natural and/or synthetic pharmacological compounds with anti-aspartic protease properties against the human opportunistic fungus C. albicans.

  14. Genetic engineering approach to develop next-generation reagents for endotoxin quantification.

    PubMed

    Mizumura, Hikaru; Ogura, Norihiko; Aketagawa, Jun; Aizawa, Maki; Kobayashi, Yuki; Kawabata, Shun-Ichiro; Oda, Toshio

    2017-02-01

    The bacterial endotoxin test, which uses amebocyte lysate reagents of horseshoe crab origin, is a sensitive, reproducible and simple assay to measure endotoxin concentration. To develop sustainable raw materials for lysate reagents that do not require horseshoe crabs, three recombinant protease zymogens (factor C, derived from mammalian cells; factor B; and the proclotting enzyme derived from insect cells) were prepared using a genetic engineering technique. Recombinant cascade reagents (RCRs) were then prepared to reconstruct the reaction cascade in the amebocyte lysate reagent. The protease activity of the RCR containing recombinant factor C was much greater than that of recombinant factor C alone, indicating the efficiency of signal amplification in the cascade. Compared with the RCR containing the insect cell-derived factor C, those containing mammalian cell-derived factor C, which features different glycosylation patterns, were less susceptible to interference by the injectable drug components. The standard curve of the RCR containing mammalian cell-derived recombinant factor C had a steeper slope than the curves for those containing natural lysate reagents, suggesting a greater sensitivity to endotoxin. The present study supports the future production of recombinant reagents that do not require the use of natural resources.

  15. Genetic engineering approach to develop next-generation reagents for endotoxin quantification

    PubMed Central

    Ogura, Norihiko; Aketagawa, Jun; Aizawa, Maki; Kobayashi, Yuki; Kawabata, Shun-ichiro; Oda, Toshio

    2016-01-01

    The bacterial endotoxin test, which uses amebocyte lysate reagents of horseshoe crab origin, is a sensitive, reproducible and simple assay to measure endotoxin concentration. To develop sustainable raw materials for lysate reagents that do not require horseshoe crabs, three recombinant protease zymogens (factor C, derived from mammalian cells; factor B; and the proclotting enzyme derived from insect cells) were prepared using a genetic engineering technique. Recombinant cascade reagents (RCRs) were then prepared to reconstruct the reaction cascade in the amebocyte lysate reagent. The protease activity of the RCR containing recombinant factor C was much greater than that of recombinant factor C alone, indicating the efficiency of signal amplification in the cascade. Compared with the RCR containing the insect cell-derived factor C, those containing mammalian cell-derived factor C, which features different glycosylation patterns, were less susceptible to interference by the injectable drug components. The standard curve of the RCR containing mammalian cell-derived recombinant factor C had a steeper slope than the curves for those containing natural lysate reagents, suggesting a greater sensitivity to endotoxin. The present study supports the future production of recombinant reagents that do not require the use of natural resources. PMID:27913792

  16. Evidence of mutualism between two periodontal pathogens: co-operative haem acquisition by the HmuY haemophore of Porphyromonas gingivalis and the cysteine protease interpain A (InpA) of Prevotella intermedia.

    PubMed

    Byrne, D P; Potempa, J; Olczak, T; Smalley, J W

    2013-06-01

    Haem (iron protoporphyrin IX) is both an essential growth factor and a virulence regulator of the periodontal pathogens Porphyromonas gingivalis and Prevotella intermedia, which acquire it through the proteolytic degradation of haemoglobin and other haem-carrying plasma proteins. The haem-binding lipoprotein HmuY haemophore and the gingipain proteases of P. gingivalis form a unique synthrophic system responsible for capture of haem from haemoglobin and methaemalbumin. In this system, methaemoglobin is formed from oxyhaemoglobin by the activities of gingipain proteases and serves as a facile substrate from which HmuY can capture haem. This study examined the possibility of cooperation between HmuY and the cysteine protease interpain A (InpA) of Pr. intermedia in the haem acquisition process. Using UV-visible spectroscopy and polyacrylamide gel electrophoresis, HmuY was demonstrated to be resistant to proteolysis and so able to cooperate with InpA to extract haem from haemoglobin, which was proteolytically converted to methaemoglobin by the protease. Spectroscopic pH titrations showed that both the iron(II) and iron(III) protoporphyrin IX-HmuY complexes were stable over the pH range 4-10, demonstrating that the haemophore could function over a range of pH that may be encountered in the dental plaque biofilm. This is the first demonstration of a bacterial haemophore working in conjunction with a protease from another bacterial species to acquire haem from haemoglobin and may represent mutualism between P. gingivalis and Pr. intermedia co-inhabiting the periodontal pocket. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  17. Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component

    PubMed Central

    Roh, Kyung-Baeg; Kim, Chan-Hee; Lee, Hanna; Kwon, Hyun-Mi; Park, Ji-Won; Ryu, Ji-Hwan; Kurokawa, Kenji; Ha, Nam-Chul; Lee, Won-Jae; Lemaitre, Bruno; Söderhäll, Kenneth; Lee, Bok-Luel

    2009-01-01

    The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-κB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component β-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by β-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of β-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal β-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation. PMID:19473968

  18. Resistance of Actin to Cleavage during Apoptosis

    NASA Astrophysics Data System (ADS)

    Song, Qizhong; Wei, Tie; Lees-Miller, Susan; Alnemri, Emad; Watters, Dianne; Lavin, Martin F.

    1997-01-01

    A small number of cellular proteins present in the nucleus, cytosol, and membrane fraction are specifically cleaved by the interleukin-1β -converting enzyme (ICE)-like family of proteases during apoptosis. Previous results have demonstrated that one of these, the cytoskeletal protein actin, is degraded in rat PC12 pheochromocytoma cells upon serum withdrawal. Extracts from etoposide-treated U937 cells are also capable of cleaving actin. It was assumed that cleavage of actin represented a general phenomenon, and a mechanism coordinating proteolytic, endonucleolytic, and morphological aspects of apoptosis was proposed. We demonstrate here that actin is resistant to degradation in several different human cells induced to undergo apoptosis in response to a variety of stimuli, including Fas ligation, serum withdrawal, cytotoxic T-cell killing, and DNA damage. On the other hand, cell-free extracts from these cells and the ICE-like protease CPP32 were capable of cleaving actin in vitro. We conclude that while actin contains cleavage sites for ICE-like proteases, it is not degraded in vivo in human cells either because of lack of access of these proteases to actin or due to the presence of other factors that prevent degradation.

  19. Isolation and Biochemical Characterization of a New Thrombin-Like Serine Protease from Bothrops pirajai Snake Venom

    PubMed Central

    Zaqueo, Kayena D.; Kayano, Anderson M.; Simões-Silva, Rodrigo; Moreira-Dill, Leandro S.; Fernandes, Carla F. C.; Fuly, André L.; Maltarollo, Vinícius G.; Honório, Kathia M.; da Silva, Saulo L.; Acosta, Gerardo; Caballol, Maria Antonia O.; de Oliveira, Eliandre; Albericio, Fernando; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.

    2014-01-01

    This paper presents a novel serine protease (SP) isolated from Bothrops pirajai, a venomous snake found solely in Brazil that belongs to the Viperidae family. The identified SP, named BpirSP-39, was isolated by three chromatographic steps (size exclusion, bioaffinity, and reverse phase chromatographies). The molecular mass of BpirSP-39 was estimated by SDS-PAGE and confirmed by mass spectrometry (39,408.32 Da). The protein was able to form fibrin networks, which was not observed in the presence of serine protease inhibitors, such as phenylmethylsulfonyl fluoride (PMSF). Furthermore, BpirSP-39 presented considerable thermal stability and was apparently able to activate factor XIII of the blood coagulation cascade, unlike most serine proteases. BpirSP-39 was capable of hydrolyzing different chromogenic substrates tested (S-2222, S-2302, and S-2238) while Cu2+ significantly diminished BspirSP-39 activity on the three tested substrates. The enzyme promoted platelet aggregation and also exhibited fibrinogenolytic, fibrinolytic, gelatinolytic, and amidolytic activities. The multiple alignment showed high sequence similarity to other thrombin-like enzymes from snake venoms. These results allow us to conclude that a new SP was isolated from Bothrops pirajai snake venom. PMID:24719874

  20. Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases.

    PubMed

    Kong, Lulu; Lu, Anrui; Guan, Jingmin; Yang, Bing; Li, Muwang; Hillyer, Julián F; Ramarao, Nalini; Söderhäll, Kenneth; Liu, Chaoliang; Ling, Erjun

    2015-01-01

    Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians. © 2014 Wiley Periodicals, Inc.

  1. Tissue Factor-Factor VIIa Complex Triggers Protease Activated Receptor 2-Dependent Growth Factor Release and Migration in Ovarian Cancer

    PubMed Central

    Chanakira, Alice; Westmark, Pamela R.; Ong, Irene M.; Sheehan, John P.

    2017-01-01

    Objective Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. Methods TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expression were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. Results Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4–10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. Conclusions Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation. PMID:28148395

  2. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis.

    PubMed

    Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y

    2017-05-01

    Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs.

    PubMed

    Turner, Wendy C; Kausrud, Kyrre L; Beyer, Wolfgang; Easterday, W Ryan; Barandongo, Zoë R; Blaschke, Elisabeth; Cloete, Claudine C; Lazak, Judith; Van Ert, Matthew N; Ganz, Holly H; Turnbull, Peter C B; Stenseth, Nils Chr; Getz, Wayne M

    2016-06-06

    To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1-2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways.

  4. Evaluation of adamantane hydroxamates as botulinum neurotoxin inhibitors: synthesis, crystallography, modeling, kinetic and cellular based studies.

    PubMed

    Šilhár, Peter; Silvaggi, Nicholas R; Pellett, Sabine; Čapková, Kateřina; Johnson, Eric A; Allen, Karen N; Janda, Kim D

    2013-03-01

    Botulinum neurotoxins (BoNTs) are the most lethal biotoxins known to mankind and are responsible for the neuroparalytic disease botulism. Current treatments for botulinum poisoning are all protein based and thus have a limited window of treatment opportunity. Inhibition of the BoNT light chain protease (LC) has emerged as a therapeutic strategy for the treatment of botulism as it may provide an effective post exposure remedy. Using a combination of crystallographic and modeling studies a series of hydroxamates derived from 1-adamantylacetohydroxamic acid (3a) were prepared. From this group of compounds, an improved potency of about 17-fold was observed for two derivatives. Detailed mechanistic studies on these structures revealed a competitive inhibition model, with a K(i)=27 nM, which makes these compounds some of the most potent small molecule, non-peptidic BoNT/A LC inhibitors reported to date. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Linking stable isotopes and biochemical responses in Balanus glandula under sewage influence.

    PubMed

    Laitano, M V; Díaz-Jaramillo, M; Rodriguez, Y E; Ducós, E; Panarello, H O; Fernández-Gimenez, A V

    2018-02-01

    In the present study, we analyzed the influence of untreated sewage exposure on carbon (δ13C) and nitrogen (δ15N) isotopic composition and several biochemical responses in the barnacle Balanus glandula. The main objective was to evaluate whether changes in stable isotopes signature do reflect biochemical sub-lethal effects in a sewage influence gradient. Stable isotopes analysis showed differences in isotope signatures between close sewage influence and distant sites, being δ13C signatures stronger than that of δ15N. Regarding biochemical effects, although organisms close to the effluent would be clearly exposed to contaminants (increased GST activity) the oxidative stress would not be too evident (peroxidases and ACAP not affected). The most affected physiological aspect was the digestive one, reflected in increased alkaline proteases and lipases activities. A clear relation between δ15N and GST activity was found, showing to δ15N as an indicator of potential exposure to chemical contaminants.

  6. Synergistic action of protease-modulating matrix and autologous growth factors in healing of diabetic foot ulcers. A prospective randomized trial.

    PubMed

    Kakagia, Despoina D; Kazakos, Konstantinos J; Xarchas, Konstantinos C; Karanikas, Michael; Georgiadis, George S; Tripsiannis, Gregory; Manolas, Constantinos

    2007-01-01

    This study tests the hypothesis that addition of a protease-modulating matrix enhances the efficacy of autologous growth factors in diabetic ulcers. Fifty-one patients with chronic diabetic foot ulcers were managed as outpatients at the Democritus University Hospital of Alexandroupolis and followed up for 8 weeks. All target ulcers were > or = 2.5 cm in any one dimension and had been previously treated only with moist gauze. Patients were randomly allocated in three groups of 17 patients each: Group A was treated only with the oxidized regenerated cellulose/collagen biomaterial (Promogran, Johnson & Johnson, New Brunswick, NJ), Group B was treated only with autologous growth factors delivered by Gravitational Platelet Separation System (GPS, Biomet), and Group C was managed by a combination of both. All ulcers were digitally photographed at initiation of the study and then at change of dressings once weekly. Computerized planimetry (Texas Health Science Center ImageTool, Version 3.0) was used to assess ulcer dimensions that were analyzed for homogeneity and significance using the Statistical Package for Social Sciences, Version 13.0. Post hoc analysis revealed that there was significantly greater reduction of all three dimensions of the ulcers in Group C compared to Groups A and B (all P<.001). Although reduction of ulcer dimensions was greater in Group A than in Group B, these differences did not reach statistical significance. It is concluded that protease-modulating dressings act synergistically with autologous growth factors and enhance their efficacy in diabetic foot ulcers.

  7. Investigation of a panel of monoclonal antibodies and polyclonal sera against anthrax toxins resulted in identification of an anti-lethal factor antibody with disease-enhancing characteristics.

    PubMed

    Kulshreshtha, Parul; Tiwari, Ashutosh; Priyanka; Joon, Shikha; Sinha, Subrata; Bhatnagar, Rakesh

    2015-12-01

    Hybridomas were created using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor). Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immnized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies secreted by all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H10 and H8) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). Single chain variable fragment (LETscFv) was derived from H10 hybridoma. H11 was found to have disease-enhancing property. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature. This in vitro abrogation of disease-enhancement provides the proof of concept that in polyclonal sera the disease enhancing character of a fraction of antibodies is overshadowed by the protective nature of the rest of the antibodies generated on active immunization. Copyright © 2015. Published by Elsevier Ltd.

  8. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model.

    PubMed

    Fernandez-Miyakawa, Mariano E; Jost, B Helen; Billington, Stephen J; Uzal, Francisco A

    2008-03-18

    Epsilon toxin (ETX) is the most important virulence factor of Clostridium perfringens type D. Two other important toxins, alpha toxin (CPA) and perfringolysin-O (PFO), are encoded and potentially produced by most C. perfringens type D isolates. The biological effects of these toxins are dissimilar although they are all lethal. Since the possible interaction of these toxins during infection is unknown, the effects of CPA and PFO on the lethal activity of ETX were studied in a mouse model. Mice were injected intravenously or intragastrically with CPA or PFO with or without ETX. Sublethal doses of CPA or PFO did not affect the lethality of ETX when either was injected together with the latter intravenously. However, sublethal or lethal doses of CPA or PFO resulted in reduction of the survival time of mice injected simultaneously with ETX when compared with the intravenous effect of ETX injected alone. When PFO was inoculated intragastrically with ETX, a reduction of the survival time was observed. CPA did not alter the survival time when inoculated intragastrically with ETX. The results of the present study suggest that both CPA and PFO have the potential to enhance the ETX lethal effects during enterotoxemia in natural hosts such as sheep and goats.

  9. Cleavage Entropy as Quantitative Measure of Protease Specificity

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.

    2013-01-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583

  10. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination.

    PubMed

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A L

    2015-08-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Diversity of Both the Cultivable Protease-Producing Bacteria and Bacterial Extracellular Proteases in the Coastal Sediments of King George Island, Antarctica

    PubMed Central

    Zhou, Ming-Yang; Wang, Guang-Long; Li, Dan; Zhao, Dian-Li; Qin, Qi-Long; Chen, Xiu-Lan; Chen, Bo; Zhou, Bai-Cheng; Zhang, Xi-Ying; Zhang, Yu-Zhong

    2013-01-01

    Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 105 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%), Flavobacterium (21.0%) and Lacinutrix (16.2%). Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea. PMID:24223990

  12. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and validated evidence for the existence of the protease web, a network that affects the activity of most proteases and thereby influences the functional state of the proteome and cell activity. PMID:24865846

  13. Activities of Vacuolar Cysteine Proteases in Plant Senescence.

    PubMed

    Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José

    2018-01-01

    Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.

  14. Human neutrophil elastase and collagenase sequestration with phosphorylated cotton wound dressings.

    PubMed

    Edwards, J Vincent; Howley, Phyllis S

    2007-11-01

    The design and preparation of wound dressings that redress the protease imbalance in chronic wounds is an important goal of wound healing and medical materials science. Chronic wounds contain high levels of tissue and cytokine-destroying proteases including matrix metalloprotease and neutrophil elastase. Thus, the lowering of excessive protease levels in the wound environment by wound dressing sequestration prevents the breakdown of extracellular matrix proteins and growth factors necessary for wound healing. Phosphorylated cotton wound dressings were prepared to target sequestration of proteases from chronic wound exudate through a cationic uptake binding mechanism involving salt bridge formation of the positively charged amino acid side chains of proteases with the phosphate counterions of the wound dressing fiber. Dressings were prepared by applying sodium hexametaphosphate and diammonium phosphate in separate formulations to cotton gauze by pad/dry/cure methods. Phosphorylated cotton dressings were assessed for their ability to lower elastase and collagenase activity. The phosphorylated cotton dressings lowered elastase and collagenase activity 40-80% more effectively than the untreated cotton wound dressings under conditions that mimic chronic wound exudate. Efficacy of the phosphorylated cotton was found to be related to the level of phosphorylation and a lower pH due to protonated phosphate at the surface of the dressing. The capacity of the modified gauze to sequester continued elastase secretions similar to that found in a chronic wound over a 24-h period was retained within a 80% retention of elastase sequestration and was dose-dependent. Copyright (c) 2007 Wiley Periodicals, Inc.

  15. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells.

    PubMed

    Arnold, Kelly B; Burgener, Adam; Birse, Kenzie; Romas, Laura; Dunphy, Laura J; Shahabi, Kamnoosh; Abou, Max; Westmacott, Garrett R; McCorrister, Stuart; Kwatampora, Jessie; Nyanga, Billy; Kimani, Joshua; Masson, Lindi; Liebenberg, Lenine J; Abdool Karim, Salim S; Passmore, Jo-Ann S; Lauffenburger, Douglas A; Kaul, Rupert; McKinnon, Lyle R

    2016-01-01

    Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.

  16. Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability

    PubMed Central

    Stas, Jelle; Nguyen, Nhu H.; Kuyper, Thomas W.; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.; Kennedy, Peter G.

    2015-01-01

    In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4+ and NO3−) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability. PMID:26682855

  17. The papain inhibitor (SPI) of Streptomyces mobaraensis inhibits bacterial cysteine proteases and is an antagonist of bacterial growth.

    PubMed

    Zindel, Stephan; Kaman, Wendy E; Fröls, Sabrina; Pfeifer, Felicitas; Peters, Anna; Hays, John P; Fuchsbauer, Hans-Lothar

    2013-07-01

    A novel papain inhibitory protein (SPI) from Streptomyces mobaraensis was studied to measure its inhibitory effect on bacterial cysteine protease activity (Staphylococcus aureus SspB) and culture supernatants (Porphyromonas gingivalis, Bacillus anthracis). Further, growth of Bacillus anthracis, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio cholerae was completely inhibited by 10 μM SPI. At this concentration of SPI, no cytotoxicity was observed. We conclude that SPI inhibits bacterial virulence factors and has the potential to become a novel therapeutic treatment against a range of unrelated pathogenic bacteria.

  18. When a Wife Says "No": Wife Sexual Refusal as a Factor in Husband-Wife Homicides in Ghana.

    PubMed

    Adinkrah, Mensah

    2017-11-01

    In Ghana, wife sexual refusal is a key factor in uxoricides or husband-to-wife murders. Despite this, there is a dearth of systematic research that examines sexual strife as a precipitant of domestic violence and spousal murder. The present article addresses the current lack of research by systematically examining 25 cases of homicides and attempted homicides where wives were lethally and nonlethally assaulted by their husbands following the former's refusal to engage in husband-initiated sexual intercourse. A content analysis was conducted of all print and electronic media news items where a wife's refusal of sexual intercourse with a husband triggered lethal or aggravated violence. The results showed that the victims were aged 23 to 55 years old and were generally of low socioeconomic status. The assailants were aged 28 to 60 years old. Assailants used machetes, knives, and personal weapons to perpetrate the crimes, and extreme violence was a frequent feature of both lethal and nonlethal acts.

  19. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom

    PubMed Central

    Sivaraman, Thulasi; Sreedevi, N. S.; Meenatchisundaram, S.; Vadivelan, R.

    2017-01-01

    OBJECTIVES: Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. MATERIALS AND METHODS: Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. RESULTS: The in vivo calculation of venom toxicity (LD50) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED50) remained to be 7.24 mg/3LD50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. CONCLUSION: The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja. PMID:29326487

  20. Antitoxin activity of aqueous extract of Cyclea peltata root against Naja naja venom.

    PubMed

    Sivaraman, Thulasi; Sreedevi, N S; Meenatchisundaram, S; Vadivelan, R

    2017-01-01

    Snakebites are a significant and severe global health problem. Till date, anti-snake venom serum is the only beneficial remedy existing on treating the snakebite victims. As antivenom was reported to induce early or late adverse reactions to human beings, snake venom neutralizing potential for Cyclea peltata root extract was tested for the present research by ex vivo and in vivo approaches on Naja naja toxin. Ex vivo evaluation of venom toxicity and neutralization assays was carried out. The root extracts from C. peltata were used to evaluate the Ex vivo neutralization tests such as acetylcholinesterase, protease, direct hemolysis assay, phospholipase activity, and procoagulant activity. Gas chromatography-mass spectrometry (GC-MS) analysis from root extracts of C. peltata was done to investigate the bioactive compounds. The in vivo calculation of venom toxicity (LD 50 ) of N. naja venom remained to be 0.301 μg. C. peltata root extracts were efficiently deactivated the venom lethality, and effective dose (ED 50 ) remained to be 7.24 mg/3LD 50 of N. naja venom. C. peltata root extract was found effective in counteracting all the lethal effects of venom. GC-MS analysis of the plant extract revealed the presence of antivenom compounds such as tetradecanoic and octadecadienoic acid which have neutralizing properties on N. naja venom. The result from the ex vivo and in vivo analysis indicates that C. peltata plant root extract possesses significant compounds such as tetradecanoic acid hexadecanoic acid, heptadecanoic acid, and octadecadienoic acid which can counteract the toxins present in N. naja .

  1. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence.

    PubMed

    Fang, Weiguo; Leng, Bo; Xiao, Yuehua; Jin, Kai; Ma, Jincheng; Fan, Yanhua; Feng, Jing; Yang, Xingyong; Zhang, Yongjun; Pei, Yan

    2005-01-01

    Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain.

  2. Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application To Improve Fungal Strain Virulence

    PubMed Central

    Fang, Weiguo; Leng, Bo; Xiao, Yuehua; Jin, Kai; Ma, Jincheng; Fan, Yanhua; Feng, Jing; Yang, Xingyong; Zhang, Yongjun; Pei, Yan

    2005-01-01

    Entomopathogenic fungi can produce a series of chitinases, some of which act synergistically with proteases to degrade insect cuticle. However, chitinase involvement in insect fungus pathogenesis has not been fully characterized. In this paper, an endochitinase, Bbchit1, was purified to homogeneity from liquid cultures of Beauveria bassiana grown in a medium containing colloidal chitin. Bbchit1 had a molecular mass of about 33 kDa and pI of 5.4. Based on the N-terminal amino acid sequence, the chitinase gene, Bbchit1, and its upstream regulatory sequence were cloned. Bbchit1 was intronless, and there was a single copy in B. bassiana. Its regulatory sequence contained putative CreA/Crel carbon catabolic repressor binding domains, which was consistent with glucose suppression of Bbchit1. At the amino acid level, Bbchit1 showed significant similarity to a Streptomyces avermitilis putative endochitinase, a Streptomyces coelicolor putative chitinase, and Trichoderma harzianum endochitinase Chit36Y. However, Bbchit1 had very low levels of identity to other chitinase genes previously isolated from entomopathogenic fungi, indicating that Bbchit1 was a novel chitinase gene from an insect-pathogenic fungus. A gpd-Bbchit1 construct, in which Bbchit1 was driven by the Aspergiullus nidulans constitutive promoter, was transformed into the genome of B. bassiana, and three transformants that overproduced Bbchit1 were obtained. Insect bioassays revealed that overproduction of Bbchit1 enhanced the virulence of B. bassiana for aphids, as indicated by significantly lower 50% lethal concentrations and 50% lethal times of the transformants compared to the values for the wild-type strain. PMID:15640210

  3. Model of a ternary complex between activated factor VII, tissue factor and factor IX.

    PubMed

    Chen, Shu-wen W; Pellequer, Jean-Luc; Schved, Jean-François; Giansily-Blaizot, Muriel

    2002-07-01

    Upon binding to tissue factor, FVIIa triggers coagulation by activating vitamin K-dependent zymogens, factor IX (FIX) and factor X (FX). To understand recognition mechanisms in the initiation step of the coagulation cascade, we present a three-dimensional model of the ternary complex between FVIIa:TF:FIX. This model was built using a full-space search algorithm in combination with computational graphics. With the known crystallographic complex FVIIa:TF kept fixed, the FIX docking was performed first with FIX Gla-EGF1 domains, followed by the FIX protease/EGF2 domains. Because the FIXa crystal structure lacks electron density for the Gla domain, we constructed a chimeric FIX molecule that contains the Gla-EGF1 domains of FVIIa and the EGF2-protease domains of FIXa. The FVIIa:TF:FIX complex has been extensively challenged against experimental data including site-directed mutagenesis, inhibitory peptide data, haemophilia B database mutations, inhibitor antibodies and a novel exosite binding inhibitor peptide. This FVIIa:TF:FIX complex provides a powerful tool to study the regulation of FVIIa production and presents new avenues for developing therapeutic inhibitory compounds of FVIIa:TF:substrate complex.

  4. Plant cysteine proteases that evoke itch activate protease-activated receptors

    PubMed Central

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  5. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS.

    PubMed

    Neustadt, Madlen; Costina, Victor; Kupfahl, Claudio; Buchheidt, Dieter; Eckerskorn, Christoph; Neumaier, Michael; Findeisen, Peter

    2009-06-01

    Early diagnosis of life-threatening invasive aspergillosis in neutropenic patients remains challenging because current laboratory methods have limited diagnostic sensitivity and/or specificity. Aspergillus species are known to secrete various pathogenetically relevant proteases and the monitoring of their protease activity in serum specimens might serve as a new diagnostic approach.For the characterization and identification of secreted proteases, the culture supernatant of Aspergillus fumigatus was fractionated using free flow electrophoresis (Becton Dickinson). Protease activity of separated fractions was measured using fluorescently labeled reporter peptides. Fractions were also co-incubated in parallel with various protease inhibitors that specifically inhibit a distinct class of proteases e.g. metallo- or cysteine-proteases. Those fractions with high protease activity were further subjected to LC-MS/MS analysis for protease identification. The highest protease activity was measured in fractions with an acidic pH range. The results of the 'inhibitor-panel' gave a clear indication that it is mainly metallo- and serine-proteases that are involved in the degradation of reporter peptides. Furthermore, several proteases were identified that facilitate the optimization of reporter peptides for functional protease profiling as a diagnostic tool for invasive aspergillosis.

  6. Granular starch hydrolysis for fuel ethanol production

    NASA Astrophysics Data System (ADS)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea addition were evaluated in the dry grind process using GSHE (GSH process). Addition of proteases resulted in higher ethanol concentrations (15.2 to 18.0% v/v) and lower (DDGS) yields (32.9 to 45.8% db) compared to the control (no protease addition). As level of proteases and GSHE increased, ethanol concentrations increased and DDGS yields decreased. Proteases addition reduced required GSHE dose. Ethanol concentrations with protease addition alone were higher than with urea or with addition of both protease and urea. Corn endosperm consists of soft and hard endosperm. More exposed starch granules and rough surfaces produced from soft endosperm compared to hard endosperm will create more surface area which will benefit the solid phase hydrolysis as used in GSH process. In this study, the effects of protease, urea, endosperm hardness and GSHE levels on the GSH process were evaluated. Soft and hard endosperm materials were obtained by grinding and sifting flaking grits from dry milling pilot plant. Soft endosperm resulted in higher ethanol concentrations (at 72 hr) compared to ground corn or hard endosperm. Addition of urea increased ethanol concentrations (at 72 hr) for soft and hard endosperm. The effect of protease addition on increasing ethanol concentrations and fermentation rates was more predominant for soft endosperm, less for hard endosperm and least for ground corn. The GSH process with protease resulted in higher ethanol concentration than that with urea. For fermentation of soft endosperm, GSHE dose can be reduced. Ground corn fermented faster at the beginning than hard and soft endosperm due to the presence of inherent nutrients which enhanced yeast growth.

  7. Identification and targeting of a TACE-dependent autocrine loopwhich predicts poor prognosis in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenny, Paraic A.; Bissell, Mina J.

    2005-06-15

    The ability to proliferate independently of signals from other cell types is a fundamental characteristic of tumor cells. Using a 3D culture model of human breast cancer progression, we have delineated a protease-dependent autocrine loop which provides an oncogenic stimulus in the absence of proto-oncogene mutation. Inhibition of this protease, TACE/ADAM17, reverts the malignant phenotype by preventing mobilization of two crucial growth factors, Amphiregulin and TGF{alpha}. We show further that the efficacy of EGFR inhibitors is overcome by physiological levels of growth factors and that successful EGFR inhibition is dependent on reducing ligand bioavailability. Using existing patient outcome data, wemore » demonstrate a strong correlation between TACE and TGF{alpha} expression in human breast cancers that is predictive of poor prognosis.« less

  8. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice.

    PubMed

    Huang, Ke; Wang, Dekai; Duan, Penggen; Zhang, Baolan; Xu, Ran; Li, Na; Li, Yunhai

    2017-09-01

    Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Assisted suicide of a selfish gene.

    PubMed

    Thomson, M S; Beeman, R W

    1999-01-01

    Medea (M) factors and the hybrid incompatibility factor (H) are involved in two incompatibility systems in flour beetles that were previously thought to be independent. M factors are a novel class of selfish genes that act by maternal lethality to nonself. The H factor causes the death of hybrids with a paternally derived H gene and previously uncharacterized maternal cofactors. We now find that M factors exhibit their selfish behavior only in the absence of the H factor. Furthermore, we show that the previously uncharacterized maternal cofactors required for H-associated hybrid inviability are identical to M factors. We propose that incompatibility between H strains and M strains is due to suppression by the H factor of the self-rescuing activity of the lethal M genes. This interaction has the effect of converting M elements from selfish into self-destructive or "suicidal" genes. M factors are globally widespread, but are conspicuously absent from India, the only country where the H factor is known to occur. Such a mechanism could prevent the spread of selfish M elements by establishing an absolute barrier to hybridization in the boundary between M and non-M zones.

  10. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  11. Dual origin of gut proteases in Formosan subterranean termites (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae).

    PubMed

    Sethi, Amit; Xue, Qing-Gang; La Peyre, Jerome F; Delatte, Jennifer; Husseneder, Claudia

    2011-07-01

    Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. The C2H2-type transcription factor, FlbC, is involved in the transcriptional regulation of Aspergillus oryzae glucoamylase and protease genes specifically expressed in solid-state culture.

    PubMed

    Tanaka, Mizuki; Yoshimura, Midori; Ogawa, Masahiro; Koyama, Yasuji; Shintani, Takahiro; Gomi, Katsuya

    2016-07-01

    Aspergillus oryzae produces a large amount of secreted proteins in solid-state culture, and some proteins such as glucoamylase (GlaB) and acid protease (PepA) are specifically produced in solid-state culture, but rarely in submerged culture. From the disruption mutant library of A. oryzae transcriptional regulators, we successfully identified a disruption mutant showing an extremely low production level of GlaB but a normal level of α-amylase production. This strain was a disruption mutant of the C2H2-type transcription factor, FlbC, which is reported to be involved in the regulation of conidiospore development. Disruption mutants of other upstream regulators comprising a conidiation regulatory network had no apparent effect on GlaB production in solid-state culture. In addition to GlaB, the production of acid protease in solid-state culture was also markedly decreased by flbC disruption. Northern blot analyses revealed that transcripts of glaB and pepA were significantly decreased in the flbC disruption strain. These results suggested that FlbC is involved in the transcriptional regulation of genes specifically expressed under solid-state cultivation conditions, possibly independent of the conidiation regulatory network.

  13. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  14. Protection of scaffold protein Isu from degradation by the Lon protease Pim1 as a component of Fe-S cluster biogenesis regulation.

    PubMed

    Ciesielski, Szymon J; Schilke, Brenda; Marszalek, Jaroslaw; Craig, Elizabeth A

    2016-04-01

    Iron-sulfur (Fe-S) clusters, essential protein cofactors, are assembled on the mitochondrial scaffold protein Isu and then transferred to recipient proteins via a multistep process in which Isu interacts sequentially with multiple protein factors. This pathway is in part regulated posttranslationally by modulation of the degradation of Isu, whose abundance increases >10-fold upon perturbation of the biogenesis process. We tested a model in which direct interaction with protein partners protects Isu from degradation by the mitochondrial Lon-type protease. Using purified components, we demonstrated that Isu is indeed a substrate of the Lon-type protease and that it is protected from degradation by Nfs1, the sulfur donor for Fe-S cluster assembly, as well as by Jac1, the J-protein Hsp70 cochaperone that functions in cluster transfer from Isu. Nfs1 and Jac1 variants known to be defective in interaction with Isu were also defective in protecting Isu from degradation. Furthermore, overproduction of Jac1 protected Isu from degradation in vivo, as did Nfs1. Taken together, our results lead to a model of dynamic interplay between a protease and protein factors throughout the Fe-S cluster assembly and transfer process, leading to up-regulation of Isu levels under conditions when Fe-S cluster biogenesis does not meet cellular demands. © 2016 Ciesielski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Mühlen, Sabrina; Nachbur, Ueli; Pham, Chi L L; Zhang, Ying; Hildebrand, Joanne M; Oates, Clare V; Lung, Tania Wong Fok; Ingle, Danielle; Dagley, Laura F; Bankovacki, Aleksandra; Petrie, Emma J; Schroeder, Gunnar N; Crepin, Valerie F; Frankel, Gad; Masters, Seth L; Vince, James; Murphy, James M; Sunde, Margaret; Webb, Andrew I; Silke, John; Hartland, Elizabeth L

    2017-01-13

    Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-β (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling 1-3 . RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis 4,5 . Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.

  16. Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings.

    PubMed

    Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura

    2015-04-01

    Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical setting. These may be helpful in guiding a clinician's options in treating very difficult-to-heal ulcers.

  17. The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage

    PubMed Central

    Pettit, Steven C.; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H.

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation. PMID:12477841

  18. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    PubMed

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  19. Fusion to Human Serum Albumin Extends the Circulatory Half-Life and Duration of Antithrombotic Action of the Kunitz Protease Inhibitor Domain of Protease Nexin 2.

    PubMed

    Sheffield, William P; Eltringham-Smith, Louise J; Bhakta, Varsha

    2018-01-01

    The Kunitz Protease Inhibitor (KPI) domain of protease nexin 2 (PN2) potently inhibits coagulation factor XIa. Recombinant KPI has been shown to inhibit thrombosis in mouse models, but its clearance from the murine circulation remains uncharacterized. The present study explored the pharmacokinetic and pharmacodynamic effects of fusing KPI to human serum albumin (HSA) in fusion protein KPIHSA. Hexahistidine-tagged KPI (63 amino acids) and KPIHSA (656 amino acids) were expressed in Pichia pastoris yeast and purified by nickel-chelate chromatography. Clearance profiles in mice were determined, as well as the effects of KPI or KPIHSA administration on FeCl3-induced vena cava thrombus size or carotid artery time to occlusion, respectively. Fusion to HSA increased the mean terminal half-life of KPI by 8-fold and eliminated its interaction with the low density lipoprotein receptor-related protein. KPI and KPIHSA similarly reduced thrombus size and occlusion in both venous and arterial thrombosis models when administered at the time of injury, but only KPI was effective when administered one hour before injury. Albumin fusion deflects KPI from rapid in vivo clearance without impairing its antithrombotic properties and widens its potential therapeutic window. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Interactions of the Algicidal Bacterium Kordia algicida with Diatoms: Regulated Protease Excretion for Specific Algal Lysis

    PubMed Central

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  1. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis.

    PubMed

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors.

  2. Searching for discrimination rules in protease proteolytic cleavage activity using genetic programming with a min-max scoring function.

    PubMed

    Yang, Zheng Rong; Thomson, Rebecca; Hodgman, T Charles; Dry, Jonathan; Doyle, Austin K; Narayanan, Ajit; Wu, XiKun

    2003-11-01

    This paper presents an algorithm which is able to extract discriminant rules from oligopeptides for protease proteolytic cleavage activity prediction. The algorithm is developed using genetic programming. Three important components in the algorithm are a min-max scoring function, the reverse Polish notation (RPN) and the use of minimum description length. The min-max scoring function is developed using amino acid similarity matrices for measuring the similarity between an oligopeptide and a rule, which is a complex algebraic equation of amino acids rather than a simple pattern sequence. The Fisher ratio is then calculated on the scoring values using the class label associated with the oligopeptides. The discriminant ability of each rule can therefore be evaluated. The use of RPN makes the evolutionary operations simpler and therefore reduces the computational cost. To prevent overfitting, the concept of minimum description length is used to penalize over-complicated rules. A fitness function is therefore composed of the Fisher ratio and the use of minimum description length for an efficient evolutionary process. In the application to four protease datasets (Trypsin, Factor Xa, Hepatitis C Virus and HIV protease cleavage site prediction), our algorithm is superior to C5, a conventional method for deriving decision trees.

  3. The crystal structure of the secreted aspartic protease 1 from Candida parapsilosis in complex with pepstatin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dostál, Jiří; Brynda, Jiří; Hrušková-Heidingsfeldová, Olga

    2010-09-01

    Opportunistic pathogens of the genus Candida cause infections representing a major threat to long-term survival of immunocompromised patients. Virulence of the Candida pathogens is enhanced by production of extracellular proteolytic enzymes and secreted aspartic proteases (Saps) are therefore studied as potential virulence factors and possible targets for therapeutic drug design. Candida parapsilosis is less invasive than C. albicans, however, it is one of the leading causative agents of yeast infections. We report three-dimensional crystal structure of Sapp1p from C. parapsilosis in complex with pepstatin A, the classical inhibitor of aspartic proteases. The structure of Sapp1p was determined from protein isolatedmore » from its natural source and represents the first structure of Sap from C. parapsilosis. Overall fold and topology of Sapp1p is very similar to the archetypic fold of monomeric aspartic protease family and known structures of Sap isoenzymes from C. albicans and Sapt1p from C. tropicalis. Structural comparison revealed noticeable differences in the structure of loops surrounding the active site. This resulted in differential character, shape, and size of the substrate binding site explaining divergent substrate specificities and inhibitor affinities. Determination of structures of Sap isoenzymes from various species might contribute to the development of new Sap-specific inhibitors.« less

  4. Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani.

    PubMed

    Grinyer, Jasmine; Hunt, Sybille; McKay, Matthew; Herbert, Ben R; Nevalainen, Helena

    2005-06-01

    Trichoderma atroviride has a natural ability to parasitise phytopathogenic fungi such as Rhizoctonia solani and Botrytis cinerea, therefore providing an environmentally sound alternative to chemical fungicides in the management of these pathogens. Two-dimensional electrophoresis was used to display cellular protein patterns of T. atroviride (T. harzianum P1) grown on media containing either glucose or R. solani cell walls. Protein profiles were compared to identify T. atroviride proteins up-regulated in the presence of the R. solani cell walls. Twenty-four protein spots were identified using matrix-assisted laser desorption ionisation mass spectrometry, liquid chromatography mass spectrometry and N-terminal sequencing. Identified up-regulated proteins include known fungal cell wall-degrading enzymes such as N-acetyl-beta-D: -glucosaminidase and 42-kDa endochitinase. Three novel proteases of T. atroviride were identified, containing sequence similarity to vacuolar serine protease, vacuolar protease A and a trypsin-like protease from known fungal proteins. Eukaryotic initiation factor 4a, superoxide dismutase and a hypothetical protein from Neurospora crassa were also up-regulated as a response to R. solani cell walls. Several cell wall-degrading enzymes were identified from the T. atroviride culture supernatant, providing further evidence that a cellular response indicative of biological control had occurred.

  5. Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata).

    PubMed

    Márquez, Lorenzo; Robles, Rocío; Morales, Gabriel A; Moyano, Francisco J

    2012-06-01

    After the development of the gastric function in juvenile fish, dietary proteins enter a two-phase digestive process comprising an acidic gastric phase followed by an alkaline intestinal phase. However, the main gastric protease, pepsin, is strictly dependent on the existence of a low-enough environmental pH. In 20-g gilthead sea bream, Sparus aurata, the mean minimal gastric pH is close to 4.5, while the mean pH in the duodenal portion of the intestine was nearly fixed at 6.5. The mean maximal gastric content of HCl was approximately 20 microEq for a low-buffering diet. Gastric proteases were more severely affected than intestinal proteases when assayed at actual sub-optimal pH values, 4.5 and 6.5, respectively. When the gastric proteases of juvenile fish were pre-incubated with a citric acid buffer at pH 6.0, the activity at pH 4.5 was very low, whereas when they were pre-incubated with the same buffer at pH 3.0, the activity at pH 4.5 was significantly increased; this fact suggests a deficient activation of zymogens during the gastric digestion and points to a potential approach to improve protein digestion in juvenile gilthead sea bream.

  6. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  7. Endotoxin Activity of Moraxella osloensis against the Grey Garden Slug, Deroceras reticulatum

    PubMed Central

    Tan, Li; Grewal, Parwinder S.

    2002-01-01

    Moraxella osloensis is a gram-negative bacterium associated with Phasmarhabditis hermaphrodita, a slug-parasitic nematode that has prospects for biological control of mollusk pests, especially the grey garden slug, Deroceras reticulatum. This bacterium-feeding nematode acts as a vector that transports M. osloensis into the shell cavity of the slug, and the bacterium is the killing agent in the nematode-bacterium complex. We discovered that M. osloensis produces an endotoxin(s), which is tolerant to heat and protease treatments and kills the slug after injection into the shell cavity. Washed or broken cells treated with penicillin and streptomycin from 3-day M. osloensis cultures were more pathogenic than similar cells from 2-day M. osloensis cultures. However, heat and protease treatments and 2 days of storage at 22°C increased the endotoxin activity of the young broken cells but not the endotoxin activity of the young washed cells treated with the antibiotics. This suggests that there may be a proteinaceous substance(s) that is structurally associated with the endotoxin(s) and masks its toxicity in the young bacterial cells. Moreover, 2 days of storage of the young washed bacterial cells at 22°C enhanced their endotoxin activity if they were not treated with the antibiotics. Furthermore, purified lipopolysaccharide (LPS) from the 3-day M. osloensis cultures was toxic to slugs, with an estimated 50% lethal dose of 48 μg per slug, thus demonstrating that the LPS of M. osloensis is an endotoxin that is active against D. reticulatum. This appears to be the first report of a biological toxin that is active against mollusks. PMID:12147494

  8. RNAi-mediated knockdown of serine protease inhibitor genes increases the mortality of Plutella xylostella challenged by destruxin A.

    PubMed

    Han, Pengfei; Fan, Jiqiao; Liu, Yu; Cuthbertson, Andrew G S; Yan, Shaoqiao; Qiu, Bao-Li; Ren, Shunxiang

    2014-01-01

    Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4th larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides.

  9. Composition and biological activities of the aqueous extracts of three scleractinian corals from the Mexican Caribbean: Pseudodiploria strigosa, Porites astreoides and Siderastrea siderea.

    PubMed

    García-Arredondo, Alejandro; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Lazcano-Pérez, Fernando; Arreguín-Espinosa, Roberto; Sánchez-Rodríguez, Judith

    2016-01-01

    Scleractinian corals (stony corals) are the most abundant reef-forming cnidarians found in coral reefs throughout the world. Despite their abundance and ecological importance, information about the diversity of their toxins and their biological activities is very scarce. In this study, the chemical composition and the biological activities of the aqueous extracts of Pseudodiploria strigosa , Porites astreoides and Siderastrea siderea , three scleractinian corals from the Mexican Caribbean, have been assessed for the first time. Toxicity of the extracts was assessed in crickets; the presence of cytolysins was detected by the hemolysis assay; the vasoconstrictor activity was determined by the isolated rat aortic ring assay; the nociceptive activity was evaluated by the formalin test. The presence of phospholipases A 2 (PLA 2 ), serine proteases, and hyaluronidases was determined by enzymatic methods. Low-molecular-weight fractions were obtained by gel filtration chromatography and ultrafiltration. Extracts from the three species were toxic to crickets, induced hemolysis in human and rat erythrocytes, produced vasoconstriction on isolated rat aortic rings, and presented phospholipase A 2 and serine-protease activity. Despite the fact that these corals are not considered to be harmless to humans, the extracts generated significant nociceptive responses. The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of the low-molecular-weight fractions revealed the presence of peptides within a mass range of 3000 to 6000 Da. These fractions were toxic to crickets and two of them induced a transitory vasoconstrictor effect on isolated rat aortic rings. This study suggests that scleractinian corals produce low-molecular-weight peptides that are lethal to crickets and induce vasoconstriction.

  10. Cathepsin B & L are not required for ebola virus replication.

    PubMed

    Marzi, Andrea; Reinheckel, Thomas; Feldmann, Heinz

    2012-01-01

    Ebola virus (EBOV), family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV). EBOV encodes one viral surface glycoprotein (GP), which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL), which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus) was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control), catB(-/-) and catL(-/-) mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  11. Individual variability of venom from the European adder (Vipera berus berus) from one locality in Eastern Hungary.

    PubMed

    Malina, Tamás; Krecsák, László; Westerström, Alexander; Szemán-Nagy, Gábor; Gyémánt, Gyöngyi; M-Hamvas, Márta; Rowan, Edward G; Harvey, Alan L; Warrell, David A; Pál, Balázs; Rusznák, Zoltán; Vasas, Gábor

    2017-09-01

    We have revealed intra-population variability among venom samples from several individual European adders (Vipera berus berus) within a defined population in Eastern Hungary. Individual differences in venom pattern were noticed, both gender-specific and age-related, by one-dimensional electrophoresis. Gelatin zymography demonstrated that these individual venoms have different degradation profiles indicating varying protease activity in the specimens from adders of different ages and genders. Some specimens shared a conserved region of substrate degradation, while others had lower or extremely low protease activity. Phospholipase A 2 activity of venoms was similar but not identical. Interspecimen diversity of the venom phospholipase A 2 -spectra (based on the components' molecular masses) was detected by MALDI-TOF MS. The lethal toxicity of venoms (LD 50 ) also showed differences among individual snakes. Extracted venom samples had varying neuromuscular paralysing effect on chick biventer cervicis nerve-muscle preparations. The paralysing effect of venom was lost when calcium in the physiological salt solution was replaced by strontium; indicating that the block of twitch responses to nerve stimulation is associated with the activity of a phospholipase-dependent neurotoxin. In contrast to the studied V. b. berus venoms from different geographical regions so far, this is the first V. b. berus population discovered to have predominantly neurotoxic neuromuscular activity. The relevance of varying venom yields is also discussed. This study demonstrates that individual venom variation among V. b. berus living in particular area of Eastern Hungary might contribute to a wider range of clinical manifestations of V. b. berus envenoming than elsewhere in Europe. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ENMD-1068, a protease-activated receptor 2 antagonist, inhibits the development of endometriosis in a mouse model.

    PubMed

    Wang, Yifeng; Lin, Min; Weng, Huinan; Wang, Xuefeng; Yang, Li; Liu, Fenghua

    2014-06-01

    Protease-activated receptor 2 plays an important role in the pathogenesis of endometriosis. We studied the effect of ENMD-1068, a protease-activated receptor 2 antagonist, on the development of endometriosis in a noninvasive fluorescent mouse model. A red fluorescent protein-expressing xenograft model of human endometriosis was created in nude mice. After endometriosis induction, the mice were injected intraperitoneally with either 25 mg/kg or 50 mg/kg ENMD-1068 or with 200 μL of the vehicle control daily for 5 days. The endometriotic lesions that developed in the mice were then counted, measured, and collected. The lesions were assessed for the production of interleukin 6 and monocyte chemotactic protein-1 by enzyme-linked immunosorbent assays and evaluated for the activation of nuclear factor-κB and the expression of vascular endothelial growth factor by immunohistochemical analyses. Cell proliferation and apoptosis were assessed by immunohistochemistry for Ki-67 and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively. ENMD-1068 dose-dependently inhibited the development of endometriotic lesions (P < .05) without apparent toxicity to various organs of the treated mice. Consistently, ENMD-1068 dose-dependently inhibited the expression of interleukin 6 and nuclear factor-κB (P < .05) and cell proliferation (P < .05) in the lesions, as well as increased the percentage of apoptotic cells (P < .05). ENMD-1068 reduced the levels of monocyte chemotactic protein-1 and vascular endothelial growth factor in the lesions (P < .05), but not in a dose-dependent manner. Our study suggests that ENMD-1068 is effective in suppressing the growth of endometriosis, which might be attributed to the drug's antiangiogenic and antiinflammatory activities. Copyright © 2014 Mosby, Inc. All rights reserved.

  13. The effects of weekly augmentation therapy in patients with PiZZ α1-antitrypsin deficiency

    PubMed Central

    Schmid, ST; Koepke, J; Dresel, M; Hattesohl, A; Frenzel, E; Perez, J; Lomas, DA; Miranda, E; Greulich, T; Noeske, S; Wencker, M; Teschler, H; Vogelmeier, C; Janciauskiene, S; Koczulla, AR

    2012-01-01

    Background The major concept behind augmentation therapy with human α1-antitrypsin (AAT) is to raise the levels of AAT in patients with protease inhibitor phenotype ZZ (Glu342Lys)-inherited AAT deficiency and to protect lung tissues from proteolysis and progression of emphysema. Objective To evaluate the short-term effects of augmentation therapy (Prolastin®) on plasma levels of AAT, C-reactive protein, and chemokines/cytokines. Materials and methods Serum and exhaled breath condensate were collected from individuals with protease inhibitor phenotype ZZ AAT deficiency-related emphysema (n = 12) on the first, third, and seventh day after the infusion of intravenous Prolastin. Concentrations of total and polymeric AAT, interleukin-8 (IL-8), monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, vascular endothelial growth factor, and C-reactive protein were determined. Blood neutrophils and primary epithelial cells were also exposed to Prolastin (1 mg/mL). Results There were significant fluctuations in serum (but not in exhaled breath condensate) levels of AAT polymers, IL-8, monocyte chemotactic protein-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor within a week of augmentation therapy. In general, augmented individuals had higher AAT and lower serum levels of IL-8 than nonaugmented subjects. Prolastin added for 3 hours to neutrophils from protease inhibitor phenotype ZZ individuals in vitro reduced IL-8 release but showed no effect on cytokine/chemokine release from human bronchial epithelial cells. Conclusion Within a week, augmentation with Prolastin induced fluctuations in serum levels of AAT polymers and cytokine/chemokines but specifically lowered IL-8 levels. It remains to be determined whether these effects are related to the Prolastin preparation per se or to the therapeutic efficacy of augmentation with AAT. PMID:23055718

  14. Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore.

    PubMed

    Maunsell, Bláithín; Adams, Claire; O'Gara, Fergal

    2006-01-01

    In the soil bacterium Pseudomonas fluorescens M114, extracellular proteolytic activity and fluorescent siderophore (pseudobactin M114) production were previously shown to be co-ordinately negatively regulated in response to environmental iron levels. An iron-starvation extracytoplasmic function sigma factor, PbrA, required for the transcription of siderophore biosynthetic genes, was also implicated in M114 protease regulation. The current study centred on the characterization and genetic regulation of the gene(s) responsible for protease production in M114. A serralysin-type metalloprotease gene, aprA, was identified and found to encode the major, if not only, extracellular protease produced by this strain. The expression of aprA and its protein product were found to be subject to complex regulation. Transcription analysis confirmed that PbrA was required for full aprA transcription under low iron conditions, while the ferric uptake regulator, Fur, was implicated in aprA repression under high iron conditions. Interestingly, the iron regulation of AprA was dependent on culture conditions, with PbrA-independent AprA-mediated proteolytic activity observed on skim milk agar supplemented with yeast extract, when supplied with iron or purified pseudobactin M114. These effects were not observed on skim milk agar without yeast extract. PbrA-independent aprA expression was also observed from a truncated transcriptional fusion when grown in sucrose asparagine tryptone broth supplied with iron or purified pseudobactin M114. Thus, experimental evidence suggested that iron mediated its effects via transcriptional activation by PbrA under low iron conditions, while an as-yet-unidentified sigma factor(s) may be required for the PbrA-independent aprA expression and AprA proteolytic activity induced by siderophore and iron.

  15. Protease production by fermentation of fish solubles from salmon canning processes.

    PubMed

    Wah-On, H C; Branion, R M; Strasdine, G A

    1980-09-01

    Production of protease by fermentation, using Sorangium 495, of a substrate based on condensed fish solubles is demonstrated. The effects of carbohydrate addition, pH, fish solubles concentration, scale-up, agitation, and air flow rate on protease yields are described. While the fish solubles medium alone could give rise to measurable yields of protease, these were, at worst, doubled when 1% glucose was added to the medium. pH 7 was optimal for protease yield. Although the concentration of fish solubles in the basic medium showed no significant effect on cell yield, maximum protease yield was observed at a protein concentration equivalent to 3.85 mg/mL of bovine serum albumin. Protease production rates decreased as medium protein fermentor showed no significant effect on maximum protease yields. The effects of agitator speed and air flow rate on protease yield suggested that the rate of O2 transfer from air to medium could limit the rate of protease production. It was also noted that protease production is not growth associated.

  16. Lethal and nonlethal violence against an intimate female partner: comparing male murderers to nonlethal abusers.

    PubMed

    Dobash, R Emerson; Dobash, Russell P; Cavanagh, Kate; Medina-Ariza, Juanjo

    2007-04-01

    Men's lethal and nonlethal violence against an intimate female partner are compared. Various risk factors are examined to compare men's lethal and nonlethal violence against an intimate woman partner. Relative to abusers, men who kill are generally more conventional with respect to childhood backgrounds, education, employment, and criminal careers, are more likely to be possessive and jealous, and are more likely to be separated from their partner at the time of the event. Men who kill are more likely to have used violence against a previous partner, to have sexually assaulted and strangled the victim, and to have used a weapon or instrument. However, they were less likely to have been drunk at the time of the event and/or to have previously used violence against the woman they killed. Overall, the findings do not support the notion of a simple progression from nonlethal to lethal violence and raise some dilemmas for the growing area of risk assessment.

  17. Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs

    PubMed Central

    Turner, Wendy C.; Kausrud, Kyrre L.; Beyer, Wolfgang; Easterday, W. Ryan; Barandongo, Zoë R.; Blaschke, Elisabeth; Cloete, Claudine C.; Lazak, Judith; Van Ert, Matthew N.; Ganz, Holly H.; Turnbull, Peter C. B.; Stenseth, Nils Chr.; Getz, Wayne M.

    2016-01-01

    To mitigate the effects of zoonotic diseases on human and animal populations, it is critical to understand what factors alter transmission dynamics. Here we assess the risk of exposure to lethal concentrations of the anthrax bacterium, Bacillus anthracis, for grazing animals in a natural system over time through different transmission mechanisms. We follow pathogen concentrations at anthrax carcass sites and waterholes for five years and estimate infection risk as a function of grass, soil or water intake, age of carcass sites, and the exposure required for a lethal infection. Grazing, not drinking, seems the dominant transmission route, and transmission is more probable from grazing at carcass sites 1–2 years of age. Unlike most studies of virulent pathogens that are conducted under controlled conditions for extrapolation to real situations, we evaluate exposure risk under field conditions to estimate the probability of a lethal dose, showing that not all reservoirs with detectable pathogens are significant transmission pathways. PMID:27265371

  18. The Androgen-Regulated Protease TMPRSS2 Activates aProteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis

    PubMed Central

    Lucas, Jared M.; Heinlein, Cynthia; Kim, Tom; Hernandez, Susana A.; Malik, Muzdah S.; True, Lawrence D.; Morrissey, Colm; Corey, Eva; Montgomery, Bruce; Mostaghel, Elahe; Clegg, Nigel; Coleman, Ilsa; Brown, Christopher M.; Schneider, Eric L.; Craik, Charles; Simon, Julian; Bedalov, Tony; Nelson, Peter S.

    2014-01-01

    TMPRSS2 is an androgen-regulated cell surface serine protease expressed predominantly in prostate epithelium. TMPRSS2 is expressed highly in localized high-grade prostate cancers and in the majority of human prostate cancer metastasis. Through the generation of mouse models with a targeted deletion of Tmprss2, we demonstrate that the activity of this protease regulates cancer cell invasion and metastasis to distant organs. By screening combinatorial peptide libraries we identified a spectrum of TMPRSS2 substrates that include pro-hepatocyte growth factor (HGF). HGF activated by TMPRSS2 promoted c-Met receptor tyrosine kinase signaling, and initiated a pro-invasive EMT phenotype. Chemical library screens identified a potent bioavailable TMPRSS2 inhibitor that suppressed prostate cancer metastasis in vivo. Together, these findings provide a mechanistic link between androgen-regulated signaling programs and prostate cancer metastasis that operate via context-dependent interactions with extracellular constituents of the tumor microenvironment. PMID:25122198

  19. In vivo neuronal synthesis and axonal transport of Kunitz protease inhibitor (KPI)-containing forms of the amyloid precursor protein.

    PubMed

    Moya, K L; Confaloni, A M; Allinquant, B

    1994-11-01

    We have shown previously that the amyloid precursor protein (APP) is synthesized in retinal ganglion cells and is rapidly transported down the axons, and that different molecular weight forms of the precursor have different developmental time courses. Some APP isoforms contain a Kunitz protease inhibitor (KPI) domain, and APP that lacks the KPI domain is considered the predominant isoform in neurons. We now show that, among the various rapidly transported APPs, a 140-kDa isoform contains the KPI domain. This APP isoform is highly expressed in rapidly growing retinal axons, and it is also prominent in adult axon endings. This 140-kDa KPI-containing APP is highly sulfated compared with other axonally transported isoforms. These results show that APP with the KPI domain is a prominent isoform synthesized in neurons in vivo, and they suggest that the regulation of protease activity may be an important factor during the establishment of neuronal connections.

  20. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis

    PubMed Central

    Cassat, James E.; Hammer, Neal D.; Campbell, J. Preston; Benson, Meredith A.; Perrien, Daniel S.; Mrak, Lara N.; Smeltzer, Mark S.; Torres, Victor J.; Skaar, Eric P.

    2013-01-01

    Summary Osteomyelitis is a common manifestation of invasive Staphylococcus aureus infection. Pathogen-induced bone destruction limits antimicrobial penetration to the infectious focus and compromises treatment of osteomyelitis. To investigate mechanisms of S. aureus-induced bone destruction, we developed a murine model of osteomyelitis. Micro-computed tomography of infected femurs revealed that S. aureus triggers profound alterations in bone turnover. The bacterial regulatory locus sae was found to be critical for osteomyelitis pathogenesis, as Sae-regulated factors promote pathologic bone remodeling and intraosseous bacterial survival. Exoproteome analyses revealed the Sae-regulated protease aureolysin as a major determinant of the S. aureus secretome and identified the phenol soluble modulins as aureolysin-degraded, osteolytic peptides that trigger osteoblast cell death and bone destruction. These studies establish a murine model for pathogen-induced bone remodeling, define Sae as critical for osteomyelitis pathogenesis, and identify protease-dependent exoproteome remodeling as a major determinant of the staphylococcal virulence repertoire. PMID:23768499

  1. Protease and Hemicellulase Assisted Extraction of Dietary Fiber from Wastes of Cynara cardunculus

    PubMed Central

    Santo Domingo, Cinthia; Soria, Marcelo; Rojas, Ana M.; Fissore, Eliana N.; Gerschenson, Lía N.

    2015-01-01

    The action of protease and hemicellulase for the extraction of fractions enriched in soluble fiber from bracts and stems of Cynara cardunculus was evaluated. Using a two-factor simplex design comprising protease amounts of 0–200 μL and hemicellulase amounts of 0–200 mg for 5 g of material, we explored the effect of a 5 h enzymatic treatment at 40 °C on the chemical composition and yield of the fractions isolated. The fractions contained inulin and pectin. In general, the protein, inulin, and polyphenol contents and also the yields were higher for fractions obtained from stems. The most marked effects were observed when enzymes were used at higher concentrations, especially for hemicellulase. The inclusion of a pre-heating step increased the yield and the inulin content for fractions isolated from bracts and stems and decreased the protein and polyphenol contents, and the galacturonic acid for bracts. These fractions, in general, contained the polyphenolic compounds monocaffeoylquinic acid, apigenin, and pinoresinol. PMID:25809605

  2. A Systems Biology Approach to Link Nuclear Factor Kappa B Activation with Lethal Prostate Cancer

    DTIC Science & Technology

    2014-05-01

    developed as a routine clinical assay. 12 Task 1B: Perform protein profiling of circulating blood proteins and determine whether a protein...or set of proteins indicative of NFκB activation are associated with lethal prostate cancer. Circulating proteins will be assessed in two cohorts of...throughput functional genomic data. Nucleic acids research 2009;37:D885-90. 3. Parkinson H, Kapushesky M, Kolesnikov N, et al. ArrayExpress update--from

  3. Mechanisms Regulating the Degradation of Dentin Matrices by Endogenous Dentin Proteases and their Role in Dental Adhesion. A Review

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604

  4. A Synthetic Serine Protease Inhibitor, Nafamostat Mesilate, Is a Drug Potentially Applicable to the Treatment of Ebola Virus Disease.

    PubMed

    Nishimura, Hidekazu; Yamaya, Mutsuo

    2015-09-01

    Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.

  5. Ectomycorrhizal Fungal Protein Degradation Ability Predicted by Soil Organic Nitrogen Availability.

    PubMed

    Rineau, Francois; Stas, Jelle; Nguyen, Nhu H; Kuyper, Thomas W; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V; Kennedy, Peter G

    2015-12-18

    In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 (+) and NO3 (-)) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Induction of cell death by the lysosomotropic detergent MSDH.

    PubMed

    Li, W; Yuan, X; Nordgren, G; Dalen, H; Dubowchik, G M; Firestone, R A; Brunk, U T

    2000-03-17

    Controlled lysosomal rupture was initiated in lysosome-rich, macrophage-like cells by the synthetic lysosomotropic detergent, O-methyl-serine dodecylamide hydrochloride (MSDH). When MSDH was applied at low concentrations, resulting in partial lysosomal rupture, activation of pro-caspase-3-like proteases and apoptosis followed after some hours. Early during apoptosis, but clearly secondary to lysosomal destabilization, the mitochondrial transmembrane potential declined. At high concentrations, MSDH caused extensive lysosomal rupture and necrosis. It is suggested that lysosomal proteases, if released to the cytosol, may cause apoptosis directly by pro-caspase activation and/or indirectly by mitochondrial attack with ensuing discharge of pro-apoptotic factors.

  7. Characterization of Synthetic-Lethal Mutants Reveals a Role for the Saccharomyces Cerevisiae Guanine-Nucleotide Exchange Factor Cdc24p in Vacuole Function and Na(+) Tolerance

    PubMed Central

    White, W. H.; Johnson, D. I.

    1997-01-01

    Cdc24p is the guanine-nucleotide exchange factor for the Cdc42p GTPase, which controls cell polarity in Saccharomyces cerevisiae. To identify new genes that may affect cell polarity, we characterized six UV-induced csl (CDC24 synthetic-lethal) mutants that exhibited synthetic-lethality with cdc24-4(ts) at 23°. Five mutants were not complemented by plasmid-borne CDC42, RSR1, BUD5, BEM1, BEM2, BEM3 or CLA4 genes, which are known to play a role in cell polarity. The csl3 mutant displayed phenotypes similar to those observed with calcium-sensitive, Pet(-) vma mutants defective in vacuole function. CSL5 was allelic to VMA5, the vacuolar H(+)-ATPase subunit C, and one third of csl5 cdc24-4(ts) cells were elongated or had misshapen buds. A cdc24-4(ts) Δvma5::LEU2 double mutant did not exhibit synthetic lethality, suggesting that the csl5/vma5 cdc24-4(ts) synthetic-lethality was not simply due to altered vacuole function. The cdc24-4(ts) mutant, like Δvma5::LEU2 and csl3 mutants, was sensitive to high levels of Ca(2+) as well as Na(+) in the growth media, which did not appear to be a result of a fragile cell wall because the phenotypes were not remedied by 1 M sorbitol. Our results indicated that Cdc24p was required in one V-ATPase mutant and another mutant affecting vacuole morphology, and also implicated Cdc24p in Na(+) tolerance. PMID:9286667

  8. The Major Acute-Phase Protein, Serum Amyloid P Component, in Mice Is Not Involved in Endogenous Resistance against Tumor Necrosis Factor Alpha-Induced Lethal Hepatitis, Shock, and Skin Necrosis

    PubMed Central

    Van Molle, Wim; Hochepied, Tino; Brouckaert, Peter; Libert, Claude

    2000-01-01

    The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) induces lethal hepatitis when injected into d-(+)-galactosamine-sensitized mice on the one hand or systemic inflammatory response syndrome (SIRS) in normal mice on the other hand. We studied whether serum amyloid P component (SAP), the major acute-phase protein in mice, plays a protective role in both lethal models. For this purpose, we used SAP0/0 mice generated by gene targeting. We studied the lethal response of SAP0/0 or SAP+/+ mice to both lethal triggers but found no differences in the sensitivity of both types of mice. We also investigated whether SAP is involved in establishing two types of endogenous protection: one using a single injection of interleukin-1β (IL-1β) for desensitization and clearly involving a liver protein, the other by tolerizing mice for 5 days using small doses of human TNF-α. Although after IL-1β or after tolerization the SAP levels in the serum had risen fourfold in the control mice and not in the SAP0/0 mice, the same extents of desensitization and tolerization were achieved. Finally, we observed that the induction of hemorrhagic necrosis in the skin of mice by two consecutive local injections with TNF-α was not altered in SAP0/0 mice. We conclude that the presence or absence of SAP has no influence on the sensitivity of mice to TNF-α-induced hepatitis, SIRS, and hemorrhagic necrosis or on the endogenous protective mechanisms of desensitization or tolerization. PMID:10948120

  9. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative

    PubMed Central

    Bijina, B.; Chellappan, Sreeja; Krishna, Jissa G.; Basheer, Soorej M.; Elyas, K.K.; Bahkali, Ali H.; Chandrasekaran, M.

    2011-01-01

    Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera. PMID:23961135

  10. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    PubMed Central

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine. PMID:26180792

  11. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease.

    PubMed

    Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline

    2018-05-18

    While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.

  12. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus.

    PubMed

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Brugnari, Tatiane; Castoldi, Rafael; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.

  13. Fusion proteins comprising annexin V and Kunitz protease inhibitors are highly potent thrombogenic site-directed anticoagulants

    PubMed Central

    Chen, Hsiu-Hui; Vicente, Cristina P.; He, Li; Tollefsen, Douglas M.; Wun, Tze-Chein

    2005-01-01

    The anionic phospholipid, phosphatidyl-l-serine (PS), is sequestered in the inner layer of the plasma membrane in normal cells. Upon injury, activation, and apoptosis, PS becomes exposed on the surfaces of cells and sheds microparticles, which are procoagulant. Coagulation is initiated by formation of a tissue factor/factor VIIa complex on PS-exposed membranes and propagated through the assembly of intrinsic tenase (factor VIIIa/factor IXa), prothrombinase (factor Va/factor Xa), and factor XIa complexes on PS-exposed activated platelets. We constructed a novel series of recombinant anticoagulant fusion proteins by linking annexin V (ANV), a PS-binding protein, to the Kunitz-type protease inhibitor (KPI) domain of tick anticoagulant protein, an aprotinin mutant (6L15), amyloid β-protein precursor, or tissue factor pathway inhibitor. The resulting ANV-KPI fusion proteins were 6- to 86-fold more active than recombinant tissue factor pathway inhibitor and tick anticoagulant protein in an in vitro tissue factor–initiated clotting assay. The in vivo antithrombotic activities of the most active constructs were 3- to 10-fold higher than that of ANV in a mouse arterial thrombosis model. ANV-KPI fusion proteins represent a new class of anticoagulants that specifically target the anionic membrane-associated coagulation enzyme complexes present at sites of thrombogenesis and are potentially useful as antithrombotic agents. PMID:15677561

  14. A transcription activator-like effector (TALE) induction system mediated by proteolysis.

    PubMed

    Copeland, Matthew F; Politz, Mark C; Johnson, Charles B; Markley, Andrew L; Pfleger, Brian F

    2016-04-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications owing to their customizable DNA-binding specificity. In this work we expanded the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded after induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator-agnostic.

  15. A transcription activator-like effector induction system mediated by proteolysis

    PubMed Central

    Copeland, Matthew F.; Politz, Mark C.; Johnson, Charles B.; Markley, Andrew L.; Pfleger, Brian F.

    2016-01-01

    Simple and predictable trans-acting regulatory tools are needed in the fields of synthetic biology and metabolic engineering to build complex genetic circuits and optimize the levels of native and heterologous gene products. Transcription activator-like effectors (TALEs) are bacterial virulence factors that have recently gained traction in biotechnology applications due to their customizable DNA binding specificity. In this work we expand the versatility of these transcription factors to create an inducible TALE system by inserting tobacco-etch virus (TEV) protease recognition sites into the TALE backbone. The resulting engineered TALEs maintain transcriptional repression of their target genes in Escherichia coli, but are degraded following the induction of the TEV protease, thereby promoting expression of the previously repressed target gene of interest. This TALE-TEV technology enables both repression and induction of plasmid or chromosomal target genes in a manner analogous to traditional repressor proteins but with the added flexibility of being operator agnostic. PMID:26854666

  16. Mosaic serine proteases in the mammalian central nervous system.

    PubMed

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  17. Protease-Activated Receptor-2 Activation Contributes to House Dust Mite-Induced IgE Responses in Mice

    PubMed Central

    Post, Sijranke; Heijink, Irene H.; Petersen, Arjen H.; de Bruin, Harold G.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.

    2014-01-01

    Aeroallergens such as house dust mite (HDM), cockroach, and grass or tree pollen are innocuous substances that can induce allergic sensitization upon inhalation. The serine proteases present in these allergens are thought to activate the protease-activated receptor (PAR)-2, on the airway epithelium, thereby potentially inducing allergic sensitization at the expense of inhalation tolerance. We hypothesized that the proteolytic activity of allergens may play an important factor in the allergenicity to house dust mite and is essential to overcome airway tolerance. Here, we aimed to investigate the role of PAR-2 activation in allergic sensitization and HDM-induced allergic airway inflammation. In our study, Par-2 deficient mice were treated with two different HDM extracts containing high and low serine protease activities twice a week for a period of 5 weeks. We determined airway inflammation through quantification of percentages of mononuclear cells, eosinophils and neutrophils in the bronchial alveolar lavage fluid and measured total IgE and HDM-specific IgE and IgG1 levels in serum. Furthermore, Th2 and pro-inflammatory cytokines including IL-5, IL-13, Eotaxin-1, IL-17, KC, Chemokine (C-C motif) ligand 17 (CCL17) and thymic stromal lymphopoietin (TSLP), were measured in lung tissue homogenates. We observed that independent of the serine protease content, HDM was able to induce elevated levels of eosinophils and neutrophils in the airways of both wild-type (WT) and Par-2 deficient mice. Furthermore, we show that induction of pro-inflammatory cytokines by HDM exposure is independent of Par-2 activation. In contrast, serine protease activity of HDM does contribute to enhanced levels of total IgE, but not HDM-specific IgE. We conclude that, while Par-2 activation contributes to the development of IgE responses, it is largely dispensable for the HDM-induced induction of pro-inflammatory cytokines and airway inflammation in an experimental mouse model of HDM-driven allergic airway disease. PMID:24651123

  18. A unique serpin P1' glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin).

    PubMed

    Ulbricht, David; Pippel, Jan; Schultz, Stephan; Meier, René; Sträter, Norbert; Heiker, John T

    2015-09-15

    SerpinA12 (vaspin) is thought to be mainly expressed in adipose tissue and has multiple beneficial effects on metabolic, inflammatory and atherogenic processes related to obesity. KLK7 (kallikrein 7) is the only known protease target of vaspin to date and is inhibited with a moderate inhibition rate. In the crystal structure, the cleavage site (P1-P1') of the vaspin reactive centre loop is fairly rigid compared with the flexible residues before P2, possibly supported by an ionic interaction of P1' glutamate (Glu(379)) with an arginine residue (Arg(302)) of the β-sheet C. A P1' glutamate seems highly unusual and unfavourable for the protease KLK7. We characterized vaspin mutants to investigate the roles of these two residues in protease inhibition and recognition by vaspin. Reactive centre loop mutations changing the P1' residue or altering the reactive centre loop conformation significantly increased inhibition parameters, whereas removal of the positive charge within β-sheet C impeded the serpin-protease interaction. Arg(302) is a crucial contact to enable vaspin recognition by KLK7 and it supports moderate inhibition of the serpin despite the presence of the detrimental P1' Glu(379), which clearly represents a major limiting factor for vaspin-inhibitory activity. We also show that the vaspin-inhibition rate for KLK7 can be modestly increased by heparin and demonstrate that vaspin is a heparin-binding serpin. Noteworthily, we observed vaspin as a remarkably thermostable serpin and found that Glu(379) and Arg(302) influence heat-induced polymerization. These structural and functional results reveal the mechanistic basis of how reactive centre loop sequence and exosite interaction in vaspin enable KLK7 recognition and regulate protease inhibition as well as stability of this adipose tissue-derived serpin. © 2015 Authors; published by Portland Press Limited.

  19. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    PubMed Central

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.

    2011-01-01

    Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608

  20. Pseudomonas aeruginosa Regulated Intramembrane Proteolysis (RIP): Protease MucP can Overcome Mutations in the AlgO Periplasmic Protease to Restore Alginate Production in Nonmucoid Revertants.

    PubMed

    Delgado, Camila; Florez, Laura; Lollett, Ivonne; Lopez, Christine; Kangeyan, Shiva; Kumari, Hansi; Stylianou, Marios; Smiddy, Robert J; Schneper, Lisa; Sautter, Robert T; Szatmari, George; Mathee, Kalai

    2018-05-21

    The progression of cystic fibrosis (CF) from an acute to a chronic disease is often associated with the conversion of the opportunistic pathogen Pseudomonas aeruginosa from a nonmucoid form to a mucoid form in the lung. This conversion involves the overproduction of the exopolysaccharide alginate, whose production is under control of the AlgT/U sigma factor. This factor is regulated posttranslationally by an extremely unstable process and has been commonly attributed to mutations in the algT/U gene. By exploiting this unstable phenotype, we isolated 34 spontaneous nonmucoid variants arising from the mucoid strain PDO300, a PAO1 derivative containing the mucA22 allele commonly found in mucoid CF isolates. Complementation analysis using a minimal tiling path cosmid library revealed that most of these mutants mapped to two protease-encoding genes, algO also known as prc or PA3257 , and mucP. Interestingly, our algO mutations were complemented by both mucP and algO , leading us to delete, clone and overexpress mucP , algO , mucE and mucD in both wild-type PAO1 and in PDO300 backgrounds to better understand the regulation of this complex regulatory mechanism. Our findings suggest the regulatory proteases follow two pathways for regulated intramembrane proteolysis (RIP), where both the AlgO/MucP pathway and MucE/AlgW pathway are required in the wild type strain, but where the AlgO/MucP pathway can bypass the MucE/AlgW pathway in mucoid strains with membrane-associated forms of MucA with shortened C-termini, such as the MucA22 variant. This work gives us a better understanding of how alginate production is regulated in the clinically important mucoid variants of Pseudomonas aeruginosa. IMPORTANCE: Infection by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. Poor patient prognosis correlates with the genotypic and phenotypic change of the bacteria from a typical nonmucoid to a mucoid form in the CF lung, characterized by the overproduction of alginate. The expression of this exopolysaccharide is under the control an alternate sigma factor, AlgT/U, that is regulated post translationally by a series of proteases. A better understanding of this regulatory phenomenon will help in the development of therapies targeting alginate production, ultimately leading to an increase in the length and quality of life for those suffering from CF. Copyright © 2018 American Society for Microbiology.

  1. Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis

    PubMed Central

    Lee, Sang Eun; Jeong, Se Kyoo

    2010-01-01

    Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045

  2. Intramembrane proteolysis: theme and variations.

    PubMed

    Wolfe, Michael S; Kopan, Raphael

    2004-08-20

    Proteases that reside in cellular membranes apparently wield water to hydrolyze the peptide bonds of substrates despite their water-excluding environment. Although these intramembrane proteases bear little or no sequence resemblance to classical water-soluble proteases, they have ostensibly converged on similar hydrolytic mechanisms. Identification of essential amino acid residues of these proteases suggests that they use residue combinations for catalysis in the same way as their soluble cousins. In contrast to classical proteases, however, the catalytic residues of intramembrane proteases lie within predicted hydrophobic transmembrane domains. Elucidating the biological functions of intramembrane proteases, identifying their substrates, and understanding how they hydrolyze peptide bonds within membranes will shed light on the ways these proteases regulate crucial biological processes and contribute to disease.

  3. Emerging principles in protease-based drug discovery

    PubMed Central

    Drag, Marcin; Salvesen, Guy S.

    2010-01-01

    Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets. PMID:20811381

  4. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection*

    PubMed Central

    Vrentas, Catherine E.; Moayeri, Mahtab; Keefer, Andrea B.; Greaney, Allison J.; Tremblay, Jacqueline; O'Mard, Danielle; Leppla, Stephen H.; Shoemaker, Charles B.

    2016-01-01

    Infection with Bacillus anthracis, the causative agent of anthrax, can lead to persistence of lethal secreted toxins in the bloodstream, even after antibiotic treatment. VHH single-domain antibodies have been demonstrated to neutralize diverse bacterial toxins both in vitro and in vivo, with protein properties such as small size and high stability that make them attractive therapeutic candidates. Recently, we reported on VHHs with in vivo activity against the protective antigen component of the anthrax toxins. Here, we characterized a new set of 15 VHHs against the anthrax toxins that act by binding to the edema factor (EF) and/or lethal factor (LF) components. Six of these VHHs are cross-reactive against both EF and LF and recognize the N-terminal domain (LFN, EFN) of their target(s) with subnanomolar affinity. The cross-reactive VHHs block binding of EF/LF to the protective antigen C-terminal binding interface, preventing toxin entry into the cell. Another VHH appears to recognize the LF C-terminal domain and exhibits a kinetic effect on substrate cleavage by LF. A subset of the VHHs neutralized against EF and/or LF in murine macrophage assays, and the neutralizing VHHs that were tested improved survival of mice in a spore model of anthrax infection. Finally, a bispecific VNA (VHH-based neutralizing agent) consisting of two linked toxin-neutralizing VHHs, JMN-D10 and JMO-G1, was fully protective against lethal anthrax spore infection in mice as a single dose. This set of VHHs should facilitate development of new therapeutic VNAs and/or diagnostic agents for anthrax. PMID:27539858

  5. Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa.

    PubMed

    Pezzoni, Magdalena; Tribelli, Paula M; Pizarro, Ramón A; López, Nancy I; Costa, Cristina S

    2016-05-01

    Solar UVA radiation is one of the main environmental stress factors for Pseudomonas aeruginosa. Exposure to high UVA doses produces lethal effects by the action of the reactive oxygen species (ROS) it generates. P. aeruginosa has several enzymes, including KatA and KatB catalases, which provide detoxification of ROS. We have previously demonstrated that KatA is essential in defending P. aeruginosa against high UVA doses. In order to analyse the mechanisms involved in the adaptation of this micro-organism to UVA, we investigated the effect of exposure to low UVA doses on KatA and KatB activities, and the physiological consequences. Exposure to UVA induced total catalase activity; assays with non-denaturing polyacrylamide gels showed that both KatA and KatB activities were increased by radiation. This regulation occurred at the transcriptional level and depended, at least partly, on the increase in H2O2 levels. We demonstrated that exposure to low UVA produced a protective effect against subsequent lethal doses of UVA, sodium hypochlorite and H2O2. Protection against lethal UVA depends on katA, whilst protection against sodium hypochlorite depends on katB, demonstrating that different mechanisms are involved in the defence against these oxidative agents, although both genes can be involved in the global cellular response. Conversely, protection against lethal doses of H2O2 could depend on induction of both genes and/or (an)other defensive factor(s). A better understanding of the adaptive response of P. aeruginosa to UVA is relevant from an ecological standpoint and for improving disinfection strategies that employ UVA or solar irradiation.

  6. A Diverse Set of Single-domain Antibodies (VHHs) against the Anthrax Toxin Lethal and Edema Factors Provides a Basis for Construction of a Bispecific Agent That Protects against Anthrax Infection.

    PubMed

    Vrentas, Catherine E; Moayeri, Mahtab; Keefer, Andrea B; Greaney, Allison J; Tremblay, Jacqueline; O'Mard, Danielle; Leppla, Stephen H; Shoemaker, Charles B

    2016-10-07

    Infection with Bacillus anthracis, the causative agent of anthrax, can lead to persistence of lethal secreted toxins in the bloodstream, even after antibiotic treatment. VHH single-domain antibodies have been demonstrated to neutralize diverse bacterial toxins both in vitro and in vivo, with protein properties such as small size and high stability that make them attractive therapeutic candidates. Recently, we reported on VHHs with in vivo activity against the protective antigen component of the anthrax toxins. Here, we characterized a new set of 15 VHHs against the anthrax toxins that act by binding to the edema factor (EF) and/or lethal factor (LF) components. Six of these VHHs are cross-reactive against both EF and LF and recognize the N-terminal domain (LF N , EF N ) of their target(s) with subnanomolar affinity. The cross-reactive VHHs block binding of EF/LF to the protective antigen C-terminal binding interface, preventing toxin entry into the cell. Another VHH appears to recognize the LF C-terminal domain and exhibits a kinetic effect on substrate cleavage by LF. A subset of the VHHs neutralized against EF and/or LF in murine macrophage assays, and the neutralizing VHHs that were tested improved survival of mice in a spore model of anthrax infection. Finally, a bispecific VNA (VHH-based neutralizing agent) consisting of two linked toxin-neutralizing VHHs, JMN-D10 and JMO-G1, was fully protective against lethal anthrax spore infection in mice as a single dose. This set of VHHs should facilitate development of new therapeutic VNAs and/or diagnostic agents for anthrax. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Clinical usefulness of a functional assay for the von Willebrand factor cleaving protease (ADAMTS 13) and its inhibitor in a patient with thrombotic thrombocytopenic purpura.

    PubMed

    Rick, M E; Austin, H; Leitman, S F; Krizek, D M; Aronson, D L

    2004-02-01

    Decreased von Willebrand factor cleaving protease activity (VWFCP, ADAMTS 13) leads to persistence of unusually large multimers of von Willebrand factor that bind to platelets, causing platelet aggregates, microangiopathic hemolysis, and thrombocytopenia in patients with thrombotic thrombocytopenic purpura (TTP). The clinical value of measuring ADAMTS 13 and its inhibitor is not fully defined; the case reported here illustrates the usefulness of the assay to help confirm the clinical diagnosis in a patient with other potential causes for thrombotic microangiopathy; the assay also helped in making treatment decisions. A patient with systemic lupus erythematosis (SLE) presented with fever and abdominal pain, thrombocytopenia, and anemia. Thrombotic microangiopathy was diagnosed by the appearance of schistocytes, decreasing platelet count, and evidence of hemolysis. ADAMTS 13 was decreased and an inhibitor was demonstrated in the patient's initial blood sample within 24 hr of admission. Plasma exchange was initiated, and serial assays showed increased ADAMTS 13 activity and decreased inhibitor after each plasma exchange; there was a rebound in inhibitor and a decrease in ADAMTS 13 activity prior to the next exchange that lessened over time. Increasing levels of protease activity correlated with clinical and laboratory improvement. Measurement of ADAMTS 13 activity and its inhibitor aided in the diagnosis of this complicated case of a patient with other potential causes for microangiopathic hemolysis. Subsequent levels correlated with the clinical course, and disappearance of the inhibitor indicated that long-term plasma exchange or other immunosuppressive treatment was not needed.

  8. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  9. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-κB pathway in skeletal muscle.

    PubMed

    Laure, Lydie; Danièle, Nathalie; Suel, Laurence; Marchand, Sylvie; Aubert, Sophie; Bourg, Nathalie; Roudaut, Carinne; Duguez, Stéphanie; Bartoli, Marc; Richard, Isabelle

    2010-10-01

    A multiprotein complex encompassing a transcription regulator, cardiac ankyrin repeat protein (CARP), and the calpain 3 protease was identified in the N2A elastic region of the giant sarcomeric protein titin. The present study aimed to investigate the function(s) of this complex in the skeletal muscle. We demonstrate that CARP subcellular localization is controlled by the activity of calpain 3: the higher the calpain 3, the more important the sarcomeric retention of CARP. This regulation would occur through cleavage of the N-terminal end of CARP by the protease. We show that, upon CARP over-expression, the transcription factor nuclear factor NF-κB p65 DNA-binding activity decreases. Taken as a whole, CARP and its regulator calpain 3 appear to occupy a central position in the important cell fate-governing NF-κB pathway. Interestingly, the expression of the atrophying protein MURF1, one of NF-κB main targets, remains unchanged in presence of CARP, suggesting that the pathway encompassing calpain 3/CARP/NF-κB does not play a role in muscle atrophy. With NF-κB also having anti-apoptotic effects, the inability of calpain 3 to lower CARP-driven inhibition of NF-κB could reduce muscle cell survival, hence partly accounting for the dystrophic pattern observed in limb girdle muscular dystrophy 2A, a pathology resulting from the protease deficiency. © 2010 The Authors Journal compilation © 2010 FEBS.

  10. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.

  11. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  12. The Decline of the Military Ethos and Profession of Arms: An Argument Against Autonomous Lethal Engagements

    DTIC Science & Technology

    2012-10-01

    very limited to support near-term, clear-cut, small-scale tactical objectives avoiding mass applications which could compromise long term strategic...principles of double effect and double intent factor into the calculus of the use of force as well.26 The professional community is divided on the...lethal force and those who prosecute it and a lack of empathy for those who it is waged upon.54 Finally, Hartle writes that one purpose of professional

  13. A Systems Biology Approach to Link Nuclear Factor Kappa B Activation with Lethal Prostate Cancer

    DTIC Science & Technology

    2013-05-01

    developed as a routine clinical assay. Task 1B: Perform protein profiling of circulating blood proteins and determine whether a protein or set of...proteins indicative of NFκB activation are associated with lethal prostate cancer. Circulating proteins will be assessed in two cohorts of 312...functional genomic data. Nucleic Acids Res 2009;37:D885-90. 3. Parkinson H, Kapushesky M, Kolesnikov N, et al. ArrayExpress update--from an archive of

  14. Preparation and characterization of cobalt-substituted anthrax lethal factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saebel, Crystal E.; Carbone, Ryan; Dabous, John R.

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Cobalt-substituted anthrax lethal factor (CoLF) is highly active. Black-Right-Pointing-Pointer CoLF can be prepared by bio-assimilation and direct exchange. Black-Right-Pointing-Pointer Lethal factor binds cobalt tightly. Black-Right-Pointing-Pointer The electronic spectrum of CoLF reveals penta-coordination. Black-Right-Pointing-Pointer Interaction of CoLF with thioglycolic acid follows a 2-step mechanism. -- Abstract: Anthrax lethal factor (LF) is a zinc-dependent endopeptidase involved in the cleavage of mitogen-activated protein kinase kinases near their N-termini. The current report concerns the preparation of cobalt-substituted LF (CoLF) and its characterization by electronic spectroscopy. Two strategies to produce CoLF were explored, including (i) a bio-assimilation approach involving the cultivation of LF-expressingmore » Bacillus megaterium cells in the presence of CoCl{sub 2}, and (ii) direct exchange by treatment of zinc-LF with CoCl{sub 2}. Independent of the method employed, the protein was found to contain one Co{sup 2+} per LF molecule, and was shown to be twice as active as its native zinc counterpart. The electronic spectrum of CoLF suggests the Co{sup 2+} ion to be five-coordinate, an observation similar to that reported for other Co{sup 2+}-substituted gluzincins, but distinct from that documented for the crystal structure of native LF. Furthermore, spectroscopic studies following the exposure of CoLF to thioglycolic acid (TGA) revealed a sequential mechanism of metal removal from LF, which likely involves the formation of an enzyme: Co{sup 2+}:TGA ternary complex prior to demetallation of the active site. CoLF reported herein constitutes the first spectroscopic probe of LF's active site, which may be utilized in future studies to gain further insight into the enzyme's mechanism and inhibitor interactions.« less

  15. Immunoglobulins in Nasal Secretions of Healthy Humans: Structural Integrity of Secretory Immunoglobulin A1 (IgA1) and Occurrence of Neutralizing Antibodies to IgA1 Proteases of Nasal Bacteria

    PubMed Central

    Kirkeby, Line; Rasmussen, Trine Tang; Reinholdt, Jesper; Kilian, Mogens

    2000-01-01

    Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro. Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11 healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and, subsequently, concentrations in undiluted secretions could thereby be calculated. IgA, mainly in the secretory form, was found by enzyme-linked immunosorbent assay to be the dominant isotype in all subjects, and the vast majority of IgA (median, 91%) was of the A1 subclass, corroborating results of previous analyses at the level of immunoglobulin-producing cells. Levels of serum-type immunoglobulins were low, except for four subjects in whom levels of IgG corresponded to 20 to 66% of total IgA. Cumulative levels of IgA, IgG, and IgM in undiluted secretions ranged from 260 to 2,494 (median, 777) μg ml−1. IgA1 protease-producing bacteria (Haemophilus influenzae, Streptococcus pneumoniae, or Streptococcus mitis biovar 1) were isolated from the nasal cavities of seven subjects at 2.1 × 103 to 7.2 × 106 CFU per ml of undiluted secretion, corresponding to 0.2 to 99.6% of the flora. Nevertheless, α-chain fragments characteristic of IgA1 protease activity were not detected in secretions from any subject by immunoblotting. Neutralizing antibodies to IgA1 proteases of autologous isolates were detected in secretions from five of the seven subjects but not in those from two subjects harboring IgA1 protease-producing S. mitis biovar 1. α-chain fragments different from Fcα and Fdα were detected in some samples, possibly reflecting nonspecific proteolytic activity of microbial or host origin. These results add to previous evidence for a role of secretory immunity in the defense of the nasal mucosa but do not help identify conditions under which bacterial IgA1 proteases may interfere with this defense. PMID:10618273

  16. Salmonella enterica serovar Typhimurium utilizes the ClpPX and Lon proteases for optimal fitness in the ceca of chickens.

    PubMed

    Troxell, Bryan

    2016-07-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of salmonellosis. Poultry and poultry products are implicated in transmission of Salmonella to humans. In 2013, an outbreak of S Typhimurium occurred that comprised 39 states within the United States and was associated with backyard flocks of chickens. Colonization of the avian host by S Typhimurium requires numerous genetic factors encoded within the bacterium. Of particular interest are genetic factors induced by alternative sigma factors within S Typhimurium since these genetic elements are important for adaptation to different environmental stresses. The heat shock response is a dedicated change in gene regulation within bacteria in response to several stresses, specifically growth at 42°C. Because chickens have a higher body temperature than other animals (42°C) the hypothesis was tested that components of the heat shock response are important for optimal fitness within the chicken. To this end, deletion of the heat shock proteases clpPX (BTNC0022) or lon (BTNC0021) was accomplished and the bacterial fitness in vivo was compared to the "wild-type" strain (NC1040) using a competition assay. One-day-old chicks were orally gavaged with an equal mixture of NC1040 and either BTNC0022 or BTNC0021. Quantification of viable bacteria over time by using plate counts indicated that deletion of either heat shock protease resulted in significantly reduced colonization of the chicken ceca compared to the wild-type strain. To satisfy the molecular Koch's postulates, clpPX and lon mutants were complemented in trans using a low-copy number plasmid for additional in vivo experiments. Complementation studies confirmed the importance of either heat shock protease to colonization of the chicken ceca. This report demonstrated that both ClpPX and Lon were important for optimal fitness within chickens. Moreover, these results suggested that components of the heat shock may be critical factors used by S. Typhimurium for colonization of poultry. The use of feed additives or other treatments that inactivate or inhibit ClpPX or Lon may reduce the bacterial burden of S. Typhimurium in poultry. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  17. Factor XI and Contact Activation as Targets for Antithrombotic Therapy

    PubMed Central

    Gailani, David; Bane, Charles E.; Gruber, Andras

    2015-01-01

    Summary The most commonly used anticoagulants produce therapeutic antithrombotic effects either by inhibiting thrombin or factor Xa, or by lowering the plasma levels of the precursors of these key enzymes, prothrombin and factor X. These drugs do not distinguish between thrombin generation contributing to thrombosis from thrombin generation required for hemostasis. Thus, anticoagulants increase bleeding risk, and many patients who would benefit from therapy go untreated because of comorbidities that place them at unacceptable risk for hemorrhage. Studies in animals demonstrate that components of the plasma contact activation system contribute to experimentally-induced thrombosis, despite playing little or no role in hemostasis. Attention has focused on factor XII, the zymogen of a protease (factor XIIa) that initiates contact activation when blood is exposed to foreign surfaces; and factor XI, the zymogen of the protease factor XIa, which links contact activation to the thrombin generation mechanism. In the case of factor XI, epidemiologic data indicate this protein contributes to stroke and venous thromboembolism, and perhaps myocardial infarction, in humans. A phase 2 trial showing that reduction of factor XI may be more effective than low-molecular-weight heparin at preventing venous thrombosis during knee replacement surgery provides proof of concept for the premise that an antithrombotic effect can be uncoupled from an anticoagulant effect in humans by targeting components of contact activation. Here we review data on the role of factor XI and factor XII in thrombosis, and results of pre-clinical and human trials for therapies targeting these proteins. PMID:25976012

  18. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    PubMed

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-05

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.

  19. Neutrophil proteinase 3 (PR3) acts on protease-activated receptor-2 (PAR-2) to enhance vascular endothelial cell barrier function

    PubMed Central

    Kuckleburg, Christopher J.; Newman, Peter J.

    2013-01-01

    The principle role of the vascular endothelium is to present a semi-impermeable barrier to soluble factors and circulating cells, while still permitting the passage of leukocytes from the bloodstream into the tissue. The process of diapedesis involves the selective disruption of endothelial cell junctions, an event that could in theory compromise vascular integrity. It is therefore somewhat surprising that neutrophil transmigration does not significantly impair endothelial barrier function. We examined whether neutrophils might secrete factors that promote vascular integrity during the latter stages of neutrophil transmigration, and found that neutrophil proteinase 3 (PR3) – a serine protease harbored in azurophilic granules – markedly enhanced barrier function in endothelial cells. PR3 functioned in this capacity both in its soluble form and in a complex with cell-surface NB1. PR3-mediated enhancement of endothelial cell junctional integrity required its proteolytic activity, as well as endothelial cell expression of the protease-activated receptor, PAR-2. Importantly, PR3 suppressed the vascular permeability changes and disruption of junctional proteins induced by the action of PAR-1 agonists. These findings establish the potential for neutrophil-derived PR3 to play a role in reestablishing vascular integrity following leukocyte transmigration, and in protecting endothelial cells from PAR-1-induced permeability changes that occur during thrombotic and inflammatory events. PMID:23202369

  20. Mechanistic Peptidomics: Factors That Dictate Specificity in the Formation of Endogenous Peptides in Human Milk*

    PubMed Central

    Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.

    2014-01-01

    An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956

  1. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis.

    PubMed

    Backert, Steffen; Bernegger, Sabine; Skórko-Glonek, Joanna; Wessler, Silja

    2018-03-26

    The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development. © 2018 John Wiley & Sons Ltd.

  2. Potential Roles of Protease Inhibitors in Cancer Progression.

    PubMed

    Yang, Peng; Li, Zhuo-Yu; Li, Han-Qing

    2015-01-01

    Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.

  3. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. colimore » α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.« less

  4. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    PubMed

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  5. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    PubMed

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  6. Structural determinants of tobacco vein mottling virus protease substrate specificity

    PubMed Central

    Sun, Ping; Austin, Brian P; Tözsér, József; Waugh, David S

    2010-01-01

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease. PMID:20862670

  7. Structural determinants of tobacco vein mottling virus protease substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMVmore » protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.« less

  8. Generating favorable growth factor and protease release profiles to enable extracellular matrix accumulation within an in vitro tissue engineering environment.

    PubMed

    Zhang, Xiaoqing; Battiston, Kyle G; Labow, Rosalind S; Simmons, Craig A; Santerre, J Paul

    2017-05-01

    Tissue engineering (particularly for the case of load-bearing cardiovascular and connective tissues) requires the ability to promote the production and accumulation of extracellular matrix (ECM) components (e.g., collagen, glycosaminoglycan and elastin). Although different approaches have been attempted in order to enhance ECM accumulation in tissue engineered constructs, studies of underlying signalling mechanisms that influence ECM deposition and degradation during tissue remodelling and regeneration in multi-cellular culture systems have been limited. The current study investigated vascular smooth muscle cell (VSMC)-monocyte co-culture systems using different VSMC:monocyte ratios, within a degradable polyurethane scaffold, to assess their influence on ECM generation and degradation processes, and to elucidate relevant signalling molecules involved in this in vitro vascular tissue engineering system. It was found that a desired release profile of growth factors (e.g. insulin growth factor-1 (IGF-1)) and hydrolytic proteases (e.g. matrix-metalloproteinases 2, 9, 13 and 14 (MMP2, MMP9, MMP13 and MMP14)), could be achieved in co-culture systems, yielding an accumulation of ECM (specifically for 2:1 and 4:1 VSMC:monocyte culture systems). This study has significant implications for the tissue engineering field (including vascular tissue engineering), not only because it identified important cytokines and proteases that control ECM accumulation/degradation within synthetic tissue engineering scaffolds, but also because the established culture systems could be applied to improve the development of different types of tissue constructs. Sufficient extracellular matrix accumulation within cardiovascular and connective tissue engineered constructs is a prerequisite for their appropriate function in vivo. This study established co-culture systems with tissue specific cells (vascular smooth muscle cells (VSMCs)) and defined ratios of immune cells (monocytes) to investigate extracellular matrix (ECM) generation and degradation processes, revealing important mechanisms underlying ECM turnover during vascular tissue regeneration/remodelling. A specific growth factor (IGF-1), as well as hydrolytic proteases (e.g. MMP2, MMP9, MMP13 and MMP14), were identified as playing important roles in these processes. ECM accumulation was found to be dependent on achieving a desired release profile of these ECM-promoting and ECM-degrading factors within the multi-cellular microenvironment. The findings enhance our understanding of ECM deposition and degradation during in vitro tissue engineering and would be applicable to the repair or regeneration of a variety of tissues. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Integration of Breast Cancer Secretomes with Clinical Data Elucidates Potential Serum Markers for Disease Detection, Diagnosis, and Prognosis.

    PubMed

    Ziegler, Yvonne S; Moresco, James J; Yates, John R; Nardulli, Ann M

    2016-01-01

    Cancer cells secrete factors that influence adjacent cell behavior and can lead to enhanced proliferation and metastasis. To better understand the role of these factors in oncogenesis and disease progression, estrogen and progesterone receptor positive MCF-7 cells, triple negative breast cancer MDA-MB-231, DT22, and DT28 cells, and MCF-10A non-transformed mammary epithelial cells were grown in 3D cultures. A special emphasis was placed on triple negative breast cancer since these tumors are highly aggressive and no targeted treatments are currently available. The breast cancer cells secreted factors of variable potency that stimulated proliferation of the relatively quiescent MCF-10A cells. The conditioned medium from each cell line was subjected to mass spectrometry analysis and a variety of secreted proteins were identified including glycolytic enzymes, proteases, protease inhibitors, extracellular matrix proteins, and insulin-like growth factor binding proteins. An investigation of the secretome from each cell line yielded clues about strategies used for breast cancer proliferation and metastasis. Some of the proteins we identified may be useful in the development of a serum-based test for breast cancer detection, diagnosis, prognosis, and monitoring.

  10. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  11. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.

    PubMed

    Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M

    2009-01-01

    The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.

  12. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease.

    PubMed

    Schüller, Andreas; Yin, Zheng; Brian Chia, C S; Doan, Danny N P; Kim, Hyeong-Kyu; Shang, Luqing; Loh, Teck Peng; Hill, Jeffery; Vasudevan, Subhash G

    2011-10-01

    A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.

    PubMed

    Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping

    2018-02-20

    Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization of protease-inhibitor interactions by randomizing adventitious contacts

    PubMed Central

    Komiyama, Tomoko; VanderLugt, Bryan; Fugère, Martin; Day, Robert; Kaufman, Randal J.; Fuller, Robert S.

    2003-01-01

    Polypeptide protease inhibitors are often found to inhibit targets with which they did not coevolve, as in the case of high-affinity inhibition of bacterial subtilisin by the leech inhibitor eglin c. Two kinds of contacts exist in such complexes: (i) reactive site loop-active site contacts and (ii) interactions outside of these that form the broader enzyme-inhibitor interface. We hypothesized that the second class of “adventitious” contacts could be optimized to generate significant increases in affinity for a target enzyme or discrimination of an inhibitor for closely related target proteases. We began with a modified eglin c, Arg-42–Arg-45–eglin, in which the reactive site loop had been optimized for subtilisin-related processing proteases of the Kex2/furin family. We randomized 10 potential adventitious contact residues and screened for inhibition of soluble human furin. Substitutions at one of these sites, Y49, were also screened against yeast Kex2 and human PC7. These screens identified not only variants that exhibited increased affinity (up to 20-fold), but also species that exhibited enhanced selectivity, that is, increased discrimination between the target enzymes (up to 41-fold for furin versus PC7 and 20-fold for PC7 versus furin). One variant, Asp-49–Arg-42–Arg-45–eglin, exhibited a Ki of 310 pM for furin and blocked furin-dependent processing of von Willebrand factor in COS-1 cells when added to the culture medium of the cells. The exploitation of adventitious contact sites may provide a versatile technique for developing potent, selective inhibitors for newly discovered proteases and could in principle be applied to optimize numerous protein–protein interactions. PMID:12832612

  16. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  17. Expression of exogenous human hepatic nuclear factor-1α by a lentiviral vector and its interactions with Plasmodium falciparum subtilisin-like protease 2.

    PubMed

    Liao, Shunyao; Liu, Yunqiang; Zheng, Bing; Cho, Pyo Yun; Song, Hyun Ok; Lee, Yun-Seok; Jung, Suk-Yul; Park, Hyun

    2011-12-01

    The onset, severity, and ultimate outcome of malaria infection are influenced by parasite-expressed virulence factors as well as by individual host responses to these determinants. In both humans and mice, liver injury follows parasite entry, persisting to the erythrocytic stage in the case of infection with the fatal strain of Plasmodium falciparum. Hepatic nuclear factor (HNF)-1α is a master regulator of not only the liver damage and adaptive responses but also diverse metabolic functions. In this study, we analyzed the expression of host HNF-1α in relation to malaria infection and evaluated its interaction with the 5'-untranslated region of subtilisin-like protease 2 (subtilase, Sub2). Recombinant human HNF-1α expressed by a lentiviral vector (LV HNF-1α) was introduced into mice. Interestingly, differences in the activity of the 5'-untranslated region of the Pf-Sub2 promoter were detected in 293T cells, and LV HNF-1α was observed to influence promoter activity, suggesting that host HNF-1α interacts with the Sub2 gene.

  18. Saliva and wound healing.

    PubMed

    Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I

    2014-01-01

    Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.

  19. Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation

    PubMed Central

    Takahashi, Kazue; Chang, Wei-Chuan; Takahashi, Minoru; Pavlov, Vasile; Ishida, Yumi; La Bonte, Laura; Shi, Lei; Fujita, Teizo; Stahl, Gregory L.; Van Cott, Elizabeth M.

    2010-01-01

    The first line of host defense is the innate immune system that includes coagulation factors and pattern recognition molecules, one of which is mannose-binding lectin (MBL). Previous studies have demonstrated that MBL deficiency increases susceptibility to infection. Several mechanisms are associated with increased susceptibility to infection, including reduced opsonophagocytic killing and reduced lectin complement pathway activation. In this study, we demonstrate that MBL and MBL-associated serine protease (MASP)-1/3 together mediate coagulation factor-like activities, including thrombin-like activity. MBL and/or MASP-1/3 deficient hosts demonstrate in vivo evidence that MBL and MASP-1/3 are involved with hemostasis following injury. Staphylococcus aureus infected MBL null mice developed disseminated intravascular coagulation (DIC), which was associated with elevated blood IL-6 levels (but not TNF-α and multi-organ inflammatory responses). Infected MBL null mice also develop liver injury. These findings suggest that MBL deficiency may manifest into DIC and organ failure during infectious diseases. PMID:20399528

  20. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors

    PubMed Central

    Xu, Peng; Andreasen, Peter A.; Huang, Mingdong

    2017-01-01

    This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases. PMID:29104489

  1. Combined antiparasitic and anti-inflammatory effects of the natural polyphenol curcumin on turbot scuticociliatosis.

    PubMed

    Mallo, N; DeFelipe, A P; Folgueira, I; Sueiro, R A; Lamas, J; Leiro, J M

    2017-02-01

    The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 μm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis. © 2016 John Wiley & Sons Ltd.

  2. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  3. Masked Chimeric Antigen Receptor for Tumor-Specific Activation.

    PubMed

    Han, Xiaolu; Bryson, Paul D; Zhao, Yifan; Cinay, Gunce E; Li, Si; Guo, Yunfei; Siriwon, Natnaree; Wang, Pin

    2017-01-04

    Adoptive cellular therapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) cells is a powerful form of cancer immunotherapy. CAR-T cells can be redirected to specifically recognize tumor-associated antigens (TAAs) and induce high levels of antitumor activity. However, they may also display "on-target off-tumor" toxicities, resulting from low-level expression of TAAs in healthy tissues. These adverse effects have raised considerable safety concerns and limited the clinical application of this otherwise promising therapeutic modality. To minimize such side effects, we have designed an epidermal growth factor receptor (EGFR)-specific masked CAR (mCAR), which consists of a masking peptide that blocks the antigen-binding site and a protease-sensitive linker. Proteases commonly active in the tumor microenvironment can cleave the linker and disengage the masking peptide, thereby enabling CAR-T cells to recognize target antigens only at the tumor site. In vitro mCAR showed dramatically reduced antigen binding and antigen-specific activation in the absence of proteases, but normal levels of binding and activity upon treatment with certain proteases. Masked CAR-T cells also showed antitumor efficacy in vivo comparable to that of unmasked CAR. Our study demonstrates the feasibility of improving the safety profile of conventional CARs and may also inspire future design of CAR molecules targeting broadly expressed TAAs. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  4. Roles of CUB and LDL receptor class A domain repeats of a transmembrane serine protease matriptase in its zymogen activation

    PubMed Central

    Inouye, Kuniyo; Tomoishi, Marie; Yasumoto, Makoto; Miyake, Yuka; Kojima, Kenji; Tsuzuki, Satoshi; Fushiki, Tohru

    2013-01-01

    Matriptase is a type II transmembrane serine protease containing two complement proteases C1r/C1s–urchin embryonic growth factor–bone morphogenetic protein domains (CUB repeat) and four low-density lipoprotein receptor class A domains (LDLRA repeat). The single-chain zymogen of matriptase has been found to exhibit substantial protease activity, possibly causing its own activation (i.e. conversion to a disulfide-linked two-chain fully active form), although the activation seems to be mediated predominantly by two-chain molecules. Our aim was to assess the roles of CUB and LDLRA repeats in zymogen activation. Transient expression studies of soluble truncated constructs of recombinant matriptase in COS-1 cells showed that the CUB repeat had an inhibitory effect on zymogen activation, possibly because it facilitated the interaction of two-chain molecules with a matriptase inhibitor, hepatocyte growth factor activator inhibitor type-1. By contrast, the LDLRA repeat had a promoting effect on zymogen activation. The effect of the LDLRA repeat seems to reflect its ability to increase zymogen activity. The proteolytic activities were higher in pseudozymogen forms of recombinant matriptase containing the LDLRA repeat than in a pseudozymogen without the repeat. Our findings provide new insights into the roles of these non-catalytic domains in the generation of active matriptase. PMID:23038671

  5. Efficient sortase-mediated N-terminal labeling of TEV protease cleaved recombinant proteins.

    PubMed

    Sarpong, Kwabena; Bose, Ron

    2017-03-15

    A major challenge in attaching fluorophores or other handles to proteins is the availability of a site-specific labeling strategy that provides stoichiometric modification without compromising protein integrity. We developed a simple approach that combines TEV protease cleavage, sortase modification and affinity purification to N-terminally label proteins. To achieve stoichiometrically-labeled protein, we included a short affinity tag in the fluorophore-containing peptide for post-labeling purification of the modified protein. This strategy can be easily applied to any recombinant protein with a TEV site and we demonstrate this on Epidermal Growth Factor Receptor (EGFR) and Membrane Scaffold Protein (MSP) constructs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Purification and Characterization of a Protease Produced by a Planomicrobium sp. L-2 from Gut of Octopus vulgaris

    PubMed Central

    Liu, Qing; Sun, Shujing; Piao, Meizi; Yang, Ji Young

    2013-01-01

    Protease widely exists in the digestive tract of animals and humans, playing a very important role in protein digestion and absorption. In this study, a high protease-producing strain Planomicrobium sp. L-2 was isolated and identified from the digestive tract of Octopus variabilis. The strain was identified by physiological and biochemical experiments and 16S rDNA sequences analysis. A protease was obtained from the strain Planomicrobium sp. L-2 through ammonium sulfate precipitation, dialysis and enrichment, DEAE-Sephadex A50 anion-exchange chromatography, and Sephadex G-100 gel chromatography. The molecular weight and properties of the protease were characterized, including optimum temperature and pH, thermal stability, protease inhibitions and metal ions. According to our results, the protease from Planomicrobium sp. L-2 strain designated as F1-1 was obtained by three-step separation and purification from crude enzyme. The molecular weight of the protease was 61.4 kDa and its optimum temperature was 40°C. The protease F1-1 showed a broad pH profile for casein hydrolysis between 5.0~11.0. No residual activity was observed after incubation for 40 min at 60°C and 60 min at 50°C. F1-1 protease was inhibited by Mn2+, Hg2+, Pb2+, Zn2+, and Cu2+ ions, as well as PMSF, indicating that the protease F1-1 was a serine protease. Additionally, research basis provided by this study could be considered for industrial application of octopus intestinal proteases. PMID:24551830

  7. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum.

    PubMed

    Gao, Ruichang; Shi, Tong; Liu, Xiangdong; Zhao, Mengqin; Cui, Henglin; Yuan, Li

    2017-03-01

    Because proteases play an important role in the fermentation of fish sauce, the purification and characterisation of an extracellular protease from the halophilic archaeon Halogranum rubrum was investigated. The molecular mass of the protease was estimated to be approximately 47 kDa based on sodium dodecyl sulfate-polyacrylamide gel electropheresis (SDS-PAGE) and native-PAGE analysis. The optimum conditions for catalytic activity were pH 8.0 and 50°C. The protease showed alkaline stability (pH 7.0-10.0). The protease also exhibited novel catalytic ability over a broad range of salinity (NaCl 0-3 mol L -1 ). Calcium ion enhanced the proteolytic activity of the enzyme. The K m and V max values of the purified protease for casein were calculated to be 4.89 mg mL -1 and 1111.11 U mL -1 , respectively. The protease was strongly inhibited by ethylenediamine tetraacetic acid (EDTA) and phenylmethanesulfonyl fluoride (PMSF). Meanwhile, the protease was stable in the presence of Triton X-100, isopropanol, ethanol or dithio-bis-nitrobenzoic (DTNB), but was inhibited by sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO) or methanol. MALDI -TOF/TOF MS analysis revealed that the protease shared some functional traits with protease produced by Halogranum salarium. Furthermore, it exhibited high hydrolytic activity on silver carp myosin protein. The protease is an alkaline and salt-tolerant enzyme that hydrolyses silver carp myosin with high efficiency. These excellent characteristics make this protease an attractive candidate for industrial use in low-salt fish sauce fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Killed but metabolically active Bacillus anthracis vaccines induce broad and protective immunity against anthrax.

    PubMed

    Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W

    2009-04-01

    Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.

  9. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, Jesús; Lacombe, Thierry; Deloche, Olivier; Linder, Patrick; Kressler, Dieter

    2004-01-01

    Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele. PMID:15126390

  10. The Klebsiella pneumoniae O Antigen Contributes to Bacteremia and Lethality during Murine Pneumonia

    PubMed Central

    Shankar-Sinha, Sunita; Valencia, Gabriel A.; Janes, Brian K.; Rosenberg, Jessica K.; Whitfield, Chris; Bender, Robert A.; Standiford, Ted J.; Younger, John G.

    2004-01-01

    Bacterial surface carbohydrates are important pathogenic factors in gram-negative pneumonia infections. Among these factors, O antigen has been reported to protect pathogens against complement-mediated killing. To examine further the role of O antigen, we insertionally inactivated the gene encoding a galactosyltransferase necessary for serotype O1 O-antigen synthesis (wbbO) from Klebsiella pneumoniae 43816. Analysis of the mutant lipopolysaccharide by sodium dodecyl sulfate-polyacrylamide gel electrophoresis confirmed the absence of O antigen. In vitro, there were no detectable differences between wild-type K. pneumoniae and the O-antigen-deficient mutant in regard to avid binding by murine complement C3 or resistance to serum- or whole-blood-mediated killing. Nevertheless, the 72-h 50% lethal dose of the wild-type strain was 30-fold greater than that of the mutant (2 × 103 versus 6 × 104 CFU) after intratracheal injection in ICR strain mice. Despite being less lethal, the mutant organism exhibited comparable intrapulmonary proliferation at 24 h compared to the level of the wild type. Whole-lung chemokine expression (CCL3 and CXCL2) and bronchoalveolar inflammatory cell content were also similar between the two infections. However, whereas the wild-type organism produced bacteremia within 24 h of infection in every instance, bacteremia was not seen in mutant-infected mice. These results suggest that during murine pneumonia caused by K. pneumoniae, O antigen contributes to lethality by increasing the propensity for bacteremia and not by significantly changing the early course of intrapulmonary infection. PMID:14977947

  11. Lethal factor antibodies contribute to lethal toxin neutralization in recipients of anthrax vaccine precipitated.

    PubMed

    Dumas, Eric K; Garman, Lori; Cuthbertson, Hannah; Charlton, Sue; Hallis, Bassam; Engler, Renata J M; Choudhari, Shyamal; Picking, William D; James, Judith A; Farris, A Darise

    2017-06-08

    A major difference between two currently licensed anthrax vaccines is presence (United Kingdom Anthrax Vaccine Precipitated, AVP) or absence (United States Anthrax Vaccine Adsorbed, AVA) of quantifiable amounts of the Lethal Toxin (LT) component Lethal Factor (LF). The primary immunogen in both vaccine formulations is Protective Antigen (PA), and LT-neutralizing antibodies directed to PA are an accepted correlate of vaccine efficacy; however, vaccination studies in animal models have demonstrated that LF antibodies can be protective. In this report we compared humoral immune responses in cohorts of AVP (n=39) and AVA recipients (n=78) matched 1:2 for number of vaccinations and time post-vaccination, and evaluated whether the LF response contributes to LT neutralization in human recipients of AVP. PA response rates (≥95%) and PA IgG concentrations were similar in both groups; however, AVP recipients exhibited higher LT neutralization ED 50 values (AVP: 1464.0±214.7, AVA: 544.9±83.2, p<0.0001) and had higher rates of LF IgG positivity (95%) compared to matched AVA vaccinees (1%). Multiple regression analysis revealed that LF IgG makes an independent and additive contribution to the LT neutralization response in the AVP group. Affinity purified LF antibodies from two independent AVP recipients neutralized LT and bound to LF Domain 1, confirming contribution of LF antibodies to LT neutralization. This study documents the benefit of including an LF component to PA-based anthrax vaccines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An alternative pathway to eusociality: Exploring the molecular and functional basis of fortress defense.

    PubMed

    Lawson, Sarah P; Sigle, Leah T; Lind, Abigail L; Legan, Andrew W; Mezzanotte, Jessica N; Honegger, Hans-Willi; Abbot, Patrick

    2017-08-01

    Some animals express a form of eusociality known as "fortress defense," in which defense rather than brood care is the primary social act. Aphids are small plant-feeding insects, but like termites, some species express division of labor and castes of aggressive juvenile "soldiers." What is the functional basis of fortress defense eusociality in aphids? Previous work showed that the acquisition of venoms might be a key innovation in aphid social evolution. We show that the lethality of aphid soldiers derives in part from the induction of exaggerated immune responses in insects they attack. Comparisons between closely related social and nonsocial species identified a number of secreted effector molecules that are candidates for immune modulation, including a convergently recruited protease described in unrelated aphid species with venom-like functions. These results suggest that aphids are capable of antagonizing conserved features of the insect immune response, and provide new insights into the mechanisms underlying the evolution of fortress defense eusociality in aphids. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  13. The role of platelets during reproduction.

    PubMed

    Isermann, Berend; Nawroth, Peter P

    2006-01-01

    The availability of mice with defined defects within the hemostatic system enabled researchers to identify a role the coagulation system for embryonic and placental development. However, the role of platelets during development has only recently been experimentally addressed, giving some insight into potential functions of platelets during development. Thus, a quantitative embryonic platelet defect (severe thrombopenia secondary to NF-E2 deficiency) is associated with an embryonic growth retardation and reduced vascularisation of the placenta. Maternal platelet deficiency is associated with placental hemorrhage, which, however, does not impair embryonic or maternal survival. In vitro studies established that platelets or platelet conditioned medium regulate the invasive properties of human extravillous trophoblast cells and induce a phenotypical switch of trophoblast cells. These data imply that platelets are of relevance during placentation. Conversely, platelets and the formation of platelet-fibrin aggregates are dispensable for the development of the embryo proper, establishing that the lethal phenotypes observed in some embryo slacking coagulation regulators does not result from an inability to form platelet-fibrin aggregates, but likely reflects altered protease dependent signaling during vascular development.

  14. The low density lipoprotein receptor-related protein 1: Unique tissue-specific functions revealed by selective gene knockout studies

    PubMed Central

    Lillis, Anna P.; Van Duyn, Lauren B.; Murphy-Ullrich, Joanne E.; Strickland, Dudley K.

    2008-01-01

    The low-density lipoprotein (LDL) receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, in macrophages and in adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: first, its ability to recognize more than thirty distinct ligands; second, its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner; and third, its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases. PMID:18626063

  15. Photodynamic therapy with redaporfin targets the endoplasmic reticulum and Golgi apparatus.

    PubMed

    Gomes-da-Silva, Lígia C; Zhao, Liwei; Bezu, Lucillia; Zhou, Heng; Sauvat, Allan; Liu, Peng; Durand, Sylvère; Leduc, Marion; Souquere, Sylvie; Loos, Friedemann; Mondragón, Laura; Sveinbjørnsson, Baldur; Rekdal, Øystein; Boncompain, Gaelle; Perez, Franck; Arnaut, Luis G; Kepp, Oliver; Kroemer, Guido

    2018-05-28

    Preclinical evidence depicts the capacity of redaporfin (Redp) to act as potent photosensitizer, causing direct antineoplastic effects as well as indirect immune-dependent destruction of malignant lesions. Here, we investigated the mechanisms through which photodynamic therapy (PDT) with redaporfin kills cancer cells. Subcellular localization and fractionation studies based on the physicochemical properties of redaporfin revealed its selective tropism for the endoplasmic reticulum (ER) and the Golgi apparatus (GA). When activated, redaporfin caused rapid reactive oxygen species-dependent perturbation of ER/GA compartments, coupled to ER stress and an inhibition of the GA-dependent secretory pathway. This led to a general inhibition of protein secretion by PDT-treated cancer cells. The ER/GA play a role upstream of mitochondria in the lethal signaling pathway triggered by redaporfin-based PDT Pharmacological perturbation of GA function or homeostasis reduces mitochondrial permeabilization. In contrast, removal of the pro-apoptotic multidomain proteins BAX and BAK or pretreatment with protease inhibitors reduced cell killing, yet left the GA perturbation unaffected. Altogether, these results point to the capacity of redaporfin to kill tumor cells via destroying ER/GA function. © 2018 The Authors.

  16. Optimum production and characterization of an acid protease from marine yeast Metschnikowia reukaufii W6b

    NASA Astrophysics Data System (ADS)

    Li, Jing; Peng, Ying; Wang, Xianghong; Chi, Zhenming

    2010-12-01

    The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin-1. Under the optimal conditions, 72.5 UmL-1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.

  17. A Heterodimer of a VHH (Variable Domains of Camelid Heavy Chain-only) Antibody That Inhibits Anthrax Toxin Cell Binding Linked to a VHH Antibody That Blocks Oligomer Formation Is Highly Protective in an Anthrax Spore Challenge Model*

    PubMed Central

    Moayeri, Mahtab; Leysath, Clinton E.; Tremblay, Jacqueline M.; Vrentas, Catherine; Crown, Devorah; Leppla, Stephen H.; Shoemaker, Charles B.

    2015-01-01

    Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from “pre-pore” to its SDS and heat-resistant “pore” conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes. PMID:25564615

  18. A balance between TFPI and thrombin-mediated platelet activation is required for murine embryonic development

    PubMed Central

    Ellery, Paul E. R.; Maroney, Susan A.; Cooley, Brian C.; Luyendyk, James P.; Zogg, Mark; Weiler, Hartmut

    2015-01-01

    Tissue factor pathway inhibitor (TFPI) is a critical anticoagulant protein present in endothelium and platelets. Mice lacking TFPI (Tfpi−/−) die in utero from disseminated intravascular coagulation. They are rescued by concomitant tissue factor (TF) deficiency, demonstrating that TFPI modulates TF function in vivo. Recent studies have found TFPI inhibits prothrombinase activity during the initiation of coagulation and limits platelet accumulation during thrombus formation, implicating TFPI in modulating platelet procoagulant activity. To examine whether altered platelet function would compensate for the lack of TFPI and rescue TFPI-null embryonic lethality, Tfpi+/− mice lacking the platelet thrombin receptor, protease activated receptor 4 (PAR4; Par4−/−), or its coreceptor, PAR3, were mated. PAR3 deficiency did not rescue Tfpi−/− embryos, but >40% of expected Tfpi−/−:Par4−/− offspring survived to adulthood. Adult Tfpi−/−:Par4−/− mice did not exhibit overt thrombosis. However, they had focal sterile inflammation with fibrin(ogen) deposition in the liver and elevated plasma thrombin-antithrombin complexes, indicating activation of coagulation at baseline. Tfpi−/−:Par4−/− mice have platelet and fibrin accumulation similar to Par4−/− mice following venous electrolytic injury but were more susceptible than Par4−/− mice to TF-induced pulmonary embolism. In addition, ∼30% of the Tfpi−/−:Par4−/− mice were born with short tails. Tfpi−/−:Par4−/− mice are the first adult mice described that lack TFPI with unaltered TF. They demonstrate that TFPI physiologically modulates thrombin-dependent platelet activation in a manner that is required for successful embryonic development and identify a role for TFPI in dampening intravascular procoagulant stimuli that lead to thrombin generation, even in the absence of thrombin-mediated platelet activation. PMID:25954015

  19. A heterodimer of a VHH (variable domains of camelid heavy chain-only) antibody that inhibits anthrax toxin cell binding linked to a VHH antibody that blocks oligomer formation is highly protective in an anthrax spore challenge model.

    PubMed

    Moayeri, Mahtab; Leysath, Clinton E; Tremblay, Jacqueline M; Vrentas, Catherine; Crown, Devorah; Leppla, Stephen H; Shoemaker, Charles B

    2015-03-06

    Anthrax disease is caused by a toxin consisting of protective antigen (PA), lethal factor, and edema factor. Antibodies against PA have been shown to be protective against the disease. Variable domains of camelid heavy chain-only antibodies (VHHs) with affinity for PA were obtained from immunized alpacas and screened for anthrax neutralizing activity in macrophage toxicity assays. Two classes of neutralizing VHHs were identified recognizing distinct, non-overlapping epitopes. One class recognizes domain 4 of PA at a well characterized neutralizing site through which PA binds to its cellular receptor. A second neutralizing VHH (JKH-C7) recognizes a novel epitope. This antibody inhibits conversion of the PA oligomer from "pre-pore" to its SDS and heat-resistant "pore" conformation while not preventing cleavage of full-length 83-kDa PA (PA83) by cell surface proteases to its oligomer-competent 63-kDa form (PA63). The antibody prevents endocytosis of the cell surface-generated PA63 subunit but not preformed PA63 oligomers formed in solution. JKH-C7 and the receptor-blocking VHH class (JIK-B8) were expressed as a heterodimeric VHH-based neutralizing agent (VNA2-PA). This VNA displayed improved neutralizing potency in cell assays and protected mice from anthrax toxin challenge with much better efficacy than the separate component VHHs. The VNA protected virtually all mice when separately administered at a 1:1 ratio to toxin and protected mice against Bacillus anthracis spore infection. Thus, our studies show the potential of VNAs as anthrax therapeutics. Due to their simple and stable nature, VNAs should be amenable to genetic delivery or administration via respiratory routes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The origin of Behçet's disease geoepidemiology: possible role of a dual microbial-driven genetic selection.

    PubMed

    Piga, Matteo; Mathieu, Alessandro

    2014-01-01

    It is recognised that the genetic profiles that give rise to chronic inflammatory diseases, under the influence of environmental agents, might have been implicated in the host defence mechanism against lethal infections in the past. Behçet's disease (BD) is an immune-mediated inflammatory disease, expressed as vasculitis, triggered by environmental factors in genetically susceptible individuals. We carried out a review of published data to draw up an evolutionary adaptation model, as Author's perspective, for genetic susceptibility factors and inflammatory immune response involved in BD pathogenesis. Two lethal infectious agents, Plasmodium Falciparum and Yersinia Pestis, are proposed as the putative driving forces that favoured the fixing of the major genetic susceptibility factors to BD, thus determining its geoepidemiology. Further studies are needed to confirm the validity of this evolutionary model which includes and integrates the key insights of previous hypotheses.

  1. Effectiveness of commercial inhibitors against subtype F HIV-1 protease.

    PubMed

    Krauchenco, Sandra; Martins, Nadia H; Sanches, Mario; Polikarpov, Igor

    2009-06-01

    Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.

  2. Physical characterization of the cloned protease III gene from Escherichia coli K-12.

    PubMed

    Dykstra, C C; Kushner, S R

    1985-09-01

    Analysis of the cloned protease III gene (ptr) from Escherichia coli K-12 has demonstrated that in addition to the previously characterized 110,000-Mr protease III protein, a second 50,000-Mr polypeptide (p50) is derived from the amino-terminal end of the coding sequence. The p50 polypeptide is found predominantly in the periplasmic space along with protease III, but does not proteolytically degrade insulin, a substrate for protease III. p50 does not appear to originate from autolysis of the larger protein. Protease III is not essential for normal cell growth since deletion of the structural gene causes no observed alterations in the phenotypic properties of the bacteria. A 30-fold overproduction of protease III does not affect cell viability. A simple new purification method for protease III is described.

  3. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    PubMed

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  4. Viral evolution in response to the broad-based retroviral protease inhibitor TL-3.

    PubMed

    Bühler, B; Lin, Y C; Morris, G; Olson, A J; Wong, C H; Richman, D D; Elder, J H; Torbett, B E

    2001-10-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.

  5. Viral Evolution in Response to the Broad-Based Retroviral Protease Inhibitor TL-3†

    PubMed Central

    Bühler, Bernd; Lin, Ying-Chuan; Morris, Garrett; Olson, Arthur J.; Wong, Chi-Huey; Richman, Douglas D.; Elder, John H.; Torbett, Bruce E.

    2001-01-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity. PMID:11533212

  6. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, Regina S.; Rodriguez, Rusty J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a UV-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  7. Characterization and isolation of an extracellular serine protease from the tomato pathogen Colletotrichum coccodes, and it's role in pathogenicity

    USGS Publications Warehouse

    Redman, R.S.; Rodriguez, R.J.

    2002-01-01

    Extracellular enzymes play an important role in the pathogenicity and virulence of phytopathogenic fungi. Several isolates of Colletotrichum coccodes, causal agent of anthracnose on tomato, were screened to determine the relationship between protease activity and virulence. A direct relationship was observed between extracellular protease activity and the induction of disease symptoms of fruit and mortality in plants. Isolate Cc155 exhibited the highest protease activity after five days of growth in protease induction medium and produced an extracellular serine protease (sp78) that was 78 kDa, auto-degradative, glucose repressible, and non-glycosylated. To determine the role of sp78 in pathogenicity, a uv-induced extracellular protease deficient mutant (np155) was generated from the wildtype isolate Cc155. Np155 maintained growth rates comparable to Cc155 and produced wildtype levels of extracellular cellulase but did not produce extracellular protease. Unlike Cc155, np155 caused no disease symptoms on tomato fruit and 0% mortality on tomato seedlings. These results suggest that extracellular protease activity is required for pathogenicity and virulence of C. coccodes, and that the elimination of protease activity transforms a virulent pathogen to a non-pathogenic endophyte.

  8. Purification and characterization of a cysteine protease from corms of freesia, Freesia reflacta.

    PubMed

    Kaneda, M; Yonezawa, H; Uchikoba, T

    1997-09-01

    A protease (freesia protease B) has been purified to electrophoretic homogeneity from corms of freesia, Freesia reflacta by five steps of chromatography. Its M(r) was estimated to be about 26,000 by SDS-PAGE. The optimum pH of the enzyme was 6.0-7.0 at 30 degrees C using casein as a substrate. The enzyme was strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethanesulphonylfluoride and EDTA. These results indicate that freesia protease B is a cysteine protease. Nine sites of oxidized insulin B-chain were cleaved by freesia protease B in 24 h of hydrolysis. The four cleavage sites among them resembled those of papain. From the digestion of five peptidyl substrates the specificity of freesia protease B was found to be approximately broad, but the preferential cleavage sites were negatively charged residues at P1 positions. Freesia protease B preferred also the large hydrophobic amino acid residues at the P2 position, in a similar manner to papain. The amino terminal sequence of freesia protease B was identical with those of papain in regard to the conservative residues of cysteine protease.

  9. Multi-Approach Analysis for the Identification of Proteases within Birch Pollen.

    PubMed

    McKenna, Olivia E; Posselt, Gernot; Briza, Peter; Lackner, Peter; Schmitt, Armin O; Gadermaier, Gabriele; Wessler, Silja; Ferreira, Fatima

    2017-07-04

    Birch pollen allergy is highly prevalent, with up to 100 million reported cases worldwide. Proteases in such allergen sources have been suggested to contribute to primary sensitisation and exacerbation of allergic disorders. Until now the protease content of Betula verrucosa , a birch species endemic to the northern hemisphere has not been studied in detail. Hence, we aim to identify and characterise pollen and bacteria-derived proteases found within birch pollen. The pollen transcriptome was constructed via de novo transcriptome sequencing and analysis of the proteome was achieved via mass spectrometry; a cross-comparison of the two databases was then performed. A total of 42 individual proteases were identified at the proteomic level. Further clustering of proteases into their distinct catalytic classes revealed serine, cysteine, aspartic, threonine, and metallo-proteases. Further to this, protease activity of the pollen was quantified using a fluorescently-labelled casein substrate protease assay, as 0.61 ng/mg of pollen. A large number of bacterial strains were isolated from freshly collected birch pollen and zymographic gels with gelatinase and casein, enabled visualisation of proteolytic activity of the pollen and the collected bacterial strains. We report the successful discovery of pollen and bacteria-derived proteases of Betula verrucosa .

  10. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  11. The herpesvirus proteases as targets for antiviral chemotherapy.

    PubMed

    Waxman, L; Darke, P L

    2000-01-01

    Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing common features that may be possible to exploit in the development of a new class of anti-herpesvirus agents. The herpesvirus proteases have been identified as belonging to a unique class of serine protease, with a Ser-His-His catalytic triad. A new, single domain protein fold has been determined by X-ray crystallography for the proteases of at least three different herpesviruses. Also unique for serine proteases, dimerization has been shown to be required for activity of the cytomegalovirus and HSV proteases. The dimerization requirement seriously impacts methods needed for productive, functional analysis and inhibitor discovery. The conserved functional and catalytic properties of the herpesvirus proteases lead to common considerations for this group of proteases in the early phases of inhibitor discovery. In general, classical serine protease inhibitors that react with active site residues do not readily inactivate the herpesvirus proteases. There has been progress however, with activated carbonyls that exploit the selective nucleophilicity of the active site serine. In addition, screening of chemical libraries has yielded novel structures as starting points for drug development. Recent crystal structures of the herpesvirus proteases now allow more direct interpretation of ligand structure-activity relationships. This review first describes basic functional aspects of herpesvirus protease biology and enzymology. Then we discuss inhibitors identified to date and the prospects for their future development.

  12. Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shekeb; Mian, Hira S.; Sandercock, Linda E.

    2013-03-07

    Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal 'passenger domain' responsible for the specific effector functions of the molecule and a C-terminal '{beta}-domain' responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-{angstrom} crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel {beta}-helix precededmore » by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this {beta}-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the {beta}-helix within SPATEs.« less

  13. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4)*

    PubMed Central

    Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.

    2015-01-01

    Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536

  14. HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis

    PubMed Central

    Zhang, Luhua; Li, Ying; Wen, Yiping; Lau, Gee W.; Huang, Xiaobo; Wu, Rui; Yan, Qigui; Huang, Yong; Zhao, Qin; Ma, Xiaoping

    2016-01-01

    Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis. PMID:27217419

  15. HtrA Is Important for Stress Resistance and Virulence in Haemophilus parasuis.

    PubMed

    Zhang, Luhua; Li, Ying; Wen, Yiping; Lau, Gee W; Huang, Xiaobo; Wu, Rui; Yan, Qigui; Huang, Yong; Zhao, Qin; Ma, Xiaoping; Wen, Xintian; Cao, Sanjie

    2016-08-01

    Haemophilus parasuis is an opportunistic pathogen that causes Glässer's disease in swine, with polyserositis, meningitis, and arthritis. The high-temperature requirement A (HtrA)-like protease, which is involved in protein quality control, has been reported to be a virulence factor in many pathogens. In this study, we showed that HtrA of H. parasuis (HpHtrA) exhibited both chaperone and protease activities. Finally, nickel import ATP-binding protein (NikE), periplasmic dipeptide transport protein (DppA), and outer membrane protein A (OmpA) were identified as proteolytic substrates for HpHtrA. The protease activity reached its maximum at 40°C in a time-dependent manner. Disruption of the htrA gene from strain SC1401 affected tolerance to temperature stress and resistance to complement-mediated killing. Furthermore, increased autoagglutination and biofilm formation were detected in the htrA mutant. In addition, the htrA mutant was significantly attenuated in virulence in the murine model of infection. Together, these data demonstrate that HpHtrA plays an important role in the virulence of H. parasuis. Copyright © 2016 Zhang et al.

  16. Studies on detection and analysis of proteases in leaf extract of medicinally important plants.

    PubMed

    Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani

    2018-02-01

    The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants could serve as excellent sources of proteases which could be exploited for various industrial, food and pharmaceutical applications. Copyright © 2018 Elsevier GmbH. All rights reserved.

  17. Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease

    PubMed Central

    Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.

    2000-01-01

    Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609

  18. Design, synthesis and evaluation of a potent substrate analog inhibitor identified by scanning Ala/Phe mutagenesis, mimicking substrate co-evolution, against multidrug-resistant HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yedidi, Ravikiran S.; Muhuhi, Joseck M.; Liu, Zhigang

    Highlights: •Inhibitors against MDR HIV-1 protease were designed, synthesized and evaluated. •Lead peptide (6a) showed potent inhibition (IC{sub 50}: 4.4 nM) of MDR HIV-1 protease. •(6a) Showed favorable binding isotherms against NL4-3 and MDR proteases. •(6a) Induced perturbations in the {sup 15}N-HSQC spectrum of MDR HIV-1 protease. •Molecular modeling suggested that (6a) may induce total flap closure inMDR protease. -- Abstract: Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: (1TW7)), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded activemore » site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC{sub 50}: 4.4 nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6aagainst both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of {sup 15}N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.« less

  19. Peptide code-on-a-microplate for protease activity analysis via MALDI-TOF mass spectrometric quantitation.

    PubMed

    Hu, Junjie; Liu, Fei; Ju, Huangxian

    2015-04-21

    A peptide-encoded microplate was proposed for MALDI-TOF mass spectrometric (MS) analysis of protease activity. The peptide codes were designed to contain a coding region and the substrate of protease for enzymatic cleavage, respectively, and an internal standard method was proposed for the MS quantitation of the cleavage products of these peptide codes. Upon the cleavage reaction in the presence of target proteases, the coding regions were released from the microplate, which were directly quantitated by using corresponding peptides with one-amino acid difference as the internal standards. The coding region could be used as the unique "Protease ID" for the identification of corresponding protease, and the amount of the cleavage product was used for protease activity analysis. Using trypsin and chymotrypsin as the model proteases to verify the multiplex protease assay, the designed "Trypsin ID" and "Chymotrypsin ID" occurred at m/z 761.6 and 711.6. The logarithm value of the intensity ratio of "Protease ID" to internal standard was proportional to trypsin and chymotrypsin concentration in a range from 5.0 to 500 and 10 to 500 nM, respectively. The detection limits for trypsin and chymotrypsin were 2.3 and 5.2 nM, respectively. The peptide-encoded microplate showed good selectivity. This proposed method provided a powerful tool for convenient identification and activity analysis of multiplex proteases.

  20. Understanding serine proteases implications on Leishmania spp lifecycle.

    PubMed

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Proteases as therapeutics

    PubMed Central

    Craik, Charles S.; Page, Michael J.; Madison, Edwin L.

    2015-01-01

    Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications. PMID:21406063

  2. Endosymbiotic and Host Proteases in the Digestive Tract of the Invasive Snail Pomacea canaliculata: Diversity, Origin and Characterization

    PubMed Central

    Godoy, Martín S.; Castro-Vasquez, Alfredo; Vega, Israel A.

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen. PMID:23818959

  3. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR).

    PubMed

    Bahat, Assaf; Perlberg, Shira; Melamed-Book, Naomi; Isaac, Sara; Eden, Amir; Lauria, Ines; Langer, Thomas; Orly, Joseph

    2015-06-15

    High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Role of the protective antigen octamer in the molecular mechanism of anthrax lethal toxin stabilization in plasma

    PubMed Central

    Kintzer, Alexander F.; Sterling, Harry J.; Tang, Iok I.; Abdul-Gader, Ali; Miles, Andrew J.; Wallace, B. A.; Williams, Evan R.; Krantz, Bryan A.

    2010-01-01

    Anthrax is caused by strains of Bacillus anthracis that produce two key virulence factors, anthrax toxin (Atx) and a poly-γ-D-glutamic acid capsule. Atx is comprised of three-proteins: protective antigen (PA) and two enzymes, lethal factor (LF) and edema factor (EF). To disrupt cell function, these components must assemble into holotoxin complexes, which contain either a ring-shaped homooctameric or homoheptameric PA oligomer bound to multiple copies of either LF and/or EF, producing lethal toxin (LT), edema toxin, or mixtures thereof. Once a host cell endocytoses these complexes, PA converts into a membrane-inserted channel that translocates LF and EF into the cytosol. LT may assemble on host cell surfaces or extracellularly in plasma. We show that under physiological conditions in bovine plasma that LT complexes containing heptameric PA aggregate and inactivate more readily than LT complexes containing octameric PA. LT complexes containing octameric PA possess enhanced stability, channel forming activity, and macrophage cytotoxicity relative to those containing heptameric PA. Under physiological conditions, multiple biophysical probes reveal that heptameric PA can prematurely adopt the channel conformation, but octameric PA complexes remain in their soluble prechannel configuration allowing them to resist aggregation and inactivation. We conclude that PA may form an octameric oligomeric state as a means to produce a more stable and active LT complex that may circulate freely in the blood. PMID:20433851

  5. Low susceptibility of NC/Nga mice to tumor necrosis factor-alpha-mediated lethality and hepatocellular damage with D-galactosamine sensitization.

    PubMed

    Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi

    2009-02-01

    The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.

  6. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity.

    PubMed

    Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh; Rosewell, Katherine L; Brännström, Mats; Curry, Thomas E

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. Copyright © 2017 by the Endocrine Society.

  7. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity

    PubMed Central

    Puttabyatappa, Muraly; Al-Alem, Linah F.; Zakerkish, Farnosh; Rosewell, Katherine L.; Brännström, Mats

    2017-01-01

    Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation. PMID:27813674

  8. Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.

    PubMed

    Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W

    2014-05-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis.

  9. Epidemic Population Structure of Pseudomonas aeruginosa: Evidence for a Clone That Is Pathogenic to the Eye and That Has a Distinct Combination of Virulence Factors

    PubMed Central

    Lomholt, Jeanet A.; Poulsen, Knud; Kilian, Mogens

    2001-01-01

    The genetic structure of a population of Pseudomonas aeruginosa, isolated from patients with keratitis, endophthalmitis, and contact lens-associated red eye, contact lens storage cases, urine, ear, blood, lungs, wounds, feces, and the environment was determined by multilocus enzyme electrophoresis. The presence and characteristics of virulence factors were determined by restriction fragment length polymorphism analysis with DNA probes for lasA, lasB, aprA, exoS, exoT, exoU, and ctx and by zymography of staphylolysin, elastase, and alkaline protease. These analyses revealed an epidemic population structure of P. aeruginosa, characterized by frequent recombination in which a particular successful clone may increase, predominate for a time, and then disasappear as a result of recombination. Epidemic clones were found among isolates from patients with keratitis. They were characterized by high activity of a hitherto-unrecognized size variant of elastase, high alkaline protease activity, and possession of the exoU gene encoding the cytotoxic exoenzyme U. These virulence determinants are not exclusive traits in strains causing keratitis, as strains with other properties may cause keratitis in the presence of predisposing conditions. There were no uniform patterns of characteristics of isolates from other types of infection; however, all strains from urinary tract infections possessed the exoS gene, all strains from environment and feces and the major part of keratitis and wound isolates exhibited high elastase and alkaline protease activity, and all strains from feces showed high staphylolysin activity, indicating that these virulence factors may be important in the pathogenesis of these infectious diseases. PMID:11553572

  10. Complement Evasion by Pathogenic Leptospira.

    PubMed

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira . Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira , have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.

  11. Complement Evasion by Pathogenic Leptospira

    PubMed Central

    Fraga, Tatiana Rodrigues; Isaac, Lourdes; Barbosa, Angela Silva

    2016-01-01

    Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host. PMID:28066433

  12. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Molecular and Biotechnological Aspects of Microbial Proteases†

    PubMed Central

    Rao, Mala B.; Tanksale, Aparna M.; Ghatge, Mohini S.; Deshpande, Vasanti V.

    1998-01-01

    Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology. PMID:9729602

  14. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age123

    PubMed Central

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn

    2017-01-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26–40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24–26 wk GA)-delivering mothers and 9 from late GA (LGA) (27–32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL−1 · d−1 and 0.454 μg · mL−1 · d−1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not vary substantially across GA and postnatal age. PMID:28424255

  15. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    PubMed

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not vary substantially across GA and postnatal age. © 2017 American Society for Nutrition.

  16. Hepatocyte growth factor/scatter factor enhances the invasion of mesothelioma cell lines and the expression of matrix metalloproteinases

    PubMed Central

    Harvey, P; Clark, I M; Jaurand, M-C; Warn, R M; Edwards, D R

    2000-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional factor involved both in development and tissue repair, as well as pathological processes such as cancer and metastasis. It has been identified in vivo in many types of tumours together with its tyrosine kinase receptor, Met. We show here that exogenous HGF/SF acts as a strong chemoattractant for human mesothelioma cell lines. The factor also enhanced cell adhesion to and invasion into Matrigel. The mesothelioma cell lines synthesized a panel of matrix metalloproteinases critical for tumour progression such as MMP-1, 2, 3, 9 and membrane-bound MT1-MMP. HGF/SF stimulated the expression of MMP-1, 9 and MT1-MMP and had a slight effect on expression of the MMP inhibitor TIMP-1 but not TIMP-2. However, there was no simple correlation between the levels of MMPs and TIMPs of the cell lines and their different invasion properties or between HGF/SF stimulatory effects on MMP expression and invasion. In addition, effects of protease inhibitors on invasion suggested that serine proteases were also expressed in human mesothelioma cell lines and were involved in HGF/SF-induced invasion. The results show a predominant role for HGF/SF in mesothelioma cell invasion, stimulating simultaneously adhesion, motility, invasion and regulation of MMP and TIMP levels. © 2000 Cancer Research Campaign PMID:11027427

  17. Purification, Characterization, and Cloning of a Cold-Adapted Protease from Antarctic Janthinobacterium lividum.

    PubMed

    Kim, Hyun-Do; Kim, Su-Mi; Choi, Jong-Il

    2018-03-28

    In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.

  18. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  19. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  20. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration.

    PubMed

    Qi, Gaofu; Li, Jingjing; Wang, Shengying; Xin, Shanshan; Du, Peng; Zhang, Qingye; Zhao, Xiuyun

    2011-04-01

    Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Application of protease technology in dermatology: rationale for incorporation into skin care with initial observations on formulations designed for skin cleansing, maintenance of hydration, and restoration of the epidermal permeability barrier.

    PubMed

    Del Rosso, James Q

    2013-06-01

    This article reviews background on proteases and their functions, their physiological significance in skin, and the potential implications of incorporating specific proteases and protease blends into dermatological products, including skin care formulations. The history of protease blend formulations used in wound model studies and for other disorders is reviewed. In vitro data with use of a specific 3-protease blend with evaluation of the impact on various skin proteins and peptides is also discussed in this article.

  2. HIV protease drug resistance and its impact on inhibitor design.

    PubMed

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  3. Proteolytic Systems in Milk: Perspectives on the Evolutionary Function within the Mammary Gland and the Infant

    PubMed Central

    Dallas, David C.; Murray, Niamh M.; Gan, Junai

    2015-01-01

    Milk contains elements of numerous proteolytic systems (zymogens, active proteases, protease inhibitors and protease activators) produced in part from blood, in part by mammary epithelial cells and in part by immune cell secretion. Researchers have examined milk proteases for decades, as they can cause major defects in milk quality and cheese production. Most previous research has examined these proteases with the aim to eliminate or control their actions. However, our recent peptidomics research demonstrates that these milk proteases produce specific peptides in healthy milk and continue to function within the infant’s gastrointestinal tract. These findings suggest that milk proteases have an evolutionary function in aiding the infant’s digestion or releasing functional peptides. In other words, the mother provides the infant with not only dietary proteins but also the means to digest them. However, proteolysis in the milk is controlled by a balance of protease inhibitors and protease activators so that only a small portion of milk proteins are digested within the mammary gland. This regulation presents a question: If proteolysis is beneficial to the infant, what benefits are gained by preventing complete proteolysis through the presence of protease inhibitors? In addition to summarizing what is known about milk proteolytic systems, we explore possible evolutionary explanations for this proteolytic balance. PMID:26179272

  4. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  5. Protein Breakdown and Formation of Protease in Attached and Detached Cotyledons of Phaseolus vulgaris L.

    PubMed

    Yomo, H; Srinivasan, K

    1973-12-01

    In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation.The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 mug/ml cycloheximide and 50% by 100 mum abscisic acid. In contrast, alpha-amylase formation was inhibited 90% by 10 mug/ml cycloheximide and 95% by 20 mum abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the alpha-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms.

  6. Protein Breakdown and Formation of Protease in Attached and Detached Cotyledons of Phaseolus vulgaris L. 12

    PubMed Central

    Yomo, Harugoro; Srinivasan, Komala

    1973-01-01

    In contrast to earlier reported results of similar experiments in peas, in which almost no increase in protease activity occurred in incubated detached cotyledons, we report here an increase in protease activity in both attached and detached bean cotyledons. Detached bean cotyledons showed continually increasing protease activity up to the 12th day, while that in attached cotyledons declined after 6 days. The free amino acid level in detached cotyledons reached a maximum at the 11th day; protease formation leveled off after 50% of the original seed protein was digested. These data suggest that high free amino acid levels may inhibit protease formation. The activity of partially purified protease in aqueous extracts was enhanced by 10 mm 2-mercaptoethanol or cysteine, indicating a sulfhydryl requirement for activation. Protease formation in detached cotyledons was inhibited 30% by 10 μg/ml cycloheximide and 50% by 100 μm abscisic acid. In contrast, α-amylase formation was inhibited 90% by 10 μg/ml cycloheximide and 95% by 20 μm abscisic acid. The cycloheximide data suggest that only a part of the protease, but all of the α-amylase, is synthesized de novo; the similar pattern of inhibition by abscisic acid emphasizes the concept that protease may exist in two forms. PMID:16658628

  7. The population genetics of human disease: The case of recessive, lethal mutations

    PubMed Central

    Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B.; Haque, Imran S.; Pickrell, Joseph; Przeworski, Molly

    2017-01-01

    Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in this study. Beyond the specific application, this study highlights the parameters likely to be important in shaping the frequencies of Mendelian disease alleles. PMID:28957316

  8. Myc requires RhoA/SRF to reprogram glutamine metabolism.

    PubMed

    Haikala, Heidi M; Marques, Elsa; Turunen, Mikko; Klefström, Juha

    2018-05-04

    RhoA regulates actin cytoskeleton but recent evidence suggest a role for this conserved Rho GTPase also in other cellular processes, including transcriptional control of cell proliferation and survival. Interestingy, loss of RhoA is synthetic lethal with oncogenic Myc, a master transcription factor that turns on anabolic metabolism to promote cell growth in many cancers. We show evidence indicating that the synthetic lethal interaction between RhoA loss and Myc arises from deficiency in glutamine utilization, resulting from impaired co-regulation of glutaminase expression and anaplerosis by Myc and RhoA - serum response factor (SRF) pathway. The results suggest metabolic coordination between Myc and RhoA/SRF in sustaining cancer cell viability and indicate RhoA/SRF as a potential vulnerability in cancer cells for therapeutic targeting.

  9. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis.

    PubMed

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-06-01

    Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.

  10. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms.

    PubMed

    Mladic, Marija; Zietek, Barbara M; Iyer, Janaki Krishnamoorthy; Hermarij, Philip; Niessen, Wilfried M A; Somsen, Govert W; Kini, R Manjunatha; Kool, Jeroen

    2016-02-01

    Snake venoms comprise complex mixtures of peptides and proteins causing modulation of diverse physiological functions upon envenomation of the prey organism. The components of snake venoms are studied as research tools and as potential drug candidates. However, the bioactivity determination with subsequent identification and purification of the bioactive compounds is a demanding and often laborious effort involving different analytical and pharmacological techniques. This study describes the development and optimization of an integrated analytical approach for activity profiling and identification of venom constituents targeting the cardiovascular system, thrombin and factor Xa enzymes in particular. The approach developed encompasses reversed-phase liquid chromatography (RPLC) analysis of a crude snake venom with parallel mass spectrometry (MS) and bioactivity analysis. The analytical and pharmacological part in this approach are linked using at-line nanofractionation. This implies that the bioactivity is assessed after high-resolution nanofractionation (6 s/well) onto high-density 384-well microtiter plates and subsequent freeze drying of the plates. The nanofractionation and bioassay conditions were optimized for maintaining LC resolution and achieving good bioassay sensitivity. The developed integrated analytical approach was successfully applied for the fast screening of snake venoms for compounds affecting thrombin and factor Xa activity. Parallel accurate MS measurements provided correlation of observed bioactivity to peptide/protein masses. This resulted in identification of a few interesting peptides with activity towards the drug target factor Xa from a screening campaign involving venoms of 39 snake species. Besides this, many positive protease activity peaks were observed in most venoms analysed. These protease fingerprint chromatograms were found to be similar for evolutionary closely related species and as such might serve as generic snake protease bioactivity fingerprints in biological studies on venoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. IL-1β-Induced Protection of Keratinocytes against Staphylococcus aureus-Secreted Proteases Is Mediated by Human β-Defensin 2.

    PubMed

    Wang, Bingjie; McHugh, Brian J; Qureshi, Ayub; Campopiano, Dominic J; Clarke, David J; Fitzgerald, J Ross; Dorin, Julia R; Weller, Richard; Davidson, Donald J

    2017-01-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease that results in significant morbidity. A hallmark of AD is disruption of the critical barrier function of upper epidermal layers, causatively linked to environmental stimuli, genetics, and infection, and a critical current target for the development of new therapeutic and prophylactic interventions. Staphylococcus aureus is an AD-associated pathogen producing virulence factors that induce skin barrier disruption in vivo and contribute to AD pathogenesis. We show, using immortalized and primary keratinocytes, that S. aureus protease SspA/V8 is the dominant secreted factor (in laboratory and AD clinical strains of S. aureus) inducing barrier integrity impairment and tight junction damage. V8-induced integrity damage was inhibited by an IL-1β-mediated mechanism, independent of effects on claudin-1. Induction of keratinocyte expression of the antimicrobial/host defense peptide human β-defensin 2 (hBD2) was found to be the mechanism underpinning this protective effect. Endogenous hBD2 expression was required and sufficient for protection against V8 protease-mediated integrity damage, and exogenous application of hBD2 was protective. This modulatory property of hBD2, unrelated to antibacterial effects, gives new significance to the defective induction of hBD2 in the barrier-defective skin lesions of AD and indicates therapeutic potential. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Molecular properties of each subcomponent in Clostridium botulinum type B haemagglutinin complex.

    PubMed

    Arimitsu, Hideyuki; Sakaguchi, Yoshihiko; Lee, Jae-Chul; Ochi, Sadayuki; Tsukamoto, Kentaro; Yamamoto, Yumiko; Ma, Shaobo; Tsuji, Takao; Oguma, Keiji

    2008-08-01

    The role of each subcomponent of Clostridium botulinum serotype B haemagglutinin (HA), which is one component of 16S toxin, and consists of four subcomponents (HA1, 2, 3a, and 3b), was investigated. In order to identify the subcomponent contributing to the stability of a neurotoxin in the gastro-intestinal tract, each recombinant HA (rHA) subcomponent was incubated with gastro-intestinal proteases. Although rHA1 and rHA3 were stable to these proteases except for specific cleavage, rHA2 was not. Anti-free whole HA serum reacted with neither rHA2 nor HA2 in 16S toxin on both Western blot and ELISA, while anti-rHA2 serum reacted with both rHA2 and HA2 in 16S toxin on Western blots, although it did not react with 16S toxin in ELISA. Binding or haemagglutination activity against erythrocytes was found in rHA1 and rHA3, but not in rHA2. In addition, only HA1 bound to the intestinal section. These results indicate that the HA (and 16S toxin) complex is assembled in the way that HA1 and HA3 (HA3a plus HA3b) encase HA2, followed by modification with trypsin-like bacterial protease, leading to the conclusion that HA1 and HA3 act as protective factors for the neurotoxin and as attachment factors to host cells.

  13. Insights into the mechanism of drug resistance. X-ray structure analysis of multi-drug resistant HIV-1 protease ritonavir complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhigang; Yedidi, Ravikiran S.; Wang, Yong

    2013-01-08

    Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC50 of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTVmore » and MDR HIV-1 protease.« less

  14. Inflammatory effect of environmental proteases on airway mucosa.

    PubMed

    Reed, Charles E

    2007-09-01

    Proteases--both endogenous proteases from the coagulation cascade, mast cells, and respiratory epithelial trypsin, and exogenous proteases from parasites, insects, mites, molds, pollens, and other aeroallergens--stimulate a tissue response that includes attraction and activation of eosinophils and neutrophils, degranulation of eosinophils and mast cells, increased response of afferent neurons, smooth muscle contraction, angiogenesis, fibrosis, and production of immunoglobulin E. This response to exogenous proteases can be considered a form of innate immunity directed against multicellular organisms. The response of the airways to environmental proteases very closely resembles the response to airborne allergens. Although clinical research in this area is just beginning, the response to environmental proteases appears to be important in the pathogenesis of rhinitis and asthma developing from damp, water-damaged buildings, and intrinsic asthma with its associated rhinosinusitis and polyps.

  15. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases.

    PubMed

    Wang, Hongwang; Udukala, Dinusha N; Samarakoon, Thilani N; Basel, Matthew T; Kalita, Mausam; Abayaweera, Gayani; Manawadu, Harshi; Malalasekera, Aruni; Robinson, Colette; Villanueva, David; Maynez, Pamela; Bossmann, Leonie; Riedy, Elizabeth; Barriga, Jenny; Wang, Ni; Li, Ping; Higgins, Daniel A; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H

    2014-02-01

    Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).

  16. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mapping protease substrates using a biotinylated phage substrate library.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholle, M. D.; Kriplani, U.; Pabon, A.

    We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobicmore » is the scissile bond.« less

  18. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum

    PubMed Central

    Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases. PMID:28060882

  19. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    PubMed

    Han, Zhiping; Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  20. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

Top