Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E
2015-01-01
Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.
Mucker, Eric M.; Chapman, Jennifer; Huzella, Louis M.; Huggins, John W.; Shamblin, Joshua; Robinson, Camenzind G.; Hensley, Lisa E.
2015-01-01
Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox. PMID:26147658
Graham, Victoria A.; Bewley, Kevin R.; Dennis, Mike; Taylor, Irene; Funnell, Simon G. P.; Bate, Simon R.; Steeds, Kimberley; Tipton, Thomas; Bean, Thomas; Hudson, Laura; Atkinson, Deborah J.; McLuckie, Gemma; Charlwood, Melanie; Roberts, Allen D. G.; Vipond, Julia
2013-01-01
To support the licensure of a new and safer vaccine to protect people against smallpox, a monkeypox model of infection in cynomolgus macaques, which simulates smallpox in humans, was used to evaluate two vaccines, Acam2000 and Imvamune, for protection against disease. Animals vaccinated with a single immunization of Imvamune were not protected completely from severe and/or lethal infection, whereas those receiving either a prime and boost of Imvamune or a single immunization with Acam2000 were protected completely. Additional parameters, including clinical observations, radiographs, viral load in blood, throat swabs, and selected tissues, vaccinia virus-specific antibody responses, immunophenotyping, extracellular cytokine levels, and histopathology were assessed. There was no significant difference (P > 0.05) between the levels of neutralizing antibody in animals vaccinated with a single immunization of Acam2000 (132 U/ml) and the prime-boost Imvamune regime (69 U/ml) prior to challenge with monkeypox virus. After challenge, there was evidence of viral excretion from the throats of 2 of 6 animals in the prime-boost Imvamune group, whereas there was no confirmation of excreted live virus in the Acam2000 group. This evaluation of different human smallpox vaccines in cynomolgus macaques helps to provide information about optimal vaccine strategies in the absence of human challenge studies. PMID:23658452
Smallpox DNA Vaccine Protects Nonhuman Primates Against Lethal Monkeypox
2004-05-01
skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four...administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting...vaccine to protect rhesus macaques from severe monkeypox. MATERIALS AND METHODS Viruses and cells. The VACV Connaught vaccine strain (derived from the New
Berhanu, Aklile; Prigge, Jonathan T; Silvera, Peter M; Honeychurch, Kady M; Hruby, Dennis E; Grosenbach, Douglas W
2015-07-01
The therapeutic efficacies of smallpox vaccine ACAM2000 and antiviral tecovirimat given alone or in combination starting on day 3 postinfection were compared in a cynomolgus macaque model of lethal monkeypox virus infection. Postexposure administration of ACAM2000 alone did not provide any protection against severe monkeypox disease or mortality. In contrast, postexposure treatment with tecovirimat alone or in combination with ACAM2000 provided full protection. Additionally, tecovirimat treatment delayed until day 4, 5, or 6 postinfection was 83% (days 4 and 5) or 50% (day 6) effective. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Song, Haifeng; Janosko, Krisztina; Johnson, Reed F.; Qin, Jing; Josleyn, Nicole; Jett, Catherine; Byrum, Russell; Claire, Marisa St.; Dyall, Julie; Blaney, Joseph E.; Jennings, Gerald; Jahrling, Peter B.
2013-01-01
Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1–2×107 PFU) or CPXV (>102 PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection. PMID:23577120
Stittelaar, Koert J; Neyts, Johan; Naesens, Lieve; van Amerongen, Geert; van Lavieren, Rob F; Holý, Antonin; De Clercq, Erik; Niesters, Hubert G M; Fries, Edwin; Maas, Chantal; Mulder, Paul G H; van der Zeijst, Ben A M; Osterhaus, Albert D M E
2006-02-09
There is concern that variola virus, the aetiological agent of smallpox, may be used as a biological weapon. For this reason several countries are now stockpiling (vaccinia virus-based) smallpox vaccine. Although the preventive use of smallpox vaccination has been well documented, little is known about its efficacy when used after exposure to the virus. Here we compare the effectiveness of (1) post-exposure smallpox vaccination and (2) antiviral treatment with either cidofovir (also called HPMPC or Vistide) or with a related acyclic nucleoside phosphonate analogue (HPMPO-DAPy) after lethal intratracheal infection of cynomolgus monkeys (Macaca fascicularis) with monkeypox virus (MPXV). MPXV causes a disease similar to human smallpox and this animal model can be used to measure differences in the protective efficacies of classical and new-generation candidate smallpox vaccines. We show that initiation of antiviral treatment 24 h after lethal intratracheal MPXV infection, using either of the antiviral agents and applying various systemic treatment regimens, resulted in significantly reduced mortality and reduced numbers of cutaneous monkeypox lesions. In contrast, when monkeys were vaccinated 24 h after MPXV infection, using a standard human dose of a currently recommended smallpox vaccine (Elstree-RIVM), no significant reduction in mortality was observed. When antiviral therapy was terminated 13 days after infection, all surviving animals had virus-specific serum antibodies and antiviral T lymphocytes. These data show that adequate preparedness for a biological threat involving smallpox should include the possibility of treating exposed individuals with antiviral compounds such as cidofovir or other selective anti-poxvirus drugs.
Hutson, Christina L.; Nakazawa, Yoshinori J.; Self, Joshua; Olson, Victoria A.; Regnery, Russell L.; Braden, Zachary; Weiss, Sonja; Malekani, Jean; Jackson, Eddie; Tate, Mallory; Karem, Kevin L.; Rocke, Tonie E.; Osorio, Jorge E.; Damon, Inger K.; Carroll, Darin S.
2015-01-01
Monkeypox is a zoonotic disease endemic to central and western Africa, where it is a major public health concern. Although Monkeypox virus (MPXV) and monkeypox disease in humans have been well characterized, little is known about its natural history, or its maintenance in animal populations of sylvatic reservoir(s). In 2003, several species of rodents imported from Ghana were involved in a monkeypox outbreak in the United States with individuals of three African rodent genera (Cricetomys, Graphiurus, Funisciurus) shown to be infected with MPXV. Here, we examine the course of MPXV infection in Cricetomys gambianus (pouched Gambian rats) and this rodent species’ competence as a host for the virus. We obtained ten Gambian rats from an introduced colony in Grassy Key, Florida and infected eight of these via scarification with a challenge dose of 4X104 plaque forming units (pfu) from either of the two primary clades of MPXV: Congo Basin (C-MPXV: n = 4) or West African (W-MPXV: n = 4); an additional 2 animals served as PBS controls. Viral shedding and the effect of infection on activity and physiological aspects of the animals were measured. MPXV challenged animals had significantly higher core body temperatures, reduced activity and increased weight loss than PBS controls. Viable virus was found in samples taken from animals in both experimental groups (C-MPXV and W-MPXV) between 3 and 27 days post infection (p.i.) (up to 1X108pfu/ml), with viral DNA found until day 56 p.i. The results from this work show that Cricetomys gambianus (and by inference, probably the closely related species, Cricetomys emini) can be infected with MPXV and shed viable virus particles; thus suggesting that these animals may be involved in the maintenance of MPXV in wildlife mammalian populations. More research is needed to elucidate the epidemiology of MPXV and the role of Gambian rats and other species.
In vitro inhibition of monkeypox virus production and spread by Interferon-β
2012-01-01
Background The Orthopoxvirus genus contains numerous virus species that are capable of causing disease in humans, including variola virus (the etiological agent of smallpox), monkeypox virus, cowpox virus, and vaccinia virus (the prototypical member of the genus). Monkeypox is a zoonotic disease that is endemic in the Democratic Republic of the Congo and is characterized by systemic lesion development and prominent lymphadenopathy. Like variola virus, monkeypox virus is a high priority pathogen for therapeutic development due to its potential to cause serious disease with significant health impacts after zoonotic, accidental, or deliberate introduction into a naïve population. Results The purpose of this study was to investigate the prophylactic and therapeutic potential of interferon-β (IFN-β) for use against monkeypox virus. We found that treatment with human IFN-β results in a significant decrease in monkeypox virus production and spread in vitro. IFN-β substantially inhibited monkeypox virus when introduced 6-8 h post infection, revealing its potential for use as a therapeutic. IFN-β induced the expression of the antiviral protein MxA in infected cells, and constitutive expression of MxA was shown to inhibit monkeypox virus infection. Conclusions Our results demonstrate the successful inhibition of monkeypox virus using human IFN-β and suggest that IFN-β could potentially serve as a novel safe therapeutic for human monkeypox disease. PMID:22225589
42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...
42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...
42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...
42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...
42 CFR 71.56 - African rodents and other animals that may carry the monkeypox virus.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the monkeypox virus. 71.56 Section 71.56 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND... and other animals that may carry the monkeypox virus. (a) What actions are prohibited? What animals... transmitting or carrying the monkeypox virus. Such products include, but are not limited to, fully taxidermied...
Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity
Hudson, Paul N.; Self, Joshua; Weiss, Sonja; Braden, Zachary; Xiao, Yuhong; Girgis, Natasha M.; Emerson, Ginny; Hughes, Christine; Sammons, Scott A.; Isaacs, Stuart N.; Damon, Inger K.; Olson, Victoria A.
2012-01-01
Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus. PMID:22496894
Comparison of monkeypox viruses pathogenesis in mice by in vivo imaging
Osorio, Jorge E.; Iams, Keith P.; Meteyer, Carol U.; Rocke, Tonie E.
2009-01-01
Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (??0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11??0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.
Mapping monkeypox transmission risk through time and space in the Congo Basin
Nakazawa, Yoshinori J.; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend
2013-01-01
Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.
Mapping monkeypox transmission risk through time and space in the Congo Basin.
Nakazawa, Yoshinori; Lash, R Ryan; Carroll, Darin S; Damon, Inger K; Karem, Kevin L; Reynolds, Mary G; Osorio, Jorge E; Rocke, Tonie E; Malekani, Jean M; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A Townsend
2013-01-01
Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.
Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin
Nakazawa, Yoshinori; Lash, R. Ryan; Carroll, Darin S.; Damon, Inger K.; Karem, Kevin L.; Reynolds, Mary G.; Osorio, Jorge E.; Rocke, Tonie E.; Malekani, Jean M.; Muyembe, Jean-Jacques; Formenty, Pierre; Peterson, A. Townsend
2013-01-01
Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox. PMID:24040344
Side-by-side comparison of gene-based smallpox vaccine with MVA in nonhuman primates.
Golden, Joseph W; Josleyn, Matthew; Mucker, Eric M; Hung, Chien-Fu; Loudon, Peter T; Wu, T C; Hooper, Jay W
2012-01-01
Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA.
Side-by-Side Comparison of Gene-Based Smallpox Vaccine with MVA in Nonhuman Primates
Golden, Joseph W.; Josleyn, Matthew; Mucker, Eric M.; Hung, Chien-Fu; Loudon, Peter T.; Wu, T. C.; Hooper, Jay W.
2012-01-01
Orthopoxviruses remain a threat as biological weapons and zoonoses. The licensed live-virus vaccine is associated with serious health risks, making its general usage unacceptable. Attenuated vaccines are being developed as alternatives, the most advanced of which is modified-vaccinia virus Ankara (MVA). We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus antigens, A33, B5, A27 and L1. This vaccine protects mice and non-human primates from lethal orthopoxvirus disease. Here, we investigated the capacity of the molecular adjuvants GM-CSF and Escherichia coli heat-labile enterotoxin (LT) to enhance the efficacy of the 4pox gene-based vaccine. Both adjuvants significantly increased protective antibody responses in mice. We directly compared the 4pox plus LT vaccine against MVA in a monkeypox virus (MPXV) nonhuman primate (NHP) challenge model. NHPs were vaccinated twice with MVA by intramuscular injection or the 4pox/LT vaccine delivered using a disposable gene gun device. As a positive control, one NHP was vaccinated with ACAM2000. NHPs vaccinated with each vaccine developed anti-orthopoxvirus antibody responses, including those against the 4pox antigens. After MPXV intravenous challenge, all control NHPs developed severe disease, while the ACAM2000 vaccinated animal was well protected. All NHPs vaccinated with MVA were protected from lethality, but three of five developed severe disease and all animals shed virus. All five NHPs vaccinated with 4pox/LT survived and only one developed severe disease. None of the 4pox/LT-vaccinated animals shed virus. Our findings show, for the first time, that a subunit orthopoxvirus vaccine delivered by the same schedule can provide a degree of protection at least as high as that of MVA. PMID:22860117
Monkeypox virus and insights into its immunomodulatory proteins
Weaver, Jessica R.; Isaacs, Stuart N.
2008-01-01
Summary Monkeypox is a disease that is endemic in Central and Western Africa. However, in 2003, there was an outbreak in the US, representing the first documented monkeypox cases in the Western hemisphere. Although monkeypox virus is less fatal and not as transmissible as variola virus, the causative agent of smallpox, there is concern that monkeypox virus could become a more efficient human pathogen. The reason for this may lie in the virus' genetic makeup, ecological changes, changes in host behavior, and the fact that with the eradication of variola virus, routine smallpox vaccination is no longer carried out. In this review, we focus on the viral proteins that are predicted to modulate the host immune response and compare the genome of monkeypox virus with the genomes of variola virus and the vaccinia virus, the orthopoxvirus that represented the smallpox vaccine. There are differences found in several of these immune-modulating genes including genes that express proteins that affect cytokines such as interleukin-1, tumor necrosis factor, and interferon. There are also differences in genes that code for virulence factors and host range proteins. Genetic differences likely also explain the differences in virulence between two strains of monkeypox virus found in two different regions of Africa. In the current setting of limited smallpox vaccination and little orthopoxvirus immunity in parts of the world, monkeypox could become a more efficient human pathogen under the right circumstances. PMID:18837778
Detection of Human Monkeypox in the Republic of the Congo Following Intensive Community Education
Reynolds, Mary G.; Emerson, Ginny L.; Pukuta, Elisabeth; Karhemere, Stomy; Muyembe, Jean J.; Bikindou, Alain; McCollum, Andrea M.; Moses, Cynthia; Wilkins, Kimberly; Zhao, Hui; Damon, Inger K.; Karem, Kevin L.; Li, Yu; Carroll, Darin S.; Mombouli, Jean V.
2013-01-01
Monkeypox is an acute viral infection with a clinical course resembling smallpox. It is endemic in northern and central Democratic Republic of the Congo (DRC), but it is reported only sporadically in neighboring Republic of the Congo (ROC). In October 2009, interethnic violence in northwestern DRC precipitated the movement of refugees across the Ubangi River into ROC. The influx of refugees into ROC heightened concerns about monkeypox in the area, because of the possibility that the virus could be imported, or that incidence could increase caused by food insecurity and over reliance on bush meat. As part of a broad-based campaign to improve health standards in refugee settlement areas, the United Nations International Children's Emergency Fund (UNICEF) sponsored a program of intensive community education that included modules on monkeypox recognition and prevention. In the 6 months immediately following the outreach, 10 suspected cases of monkeypox were reported to health authorities. Laboratory testing confirmed monkeypox virus infection in two individuals, one of whom was part of a cluster of four suspected cases identified retrospectively. Anecdotes collected at the time of case reporting suggest that the outreach campaign contributed to detection of suspected cases of monkeypox. PMID:23400570
Using the Ground Squirrel (Marmota bobak) as an Animal Model to Assess Monkeypox Drug Efficacy.
Sergeev, A A; Kabanov, A S; Bulychev, L E; Sergeev, A A; Pyankov, O V; Bodnev, S A; Galahova, D O; Zamedyanskaya, A S; Titova, K A; Glotova, T I; Taranov, O S; Omigov, V V; Shishkina, L N; Agafonov, A P; Sergeev, A N
2017-02-01
In experiments to study the sensitivity of ground squirrels (Marmota bobak) to monkeypox virus (MPXV) at intranasal challenge, expressed pox-like clinical symptoms (hyperthermia, lymphadenitis, skin rash all over the body and mucous membranes and others) were observed 7-9 days post-infection. The 50% infective dose (ID 50 ) of MPXV for these marmots determined by the presence of clinical signs of the disease was 2.2 log 10 PFU. Some diseased marmots (about 40%) died 13-22 days post-infection, and the mortality rate was weakly dependent on MPXV infective dose. Lungs with trachea were primary target organs of marmots challenged intranasally (with ~30 ID 50 ). The pathogen got to secondary target organs of the animals mainly via the lymphatic way (with replication in bifurcation lymph nodes). Lungs with trachea, nasal mucosa and skin were the organs where the maximum MPXV amounts accumulated in these animals. Evidences of the pathogen presence and replication were revealed in these and subcutaneously infected marmots in the traditional primary target cells for MPXV (macrophages and respiratory tract epitheliocytes), as well as in some other cells (endotheliocytes, plasmocytes, fibroblasts, reticular and smooth muscle cells). Our use of this animal species to assess the antiviral efficacy of some drugs demonstrated the agreement of the obtained results with those described in scientific literature, which opens up the prospects of using marmots as animal models for monkeypox to develop therapeutic and preventive anti-smallpox drugs. © 2015 Blackwell Verlag GmbH.
Parker, Scott; Chen, Nanhai G.; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E.; Schriewer, Jill; Buller, R. Mark
2013-01-01
The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analogue of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is 4 or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection – thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. PMID:22381921
Parker, Scott; Chen, Nanhai G; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Hruby, Dennis; Jordan, Robert; Lanier, Randall; Painter, George; Painter, Wesley; Sagartz, John E; Schriewer, Jill; Mark Buller, R
2012-04-01
The human population is currently faced with the potential use of natural or recombinant variola and monkeypox viruses as biological weapons. Furthermore, the emergence of human monkeypox in Africa and its expanding environs poses a significant natural threat. Such occurrences would require therapeutic and prophylactic intervention with antivirals to minimize morbidity and mortality of exposed populations. Two orally-bioavailable antivirals are currently in clinical trials; namely CMX001, an ether-lipid analog of cidofovir with activity at the DNA replication stage and ST-246, a novel viral egress inhibitor. Both of these drugs have previously been evaluated in the ectromelia/mousepox system; however, the trigger for intervention was not linked to a disease biomarker or a specific marker of virus replication. In this study we used lethal, intranasal, ectromelia virus infections of C57BL/6 and hairless SKH1 mice to model human disease and evaluate exanthematous rash (rash) as an indicator to initiate antiviral treatment. We show that significant protection can be provided to C57BL/6 mice by CMX001 or ST-246 when therapy is initiated on day 6 post infection or earlier. We also show that significant protection can be provided to SKH1 mice treated with CMX001 at day 3 post infection or earlier, but this is four or more days before detection of rash (ST-246 not tested). Although in this model rash could not be used as a treatment trigger, viral DNA was detected in blood by day 4 post infection and in the oropharyngeal secretions (saliva) by day 2-3 post infection - thus providing robust and specific markers of virus replication for therapy initiation. These findings are discussed in the context of current respiratory challenge animal models in use for the evaluation of poxvirus antivirals. Copyright © 2012 Elsevier B.V. All rights reserved.
Assessing the effectiveness of a community intervention for monkeypox prevention in the Congo basin.
Roess, Amira A; Monroe, Benjamin P; Kinzoni, Eric A; Gallagher, Seamus; Ibata, Saturnin R; Badinga, Nkenda; Molouania, Trolienne M; Mabola, Fredy S; Mombouli, Jean V; Carroll, Darin S; MacNeil, Adam; Benzekri, Noelle A; Moses, Cynthia; Damon, Inger K; Reynolds, Mary G
2011-10-01
In areas where health resources are limited, community participation in the recognition and reporting of disease hazards is critical for the identification of outbreaks. This is particularly true for zoonotic diseases such as monkeypox that principally affect people living in remote areas with few health services. Here we report the findings of an evaluation measuring the effectiveness of a film-based community outreach program designed to improve the understanding of monkeypox symptoms, transmission and prevention, by residents of the Republic of the Congo (ROC) who are at risk for disease acquisition. During 90 days, monkeypox outreach was conducted for ∼23,860 people in northern ROC. Two hundred seventy-one attendees (selected via a structured sample) were interviewed before and after participating in a small-group outreach session. The proportion of interviewees demonstrating monkeypox-specific knowledge before and after was compared. Significant gains were measured in areas of disease recognition, transmission, and mitigation of risk. The ability to recognize at least one disease symptom and a willingness to take a family member with monkeypox to the hospital increased from 49 and 45% to 95 and 87%, respectively (p<0.001, both). Willingness to deter behaviors associated with zoonotic risk, such as eating the carcass of a primate found dead in the forest, remained fundamentally unchanged however, suggesting additional messaging may be needed. These results suggest that our current program of film-based educational activities is effective in improving disease-specific knowledge and may encourage individuals to seek out the advice of health workers when monkeypox is suspected.
Assessing the Effectiveness of a Community Intervention for Monkeypox Prevention in the Congo Basin
Kinzoni, Eric A.; Gallagher, Seamus; Ibata, Saturnin R.; Badinga, Nkenda; Molouania, Trolienne M.; Mabola, Fredy S.; Mombouli, Jean V.; Carroll, Darin S.; MacNeil, Adam; Benzekri, Noelle A.; Moses, Cynthia; Damon, Inger K.; Reynolds, Mary G.
2011-01-01
Background In areas where health resources are limited, community participation in the recognition and reporting of disease hazards is critical for the identification of outbreaks. This is particularly true for zoonotic diseases such as monkeypox that principally affect people living in remote areas with few health services. Here we report the findings of an evaluation measuring the effectiveness of a film-based community outreach program designed to improve the understanding of monkeypox symptoms, transmission and prevention, by residents of the Republic of the Congo (ROC) who are at risk for disease acquisition. Methodology/Principal Findings During 90 days, monkeypox outreach was conducted for ∼23,860 people in northern ROC. Two hundred seventy-one attendees (selected via a structured sample) were interviewed before and after participating in a small-group outreach session. The proportion of interviewees demonstrating monkeypox-specific knowledge before and after was compared. Significant gains were measured in areas of disease recognition, transmission, and mitigation of risk. The ability to recognize at least one disease symptom and a willingness to take a family member with monkeypox to the hospital increased from 49 and 45% to 95 and 87%, respectively (p<0.001, both). Willingness to deter behaviors associated with zoonotic risk, such as eating the carcass of a primate found dead in the forest, remained fundamentally unchanged however, suggesting additional messaging may be needed. Conclusions/Significance These results suggest that our current program of film-based educational activities is effective in improving disease-specific knowledge and may encourage individuals to seek out the advice of health workers when monkeypox is suspected. PMID:22028942
Orthopoxvirus variola infection of Cynomys ludovicianus (North American black tailed prairie dog).
Carroll, Darin S; Olson, Victoria A; Smith, Scott K; Braden, Zach H; Patel, Nishi; Abel, Jason; Li, Yu; Damon, Inger K; Karem, Kevin L
2013-09-01
Since the eradication of Smallpox, researchers have attempted to study Orthopoxvirus pathogenesis and immunity in animal models in order to correlate results human smallpox. A solely human pathogen, Orthopoxvirus variola fails to produce authentic smallpox illness in any other animal species tested to date. In 2003, an outbreak in the USA of Orthopoxvirus monkeypox, revealed the susceptibility of the North American black-tailed prairie dog (Cynomys ludovicianus) to infection and fulminate disease. Prairie dogs infected with Orthopoxvirus monkeypox present with a clinical scenario similar to ordinary smallpox, including prodrome, rash, and high mortality. This study examines if Black-tailed prairie dogs can become infected with O. variola and serve as a surrogate model for the study of human smallpox disease. Substantive evidence of infection is found in immunological seroconversion of animals to either intranasal or intradermal challenges with O. variola, but in the absence of overt illness. Published by Elsevier Inc.
Swimming Pools and Molluscum Contagiosum
... Monkeypox Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ... Monkeypox Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ...
Investigating monkeypox in the Wild
Brand, Christopher J.; Slota, Paul
2003-01-01
A recent monkeypox outbreak in pet prairie dogs led to the first recorded human case of the disease in the U.S. The outbreak has USGS scientists concerned the disease may spread to wild rodent populations.
Ecology and geography of human monkeypox case occurrences across Africa.
Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre
2012-04-01
As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.
Sequence of pathogenic events in cynomolgus macaques infected with aerosolized monkeypox virus.
Tree, J A; Hall, G; Pearson, G; Rayner, E; Graham, V A; Steeds, K; Bewley, K R; Hatch, G J; Dennis, M; Taylor, I; Roberts, A D; Funnell, S G P; Vipond, J
2015-04-01
To evaluate new vaccines when human efficacy studies are not possible, the FDA's "Animal Rule" requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (10(5) PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the "Animal Rule," in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Sequence of Pathogenic Events in Cynomolgus Macaques Infected with Aerosolized Monkeypox Virus
Hall, G.; Pearson, G.; Rayner, E.; Graham, V. A.; Steeds, K.; Bewley, K. R.; Hatch, G. J.; Dennis, M.; Taylor, I.; Roberts, A. D.; Funnell, S. G. P.; Vipond, J.
2015-01-01
ABSTRACT To evaluate new vaccines when human efficacy studies are not possible, the FDA's “Animal Rule” requires well-characterized models of infection. Thus, in the present study, the early pathogenic events of monkeypox infection in nonhuman primates, a surrogate for variola virus infection, were characterized. Cynomolgus macaques were exposed to aerosolized monkeypox virus (105 PFU). Clinical observations, viral loads, immune responses, and pathological changes were examined on days 2, 4, 6, 8, 10, and 12 postchallenge. Viral DNA (vDNA) was detected in the lungs on day 2 postchallenge, and viral antigen was detected, by immunostaining, in the epithelium of bronchi, bronchioles, and alveolar walls. Lesions comprised rare foci of dysplastic and sloughed cells in respiratory bronchioles. By day 4, vDNA was detected in the throat, tonsil, and spleen, and monkeypox antigen was detected in the lung, hilar and submandibular lymph nodes, spleen, and colon. Lung lesions comprised focal epithelial necrosis and inflammation. Body temperature peaked on day 6, pox lesions appeared on the skin, and lesions, with positive immunostaining, were present in the lung, tonsil, spleen, lymph nodes, and colon. By day 8, vDNA was present in 9/13 tissues. Blood concentrations of interleukin 1ra (IL-1ra), IL-6, and gamma interferon (IFN-γ) increased markedly. By day 10, circulating IgG antibody concentrations increased, and on day 12, animals showed early signs of recovery. These results define early events occurring in an inhalational macaque monkeypox infection model, supporting its use as a surrogate model for human smallpox. IMPORTANCE Bioterrorism poses a major threat to public health, as the deliberate release of infectious agents, such smallpox or a related virus, monkeypox, would have catastrophic consequences. The development and testing of new medical countermeasures, e.g., vaccines, are thus priorities; however, tests for efficacy in humans cannot be performed because it would be unethical and field trials are not feasible. To overcome this, the FDA may grant marketing approval of a new product based upon the “Animal Rule,” in which interventions are tested for efficacy in well-characterized animal models. Monkeypox virus infection of nonhuman primates (NHPs) presents a potential surrogate disease model for smallpox. Previously, the later stages of monkeypox infection were defined, but the early course of infection remains unstudied. Here, the early pathogenic events of inhalational monkeypox infection in NHPs were characterized, and the results support the use of this surrogate model for testing human smallpox interventions. PMID:25653439
2009-06-01
Drug ST-246 John Huggins,1 Arthur Goff,1 Lisa Hensley,1 Eric Mucker,1 Josh Shamblin,1 Carly Wlazlowski,1 Wendy Johnson,1 Jennifer Chapman,1 Tom Larsen...Hauer, M. Layton , J. McDade, M. T. Osterholm, T. O’Toole, G. Parker, T. Perl, P. K. Russell, K. Tonat, and the Working Group on Civilian Biodefense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manes, Nathan P.; Estep, Ryan D.; Mottaz, Heather M.
2008-03-07
Orthopoxviruses are the largest and most complex of the animal viruses. In response to the recent emergence of monkeypox in Africa and the threat of smallpox bioterrorism, virulent (monkeypox virus) and benign (vaccinia virus) orthopoxviruses were proteomically compared with the goal of identifying proteins required for pathogenesis. Orthopoxviruses were grown in HeLa cells to two different viral forms (intracellular mature virus and extracellular enveloped virus), purified by sucrose gradient ultracentrifugation, denatured using RapiGest™ surfactant, and digested with trypsin. Unfractionated samples and strong cation exchange HPLC fractions were analyzed by reversed-phase LC-MS/MS, and analyses of the MS/MS spectra using SEQUEST® andmore » X! Tandem resulted in the identification of hundreds of monkeypox, vaccinia, and copurified host proteins. The unfractionated samples were additionally analyzed by LC-MS on an LTQ-Orbitrap™, and the accurate mass and elution time tag approach was used to perform quantitative comparisons. Possible pathophysiological roles of differentially expressed orthopoxvirus genes are discussed.« less
Therapeutic and prophylactic drugs to treat orthopoxvirus infections.
Parker, Scott; Handley, Lauren; Buller, R Mark
2008-11-01
With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.
New effective chemically synthesized anti-smallpox compound NIOCH-14.
Mazurkov, Oleg Yu; Kabanov, Alexey S; Shishkina, Larisa N; Sergeev, Alexander A; Skarnovich, Maksim O; Bormotov, Nikolay I; Skarnovich, Maria A; Ovchinnikova, Alena S; Titova, Ksenya A; Galahova, Darya O; Bulychev, Leonid E; Sergeev, Artemiy A; Taranov, Oleg S; Selivanov, Boris A; Tikhonov, Alexey Ya; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N
2016-05-01
Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis.
Hooper, Jay W.; Ferro, Anthony M.; Golden, Joseph W.; Silvera, Peter; Dudek, Jeanne; Alterson, Kim; Custer, Max; Rivers, Bryan; Morris, John; Owens, Gary; Smith, Jonathan F.; Kamrud, Kurt I.
2009-01-01
Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 70s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRP) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 × 106 PFU of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine. PMID:19833247
2010-12-30
collected after challenges were gamma- irradiated (6 Mrad) to destroy any infectious virus. Previous results indicated minimal damage to serum immuno...in Sf9 insect cells using Gateway baculovirus expression (Invitrogen). All ORF clones were fully sequenced. Recombinant proteins carried GST-tags and... insect cell expression, increased the likelihood that all products were correctly folded and functional. Successfully cloned, expressed and size
In vitro efficacy of ST246 against smallpox and monkeypox.
Smith, Scott K; Olson, Victoria A; Karem, Kevin L; Jordan, Robert; Hruby, Dennis E; Damon, Inger K
2009-03-01
Since the eradication of smallpox and the cessation of routine childhood vaccination for smallpox, the proportion of the world's population susceptible to infection with orthopoxviruses, such as variola virus (the causative agent of smallpox) and monkeypox virus, has grown substantially. In the United States, the only vaccines for smallpox licensed by the Food and Drug Administration (FDA) have been live virus vaccines. Unfortunately, a substantial number of people cannot receive live virus vaccines due to contraindications. Furthermore, no antiviral drugs have been fully approved by the FDA for the prevention or treatment of orthopoxvirus infection. Here, we show the inhibitory effect of one new antiviral compound, ST-246, on the in vitro growth properties of six variola virus strains and seven monkeypox virus strains. We performed multiple assays to monitor the cytopathic effect and to evaluate the reduction of viral progeny production and release in the presence of the compound. ST-246 had 50% effective concentrations of
CD94 is essential for NK cell-mediated resistance to a lethal viral disease
Fang, Min; Orr, Mark T.; Spee, Pieter; Egebjerg, Thomas; Lanier, Lewis L.; Sigal, Luis J.
2011-01-01
Summary It is well established that natural killer (NK) cells confer resistance to many viral diseases, but only in a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1b are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus. PMID:21439856
A Nosocomial Outbreak of Human Monkeypox in the Central African Republic
Nakoune, Emmanuel; Lampaert, Emmanuel; Ndjapou, Séverin Gervais; Janssens, Carole; Zuniga, Isabel; Van Herp, Michel; Fongbia, Jean Paul; Koyazegbe, Thomas Daquin; Selekon, Benjamin; Komoyo, Giscard Francis; Garba-Ouangole, Sandra Miriella; Manengu, Casimir; Manuguerra, Jean-Claude; Kazanji, Mirdad; Gessain, Antoine; Berthet, Nicolas
2017-01-01
Abstract An outbreak of familial monkeypox occurred in the Central African Republic in 2015/2016 by 3 transmission modes: familial, health care–related, and transport-related. Ten people (3 children and 7 adults) were infected. Most presented with cutaneous lesions and fever, and 2 children died. The viral strain responsible was a Zaire genotype strain. PMID:29732376
Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo
Kugelman, Jeffrey R.; Johnston, Sara C.; Mulembakani, Prime M.; Kisalu, Neville; Lee, Michael S.; Koroleva, Galina; McCarthy, Sarah E.; Gestole, Marie C.; Wolfe, Nathan D.; Fair, Joseph N.; Schneider, Bradley S.; Wright, Linda L.; Huggins, John; Whitehouse, Chris A.; Wemakoy, Emile Okitolonda; Muyembe-Tamfum, Jean Jacques; Hensley, Lisa E.
2014-01-01
Monkeypox virus is a zoonotic virus endemic to Central Africa. Although active disease surveillance has assessed monkeypox disease prevalence and geographic range, information about virus diversity is lacking. We therefore assessed genome diversity of viruses in 60 samples obtained from humans with primary and secondary cases of infection from 2005 through 2007. We detected 4 distinct lineages and a deletion that resulted in gene loss in 10 (16.7%) samples and that seemed to correlate with human-to-human transmission (p = 0.0544). The data suggest a high frequency of spillover events from the pool of viruses in nonhuman animals, active selection through genomic destabilization and gene loss, and increased disease transmissibility and severity. The potential for accelerated adaptation to humans should be monitored through improved surveillance. PMID:24457084
Parker, Scott; Crump, Ryan; Foster, Scott; Hartzler, Hollyce; Hembrador, Ed; Lanier, E Randall; Painter, George; Schriewer, Jill; Trost, Lawrence C; Buller, R Mark
2014-11-01
Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus's broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV's mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events. Copyright © 2014 Elsevier B.V. All rights reserved.
Outbreak of human monkeypox, Democratic Republic of Congo, 1996 to 1997.
Hutin, Y. J.; Williams, R. J.; Malfait, P.; Pebody, R.; Loparev, V. N.; Ropp, S. L.; Rodriguez, M.; Knight, J. C.; Tshioko, F. K.; Khan, A. S.; Szczeniowski, M. V.; Esposito, J. J.
2001-01-01
Human monkeypox is a zoonotic smallpox-like disease caused by an orthopoxvirus of interhuman transmissibility too low to sustain spread in susceptible populations. In February 1997, 88 cases of febrile pustular rash were identified for the previous 12 months in 12 villages of the Katako-Kombe Health Zone, Democratic Republic of Congo (attack rate = 22 per 1,000; case-fatality rate = 3.7%). Seven were active cases confirmed by virus isolation. Orthopoxvirus- neutralizing antibodies were detected in 54% of 72 patients who provided serum and 25% of 59 wild-caught animals, mainly squirrels. Hemagglutination-inhibition assays and Western blotting detected antibodies in 68% and 73% of patients, respectively. Vaccinia vaccination, which protects against monkeypox, ceased by 1983 after global smallpox eradication, leading to an increase in the proportion of susceptible people. PMID:11384521
Anticipating the Species Jump: Surveillance for Emerging Viral Threats
2010-12-01
views expressed herein are those of the author and do not necessarily reflect the official policy or position of the Defense Threat Reduction Agency...Germany** [10, 11] Hantavirus (Sin Nombre virus) Deer mouse (Peromyscus maniculatus) 1993 Four Corners area, US [12] Monkeypox (Monkeypox virus...genetically diverse Marburg viruses from Egyptian fruit bats." PLoS Pathog 5(7): e1000536. 12. "Update: Outbreak of Hantavirus Infection — Southwestern
1981-08-01
besnoiti Borna disease virus Bovine infectious petechial fever virus Camel pox virus Ephemeral fever virus Fowl plague virus Goat pox virus Hog...Varicella virus Vole rickettsia Yellow fever virus, 17D vaccine strain 69 Class 3 Alastrun, smallpox, monkeypox, and whitepox, when used in vitro Arbovirus...animal inoculation experiments Vesicular stomatitis virus Yellow fever virus - wild when used in vitro Class 4 Alastrun, smallpox, monkeypox, and
[Monkeypox: second human case observed in Ivory Coast (rural health sector of Daloa].
Merouze, F; Lesoin, J J
1983-01-01
A second case of human monkeypox (world fifty-forth case) has been observed in Ivory Coast (rural health sector of Daloa). A three years old girl presented a major pox-like eruption which evolved to recovery. The authors describe the eruption, the evolution of the sickness, and the scars observed at the fourth month after recovery. It has not been possible to prove neither animal-human nor interhuman contagion.
2010-07-28
expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes
Effects of Epidemic Diseases on the Distribution of Bonobos
Inogwabini, Bila-Isia; Leader-Williams, Nigel
2012-01-01
This study examined how outbreaks and the occurrence of Anthrax, Ebola, Monkeypox and Trypanosomiasis may differentially affect the distribution of bonobos (Pan paniscus). Using a combination of mapping, Jaccard overlapping coefficients and binary regressions, the study determined how each disease correlated with the extent of occurrence of, and the areas occupied by, bonobos. Anthrax has only been reported to occur outside the range of bonobos and so was not considered further. Ebola, Monkeypox and Trypanosomiasis were each reported within the area of occupancy of bonobos. Their respective overlap coefficients were: J = 0.10; Qα = 0.05 = 2.00 (odds ratios = 0.0001, 95% CI = 0.0057; Z = −19.41, significant) for Ebola; J = 1.00; Qα = 0.05 = 24.0 (odds ratios = 1.504, 95% CI = 0.5066–2.6122) for Monkeypox; and, J = 0.33; Qα = 0.05 = 11.5 (Z = 1.14, significant) for Trypanosomiasis. There were significant relationships for the presence and absence of Monkeypox and Trypanosomiasis and the known extent of occurrence of bonobos, based on the equations y = 0.2368Ln(x)+0.8006 (R2 = 0.9772) and y = −0.2942Ln(x)+0.7155 (R2 = 0.698), respectively. The positive relationship suggested that bonobos tolerated the presence of Monkeypox. In contrast, the significant negative coefficient suggested that bonobos were absent in areas where Trypanosomiasis is endemic. Our results suggest that large rivers may have prevented Ebola from spreading into the range of bonobos. Meanwhile, Trypanosomiasis has been recorded among humans within the area of occurrence of bonobos, and appears the most important disease in shaping the area of occupancy of bonobos within their overall extent of occupancy. PMID:23251431
Estep, Ryan D; Messaoudi, Ilhem; O'Connor, Megan A; Li, Helen; Sprague, Jerald; Barron, Alexander; Engelmann, Flora; Yen, Bonnie; Powers, Michael F; Jones, John M; Robinson, Bridget A; Orzechowska, Beata U; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Wilk, Jennifer; Axthelm, Michael K; Wong, Scott W
2011-09-01
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.
Falendysz, Elizabeth; Lopera, Juan G.; Faye Lorenzsonn,; Salzer, Johanna S.; Hutson, Christina L.; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S.; Osorio, Jorge E.; Rocke, Tonie E.
2015-01-01
Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003,Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.
Estep, Ryan D.; Messaoudi, Ilhem; O'Connor, Megan A.; Li, Helen; Sprague, Jerald; Barron, Alexander; Engelmann, Flora; Yen, Bonnie; Powers, Michael F.; Jones, John M.; Robinson, Bridget A.; Orzechowska, Beata U.; Manoharan, Minsha; Legasse, Alfred; Planer, Shannon; Wilk, Jennifer; Axthelm, Michael K.; Wong, Scott W.
2011-01-01
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV. PMID:21752919
Kostina, E V; Gavrilova, E V; Riabinin, V A; Shchelkunov, S N; Siniakov, A N
2009-01-01
A kit of specific oligonucleotide primers and hybridization probes has been proposed to detect orthopoxviruses (OPV) and to discriminate human pathogenic viruses, such as variola virus and monkey virus by real-time polymerase chain reaction (PCR). For real-time PCR, the following pairs of fluorophore and a fluorescence quencher were used: TAMRA-BHQ2 for genus-specific probes and FAM-BHQ1 for species-specific ones (variola virus, monkeypox virus, ectomelia virus). The specificity of this assay was tested on 38 strains of 6 OPV species and it was 100%.
Realegeno, Susan; Puschnik, Andreas S; Kumar, Amrita; Goldsmith, Cynthia; Burgado, Jillybeth; Sambhara, Suryaprakash; Olson, Victoria A; Carroll, Darin; Damon, Inger; Hirata, Tetsuya; Kinoshita, Taroh; Carette, Jan E; Satheshkumar, Panayampalli Subbian
2017-06-01
Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans -Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection. IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe disease, increased mortality, and increased human-to-human transmission relative to the West African strain. Monkeypox is endemic in regions of western and central Africa but was introduced into the United States in 2003 from the importation of infected animals. The threat of MPXV and other orthopoxviruses is increasing due to the absence of routine smallpox vaccination leading to a higher proportion of naive populations. In this study, we have identified and validated candidate genes that are required for MPXV infection, specifically, those associated with the Golgi-associated retrograde protein (GARP) complex. Identifying host targets required for infection that prevents extracellular virus formation such as the GARP complex or the retrograde pathway can provide a potential target for antiviral therapy. Copyright © 2017 American Society for Microbiology.
The Possibility of Using the ICR Mouse as an Animal Model to Assess Antimonkeypox Drug Efficacy.
Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Pyankov, O V; Bodnev, S A; Galahova, D O; Zamedyanskaya, A S; Titova, K A; Glotov, A G; Taranov, O S; Omigov, V V; Shishkina, L N; Agafonov, A P; Sergeev, A N
2016-10-01
As a result of the conducted experimental studies on intranasal challenge of ICR mice, rabbits and miniature pigs (even in the maximum variant) with the doses of 4.0-5.5 lg PFU of monkeypox virus (MPXV), some clinical signs such as purulent conjunctivitis, blepharitis and ruffled fur were found only in mice. The 50% infective dose (C ID50 ) of MPXV for these animals estimated by the presence of external clinical signs was 4.8 lg PFU, and L ID50 estimated by the virus presence in the lungs of mice 7 days post-infection taking into account its 10% application in the animal respiratory tract was 1.4 lg PFU. When studying the dynamics of MPXV propagation in mice challenged intranasally with 25 L ID50 of MPXV, the maximum pathogen accumulation was revealed in nasal cavity, lungs and brain: 5.7 ± 0.1, 5.5 ± 0.1 and 5.3 ± 0.3 lg PFU/ml, respectively. The pathomorphological examination of these animals revealed the presence and replication of the pathogen in the traditional primary target cells for MPXV (mononuclear phagocyte system cells and respiratory tract epitheliocytes) as well as in some other types of cells (endothelial cells, reticular cells, connective tissue cells). Our use of these animals to assess the antiviral efficacy of some drugs demonstrated the agreement of the results (a significant positive effect of NIOCH-14 and ST-246) with those described in scientific literature, which opens up the prospects of using ICR mice as animal models for monkeypox to develop preventive antismallpox drugs. © 2015 Blackwell Verlag GmbH.
A novel highly reproducible and lethal nonhuman primate model for orthopox virus infection.
Kramski, Marit; Mätz-Rensing, Kerstin; Stahl-Hennig, Christiane; Kaup, Franz-Josef; Nitsche, Andreas; Pauli, Georg; Ellerbrok, Heinz
2010-04-29
The intentional re-introduction of Variola virus (VARV), the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus).A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1-3 days after onset of symptoms, even when very low infectious viral doses of 5x10(2) pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed.We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID(50) (minimal monkey infectious dose 50%) of 8.3x10(2) pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis.
A Novel Highly Reproducible and Lethal Nonhuman Primate Model for Orthopox Virus Infection
Kramski, Marit; Mätz-Rensing, Kerstin; Stahl-Hennig, Christiane; Kaup, Franz-Josef; Nitsche, Andreas; Pauli, Georg; Ellerbrok, Heinz
2010-01-01
The intentional re-introduction of Variola virus (VARV), the agent of smallpox, into the human population is of great concern due its bio-terroristic potential. Moreover, zoonotic infections with Cowpox (CPXV) and Monkeypox virus (MPXV) cause severe diseases in humans. Smallpox vaccines presently available can have severe adverse effects that are no longer acceptable. The efficacy and safety of new vaccines and antiviral drugs for use in humans can only be demonstrated in animal models. The existing nonhuman primate models, using VARV and MPXV, need very high viral doses that have to be applied intravenously or intratracheally to induce a lethal infection in macaques. To overcome these drawbacks, the infectivity and pathogenicity of a particular CPXV was evaluated in the common marmoset (Callithrix jacchus). A CPXV named calpox virus was isolated from a lethal orthopox virus (OPV) outbreak in New World monkeys. We demonstrated that marmosets infected with calpox virus, not only via the intravenous but also the intranasal route, reproducibly develop symptoms resembling smallpox in humans. Infected animals died within 1–3 days after onset of symptoms, even when very low infectious viral doses of 5×102 pfu were applied intranasally. Infectious virus was demonstrated in blood, saliva and all organs analyzed. We present the first characterization of a new OPV infection model inducing a disease in common marmosets comparable to smallpox in humans. Intranasal virus inoculation mimicking the natural route of smallpox infection led to reproducible infection. In vivo titration resulted in an MID50 (minimal monkey infectious dose 50%) of 8.3×102 pfu of calpox virus which is approximately 10,000-fold lower than MPXV and VARV doses applied in the macaque models. Therefore, the calpox virus/marmoset model is a suitable nonhuman primate model for the validation of vaccines and antiviral drugs. Furthermore, this model can help study mechanisms of OPV pathogenesis. PMID:20454688
Improving on Army Field Gauze for Lethal Vascular Injuries: Challenges in Dressing Development
USDA-ARS?s Scientific Manuscript database
Accounting for half of all deaths, uncontrolled hemorrhage remains the leading cause of death on the battlefield. Gaining hemostatic control of lethal vascular injuries sustained in combat using topical agents remains a challenge. Recent animal testing using a lethal arterial injury model compared a...
Doty, Jeffrey B.; Malekani, Jean M.; Kalemba, Lem's N.; Stanley, William T.; Monroe, Benjamin P.; Nakazawa, Yoshinori J.; Mauldin, Matthew R.; Bakambana, Trésor L.; Liyandja Dja Liyandja , Tobit; Braden, Zachary; Wallace, Ryan; Malekani, Divin V.; McCollum, Andrea M.; Gallardo-Romero, Nadia; Kondas, Ashley; Peterson, A. Townsend; Osorio, Jorge E.; Rocke, Tonie E.; Karem, Kevin L.; Emerson, Ginny L.; Carroll, Darin S.
2017-01-01
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus; one Cricetomys emini; one Heliosciurus sp.; one Oenomys hypoxanthus, and one elephant shrew Petrodromus tetradactylus); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
Presumptive risk factors for monkeypox in rural communities in the Democratic Republic of the Congo
Moses, Cynthia; Monroe, Benjamin P.; Nakazawa, Yoshinori; Doty, Jeffrey B.; Hughes, Christine M.; McCollum, Andrea M.; Ibata, Saturnin; Malekani, Jean; Okitolonda, Emile; Carroll, Darin S.; Reynolds, Mary G.
2017-01-01
Monkeypox virus (MPXV), a close relative of Variola virus, is a zoonotic virus with an unknown reservoir. Interaction with infected wildlife, bites from peri-domestic animals, and bushmeat hunting are hypothesized routes of infection from wildlife to humans. Using a Risk Questionnaire, performed in monkeypox-affected areas of rural Democratic Republic of the Congo, we describe the lifestyles and demographics associated with presumptive risk factors for MPXV infection. We generated two indices to assess risk: Household Materials Index (HMI), a proxy for socioeconomic status of households and Risk Activity Index (RAI), which describes presumptive risk for animal-to-human transmission of MPXV. Based on participant self-reported activity patterns, we found that people in this population are more likely to visit the forest than a market to fulfill material needs, and that the reported occupation is limited in describing behavior of individuals may participate. Being bitten by rodents in the home was commonly reported, and this was significantly associated with a low HMI. The highest scoring RAI sub-groups were ‘hunters’ and males aged ≥ 18 years; however, several activities involving MPXV-implicated animals were distributed across all sub-groups. The current analysis may be useful in identifying at-risk groups and help to direct education, outreach and prevention efforts more efficiently. PMID:28192435
Doty, Jeffrey B; Malekani, Jean M; Kalemba, Lem's N; Stanley, William T; Monroe, Benjamin P; Nakazawa, Yoshinori U; Mauldin, Matthew R; Bakambana, Trésor L; Liyandja Dja Liyandja, Tobit; Braden, Zachary H; Wallace, Ryan M; Malekani, Divin V; McCollum, Andrea M; Gallardo-Romero, Nadia; Kondas, Ashley; Peterson, A Townsend; Osorio, Jorge E; Rocke, Tonie E; Karem, Kevin L; Emerson, Ginny L; Carroll, Darin S
2017-10-03
During 2012, 2013 and 2015, we collected small mammals within 25 km of the town of Boende in Tshuapa Province, the Democratic Republic of the Congo. The prevalence of monkeypox virus (MPXV) in this area is unknown; however, cases of human infection were previously confirmed near these collection sites. Samples were collected from 353 mammals (rodents, shrews, pangolins, elephant shrews, a potamogale, and a hyrax). Some rodents and shrews were captured from houses where human monkeypox cases have recently been identified, but most were trapped in forests and agricultural areas near villages. Real-time PCR and ELISA were used to assess evidence of MPXV infection and other Orthopoxvirus (OPXV) infections in these small mammals. Seven (2.0%) of these animal samples were found to be anti-orthopoxvirus immunoglobulin G (IgG) antibody positive (six rodents: two Funisciurus spp.; one Graphiurus lorraineus ; one Cricetomys emini ; one Heliosciurus sp.; one Oenomys hypoxanthus , and one elephant shrew Petrodromus tetradactylus ); no individuals were found positive in PCR-based assays. These results suggest that a variety of animals can be infected with OPXVs, and that epidemiology studies and educational campaigns should focus on animals that people are regularly contacting, including larger rodents used as protein sources.
Maksyutov, Rinat A; Gavrilova, Elena V; Shchelkunov, Sergei N
2016-10-01
A method of one-stage rapid detection and differentiation of epidemiologically important variola virus (VARV), monkeypox virus (MPXV), and varicella-zoster virus (VZV) utilizing multiplex real-time TaqMan PCR assay was developed. Four hybridization probes with various fluorescent dyes and the corresponding fluorescence quenchers were simultaneously used for the assay. The hybridization probes specific for the VARV sequence contained FAM/BHQ1 as a dye/quencher pair; MPXV-specific, JOE/BHQ1; VZV-specific, TAMRA/BHQ2; and internal control-specific, Cy5/BHQ3. The specificity and sensitivity of the developed method were assessed by analyzing DNA of 32 strains belonging to orthopoxvirus and herpesvirus species. Copyright © 2016 Elsevier B.V. All rights reserved.
... Rohingya Democratic Republic of the Congo Ethiopia Iraq Nigeria Somalia South Sudan Syrian Arab Republic Yemen All ... Republic of the Congo, Cameroon, Central African Republic, Nigeria, Ivory Coast, Liberia, Sierra Leone, Gabon and South ...
... Contagiosum Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ... Contagiosum Orf Virus (Sore Mouth Infection) Poxvirus and Rabies Branch Travelers’ Health: Smallpox & Other Orthopoxvirus-Associated Infections ...
Comparative Pathology of Smallpox and Monkeypox in Man and Macaques
Cann, J. A.; Jahrling, P. B.; Hensley, L. E.; Wahl-Jensen, V.
2012-01-01
Summary In the three decades since the eradication of smallpox and cessation of routine vaccination, the collective memory of the devastating epidemics caused by this orthopoxvirus has waned, and the human population has become increasingly susceptible to a disease that remains high on the list of possible bioterrorism agents. Research using surrogate orthopoxviruses in their natural hosts, as well as limited variola virus research in animal models, continues worldwide; however, interpretation of findings is often limited by our relative lack of knowledge about the naturally occurring disease. For modern comparative pathologists, many of whom have no first-hand knowledge of naturally occurring smallpox, this work provides a contemporary review of this historical disease, as well as discussion of how it compares with human monkeypox and the corresponding diseases in macaques. PMID:22884034
Huang, Yi-Ting; Liao, Jia-Teh; Yen, Li-Chen; Chang, Yung-Kun; Lin, Yi-Ling; Liao, Ching-Len
2015-09-11
To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.
42 CFR 73.3 - HHS select agents and toxins.
Code of Federal Regulations, 2012 CFR
2012-10-01
... virus Monkeypox virus Reconstructed replication competent forms of the 1918 pandemic influenza virus containing any portion of the coding regions of all eight gene segments (Reconstructed 1918 Influenza virus...
Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J
2014-10-01
Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio
2010-01-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241
Real-time PCR to identify variola virus or other human pathogenic orthopox viruses.
Scaramozzino, Natale; Ferrier-Rembert, Audrey; Favier, Anne-Laure; Rothlisberger, Corinne; Richard, Stéphane; Crance, Jean-Marc; Meyer, Hermann; Garin, Daniel
2007-04-01
Variola virus (family Poxviridae, genus Orthopoxvirus) and the closely related cowpox, vaccinia, and monkeypox viruses can infect humans. Efforts are mounting to replenish the smallpox vaccine stocks, optimize diagnostic methods for poxviruses, and develop new antivirals against smallpox, because it is feared that variola virus might be used as a weapon of bioterrorism. We developed an assay for the detection of variola virus DNA. The assay is based on TaqMan chemistry targeting the 14-kD protein gene. For the 1st stage of the assay we used genus consensus primers and a mixture of 2 probes (14-kD POX and 14-kD VAR) spanning the 14-kD protein-encoding gene for detection of all human pathogenic orthopoxviruses. We then tested positive samples with the specific orthopoxvirus-specific probe 14-kD POX to identify monkeypox, cowpox, and vaccinia viruses and with the 14-kD VAR probe to identify variola viruses. The assay was established on 4 different PCR cycler platforms. It was assessed in a study with 85 different orthopoxvirus species and strains that included variola, camelpox, cowpox, monkeypox, and vaccinia viruses at concentrations ranging from 100 ng/L to 1 microg/L. The assay detected as little as 0.05 fg of DNA, corresponding to 25 copies of DNA, and enabled differentiation of variola virus from the other orthopoxviruses. This real-time PCR assay provides a rapid method for the early detection and differentiation of smallpox and other human pathogenic orthopoxvirus infections.
Anticipating smallpox and monkeypox outbreaks: complications of the smallpox vaccine.
Abrahams, Brian C; Kaufman, David M
2004-09-01
The recent outbreak in the Midwest of monkeypox, as well as the continued fears of a terrorist-induced epidemic of smallpox, prompted the authors' review of the literature regarding past and current experiences with smallpox vaccination. The smallpox vaccine, which is highly effective in preventing the spread of both these orthopoxvirus infectious illnesses, might be administered to numerous health care workers and, in the event of a smallpox attack, millions of other citizens. However, vaccinees would be at risk for several vaccine-related neurologic complications. According to prior reports, neurologic complications have occurred in 2.5 per million US individuals, with the most common being postvaccinal encephalomyelitis (PVEM). In older children and adults, PVEM causes stupor and coma, seizures, paraparesis, and other neurologic and mental abnormalities, and, in 16% of cases, permanent neurologic sequelae. The overall mortality rate of neurologic complications is approximately 1.5 per million vaccinees. Risk factors for PVEM were age younger than 1 year and no previous smallpox vaccination, but not a prior episode of PVEM or other preexisting neurologic illnesses. Neither the current smallpox vaccination campaigns in Israel nor the one in the United States has had comparable complications, but the US campaign has been associated with myocarditis and myopericarditis. Although the potential neurologic complications of the smallpox vaccine must be weighed against the threat of monkeypox and smallpox, current experience with vaccination suggests it carries a very low risk of neurologic complications and does not lead to exacerbations of chronic neurologic illnesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.
Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chestmore » and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.« less
T Cell Inactivation by Poxviral B22 Family Proteins Increases Viral Virulence
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A.; Edwards, David M.; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K.; Pickup, David J.; Lewinsohn, David M.; Gold, Marielle C.; Wong, Scott W.; Sacha, Jonah B.; Slifka, Mark K.; Früh, Klaus
2014-01-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination. PMID:24832205
T cell inactivation by poxviral B22 family proteins increases viral virulence.
Alzhanova, Dina; Hammarlund, Erika; Reed, Jason; Meermeier, Erin; Rawlings, Stephanie; Ray, Caroline A; Edwards, David M; Bimber, Ben; Legasse, Alfred; Planer, Shannon; Sprague, Jerald; Axthelm, Michael K; Pickup, David J; Lewinsohn, David M; Gold, Marielle C; Wong, Scott W; Sacha, Jonah B; Slifka, Mark K; Früh, Klaus
2014-05-01
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Attenuation of monkeypox virus by deletion of genomic regions
Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.
2015-01-01
Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.
Occupational Risks during a Monkeypox Outbreak, Wisconsin, 2003
Sotir, Mark J.; Williams, Carl J.; Kazmierczak, James J.; Wegner, Mark V.; Rausch, Darren; Graham, Mary Beth; Foldy, Seth L.; Wolters, Mat; Damon, Inger K.; Karem, Kevin L.; Davis, Jeffrey P.
2007-01-01
We determined factors associated with occupational transmission in Wisconsin during the 2003 outbreak of prairie dog–associated monkeypox virus infections. Our investigation included active contact surveillance, exposure-related interviews, and a veterinary facility cohort study. We identified 19 confirmed, 5 probable, and 3 suspected cases. Rash, headache, sweats, and fever were reported by >80% of patients. Occupationally transmitted infections occurred in 12 veterinary staff, 2 pet store employees, and 2 animal distributors. The following were associated with illness: working directly with animal care (p = 0.002), being involved in prairie dog examination, caring for an animal within 6 feet of an ill prairie dog (p = 0.03), feeding an ill prairie dog (p = 0.002), and using an antihistamine (p = 0.04). Having never handled an ill prairie dog (p = 0.004) was protective. Veterinary staff used personal protective equipment sporadically. Our findings underscore the importance of standard veterinary infection-control guidelines. PMID:17953084
Attenuation of monkeypox virus by deletion of genomic regions.
Lopera, Juan G; Falendysz, Elizabeth A; Rocke, Tonie E; Osorio, Jorge E
2015-01-15
Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. Copyright © 2014 Elsevier Inc. All rights reserved.
Balfry, Shannon K.; Maule, Alec G.; Iwama, George K.
2001-01-01
Two strains of freshwater-reared coho salmon Oncorhynchus kisutch were compared for differences in the activity of selected non-specific immune factors before and after lethal and non-lethal immersion challenges with the marine bacterial pathogen Vibrio anguillarum (Vang). Two disease challenge experiments were performed. The first experimental challenge resulted in no mortality; however, significant strain and challenge treatment effects were detected at Day 16 post-challenge. Strain differences in plasma lysozyme activity were found in pre-challenge samples. The second challenge experiment compared the same strains of coho salmon following immersion challenges in different doses of Vang. The fish were sampled at Days 0, 2, 7, and 18 post-challenge and mortality, plasma lysozyme, and anterior kidney phagocyte respiratory burst activity were compared. There were significant strain differences in mortality in the high dose group. The more disease-resistant strain was found to have higher levels of plasma lysozyme and anterior kidney phagocyte respiratory burst activity. These strain differences were detected at various times in the lethal (high dose) and non-lethal challenge groups. There was a clear relationship between the enhanced survival of the more disease-resistant strain and a more sustained, elevated non-specific immune response following the experimental disease challenges. The results of this study suggest that the basis for strain differences in innate disease resistance is related to the ability of the fish to respond quickly to the initial infection and to maintain the response until the infection is quelled.
Synthetic Lethal Networks for Precision Oncology: Promises and Pitfalls.
Shen, John Paul; Ideker, Trey
2018-06-19
Synthetic lethal interactions, in which the simultaneous loss-of-function of two genes produces a lethal phenotype, are being explored as a means to therapeutically exploit cancer-specific vulnerabilities and expand the scope of precision oncology. Currently, three FDA approved drugs work by targeting the synthetic lethal interaction between BRCA1/2 and PARP. This review examines additional efforts to discover networks of synthetic lethal interactions and discusses both challenges and opportunities regarding the translation of new synthetic lethal interactions into the clinic. Copyright © 2018. Published by Elsevier Ltd.
Thomassen, Henri A.; Fuller, Trevon; Asefi-Najafabady, Salvi; Shiplacoff, Julia A. G.; Mulembakani, Prime M.; Blumberg, Seth; Johnston, Sara C.; Kisalu, Neville K.; Kinkela, Timothée L.; Fair, Joseph N.; Wolfe, Nathan D.; Shongo, Robert L.; LeBreton, Matthew; Meyer, Hermann; Wright, Linda L.; Muyembe, Jean-Jacques; Buermann, Wolfgang; Okitolonda, Emile; Hensley, Lisa E.; Lloyd-Smith, James O.; Smith, Thomas B.; Rimoin, Anne W.
2013-01-01
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa's Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts. PMID:23935820
PARP inhibition as a prototype for synthetic lethal screens.
Liu, Xuesong
2013-01-01
Although DNA damaging chemotherapy and radiation therapy remain the main stay of current treatments for cancer patient, these therapies usually have toxic side effect and narrow therapeutic window. One of the challenges in cancer drug discovery is how to identify drugs that selectively kill cancer cells while leaving the normal cell intact. Recently, synthetic lethality has been applied to cancer drug discovery in various settings, and has become a promising approach for identifying novel agents for the treatment of cancer. A prototypical example is the synthetic lethal interaction between PARP inhibition and BRCA deficiency. PARP inhibitors represent the most advanced clinical agents targeting specifically DNA repair mechanisms in cancer therapy. In this chapter, I will review the molecular mechanism for this synthetic lethality and the clinical applications for PARP inhibitors. I will also discuss the formats of synthetic lethal screens, current progress on the utilization of these screens, and some of the advantages and challenges of synthetic lethal screens in cancer drug discovery.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-13
... of Monkeypox in Tshuapa District, Democratic Republic of the Congo, Funding Opportunity Announcement..., Democratic Republic of the Congo, FOA CK14-002''. Contact Person For More Information: Gregory Anderson, M.S...
Prophylaxis and treatment of pregnant women for emerging infections and bioterrorism emergencies.
Cono, Joanne; Cragan, Janet D; Jamieson, Denise J; Rasmussen, Sonja A
2006-11-01
Emerging infectious disease outbreaks and bioterrorism attacks warrant urgent public health and medical responses. Response plans for these events may include use of medications and vaccines for which the effects on pregnant women and fetuses are unknown. Healthcare providers must be able to discuss the benefits and risks of these interventions with their pregnant patients. Recent experiences with outbreaks of severe acute respiratory syndrome, monkeypox, and anthrax, as well as response planning for bioterrorism and pandemic influenza, illustrate the challenges of making recommendations about treatment and prophylaxis for pregnant women. Understanding the physiology of pregnancy, the factors that influence the teratogenic potential of medications and vaccines, and the infection control measures that may stop an outbreak will aid planners in making recommendations for care of pregnant women during large-scale infectious disease emergencies.
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.; Dziuba, Natallia; Zacks, Michele A.; Grund, Anna H.; Frolov, Ilya; Campbell, Gerald A.; Weaver, Scott C.; Estes, D. Mark
2007-01-01
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (αβ) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ( γδ) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (μMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3+ T cells are required for protection. PMID:17610927
Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.)
Falendysz, Elizabeth; Lopera, Juan G.; Doty, Jeffrey B.; Nakazawa, Yoshinori J.; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N.; Ronderos, Monica; Meija, Andres; Malekani, Jean M.; Karem, Kevin L.; Caroll, Darrin; Osorio, Jorge E.; Rocke, Tonie E.
2017-01-01
Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.
Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.).
Falendysz, Elizabeth A; Lopera, Juan G; Doty, Jeffrey B; Nakazawa, Yoshinori; Crill, Colleen; Lorenzsonn, Faye; Kalemba, Lem's N; Ronderos, Monica D; Mejia, Andres; Malekani, Jean M; Karem, Kevin; Carroll, Darin S; Osorio, Jorge E; Rocke, Tonie E
2017-08-01
Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.
Grant-Klein, Rebecca J; Altamura, Louis A; Badger, Catherine V; Bounds, Callie E; Van Deusen, Nicole M; Kwilas, Steven A; Vu, Hong A; Warfield, Kelly L; Hooper, Jay W; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S
2015-01-01
Cynomolgus macaques were vaccinated by intramuscular electroporation with DNA plasmids expressing codon-optimized glycoprotein (GP) genes of Ebola virus (EBOV) or Marburg virus (MARV) or a combination of codon-optimized GP DNA vaccines for EBOV, MARV, Sudan virus and Ravn virus. When measured by ELISA, the individual vaccines elicited slightly higher IgG responses to EBOV or MARV than did the combination vaccines. No significant differences in immune responses of macaques given the individual or combination vaccines were measured by pseudovirion neutralization or IFN-γ ELISpot assays. Both the MARV and mixed vaccines were able to protect macaques from lethal MARV challenge (5/6 vs. 6/6). In contrast, a greater proportion of macaques vaccinated with the EBOV vaccine survived lethal EBOV challenge in comparison to those that received the mixed vaccine (5/6 vs. 1/6). EBOV challenge survivors had significantly higher pre-challenge neutralizing antibody titers than those that succumbed.
Twenhafel, N A; Shaia, C I; Bunton, T E; Shamblin, J D; Wollen, S E; Pitt, L M; Sizemore, D R; Ogg, M M; Johnston, S C
2015-01-01
Eight guinea pigs were aerosolized with guinea pig-adapted Zaire ebolavirus (variant: Mayinga) and developed lethal interstitial pneumonia that was distinct from lesions described in guinea pigs challenged subcutaneously, nonhuman primates challenged by the aerosol route, and natural infection in humans. Guinea pigs succumbed with significant pathologic changes primarily restricted to the lungs. Intracytoplasmic inclusion bodies were observed in many alveolar macrophages. Perivasculitis was noted within the lungs. These changes are unlike those of documented subcutaneously challenged guinea pigs and aerosolized filoviral infections in nonhuman primates and human cases. Similar to findings in subcutaneously challenged guinea pigs, there were only mild lesions in the liver and spleen. To our knowledge, this is the first report of aerosol challenge of guinea pigs with guinea pig-adapted Zaire ebolavirus (variant: Mayinga). Before choosing this model for use in aerosolized ebolavirus studies, scientists and pathologists should be aware that aerosolized guinea pig-adapted Zaire ebolavirus (variant: Mayinga) causes lethal pneumonia in guinea pigs. © The Author(s) 2014.
Human Monkeypox Outbreak Caused by Novel Virus Belonging to Congo Basin Clade, Sudan, 2005
Muntasir, Mohammed O.; Damon, Inger; Chowdhary, Vipul; Opoka, Martin L.; Monimart, Charlotte; Mutasim, Elmangory M.; Manuguerra, Jean-Claude; Davidson, Whitni B.; Karem, Kevin L.; Cabeza, Jeanne; Wang, Sharlenna; Malik, Mamunur R.; Durand, Thierry; Khalid, Abdalhalim; Rioton, Thomas; Kuong-Ruay, Andrea; Babiker, Alimagboul A.; Karsani, Mubarak E.M.; Abdalla, Magdi S.
2010-01-01
To determine the outbreak source of monkeypox virus (MPXV) infections in Unity State, Sudan, in November 2005, we conducted a retrospective investigation. MPXV was identified in a sub-Sahelian savannah environment. Three case notification categories were used: suspected, probable, and confirmed. Molecular, virologic, and serologic assays were used to test blood specimens, vesicular swabs, and crust specimens obtained from symptomatic and recovering persons. Ten laboratory-confirmed cases and 9 probable cases of MPXV were reported during September–December 2005; no deaths occurred. Human-to-human transmission up to 5 generations was described. Our investigation could not fully determine the source of the outbreak. Preliminary data indicate that the MPXV strain isolated during this outbreak was a novel virus belonging to the Congo Basin clade. Our results indicate that MPXV should be considered endemic to the wetland areas of Unity State. This finding will enhance understanding of the ecologic niche for this virus. PMID:20875278
The immunology of smallpox vaccines
Kennedy, Richard B; Ovsyannikova, Inna G; Jacobson, Robert M; Poland, Gregory A
2010-01-01
In spite of the eradication of smallpox over 30 years ago; orthopox viruses such as smallpox and monkeypox remain serious public health threats both through the possibility of bioterrorism and the intentional release of smallpox and through natural outbreaks of emerging infectious diseases such as monkeypox. The eradication effort was largely made possible by the availability of an effective vaccine based on the immunologically cross-protective vaccinia virus. Although the concept of vaccination dates back to the late 1800s with Edward Jenner, it is only in the past decade that modern immunologic tools have been applied toward deciphering poxvirus immunity. Smallpox vaccines containing vaccinia virus elicit strong humoral and cellular immune responses that confer cross-protective immunity against variola virus for decades after immunization. Recent studies have focused on: establishing the longevity of poxvirus-specific immunity, defining key immune epitopes targeted by T and B cells, developing subunit-based vaccines, and developing genotypic and phenotypic immune response profiles that predict either vaccine response or adverse events following immunization. PMID:19524427
Kamble, Nitin Machindra; Hajam, Irshad Ahmed; Lee, John Hwa
2017-03-01
Pre-stimulation of toll-like receptors (TLRs) by agonists has been shown to increase protection against influenza virus infection. In this study, we evaluated the protective response generated against influenza A/Puerto Rico/8/1934 (PR8; H1N1) virus by oral and nasal administration of live attenuated Salmonella enterica serovar Typhimurium, JOL911 strain, in mice. Oral and nasal inoculation of JOL911 significantly increased the mRNA copy number of TLR-2, TLR4 and TLR5, and downstream type I interferon (IFN) molecules, IFN-α and IFN-β, both in peripheral blood mononuclear cells (PBMCs) and in lung tissue. Similarly, the mRNA copy number of interferon-inducible genes (ISGs), Mx and ISG15, were significantly increased in both the orally and the nasally inoculated mice. Post PR8 virus lethal challenge, the nasal JOL911 and the PBS control group mice showed significant loss of body weight with 70% and 100% mortality, respectively, compared to only 30% mortality in the oral JOL911 group mice. Post sub-lethal challenge, the significant reduction in PR8 virus copy number in lung tissue was observed in oral [on day 4 and 6 post-challenge (dpc)] and nasal (on 4dpc) than the PBS control group mice. The lethal and sub-lethal challenge showed that the generated stimulated innate resistance (StIR) in JOL911 inoculated mice conferred resistance to acute and initial influenza infection but might not be sufficient to prevent the PR8 virus invasion and replication in the lung. Overall, the present study indicates that oral administration of attenuated S. Typhimurium can pre-stimulate multiple TLR pathways in mice to provide immediate early StIR against a lethal H1N1 virus challenge. Copyright © 2017 Elsevier B.V. All rights reserved.
Mura, Maria Elena; Ruiu, Luca
2018-06-21
The main objective of this study was to investigate the effects of the insecticidal compound spinosad on the survival, reproduction, and immune functions of the Mediterranean fruit fly. The lethal and sub-lethal effects were determined on Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with different concentrations of spinosad. A median lethal concentration of 0.28 ppm was observed on flies feeding for 5 days on a treated diet. A significant and concentration-dependent decrease in fecundity, egg hatch rate, and lifespan was also detected in treated compared with control flies. Gene expression analyses conducted on treated insects by RT-qPCR revealed an immunomodulatory action of sub-lethal concentrations of spinosad. Target transcripts included several genes involved in medfly immunity and male or female reproductive functions. While a significant upregulation was detected in treated males a short time after spinosad ingestion, most target genes were downregulated in treated females. Our study confirmed the high toxicity of spinosad to C. capitata , highlighting an indirect effect on insect lifespan and reproductive performance at sub-lethal doses. In addition to defining the acute and sub-lethal toxicity of spinosad against the fly, this study provides new insights on the interaction of this compound with insect physiology.
Brown, Tanya; Rodriguez-Lanetty, Mauricio
2015-01-01
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that had previously encountered a pathogen under sub-lethal conditions had a higher survivorship during a subsequently lethal challenge than naïve anemones that encountered the pathogen for the first time. Anemones subjected to the lethal challenge two and four weeks after the sub-lethal exposure presented seven- and five-fold increases in survival, respectively, compared to the naïve anemones. However, anemones challenged six weeks after the sub-lethal exposure showed no increase in survivorship. We argue that this short-lasting priming of the defense response could be ecologically relevant if pathogen encounters are restricted to short seasons characterized by high stress. Furthermore, we discovered significant changes in proteomic profiles between naïve sea anemones and those primed after pathogen exposure suggesting a clear molecular signature associated with immunological priming in cnidarians. Our findings reveal that immunological priming may have evolved much earlier in the tree of life than previously thought. PMID:26628080
75 FR 76987 - Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Disease, Disability, and Injury Prevention and Control Special Emphasis Panel (SEP): Epidemiologic and Ecologic... evaluation of applications received in response to ``Epidemiologic and Ecologic Determinants of Monkeypox in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paessler, Slobodan; Yun, Nadezhda E.; Judy, Barbara M.
2007-10-25
We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta ({alpha}{beta}) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta ({gamma}{delta}) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chainmore » and a minority of vaccinated immunoglobulin heavy chain-deficient ({mu}MT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3{sup +} T cells are required for protection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.
2006-10-01
Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethalmore » dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic circulation. Exhalation of {sup 14}C-chloroform was unchanged in primed as compared to unprimed mice (AUC{sub 1-6h}). Urinary excretion of {sup 14}C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.« less
Qiu, Xiangguo; Fernando, Lisa; Melito, P Leno; Audet, Jonathan; Feldmann, Heinz; Kobinger, Gary; Alimonti, Judie B; Jones, Steven M
2012-01-01
Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3-4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 µg) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3-4 MAbs completely protected the majority of animals, while administration at 2-3 dpi achieved 50-100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection.
Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox.
Crump, Ryan; Korom, Maria; Buller, R Mark; Parker, Scott
2017-03-01
Orthopoxviruses continue to pose a significant threat to the population as potential agents of bioterrorism. An intentional release of natural or engineered variola virus (VARV) or monkeypox viruses would cause mortality and morbidity in the target population. To address this, antivirals have been developed and evaluated in animal models of smallpox and monkeypox. One such antiviral, brincidofovir (BCV, previously CMX001), has demonstrated high levels of efficacy against orthopoxviruses in animal models and is currently under clinical evaluation for prevention and treatment of diseases caused by cytomegaloviruses and adenoviruses. In this study we use the mousepox model of smallpox to evaluate the relationship between the magnitude of the infectious virus dose and an efficacious BCV therapy outcome when treatment is initiated concomitant with detection of ectromelia virus viral DNA (vDNA) in mouse buccal swabs. We found that vDNA could be detected in buccal swabs of some, but not all infected mice over a range of challenge doses by day 3 or 4 postexposure, when initiation of BCV treatment was efficacious, suggesting that detection of vDNA in buccal swabs could be used as a trigger to initiate BCV treatment of an entire potentially exposed population. However, buccal swabs of some mice did not become positive until 5 days postexposure, when initiation of BCV therapy failed to protect mice that received high doses of virus. And finally, the data suggest that the therapeutic window for efficacious BCV treatment decreases as the virus infectious dose increases. Extrapolating these findings to VARV, the data suggest that treatment should be initiated as soon as possible after exposure and not rely on a diagnostic tool such as the measurement of vDNA in buccal cavity swabs; however, consideration should be given to the fact that the behavior/disease-course of VARV in humans is different from that of ectromelia virus in the mouse. Copyright © 2016 Elsevier B.V. All rights reserved.
Nigericin is a potent inhibitor of the early stage of vaccinia virus replication.
Myskiw, Chad; Piper, Jessica; Huzarewich, Rhiannon; Booth, Tim F; Cao, Jingxin; He, Runtao
2010-12-01
Poxviruses remain a significant public health concern due to their potential use as bioterrorist agents and the spread of animal borne poxviruses, such as monkeypox virus, to humans. Thus, the identification of small molecule inhibitors of poxvirus replication is warranted. Vaccinia virus is the prototypic member of the Orthopoxvirus genus, which also includes variola and monkeypox virus. In this study, we demonstrate that the carboxylic ionophore nigericin is a potent inhibitor of vaccinia virus replication in several human cell lines. In HeLa cells, we found that the 50% inhibitory concentration of nigericin against vaccinia virus was 7.9 nM, with a selectivity index of 1038. We present data demonstrating that nigericin targets vaccinia virus replication at a post-entry stage. While nigericin moderately inhibits both early vaccinia gene transcription and translation, viral DNA replication and intermediate and late gene expression are severely compromised in the presence of nigericin. Our results demonstrate that nigericin has the potential to be further developed into an effective antiviral to treat poxvirus infections. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
2016-07-26
protection against aerosol viral challenge in animal studies (13-15). In addition, immune 89 interference has been documented when the VEEV, EEEV, and WEEV...in developing protective DNA vaccines for WEEV and EEEV that 536 provide significantly increased protection against lethal viral aerosol challenge...Arboviral infections in the United States. Infect Dis Clin North Am 5:73-102. 723 3. Bale JF, Jr. 1993. Viral encephalitis. Med Clin North Am 77:25-42. 724
2008-10-28
highly immunogenic, which may prevent their use in vaccine regimens requiring multiple doses (4). Probiotics are defined as ‘‘live microorganisms that...Sterne lethal challenge (Fig. 3 B and C). Thus, results from these studies further highlight the efficacy of employing probiotic lactic acid bacteria in...delivery via probiotic lactic acid bacteria is in their ability to induce antigen-specific IgA responses in feces, saliva, bronchoalveolar, mesenteric
Matassov, Demetrius; Marzi, Andrea; Latham, Terri; Xu, Rong; Ota-Setlik, Ayuko; Feldmann, Friederike; Geisbert, Joan B.; Mire, Chad E.; Hamm, Stefan; Nowak, Becky; Egan, Michael A.; Geisbert, Thomas W.; Eldridge, John H.; Feldmann, Heinz; Clarke, David K.
2015-01-01
Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7–9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines. PMID:26109675
Kumar, Mukesh; O'Connell, Maile; Namekar, Madhuri; Nerurkar, Vivek R
2014-06-06
Herein we demonstrate that infection of mice with West Nile virus (WNV) Eg101 provides protective immunity against lethal challenge with WNV NY99. Our data demonstrated that WNV Eg101 is largely non-virulent in adult mice when compared to WNV NY99. By day 6 after infection, WNV-specific IgM and IgG antibodies, and neutralizing antibodies were detected in the serum of all WNV Eg101 infected mice. Plaque reduction neutralization test data demonstrated that serum from WNV Eg101 infected mice neutralized WNV Eg101 and WNV NY99 strains with similar efficiency. Three weeks after infection, WNV Eg101 immunized mice were challenged subcutaneously or intracranially with lethal dose of WNV NY99 and observed for additional three weeks. All the challenged mice were protected against disease and no morbidity and mortality was observed in any mice. In conclusion, our data for the first time demonstrate that infection of mice with WNV Eg101 induced high titers of WNV specific IgM and IgG antibodies, and cross-reactive neutralizing antibodies, and the resulting immunity protected all immunized animals from both subcutaneous and intracranial challenge with WNV NY99. These observations suggest that WNV Eg101 may be a suitable strain for the development of a vaccine in humans against virulent strains of WNV.
Kopanakis, Konstantinos; Tzepi, Ira-Maria; Pistiki, Aikaterini; Carrer, Dionyssia-Pinelopi; Netea, Mihai G; Georgitsi, Marianna; Lymperi, Maria; Droggiti, Dionyssia-Irini; Liakakos, Theodoros; Machairas, Anastasios; Giamarellos-Bourboulis, Evangelos J
2013-06-01
Although LPS tolerance is well-characterized, it remains unknown if it is achieved even with single doses of lipopolysaccharide (LPS) and if it offers protection against lethal bacterial infections. To this end, C57B6 mice were assigned to groups A (sham); B (saline i.p followed after 24h by i.p 30mg/kg LPS); and C (3mg/kg LPS i.p followed after 24h by i.p 30mg/kg LPS). Survival was monitored and animals were sacrificed early after lethal challenge for measurement of tumour necrosis factor-alpha (TNFα) in serum; isolation of splenocytes and cytokine stimulation; and flow-cytometry for apoptosis and TREM-1. Experiments were repeated with mice infected i.p by Escherichia coli after challenging with saline or LPS. Mortality of group B was 72.2% compared with 38.9% of group C (p: 0.020). Serum TNFα of group C was lower than group B. Expression of TREM-1 of group C on monocytes/neutrophils was greater than group B. Release of TNFα, of IFNγ and of IL-17 from splenocytes of group C was lower than group B and the opposite happened for IL-10 showing evidence of cellular reprogramming. In parallel, apoptosis of circulating lymphocytes and of splenocytes of group C was greater compared with group B. Pre-treatment of mice challenged by E. coli with low dose LPS led to 0% mortality compared with 90% of saline pre-treated mice; in these mice, splenocytes improved over-time their capacity for release of IFNγ. It is concluded that single low doses of LPS lead to early reprogramming of the innate immune response and prolong survival after lethal E. coli challenge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge.
Konduru, Krishnamurthy; Shurtleff, Amy C; Bradfute, Steven B; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo
2016-01-01
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105-106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support the development of Fc fusions of GP as a candidate vaccine for human use.
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; ...
2016-09-13
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion, our data further support the development of Fc fusions of GP as a candidate vaccine for human use.« less
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.; Nakamura, Siham; Bavari, Sina; Kaplan, Gerardo
2016-01-01
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulated with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 105−106 and neutralizing antibody titers of approximately 103 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deleted EBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-length GP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc, and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. Our data further support the development of Fc fusions of GP as a candidate vaccine for human use. PMID:27622456
Ebolavirus Glycoprotein Fc Fusion Protein Protects Guinea Pigs against Lethal Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konduru, Krishnamurthy; Shurtleff, Amy C.; Bradfute, Steven B.
Ebola virus (EBOV), a member of the Filoviridae that can cause severe hemorrhagic fever in humans and nonhuman primates, poses a significant threat to the public health. Currently, there are no licensed vaccines or therapeutics to prevent and treat EBOV infection. Several vaccines based on the EBOV glycoprotein (GP) are under development, including vectored, virus-like particles, and protein-based subunit vaccines. We previously demonstrated that a subunit vaccine containing the extracellular domain of the Ebola ebolavirus (EBOV) GP fused to the Fc fragment of human IgG1 (EBOVgp-Fc) protected mice against EBOV lethal challenge. Here, we show that the EBOVgp-Fc vaccine formulatedmore » with QS-21, alum, or polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) adjuvants induced strong humoral immune responses in guinea pigs. The vaccinated animals developed anti-GP total antibody titers of approximately 10 5–10 6 and neutralizing antibody titers of approximately 10 3 as assessed by a BSL-2 neutralization assay based on vesicular stomatitis virus (VSV) pseudotypes. The poly-ICLC formulated EBOVgp-Fc vaccine protected all the guinea pigs against EBOV lethal challenge performed under BSL-4 conditions whereas the same vaccine formulated with QS-21 or alum only induced partial protection. Vaccination with a mucin-deletedEBOVgp-Fc construct formulated with QS-21 adjuvant did not have a significant effect in anti-GP antibody levels and protection against EBOV lethal challenge compared to the full-lengthGP construct. The bulk of the humoral response induced by the EBOVgp-Fc vaccine was directed against epitopes outside the EBOV mucin region. Our findings indicate that different adjuvants can eliciting varying levels of protection against lethal EBOV challenge in guinea pigs vaccinated with EBOVgp-Fc,and suggest that levels of total anti-GP antibodies elicit by protein-based GP subunit vaccines do not correlate with protection. In conclusion, our data further support the development of Fc fusions of GP as a candidate vaccine for human use.« less
Elliott, Diane G.; McKibben, Constance L.; Conway, Carla M.; Purcell, Maureen K.; Chase, Dorothy M.; Applegate, Lynn M.
2015-01-01
Non-lethal pathogen testing can be a useful tool for fish disease research and management. Our research objectives were to determine if (1) fin clips, gill snips, surface mucus scrapings, blood draws, or kidney biopsies could be obtained non-lethally from 3 to 15 g Chinook salmon Oncorhynchus tshawytscha, (2) non-lethal samples could accurately discriminate between fish exposed to the bacterial kidney disease agent Renibacterium salmoninarum and non-exposed fish, and (3) non-lethal samples could serve as proxies for lethal kidney samples to assess infection intensity. Blood draws and kidney biopsies caused ≥5% post-sampling mortality (Objective 1) and may be appropriate only for larger fish, but the other sample types were non-lethal. Sampling was performed over 21 wk following R. salmoninarum immersion challenge of fish from 2 stocks (Objectives 2 and 3), and nested PCR (nPCR) and real-time quantitative PCR (qPCR) results from candidate non-lethal samples were compared with kidney tissue analysis by nPCR, qPCR, bacteriological culture, enzyme-linked immunosorbent assay (ELISA), fluorescent antibody test (FAT) and histopathology/immunohistochemistry. R. salmoninarum was detected by PCR in >50% of fin, gill, and mucus samples from challenged fish. Mucus qPCR was the only non-lethal assay exhibiting both diagnostic sensitivity and specificity estimates >90% for distinguishing between R. salmoninarum-exposed and non-exposed fish and was the best candidate for use as an alternative to lethal kidney sample testing. Mucus qPCR R. salmoninarum quantity estimates reflected changes in kidney bacterial load estimates, as evidenced by significant positive correlations with kidney R. salmoninaruminfection intensity scores at all sample times and in both fish stocks, and were not significantly impacted by environmentalR. salmoninarum concentrations.
Galantamine is a novel post-exposure therapeutic against lethal VX challenge.
Hilmas, Corey J; Poole, Melissa J; Finneran, Kathryn; Clark, Matthew G; Williams, Patrick T
2009-10-15
The ability of galantamine hydrobromide (GAL HBr) treatment to antagonize O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-induced lethality, impairment of muscle tension, and electroencephalographic (EEG) changes was assessed in guinea pigs. Guinea pigs were challenged with 16.8 microg/kg VX (2LD50). One min after challenge, animals were administered 0.5 mg/kg atropine sulfate (ATR) and 25 mg/kg pyridine-2-aldoxime methochloride (2-PAM). In addition, guinea pigs were given 0, 1, 2, 4, 8 or 10 mg/kg GAL as a post-exposure treatment immediately prior to ATR and 2-PAM. Animals were either monitored for 24-h survival, scheduled for electroencephalography (EEG) recording, or euthanized 60 min later for measurement of indirectly-elicited muscle tension in the hemidiaphragm. Post-exposure GAL therapy produced a dose-dependent increase in survival from lethal VX challenge. Optimal clinical benefits were observed in the presence of 10 mg/kg GAL, which led to 100% survival of VX-challenged guinea pigs. Based on muscle physiology studies, GAL post-exposure treatment protected the guinea pig diaphragm, the major effector muscle of respiration, from fatigue, tetanic fade, and muscular paralysis. Protection against the paralyzing effects of VX was dose-dependent. In EEG studies, GAL did not alter seizure onset for all doses tested. At the highest dose tested (10 mg/kg), GAL decreased seizure duration when administered as a post-exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality after 2LD50 VX challenge. GAL may have additional benefits both centrally and peripherally that are unrelated to its established mechanism as a reversible acetylcholinesterase inhibitor (AChEI).
Galantamine is a novel post-exposure therapeutic against lethal VX challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilmas, Corey J.; Poole, Melissa J.; Finneran, Kathryn
2009-10-15
The ability of galantamine hydrobromide (GAL HBr) treatment to antagonize O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX)-induced lethality, impairment of muscle tension, and electroencephalographic (EEG) changes was assessed in guinea pigs. Guinea pigs were challenged with 16.8 {mu}g/kg VX (2LD50). One min after challenge, animals were administered 0.5 mg/kg atropine sulfate (ATR) and 25 mg/kg pyridine-2-aldoxime methochloride (2-PAM). In addition, guinea pigs were given 0, 1, 2, 4, 8 or 10 mg/kg GAL as a post-exposure treatment immediately prior to ATR and 2-PAM. Animals were either monitored for 24-h survival, scheduled for electroencephalography (EEG) recording, or euthanized 60 min later for measurement of indirectly-elicitedmore » muscle tension in the hemidiaphragm. Post-exposure GAL therapy produced a dose-dependent increase in survival from lethal VX challenge. Optimal clinical benefits were observed in the presence of 10 mg/kg GAL, which led to 100% survival of VX-challenged guinea pigs. Based on muscle physiology studies, GAL post-exposure treatment protected the guinea pig diaphragm, the major effector muscle of respiration, from fatigue, tetanic fade, and muscular paralysis. Protection against the paralyzing effects of VX was dose-dependent. In EEG studies, GAL did not alter seizure onset for all doses tested. At the highest dose tested (10 mg/kg), GAL decreased seizure duration when administered as a post-exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality after 2LD50 VX challenge. GAL may have additional benefits both centrally and peripherally that are unrelated to its established mechanism as a reversible acetylcholinesterase inhibitor (AChEI)« less
1992-01-01
HeLra Fever Vaccine Anna L. Kuhne Hemorrhagic Joan A. Spisso Protects against Lethal Junin Virus B.G. Mahlandt United States Army Medical Challenge in...live-attenuated vac- cine against Argentine hemorrhagic fever (AH F), was evaluated om in non-human primates. Twenty rhesus macaques immunized 3 months...nees that had received 3 logl,• PFU Candid No. I or fewer: all Argentine hemorrhagic fever others, including those receiving 127,200 PFU, maintained
2010-05-01
donor funding is no longer available. For instance, Brazil and Colombia were unable to sustain their CP programs when funding from donors to establish...forces. Other more advanced forms of non/less-than-lethal weapons which are common in the West, such as Tasers , are far less common on the continent...31 As part of this discussion, several experts discussed Tasers , in particular, though one expert also mentioned
Johnson, W
1972-06-01
The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.
Johnson, William
1972-01-01
The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein. Images PMID:4564407
Percopo, Caroline M; Rice, Tyler A; Brenner, Todd A; Dyer, Kimberly D; Luo, Janice L; Kanakabandi, Kishore; Sturdevant, Daniel E; Porcella, Stephen F; Domachowske, Joseph B; Keicher, Jesse D; Rosenberg, Helene F
2015-09-01
We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms. Published by Elsevier B.V.
Sun, EnCheng; Zhao, Jing; TaoYang; Xu, QingYuan; Qin, YongLi; Wang, WenShi; Wei, Peng; Wu, DongLai
2013-09-27
Japanese encephalitis virus (JEV) and West Nile virus (WNV) are two medically important flaviviruses that can cause severe hemorrhagic and encephalitic diseases in humans. Immune responses directed against the NS1 protein of flaviviruses can confer protection against lethal viral challenge. Previous studies have shown that the WNV NS1 protein harbors epitopes that elicit antibodies that cross react with JEV. Here we demonstrate that the WNV NS1 protein not only contains cross-reactive epitopes, but that the antibodies elicited by these cross-reactive epitopes provide partial protection against lethal JEV challenge in a mouse model. Mice immunized with WNV NS1 protein showed reduced morbidity and mortality following both intracerebral and intraperitoneal JEV challenge. WNV NS1 immunization attenuated the extent of lung pathology generated following JEV challenge, and delayed the appearance of other pathological findings including vascular cuffing. By screening and identifying the specific WNV NS1 protein-derived peptides recognized by serum antibodies elicited by immunization with WNV NS1 protein and by JEV challenge, we found after JEV challenge will induce several new epitopes, but which epitope primarily contribute to antibody-mediated cross protection need further evaluation. The knowledge and reagents generated in this study have potential applications in vaccine and subunit vaccine development for WNV and JEV. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-08-28
Male or Female Patients With a Serious or Immediately Life-threatening; Disease or Condition Caused by CMV, ADV, HSV, VAVC, VARV or; Monkeypox Viruses(s) Who Have a Life Expectancy of ≥ 2 Weeks and for; Whom no Comparable or Satisfactory Alternative Therapy is Available
77 FR 61083 - Possession, Use, and Transfer of Select Agents and Toxins; Biennial Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-05
... agents or toxins in the highest tier should be further stratified based on type of use or other factors... (South American type only), Flexal virus, West African clade of Monkeypox virus, Rickettsia rickettsii... viruses have thus far produced high morbidity and mortality rates. Both Lujo and Chapare virus share other...
Lifestyle and dietary factors in the prevention of lethal prostate cancer
Wilson, Kathryn M; Giovannucci, Edward L; Mucci, Lorelei A
2012-01-01
The prevention of lethal prostate cancer is a critical public health challenge that would improve health and reduce suffering from this disease. In this review, we discuss the evidence surrounding specific lifestyle and dietary factors in the prevention of lethal prostate cancer. We present a summary of evidence for the following selected behavioral risk factors: obesity and weight change, physical activity, smoking, antioxidant intake, vitamin D and calcium, and coffee intake. PMID:22504869
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, T.B.; Madonna, G.S.; Ledney, G.D.
Increased susceptibility to bacterial infection, probably by translocation from the intestinal flora, can be a lethal complication for 2-3 weeks after exposure to ionizing radiation. Antibiotics alone do not provide adequate therapy for induced infections in neutropenic mice. Because some substances that are derived from bacterial cell walls activate macrophages and stimulate nonspecific resistance to infection, such agents might be used to prevent or treat postirradiation infections. In this study, a cell-wall glycolipid, trehalose dimycolate (TDM), was evaluated together with a third-generation cephalosporin, ceftriaxone, for their separate and combined effects on survival of B6D2F1 female mice that were exposed tomore » the sublethal dose of 7.0 Gy Co radiation and challenged s.c. with lethal doses of Klebsiella pneumoniae. A single injection of TDM inoculated i.p. 1 hr postirradiation increased 30-day survival to 80% after a lethal challenge by K. pneumoniae 4 days later. When the challenge dose of K. pneumoniae was increased to 5000 Ld 50/30 on Day 4, all mice died.« less
Liu, Ying; Ye, Ling; Lin, Fang; Gomaa, Yasmine; Flyer, David; Carrion, Ricardo; Patterson, Jean L; Prausnitz, Mark R; Smith, Gale; Glenn, Gregory; Wu, Hua; Compans, Richard W; Yang, Chinglai
2018-06-08
In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.
Salice, Christopher J; Anderson, Todd A; Roesijadi, G
2010-11-01
Population response to anthropogenic activities will be influenced by prior adaptation to environmental conditions. We tested how parasite-resistant and -susceptible strains of the freshwater snail, Biomphalaria glabrata, responded to cadmium and elevated temperature challenges after having been exposed to low-level cadmium continuously for multiple generations. Snails exposed to cadmium for three generations were removed for the fourth generation, and challenged in the fifth generation with (1) chronic cadmium exposure over the entire life cycle; (2) lethal cadmium exposure of adults; and (3) elevated temperature challenge of adults. The parasite susceptible NMRI strain is more cadmium tolerant than the parasite resistant BS90 strain and remained more tolerant than BS90 throughout this study. Additionally, NMRI exhibited greater adaptive capacity for cadmium than BS90 and became more tolerant of both chronic and lethal cadmium challenges, while BS90 became more tolerant of lethal cadmium challenge only. Fitness costs, reflected in population growth rate, were not apparent in fifth generation snails maintained in control conditions. However, costs were latent and expressed as decreased tolerance to a secondarily imposed temperature stress. Adaptation to prior selection pressures can influence subsequent adaptation to anthropogenic stresses and may have associated costs that reduce fitness in novel environments.
Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.
Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G
1997-01-01
Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608
Riley, Patricia Y.
2005-01-01
Exotic pets, including hedgehogs, have become popular in recent years among pet owners, especially in North America. Such animals can carry and introduce zoonotic agents, a fact well illustrated by the recent outbreak of monkeypox in pet prairie dogs. We reviewed known and potential zoonotic diseases that could be carried and transmitted by pet hedgehogs or when rescuing and caring for wild-caught hedgehogs. PMID:15705314
Rice, Amanda D.; Adams, Mathew M.; Lampert, Bernhard; Foster, Scott; Lanier, Randall; Robertson, Alice; Painter, George; Moyer, Richard W.
2011-01-01
CMX001, a lipophilic nucleotide analog formed by covalently linking 3-(hexdecyloxy)propan-1-ol to cidofovir (CDV), is being developed as a treatment for smallpox. CMX001 has dramatically increased potency versus CDV against all dsDNA viruses and, in contrast to CDV, is orally available and has shown no evidence of nephrotoxicity in healthy volunteers or severely ill transplant patients to date. Although smallpox has been eliminated from the environment, treatments are urgently being sought due to the risk of smallpox being used as a bioterrorism agent and for monkeypox virus, a zoonotic disease of Africa, and adverse reactions to smallpox virus vaccinations. In the absence of human cases of smallpox, new treatments must be tested for efficacy in animal models. Here we first review and discuss the rabbitpox virus (RPV) infection of New Zealand White rabbits as a model for smallpox to test the efficacy of CMX001 as a prophylactic and early disease antiviral. Our results should also be applicable to monkeypox virus infections and for treatment of adverse reactions to smallpox vaccination. PMID:21369346
Scasta, J D; Stam, B; Windh, J L
2017-10-26
Pastoralists have dealt with livestock losses from predators for millennia, yet effective mitigation strategies that balance wildlife conservation and sustainable agriculture are still needed today. In Wyoming, USA, 274 ranchers responded to a retrospective survey, and rated the efficacy of predation mitigation strategies for foxes, dogs, coyotes, wolves, bobcats, mountain lions, bears, and birds (buzzards, eagles, hawks, ravens). Rancher reported efficacy of mitigation varied by predator species, mitigation strategy, and lethality of strategies, but not livestock type. Ranchers perceive they were most effective at mitigating predation by foxes and coyotes, moderately effective at mitigating large carnivores, and the least effective at mitigating birds. Ranchers also reported that avian predators seem to be the most challenging predator type. The general perception was lethal mitigation strategies were more effective than non-lethal strategies, with guard animals showing the most potential among the non-lethal options. In general, ranchers did not perceive non-lethal strategies as a proxy for lethal strategies. However, a few ranchers reported being successful with non-lethal options such as herding, fencing, and stalling at night but more details about such successful applications are needed. Innovation in current or novel non-lethal mitigation strategies, and examples of efficacy, are needed to justify producer adoption.
Cui, Xianlan; Zhao, Yan; Shi, Xingming; Li, Qiaoling; Yan, Shuai; Gao, Ming; Wang, Mei; Liu, Changjun; Wang, Yunfeng
2013-01-01
Background Herpesvirus of turkey (HVT) as a vector to express the haemagglutinin (HA) of avian influenza virus (AIV) H5 was developed and its protection against lethal Marek’s disease virus (MDV) and highly pathogenic AIV (HPAIV) challenges was evaluated previously. It is well-known that avirulemt MDV type 1 vaccines are more effective than HVT in prevention of lethal MDV infection. To further increase protective efficacy against HPAIV and lethal MDV, a recombinant MDV type 1 strain 814 was developed to express HA gene of HPAIV H5N1. Methodology/Principal Findings A recombinant MDV-1 strain 814 expressing HA gene of HPAIV H5N1 virus A/goose/Guangdong/3/96 at the US2 site (rMDV-HA) was developed under the control of a human CMV immediate-early promoter. The HA expression in the rMDV-HA was tested by immunofluorescence and Western blot analyses, and in vitro and in vivo growth properties of rMDV-HA were also analyzed. Furthermore, we evaluated and compared the protective immunity of rMDV-HA and previously constructed rHVT-HA against HPAIV and lethal MDV. Vaccination of chickens with rMDV-HA induced 80% protection against HPAIV, which was better than the protection rate by rHVT-HA (66.7%). In the animal study with MDV challenge, chickens immunized with rMDV-HA were completely protected against virulent MDV strain J-1 whereas rHVT-HA only induced 80% protection with the same challenge dose. Conclusions/Significance The rMDV-HA vaccine was more effective than rHVT-HA vaccine for protection against lethal MDV and HPAIV challenges. Therefore, avirulent MDV type 1 vaccine is a better vector than HVT for development of a recombinant live virus vaccine against virulent MDV and HPAIV in poultry. PMID:23301062
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
Interleukin-10 protects neonatal mice from lethal group B streptococcal infection.
Cusumano, V; Genovese, F; Mancuso, G; Carbone, M; Fera, M T; Teti, G
1996-01-01
We investigated the role of interleukin-10 (IL-10) in a neonatal mouse model of lethal group B streptococci (GBS) sepsis. Plasma IL-10 levels significantly increased at 24 and 48 h after GBS inoculation. Neutralization of IL-10 with specific antibodies had no effect on lethality. Administration of recombinant IL-10 at 20 or 4 h before challenge, but not at later times, resulted in decreased tumor necrosis factor alpha levels and improved survival. IL-10 could be potentially useful for the treatment of GBS sepsis. PMID:8698523
ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation.
Berhanu, Aklile; King, David S; Mosier, Stacie; Jordan, Robert; Jones, Kevin F; Hruby, Dennis E; Grosenbach, Douglas W
2009-12-01
Orthopoxvirus infections, such as smallpox, can lead to severe systemic disease and result in considerable morbidity and mortality in immunologically naïve individuals. Treatment with ST-246, a small-molecule inhibitor of virus egress, has been shown to provide protection against severe disease and death induced by several members of the poxvirus family, including vaccinia, variola, and monkeypox viruses. Here, we show that ST-246 treatment not only results in the significant inhibition of vaccinia virus dissemination from the site of inoculation to distal organs, such as the spleen and liver, but also reduces the viral load in organs targeted by the dissemination. In mice intranasally infected with vaccinia virus, virus shedding from the nasal and lung mucosa was significantly lower (approximately 22- and 528-fold, respectively) upon ST-246 treatment. Consequently, virus dissemination from the nasal site of replication to the lung also was dramatically reduced, as evidenced by a 179-fold difference in virus levels in nasal versus bronchoalveolar lavage. Furthermore, in ACAM2000-immunized mice, vaccination site swabs showed that ST-246 treatment results in a major (approximately 3,900-fold by day 21) reduction in virus detected at the outside surfaces of lesions. Taken together, these data suggest that ST-246 would play a dual protective role if used during a smallpox bioterrorist attack. First, ST-246 would provide therapeutic benefit by reducing the disease burden and lethality in infected individuals. Second, by reducing virus shedding from those prophylactically immunized with a smallpox vaccine or harboring variola virus infection, ST-246 could reduce the risk of virus transmission to susceptible contacts.
Department of Defense Chemical and Biological Defense Program. Volume 1: Annual Report to Congress
2003-04-01
Albuquerque Operations Office at Kirtland AFB, New Mexico , conducts a Radiological Emergency Team Operations Course; Radiological Emer- gency Medical...Nevada, and Kirtland Air Force Base, New Mexico . • MARFORPAC sponsored a force protection initiative funded by DTRA. DTRA will conduct an independent...strains and isolates from camelpox, cowpox, ectromelia, gerbilpox, Herpes, monkeypox, myxoma, rabbitpox, raccoonpox, skunkpox, vaccinia and varicella
Sulaiman, Irshad M; Sammons, Scott A; Wohlhueter, Robert M
2008-04-01
We recently developed a set of seven resequencing GeneChips for the rapid sequencing of Variola virus strains in the WHO Repository of the Centers for Disease Control and Prevention. In this study, we attempted to hybridize these GeneChips with some known non-Variola orthopoxvirus isolates, including monkeypox, cowpox, and vaccinia viruses, for rapid detection.
Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika
2009-08-06
CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.
Structural Basis for the Binding of the Neutralizing Antibody, 7D11, to the Poxvirus L1 Protein
2007-08-01
pCR- 7D11-vHC and pCR-7D11- vLC , respectively. Crystallization of the complex between L1 and 7D11-Fab VACV L1 protein was expressed and purified as...2005. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in...D.M., Schmaljohn, C., Schmaljohn, A., 2000. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge
Stimulation of Lung Innate Immunity Protects against Lethal Pneumococcal Pneumonia in Mice
Clement, Cecilia G.; Evans, Scott E.; Evans, Christopher M.; Hawke, David; Kobayashi, Ryuji; Reynolds, Paul R.; Moghaddam, Seyed J.; Scott, Brenton L.; Melicoff, Ernestina; Adachi, Roberto; Dickey, Burton F.; Tuvim, Michael J.
2008-01-01
Rationale: The lungs are a common site of serious infection in both healthy and immunocompromised subjects, and the most likely route of delivery of a bioterror agent. Since the airway epithelium shows great structural plasticity in response to inflammatory stimuli, we hypothesized it might also show functional plasticity. Objectives: To test the inducibility of lung defenses against bacterial challenge. Methods: Mice were treated with an aerosolized lysate of ultraviolet-killed nontypeable (unencapsulated) Haemophilus influenzae (NTHi), then challenged with a lethal dose of live Streptococcus pneumoniae (Spn) delivered by aerosol. Measurements and Main Results: Treatment with the NTHi lysate induced complete protection against challenge with a lethal dose of Spn if treatment preceded challenge by 4 to 24 hours. Lesser levels of protection occurred at shorter (83% at 2 h) and longer (83% at 48–72 h) intervals between treatment and challenge. There was also some protection when treatment was given 2 hours after challenge (survival increased from 14 to 57%), but not 24 hours after challenge. Protection did not depend on recruited neutrophils or resident mast cells and alveolar macrophages. Protection was specific to the airway route of infection, correlated in magnitude and time with rapid bacterial killing within the lungs, and was associated with increases of multiple antimicrobial polypeptides in lung lining fluid. Conclusions: We infer that protection derives from stimulation of local innate immune mechanisms, and that activated lung epithelium is the most likely cellular effector of this response. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value. PMID:18388354
Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea
2018-01-16
Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.
Skoble, Justin; Beaber, John W; Gao, Yi; Lovchik, Julie A; Sower, Laurie E; Liu, Weiqun; Luckett, William; Peterson, Johnny W; Calendar, Richard; Portnoy, Daniel A; Lyons, C Rick; Dubensky, Thomas W
2009-04-01
Bacillus anthracis is the causative agent of anthrax. We have developed a novel whole-bacterial-cell anthrax vaccine utilizing B. anthracis that is killed but metabolically active (KBMA). Vaccine strains that are asporogenic and nucleotide excision repair deficient were engineered by deleting the spoIIE and uvrAB genes, rendering B. anthracis extremely sensitive to photochemical inactivation with S-59 psoralen and UV light. We also introduced point mutations into the lef and cya genes, which allowed inactive but immunogenic toxins to be produced. Photochemically inactivated vaccine strains maintained a high degree of metabolic activity and secreted protective antigen (PA), lethal factor, and edema factor. KBMA B. anthracis vaccines were avirulent in mice and induced less injection site inflammation than recombinant PA adsorbed to aluminum hydroxide gel. KBMA B. anthracis-vaccinated animals produced antibodies against numerous anthrax antigens, including high levels of anti-PA and toxin-neutralizing antibodies. Vaccination with KBMA B. anthracis fully protected mice against challenge with lethal doses of toxinogenic unencapsulated Sterne 7702 spores and rabbits against challenge with lethal pneumonic doses of fully virulent Ames strain spores. Guinea pigs vaccinated with KBMA B. anthracis were partially protected against lethal Ames spore challenge, which was comparable to vaccination with the licensed vaccine anthrax vaccine adsorbed. These data demonstrate that KBMA anthrax vaccines are well tolerated and elicit potent protective immune responses. The use of KBMA vaccines may be broadly applicable to bacterial pathogens, especially those for which the correlates of protective immunity are unknown.
Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun
2013-01-01
Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine. PMID:23220998
Fu, Shulin; Ou, Jiwen; Zhang, Minmin; Xu, Juan; Liu, Huazhen; Liu, Jinlin; Yuan, Fangyan; Chen, Huanchun; Bei, Weicheng
2013-02-01
Haemophilus parasuis and Actinobacillus pleuropneumoniae both belong to the family Pasteurellaceae and are major respiratory pathogens that cause large economic losses in the pig industry worldwide. We previously constructed an attenuated A. pleuropneumoniae serovar 1 live vaccine prototype, SLW05 (ΔapxIC ΔapxIIC ΔapxIV-ORF1), which is able to produce nontoxic but immunogenic ApxIA, ApxIIA, and ApxIVA. This triple-deletion mutant strain was shown to elicit protective immunity against virulent A. pleuropneumoniae. In the present study, we investigated whether immunization with SLW05 could also protect against lethal challenge with virulent H. parasuis SH0165 (serovar 5) or MD0322 (serovar 4). The SLW05 strain was found to elicit a strong humoral antibody response in pigs and to confer significant protection against challenge with a lethal dose of H. parasuis SH0165 or MD0322. IgG subtype analysis revealed that SLW05 induces a bias toward a Th1-type immune response and stimulates interleukin 2 (IL-2) and gamma interferon (IFN-γ) production. Moreover, antisera from SLW05-vaccinated pigs efficiently inhibited both A. pleuropneumoniae and H. parasuis growth in a whole-blood assay. This is the first report that a live attenuated A. pleuropneumoniae vaccine with SLW05 can protect against lethal H. parasuis infection, which provides a novel approach for developing an attenuated H. parasuis vaccine.
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio
2010-05-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.
Susceptibility of Monkeypox virus aerosol suspensions in a rotating chamber
Verreault, Daniel; Killeen, Stephanie Z.; Redmann, Rachel K.; Roy, Chad. J.
2012-01-01
Summary Viral aerosols can have a major impact on public health and on the dynamics of infection. Once aerosolized, viruses are subjected to various stress factors and their integrity and potential of infectivity can be altered. Empirical characterization is needed in order to predict more accurately the fate of these bioaerosols both for short term and long term suspension in the air. Here the susceptibility to aerosolization of the monkeypox virus (MPXV), associated with emerging zoonotic diseases, was studied using a 10.7 liter rotating chamber. This chamber was built to fit inside a Class three biological safety cabinet, specifically for studying airborne biosafety level three (BSL3) microorganisms. Airborne viruses were detected by culture and quantitative polymerase chain reaction (qPCR) after up to 90 hours of aging. Viral concentrations detected dropped by two logs for culture analysis and by one log for qPCR analysis within the first 18 hours of aging; viral concentrations were stable between 18 and 90 hours, suggesting a potential for the MPXV to retain infectivity in aerosols for more than 90 hours. The rotating chamber used in this study maintained viral particles airborne successfully for prolonged periods and could be used to study the susceptibility of other BSL3 microorganisms. PMID:23142251
Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.
2014-01-01
Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.
Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.
Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P
2009-01-01
The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the molecular components of adenovirus-based vaccines can produce potent, optimized product, useful for vaccination and post-exposure therapy.
Le Meur, Nolwenn; Gentleman, Robert
2008-01-01
Background Synthetic lethality defines a genetic interaction where the combination of mutations in two or more genes leads to cell death. The implications of synthetic lethal screens have been discussed in the context of drug development as synthetic lethal pairs could be used to selectively kill cancer cells, but leave normal cells relatively unharmed. A challenge is to assess genome-wide experimental data and integrate the results to better understand the underlying biological processes. We propose statistical and computational tools that can be used to find relationships between synthetic lethality and cellular organizational units. Results In Saccharomyces cerevisiae, we identified multi-protein complexes and pairs of multi-protein complexes that share an unusually high number of synthetic genetic interactions. As previously predicted, we found that synthetic lethality can arise from subunits of an essential multi-protein complex or between pairs of multi-protein complexes. Finally, using multi-protein complexes allowed us to take into account the pleiotropic nature of the gene products. Conclusions Modeling synthetic lethality using current estimates of the yeast interactome is an efficient approach to disentangle some of the complex molecular interactions that drive a cell. Our model in conjunction with applied statistical methods and computational methods provides new tools to better characterize synthetic genetic interactions. PMID:18789146
Dahl, Lotte; Jensen, Trine Hammer; Gottschalck, Elisabeth; Karlskov-Mortensen, Peter; Jensen, Tove Dannemann; Nielsen, Line; Andersen, Mads Klindt; Buckland, Robin; Wild, T Fabian; Blixenkrone-Møller, Merete
2004-09-09
We have investigated the protective effect of immunization of a highly susceptible natural host of canine distemper virus (CDV) with DNA plasmids encoding the viral nucleoprotein (N) and hemagglutinin (H). The combined intradermal and intramuscular routes of immunization elicited high virus-neutralizing serum antibody titres in mink (Mustela vison). To mimic natural exposure, we also conducted challenge infection by horizontal transmission from infected contact animals. Other groups received a lethal challenge infection by administration to the mucosae of the respiratory tract and into the muscle. One of the mink vaccinated with N plasmid alone developed severe disease after challenge. In contrast, vaccination with the H plasmid together with the N plasmid conferred solid protection against disease and we were unable to detect CDV infection in PBMCs or in different tissues after challenge. Our findings show that DNA immunization by the combined intradermal and intramuscular routes can confer solid protective immunity against naturally transmitted morbillivirus infection and disease.
Nicoletti, F; Mancuso, G; Ciliberti, F A; Beninati, C; Carbone, M; Franco, S; Cusumano, V
1997-01-01
The lethal effects occurring in neonatal (<24-h-old) BALB/c mice after challenge with 25 mg of lipopolysaccharide (LPS) per kg of body weight were significantly counteracted by pretreatment with recombinant interleukin-10 (rIL-10; 25 or 50 ng/mouse). Concordantly, blockage of endogenous IL-10 with the SXC1 monoclonal antibody increased LPS-induced mortality. Both IL-10 and SXC1 modulated the release of tumor necrosis factor alpha (TNF-alpha) so that, relative to controls, peak TNF-alpha values after LPS challenge were decreased by rIL-10 and increased by anti-IL-10. PMID:9302214
Geisbert, Thomas W; Hensley, Lisa E; Kagan, Elliott; Yu, Erik Zhaoying; Geisbert, Joan B; Daddario-DiCaprio, Kathleen; Fritz, Elizabeth A; Jahrling, Peter B; McClintock, Kevin; Phelps, Janet R; Lee, Amy C H; Judge, Adam; Jeffs, Lloyd B; MacLachlan, Ian
2006-06-15
Ebola virus (EBOV) infection causes a frequently fatal hemorrhagic fever (HF) that is refractory to treatment with currently available antiviral therapeutics. RNA interference represents a powerful, naturally occurring biological strategy for the inhibition of gene expression and has demonstrated utility in the inhibition of viral replication. Here, we describe the development of a potential therapy for EBOV infection that is based on small interfering RNAs (siRNAs). Four siRNAs targeting the polymerase (L) gene of the Zaire species of EBOV (ZEBOV) were either complexed with polyethylenimine (PEI) or formulated in stable nucleic acid-lipid particles (SNALPs). Guinea pigs were treated with these siRNAs either before or after lethal ZEBOV challenge. Treatment of guinea pigs with a pool of the L gene-specific siRNAs delivered by PEI polyplexes reduced plasma viremia levels and partially protected the animals from death when administered shortly before the ZEBOV challenge. Evaluation of the same pool of siRNAs delivered using SNALPs proved that this system was more efficacious, as it completely protected guinea pigs against viremia and death when administered shortly after the ZEBOV challenge. Additional experiments showed that 1 of the 4 siRNAs alone could completely protect guinea pigs from a lethal ZEBOV challenge. Further development of this technology has the potential to yield effective treatments for EBOV HF as well as for diseases caused by other agents that are considered to be biological threats.
Hepler, Robert W; Kelly, Rosemarie; McNeely, Tessie B; Fan, Hongxia; Losada, Maria C; George, Hugh A; Woods, Andrea; Cope, Leslie D; Bansal, Alka; Cook, James C; Zang, Gina; Cohen, Steven L; Wei, Xiaorong; Keller, Paul M; Leffel, Elizabeth; Joyce, Joseph G; Pitt, Louise; Schultz, Loren D; Jansen, Kathrin U; Kurtz, Myra
2006-03-06
Infection by Bacillus anthracis is preventable by prophylactic vaccination with several naturally derived and recombinant vaccine preparations. Existing data suggests that protection is mediated by antibodies directed against the protective antigen (PA) component of the anthrax toxin complex. PA is an 83-kDa protein cleaved in vivo to yield a biologically active 63-kDa protein. In an effort to evaluate the potential of yeast as an expression system for the production of recombinant PA, and to determine if the yeast-purified rPA63 can protect from a lethal inhalational challenge, the sequence of the 63-kDa form of PA was codon-optimized and expressed in the yeast Saccharomyces cerevisiae. Highly purified rPA63 isolated from Saccharomyces under denaturing conditions demonstrated reduced biological activity in a macrophage-killing assay compared to non-denatured rPA83 purified from Escherichia coli. Rabbits and non-human primates (NHP) immunized with rPA63 and later challenged with a lethal dose of B. anthracis spores were generally protected from infection. These results indicate that epitopes present in the 63-kDa from of PA can protect rabbits and non-human primates from a lethal spore challenge, and further suggest that a fully functional rPA63 is not required in order to provide these epitopes.
CHARACTERIZATION OF VIRULENCE OF Leptospira ISOLATES IN A HAMSTER MODEL
Silva, Éverton F.; Santos, Cleiton S.; Athanazio, Daniel A.; Seyffert, Núbia; Seixas, Fabiana K.; Cerqueira, Gustavo M.; Fagundes, Michel Q.; Brod, Claudiomar S.; Reis, Mitermayer G.; Dellagostin, Odir A.; Ko, Albert I.
2008-01-01
Effort has been made to identify protective antigens in order to develop a recombinant vaccine against leptospirosis. Several attempts failed to conclusively demonstrate efficacy of vaccine candidates due to the lack of an appropriate model of lethal leptospirosis. The purposes of our study were: (i) to test the virulence of leptospiral isolates from Brazil, which are representative of important serogroups that cause disease in humans and animals; and (ii) to standardize the lethal dose 50% (LD50) for each of the virulent strains using a hamster (Mesocricetus auratus) model. Five of seven Brazilian isolates induced lethality in a hamster model, with inocula lower than 200 leptospires. Histopathological examination of infected animals showed typical lesions found in both natural and experimental leptospirosis. Results described here demonstrated the potential use of Brazilian isolates as highly virulent strains in challenge experiments using hamster as an appropriate animal model for leptospirosis. Furthermore these strains may be useful in heterologous challenge studies which aim to evaluate cross-protective responses induced by subunit vaccine candidates. PMID:18547690
Designing Medical Facilities to Care for Patients with Highly Hazardous Communicable Diseases
2017-07-14
patients infected with monkeypox.20 [REF: Reynolds] The 2015 outbreak of Middle Eastern Respiratory Syndrome Corona virus (MERS- CoV), in Korea led to...adjunct. Units have used sealed floors and walls for ease of decontamination after patient discharge , although the housekeeping is frequently done...handling. When a patient is discharged or succumbs to the disease, it is useful to have procedures in place for decontaminating the facility and for
NASA Astrophysics Data System (ADS)
Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.
2017-05-01
Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.
Fernandes, Paula J; Guo, Qin; Waag, David M; Donnenberg, Michael S
2007-06-01
Burkholderia mallei is the cause of glanders and a proven biological weapon. We identified and purified the type IV pilin protein of this organism to study its potential as a subunit vaccine. We found that purified pilin was highly immunogenic. Furthermore, mice infected via sublethal aerosol challenge developed significant increases in titers of antibody against the pilin, suggesting that it is expressed in vivo. Nevertheless, we found no evidence that high-titer antipilin antisera provided passive protection against a sublethal or lethal aerosol challenge and no evidence of protection afforded by active immunization with purified pilin. These results contrast with the utility of type IV pilin subunit vaccines against other infectious diseases and highlight the need for further efforts to identify protective responses against this pathogen.
Galantamine is a Novel Post-Exposure Therapeutic Against Lethal VX Challenge
2009-01-01
administered as a post- exposure treatment 1 min after VX. GAL also reduced the high correlation associated between seizure activity and lethality...The standard U.S. military therapy for intoxication by anticholinesterase agents consists of administering ATR to antagonize excessive muscarinic...2003). A ball-and-stick repre- sentation of GAL is shown in Fig. 1 docking to the active site of two different acetylcholinesterase forms. GAL
Genome-Wide Comparison of Cowpox Viruses Reveals a New Clade Related to Variola Virus
Kurth, Andreas; Nitsche, Andreas
2013-01-01
Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages. PMID:24312452
Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.
Dabrowski, Piotr Wojtek; Radonić, Aleksandar; Kurth, Andreas; Nitsche, Andreas
2013-01-01
Zoonotic infections caused by several orthopoxviruses (OPV) like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV) is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.
Marzi, Andrea; Engelmann, Flora; Feldmann, Friederike; Haberthur, Kristen; Shupert, W Lesley; Brining, Douglas; Scott, Dana P; Geisbert, Thomas W; Kawaoka, Yoshihiro; Katze, Michael G; Feldmann, Heinz; Messaoudi, Ilhem
2013-01-29
Ebola viruses cause hemorrhagic disease in humans and nonhuman primates with high fatality rates. These viruses pose a significant health concern worldwide due to the lack of approved therapeutics and vaccines as well as their potential misuse as bioterrorism agents. Although not licensed for human use, recombinant vesicular stomatitis virus (rVSV) expressing the filovirus glycoprotein (GP) has been shown to protect macaques from Ebola virus and Marburg virus infections, both prophylactically and postexposure in a homologous challenge setting. However, the immune mechanisms of protection conferred by this vaccine platform remain poorly understood. In this study, we set out to investigate the role of humoral versus cellular immunity in rVSV vaccine-mediated protection against lethal Zaire ebolavirus (ZEBOV) challenge. Groups of cynomolgus macaques were depleted of CD4+ T, CD8+ T, or CD20+ B cells before and during vaccination with rVSV/ZEBOV-GP. Unfortunately, CD20-depleted animals generated a robust IgG response. Therefore, an additional group of vaccinated animals were depleted of CD4+ T cells during challenge. All animals were subsequently challenged with a lethal dose of ZEBOV. Animals depleted of CD8+ T cells survived, suggesting a minimal role for CD8+ T cells in vaccine-mediated protection. Depletion of CD4+ T cells during vaccination caused a complete loss of glycoprotein-specific antibodies and abrogated vaccine protection. In contrast, depletion of CD4+ T cells during challenge resulted in survival of the animals, indicating a minimal role for CD4+ T-cell immunity in rVSV-mediated protection. Our results suggest that antibodies play a critical role in rVSV-mediated protection against ZEBOV.
2012-09-27
time patients could reach a temperature near 103°F. The fever was typically 5 accompanied by headache, backache, vomiting , and prostration. A...were co-housed with prairie dogs . Infected prairie dogs were sold and distributed across multiple states including Wisconsin, Illinois, Indiana...deletion of C3L from the Congo Basin clade virus reduced morbidity and mortality in prairie dogs infected intranasally (29). Since 1986, passive
Countermeasures to the bioterrorist threat of smallpox.
Jahrling, Peter B; Fritz, Elizabeth A; Hensley, Lisa E
2005-12-01
Variola, the agent of smallpox, is a bioterrorist threat, as is monkeypox virus, which also occurs naturally in Africa. Development of countermeasures, in the form of improved vaccines, antiviral drugs, and other therapeutic strategies are a high priority. Recent advances in molecular biology and in animal model development have provided fresh insight into the virulence determinants for smallpox and the pathophysiology of disease. The complex replication cycle for orthopoxviruses, and the pivotal role for viral-specific immunomodulatory proteins which contribute to escape from immunologic surveillance, provide many unique targets for therapeutic intervention. The "toxemia" of smallpox has been elucidated in part by variola-infected primate studies which revealed the central role of apoptosis and the evolution of a cytokine storm leading to hemorrhagic diathesis, resembling fulminent "black" smallpox. This suggests a potential role for therapeutic strategies developed for septic shock, in treatment of smallpox. Drugs licensed for other viruses which share molecular targets with orthopoxviruses (e.g. Cidofovir) or cancer drugs (e.g. Gleevec and other tyrosine kinase inhibitors) have immediate application for treatment of smallpox and monkeypox and provide leads for second generation drugs with higher therapeutic indices. Recent advances in identification of virulence determinants and immune evasion genes facilitate the design of alternative vaccines to replace live vaccinia strains that are unsuitable for a large proportion of individuals in a mass immunization campaign.
A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation
NASA Astrophysics Data System (ADS)
Rogers, James V.; Parkinson, Christopher V.; Choi, Young W.; Speshock, Janice L.; Hussain, Saber M.
2008-04-01
The use of nanotechnology and nanomaterials in medical research is growing. Silver-containing nanoparticles have previously demonstrated antimicrobial efficacy against bacteria and viral particles. This preliminary study utilized an in vitro approach to evaluate the ability of silver-based nanoparticles to inhibit infectivity of the biological select agent, monkeypox virus (MPV). Nanoparticles (10 80 nm, with or without polysaccharide coating), or silver nitrate (AgNO3) at concentrations of 100, 50, 25, and 12.5 μg/mL were evaluated for efficacy using a plaque reduction assay. Both Ag-PS-25 (polysaccharide-coated, 25 nm) and Ag-NP-55 (non-coated, 55 nm) exhibited a significant ( P ≤ 0.05) dose-dependent effect of test compound concentration on the mean number of plaque-forming units (PFU). All concentrations of silver nitrate (except 100 μg/mL) and Ag-PS-10 promoted significant ( P ≤ 0.05) decreases in the number of observed PFU compared to untreated controls. Some nanoparticle treatments led to increased MPV PFU ranging from 1.04- to 1.8-fold above controls. No cytotoxicity (Vero cell monolayer sloughing) was caused by any test compound, except 100 μg/mL AgNO3. These results demonstrate that silver-based nanoparticles of approximately 10 nm inhibit MPV infection in vitro, supporting their potential use as an anti-viral therapeutic.
Geisbert, Thomas W; Lee, Amy C H; Robbins, Marjorie; Geisbert, Joan B; Honko, Anna N; Sood, Vandana; Johnson, Joshua C; de Jong, Susan; Tavakoli, Iran; Judge, Adam; Hensley, Lisa E; Maclachlan, Ian
2010-05-29
We previously showed that small interfering RNAs (siRNAs) targeting the Zaire Ebola virus (ZEBOV) RNA polymerase L protein formulated in stable nucleic acid-lipid particles (SNALPs) completely protected guineapigs when administered shortly after a lethal ZEBOV challenge. Although rodent models of ZEBOV infection are useful for screening prospective countermeasures, they are frequently not useful for prediction of efficacy in the more stringent non-human primate models. We therefore assessed the efficacy of modified non-immunostimulatory siRNAs in a uniformly lethal non-human primate model of ZEBOV haemorrhagic fever. A combination of modified siRNAs targeting the ZEBOV L polymerase (EK-1 mod), viral protein (VP) 24 (VP24-1160 mod), and VP35 (VP35-855 mod) were formulated in SNALPs. A group of macaques (n=3) was given these pooled anti-ZEBOV siRNAs (2 mg/kg per dose, bolus intravenous infusion) after 30 min, and on days 1, 3, and 5 after challenge with ZEBOV. A second group of macaques (n=4) was given the pooled anti-ZEBOV siRNAs after 30 min, and on days 1, 2, 3, 4, 5, and 6 after challenge with ZEBOV. Two (66%) of three rhesus monkeys given four postexposure treatments of the pooled anti-ZEBOV siRNAs were protected from lethal ZEBOV infection, whereas all macaques given seven postexposure treatments were protected. The treatment regimen in the second study was well tolerated with minor changes in liver enzymes that might have been related to viral infection. This complete postexposure protection against ZEBOV in non-human primates provides a model for the treatment of ZEBOV-induced haemorrhagic fever. These data show the potential of RNA interference as an effective postexposure treatment strategy for people infected with Ebola virus, and suggest that this strategy might also be useful for treatment of other emerging viral infections. Defense Threat Reduction Agency. Copyright 2010 Elsevier Ltd. All rights reserved.
Klas, S.D.; Petrie, C.R.; Warwood, S.J.; Williams, M.S.; Olds, C.L.; Stenz, J.P.; Cheff, A.M.; Hinchcliffe, M.; Richardson, C.; Wimer, S.
2009-01-01
Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150 μg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150 μg rPA, 150 μg rPA + 150 μg of a conjugated 10-mer peptide representing the B. anthracis capsule (conj), or 150 μg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys®). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA + conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p = 0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA + conj immunized groups (p = 0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later. PMID:18703110
Klas, S D; Petrie, C R; Warwood, S J; Williams, M S; Olds, C L; Stenz, J P; Cheff, A M; Hinchcliffe, M; Richardson, C; Wimer, S
2008-10-09
Here we confirm that intranasal (IN) dry powder anthrax vaccine formulations are able to protect rabbits against aerosol challenge 9 weeks after a single immunization. The optimum dose of rPA in our dry powder anthrax vaccine formulation in rabbits was experimentally determined to be 150microg and therefore was chosen as the target dose for all subsequent experiments. Rabbits received a single dose of either 150microg rPA, 150microg rPA+150microg of a conjugated 10-mer peptide representing the Bacillus anthracis capsule (conj), or 150microg of conj alone. All dry powder formulations contained MPL and chitosan (ChiSys). Significant anti-rPA titers and anthrax lethal toxin neutralizing antibody (TNA) levels were seen with both rPA containing vaccines, although rPA-specific IgG and TNA levels were reduced in rabbits immunized with rPA plus conj. Nine weeks after immunization, rabbits were exposed to a mean aerosol challenge dose of 278 LD50 of Ames spores. Groups immunized with rPA or with rPA+conj had significant increases in survivor proportions compared to the negative control group by Logrank test (p=0.0001 and 0.003, respectively), and survival was not statistically different for the rPA and rPA+conj immunized groups (p=0.63). These data demonstrate that a single immunization with our dry powder anthrax vaccine can protect against a lethal aerosol spore challenge 9 weeks later.
Johnson, Scott; Dlugolenski, Daniel; Phan, Shannon; Tompkins, S. Mark; He, Biao
2015-01-01
H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively. PMID:25803697
2005-09-02
protection from a lethal challenge. 15. SUBJECT TERMS Burkholderia mallei , glanders , cytokines, immune response, humoral, cellular, laboratory animals...model of sublethal and lethal intraperitoneal glanders ( Burkholderia mallei ). Vet Pathol 2000;37:626–36. [34] Jankovic D, Caspar P, Zweig M, Garcia...Vaccine 24 (2006) 1413–1420 Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice Kei Amemiya
Ogg, Monica; Jonsson, Colleen B; Camp, Jeremy V; Hooper, Jay W
2013-11-08
Andes virus, ANDV, harbored by wild rodents, causes the highly lethal hantavirus pulmonary syndrome (HPS) upon transmission to humans resulting in death in 30% to 50% of the cases. As there is no treatment for this disease, we systematically tested the efficacy of ribavirin in vitro and in an animal model. In vitro assays confirmed antiviral activity and determined that the most effective doses were 40 µg/mL and above. We tested three different concentrations of ribavirin for their capability to prevent HPS in the ANDV hamster model following an intranasal challenge. While the highest level of ribavirin (200 mg/kg) was toxic to the hamster, both the middle (100 mg/kg) and the lowest concentration (50 mg/kg) prevented HPS in hamsters without toxicity. Specifically, 8 of 8 hamsters survived intranasal challenge for both of those groups whereas 7 of 8 PBS control-treated animals developed lethal HPS. Further, we report that administration of ribavirin at 50 mg/kg/day starting on days 6, 8, 10, or 12 post-infection resulted in significant protection against HPS in all groups. Administration of ribavirin at 14 days post-infection also provided a significant level of protection against lethal HPS. These data provide in vivo evidence supporting the potential use of ribavirin as a post-exposure treatment to prevent HPS after exposure by the respiratory route.
Ben-Nathan, D; Padgett, D A; Loria, R M
1999-05-01
The protective effects of the hormones androstenediol (androstene-3beta, 17beta,-diol; AED) and dehydroepiandrosterone (5-androsten-3beta-ol-17-one; DHEA) on the pathophysiology of two lethal bacterial infections and endotoxin shock were examined. The infections included a gram-positive organism (Enterococcus faecalis) and a gram-negative organism (Pseudomonas aeruginosa). Both hormones protected mice from the lethal bacterial infections and from lipopolysaccharide (LPS) challenge. Treatment of animals lethally infected with P. aeruginosa with DHEA resulted in a 43% protection whereas treatment with AED gave a 67% protection. Both hormones also protected completely animals infected with an LD50 dose of E. faecalis. Similarly, the 88% mortality rate seen in LPS challenge was reduced to 17% and 8.5%, by treatment with DHEA and AED, respectively. The protective influences of both steroids were shown not to be directly antibacterial, but primarily an indirect antitoxin reaction. DHEA appears to mediate its protective effect by a mechanism that blocks the toxin-induced production of pathophysiological levels of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1. AED usually had greater protective effects than DHEA; however, the AED effect was independent of TNF-alpha suppression, both in vivo and in vitro. The data suggest that both DHEA and AED may have a role in the neuro-endocrine regulation of antibacterial immune resistance.
2005-01-01
chickens in May and June 2002, with the first human cases showing up in hospital emergency departments in July. The Louisiana outbreak lasted until... Mexico , that had been used in a salsa served in a Beaver County restaurant. A total of 660 cases were reported, resulting in 3 deaths. Table...imported from Africa Contaminated green onions imported from Mexico Transmission Vector-borne (mosquitoes) Respiratory droplets (person-to
Experimental Infection of Cynomolgus Macaques (Macaca fascicularis) with Aerosolized Monkeypox Virus
2010-09-01
and interstitial fibrosis, and fibrous pleural adhesions. Other lesions included lymphoid hyperplasia and plasmacytosis, and chronic periadnexal and...inflammation in the lung and mediastinal lymph nodes, chronic inflammation centered on bronchi and vessels, type II pneumocyte hyperplasia , pleural...2/6 33 1/6 16 1/3 33 spleen splenitis, necrotizing 1/3 33 2/6 33 4/6 66 2/3 66 lymphoid depletion 2/3 66 3/6 50 3/6 50 2/3 66 lymphoid hyperplasia * 0
Combination Immunotherapy In Experimental Pseudomonas Sepsis
1993-01-01
challenge strain was immunotype 6. Histologic sections of lung, to monitor the animals’ body temperature several times daily. cecum. and renal tissue...challenge strain . P. aeruginosa 12.4.4. was 93% at the onset of fever during the period of neutro- Results penia. None of the blood cultures obtained in...control group. All lethally infected animals were subjected to autopsy within 12 h. The challenge strain had a culture positive for the challenge
Luiz, Wilson B.; Rodrigues, Juliana F.; Crabb, Joseph H.
2015-01-01
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 107 bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. PMID:26371126
Jones, Dorothy I; McGee, Charles E; Sample, Christopher J; Sempowski, Gregory D; Pickup, David J; Staats, Herman F
2016-07-01
Modified vaccinia Ankara virus (MVA) is a smallpox vaccine candidate. This study was performed to determine if MVA vaccination provides long-term protection against rabbitpox virus (RPXV) challenge, an animal model of smallpox. Two doses of MVA provided 100% protection against a lethal intranasal RPXV challenge administered 9 months after vaccination. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Development of a broad-spectrum antiviral with activity against Ebola virus.
Aman, M Javad; Kinch, Michael S; Warfield, Kelly; Warren, Travis; Yunus, Abdul; Enterlein, Sven; Stavale, Eric; Wang, Peifang; Chang, Shaojing; Tang, Qingsong; Porter, Kevin; Goldblatt, Michael; Bavari, Sina
2009-09-01
We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge. Cell-based assays also identified inhibitory activity against divergent virus families, which supports a hypothesis that FGI-106 interferes with a common pathway utilized by different viruses. These findings suggest FGI-106 may provide an opportunity for targeting viral diseases.
Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y
1997-10-01
Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.
Wood, J M; Kawaoka, Y; Newberry, L A; Bordwell, E; Webster, R G
1985-01-01
The hemagglutinin concentration of beta-propiolactone-inactivated influenza vaccine containing A/Duck/N.Y./189/82 (H5N2) virus was measured by single-radial-immunodiffusion (SRD) test. After administration of vaccine to chickens in Freund's complete adjuvant, vaccine efficacy was assessed by challenge with lethal A/Chicken/Penn./1370/83 (H5N2) virus. SRD potency values correlated with post-vaccination antibody levels and protection against infection.
Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection
NASA Astrophysics Data System (ADS)
McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz
1984-12-01
A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.
2007-10-01
Sarin 5a. CONTRACT NUMBER Intoxication in the Guinea Pig 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Koplovitz, I and...efficacy of MINA as a treatment for lethal sarin (GB) intoxication in guinea pigs . Male animals were challenged subcutaneously (s.c.) with 2 LD50s...oximes that are readily able to enter the brain. 15. SUBJECT TERMS oximes, brain, sarin, reactivation, nerve agents, guinea pigs 16. SECURITY
Guo, Ling; Xu, Lei; Wu, Tao; Fu, Shulin; Qiu, Yinsheng; Hu, Chien-An Andy; Ren, Xinglong; Liu, Rongrong; Ye, Mengdie
2017-04-01
Haemophilus parasuis can cause a severe membrane inflammation disorder. It has been documented that superoxide dismutase (SOD) is a potential target to treat systemic inflammatory diseases. Therefore, we constructed an experimental H. parasuis subunit vaccine SOD and determined the protective efficacy of SOD using a lethal dose challenge against H. parasuis serovar 4 strain MD0322 and serovar 5 strain SH0165 in a mouse model. The results demonstrated that SOD could induce a strong humoral immune response in mice and provide significant immunoprotection efficacy against a lethal dose of H. parasuis serovar 4 strain MD0322 or serovar 5 strain SH0165 challenge. IgG subtype analysis indicated SOD protein could trigger a bias toward a Th1-type immune response and induce the proliferation of splenocytes and secretion of IL-2 and IFN-γ of splenocytes. In addition, serum in mice from the SOD-immunized group could inhibit the growth of strain MD0322 and strain SH0165 in the whole-blood killing bacteria assay. This is the first report that immunization of mice with SOD protein could provide protective effect against a lethal dose of H. parasuis serovar 4 and serovar 5 challenge in mice, which may provide a novel approach against heterogeneous serovar infection of H. parasuis in future.
Jia, Qingmei; Bowen, Richard; Dillon, Barbara Jane; Masleša-Galić, Saša; Chang, Brennan T; Kaidi, Austin C; Horwitz, Marcus A
2018-05-03
Bacillus anthracis, Yersinia pestis, and Francisella tularensis are the causative agents of Tier 1 Select Agents anthrax, plague, and tularemia, respectively. Currently, there are no licensed vaccines against plague and tularemia and the licensed anthrax vaccine is suboptimal. Here we report F. tularensis LVS ΔcapB (Live Vaccine Strain with a deletion in capB)- and attenuated multi-deletional Listeria monocytogenes (Lm)-vectored vaccines against all three aforementioned pathogens. We show that LVS ΔcapB- and Lm-vectored vaccines express recombinant B. anthracis, Y. pestis, and F. tularensis immunoprotective antigens in broth and in macrophage-like cells and are non-toxic in mice. Homologous priming-boosting with the LVS ΔcapB-vectored vaccines induces potent antigen-specific humoral and T-cell-mediated immune responses and potent protective immunity against lethal respiratory challenge with all three pathogens. Protection against anthrax was far superior to that obtained with the licensed AVA vaccine and protection against tularemia was comparable to or greater than that obtained with the toxic and unlicensed LVS vaccine. Heterologous priming-boosting with LVS ΔcapB- and Lm-vectored B. anthracis and Y. pestis vaccines also induced potent protective immunity against lethal respiratory challenge with B. anthracis and Y. pestis. The single vaccine platform, especially the LVS ΔcapB-vectored vaccine platform, can be extended readily to other pathogens.
Yao, Wenwu; Kang, Jingjing; Kang, Lin; Gao, Shan; Yang, Hao; Ji, Bin; Li, Ping; Liu, Jing; Xin, Wenwen; Wang, Jinglin
2016-04-06
Epsilon toxin (ETX) is produced by toxinotypes B and D of Clostridium perfringens. It can induce lethal enterotoxemia in domestic animals, mainly in sheep, goats and cattle, causing serious economic losses to global animal husbandry. In this study, a novel and stable epsilon toxin mutant rETX(Y196E)-C, obtained by substituting the 196th tyrosine (Y196) with glutamic acid (E) and introducing of 23 amino acids long C-terminal peptide, was determined as a promising recombinant vaccine candidate against enterotoxemia. After the third vaccination, the antibody titers against recombinant wild type (rETX) could reach 1:10(5) in each immunized group, and the mice were completely protected from 100 × LD50 (50% lethal dose) of rETX challenge. The mice in 15 μg subcutaneously immunized group fully survived at the dose of 500 × LD50 of rETX challenge and 80% of mice survived at 180 μg (1000 × LD50) of rETX administration. In vitro, immune sera from 15 μg subcutaneously immunized group could completely protect MDCK cells from 16 × CT50 (50% lethal dose of cells) of rETX challenge and protect against 10 × LD50 dose (1.8 μg) of rETX challenge in mice. These data suggest that recombinant protein rETX(Y196E)-C is a potential vaccine candidate for future applied researches.
Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge
Baz, Mariana; Boonnak, Kobporn; Paskel, Myeisha; Santos, Celia; Powell, Timothy; Townsend, Alain
2015-01-01
ABSTRACT New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted (ca) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical data support further evaluation in humans. PMID:26489862
Montanuy, Imma; Alejo, Ali; Alcami, Antonio
2011-01-01
Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110
Reeves, Patrick M.; Smith, Scott K.; Olson, Victoria A.; Thorne, Steve H.; Bornmann, William; Damon, Inger K.; Kalman, Daniel
2011-01-01
Vaccinia virus (VacV) enters mammalian cells, replicates extranuclearly, and produces virions that move to the cell surface along microtubules, fuse with the plasma membrane, and move from infected cells toward apposing cells on actin-filled membranous protrusions or actin tails. To form actin tails, cell-associated enveloped virions (CEV) require Abl and Src family tyrosine kinases. Furthermore, release of CEV from the cell requires Abl but not Src family tyrosine kinases and is blocked by imatinib mesylate (STI-571; Gleevec), an Abl family kinase inhibitor used to treat chronic myelogenous leukemia in humans. Here we demonstrate that the Poxviridae family members monkeypox virus (MPX) and variola virus (VarV) use conserved mechanisms for actin motility and extracellular enveloped virion (EEV) release. Furthermore, we show that imatinib mesylate is effective in a mouse model of infection with VacV, whether delivered prophylactically or postinfection, and restricts spread of virions from the site of inoculation. While inhibitors of both Src and Abl family kinases, such as dasatinib (BMS-354825; Sprycel), are effective in limiting dissemination of VacV, VarV, and MPX in vitro, members of this class of drugs appear to have immunosuppressive effects in vivo that preclude their use as anti-infectives. Together, these data suggest a possible utility for imatinib mesylate in treating smallpox or MPX infections or complications associated with vaccination. PMID:20962097
Jones, D.T.; Moffitt, C.M.; Peters, K.K.
2007-01-01
Resource managers considering restoration and reconnection of watersheds to protect and enhance threatened populations of bull trout Salvelinus confluentus have little information about the consequences of bacterial kidney disease (BKD) caused by Renibacterium salmoninarum. To better understand the response of bull trout to R. salmoninarum challenge, we conducted several laboratory experiments at two water temperatures. The extent, severity, and lethality of BKD in bull trout were compared with those of similarly challenged lake trout S. namaycush, Arctic char S. alpinus, Chinook salmon Oncorhynchus tshawytscha, and rainbow trout O. mykiss. The lethal dose of bacterial cells necessary to induce 50% mortality (LD50) was 10-fold lower at the 15??C challenge than at the 9??C challenge. Of the species tested, bull trout were relatively resistant to BKD, Arctic char were the most susceptible among Salvelinus species, and Chinook salmon were the most susceptible among Oncorhynchus species tested. Mean time to death was more rapid for all fish tested at 15??C than for fish challenged at 9??C. These results suggest that infection of bull trout with BKD likely poses a low risk to successful restoration of threatened populations. ?? Copyright by the American Fisheries Society 2007.
Golden, Joseph W; Hooper, Jay W
2008-07-20
We previously developed a gene-based vaccine, termed 4pox, which targets four orthopoxvirus proteins (A33, L1, B5, and A27). Because any subunit orthopoxvirus vaccine must protect against multiple species of orthopoxviruses, we are interested in understanding the cross-protective potential of our 4pox vaccine target immunogens. In our current studies, we focused on the A33 immunogen. We found one monoclonal antibody against A33, MAb-1G10, which could not bind the monkeypox virus A33 ortholog, A35. MAb-1G10 binding could be rescued if A35 amino acids 118 and 120 were substituted with those from A33. MAb-1G10 has been shown to protect mice from VACV challenge, thus our findings indicated a protective epitope differs among orthopoxviruses. Accordingly, we tested the cross-protective efficacy of a DNA vaccine consisting of A35R against VACV challenge and compared it to vaccination with A33R DNA. Mice vaccinated with A35R had greater mortality and more weight loss compared to those vaccinated with A33R. These findings demonstrate that despite high homology between A33R orthologs, amino acid differences can impact cross-protection. Furthermore, our results caution that adequate cross-protection by any pan-orthopoxvirus subunit vaccine will require not only careful evaluation of cross-protective immunity, but also of targeting of multiple orthopoxvirus immunogens.
Travis, Dominic A; Sriramarao, P; Cardona, Carol; Steer, Clifford J; Kennedy, Shaun; Sreevatsan, Srinand; Murtaugh, Michael P
2014-01-01
Characterizing the health consequences of interactions among animals, humans, and the environment in the face of climatic change, environmental disturbance, and expanding human populations is a critical global challenge in today's world. Exchange of interdisciplinary knowledge in basic and applied sciences and medicine that includes scientists, health professionals, key sponsors, and policy experts revealed that relevant case studies of monkeypox, influenza A, tuberculosis, and HIV can be used to guide strategies for anticipating and responding to new disease threats such as the Ebola and Chickungunya viruses, as well as to improve programs to control existing zoonotic diseases, including tuberculosis. The problem of safely feeding the world while preserving the environment and avoiding issues such as antibiotic resistance in animals and humans requires cooperative scientific problem solving. Food poisoning outbreaks resulting from Salmonella growing in vegetables have demonstrated the need for knowledge of pathogen evolution and adaptation in developing appropriate countermeasures for prevention and policy development. Similarly, pesticide use for efficient crop production must take into consideration bee population declines that threaten the availability of the two-thirds of human foods that are dependent on pollination. This report presents and weighs the objective merits of competing health priorities and identifies gaps in knowledge that threaten health security, to promote discussion of major public policy implications such that they may be decided with at least an underlying platform of facts. PMID:25476836
International collaborative studies on potency assays of diphtheria and tetanus toxoids.
Van Ramshorst, J D; Sundaresan, T K; Outschoorn, A S
1972-01-01
Collaborative studies showed that relative potency assays for a particular type of diphtheria toxoid (adsorbed) and for tetanus toxoid (plain and adsorbed) gave very similar results, whether the assays were carried out by toxin challenge or by antitoxin titration after immunization of experimental animals with graded doses of toxoid. The same numerical results were obtained with a scoring system as with a system based on survivals only. Although skin tests were used on a very limited scale in these studies, it seems likely that they could replace lethal tests for the diphtheria challenge assays.For both tetanus and diphtheria, the adsorbed toxoid gave a higher relative potency when combined with other antigens than as a single toxoid. Both mice and guinea-pigs were used for the lethal challenge test of adsorbed tetanus toxoid. For the single tetanus toxoid the results were the same, but for the combined toxoid (DPT vaccine) the mouse assay results were about twice those of guinea-pig assays.
International collaborative studies on potency assays of diphtheria and tetanus toxoids
van Ramshorst, J. D.; Sundaresan, T. K.; Outschoorn, A. S.
1972-01-01
Collaborative studies showed that relative potency assays for a particular type of diphtheria toxoid (adsorbed) and for tetanus toxoid (plain and adsorbed) gave very similar results, whether the assays were carried out by toxin challenge or by antitoxin titration after immunization of experimental animals with graded doses of toxoid. The same numerical results were obtained with a scoring system as with a system based on survivals only. Although skin tests were used on a very limited scale in these studies, it seems likely that they could replace lethal tests for the diphtheria challenge assays. For both tetanus and diphtheria, the adsorbed toxoid gave a higher relative potency when combined with other antigens than as a single toxoid. Both mice and guinea-pigs were used for the lethal challenge test of adsorbed tetanus toxoid. For the single tetanus toxoid the results were the same, but for the combined toxoid (DPT vaccine) the mouse assay results were about twice those of guinea-pig assays. PMID:4537488
Buttigieg, Karen R.; Dowall, Stuart D.; Findlay-Wilson, Stephen; Miloszewska, Aleksandra; Rayner, Emma; Hewson, Roger; Carroll, Miles W.
2014-01-01
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15–70% of reported cases are fatal. There is no approved vaccine available, and preclinical protection in vivo by an experimental vaccine has not been demonstrated previously. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus glycoproteins. Cellular and humoral immunogenicity was confirmed in two mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. This vaccine protected all recipient animals from lethal disease in a challenge model adapted to represent infection via a tick bite. Histopathology and viral load analysis of protected animals confirmed that they had been exposed to challenge virus, even though they did not exhibit clinical signs. This is the first demonstration of efficacy of a CCHF vaccine. PMID:24621656
Buttigieg, Karen R; Dowall, Stuart D; Findlay-Wilson, Stephen; Miloszewska, Aleksandra; Rayner, Emma; Hewson, Roger; Carroll, Miles W
2014-01-01
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15-70% of reported cases are fatal. There is no approved vaccine available, and preclinical protection in vivo by an experimental vaccine has not been demonstrated previously. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus glycoproteins. Cellular and humoral immunogenicity was confirmed in two mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. This vaccine protected all recipient animals from lethal disease in a challenge model adapted to represent infection via a tick bite. Histopathology and viral load analysis of protected animals confirmed that they had been exposed to challenge virus, even though they did not exhibit clinical signs. This is the first demonstration of efficacy of a CCHF vaccine.
Scott, Veronica L; Villarreal, Daniel O; Hutnick, Natalie A; Walters, Jewell N; Ragwan, Edwin; Bdeir, Khalil; Yan, Jian; Sardesai, Niranjan Y; Finnefrock, Adam C; Casimiro, Danilo R; Weiner, David B
2015-01-01
Botulinum neurotoxins (BoNTs) are deadly, toxic proteins produced by the bacterium Clostridium botulinum that can cause significant diseases in humans. The use of the toxic substances as potential bioweapons has raised concerns by the Centers for Disease Control and Prevention and the United States Military. Currently, there is no licensed vaccine to prevent botulinum intoxication. Here we present an immunogenicity study to evaluate the efficacy of novel monovalent vaccines and a trivalent cocktail DNA vaccine targeting the heavy chain C-terminal fragments of Clostridium botulinum neurotoxin serotypes A, B, and E. These synthetic DNA vaccines induced robust humoral and polyfunctional CD4(+) T-cell responses which fully protected animals against lethal challenge after just 2 immunizations. In addition, naïve animals administered immunized sera mixed with the lethal neurotoxin were 100% protected against intoxication. The data demonstrate the protective efficacy induced by a combinative synthetic DNA vaccine approach. This study has importance for the development of vaccines that provide protective immunity against C. botulinum neurotoxins and other toxins.
Experimental Respiratory Infection of Marmosets (Callithrix jacchus) With Ebola Virus Kikwit.
Smither, Sophie J; Nelson, Michelle; Eastaugh, Lin; Nunez, Alejandro; Salguero, Francisco J; Lever, Mark S
2015-10-01
Ebola virus (EBOV) causes a highly infectious and lethal hemorrhagic fever in primates with high fatality rates during outbreaks and EBOV may be exploited as a potential biothreat pathogen. There is therefore a need to develop and license appropriate medical countermeasures against this virus. To determine whether the common marmoset (Callithrix jacchus) would be an appropriate model to assess vaccines or therapies against EBOV disease (EVD), initial susceptibility, lethality and pathogenesis studies were performed. Low doses of EBOV-Kikwit, between 4 and 27 times the 50% tissue culture infectious dose, were sufficient to cause a lethal, reproducible infection. Animals became febrile between days 5 and 6, maintaining a high fever before succumbing to EVD between 6 and 8 days after challenge. Typical signs of EVD were observed. Pathogenesis studies revealed that virus was isolated from the lungs of animals beginning on day 3 after challenge and from the liver, spleen and blood beginning on day 5. The most striking features were observed in animals that succumbed to infection, including high viral titers in all organs, increased levels of liver function enzymes and blood clotting times, decreased levels of platelets, multifocal moderate to severe hepatitis, and perivascular edema. © Crown copyright 2015.
Dowall, Stuart D; Jacquot, Frédéric; Landon, John; Rayner, Emma; Hall, Graham; Carbonnelle, Caroline; Raoul, Hervé; Pannetier, Delphine; Cameron, Ian; Coxon, Ruth; Al Abdulla, Ibrahim; Hewson, Roger; Carroll, Miles W
2017-06-22
Despite sporadic outbreaks of Ebola virus (EBOV) over the last 4 decades and the recent public health emergency in West Africa, there are still no approved vaccines or therapeutics for the treatment of acute EBOV disease (EVD). In response to the 2014 outbreak, an ovine immunoglobulin therapy was developed, termed EBOTAb. After promising results in the guinea pig model of EBOV infection, EBOTAb was tested in the cynomolgus macaque non-human primate model of lethal EBOV infection. To ensure stringent therapeutic testing conditions to replicate likely clinical usage, EBOTAb was first delivered 1, 2 or 3 days post-challenge with a lethal dose of EBOV. Results showed a protective effect of EBOTAb given post-exposurally, with survival rates decreasing with increasing time after challenge. Viremia results demonstrated that EBOTAb resulted in a decreased circulation of EBOV in the bloodstream. Additionally, assay of liver enzymes and histology analysis of local tissues identified differences between EBOTAb-treated and untreated groups. The results presented demonstrate that EBOTAb conferred protection against EBOV when given post-exposure and should be explored and developed further as a potential intervention strategy for future outbreaks, which are likely to occur.
Beneficial effects of interleukin-6 in neonatal mouse models of group B streptococcal disease.
Mancuso, G; Tomasello, F; Migliardo, M; Delfino, D; Cochran, J; Cook, J A; Teti, G
1994-01-01
Previous studies have shown that tumor necrosis factor alpha (TNF-alpha) plays a pathophysiologic role in sepsis induced in rat pups by group B streptococci (GBS). In this model, TNF-alpha is also partially responsible for the induction of interleukin-6 (IL-6). The present study was undertaken to investigate the role of IL-6 in neonatal BALB/c mice infected with type III GBS. The effect of anti-IL-6 monoclonal antibodies and recombinant IL-6 on lethality and TNF-alpha production was investigated. In mouse pups infected with GBS strain COH1, plasma IL-6 reached levels of 3,067 +/- 955 and 1,923 +/- 891 U/ml when measured at 22 and 48 h, respectively (P < 0.05 compared with uninfected controls). Pretreatment with 25 micrograms of anti-IL-6 antibodies totally prevented the increase in circulating IL-6 bioactivity at both 22 and 48 h after infection (P < 0.05). Treatment with anti-IL-6 also induced a moderate decrease in survival time of mice infected with lethal doses of strains COH1 and COH31, as evidenced by increased lethality (P < 0.05) at 24 to 48 h but not at 96 h. Mouse recombinant IL-6 (12,500 U) given 6 h before challenge with strains COH1 and COH31 consistently increased survival time, as evidenced by decreased (P < 0.05) lethality at 48 to 72 h but not at 96 h. The effects of IL-6 pretreatment were dose dependent, since no protection was observed with doses lower than 12,500 U. In addition, no effects on lethality were noted when IL-6 was given at the time of challenge or at later times. TNF-alpha elevations (P < 0.05 compared with uninfected controls) were measured at 12, 22, and 48 h after challenge with strain COH1 (68 +/- 28, 233 +/- 98, and 98 +/- 34 U, respectively). Pretreatment with IL-6 significantly (P < 0.05) decreased plasma TNF-alpha levels at 12 and 22 h, with 55 and 69% inhibitions, respectively. Anti-IL-6 had an opposite effect, as evidenced by a 145% increase (P < 0.05) in TNF-alpha levels at 48 h after challenge. Collectively, our data are compatible with the hypothesis that IL-6 is involved in negative feedback regulation of plasma TNF-alpha levels in experimental GBS sepsis. In this model, IL-6 pretreatment can increase survival time. Future studies will be needed to investigate the mechanisms underlying this effect. PMID:7927780
Monoclonal antibodies passively protect BALB/c mice against Burkholderia mallei aerosol challenge.
Treviño, Sylvia R; Permenter, Amy R; England, Marilyn J; Parthasarathy, Narayanan; Gibbs, Paul H; Waag, David M; Chanh, Tran C
2006-03-01
Glanders is a debilitating disease with no vaccine available. Murine monoclonal antibodies were produced against Burkholderia mallei, the etiologic agent of glanders, and were shown to be effective in passively protecting mice against a lethal aerosol challenge. The antibodies appeared to target lipopolysaccharide. Humoral antibodies may be important for immune protection against B. mallei infection.
USDA-ARS?s Scientific Manuscript database
Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a subtype-specific lineage of challenge virus. In the poultry industry, inactivated AI vaccines are typically produced with indigenous AI isolates to provide the b...
Parreiras, P M; Sirota, L A; Wagner, L D; Menzies, S L; Arciniega, J L
2009-07-16
Complexities of lethal challenge models have prompted the investigation of immunogenicity assays as potency tests of anthrax vaccines. An ELISA and a lethal toxin neutralization assay (TNA) were used to measure antibody response to Protective Antigen (PA) in mice immunized once with either a commercial or a recombinant PA (rPA) vaccine formulated in-house. Even though ELISA and TNA results showed correlation, ELISA results may not be able to accurately predict TNA results in this single immunization model.
Modulating Vaccinia Virus Immunomodulators to Improve Immunological Memory
Torres, Alice A.; Smith, Geoffrey L.
2018-01-01
The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory. PMID:29495547
Blanton, Lucas S; Mendell, Nicole L; Walker, David H; Bouyer, Donald H
2014-08-01
Rocky Mountain spotted fever (RMSF) is a severe illness caused by Rickettsia rickettsii for which there is no available vaccine. We hypothesize that exposure to the highly prevalent, relatively nonpathogenic "Rickettsia amblyommii" protects against R. rickettsii challenge. To test this hypothesis, guinea pigs were inoculated with "R. amblyommii." After inoculation, the animals showed no signs of illness. When later challenged with lethal doses of R. rickettsii, those previously exposed to "R. amblyommii" remained well, whereas unimmunized controls developed severe illness and died. We conclude that "R. amblyommii" induces an immune response that protects from illness and death in the guinea pig model of RMSF. These results provide a basis for exploring the use of low-virulence rickettsiae as a platform to develop live attenuated vaccine candidates to prevent severe rickettsioses.
Shearer, M H; Bright, R K; Lanford, R E; Kennedy, R C
1993-01-01
In this study, we examined the humoral immune responses and in vivo tumour immunity induced by baculovirus recombinant simian virus 40 (SV40) large tumour antigen (rSV40 T-ag). BALB/c mice immunized with rSV40 T-ag produced antibody responses that recognized SV40 large tumour antigen (T-ag) by ELISA. Analysis of these anti-SV40 T-ag responses indicated that the antibodies recognized epitopes associated with both the carboxy and amino terminus of SV40 T-ag. This pattern of SV40 T-ag epitope recognition was similar to that observed in anti-SV40 T-ag responses induced by inoculation with irradiated SV40-transformed cells. Mice immunized with either rSV40 T-ag or with the inactivated transformed cells were protected from a subsequent in vivo lethal tumour challenge with live SV40-transformed cells. These studies suggest that humoral immune responses induced by rSV40 T-ag are similar in epitope specificity to that induced by inactivated SV40-transformed cells. In addition, recombinant tumour-specific antigens from papovaviruses, such as SV40, can be used to induce tumour immunity which protects from a subsequent lethal tumour challenge. This study may provide insight into the use of recombinant tumour antigens as putative tumour vaccines and in the development of active immunotherapeutic strategies for treating virus-induced cancers. PMID:7679059
Palmer, John; Bell, Matt; Darko, Christian; Barnewall, Roy; Keane-Myers, Andrea
2014-11-01
In the past decade, several Bacillus cereus strains have been isolated from otherwise healthy individuals who succumbed to bacterial pneumonia presenting symptoms resembling inhalational anthrax. One strain was indistinguishable from B. cereus G9241, previously cultured from an individual who survived a similar pneumonia-like illness and which was shown to possess a complete set of plasmid-borne anthrax toxin-encoding homologs. The finding that B. cereus G9241 pathogenesis in mice is dependent on pagA1-derived protective antigen (PA) synthesis suggests that an anthrax toxin-based vaccine may be effective against this toxin-encoding B. cereus strain. Dunkin Hartley guinea pigs were immunized with protein- and DNA-based anthrax toxin-based vaccines, immune responses were evaluated and survival rates were calculated after lethal aerosol exposure with B. cereus G9241 spores. Each vaccine induced seroconversion with the protein immunization regimen eliciting significantly higher serum levels of antigen-specific antibodies at the prechallenge time-point compared with the DNA-protein prime-boost immunization schedule. Complete protection against lethal challenge was observed in all groups with a detectable prechallenge serum titer of toxin neutralizing antibodies. For the first time, we demonstrated that the efficacy of fully defined anthrax toxin-based vaccines was protective against lethal B. cereus G9241 aerosol challenge in the guinea pig animal model. Published 2014. This article is a US Government work and is in the public domain in the USA.
Swenson, Dana L; Warfield, Kelly L; Warren, Travis K; Lovejoy, Candace; Hassinger, Jed N; Ruthel, Gordon; Blouch, Robert E; Moulton, Hong M; Weller, Dwight D; Iversen, Patrick L; Bavari, Sina
2009-05-01
Phosphorodiamidate morpholino oligomers (PMOs) are uncharged nucleic acid-like molecules designed to inactivate the expression of specific genes via the antisense-based steric hindrance of mRNA translation. PMOs have been successful at knocking out viral gene expression and replication in the case of acute viral infections in animal models and have been well tolerated in human clinical trials. We propose that antisense PMOs represent a promising class of therapeutic agents that may be useful for combating filoviral infections. We have previously shown that mice treated with a PMO whose sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we report on the abilities of two additional VP24-specific PMOs to reduce the cell-free translation of a VP24 reporter, to inhibit the in vitro replication of Ebola virus, and to protect mice against lethal challenge when the PMOs are delivered prior to infection. Additionally, structure-activity relationship evaluations were conducted to assess the enhancement of antiviral efficacy associated with PMO chemical modifications that included conjugation with peptides of various lengths and compositions, positioning of conjugated peptides to either the 5' or the 3' terminus, and the conferring of charge modifications by the addition of piperazine moieties. Conjugation with arginine-rich peptides greatly enhanced the antiviral efficacy of VP24-specific PMOs in infected cells and mice during lethal Ebola virus challenge.
Savransky, Vladimir; Shearer, Jeffry D; Gainey, Melicia R; Sanford, Daniel C; Sivko, Gloria S; Stark, Gregory V; Li, Na; Ionin, Boris; Lacy, Michael J; Skiadopoulos, Mario H
2017-09-05
The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel+CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific. Copyright © 2017. Published by Elsevier Ltd.
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-01-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383
Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan
2011-11-01
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.
Yendo, Anna Carolina A; de Costa, Fernanda; Cibulski, Samuel P; Teixeira, Thais F; Colling, Luana C; Mastrogiovanni, Mauricio; Soulé, Silvia; Roehe, Paulo M; Gosmann, Grace; Ferreira, Fernando A; Fett-Neto, Arthur G
2016-04-29
Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections
Lilly, Elizabeth A.; Ikeh, Melanie; Nash, Evelyn E.; Fidel, Paul L.
2018-01-01
ABSTRACT Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non-albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans/S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis/S. aureus-mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus. S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis-induced protection. C. dubliniensis/S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1+ cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans/S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. PMID:29339423
Luiz, Wilson B; Rodrigues, Juliana F; Crabb, Joseph H; Savarino, Stephen J; Ferreira, Luis C S
2015-12-01
Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M; Branger, Christine G; Tinge, Steven A; Curtiss, Roy
2010-06-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal DeltaasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain chi9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/P(cro)) (P(R)), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC P(BAD) c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of beta-lactamase, and cloned into pYA4534 under the control of the P(trc) promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain chi9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route.
Torres-Escobar, Ascención; Juárez-Rodríguez, María Dolores; Gunn, Bronwyn M.; Branger, Christine G.; Tinge, Steven A.; Curtiss, Roy
2010-01-01
A balanced-lethal plasmid expression system that switches from low-copy-number to runaway-like high-copy-number replication (pYA4534) was constructed for the regulated delayed in vivo synthesis of heterologous antigens by vaccine strains. This is an antibiotic resistance-free maintenance system containing the asdA gene (essential for peptidoglycan synthesis) as a selectable marker to complement the lethal chromosomal ΔasdA allele in live recombinant attenuated Salmonella vaccines (RASVs) such as Salmonella enterica serovar Typhimurium strain χ9447. pYA4534 harbors two origins of replication, pSC101 and pUC (low and high copy numbers, respectively). The pUC replication origin is controlled by a genetic switch formed by the operator/promoter of the P22 cro gene (O/Pcro) (PR), which is negatively regulated by an arabinose-inducible P22 c2 gene located on both the plasmid and the chromosome (araC PBAD c2). The absence of arabinose, which is unavailable in vivo, triggers replication to a high-copy-number plasmid state. To validate these vector attributes, the Yersinia pestis virulence antigen LcrV was used to develop a vaccine against plague. An lcrV sequence encoding amino acids 131 to 326 (LcrV196) was optimized for expression in Salmonella, flanked with nucleotide sequences encoding the signal peptide (SS) and the carboxy-terminal domain (CT) of β-lactamase, and cloned into pYA4534 under the control of the Ptrc promoter to generate plasmid pYA4535. Our results indicate that the live Salmonella vaccine strain χ9447 harboring pYA4535 efficiently stimulated a mixed Th1/Th2 immune response that protected mice against lethal challenge with Y. pestis strain CO92 introduced through either the intranasal or subcutaneous route. PMID:20308296
Inference of R 0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains
Blumberg, Seth; Lloyd-Smith, James O.
2013-01-01
For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, and infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring and the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance and management. Previous researchers have used chain size distributions to infer , but estimation of the degree of individual-level variation in infectiousness (as quantified by the dispersion parameter, ) has typically required contact tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how maximum likelihood estimation can be applied to chain size data to infer both and the dispersion parameter that characterizes heterogeneity. While the maximum likelihood value for is a simple function of the average chain size, the associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in is detectable. In addition, by allowing for superspreading events, inference of shifts the threshold above which a transmission chain should be considered anomalously large for a given value of (thus reducing the probability of false alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is likely to significantly bias results. PMID:23658504
Liszewski, M. Kathryn; Leung, Marilyn K.; Hauhart, Richard; Fang, Celia J.; Bertram, Paula; Atkinson, John P.
2010-01-01
Although smallpox was eradicated as a global illness more than 30 years ago, variola virus and other related pathogenic poxviruses, such as monkeypox, remain potential bioterrorist weapons or could re-emerge as natural infections. Poxviruses express virulence factors that down-modulate the host’s immune system. We previously compared functional profiles of the poxviral complement inhibitors of smallpox, vaccinia, and monkeypox known as SPICE, VCP (or VICE), and MOPICE, respectively. SPICE was the most potent regulator of human complement and attached to cells via glycosaminoglycans. The major goals of the present study were to further characterize the complement regulatory and heparin binding sites of SPICE and to evaluate a mAb that abrogates its function. Using substitution mutagenesis, we established that (1) elimination of the three heparin binding sites severely decreases but does not eliminate glycosaminoglycan binding, (2) there is a hierarchy of activity for heparin binding among the three sites, and (3) complement regulatory sites overlap with each of the three heparin binding motifs. By creating chimeras with interchanges of SPICE and VCP residues, a combination of two SPICE amino acids (H77 plus K120) enhances VCP activity ~200-fold. Also, SPICE residue L131 is critical for both complement regulatory function and accounts for the electrophoretic differences between SPICE and VCP. An evolutionary history for these structure-function adaptations of SPICE is proposed. Finally, we identified and characterized a mAb that inhibits the complement regulatory activity of SPICE, MOPICE, and VCP and thus could be used as a therapeutic agent. PMID:19667083
A comparative study of proliferative nodules and lethal melanomas in congenital nevi from children.
Yélamos, Oriol; Arva, Nicoleta C; Obregon, Roxana; Yazdan, Pedram; Wagner, Annette; Guitart, Joan; Gerami, Pedram
2015-03-01
Differentiating proliferative nodules (PNs) from melanomas arising in congenital nevi (CN) is a considerable challenge for dermatopathologists. Most of the specimens dermatopathologists assess that deal with this differential diagnosis involve proliferations of melanocytes arising in the dermis. In this study, we compare the clinical, histologic, and molecular findings of these 2 conditions. In our database, we found 22 examples of PNs arising in the dermis of CN and 2 cases of lethal melanomas arising from the dermis/epidermis of CN of children. Importantly, we found that among dermal melanocytic proliferations arising from CN in children, PNs are far more common than lethal melanomas. Clinically, multiplicity of lesions favored a diagnosis of PNs, whereas ulceration was infrequent in PNs compared with lethal melanomas. Histologically, PNs showed several distinct patterns including expansile nodules of epithelioid melanocytes with mitotic counts lower than that seen in the melanomas (1.67 vs. 12.5 mitoses/mm), a small round blue cell pattern often highly mitotically active, neurocristic-like, blue nevus-like, a nevoid melanoma-like pattern, or an undifferentiated spindle cell pattern. The lethal melanomas both featured expansile nodules of epithelioid melanocytes with high mitotic counts (range, 5 to 20 mitoses/mm) and an ulcerated overlying epidermis. At the molecular level, the PNs showed mostly whole chromosomal copy number aberrations, which in some cases were accompanied by rare partial chromosomal aberrations, whereas both lethal melanomas showed highly elevated copy number aberrations involving 6p25 without gains of the long arm of chromosome 6.
Mandell, Robert B.; Koukuntla, Ramesh; Mogler, Laura J. K.; Carzoli, Andrea K.; Freiberg, Alexander N.; Holbrook, Michael R.; Martin, Brian K.; Staplin, William R.; Vahanian, Nicholas N.; Link, Charles J.; Flick, Ramon
2009-01-01
Virus-like particles (VLPs) present viral antigens in a native conformation and are effectively recognized by the immune system and therefore are considered as suitable and safe vaccine candidates against many viral diseases. Here we demonstrate that chimeric VLPs containing Rift Valley fever virus (RVFV) glycoproteins GN and GC, nucleoprotein N and the gag protein of Moloney murine leukemia virus represent an effective vaccine candidate against Rift Valley fever, a deadly disease in humans and livestock. Long-lasting humoral and cellular immune responses are demonstrated in a mouse model by the analysis of neutralizing antibody titers and cytokine secretion profiles. Vaccine efficacy studies were performed in mouse and rat lethal challenge models resulting in high protection rates. Taken together, these results demonstrate that replication-incompetent chimeric RVF VLPs are an efficient RVFV vaccine candidate. PMID:19932911
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Xu, Wenting; Zheng, Mei; Zhou, Feng
2015-01-01
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice. PMID:25589552
Sixt, Nathalie; Cardoso, Alicia; Vallier, Agnès; Fayolle, Joël; Buckland, Robin; Wild, T. Fabian
1998-01-01
We have studied the immune responses to the two glycoproteins of the Morbillivirus canine distemper virus (CDV) after DNA vaccination of BALB/c mice. The plasmids coding for both CDV hemagglutinin (H) and fusion protein (F) induce high levels of antibodies which persist for more than 6 months. Intramuscular inoculation of the CDV DNA induces a predominantly immunoglobulin G2a (IgG2a) response (Th1 response), whereas gene gun immunization with CDV H evokes exclusively an IgG1 response (Th2 response). In contrast, the CDV F gene elicited a mixed, IgG1 and IgG2a response. Mice vaccinated (by gene gun) with either the CDV H or F DNA showed a class I-restricted cytotoxic lymphocyte response. Immunized mice challenged intracerebrally with a lethal dose of a neurovirulent strain of CDV were protected. However, approximately 30% of the mice vaccinated with the CDV F DNA became obese in the first 2 months following the challenge. This was not correlated with the serum antibody levels. PMID:9765383
Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.
2016-07-05
The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.
McCullough, Kevin Tyler; Cruz, Stephanie; Thomas, Antonia; Diaz, Claudia G.; Keilholz, Laurie; Grossi, Irma M.; Trost, Lawrence C.; Golding, Hana
2015-01-01
ABSTRACT Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 105 PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 105 T cells prior to challenge with 104 PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 105 PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated. Whole-body bioluminescence imaging was used to study the effect of brincidofovir (BCV) in normal and immune-deficient (nu/nu) mice infected with vaccinia virus, a model of smallpox. Postchallenge administration of 20 mg/kg BCV rescued normal and immune-deficient mice partially reconstituted with T cells from lethality and significantly reduced viral loads in organs. All BCV-treated mice that survived infection were protected from rechallenge without additional treatment. In immune-deficient mice, BCV extended survival. The data show that BCV controls viral replication at the site of challenge and reduces viral dissemination to internal organs, thus providing a shield for the developing adaptive immunity that clears the host of virus and builds virus-specific immunological memory. PMID:25589648
Acute systemic DNA damage in youth does not impair immune defense with aging.
Pugh, Jason L; Foster, Sarah A; Sukhina, Alona S; Petravic, Janka; Uhrlaub, Jennifer L; Padilla-Torres, Jose; Hayashi, Tomonori; Nakachi, Kei; Smithey, Megan J; Nikolich-Žugich, Janko
2016-08-01
Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Wong, Gary; Audet, Jonathan; Fernando, Lisa; Fausther-Bovendo, Hugues; Alimonti, Judie B; Kobinger, Gary P; Qiu, Xiangguo
2014-09-29
Ebola virus (EBOV) infections cause lethal hemorrhagic fever in humans, resulting in up to 90% mortality. EBOV outbreaks are sporadic and unpredictable in nature; therefore, a vaccine that is able to provide durable immunity is needed to protect those who are at risk of exposure to the virus. This study assesses the long-term efficacy of the vesicular stomatitis virus (VSV)-based vaccine (VSVΔG/EBOVGP) in two rodent models of EBOV infection. Mice and guinea pigs were first immunized with 2×10(4) or 2×10(5) plaque forming units (PFU) of VSVΔG/EBOVGP, respectively. Challenge of mice with a lethal dose of mouse-adapted EBOV (MA-EBOV) at 6.5 and 9 months after vaccination provided complete protection, and 80% (12 of 15 survivors) protection at 12 months after vaccination. Challenge of guinea pigs with a lethal dose of guinea pig-adapted EBOV (GA-EBOV) at 7, 12 and 18 months after vaccination resulted in 83% (5 of 6 survivors) at 7 months after vaccination, and 100% survival at 12 and 18 months after vaccination. No weight loss or clinical signs were observed in the surviving animals. Antibody responses were analyzed using sera from individual rodents. Levels of EBOV glycoprotein-specific IgG antibody measured immediately before challenge appeared to correlate with protection. These studies confirm that vaccination with VSVΔG/EBOVGP is able to confer long-term protection against Ebola infection in mice and guinea pigs, and support follow-up studies in non-human primates. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Travis, Dominic A; Sriramarao, P; Cardona, Carol; Steer, Clifford J; Kennedy, Shaun; Sreevatsan, Srinand; Murtaugh, Michael P
2014-12-01
Characterizing the health consequences of interactions among animals, humans, and the environment in the face of climatic change, environmental disturbance, and expanding human populations is a critical global challenge in today's world. Exchange of interdisciplinary knowledge in basic and applied sciences and medicine that includes scientists, health professionals, key sponsors, and policy experts revealed that relevant case studies of monkeypox, influenza A, tuberculosis, and HIV can be used to guide strategies for anticipating and responding to new disease threats such as the Ebola and Chickungunya viruses, as well as to improve programs to control existing zoonotic diseases, including tuberculosis. The problem of safely feeding the world while preserving the environment and avoiding issues such as antibiotic resistance in animals and humans requires cooperative scientific problem solving. Food poisoning outbreaks resulting from Salmonella growing in vegetables have demonstrated the need for knowledge of pathogen evolution and adaptation in developing appropriate countermeasures for prevention and policy development. Similarly, pesticide use for efficient crop production must take into consideration bee population declines that threaten the availability of the two-thirds of human foods that are dependent on pollination. This report presents and weighs the objective merits of competing health priorities and identifies gaps in knowledge that threaten health security, to promote discussion of major public policy implications such that they may be decided with at least an underlying platform of facts. © 2014 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.
Real-time monitoring of cardiovascular function in rhesus macaques infected with Zaire ebolavirus.
Kortepeter, Mark G; Lawler, James V; Honko, Anna; Bray, Mike; Johnson, Joshua C; Purcell, Bret K; Olinger, Gene G; Rivard, Robert; Hepburn, Matthew J; Hensley, Lisa E
2011-11-01
Nine rhesus macaques were implanted with multisensor telemetry devices and internal jugular vein catheters before being infected with Zaire ebolavirus. All animals developed viremia, fever, a hemorrhagic rash, and typical changes of Ebola hemorrhagic fever in clinical laboratory tests. Three macaques unexpectedly survived this usually lethal disease, making it possible to compare physiological parameters in lethally challenged animals and survivors. After the onset of fever, lethal illness was characterized by a decline in mean arterial blood pressure, an increase in pulse and respiratory rate, lactic acidosis, and renal failure. Survivors showed less pronounced change in these parameters. Four macaques were randomized to receive supplemental volumes of intravenous normal saline when they became hypotensive. Although those animals had less severe renal compromise, no apparent survival benefit was observed. This is the first report of continuous physiologic monitoring in filovirus-infected nonhuman primates and the first to attempt cardiovascular support with intravenous fluids.
Kandadi, Machender R; Frankel, Arthur E; Ren, Jun
2012-10-01
Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. Wild-type (WT) and TLR4 knockout (TLR⁻/⁻) mice were challenged with lethal toxin (2 µg·g⁻¹, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP-LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca²⁺ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Kandadi, Machender R; Frankel, Arthur E; Ren, Jun
2012-01-01
BACKGROUND AND PURPOSE Anthrax lethal toxin (LeTx) is known to induce circulatory shock and death, although the underlying mechanisms have not been elucidated. This study was designed to evaluate the role of toll-like receptor 4 (TLR4) in anthrax lethal toxin-induced cardiac contractile dysfunction. EXPERIMENTAL APPROACH Wild-type (WT) and TLR4 knockout (TLR−/−) mice were challenged with lethal toxin (2 µg·g−1, i.p.), and cardiac function was assessed 18 h later using echocardiography and edge detection. Small interfering RNA (siRNA) was employed to knockdown TLR4 receptor or class III PI3K in H9C2 myoblasts. GFP–LC3 puncta was used to assess autophagosome formation. Western blot analysis was performed to evaluate autophagy (LC3, Becline-1, Agt5 and Agt7) and endoplasmic reticulum (ER) stress (BiP, eIF2α and calreticulin). KEY RESULTS In WT mice, lethal toxin exposure induced cardiac contractile dysfunction, as evidenced by reduced fractional shortening, peak shortening, maximal velocity of shortening/re-lengthening, prolonged re-lengthening duration and intracellular Ca2+ derangement. These effects were significantly attenuated or absent in the TLR4 knockout mice. In addition, lethal toxin elicited autophagy in the absence of change in ER stress. Knockdown of TLR4 or class III PI3 kinase using siRNA but not the autophagy inhibitor 3-methyladenine significantly attenuated or inhibited lethal toxin-induced autophagy in H9C2 cells. CONCLUSION AND IMPLICATIONS Our results suggest that TLR4 may be pivotal in mediating the lethal cardiac toxicity induced by anthrax possibly through induction of autophagy. These findings suggest that compounds that negatively modulate TLR4 signalling and autophagy could be used to treat anthrax infection-induced cardiovascular complications. PMID:22612289
Sursal, Tolga; Stearns-Kurosawa, Deborah J; Itagaki, Kiyoshi; Oh, Sun-Young; Sun, Shiqin; Kurosawa, Shinichiro; Hauser, Carl J
2012-01-01
Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. SIRS can cause organ dysfunction and death but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS and post-infective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern (DAMP) reflecting cellular injury. Circulating bacterial 16S-DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed qPCR assays to quantify these markers and predicted their plasma levels might help distinguish sterile injury from infection. To study these events in primates we assayed banked serum from papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis deltaSterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to “severe” sepsis and death we studied animals where anthrax was pretreated with drotrecogin alfa (aPC), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against non-lethal E.coli bacteremia and against sterile tissue injury from Shiga-like toxin-1 (Stx1). bDNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Stx1 increased mtDNA but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sub-lethal E.coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal anthrax challenge (n=4) bDNA increased transiently but mtDNA levels remained elevated until death, consistent with persistent septic tissue damage after bacterial clearance. Critically, aPC pre-treatment (n=4) allowed mtDNA levels to decay after bacterial clearance with sparing of organ function and survival. In summary, host tissue injury correlates with mtDNA whether infective or sterile. mtDNA and bDNA PCRs can quantify tissue injury incurred by septic or sterile mechanisms and suggest the source of SIRS of unknown origin. PMID:23247122
Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S
2014-01-01
Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 108 cfu Burkholderia pseudomallei within 22–85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 102 cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 102 cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures. PMID:25477002
Gowen, Brian B.; Ennis, Jane; Bailey, Kevin W.; Vest, Zachary; Scharton, Dionna; Sefing, Eric J.; Turner, Jeffrey D.
2014-01-01
Rift Valley fever virus (RVFV) causes severe disease in humans and ungulates. The virus can be transmitted by mosquitoes, direct contact with infected tissues or fluids, or aerosol, making it a significant biological threat for which there is no approved vaccine or therapeutic. Herein we describe the evaluation of DEF201, an adenovirus-vectored interferon alpha which addresses the limitations of recombinant interferon alpha protein (cost, short half-life), as a pre- and post-exposure treatment in a lethal hamster RVFV challenge model. DEF201 was delivered intranasally to stimulate mucosal immunity and effectively bypass any pre-existing immunity to the vector. Complete protection against RVFV infection was observed from a single dose of DEF201 administered one or seven days prior to challenge while all control animals succumbed within three days of infection. Efficacy of treatment administered two weeks prior to challenge was limited. Post‑exposure, DEF201 was able to confer significant protection when dosed at 30 min or 6 h, but not at 24 h post-RVFV challenge. Protection was associated with reductions in serum and tissue viral loads. Our findings suggest that DEF201 may be a useful countermeasure against RVFV infection and further demonstrates its broad-spectrum capacity to stimulate single dose protective immunity. PMID:24662673
Terryn, Sanne; Francart, Aurélie; Rommelaere, Heidi; Stortelers, Catelijne; Van Gucht, Steven
2016-01-01
Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP. PMID:27483431
Rao, Srinivas S.; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J. Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M.; Nabel, Gary J.
2010-01-01
Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112
Gauci, Penelope J.; Wu, Josh Q. H.; Rayner, George A.; Barabé, Nicole D.; Nagata, Leslie P.; Proll, David F.
2010-01-01
DNA vaccines encoding different portions of the structural proteins of western equine encephalitis virus were tested for the efficacy of their protection in a 100% lethal mouse model of the virus. The 6K-E1 structural protein encoded by the DNA vaccine conferred complete protection against challenge with the homologous strain and limited protection against challenge with a heterologous strain. PMID:19923571
Knitlova, Jarmila; Hajkova, Vera; Voska, Ludek; Elsterova, Jana; Obrova, Barbora; Melkova, Zora
2014-01-01
Smallpox vaccine based on live, replicating vaccinia virus (VACV) is associated with several potentially serious and deadly complications. Consequently, a new generation of vaccine based on non-replicating Modified vaccinia virus Ankara (MVA) has been under clinical development. MVA seems to induce good immune responses in blood tests, but it is impossible to test its efficacy in vivo in human. One of the serious complications of the replicating vaccine is eczema vaccinatum (EV) occurring in individuals with atopic dermatitis (AD), thus excluding them from all preventive vaccination schemes. In this study, we first characterized and compared development of eczema vaccinatum in different mouse strains. Nc/Nga, Balb/c and C57Bl/6J mice were epicutaneously sensitized with ovalbumin (OVA) or saline control to induce signs of atopic dermatitis and subsequently trans-dermally (t.d.) immunized with VACV strain Western Reserve (WR). Large primary lesions occurred in both mock- and OVA-sensitized Nc/Nga mice, while they remained small in Balb/c and C57Bl/6J mice. Satellite lesions developed in both mock- and OVA-sensitized Nc/Nga and in OVA-sensitized Balb/c mice with the rate 40–50%. Presence of mastocytes and eosinophils was the highest in Nc/Nga mice. Consequently, we have chosen Nc/Nga mice as a model of AD/EV and tested efficacy of MVA and Dryvax vaccinations against a lethal intra-nasal (i.n.) challenge with WR, the surrogate of smallpox. Inoculation of MVA intra-muscularly (i.m.) or t.d. resulted in no lesions, while inoculation of Dryvax t.d. yielded large primary and many satellite lesions similar to WR. Eighty three and 92% of mice vaccinated with a single dose of MVA i.m. or t.d., respectively, survived a lethal i.n. challenge with WR without any serious illness, while all Dryvax-vaccinated animals survived. This is the first formal prove of protective immunity against a lethal poxvirus challenge induced by vaccination with MVA in an atopic organism. PMID:25486419
The protective effect of Mucuna pruriens seeds against snake venom poisoning.
Tan, Nget Hong; Fung, Shin Yee; Sim, Si Mui; Marinello, Enrico; Guerranti, Roberto; Aguiyi, John C
2009-06-22
The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite. To study the protective effects of Mucuna pruriens seed extract against the lethalities of various snake venoms. Rats were pre-treated with Mucuna pruriens seed extract and challenged with various snake venoms. The effectiveness of anti-Mucuna pruriens (anti-MPE) antibody to neutralize the lethalities of snake venoms was investigated by in vitro neutralization. In rats, MPE pre-treatment conferred effective protection against lethality of Naja sputatrix venom and moderate protection against Calloselasma rhodostoma venom. Indirect ELISA and immunoblotting studies showed that there were extensive cross-reactions between anti-MPE IgG and venoms from many different genera of poisonous snakes, suggesting the involvement of immunological neutralization in the protective effect of MPE pre-treatment against snake venom poisoning. In vitro neutralization experiments showed that the anti-MPE antibodies effectively neutralized the lethalities of Asiatic cobra (Naja) venoms, but were not very effective against other venoms tested. The anti-MPE antibodies could be used in the antiserum therapy of Asiatic cobra (Naja) bites.
Khan, Sadia; Beattie, Tara K; Knapp, Charles W
2017-03-01
The use of antimicrobial compounds is indispensable in many industries, especially drinking water production, to eradicate microorganisms. However, bacterial growth is not unusual in the presence of disinfectant concentrations that would be typically lethal, as bacterial populations can develop resistance. The common metric of population resistance has been based on the Minimum Inhibitory Concentration (MIC), which is based on bacteria lethality. However, sub-lethal concentrations may also select for resistant bacteria due to the differences in bacterial growth rates. This study determined the Minimal Selective Concentrations (MSCs) of bacterial populations exposed to free chlorine and monochloramine, representing a metric that possibly better reflects the selective pressures occurring at lower disinfectant levels than MIC. Pairs of phylogenetically similar bacteria were challenged to a range of concentrations of disinfectants. The MSCs of free chlorine and monochloramine were found to range between 0.021 and 0.39 mg L -1 , which were concentrations 1/250 to 1/5 than the MICs of susceptible bacteria (MIC susc ). This study indicates that sub-lethal concentrations of disinfectants could result in the selection of resistant bacterial populations, and MSCs would be a more sensitive indicator of selective pressure, especially in environmental systems.
Moayeri, Mahtab; Tremblay, Jacqueline M; Debatis, Michelle; Dmitriev, Igor P; Kashentseva, Elena A; Yeh, Anthony J; Cheung, Gordon Y C; Curiel, David T; Leppla, Stephen; Shoemaker, Charles B
2016-01-06
Bacillus anthracis, the causative agent of anthrax, secretes three polypeptides, which form the bipartite lethal and edema toxins (LT and ET, respectively). The common component in these toxins, protective antigen (PA), is responsible for binding to cellular receptors and translocating the lethal factor (LF) and edema factor (EF) enzymatic moieties to the cytosol. Antibodies against PA protect against anthrax. We previously isolated toxin-neutralizing variable domains of camelid heavy-chain-only antibodies (VHHs) and demonstrated their in vivo efficacy. In this work, gene therapy with an adenoviral (Ad) vector (Ad/VNA2-PA) (VNA, VHH-based neutralizing agents) promoting the expression of a bispecific VHH-based neutralizing agent (VNA2-PA), consisting of two linked VHHs targeting different PA-neutralizing epitopes, was tested in two inbred mouse strains, BALB/cJ and C57BL/6J, and found to protect mice against anthrax toxin challenge and anthrax spore infection. Two weeks after a single treatment with Ad/VNA2-PA, serum VNA2-PA levels remained above 1 μg/ml, with some as high as 10 mg/ml. The levels were 10- to 100-fold higher and persisted longer in C57BL/6J than in BALB/cJ mice. Mice were challenged with a lethal dose of LT or spores at various times after Ad/VNA2-PA administration. The majority of BALB/cJ mice having serum VNA2-PA levels of >0.1 μg/ml survived LT challenge, and 9 of 10 C57BL/6J mice with serum levels of >1 μg/ml survived spore challenge. Our findings demonstrate the potential for genetic delivery of VNAs as an effective method for providing prophylactic protection from anthrax. We also extend prior findings of mouse strain-based differences in transgene expression and persistence by adenoviral vectors. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model.
Albrecht, Mark T; Eyles, Jim E; Baillie, Les W; Keane-Myers, Andrea M
2012-08-01
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Zoonotic Poxviruses Associated with Companion Animals
Tack, Danielle M.; Reynolds, Mary G.
2011-01-01
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals. PMID:26486622
Harris, Greg; Kuo Lee, Rhonda; Lam, Christopher K.; Kanzaki, Gregory; Patel, Girishchandra B.; Xu, H. Howard
2013-01-01
Acinetobacter baumannii is an important emerging pathogen in health care-acquired infections and is responsible for severe nosocomial and community-acquired pneumonia. Currently available mouse models of A. baumannii pneumonia show poor colonization with little to no extrapulmonary dissemination. Here, we describe a mouse model of A. baumannii pneumonia using a clinical isolate (LAC-4 strain) that reliably reproduces the most relevant features of human pulmonary A. baumannii infection and pathology. Using this model, we have shown that LAC-4 infection induced rapid bacterial replication in the lungs, significant extrapulmonary dissemination, and severe bacteremia by 24 h postintranasal inoculation. Infected mice showed severe bronchopneumonia and dilatation and inflammatory cell infiltration in the perivascular space. More significantly, 100% of C57BL/6 and BALB/c mice succumbed to 108 CFU of LAC-4 inoculation within 48 h. When this model was used to assess the efficacy of antimicrobials, all mice treated with imipenem and tigecycline survived a lethal intranasal challenge, with minimal clinical signs and body weight loss. Moreover, intranasal immunization of mice with formalin-fixed LAC-4 protected 40% of mice from a lethal (100× 100% lethal dose) intraperitoneal challenge. Thus, this model offers a reproducible acute course of A. baumannii pneumonia without requiring additional manipulation of host immune status, which will facilitate the development of therapeutic agents and vaccines against A. baumannii pneumonia in humans. PMID:23689726
Wycoff, Keith L; Belle, Archana; Deppe, Dorothée; Schaefer, Leah; Maclean, James M; Haase, Simone; Trilling, Anke K; Liu, Shihui; Leppla, Stephen H; Geren, Isin N; Pawlik, Jennifer; Peterson, Johnny W
2011-01-01
Inhalational anthrax, a zoonotic disease caused by the inhalation of Bacillus anthracis spores, has a ∼50% fatality rate even when treated with antibiotics. Pathogenesis is dependent on the activity of two toxic noncovalent complexes: edema toxin (EdTx) and lethal toxin (LeTx). Protective antigen (PA), an essential component of both complexes, binds with high affinity to the major receptor mediating the lethality of anthrax toxin in vivo, capillary morphogenesis protein 2 (CMG2). Certain antibodies against PA have been shown to protect against anthrax in vivo. As an alternative to anti-PA antibodies, we produced a fusion of the extracellular domain of human CMG2 and human IgG Fc, using both transient and stable tobacco plant expression systems. Optimized expression led to the CMG2-Fc fusion protein being produced at high levels: 730 mg/kg fresh leaf weight in Nicotiana benthamiana and 65 mg/kg in N. tabacum. CMG2-Fc, purified from tobacco plants, fully protected rabbits against a lethal challenge with B. anthracis spores at a dose of 2 mg/kg body weight administered at the time of challenge. Treatment with CMG2-Fc did not interfere with the development of the animals' own immunity to anthrax, as treated animals that survived an initial challenge also survived a rechallenge 30 days later. The glycosylation of the Fc (or lack thereof) had no significant effect on the protective potency of CMG2-Fc in rabbits or on its serum half-life, which was about 5 days. Significantly, CMG2-Fc effectively neutralized, in vitro, LeTx-containing mutant forms of PA that were not neutralized by anti-PA monoclonal antibodies.
Evaluation of a plasmid DNA-based anthrax vaccine in rabbits, nonhuman primates and healthy adults.
Keitel, Wendy A; Treanor, John J; El Sahly, Hana M; Evans, Thomas G; Kopper, Scott; Whitlow, Vanessa; Selinsky, Cheryl; Kaslow, David C; Rolland, Alain; Smith, Larry R; Lalor, Peggy A
2009-08-01
VCL-AB01, a cationic lipid-formulated plasmid DNA (pDNA)-based vaccine that contains genes encoding genetically detoxified Bacillus anthracis protective antigen (PA) and lethal factor (LF), was assessed in a Phase 1, dose-escalating clinical trial in healthy adults for safety and immunogenicity, and in nonhuman primates for immunogenicity and efficacy against challenge with a lethal dose of B. anthracis spores. Healthy 18-45 year old subjects were randomly assigned to receive either the investigational vaccine containing 0.2 mg, 0.6 mg, or 2 mg of total pDNA per dose, or saline placebo, administered at 0, 1 and 2 months. The 0.2 mg and 0.6 mg dose levels were generally well tolerated; however, dose-limiting reactogenicity was observed among subjects given the first 2 mg dose and the remaining two injections in the 2 mg group were reduced to 0.6 mg. Dose-related increases in seroconversion frequencies were observed. Overall, 10%, 33.3% and 80% of subjects in the 0.2, 0.6 and 2 mg groups, respectively, developed antibodies to PA and/or LF as measured by ELISA; however, antibodies with toxin neutralizing activity (TNA) were detected in only one subject. In monkeys that received a 0.6 mg dose three times at 2 week intervals, low levels of antibodies were detected by ELISA but not by the TNA assay in all animals just prior to challenge. Despite the absence of TNA, 75% animals survived the lethal challenge. In summary, VCL-AB01 was generally well tolerated in humans at a dose that provided immunity in monkeys despite the lack of robust TNA titers in either species.
Argilaguet, Jordi M.; Pérez-Martín, Eva; Nofrarías, Miquel; Gallardo, Carmina; Accensi, Francesc; Lacasta, Anna; Mora, Mercedes; Ballester, Maria; Galindo-Cardiel, Ivan; López-Soria, Sergio; Escribano, José M.; Reche, Pedro A.; Rodríguez, Fernando
2012-01-01
The lack of available vaccines against African swine fever virus (ASFV) means that the evaluation of new immunization strategies is required. Here we show that fusion of the extracellular domain of the ASFV Hemagglutinin (sHA) to p54 and p30, two immunodominant structural viral antigens, exponentially improved both the humoral and the cellular responses induced in pigs after DNA immunization. However, immunization with the resulting plasmid (pCMV-sHAPQ) did not confer protection against lethal challenge with the virulent E75 ASFV-strain. Due to the fact that CD8+ T-cell responses are emerging as key components for ASFV protection, we designed a new plasmid construct, pCMV-UbsHAPQ, encoding the three viral determinants above mentioned (sHA, p54 and p30) fused to ubiquitin, aiming to improve Class I antigen presentation and to enhance the CTL responses induced. As expected, immunization with pCMV-UbsHAPQ induced specific T-cell responses in the absence of antibodies and, more important, protected a proportion of immunized-pigs from lethal challenge with ASFV. In contrast with control pigs, survivor animals showed a peak of CD8+ T-cells at day 3 post-infection, coinciding with the absence of viremia at this time point. Finally, an in silico prediction of CTL peptides has allowed the identification of two SLA I-restricted 9-mer peptides within the hemagglutinin of the virus, capable of in vitro stimulating the specific secretion of IFNγ when using PBMCs from survivor pigs. Our results confirm the relevance of T-cell responses in protection against ASF and open new expectations for the future development of more efficient recombinant vaccines against this disease. PMID:23049728
Wang, Jun; Zhou, Hong; Zheng, Jiang; Cheng, Juan; Liu, Wei; Ding, Guofu; Wang, Liangxi; Luo, Ping; Lu, Yongling; Cao, Hongwei; Yu, Shuangjiang; Li, Bin; Zhang, Lezhi
2006-01-01
In the present study artemisinin (ART) was found to have potent anti-inflammatory effects in animal models of sepsis induced by CpG-containing oligodeoxy-nucleotides (CpG ODN), lipopolysaccharide (LPS), heat-killed Escherichia coli 35218 or live E. coli. Furthermore, we found that ART protected mice from a lethal challenge by CpG ODN, LPS, or heat-killed E. coli in a dose-dependent manner and that the protection was related to a reduction in serum tumor necrosis factor alpha (TNF-α). More significantly, the administration of ART together with ampicillin or unasyn (a complex of ampicillin and sulbactam) decreased mortality from 100 to 66.7% or 33.3%, respectively, in mice subjected to a lethal live E. coli challenge. Together with the observation that ART alone does not inhibit bacterial growth, this result suggests that ART protection is achieved as a result of its anti-inflammatory activity rather than an antimicrobial effect. In RAW264.7 cells, pretreatment with ART potently inhibited TNF-α and interleukin-6 release induced by CpG ODN, LPS, or heat-killed E. coli in a dose- and time-dependent manner. Experiments utilizing affinity sensor technology revealed no direct binding of ART with CpG ODN or LPS. Flow cytometry further showed that ART did not alter binding of CpG ODN to cell surfaces or the internalization of CpG ODN. In addition, upregulated levels of TLR9 and TLR4 mRNA were not attenuated by ART treatment. ART treatment did, however, block the NF-κB activation induced by CpG ODN, LPS, or heat-killed E. coli. These findings provide compelling evidence that ART may be an important potential drug for sepsis treatment. PMID:16801421
Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian
2015-04-01
In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.
Devera, T Scott; Prusator, Dawn K; Joshi, Sunil K; Ballard, Jimmy D; Lang, Mark L
2015-06-25
Protective immunity against anthrax is inferred from measurement of vaccine antigen-specific neutralizing antibody titers in serum samples. In animal models, in vivo challenges with toxin and/or spores can also be performed. However, neither of these approaches considers toxin-induced damage to specific organ systems. It is therefore important to determine to what extent anthrax vaccines and existing or candidate adjuvants can provide organ-specific protection against intoxication. We therefore compared the ability of Alum, CpG DNA and the CD1d ligand α-galactosylceramide (αGC) to enhance protective antigen-specific antibody titers, to protect mice against challenge with lethal toxin, and to block cardiotoxicity and hepatotoxicity. By measurement of serum cardiac Troponin I (cTnI), and hepatic alanine aminotransferase (ALT), and aspartate aminotransferase (AST), it was apparent that neither vaccine modality prevented hepatic intoxication, despite high Ab titers and ultimate survival of the subject. In contrast, cardiotoxicity was greatly diminished by prior immunization. This shows that a vaccine that confers survival following toxin exposure may still have an associated morbidity. We propose that organ-specific intoxication should be monitored routinely during research into new vaccine modalities.
Immune Protection against Lethal Fungal-Bacterial Intra-Abdominal Infections.
Lilly, Elizabeth A; Ikeh, Melanie; Nash, Evelyn E; Fidel, Paul L; Noverr, Mairi C
2018-01-16
Polymicrobial intra-abdominal infections (IAIs) are clinically prevalent and cause significant morbidity and mortality, especially those involving fungi. Our laboratory developed a mouse model of IAI and demonstrated that intraperitoneal inoculation with Candida albicans or other virulent non- albicans Candida (NAC) species plus Staphylococcus aureus resulted in 70 to 80% mortality in 48 to 72 h due to robust local and systemic inflammation (sepsis). Surprisingly, inoculation with Candida dubliniensis or Candida glabrata with S. aureus resulted in minimal mortality, and rechallenge of these mice with lethal C. albicans / S. aureus (i.e., coninfection) resulted in >90% protection. The purpose of this study was to define requirements for C. dubliniensis / S. aureus -mediated protection and interrogate the mechanism of the protective response. Protection was conferred by C. dubliniensis alone or by killed C. dubliniensis plus live S. aureus S. aureus alone was not protective, and killed S. aureus compromised C. dubliniensis -induced protection. C. dubliniensis / S. aureus also protected against lethal challenge by NAC plus S. aureus and could protect for a long-term duration (60 days between primary challenge and C. albicans/S. aureus rechallenge). Unexpectedly, mice deficient in T and B cells (Rag-1 knockouts [KO]) survived both the initial C. dubliniensis/S. aureus challenge and the C. albicans/S. aureus rechallenge, indicating that adaptive immunity did not play a role. Similarly, mice depleted of macrophages prior to rechallenge were also protected. In contrast, protection was associated with high numbers of Gr-1 hi polymorphonuclear leukocytes (PMNLs) in peritoneal lavage fluid within 4 h of rechallenge, and in vivo depletion of Gr-1 + cells prior to rechallenge abrogated protection. These results suggest that Candida species can induce protection against a lethal C. albicans / S. aureus IAI that is mediated by PMNLs and postulated to be a unique form of trained innate immunity. IMPORTANCE Polymicrobial intra-abdominal infections are clinically devastating infections with high mortality rates, particularly those involving fungal pathogens, including Candida species. Even in patients receiving aggressive antimicrobial therapy, mortality rates remain unacceptably high. There are no available vaccines against IAI, which is complicated by the polymicrobial nature of the infection. IAI leads to lethal systemic inflammation (sepsis), which is difficult to target pharmacologically, as components of the inflammatory response are also needed to control the infection. Our studies demonstrate that prior inoculation with low-virulence Candida species provides strong protection against subsequent lethal infection with C. albicans and S. aureus Surprisingly, protection is long-lived but not mediated by adaptive (specific) immunity. Instead, protection is dependent on cells of the innate immune system (nonspecific immunity) and provides protection against other virulent Candida species. This discovery implies that a form of trained innate immunity may be clinically effective against polymicrobial IAI. Copyright © 2018 Lilly et al.
Mire, Chad E; Geisbert, Joan B; Borisevich, Viktoriya; Fenton, Karla A; Agans, Krystle N; Flyak, Andrew I; Deer, Daniel J; Steinkellner, Herta; Bohorov, Ognian; Bohorova, Natasha; Goodman, Charles; Hiatt, Andrew; Kim, Do H; Pauly, Michael H; Velasco, Jesus; Whaley, Kevin J; Crowe, James E; Zeitlin, Larry; Geisbert, Thomas W
2017-04-05
As observed during the 2013-2016 Ebola virus disease epidemic, containment of filovirus outbreaks is challenging and made more difficult by the lack of approved vaccine or therapeutic options. Marburg and Ravn viruses are highly virulent and cause severe and frequently lethal disease in humans. Monoclonal antibodies (mAbs) are a platform technology in wide use for autoimmune and oncology indications. Previously, we described human mAbs that can protect mice from lethal challenge with Marburg virus. We demonstrate that one of these mAbs, MR191-N, can confer a survival benefit of up to 100% to Marburg or Ravn virus-infected rhesus macaques when treatment is initiated up to 5 days post-inoculation. These findings extend the small but growing body of evidence that mAbs can impart therapeutic benefit during advanced stages of disease with highly virulent viruses and could be useful in epidemic settings. Copyright © 2017, American Association for the Advancement of Science.
DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations.
Fynan, E F; Webster, R G; Fuller, D H; Haynes, J R; Santoro, J C; Robinson, H L
1993-01-01
Plasmid DNAs expressing influenza virus hemagglutinin glycoproteins have been tested for their ability to raise protective immunity against lethal influenza challenges of the same subtype. In trials using two inoculations of from 50 to 300 micrograms of purified DNA in saline, 67-95% of test mice and 25-63% of test chickens have been protected against a lethal influenza challenge. Parenteral routes of inoculation that achieved good protection included intramuscular and intravenous injections. Successful mucosal routes of vaccination included DNA drops administered to the nares or trachea. By far the most efficient DNA immunizations were achieved by using a gene gun to deliver DNA-coated gold beads to the epidermis. In mice, 95% protection was achieved by two immunizations with beads loaded with as little as 0.4 micrograms of DNA. The breadth of routes supporting successful DNA immunizations, coupled with the very small amounts of DNA required for gene-gun immunizations, highlight the potential of this remarkably simple technique for the development of subunit vaccines. Images Fig. 1 PMID:8265577
Hatcher, Christopher L.; Mott, Tiffany M.; Muruato, Laura A.; Sbrana, Elena
2016-01-01
Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. PMID:27271739
Tao, Xinrong; Garron, Tania; Agrawal, Anurodh Shankar; Algaissi, Abdullah; Peng, Bi-Hung; Wakamiya, Maki; Chan, Teh-Sheng; Lu, Lu; Du, Lanying; Jiang, Shibo; Couch, Robert B; Tseng, Chien-Te K
2016-01-01
Characterized animal models are needed for studying the pathogenesis of and evaluating medical countermeasures for persisting Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. Here, we further characterized a lethal transgenic mouse model of MERS-CoV infection and disease that globally expresses human CD26 (hCD26)/DPP4. The 50% infectious dose (ID50) and lethal dose (LD50) of virus were estimated to be <1 and 10 TCID50 of MERS-CoV, respectively. Neutralizing antibody developed in the surviving mice from the ID50/LD50 determinations, and all were fully immune to challenge with 100 LD50 of MERS-CoV. The tissue distribution and histopathology in mice challenged with a potential working dose of 10 LD50 of MERS-CoV were subsequently evaluated. In contrast to the overwhelming infection seen in the mice challenged with 10(5) LD50 of MERS-CoV, we were able to recover infectious virus from these mice only infrequently, although quantitative reverse transcription-PCR (qRT-PCR) tests indicated early and persistent lung infection and delayed occurrence of brain infection. Persistent inflammatory infiltrates were seen in the lungs and brain stems at day 2 and day 6 after infection, respectively. While focal infiltrates were also noted in the liver, definite pathology was not seen in other tissues. Finally, using a receptor binding domain protein vaccine and a MERS-CoV fusion inhibitor, we demonstrated the value of this model for evaluating vaccines and antivirals against MERS. As outcomes of MERS-CoV infection in patients differ greatly, ranging from asymptomatic to overwhelming disease and death, having available both an infection model and a lethal model makes this transgenic mouse model relevant for advancing MERS research. Fully characterized animal models are essential for studying pathogenesis and for preclinical screening of vaccines and drugs against MERS-CoV infection and disease. When given a high dose of MERS-CoV, our transgenic mice expressing hCD26/DPP4 viral receptor uniformly succumbed to death within 6 days, making it difficult to evaluate host responses to infection and disease. We further characterized this model by determining both the ID50 and the LD50 of MERS-CoV in order to establish both an infection model and a lethal model for MERS and followed this by investigating the antibody responses and immunity of the mice that survived MERS-CoV infection. Using the estimated LD50 and ID50 data, we dissected the kinetics of viral tissue distribution and pathology in mice challenged with 10 LD50 of virus and utilized the model for preclinical evaluation of a vaccine and drug for treatment of MERS-CoV infection. This further-characterized transgenic mouse model will be useful for advancing MERS research. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Resetarits, William J; Pintar, Matthew R
2016-12-01
Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence. © 2016 by the Ecological Society of America.
Nelson, Michelle; Salguero, Francisco J; Dean, Rachel E; Ngugi, Sarah A; Smither, Sophie J; Atkins, Timothy P; Lever, Mark S
2014-12-01
Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures. © 2014 Crown copyright. International Journal of Experimental Pathology © 2014 Company of the International Journal of Experimental Pathology (CIJEP).
Baker, Steven F.; Martínez-Sobrido, Luis
2014-01-01
ABSTRACT The effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, new approaches for influenza vaccines that can trigger effective CD8 T cell responses have not been extensively explored. We report here the generation of single-cycle infectious influenza virus that lacks a functional hemagglutinin (HA) gene on an X31 genetic background and demonstrate its potential for triggering protective CD8 T cell immunity against heterologous influenza virus challenge. In vitro, X31-sciIV can infect MDCK cells, but infectious virions are not produced unless HA is transcomplemented. In vivo, intranasal immunization with X31-sciIV does not cause any clinical symptoms in mice but generates influenza-specific CD8 T cells in lymphoid (mediastinal lymph nodes and spleen) and nonlymphoid tissues, including lung and bronchoalveolar lavage fluid, as measured by H2-Db NP366 and PA224 tetramer staining. In addition, a significant proportion of X31-sciIV-induced antigen-specific respiratory CD8 T cells expressed VLA-1, a marker that is associated with heterologous influenza protection. Further, these influenza-specific CD8 T cells produce antiviral cytokines when stimulated with NP366 and PA224 peptides, indicating that CD8 T cells triggered by X31-sciIV are functional. When challenged with a lethal dose of heterologous PR8 virus, X31-sciIV-primed mice were fully protected from death. However, when CD8 T cells were depleted after priming or before priming, mice could not effectively control virus replication or survive the lethal challenge, indicating that X31-sciIV-induced memory CD8 T cells mediate the heterologous protection. Thus, our results demonstrate the potential for sciIV as a CD8 T cell-inducing vaccine. IMPORTANCE One of the challenges for influenza prevention is the existence of multiple influenza virus subtypes and variants and the fact that new strains can emerge yearly. Numerous studies have indicated that the effector functions of specific CD8 T cells are crucial in mediating influenza heterologous protection. However, influenza vaccines that can trigger effective CD8 T cell responses for heterologous protection have not been developed. We report here the generation of an X31 (H3N2) virus-derived single-cycle infectious influenza virus, X31-sciIV. A one-dose immunization with X31-sciIV is capable of inducing functional influenza virus-specific CD8 T cells that can be recruited into respiratory tissues and provide protection against lethal heterologous challenge. Without these cells, protection against lethal challenge was essentially lost. Our data indicate that an influenza vaccine that primarily relies on CD8 T cells for protection could be developed. PMID:25100831
Detoxification of Salmonella typhimurium lipopolysaccharide by ionizing radiation.
Previte, J J; Chang, Y; el-Bisi, H M
1967-05-01
The efficiency of ionizing radiation in detoxifying the lethal determinant(s) of the lipopolysaccharide (LPS) of Salmonella typhimurium, S. enteritidis, and Escherichia coli in aqueous solution and associated with heat-killed S. typhimurium cells in suspension decreased with doses above 1 Mrad. The 50% end point of inactivation was more than 7.0 Mrad for heat-killed salmonellae and 4.8, 4.5, and 1.0 Mrad for the LPS of S. typhimurium, S. enteritidis, and E. coli, respectively. After exposure to 20 Mrad, S. typhimurium LPS retained a small portion of its lethal properties although the ld(50) was much greater than 9.5 mg per 20-g mouse. However, at -184 C, no inactivation of the lethal determinant(s) occurred after exposure to as much as 20 Mrad. This demonstrated the significance of the indirect effect and the mobility and formation of free radicals. At 22 C, the optical density at 400 mmu increased and the pH decreased with increasing radiation dose, but no qualitative changes were observed in the infrared spectrum. No change was observed in the pyrogenicity of S. typhimurium LPS; a slight decrease in antigenicity was revealed when 6 days, but not when 1 day, elapsed between vaccination and challenge in the mouse protection test. The results were interpreted as evidence of the existence of two or more lethal and antigenic determinants. The differential effect of radiation on these properties and on the pyrogenic component(s) probably are indicative of separate functional sites for lethal, antigenic, and pyrogenic activities.
Targeted Silencing of Anthrax Toxin Receptors Protects against Anthrax Toxins*
Arévalo, Maria T.; Navarro, Ashley; Arico, Chenoa D.; Li, Junwei; Alkhatib, Omar; Chen, Shan; Diaz-Arévalo, Diana; Zeng, Mingtao
2014-01-01
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax. PMID:24742682
In Vitro Characterization of a Nineteenth-Century Therapy for Smallpox
Arndt, William; Mitnik, Chandra; Denzler, Karen L.; White, Stacy; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Olson, Victoria A.; Damon, Inger K.; Langland, Jeffrey O.
2012-01-01
In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections. PMID:22427855
In vitro characterization of a nineteenth-century therapy for smallpox.
Arndt, William; Mitnik, Chandra; Denzler, Karen L; White, Stacy; Waters, Robert; Jacobs, Bertram L; Rochon, Yvan; Olson, Victoria A; Damon, Inger K; Langland, Jeffrey O
2012-01-01
In the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox. Our work demonstrates the in vitro characterization of Sarracenia purpurea as the first effective inhibitor of poxvirus replication at the level of early viral transcription. With the renewed threat of poxvirus-related infections, our results indicate Sarracenia purpurea may act as another defensive measure against Orthopoxvirus infections.
Dimier-Poisson, Isabelle; Aline, Fleur; Bout, Daniel; Mévélec, Marie-Noëlle
2006-03-06
Toxoplasma gondii enters the mucosal surfaces of the host, and so immunity at these sites is of major interest. Due to the compartmentalization of the immune response, systemic immunization does not induce high levels of immunity at mucosal surfaces. Intranasal immunization has been shown to be very effective in inducing both systemic and mucosal immune responses. Immunization with mRNA can induce both humoral and cell-mediated immune responses, both of which are important in conferring immunity to T. gondii. The efficacy of RNA vaccination by the nasal route with T. gondii RNA was evaluated. We assessed the percentage of cumulative survival after an oral challenge with a lethal dose of T. gondii cysts (40 cysts), and the number of brain cysts following a challenge with a sublethal dose of T. gondii 76 K cysts (15 cysts). Vaccinated mice were found to be significantly better protected than non-immunized mice after a challenge with a lethal dose of cysts; and a challenge with a sublethal dose also resulted in fewer brain cysts than in non-immunized mice. Sera and intestinal secretions of immunized mice recognized T. gondii antigens, suggesting that a specific humoral immune response may occur. Moreover, a specific lymphoproliferative response observed in cervical lymph nodes may confer protection. These preliminary findings suggest that RNA vaccination by a mucosal route could be feasible.
Dowall, S D; Buttigieg, K R; Findlay-Wilson, S J D; Rayner, E; Pearson, G; Miloszewska, A; Graham, V A; Carroll, M W; Hewson, R
2016-01-01
Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15-70% of reported cases are fatal with no approved vaccine available. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus nucleoprotein. Cellular and humoral immunogenicity was confirmed in 2 mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. Despite the immune responses generated post-immunisation, the vaccine failed to protect animals from lethal disease in a challenge model.
Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A
2017-02-01
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.
Shipitsin, M; Small, C; Choudhury, S; Giladi, E; Friedlander, S; Nardone, J; Hussain, S; Hurley, A D; Ernst, C; Huang, Y E; Chang, H; Nifong, T P; Rimm, D L; Dunyak, J; Loda, M; Berman, D M; Blume-Jensen, P
2014-09-09
Key challenges of biopsy-based determination of prostate cancer aggressiveness include tumour heterogeneity, biopsy-sampling error, and variations in biopsy interpretation. The resulting uncertainty in risk assessment leads to significant overtreatment, with associated costs and morbidity. We developed a performance-based strategy to identify protein biomarkers predictive of prostate cancer aggressiveness and lethality regardless of biopsy-sampling variation. Prostatectomy samples from a large patient cohort with long follow-up were blindly assessed by expert pathologists who identified the tissue regions with the highest and lowest Gleason grade from each patient. To simulate biopsy-sampling error, a core from a high- and a low-Gleason area from each patient sample was used to generate a 'high' and a 'low' tumour microarray, respectively. Using a quantitative proteomics approach, we identified from 160 candidates 12 biomarkers that predicted prostate cancer aggressiveness (surgical Gleason and TNM stage) and lethal outcome robustly in both high- and low-Gleason areas. Conversely, a previously reported lethal outcome-predictive marker signature for prostatectomy tissue was unable to perform under circumstances of maximal sampling error. Our results have important implications for cancer biomarker discovery in general and development of a sampling error-resistant clinical biopsy test for prediction of prostate cancer aggressiveness.
Centrifugal microfluidic platform for ultrasensitive detection of Botulinum Toxin
USDA-ARS?s Scientific Manuscript database
Botulinum neurotoxin – a global public health threat and category A bioterrorism agent - is the most toxic substance known and one of the most challenging toxins to detect due to its lethality at extremely low concentrations. Hence the live-mouse bioassay because of its superior sensitivity, remains...
Moustafa, Dina A.; Scarff, Jennifer M.; Garcia, Preston P.; Cassidy, Sara K. B.; DiGiandomenico, Antonio; Waag, David M.; Inzana, Thomas J.; Goldberg, Joanna B.
2015-01-01
Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine. PMID:26148026
Moustafa, Dina A; Scarff, Jennifer M; Garcia, Preston P; Cassidy, Sara K B; DiGiandomenico, Antonio; Waag, David M; Inzana, Thomas J; Goldberg, Joanna B
2015-01-01
Burkholderia pseudomallei and Burkholderia mallei are the etiologic agents of melioidosis and glanders, respectively. These bacteria are highly infectious via the respiratory route and can cause severe and often fatal diseases in humans and animals. Both species are considered potential agents of biological warfare; they are classified as category B priority pathogens. Currently there are no human or veterinary vaccines available against these pathogens. Consequently efforts are directed towards the development of an efficacious and safe vaccine. Lipopolysaccharide (LPS) is an immunodominant antigen and potent stimulator of host immune responses. B. mallei express LPS that is structurally similar to that expressed by B. pseudomallei, suggesting the possibility of constructing a single protective vaccine against melioidosis and glanders. Previous studies of others have shown that antibodies against B. mallei or B. pseudomallei LPS partially protect mice against subsequent lethal virulent Burkholderia challenge. In this study, we evaluated the protective efficacy of recombinant Salmonella enterica serovar Typhimurium SL3261 expressing B. mallei O antigen against lethal intranasal infection with Burkholderia thailandensis, a surrogate for biothreat Burkholderia spp. in a murine model that mimics melioidosis and glanders. All vaccine-immunized mice developed a specific antibody response to B. mallei and B. pseudomallei O antigen and to B. thailandensis and were significantly protected against challenge with a lethal dose of B. thailandensis. These results suggest that live-attenuated SL3261 expressing B. mallei O antigen is a promising platform for developing a safe and effective vaccine.
Qiu, Ping; Li, Yan; Shiloach, Joseph; Cui, Xizhong; Sun, Junfeng; Trinh, Loc; Kubler-Kielb, Joanna; Vinogradov, Evgeny; Mani, Haresh; Al-Hamad, Mariam; Fitz, Yvonne; Eichacker, Peter Q.
2013-01-01
Background. Disseminated intravascular coagulation (DIC) appears to be important in the pathogenesis of Bacillus anthracis infection, but its causes are unclear. Although lethal toxin (LT) and edema toxin (ET) could contribute, B. anthracis cell wall peptidoglycan (PGN), not the toxins, stimulates inflammatory responses associated with DIC. Methods and Results. To better understand the pathogenesis of DIC during anthrax, we compared the effects of 24-hour infusions of PGN, LT, ET, or diluent (control) on coagulation measures 6, 24, or 48 hours after infusion initiation in 135 rats. No control recipient died. Lethality rates (approximately 30%) did not differ among PGN, LT, and ET recipients (P = .78). Thirty-three of 35 deaths (94%) occurred between 6 and 24 hours after the start of challenge. Among challenge components, PGN most consistently altered coagulation measures. Compared with control at 6 hours, PGN decreased platelet and fibrinogen levels and increased prothrombin and activated partial thromboplastin times and tissue factor, tissue factor pathway inhibitor, protein C, plasminogen activator inhibitor (PAI), and thrombin-antithrombin complex levels, whereas LT and ET only decreased the fibrinogen level or increased the PAI level (P ≤ .05). Nearly all effects associated with PGN infusion significantly differed from changes associated with toxin infusion (P ≤ .05 for all comparisons except for PAI level). Conclusion. DIC during B. anthracis infection may be related more to components such as PGN than to LT or ET. PMID:23737601
Golden, Joseph W; Maes, Piet; Kwilas, Steven A; Ballantyne, John; Hooper, Jay W
2016-01-20
Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT(50)), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Golden, Joseph W.; Maes, Piet; Kwilas, Steven A.; Ballantyne, John
2016-01-01
ABSTRACT Several members of the Arenaviridae can cause acute febrile diseases in humans, often resulting in lethality. The use of convalescent-phase human plasma is an effective treatment in humans infected with arenaviruses, particularly species found in South America. Despite this, little work has focused on developing potent and defined immunotherapeutics against arenaviruses. In the present study, we produced arenavirus neutralizing antibodies by DNA vaccination of rabbits with plasmids encoding the full-length glycoprotein precursors of Junín virus (JUNV), Machupo virus (MACV), and Guanarito virus (GTOV). Geometric mean neutralizing antibody titers, as measured by the 50% plaque reduction neutralization test (PRNT50), exceeded 5,000 against homologous viruses. Antisera against each targeted virus exhibited limited cross-species binding and, to a lesser extent, cross-neutralization. Anti-JUNV glycoprotein rabbit antiserum protected Hartley guinea pigs from lethal intraperitoneal infection with JUNV strain Romero when the antiserum was administered 2 days after challenge and provided some protection (∼30%) when administered 4 days after challenge. Treatment starting on day 6 did not protect animals. We further formulated an IgG antibody cocktail by combining anti-JUNV, -MACV, and -GTOV antibodies produced in DNA-vaccinated rabbits. This cocktail protected 100% of guinea pigs against JUNV and GTOV lethal disease. We then expanded on this cocktail approach by simultaneously vaccinating rabbits with a combination of plasmids encoding glycoproteins from JUNV, MACV, GTOV, and Sabia virus (SABV). Sera collected from rabbits vaccinated with the combination vaccine neutralized all four targets. These findings support the concept of using a DNA vaccine approach to generate a potent pan-arenavirus immunotherapeutic. IMPORTANCE Arenaviruses are an important family of emerging viruses. In infected humans, convalescent-phase plasma containing neutralizing antibodies can mitigate the severity of disease caused by arenaviruses, particularly species found in South America. Because of variations in potency of the human-derived product, limited availability, and safety concerns, this treatment option has essentially been abandoned. Accordingly, despite this approach being an effective postinfection treatment option, research on novel approaches to produce potent polyclonal antibody-based therapies have been deficient. Here we show that DNA-based vaccine technology can be used to make potently neutralizing antibodies in rabbits that exclusively target the glycoproteins of several human-pathogenic arenaviruses found in South America, including JUNV, MACV, GTOV, and SABV. These antibodies protected guinea pigs from lethal disease when given post-virus challenge. We also generated a purified antibody cocktail with antibodies targeting three arenaviruses and demonstrated protective efficacy against all three targets. Our findings demonstrate that use of the DNA vaccine technology could be used to produce candidate antiarenavirus neutralizing antibody-based products. PMID:26792737
Moore, John E; Watabe, Miyuki; Stewart, Andrew; Cherie Millar, B; Rao, Juluri R
2009-01-01
Maturing compost heaps normally attaining temperatures ranging from 55 to 65 degrees C is generally regarded to conform to recommended biological risks and sanitation standards for composts stipulated by either EU or US-EPA. Composted products derived from animal sources are further required by EU biohazard safety regulatory legislation that such composts either attain 70 degrees C for over 3h during maturation or via treatment at 70 degrees C for 1h before being considered for dispensation on land. The setting of the upper limit of thermal lethality at 70 degrees C/1h for achieving biosecurity of the animal waste composted products (e.g. pelleted fertilizer formulations) is not properly substantiated by specific validation tests, comprising a 'wipe-out' step (usually via autoclaving) followed by inoculation of a prescribed bacterium, exposure to 70 degrees C/1h and the lethality determined. Pelleted formulations of composts are not amenable for wet methods (autoclaving) for wipe-out sterilization step as this is detrimental to the pellet and compromises sample integrity. This study describes a laboratory method involving the employment of ((60)Co) irradiation 'wipe-out' step to: (a) compost sub-samples drawn from compost formulation heaps and (b) pelleted products derived from composted animal products while determining the thermal lethality of a given time/temperature (70 degrees C/1h) treatment process and by challenging the irradiated sample (not just with one bacterium but), out with 10 potential food-poisoning organisms from the bacterial genera (Campylobacter, Escherichia, Listeria, Salmonella, Yersinia) frequently detected in pig and poultry farm wastes. This challenge test on compost sub-samples can be a useful intervention ploy for 'inspection and validation' technique for composters during the compost maturity process, whose attainment of temperatures of 55-65 degrees C is presumed sufficient for attainment of sanitation. Stringent measures are further required by law for composted products arising from rural industrialists producing pelleted fertilizers from re-composted animal agriculture wastes comprising pig slurry solids, poultry litter and spent mushroom compost, which carry residual food-borne pathogens with implications to the food chain including humans. Environmentally, sustainable means of recycling farm wastes require that final composted products are free of pathogens in compliance with environmental safety legislation before their release to the market. This test developed provides a science-based risk characterization tool for sustainably managing environmental safety by 'validating' thermal lethality of a given composting process or their derivatives achieved without compromising the sample integrity or ambiguity attached to microbiological validation involving steam sterilization or autoclaving procedures and helps audit the resurgent bacterial populations from surviving non-pathogenic organisms in the end-products of animal waste compost formulations.
Peachman, Kristina K; Li, Qin; Matyas, Gary R; Shivachandra, Sathish B; Lovchik, Julie; Lyons, Rick C; Alving, Carl R; Rao, Venigalla B; Rao, Mangala
2012-01-01
In an effort to develop an improved anthrax vaccine that shows high potency, five different anthrax protective antigen (PA)-adjuvant vaccine formulations that were previously found to be efficacious in a nonhuman primate model were evaluated for their efficacy in a rabbit pulmonary challenge model using Bacillus anthracis Ames strain spores. The vaccine formulations include PA adsorbed to Alhydrogel, PA encapsulated in liposomes containing monophosphoryl lipid A, stable liposomal PA oil-in-water emulsion, PA displayed on bacteriophage T4 by the intramuscular route, and PA mixed with Escherichia coli heat-labile enterotoxin administered by the needle-free transcutaneous route. Three of the vaccine formulations administered by the intramuscular or the transcutaneous route as a three-dose regimen induced 100% protection in the rabbit model. One of the formulations, liposomal PA, also induced significantly higher lethal toxin neutralizing antibodies than PA-Alhydrogel. Even 5 months after the second immunization of a two-dose regimen, rabbits vaccinated with liposomal PA were 100% protected from lethal challenge with Ames strain spores. In summary, the needle-free skin delivery and liposomal formulation that were found to be effective in two different animal model systems appear to be promising candidates for next-generation anthrax vaccine development.
Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.
Langeveld, J P; Brennan, F R; Martínez-Torrecuadrada, J L; Jones, T D; Boshuizen, R S; Vela, C; Casal, J I; Kamstrup, S; Dalsgaard, K; Meloen, R H; Bendig, M M; Hamilton, W D
2001-06-14
A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.
Lorenzo, Gema; Rodríguez-Pulido, Miguel; López-Gil, Elena; Sobrino, Francisco; Borrego, Belén; Sáiz, Margarita; Brun, Alejandro
2014-09-01
In this work we have addressed the effect of synthetic, non-infectious, RNA transcripts, mimicking structural domains of the non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome on the infection of mice with Rift Valley fever virus (RVFV). Groups of 5 mice were inoculated intraperitoneally (i.p.) with 200 μg of synthetic RNA resembling the 5'-terminal S region, the internal ribosome entry site (IRES) or the 3'-NCR of the FMDV genome. RNA inoculation was performed 24h before (-24 h), 24 h after (+24 h) or simultaneously to the challenge with a lethal dose of RVFV. Administration of the IRES RNA afforded higher survival rates than administration of S or 3'NCR transcripts either at -24h or +24h after challenge. In contrast, when RNA inoculation and viral challenge were performed simultaneously, all mice survived in both IRES- and 3'NCR-inoculated groups, with an 80% survival in mice receiving the S RNA. Among survivors, a complete correlation between significant anti-RVFV circulating antibody titers and resistance to a second lethal challenge with the virus was observed, supporting a limited viral replication in the RNA-inoculated animals upon the first challenge. All three RNA transcripts were able to induce the production of systemic antiviral and pro-inflammatory cytokines. These data show that triggering of intracellular pathogen sensing pathways constitutes a promising approach towards development of novel RVF preventive or therapeutic strategies. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E
2015-02-18
Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation and tissue damage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, M; Redes, J L; Percopo, C M; Druey, K M; Rosenberg, H F
2018-06-01
Eosinophils in the nasal mucosa are an elemental feature of allergic rhinitis. Our objective was to explore eosinophilic inflammation and its impact on respiratory virus infection at the nasal mucosa. Inflammation in the nasal mucosae of mice was evaluated in response to repetitive stimulation with strict intranasal volumes of a filtrate of Alternaria alternata. Mice were then challenged with influenza virus. Repetitive stimulation with A. alternata resulted in eosinophil recruitment to the nasal passages in association with elevated levels of IL-5, IL-13 and eotaxin-1; eosinophil recruitment was diminished in eotaxin-1 -/- mice, and abolished in Rag1 -/- mice. A. alternata also resulted in elevated levels of nasal wash IgA in both wild-type and eosinophil-deficient ∆dblGATA mice. Interestingly, A. alternata-treated mice responded to an influenza virus infection with profound weight loss and mortality compared to mice that received diluent alone (0% vs 100% survival, ***P < .001); the lethal response was blunted when A. alternata was heat-inactivated. Minimal differences in virus titre were detected, and eosinophils present in the nasal passages at the time of virus inoculation provided no protection against the lethal sequelae. Interestingly, nasal wash fluids from mice treated with A. alternata included more neutrophils and higher levels of pro-inflammatory mediators in response to virus challenge, among these, IL-6, a biomarker for disease severity in human influenza. Repetitive administration of A. alternata resulted in inflammation of the nasal mucosae and unanticipated morbidity and mortality in response to subsequent challenge with influenza virus. Interestingly, and in contrast to findings in the lower airways, eosinophils recruited to the nasal passages provided no protection against lethal infection. As increased susceptibility to influenza virus among individuals with rhinitis has been the subject of several clinical reports, this model may be used for further exploration of these observations. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
2018-01-01
ABSTRACT African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. PMID:29386289
Jancovich, James K; Chapman, Dave; Hansen, Debra T; Robida, Mark D; Loskutov, Andrey; Craciunescu, Felicia; Borovkov, Alex; Kibler, Karen; Goatley, Lynnette; King, Katherine; Netherton, Christopher L; Taylor, Geraldine; Jacobs, Bertram; Sykes, Kathryn; Dixon, Linda K
2018-04-15
African swine fever virus (ASFV) causes an acute hemorrhagic fever in domestic pigs, with high socioeconomic impact. No vaccine is available, limiting options for control. Although live attenuated ASFV can induce up to 100% protection against lethal challenge, little is known of the antigens which induce this protective response. To identify additional ASFV immunogenic and potentially protective antigens, we cloned 47 viral genes in individual plasmids for gene vaccination and in recombinant vaccinia viruses. These antigens were selected to include proteins with different functions and timing of expression. Pools of up to 22 antigens were delivered by DNA prime and recombinant vaccinia virus boost to groups of pigs. Responses of immune lymphocytes from pigs to individual recombinant proteins and to ASFV were measured by interferon gamma enzyme-linked immunosorbent spot (ELISpot) assays to identify a subset of the antigens that consistently induced the highest responses. All 47 antigens were then delivered to pigs by DNA prime and recombinant vaccinia virus boost, and pigs were challenged with a lethal dose of ASFV isolate Georgia 2007/1. Although pigs developed clinical and pathological signs consistent with acute ASFV, viral genome levels were significantly reduced in blood and several lymph tissues in those pigs immunized with vectors expressing ASFV antigens compared with the levels in control pigs. IMPORTANCE The lack of a vaccine limits the options to control African swine fever. Advances have been made in the development of genetically modified live attenuated ASFV that can induce protection against challenge. However, there may be safety issues relating to the use of these in the field. There is little information about ASFV antigens that can induce a protective immune response against challenge. We carried out a large screen of 30% of ASFV antigens by delivering individual genes in different pools to pigs by DNA immunization prime and recombinant vaccinia virus boost. The responses in immunized pigs to these individual antigens were compared to identify the most immunogenic. Lethal challenge of pigs immunized with a pool of antigens resulted in reduced levels of virus in blood and lymph tissues compared to those in pigs immunized with control vectors. Novel immunogenic ASFV proteins have been identified for further testing as vaccine candidates. Copyright © 2018 Jancovich et al.
NASA Astrophysics Data System (ADS)
Cantin, Edouard M.; Eberle, Richard; Baldick, Joseph L.; Moss, Bernard; Willey, Dru E.; Notkins, Abner L.; Openshaw, Harry
1987-08-01
The herpes simplex virus 1 (HSV-1) strain F gene encoding glycoprotein gB was isolated and modified at the 5' end by in vitro oligonucleotide-directed mutagenesis. The modified gB gene was inserted into the vaccinia virus genome and expressed under the control of a vaccinia virus promoter. The mature gB glycoprotein produced by the vaccinia virus recombinant was glycosylated, was expressed at the cell surface, and was indistinguishable from authentic HSV-1 gB in terms of electrophoretic mobility. Mice immunized intradermally with the recombinant vaccinia virus produced gB-specific neutralizing antibodies and were resistant to a lethal HSV-1 challenge.
Dowall, SD; Buttigieg, KR; Findlay-Wilson, SJD; Rayner, E; Pearson, G; Miloszewska, A; Graham, VA; Carroll, MW; Hewson, R
2016-01-01
Crimean-Congo Hemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. Between 15–70% of reported cases are fatal with no approved vaccine available. In the present study, the attenuated poxvirus vector, Modified Vaccinia virus Ankara, was used to develop a recombinant candidate vaccine expressing the CCHF virus nucleoprotein. Cellular and humoral immunogenicity was confirmed in 2 mouse strains, including type I interferon receptor knockout mice, which are susceptible to CCHF disease. Despite the immune responses generated post-immunisation, the vaccine failed to protect animals from lethal disease in a challenge model. PMID:26309231
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) is viral disease of poultry and detection in commercial flocks can result in trade embargos causing serious economic impact to the poultry industry. Vaccination is currently used to increase protection of birds against AI and limit transmission to susceptible cohorts. Because ...
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) causes a lethal disease of swine. Infection with attenuated strains protect against challenge but there is limited knowledge of the immune mechanisms generating that protection. ASFV Pret4 produces a fatal disease, while its derivative, lacking virulence-associated g...
Jones, Frank R.; Gabitzsch, Elizabeth S.; Xu, Younong; Balint, Joseph P.; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan
2013-01-01
Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082
A combination in-ovo vaccine for avian influenza virus and Newcastle disease virus.
Steel, John; Burmakina, Svetlana V; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E; Palese, Peter
2008-01-24
The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing, (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin-neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park MS, et al. Proc Natl Acad Sci USA 2006;103(21):8203-8). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus, respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine.
Hatcher, Christopher L; Mott, Tiffany M; Muruato, Laura A; Sbrana, Elena; Torres, Alfredo G
2016-08-01
Burkholderia mallei is the causative agent of glanders, an incapacitating disease with high mortality rates in respiratory cases. Its endemicity and ineffective treatment options emphasize its public health threat and highlight the need for a vaccine. Live attenuated vaccines are considered the most viable vaccine strategy for Burkholderia, but single-gene-deletion mutants have not provided complete protection. In this study, we constructed the select-agent-excluded B. mallei ΔtonB Δhcp1 (CLH001) vaccine strain and investigated its ability to protect against acute respiratory glanders. Here we show that CLH001 is attenuated, safe, and effective at protecting against lethal B. mallei challenge. Intranasal administration of CLH001 to BALB/c and NOD SCID gamma (NSG) mice resulted in complete survival without detectable colonization or abnormal organ histopathology. Additionally, BALB/c mice intranasally immunized with CLH001 in a prime/boost regimen were fully protected against lethal challenge with the B. mallei lux (CSM001) wild-type strain. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Karauzum, Hatice; Chen, Gang; Abaandou, Laura; Mahmoudieh, Mahta; Boroun, Atefeh R.; Shulenin, Sergey; Devi, V. Sathya; Stavale, Eric; Warfield, Kelly L.; Zeitlin, Larry; Roy, Chad J.; Sidhu, Sachdev S.; Aman, M. Javad
2012-01-01
Staphylococcal enterotoxin B (SEB) is a potent toxin that can cause toxic shock syndrome and act as a lethal and incapacitating agent when used as a bioweapon. There are currently no vaccines or immunotherapeutics available against this toxin. Using phage display technology, human antigen-binding fragments (Fabs) were selected against SEB, and proteins were produced in Escherichia coli cells and characterized for their binding affinity and their toxin neutralizing activity in vitro and in vivo. Highly protective Fabs were converted into full-length IgGs and produced in mammalian cells. Additionally, the production of anti-SEB antibodies was explored in the Nicotiana benthamiana plant expression system. Affinity maturation was performed to produce optimized lead anti-SEB antibody candidates with subnanomolar affinities. IgGs produced in N. benthamiana showed characteristics comparable with those of counterparts produced in mammalian cells. IgGs were tested for their therapeutic efficacy in the mouse toxic shock model using different challenge doses of SEB and a treatment with 200 μg of IgGs 1 h after SEB challenge. The lead candidates displayed full protection from lethal challenge over a wide range of SEB challenge doses. Furthermore, mice that were treated with anti-SEB IgG had significantly lower IFNγ and IL-2 levels in serum compared with mock-treated mice. In summary, these anti-SEB monoclonal antibodies represent excellent therapeutic candidates for further preclinical and clinical development. PMID:22645125
Röhrs, Susanne; Kalthoff, Donata; Beer, Martin
2014-05-07
Highly pathogenic avian influenza viruses of subtype H5N1 sporadically cause severe disease in humans and involve the risk of inducing a pandemic by gaining the ability for human-to-human transmission. In naïve poultry, primarily gallinaceous birds, the virus induces fatal disease and the used inactivated vaccines occasionally are unable to provide efficient and early onset of protection. Therefore, optimized vaccines must be developed and evaluated in model systems. In our study, we tested a novel H5 neuraminidase-deleted influenza A virus variant to analyze the induction of a very early onset of immunity. Ferrets, mice and chickens were each immunized with a single vaccine dose seven, three and one day before lethal challenge infection, respectively. Sound protection was conferred in 100% of animals immunized seven days prior to challenge infection. In these animals, no clinical signs were observed, and no challenge virus RNA was detected by real-time RT-PCR analyses of swabs, nasal washings, and organ samples. Moreover, the attenuated modified-live virus variant protected all chickens, mice, and ferrets as early as three days after vaccination against severe clinical signs. Chickens and ferrets developed hemagglutinin-specific antibodies after seven days, but no neuraminidase-specific antibodies, making this kind of neuraminidase-negative strain suitable for the DIVA ("differentiating vaccinated from infected animals") strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Chun-Hua; Yuan, Jin; Qin, Hua-Yang; Luo, Yuzi; Cong, Xin; Li, Yongfeng; Chen, Jianing; Li, Su; Sun, Yuan; Qiu, Hua-Ji
2014-06-05
The currently used Bartha-K61 strain is a very safe and effective vaccine against pseudorabies (PR) and has played a critical role in the control and eradication of PR worldwide. Since late 2011, however, PR reemerged among Bartha-K61-vaccinated pig population in many regions in China. Our previous studies demonstrated that the Bartha-K61 vaccine was unable to provide complete protection from the challenge with the PRV TJ strain (PRVTJ), a representative emerging PRV variant that was isolated from a Bartha-K61-immunized pig farm in Tianjin, China. Here, we generated a gE-deleted PRV, named as rPRVTJ-delgE, based on PRVTJ and evaluated its safety and immunogenicity in pigs. Our results showed that groups of piglets (n=5) immunized with 10(3), 10(4) or 10(5)TCID50 rPRVTJ-delgE did not exhibit clinical signs following immunization and challenge and were protected clinically and virologically from the lethal challenge with PRVTJ as early as 1 week post-immunization, in contrast with the incomplete protection provided by the Bartha-K61 vaccine. These indicate that rPRVTJ-delgE is a promising candidate vaccine for updating Bartha-K61 for the control of the currently epidemic PR in China. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Feng-Xue; Zhang, Shu-Qin; Zhu, Hong-Wei; Yang, Yong; Sun, Na; Tan, Bin; Li, Zhen-Guang; Cheng, Shi-Peng; Fu, Zhen F; Wen, Yong-Jun
2014-12-05
The rabies virus (RV) vector LBNSE expressing foreign antigens have shown considerable promise as vaccines against viral and bacteria diseases, which is effective and safe. We produced a new RV-based vaccine vehicle expressing 1.824 kb hemagglutinin (H) gene of the canine distemper virus (CDV) by reverse genetics technology. The recombinant virus LBNSE-CDV-H retained growth properties similar to those of vector LBNSE both in BSR and mNA cell culture. The H gene of CDV was expressed and detected by immunostaining. To compare the immunogenicity of LBNSE-CDV-H, dogs were immunized with each of these recombinant viruses by intramuscular (i.m.). The dogs were bled at third weeks after the immunization for the measurement of virus neutralizing antibody (VNA) and then challenged with virulent virus (ZJ 7) at fourth weeks. The parent virus (LBNSE) without expression of any foreign molecules was included for comparison. Dogs inoculated with LBNSE-CDV-H showed no any signs of disease and exhibited seroconversion against both RV and CDV H protein. The LBNSE-CDV-H did not cause disease in dogs and conferred protection from challenge with a lethal wild type CDV strain, demonstrating its potential value for wildlife conservation efforts. Together, these studies suggest that recombinant RV expressing H protein from CDV stimulated high levels of adaptive immune responses (VNA), and protected all dogs challenge infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom.
Soni, Pranay; Bodakhe, Surendra H
2014-05-01
To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents.
Paran, Nir; Lustig, Shlomo; Zvi, Anat; Erez, Noam; Israely, Tomer; Melamed, Sharon; Politi, Boaz; Ben-Nathan, David; Schneider, Paula; Lachmi, Batel; Israeli, Ofir; Stein, Dana; Levin, Reuven; Olshevsky, Udy
2013-07-10
Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104-120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope's critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox.
Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark
2013-01-01
A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314
2013-01-01
Vaccinia virus protein A33 (A33VACV) plays an important role in protection against orthopoxviruses, and hence is included in experimental multi-subunit smallpox vaccines. In this study we show that single-dose vaccination with recombinant Sindbis virus expressing A33VACV, is sufficient to protect mice against lethal challenge with vaccinia virus WR (VACV-WR) and ectromelia virus (ECTV) but not against cowpox virus (CPXV), a closely related orthopoxvirus. Moreover, a subunit vaccine based on the cowpox virus A33 ortholog (A33CPXV) failed to protect against cowpox and only partially protected mice against VACV-WR challenge. We mapped regions of sequence variation between A33VACV and A33CPXVand analyzed the role of such variations in protection. We identified a single protective region located between residues 104–120 that harbors a putative H-2Kd T cell epitope as well as a B cell epitope - a target for the neutralizing antibody MAb-1G10 that blocks spreading of extracellular virions. Both epitopes in A33CPXV are mutated and predicted to be non-functional. Whereas vaccination with A33VACV did not induce in-vivo CTL activity to the predicted epitope, inhibition of virus spread in-vitro, and protection from lethal VACV challenge pointed to the B cell epitope highlighting the critical role of residue L118 and of adjacent compensatory residues in protection. This epitope’s critical role in protection, as well as its modifications within the orthopoxvirus genus should be taken in context with the failure of A33 to protect against CPXV as demonstrated here. These findings should be considered when developing new subunit vaccines and monoclonal antibody based therapeutics against orthopoxviruses, especially variola virus, the etiologic agent of smallpox. PMID:23842430
Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.
Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.
2014-01-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; Mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA- activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32%–87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906
Garcia, J P; Beingesser, J; Bohorov, O; Bohorova, N; Goodman, C; Kim, D; Pauly, M; Velasco, J; Whaley, K; Zeitlin, L; Roy, C J; Uzal, F A
2014-09-01
Epsilon toxin (ETX), produced by Clostridium perfringens types B and D, is among the most lethal toxins known. ETX is a potential bioterrorism threat that was listed as a Category B agent by the U.S. Centers for Disease Control until 2012 and it still remains a toxin of interest for several government agencies. We produced a monoclonal antibody (MAb) against ETX (ETX MAb c4D7) in Nicotiana benthamiana and characterized its preventive and therapeutic efficacy in mice. The ETX preparation used was highly lethal for mice (LD50 = 1.6 μg/kg) and resulted in a mean time from inoculation to death of 18 and 180 min when administered intravenously or intraperitoneally, respectively. High lethal challenge resulted in dramatic increases of a variety of pro-inflammatory cytokines in serum, while lower, but still lethal doses, did not elicit such responses. ETX MAb c4D7 was highly effective prophylactically (ED50 = 0.3 mg/kg; ED100 = 0.8 mg/kg) and also provided protection when delivered 15-30 min post-ETX intoxication. These data suggest that ETX MAb c4D7 may have use as a pre- and post-exposure treatment for ETX intoxication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik
2013-01-01
Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886
Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.
2011-01-01
Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194
Cashman, Kathleen A; Wilkinson, Eric R; Wollen, Suzanne E; Shamblin, Joshua D; Zelko, Justine M; Bearss, Jeremy J; Zeng, Xiankun; Broderick, Kate E; Schmaljohn, Connie S
2017-12-02
We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment.
Cashman, Kathleen A.; Wilkinson, Eric R.; Wollen, Suzanne E.; Shamblin, Joshua D.; Zelko, Justine M.; Bearss, Jeremy J.; Zeng, Xiankun; Broderick, Kate E.; Schmaljohn, Connie S.
2017-01-01
ABSTRACT We previously developed optimized DNA vaccines against both Lassa fever and Ebola hemorrhagic fever viruses and demonstrated that they were protective individually in guinea pig and nonhuman primate models. In this study, we vaccinated groups of strain 13 guinea pigs two times, four weeks apart with 50 µg of each DNA vaccine or a mock vaccine at discrete sites by intradermal electroporation. Five weeks following the second vaccinations, guinea pigs were exposed to lethal doses of Lassa virus, Ebola virus, or a combination of both viruses simultaneously. None of the vaccinated guinea pigs, regardless of challenge virus and including the coinfected group, displayed weight loss, fever or other disease signs, and all survived to the study endpoint. All of the mock-vaccinated guinea pigs that were infected with Lassa virus, and all but one of the EBOV-infected mock-vaccinated guinea pigs succumbed. In order to determine if the dual-agent vaccination strategy could protect against both viruses if exposures were temporally separated, we held the surviving vaccinates in BSL-4 for approximately 120 days to perform a cross-challenge experiment in which guinea pigs originally infected with Lassa virus received a lethal dose of Ebola virus and those originally infected with Ebola virus were infected with a lethal dose of Lassa virus. All guinea pigs remained healthy and survived to the study endpoint. This study clearly demonstrates that DNA vaccines against Lassa and Ebola viruses can elicit protective immunity against both individual virus exposures as well as in a mixed-infection environment. PMID:29135337
Hooper, Jay W; Brocato, Rebecca L; Kwilas, Steven A; Hammerbeck, Christopher D; Josleyn, Matthew D; Royals, Michael; Ballantyne, John; Wu, Hua; Jiao, Jin-an; Matsushita, Hiroaki; Sullivan, Eddie J
2014-11-26
Polyclonal immunoglobulin-based medical products have been used successfully to treat diseases caused by viruses for more than a century. We demonstrate the use of DNA vaccine technology and transchromosomal bovines (TcBs) to produce fully human polyclonal immunoglobulins (IgG) with potent antiviral neutralizing activity. Specifically, two hantavirus DNA vaccines [Andes virus (ANDV) DNA vaccine and Sin Nombre virus (SNV) DNA vaccine] were used to produce a candidate immunoglobulin product for the prevention and treatment of hantavirus pulmonary syndrome (HPS). A needle-free jet injection device was used to vaccinate TcB, and high-titer neutralizing antibodies (titers >1000) against both viruses were produced within 1 month. Plasma collected at day 10 after the fourth vaccination was used to produce purified α-HPS TcB human IgG. Treatment with 20,000 neutralizing antibody units (NAU)/kg starting 5 days after challenge with ANDV protected seven of eight animals, whereas zero of eight animals treated with the same dose of normal TcB human IgG survived. Likewise, treatment with 20,000 NAU/kg starting 5 days after challenge with SNV protected immunocompromised hamsters from lethal HPS, protecting five of eight animals. Our findings that the α-HPS TcB human IgG is capable of protecting in animal models of lethal HPS when administered after exposure provides proof of concept that this approach can be used to develop candidate next-generation polyclonal immunoglobulin-based medical products without the need for human donors, despeciation protocols, or inactivated/attenuated vaccine antigen. Copyright © 2014, American Association for the Advancement of Science.
Levofloxacin Cures Experimental Pneumonic Plague in African Green Monkeys
McDonald, Jacob D.; Brasel, Trevor L.; Barr, Edward B.; Gigliotti, Andrew P.; Koster, Frederick
2011-01-01
Background Yersinia pestis, the agent of plague, is considered a potential bioweapon due to rapid lethality when delivered as an aerosol. Levofloxacin was tested for primary pneumonic plague treatment in a nonhuman primate model mimicking human disease. Methods and Results Twenty-four African Green monkeys (AGMs, Chlorocebus aethiops) were challenged via head-only aerosol inhalation with 3–145 (mean = 65) 50% lethal (LD50) doses of Y. pestis strain CO92. Telemetered body temperature >39°C initiated intravenous infusions to seven 5% dextrose controls or 17 levofloxacin treated animals. Levofloxacin was administered as a “humanized” dose regimen of alternating 8 mg/kg and 2 mg/kg 30-min infusions every 24-h, continuing until animal death or 20 total infusions, followed by 14 days of observation. Fever appeared at 53–165 h and radiographs found multilobar pneumonia in all exposed animals. All control animals died of severe pneumonic plague within five days of aerosol exposure. All 16 animals infused with levofloxacin for 10 days survived. Levofloxacin treatment abolished bacteremia within 24 h in animals with confirmed pre-infusion bacteremia, and reduced tachypnea and leukocytosis but not fever during the first 2 days of infusions. Conclusion Levofloxacin cures established pneumonic plague when treatment is initiated after the onset of fever in the lethal aerosol-challenged AGM nonhuman primate model, and can be considered for treatment of other forms of plague. Levofloxacin may also be considered for primary presumptive-use, multi-agent antibiotic in bioterrorism events prior to identification of the pathogen. PMID:21347450
Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA.
Thi, Emily P; Mire, Chad E; Ursic-Bedoya, Raul; Geisbert, Joan B; Lee, Amy C H; Agans, Krystle N; Robbins, Marjorie; Deer, Daniel J; Fenton, Karla A; MacLachlan, Ian; Geisbert, Thomas W
2014-08-20
Marburg virus (MARV) and the closely related filovirus Ebola virus cause severe and often fatal hemorrhagic fever (HF) in humans and nonhuman primates with mortality rates up to 90%. There are no vaccines or drugs approved for human use, and no postexposure treatment has completely protected nonhuman primates against MARV-Angola, the strain associated with the highest rate of mortality in naturally occurring human outbreaks. Studies performed with other MARV strains assessed candidate treatments at times shortly after virus exposure, before signs of disease are detectable. We assessed the efficacy of lipid nanoparticle (LNP) delivery of anti-MARV nucleoprotein (NP)-targeting small interfering RNA (siRNA) at several time points after virus exposure, including after the onset of detectable disease in a uniformly lethal nonhuman primate model of MARV-Angola HF. Twenty-one rhesus monkeys were challenged with a lethal dose of MARV-Angola. Sixteen of these animals were treated with LNP containing anti-MARV NP siRNA beginning at 30 to 45 min, 1 day, 2 days, or 3 days after virus challenge. All 16 macaques that received LNP-encapsulated anti-MARV NP siRNA survived infection, whereas the untreated or mock-treated control subjects succumbed to disease between days 7 and 9 after infection. These results represent the successful demonstration of therapeutic anti-MARV-Angola efficacy in nonhuman primates and highlight the substantial impact of an LNP-delivered siRNA therapeutic as a countermeasure against this highly lethal human disease. Copyright © 2014, American Association for the Advancement of Science.
Han, Dalmuri; Lee, Hyung Tae; Lee, June Bong; Kim, Yongbaek; Lee, Sang Jong; Yoon, Jang Won
2017-02-01
Our previous studies demonstrated that a bioprocessed polysaccharide (BPP) isolated from Lentinus edodes mushroom mycelia cultures supplemented with black rice bran can protect mice against Salmonella lipopolysaccharide-induced endotoxemia and reduce the mortality from Salmonella Typhimurium infection through upregulated T-helper 1 immunity. Here, we report that a BPP from L. edodes mushroom mycelia liquid cultures supplemented with turmeric (referred to as BPP-turmeric) alters chicken macrophage responses against avian-adapted Salmonella Gallinarum and protects chicks against a lethal challenge from Salmonella Gallinarum. In vitro analyses revealed that the water extract of BPP-turmeric (i) changed the protein expression or secretion profile of Salmonella Gallinarum, although it was not bactericidal, (ii) reduced the phagocytic activity of the chicken-derived macrophage cell line HD-11 when infected with Salmonella Gallinarum, and (iii) significantly activated the transcription expression of interleukin (IL)-1β, IL-10, tumor necrosis factor α, and inducible nitric oxide synthase in response to various Salmonella infections, whereas it repressed that of IL-4, IL-6, interferon-β, and interferon-γ. We also found that BPP-turmeric (0.1 g/kg of feed) as a feed additive provided significant protection to 1-day-old chicks infected with a lethal dose of Salmonella Gallinarum. Collectively, these results imply that BPP-turmeric contains biologically active component(s) that protect chicks against Salmonella Gallinarum infection, possibly by regulating macrophage immune responses. Further studies are needed to evaluate the potential efficacy of BPP-turmeric as a livestock feed additive for the preharvest control of fowl typhoid or foodborne salmonellosis.
Huang, Juan; Jia, Renyong; Wang, Mingshu; Shu, Bing; Yu, Xia; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Chen, Xiaoyue; Cheng, Anchun
2014-04-01
Duck plague (DP) is a severe disease caused by DP virus (DPV). Control of the disease is recognized as one of the biggest challenges in avian medicine. Vaccination is an efficient way to control DPV, and an attenuated vaccine is the main routine vaccine. The attenuated DPV vaccine strain CHa is a modified live vaccine, but the systemic and mucosal immune responses induced by this vaccine have been poorly understood. In this study, the immunogenicity and efficacy of the vaccine were evaluated after subcutaneous immunization of ducks. CD4(+) and CD8(+) T cells were counted by flow cytometry, and humoral and mucosal Ig antibodies were analyzed by enzyme-linked immunosorbent assay (ELISA). The results showed that high levels of T cells and Ig antibodies were present postimmunization and that there were more CD4(+) T cells than CD8(+) T cells. Titers of humoral IgG were higher than those of humoral IgA. Local IgA was found in each sample, whereas local IgG was found only in the spleen, thymus, bursa of Fabricius, harderian gland, liver, bile, and lung. In a protection assay, the attenuated DPV vaccine completely protected ducks against 1,000 50% lethal doses (LD50) of the lethal DPV strain CHv via oral infection. These data suggest that this subcutaneous vaccine elicits sufficient systemic and mucosal immune responses against lethal DPV challenge to be protective in ducks. This study provides broad insights into understanding the immune responses to the attenuated DPV vaccine strain CHa through subcutaneous immunization in ducks.
Franceschi, Valentina; Capocefalo, Antonio; Calvo-Pinilla, Eva; Redaelli, Marco; Mucignat-Caretta, Carla; Mertens, Peter; Ortego, Javier; Donofrio, Gaetano
2011-04-05
New effective tools for vaccine strategies are necessary to limit the spread of bluetongue, an insect-transmitted viral disease of domestic and wild ruminants. In the present study, BoHV-4-based vector cloned as a bacterial artificial chromosome (BAC) was engineered to express the bluetongue virus (BTV) immune-dominant glycoprotein VP2 provided of a heterologous signal peptide to its amino terminal and a trans-membrane domain to its carboxyl terminal (IgK-VP2gDtm), to allow the VP2 expression targeting to the cell membrane fraction. Based on adult α/β interferon receptor knockout (IFNAR(-/-)) mice, a newly generated bluetongue laboratory animal model, a pre-challenge experiment was performed to test BoHV-4 safety on such immune-compromised animal. BoHV-4 infected IFNAR(-/-) mice did not show clinical signs even following the inoculation of BoHV-4 intra-cerebrally, although many areas of the brain got transduced. IFNAR(-/-) mice intraperitoneally inoculated twice with BoHV-4-A-IgK-VP2gDtm at different time points developed serum neutralizing antibodies against BTV and showed a strongly reduced viremia and a longer survival time when challenged with a lethal dose of BTV-8. The data acquired in this pilot study validate BoHV-4-based vector as a safe and effective heterologous antigen carrier/producer for the formulation of enhanced recombinant immunogens for the vaccination against lethal bluetongue. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lo, Michael K; Bird, Brian H; Chattopadhyay, Anasuya; Drew, Clifton P; Martin, Brock E; Coleman, Joann D; Rose, John K; Nichol, Stuart T; Spiropoulou, Christina F
2014-01-01
Nipah virus (NiV) continues to cause outbreaks of fatal human encephalitis due to spillover from its bat reservoir. We determined that a single dose of replication-defective vesicular stomatitis virus (VSV)-based vaccine vectors expressing either the NiV fusion (F) or attachment (G) glycoproteins protected hamsters from over 1000 times LD50 NiV challenge. This highly effective single-dose protection coupled with an enhanced safety profile makes these candidates ideal for potential use in livestock and humans. Published by Elsevier B.V.
Enhancing case definitions for surveillance of human monkeypox in the Democratic Republic of Congo.
Osadebe, Lynda; Hughes, Christine M; Shongo Lushima, Robert; Kabamba, Joelle; Nguete, Beatrice; Malekani, Jean; Pukuta, Elisabeth; Karhemere, Stomy; Muyembe Tamfum, Jean-Jacques; Wemakoy Okitolonda, Emile; Reynolds, Mary G; McCollum, Andrea M
2017-09-01
Human monkeypox (MPX) occurs at appreciable rates in the Democratic Republic of Congo (DRC). Infection with varicella zoster virus (VZV) has a similar presentation to that of MPX, and in areas where MPX is endemic these two illnesses are commonly mistaken. This study evaluated the diagnostic utility of two surveillance case definitions for MPX and specific clinical characteristics associated with laboratory-confirmed MPX cases. Data from a cohort of suspect MPX cases (identified by surveillance over the course of a 42 month period during 2009-2014) from DRC were used; real-time PCR diagnostic test results were used to establish MPX and VZV diagnoses. A total of 333 laboratory-confirmed MPX cases, 383 laboratory-confirmed VZV cases, and 36 cases that were determined to not be either MPX or VZV were included in the analyses. Significant (p<0.05) differences between laboratory-confirmed MPX and VZV cases were noted for several signs/symptoms including key rash characteristics. Both surveillance case definitions had high sensitivity and low specificities for individuals that had suspected MPX virus infections. Using 12 signs/symptoms with high sensitivity and/or specificity values, a receiver operator characteristic analysis showed that models for MPX cases that had the presence of 'fever before rash' plus at least 7 or 8 of the 12 signs/symptoms demonstrated a more balanced performance between sensitivity and specificity. Laboratory-confirmed MPX and VZV cases presented with many of the same signs and symptoms, and the analysis here emphasized the utility of including 12 specific signs/symptoms when investigating MPX cases. In order to document and detect endemic human MPX cases, a surveillance case definition with more specificity is needed for accurate case detection. In the absence of a more specific case definition, continued emphasis on confirmatory laboratory-based diagnostics is warranted.
3 CFR 9045 - Proclamation 9045 of October 23, 2013. United Nations Day, 2013
Code of Federal Regulations, 2014 CFR
2014-01-01
... Proclamation In 1945, after two world wars that showed the horrific lethality of modern conflict, 51 member... 3 The President 1 2014-01-01 2014-01-01 false Proclamation 9045 of October 23, 2013. United... the organization's challenging and often unheralded work of forging a world in which every man, woman...
USDA-ARS?s Scientific Manuscript database
The common bed bug, Cimex lectularius (L.) (Hemiptera: Cimicidae) is undergoing a rapid resurgence in the United States during the last decade which has created a notable pest management challenge largely because the pest has developed resistance against DDT, organophosphates, carbamates, and pyreth...
Neher, Jon O.
2005-01-01
This essay portrays the moment an adult survivor of childhood sexual abuse tells his physician about his traumatic past. Because of denial by both parties, the diagnosis had remained buried for years, and opportunities for appropriate intervention were repeatedly missed. When the patient is finally able to face his past, it unleashes a torrent of potentially lethal anger that challenges everyone involved. PMID:16189064
Henning, Lisa N; Carpenter, Sarah; Stark, Gregory V; Serbina, Natalya V
2018-02-01
The recommended management of inhalational anthrax, a high-priority bioterrorist threat, includes antibiotics and antitoxins. Obiltoxaximab, a chimeric monoclonal antibody against anthrax protective antigen (PA), is licensed under the U.S. Food and Drug Administration's (FDA's) Animal Rule for the treatment of inhalational anthrax. Because of spore latency, disease reemergence after treatment cessation is a concern, and there is a need to understand the development of endogenous protective immune responses following antitoxin-containing anthrax treatment regimens. Here, acquired protective immunity was examined in New Zealand White (NZW) rabbits challenged with a targeted lethal dose of Bacillus anthracis spores and treated with antibiotics, obiltoxaximab, or a combination of both. Survivors of the primary challenge were rechallenged 9 months later and monitored for survival. Survival rates after primary and rechallenge for controls and animals treated with obiltoxaximab, levofloxacin, or a combination of both were 0, 65, 100, and 95%, and 0, 100, 95, and 89%, respectively. All surviving immune animals had circulating antibodies to PA and serum toxin-neutralizing titers prior to rechallenge. Following rechallenge, systemic bacteremia and toxemia were not detected in most animals, and the levels of circulating anti-PA IgG titers increased starting at 5 days postrechallenge. We conclude that treatment with obiltoxaximab, alone or combined with antibiotics, significantly improves the survival of rabbits that received a lethal inhalation B. anthracis spore challenge dose and does not interfere with the development of immunity. Survivors of primary challenge are protected against reexposure, have rare incidents of systemic bacteremia and toxemia, and have evidence of an anamnestic response. Copyright © 2018 Henning et al.
Clark, Kimberly M; Johnson, John B; Kock, Nancy D; Mizel, Steven B; Parks, Griffith D
2011-10-25
To test the potential for parainfluenza virus 5 (PIV5)-based vectors to provide protection from vaccinia virus (VACV) infection, PIV5 was engineered to express secreted VACV L1R and B5R proteins, two important antigens for neutralization of intracellular mature (IMV) and extracellular enveloped (EEV) virions, respectively. Protection of mice from lethal intranasal VACV challenge required intranasal immunization with PIV5-L1R/B5R in a prime-boost protocol, and correlated with low VACV-induced pathology in the respiratory tract and anti-VACV neutralizing antibody. Mice immunized with PIV5-L1R/B5R showed some disease symptoms following VACV challenge such as loss of weight and hunching, but these symptoms were delayed and less severe than with unimmunized control mice. While immunization with PIV5 expressing B5R alone conferred at least some protection, the most effective immunization included the PIV5 vector expressing L1R alone or in combination with PIV5-B5R. PIV5-L1R/B5R vectors elicited protection from VACV challenge even when CD8+ cells were depleted, but not in the case of mice that were defective in B cell production. Mice were protected from VACV challenge out to at least 1.5 years after immunization with PIV5-L1R/B5R vectors, and showed significant levels of anti-VACV neutralizing antibodies. These results demonstrate the potential for PIV5-based vectors to provide long lasting protection against complex human respiratory pathogens such as VACV, but also highlight the need to understand mechanisms for the generation of strong immune responses against poorly immunogenic viral proteins. Copyright © 2011 Elsevier Inc. All rights reserved.
INTER-ALPHA INHIBITOR PROTEINS: A NOVEL THERAPEUTIC STRATEGY FOR EXPERIMENTAL ANTHRAX INFECTION
Opal, Steven M.; Lim, Yow-Pin; Cristofaro, Patricia; Artenstein, Andrew W.; Kessimian, Noubar; DelSesto, David; Parejo, Nicolas; Palardy, John E.; Siryaporn, Edward
2010-01-01
Human inter-alpha-inhibitor proteins (IaIp) are endogenous human plasma proteins that function as serine protease inhibitors. IaIp can block the systemic release of proteases in sepsis and block furin-mediated assembly of protective antigen, an essential stop in the intracellular delivery of the anthrax exotoxins, lethal toxin and edema toxin. IaIp administered on hour or up to 24 hours after spore challenge with Bacillus anthracis Sterne strain protected mice from lethality if administered with antimicrobial therapy (p<.001). These human plasma proteins possess combined actions against anthrax as general inhibitors of excess serine proteases in sepsis and specific inhibitors of anthrax toxin assembly. IaIp could represent a novel adjuvant therapy for the treatment of established anthrax infection. PMID:20523269
Nonlethal weapons as force options for the Army
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, J.B.
This paper suggests that future challenges to US national security will be very different from those previously experienced. In a number of foreseeable circumstances, conventional military force will be inappropriate. The National Command Authority, and other appropriate levels of command, need expanded options available to meet threats for which the application of massive lethal force is counterproductive or inadvisable. It is proposed that nonlethal concepts be developed that provide additional options for military leaders and politicians. Included in this initiative should be exploration of policy, strategy, doctrine, and training issues as well as the development of selected technologies and weapons.more » In addition, civilian law enforcement agencies have similar requirements for less-than-lethal systems. This may be an excellent example for a joint technology development venture.« less
Rouxel, Ronan N.; Mérour, Emilie; Biacchesi, Stéphane; Brémont, Michel
2016-01-01
Novirhabdoviruses like Viral Hemorrhagic Septicemia Virus (VHSV) and Infectious Hematopoietic Necrosis Virus (IHNV) are fish-infecting Rhabdoviruses belonging to the Mononegavirales order. By reverse genetics, we previously showed that a recombinant VHSV expressing the West Nile Virus (WNV) E glycoprotein could serve as a vaccine platform against WNV. In the current study, we aimed to evaluate the potential of the Novirhabdovirus platform as a vaccine against influenza virus. Recombinant Novirhabdoviruses, rVHSV-HA and rIHNV-HA, expressing at the viral surface the hemagglutinin HA ectodomain were generated and used to immunized mice. We showed that mice immunized with either, rVHSV-HA or rIHNV-HA, elicited a strong neutralizing antibody response against influenza virus. A complete protection was conferred to the immunized mice when challenged with a lethal dose of influenza H1N1 A/PR/8/34 virus. Furthermore we showed that although acting as inert antigen in mice, since naturally inactivated over 20°C, mice immunized with rVHSV-HA or rIHNV-HA in the absence of adjuvant were also completely protected from a lethal challenge. Novirhabdoviruses platform are of particular interest as vaccines for mammals since they are cost effective to produce, relatively easy to generate and very effective to protect immunized animals. PMID:27711176
Draves, Kevin E.; Young, Lucy B.; Bryan, Marianne A.; Dresch, Christiane; Diamond, Michael S.; Gale, Michael
2017-01-01
B cell activating factor receptor (BAFFR)-/- mice have a profound reduction in mature B cells, but unlike μMT mice, they have normal numbers of newly formed, immature B cells. Using a West Nile virus (WNV) challenge model that requires antibodies (Abs) for protection, we found that unlike wild-type (WT) mice, BAFFR-/- mice were highly susceptible to WNV and succumbed to infection within 8 to 12 days after subcutaneous virus challenge. Although mature B cells were required to protect against lethal infection, infected BAFFR-/- mice had reduced WNV E-specific IgG responses and neutralizing Abs. Passive transfer of immune sera from previously infected WT mice rescued BAFFR-/- and fully B cell-deficient μMT mice, but unlike μMT mice that died around 30 days post-infection, BAFFR-/- mice survived, developed WNV-specific IgG Abs and overcame a second WNV challenge. Remarkably, protective immunity could be induced in mature B cell-deficient mice. Administration of a WNV E-anti-CD180 conjugate vaccine 30 days prior to WNV infection induced Ab responses that protected against lethal infection in BAFFR-/- mice but not in μMT mice. Thus, the immature B cells present in BAFFR-/- and not μMT mice contribute to protective antiviral immunity. A CD180-based vaccine may promote immunity in immunocompromised individuals. PMID:29176765
Non-lethal control of the cariogenic potential of an agent-based model for dental plaque.
Head, David A; Marsh, Phil D; Devine, Deirdre A
2014-01-01
Dental caries or tooth decay is a prevalent global disease whose causative agent is the oral biofilm known as plaque. According to the ecological plaque hypothesis, this biofilm becomes pathogenic when external challenges drive it towards a state with a high proportion of acid-producing bacteria. Determining which factors control biofilm composition is therefore desirable when developing novel clinical treatments to combat caries, but is also challenging due to the system complexity and the existence of multiple bacterial species performing similar functions. Here we employ agent-based mathematical modelling to simulate a biofilm consisting of two competing, distinct types of bacterial populations, each parameterised by their nutrient uptake and aciduricity, periodically subjected to an acid challenge resulting from the metabolism of dietary carbohydrates. It was found that one population was progressively eliminated from the system to give either a benign or a pathogenic biofilm, with a tipping point between these two fates depending on a multiplicity of factors relating to microbial physiology and biofilm geometry. Parameter sensitivity was quantified by individually varying the model parameters against putative experimental measures, suggesting non-lethal interventions that can favourably modulate biofilm composition. We discuss how the same parameter sensitivity data can be used to guide the design of validation experiments, and argue for the benefits of in silico modelling in providing an additional predictive capability upstream from in vitro experiments.
Activity of ergoferon against lethal influenza A (H3N2) virus infection in mice.
Skarnovich, Maria A; Emelyanova, Alexandra G; Petrova, Nataliia V; Borshcheva, Alena A; Gorbunov, Evgeniy A; Mazurkov, Oleg Yu; Skarnovich, Maksim O; Tarasov, Sergey A; Shishkina, Larisa N; Epstein, Oleg I
2017-01-01
The influenza A virus accounts for serious annual viral upper respiratory tract infections. It is constantly able to modify its antigenic structure, thus evading host defence mechanisms. Moreover, currently available anti-influenza agents have a rather limited application, emphasizing the further need for new effective treatments. One of them is ergoferon, a drug containing combined polyclonal antibodies - anti-interferon gamma, anti-CD4 receptor and anti-histamine - in released-active form. The purpose of the study was to assess ergoferon antiviral efficacy in mice challenged with the A/Aichi/2/68 (H3N2) influenza virus. The virus was inoculated intranasally at a 90% lethal dose. Ergoferon was administered at 0.4 ml/day per os in a preventive and therapeutic regimen - daily for 5 days prior to and for 16 days after the challenge. The reference product, Tamiflu (oseltamivir), was used as a positive control treatment - at 20 mg/kg/day for 5 days after the challenge. Mice in the negative control group received distilled water which had been utilized for test sample preparation; untreated control animals received no treatment. Antiviral efficacy was assessed by an increase in survival rate, average life expectancy and virus titre reduction in the challenged mouse lungs. Survival rate and average life expectancy values were increased significantly in groups treated with ergoferon and Tamiflu, as compared with controls. Lung virus titres were reduced in these groups as observed on days 2 and 4 post-inoculation. Ergoferon demonstrated antiviral activity by reducing the severity and duration of the major signs of induced influenza infection.
Barbosa, J; Borges, S; Teixeira, P
2015-12-01
The demand for new functional non-dairy based products makes the production of a probiotic orange juice powder an encouraging challenge. However, during drying process and storage, loss of viability of the dried probiotic cultures can occur, since the cells are exposed to various stresses. The influence of sub-lethal conditions of temperature, acidic pH and hydrogen peroxide on the viability of Pediococcus acidilactici HA-6111-2 and Lactobacillus plantarum 299v during spray drying in orange juice and subsequent storage under different conditions was investigated. At the end of storage, the survival of both microorganisms through simulated gastro-intestinal tract (GIT) conditions was also determined. The viability of cells previously exposed to each stress was not affected by the drying process. However, during 180 days of storage at room temperature, unlike P. acidilactici HA-6111-2, survival of L. plantarum 299v was enhanced by prior exposure to sub-lethal conditions. Previous exposure to sub-lethal stresses of each microorganism did not improve their viability after passage through simulated GIT. Nevertheless, as cellular inactivation during 180 days of storage was low, both microorganisms were present in numbers of ca. 10(7) cfu/mL at the end of GIT. This is an indication that both bacteria are good candidates for use in the development of an orange juice powder with functional characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines (e.g. expressing AI genes) are gaining us...
Bogarín, G; Morais, J F; Yamaguchi, I K; Stephano, M A; Marcelino, J R; Nishikawa, A K; Guidolin, R; Rojas, G; Higashi, H G; Gutiérrez, J M
2000-10-01
A study was performed on the ability of antivenoms, produced in Brazil and Costa Rica, to neutralize lethal, hemorrhagic and coagulant activities of the venoms of 16 species of Central and South American snakes of the subfamily Crotalinae. Neutralization of lethality was studied by two different methods routinely used in the quality control of antivenoms at Instituto Butantan (IB) and Instituto Clodomiro Picado (ICP). Both antivenoms neutralized the majority of the venoms studied, but the values of effective doses 50% (ED(50)) differed markedly depending on the method used. In general, higher potencies were obtained with the method of ICP, where a challenge dose corresponding to 4 LD(50)s is used, than with the method of IB, where a challenge dose of 5 LD(50)s is employed. All venoms induced hemorrhagic activity in the mouse skin test, which was effectively neutralized by the two antivenoms. All venoms, except those of Porthidium nasutum and Bothriechis lateralis, induced coagulation of human plasma in vitro and both antivenoms were effective in the neutralization of this activity. In conclusion, our results provide evidence of an extensive cross reactivity between these antivenoms and Central and South American crotaline snake venoms.
Single-dose attenuated Vesiculovax vaccines protect primates against Ebola Makona virus.
Mire, Chad E; Matassov, Demetrius; Geisbert, Joan B; Latham, Theresa E; Agans, Krystle N; Xu, Rong; Ota-Setlik, Ayuko; Egan, Michael A; Fenton, Karla A; Clarke, David K; Eldridge, John H; Geisbert, Thomas W
2015-04-30
The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.
Saini, Manisha; Vrati, Sudhanshu
2003-01-01
Protection against Japanese encephalitis virus (JEV) is antibody dependent, and neutralizing antibodies alone are sufficient to impart protection. Thus, we are aiming to develop a peptide-based vaccine against JEV by identifying JEV peptide sequences that could induce virus-neutralizing antibodies. Previously, we have synthesized large amounts of Johnson grass mosaic virus (JGMV) coat protein (CP) in Escherichia coli and have shown that it autoassembled to form virus-like particles (VLPs). The envelope (E) protein of JEV contains the virus-neutralization epitopes. Four peptides from different locations within JEV E protein were chosen, and these were fused to JGMV CP by recombinant DNA methods. The fusion protein autoassembled to form VLPs that could be purified by sucrose gradient centrifugation. Immunization of mice with the recombinant VLPs containing JEV peptide sequences induced anti-peptide and anti-JEV antibodies. A 27-amino-acid peptide containing amino acids 373 to 399 from JEV E protein, present on JGMV VLPs, induced virus-neutralizing antibodies. Importantly, these antibodies were obtained without the use of an adjuvant. The immunized mice showed significant protection against a lethal JEV challenge. PMID:12610124
A Combination in-ovo Vaccine for Avian Influenza Virus and Newcastle Disease Virus
Steel, John; Burmakina, Svetlana V.; Thomas, Colleen; Spackman, Erica; García-Sastre, Adolfo; Swayne, David E.; Palese, Peter
2008-01-01
The protection of poultry from H5N1 highly pathogenic avian influenza A (HPAI) and Newcastle disease virus (NDV) can be achieved through vaccination, as part of a broader disease control strategy. We have previously generated a recombinant influenza virus expressing; (i) an H5 hemagglutinin protein, modified by the removal of the polybasic cleavage peptide and (ii) the ectodomain of the NDV hemagglutinin – neuraminidase (HN) protein in the place of the ectodomain of influenza neuraminidase (Park, M.S., et al., 2006. Proc Natl Acad Sci U S A, 103 (21), 8203–8208). Here we show this virus is attenuated in primary normal human bronchial epithelial (NHBE) cell culture, and demonstrate protection of C57BL/6 mice from lethal challenge with an H5 HA-containing influenza virus through immunisation with the recombinant virus. In addition, in-ovo vaccination of 18-day-old embryonated chicken eggs provided 90% and 80% protection against highly stringent lethal challenge by NDV and H5N1 virus respectively. We propose that this virus has potential as a safe in-ovo live, attenuated, bivalent avian influenza and Newcastle disease virus vaccine. PMID:18093698
Aleshin, SE; Timofeev, AV; Khoretonenko, MV; Zakharova, LG; Pashvykina, GV; Stephenson, JR; Shneider, AM; Altstein, AD
2005-01-01
Background Heterologous prime-boost immunization protocols using different gene expression systems have proven to be successful tools in protecting against various diseases in experimental animal models. The main reason for using this approach is to exploit the ability of expression cassettes to prime or boost the immune system in different ways during vaccination procedures. The purpose of the project was to study the ability of recombinant vaccinia virus (VV) and bacterial plasmid, both carrying the NS1 gene from tick-borne encephalitis (TBE) virus under the control of different promoters, to protect mice against lethal challenge using a heterologous prime-boost vaccination protocol. Results The heterologous prime-boost vaccination protocol, using a VV recombinant and bacterial plasmid, both containing the NS1 TBE virus protein gene under the control of different promoters, achieved a high level of protection in mice against lethal challenge with a highly pathogenic TBE virus strain. No signs of pronounced TBE infection were detected in the surviving animals. Conclusion Heterologous prime-boost vaccination protocols using recombinant VV and bacterial plasmids could be used for the development of flavivirus vaccines. PMID:16076390
A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.
Burgoon, Lyle D
2016-06-01
An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.
Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom
Soni, Pranay; Bodakhe, Surendra H.
2014-01-01
Objective To evaluate the antivenom potential of ethanolic extract of bark of Cordia macleodii against Naja venom induced pharmacological effects such as lethality, hemorrhagic lesion, necrotizing lesion, edema, cardiotoxicity and neurotoxicity. Methods Wistar strain rats were challenged with Naja venom and treated with the ethanolic extract of Cordia macleodii bark. The effectiveness of the extract to neutralize the lethalities of Naja venom was investigated as recommended by WHO. Results At the dose of 400 and 800 mg/kg ethanolic extract of Cordia macleodii bark significantly inhibited the Naja venom induced lethality, hemorrhagic lesion, necrotizing lesion and edema in rats. Ethanolic extract of Cordia macleodii bark was effective in neutralizing the coagulant and defibrinogenating activity of Naja venom. The cardiotoxic effects in isolated frog heart and neurotoxic activity studies on frog rectus abdominus muscle were also antagonized by ethanolic extract of Cordia macleodii bark. Conclusions It is concluded that the protective effect of extract of Cordia macleodii against Naja venom poisoning may be mediated by the cardiotonic, proteolysin neutralization, anti-inflammatory, antiserotonic and antihistaminic activity. It is possible that the protective effect may also be due to precipitation of active venom constituents. PMID:25183127
Lin, Jr-Shiuan; Szaba, Frank M; Kummer, Lawrence W; Chromy, Brett A; Smiley, Stephen T
2011-07-15
Septic bacterial pneumonias are a major cause of death worldwide. Several of the highest priority bioterror concerns, including anthrax, tularemia, and plague, are caused by bacteria that acutely infect the lung. Bacterial resistance to multiple antibiotics is increasingly common. Although vaccines may be our best defense against antibiotic-resistant bacteria, there has been little progress in the development of safe and effective vaccines for pulmonary bacterial pathogens. The Gram-negative bacterium Yersinia pestis causes pneumonic plague, an acutely lethal septic pneumonia. Historic pandemics of plague caused millions of deaths, and the plague bacilli's potential for weaponization sustains an ongoing quest for effective countermeasures. Subunit vaccines have failed, to date, to fully protect nonhuman primates. In mice, they induce the production of Abs that act in concert with type 1 cytokines to deliver high-level protection; however, the Y. pestis Ags recognized by cytokine-producing T cells have yet to be defined. In this study, we report that Y. pestis YopE is a dominant Ag recognized by CD8 T cells in C57BL/6 mice. After vaccinating with live attenuated Y. pestis and challenging intranasally with virulent plague, nearly 20% of pulmonary CD8 T cells recognize this single, highly conserved Ag. Moreover, immunizing mice with a single peptide, YopE(69-77), suffices to confer significant protection from lethal pulmonary challenge. These findings suggest YopE could be a valuable addition to subunit plague vaccines and provide a new animal model in which sensitive, pathogen-specific assays can be used to study CD8 T cell-mediated defense against acutely lethal bacterial infections of the lung.
Klaerner, H G; Uknis, M E; Acton, R D; Dahlberg, P S; Carlone-Jambor, C; Dunn, D L
1997-07-01
Candida albicans has been isolated with increasing frequency during intraabdominal infection; yet its role as a pathogen or copathogen remains controversial. A recent experimental study of its effect during polymicrobial peritonitis indicated that it did not enhance mortality when added to an Escherichia coli challenge, but that study used fecal or mucin-based adjuvants which are known to markedly potentiate the lethality of intraperitoneal bacteria. Therefore, we sought to examine the hypothesis that C. albicans and E. coli are synergistic copathogens that act in concert to increase mortality rates in experimental models of polymicrobial peritonitis, irrespective of the presence of growth adjuvant. To test this hypothesis, we assessed the mortality rates of previously healthy Swiss-Webster mice (20 g) that were challenged intraperitoneally (i.p.) with E. coli, C. albicans, or both, in either the presence or the absence of hemoglobin-mucin. In the absence of hemoglobin-mucin, E. coli plus C. albicans resulted in 83.3% mortality (P < 0.02) compared to either E. coli (0%) or C. albicans (0%) alone. In the presence of hemoglobin-mucin, the synergistic effect was not observed, lower numbers of E. coli alone (62.5%), C. albicans alone (75%), or both organisms together (100%, P > 0.05) provoked high lethality. These data demonstrate that in the absence of adjuvant, E. coli plus C. albicans provoked synergistic lethality. However, in the presence of hemoglobin-mucin the synergistic effect was no longer observed. Therefore, this study provides support for the contention that C. albicans is capable of acting as a copathogen during experimental peritonitis, but that this effect may be obscured by the presence of an adjuvant substance that itself markedly potentiates microbial growth.
Oscherwitz, Jon; Yu, Fen; Jacobs, Jana L; Cease, Kemp B
2013-03-01
We previously showed that a multiple antigenic peptide (MAP) vaccine displaying amino acids (aa) 304 to 319 from the 2β2-2β3 loop of protective antigen was capable of protecting rabbits from an aerosolized spore challenge with Bacillus anthracis Ames strain. Antibodies to this sequence, referred to as the loop-neutralizing determinant (LND), are highly potent at neutralizing lethal toxin yet are virtually absent in rabbit and human protective antigen (PA) antiserum. While the MAP vaccine was protective against anthrax, it contains a single heterologous helper T cell epitope which may be suboptimal for stimulating an outbred human population. We therefore engineered a recombinant vaccine (Rec-LND) containing two tandemly repeated copies of the LND fused to maltose binding protein, with enhanced immunogenicity resulting from the p38/P4 helper T cell epitope from Schistosoma mansoni. Rec-LND was found to be highly immunogenic in four major histocompatibility complex (MHC)-diverse strains of mice. All (7/7) rabbits immunized with Rec-LND developed high-titer antibody, 6 out of 7 developed neutralizing antibody, and all rabbits were protected from an aerosolized spore challenge of 193 50% lethal doses (LD(50)) of the B. anthracis Ames strain. Survivor serum from Rec-LND-immunized rabbits revealed significantly increased neutralization titers and specific activity compared to prechallenge levels yet lacked PA or lethal factor (LF) antigenemia. Control rabbits immunized with PA, which were also completely protected, appeared sterilely immune, exhibiting significant declines in neutralization titer and specific activity compared to prechallenge levels. We conclude that Rec-LND may represent a prototype anthrax vaccine for use alone or potentially combined with PA-containing vaccines.
Marchlik, Erica; Thakker, Paresh; Carlson, Thaddeus; Jiang, Zhaozhao; Ryan, Mark; Marusic, Suzana; Goutagny, Nadege; Kuang, Wen; Askew, G Roger; Roberts, Victoria; Benoit, Stephen; Zhou, Tianhui; Ling, Vincent; Pfeifer, Richard; Stedman, Nancy; Fitzgerald, Katherine A; Lin, Lih-Ling; Hall, J Perry
2010-12-01
TBK1 is critical for immunity against microbial pathogens that activate TLR4- and TLR3-dependent signaling pathways. To address the role of TBK1 in inflammation, mice were generated that harbor two copies of a mutant Tbk1 allele. This Tbk1(Δ) allele encodes a truncated Tbk1(Δ) protein that is catalytically inactive and expressed at very low levels. Upon LPS stimulation, macrophages from Tbk1(Δ/Δ) mice produce normal levels of proinflammatory cytokines (e.g., TNF-α), but IFN-β and RANTES expression and IRF3 DNA-binding activity are ablated. Three-month-old Tbk1(Δ/Δ) mice exhibit mononuclear and granulomatous cell infiltrates in multiple organs and inflammatory cell infiltrates in their skin, and they harbor a 2-fold greater amount of circulating monocytes than their Tbk1(+/+) and Tbk1(+/Δ) littermates. Skin from 2-week-old Tbk1(Δ/Δ) mice is characterized by reactive changes, including hyperkeratosis, hyperplasia, necrosis, inflammatory cell infiltrates, and edema. In response to LPS challenge, 3-month-old Tbk1(Δ/Δ) mice die more quickly and in greater numbers than their Tbk1(+/+) and Tbk1(+/Δ) counterparts. This lethality is accompanied by an overproduction of several proinflammatory cytokines in the serum of Tbk1(Δ/Δ) mice, including TNF-α, GM-CSF, IL-6, and KC. This overproduction of serum cytokines in Tbk1(Δ/Δ) mice following LPS challenge and their increased susceptibility to LPS-induced lethality may result from the reactions of their larger circulating monocyte compartment and their greater numbers of extravasated immune cells.
Zimmerman, Shawn M; Dyke, Jeremy S; Jelesijevic, Tomislav P; Michel, Frank; Lafontaine, Eric R; Hogan, Robert J
2017-08-01
Burkholderia mallei , a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo , elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei , including antigen discovery. Copyright © 2017 American Society for Microbiology.
Photoperiodic adjustments in immune function protect Siberian hamsters from lethal endotoxemia.
Prendergast, Brian J; Hotchkiss, Andrew K; Bilbo, Staci D; Kinsey, Steven G; Nelson, Randy J
2003-02-01
Seasonal changes in day length enhance or suppress components of immune function in individuals of several mammalian species. Siberian hamsters (Phodopus sungorus) exhibit multiple changes in neuroendocrine, reproductive, and immune function after exposure to short days. The manner in which these changes are integrated into the host response to pathogens is not well understood. The present experiments tested the hypothesis that short-day changes in immune function alter the pathogenesis of septic shock and survival after challenge with endotoxin. Male and female Siberian hamsters raised in long-day photoperiods were transferred as adults to short days or remained in their natal photoperiod. Six to 8 weeks later, hamsters were injected i.p. with 0, 1, 2.5, 10, 25, or 50 mg/kg bacterial lipopolysaccharide (LPS) (the biologically active constituent of endotoxin), and survival was monitored for 96 h. Short days significantly improved survival of male hamsters treated with 10 or 25 mg/kg LPS and improved survival in females treated with 50 mg/kg LPS. Transfer from long to short days shifted the LD50 in males by approximately 90%, from 5.3 to 9.9 mg/kg, and in females from 11.1 to 15.0 mg/kg (+35%). Long-day females were more resistant than were males to lethal endotoxemia. In vitro production of the proinflammatory cytokine TNFalpha in response to LPS stimulation was significantly lower in macrophages extracted from short-day relative to long-day hamsters, as were circulating concentrations of TNFalpha in vivo after i.p. administration of LPS, suggesting that diminished cytokine responses to LPS in short days may mitigate the lethality of endotoxemia. Adaptation to short days induces changes in immune parameters that affect survival in the face of immune challenges.
Zimmerman, Shawn M.; Dyke, Jeremy S.; Jelesijevic, Tomislav P.; Michel, Frank; Lafontaine, Eric R.
2017-01-01
ABSTRACT Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei. Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo. Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery. PMID:28507073
Lacasta, Anna; Ballester, María; Monteagudo, Paula L; Rodríguez, Javier M; Salas, María L; Accensi, Francesc; Pina-Pedrero, Sonia; Bensaid, Albert; Argilaguet, Jordi; López-Soria, Sergio; Hutet, Evelyne; Le Potier, Marie Frédérique; Rodríguez, Fernando
2014-11-01
African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae
2017-01-01
ABSTRACT Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses. PMID:28331080
Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae; Choi, Young Ki
2017-06-01
Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated in China since 2013. Due to the increasing concerns regarding the global public health risk posed by H7 viruses, we evaluated the genetic relationships between Eurasian H7 avian influenza viruses and the cross-protective efficacies of three different H7 viruses: W109/06 (group I), W478/14 (group II), and Anhui1/13 (a sublineage of group I). While each vaccine induced group-specific antibody responses and cross-protective efficacy, only Anhui1/13 was able to cross-protect immunized hosts against lethal challenge across groups. In fact, the Anhui1/13 virus induced not only cross-protection but also broad serum neutralizing antibody responses against both groups of viruses. This suggests that Anhui1/13-like H7N9 viruses may be viable vaccine candidates for broad protection against Eurasian H7 viruses. Copyright © 2017 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines h...
Status and Challenges of Filovirus Vaccines
2007-03-01
comprise the family Filoviridae cause ome of the most lethal viral hemorrhagic fevers known. n 1967, an outbreak in Marburg, Germany occurred among...been reported in some but not all cases. ithin 6–8 days of fever , hemorrhagic complications can evelop, and patients develop increasingly severe...with ZEBOV infection cynomolgus acaques and rhesus macaques are more likely to develop petechial rash and coagulation defects while baboons are ore
Haolla, Filipe A; Claser, Carla; de Alencar, Bruna C G; Tzelepis, Fanny; de Vasconcelos, José Ronnie; de Oliveira, Gabriel; Silvério, Jaline C; Machado, Alexandre V; Lannes-Vieira, Joseli; Bruna-Romero, Oscar; Gazzinelli, Ricardo T; dos Santos, Ricardo Ribeiro; Soares, Milena B P; Rodrigues, Mauricio M
2009-09-18
Immunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains. Due to the importance of the CD8(+) T cells in protective immunity, we initially determined which strains expressed the immunodominant H-2K(k)-restricted epitope TEWETGQI. We tested eight strains, four of which elicited immune responses to this epitope (Y, G, Colombian and Colombia). We selected the Colombian and Colombia strains for our studies. A/Sn mice were immunised with different regimens using both T. cruzi genes (asp-2 and ts) simultaneously and subsequently challenged with blood trypomastigotes. Immune responses before the challenge were confirmed by the presence of specific antibodies and peptide-specific T cells. Genetic vaccination did not confer protective immunity against acute infection with a lethal dose of the Colombian strain. In contrast, we observed a drastic reduction in parasitemia and a significant increase in survival, following challenge with an otherwise lethal dose of the Colombia strain. In many surviving animals with late-stage chronic infection, we observed alterations in the heart's electrical conductivity, compared to naive mice. In summary, we concluded that immunity against T. cruzi antigens, similar to viruses and bacteria, may be strain-specific and have a negative impact on vaccine development.
Herath, Chitra; Kumar, Pankaj; Singh, Mithilesh; Kumar, Devender; Ramakrishnan, Saravanan; Goswami, Tapas Kumar; Singh, Ajit; Ram, G C
2010-03-08
Fowl cholera is a serious problem in large and small scale poultry production. The present study describes the development and testing of an inactivated whole-cell, low-cost, safe, and effective vaccine for fowl cholera based on a previous work (Vaccine 23:5590-5598). Pasteurella multocida A: 1 grown in the presence of low FeCl(3) concentrations, inactivated with higher concentrations of FeCl(3), and adjuvanted with bacterial DNA from P. multocida B: 2 containing immunostimulatory CpG motifs protect chickens with a lethal P. multocida A: 1 challenge. Chickens were immunized with two whole-cell inactivated vaccine doses at 4 weeks apart and challenged 4 weeks after booster immunization. Experimental vaccines were pure, easy injectable, and caused very little distress in chickens due to their aqueous consistency. Vaccines and bacterial DNA (bDNA) posed no safety problems when chickens were injected subcutaneously (s.c.) with a single, double, and overdose of these preparations. Immunized chickens produced systemic IgY antibodies (Ab) responses and vaccine adjuvanted with bDNA protected 100% chickens from lethal intrapertoneal (i.p.) P. multocida A: 1 challenge. This work suggests that use of bDNA as an adjuvant can improve the cost-effectiveness of inactivated veterinary vaccines for their use in developing countries. Our future studies will focus on safety and potency evaluation of experimental and current vaccines using bDNA as an adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.
Protease-deficient herpes simplex virus protects mice from lethal herpesvirus infection.
Hippenmeyer, P J; Rankin, A M; Luckow, V A; Neises, G R
1997-01-01
Null mutants and attenuated mutants of herpes simplex virus (HSV) have been shown to induce immunity against challenge from wild-type virus. Null viruses with a defect in late gene products would be expected to express more viral genes than viruses with defects in essential early gene products and thus induce a better immune response. Herpesviruses encode a late gene product (serine protease) that is autocatalytic and cleaves the capsid assembly protein during viral replication. To determine whether a virus with a mutation in this gene could induce immunity, we constructed a recombinant virus containing the gusA reporter gene in the protease domain of the HSV type 1 UL26 open reading frame (ORF). Consistent with previous results (M. Gao, L. Matusick-Kumar, W. Hurlburt, S. F. DiTusa, W. W. Newcomb, J. C. Brown, P. J. McCann, I. Deckman, and R. J. Colonno, J. Virol. 68:3702-3712, 1994), recombinant virus could be isolated only from helper cell lines expressing the product of the UL26 ORF. Mice inoculated with the recombinant virus were unaffected by doses of virus that were lethal to mice infected with wild-type virus. Mice which were previously inoculated with the recombinant virus were also protected by a subsequent challenge with wild-type virus in a dose-dependent manner. These results indicate that recombinant viruses lacking the protease gene are avirulent but render protection from subsequent challenge. PMID:8995617
Koehler, Susanne M; Buyuk, Fatih; Celebi, Ozgur; Demiraslan, Hayati; Doganay, Mehmet; Sahin, Mitat; Moehring, Jens; Ndumnego, Okechukwu C; Otlu, Salih; van Heerden, Henriette; Beyer, Wolfgang
2017-07-12
Bacillus (B.) anthracis, the causal agent of anthrax, is effectively controlled by the Sterne live spore vaccine (34F2) in animals. However, live spore vaccines are not suitable for simultaneous vaccination and antibiotic treatment of animals being at risk of infection in an outbreak situation. Non-living vaccines could close this gap. In this study a combination of recombinant protective antigen and recombinant Bacillus collagen-like antigen (rBclA) with or without formalin inactivated spores (FIS), targeted at raising an immune response against both the toxins and the spore of B. anthracis, was tested for immunogenicity and protectiveness in goats. Two groups of goats received from local farmers of the Kars region of Turkey were immunized thrice in three weeks intervals and challenged together with non-vaccinated controls with virulent B. anthracis, four weeks after last immunization. In spite of low or none measurable toxin neutralizing antibodies and a surprisingly low immune response to the rBclA, 80% of the goats receiving the complete vaccine were protected against a lethal challenge. Moreover, the course of antibody responses indicates that a two-step vaccination schedule could be sufficient for protection. The combination of recombinant protein antigens and FIS induces a protective immune response in goats. The non-living nature of this vaccine would allow for a concomitant antibiotic treatment and vaccination procedure. Further studies should clarify how this vaccine candidate performs in a post infection scenario controlled by antibiotics.
USC-087 protects Syrian hamsters against lethal challenge with human species C adenoviruses.
Toth, Karoly; Spencer, Jacqueline F; Ying, Baoling; Tollefson, Ann E; Hartline, Caroll B; Richard, Eric T; Fan, Jiajun; Lyu, Jinglei; Kashemirov, Boris A; Harteg, Cheryl; Reyna, Dawn; Lipka, Elke; Prichard, Mark N; McKenna, Charles E; Wold, William S M
2018-05-01
Human adenoviruses (AdV) cause generally mild infections of the respiratory and GI tracts as well as some other tissues. However, AdV can cause serious infection in severely immunosuppressed individuals, especially pediatric patients undergoing allogeneic hematopoietic stem cell transplantation, where mortality rates are up to 80% with disseminated disease. Despite the seriousness of AdV disease, there are no drugs approved specifically to treat AdV infections. We report here that USC-087, an N-alkyl tyrosinamide phosphonate ester prodrug of HPMPA, the adenine analog of cidofovir, is highly effective against multiple AdV types in cell culture. USC-087 is also effective against AdV-C6 in our immunosuppressed permissive Syrian hamster model. In this model, hamsters are immunosuppressed by treatment with high dose cyclophosphamide. Injection of AdV-C6 (or AdV-C5) intravenously leads to a disseminated infection that resembles the disease seen in humans, including death. We have tested the efficacy of orally-administered USC-087 against the median lethal dose of intravenously administered AdV-C6. USC-087 completely prevented or significantly decreased mortality when administered up to 4 days post challenge. USC-087 also prevented or significantly decreased liver damage caused by AdV-C6 infection, and suppressed virus replication even when administered 4 days post challenge. These results imply that USC-087 is a promising candidate for drug development against HAdV infections. Copyright © 2018 Elsevier B.V. All rights reserved.
Phillips, Aaron T; Schountz, Tony; Toth, Ann M; Rico, Amber B; Jarvis, Donald L; Powers, Ann M; Olson, Ken E
2014-02-01
Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.
Perozo, Francisco; Marcano, Rosmar
2012-01-01
Here we report the biological and molecular characterization of a virulent genotype VII Newcastle disease virus (NDV) circulating in Venezuela and the assessment of the vaccination efficacy under field conditions compared to controlled rearing conditions. Biological pathotyping showed a mean embryo dead time of 50 h and an intracerebral pathogenicity index of 1.86. Sequence-based phylogenetic analysis demonstrated that the virus belongs to genotype VII in class II (a genotype often found in Asia and Africa), representing the first report of the presence of this genotype in the continent of South America. A vaccine-challenge trial in commercial broilers reared in fields or in a experimental setting included dual (live/killed) priming of 1-day-old chicks plus two live NDV and infectious bursal disease virus (IBDV) field vaccinations at days 7 and 17, followed by a very stringent genotype VII NDV challenge at day 28. Serology for NDV and IBDV, bursal integrity, and protection against NDV lethal challenge were assessed. At 28 days, field vaccinates showed significantly lower NDV (1,356 versus 2,384) and higher IBD (7,295 versus 1,489) enzyme-linked immunosorbent assay (ELISA) antibody titers than the experimentally reared birds. A lower bursal size and bursa-body weight ratio (P < 0.05) and higher bursa lesion score were also detected in the field set. Only 57.1% of field vaccinates survived the lethal challenge, differing (P < 0.05) from 90.5% survival in the experimental farm. Overall, results confirmed the presence of the genotype VII viruses in South America and suggest that field-associated factors such as immunosuppression compromise the efficacy of the vaccination protocols implemented. PMID:22238433
Swenson, Dana L; Warfield, Kelly L; Larsen, Tom; Alves, D Anthony; Coberley, Sadie S; Bavari, Sina
2008-05-01
Virus-like particle (VLP)-based vaccines have the advantage of being morphologically and antigenically similar to the live virus from which they are derived. Expression of the glycoprotein and VP40 matrix protein from Lake Victoria marburgvirus (MARV) results in spontaneous production of VLPs in mammalian cells. Guinea pigs vaccinated with Marburg virus VLPs (mVLPs) or inactivated MARV (iMARV) develop homologous humoral and T-cell responses and are completely protected from a lethal homologous MARV challenge. To determine whether mVLPs based on the Musoke (aka Lake Victoria) isolate of MARV could broadly protect against diverse isolates of MARV, guinea pigs were vaccinated with mVLPs or iMARV-Musoke and challenged with MARV-Musoke, -Ravn or -Ci67. Prior to challenge, the mVLP- and iMARV-vaccinated guinea pigs had high levels of homologous MARV-Musoke and heterologous MARV-Ravn and -Ci67 antibodies. The Musoke-based mVLPs and iMARV vaccines provided complete protection in guinea pigs against viremia, viral replication and pathological changes in tissues, and lethal disease following challenge with MARV-Musoke, -Ravn or -Ci67. Guinea pigs vaccinated with RIBI adjuvant alone and infected with guinea pig-adapted MARV-Musoke, -Ravn or -Ci67 had histopathologic findings similar to those seen in the nonhuman primate model for MARV infection. Based on the strong protection observed in guinea pigs, we next vaccinated cynomolgus macaques with Musoke-based mVLPs and showed the VLP-vaccinated monkeys were broadly protected against three isolates of MARV (Musoke, Ravn and Ci67). Musoke mVLPs are effective at inducing broad heterologous immunity and protection against multiple MARV isolates.
Recombinant raccoon pox vaccine protects mice against lethal plague
Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.
2003-01-01
Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.
Xia, Shui-Li; Lei, Jian-Lin; Du, Mingliang; Wang, Yimin; Cong, Xin; Xiang, Guang-Tao; Li, Lian-Feng; Yu, Shenye; Du, Enqi; Liu, Siguo; Sun, Yuan; Qiu, Hua-Ji
2016-06-14
Classical swine fever (CSF) is a highly contagious swine disease caused by classical swine fever virus (CSFV). Previously, we demonstrated that rAdV-SFV-E2, an adenovirus-delivered, Semliki Forest virus replicon-vectored marker vaccine against CSF, is able to protect pigs against lethal CSFV challenge. From an economical point of view, it will be beneficial to reduce the minimum effective dose of the vaccine. This study was designed to test the adjuvant effects of Salmonella enteritidis-derived bacterial ghosts (BG) to enhance the protective immunity of rAdV-SFV-E2 in pigs. Groups of 5-week-old pigs (n = 4) were immunized intramuscularly twice with 10(5) median tissue culture infective doses (TCID50) rAdV-SFV-E2 combined with 10(10) colony forming units (CFU) BG, 10(6) or 10(5) TCID50 rAdV-SFV-E2 alone or 10(10) CFU BG alone at an interval of 3 weeks, and challenged with the highly virulent CSFV Shimen strain at 1 week post-booster immunization. The results show that the pigs inoculated with 10(5) TCID50 rAdV-SFV-E2 plus BG or 10(6) TCID50 rAdV-SFV-E2 alone were completely protected from lethal CSFV challenge, in contrast with the pigs vaccinated with 10(5) TCID50 rAdV-SFV-E2 or BG alone, which displayed partial or no protection following virulent challenge. The data indicate that BG are a promising adjuvant to enhance the efficacy of rAdV-SFV-E2 and possibly other vaccines.
Dokov, William
2008-01-01
Objective: Despite the advancement of forensic science, electro-traumas still pose serious challenges. Methods: We have studied the forensic medical documentation from 485 autopsies following electro-trauma over the period 1980–2006, performed at the forensic wards in 6 districts of the country The statistical analysis includes comparison of means and percentages. They are carried out using SPSS Version 11. We accepted statistical significant values of P equals; .05. Results: The incidence of lethal injuries caused by electricity is 1.29 cases per 100000 people per year. The average age of the deceased from electro-trauma is 37.3 years. Men (85%) prevails over women (14.84%). There are 24.32% of the cases that are work-related accidents, and 60.61% of them are domestic. Suicide through electrocution is relatively rare: 7.21%. Homicide has not been registered in our study. Low-voltage injuries (42.06%) are more common than high-voltage ones (30.72%). 62.68% of the lethal cases occur in summer, between June and September. Conclusions: Among the studied cases, electro-trauma occurs at a young age. The victims are typically men. Work-related accidents are more common than domestic ones; injuries by low voltage are observed more frequently than those by high voltage. Suicides are very rare, and not a single case of homicide has been observed in the study. There exists a seasonal variation in incidence of lethal accidents caused by electric current, its peak being during the summer months. PMID:18345280
Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426
Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S
2017-09-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.
Evaluating a 4-marker signature of aggressive prostate cancer using time-dependent AUC.
Gerke, Travis A; Martin, Neil E; Ding, Zhihu; Nuttall, Elizabeth J; Stack, Edward C; Giovannucci, Edward; Lis, Rosina T; Stampfer, Meir J; Kantoff, Phillip W; Parmigiani, Giovanni; Loda, Massimo; Mucci, Lorelei A
2015-12-01
We previously identified a protein tumor signature of PTEN, SMAD4, SPP1, and CCND1 that, together with clinical features, was associated with lethal outcomes among prostate cancer patients. In the current study, we sought to validate the molecular model using time-dependent measures of AUC and predictive values for discriminating lethal from non-lethal prostate cancer. Using data from the initial study, we fit survival models for men with prostate cancer who were participants in the Physicians' Health Study (PHS; n = 276). Based on these models, we generated prognostic risk scores in an independent population, the Health Professionals Follow-up Study (HPFS; n = 347) to evaluate external validity. In each cohort, men were followed prospectively from cancer diagnosis through 2011 for development of distant metastasis or cancer mortality. We measured protein tumor expression of PTEN, SMAD4, SPP1, and CCND1 on tissue microarrays. During a median of 11.9 and 14.3 years follow-up in the PHS and HPFS cohorts, 24 and 32 men (9%) developed lethal disease. When used as a prognostic factor in a new population, addition of the four markers to clinical variables did not improve discriminatory accuracy through 15 years of follow-up. Although the four markers have been identified as key biological mediators in metastatic progression, they do not provide independent, long-term prognostic information beyond clinical factors when measured at diagnosis. This finding may underscore the broad heterogeneity in aggressive prostate tumors and highlight the challenges that may result from overfitting in discovery-based research. © 2015 Wiley Periodicals, Inc.
Are High-Lethality Suicide Attempters With Bipolar Disorder a Distinct Phenotype?
Oquendo, Maria A.; Carballo, Juan Jose; Rajouria, Namita; Currier, Dianne; Tin, Adrienne; Merville, Jessica; Galfalvy, Hanga C.; Sher, Leo; Grunebaum, Michael F.; Burke, Ainsley K.; Mann, J. John
2013-01-01
Because Bipolar Disorder (BD) individuals making highly lethal suicide attempts have greater injury burden and risk for suicide, early identification is critical. BD patients were classified as high- or low-lethality attempters. High-lethality attempts required inpatient medical treatment. Mixed effects logistic regression models and permutation analyses examined correlations between lethality, number, and order of attempts. High-lethality attempters reported greater suicidal intent and more previous attempts. Multiple attempters showed no pattern of incremental lethality increase with subsequent attempts, but individuals with early high-lethality attempts more often made high-lethality attempts later. A subset of high-lethality attempters make only high-lethality attempts. However, presence of previous low-lethality attempts does not indicate that risk for more lethal, possibly successful, attempts is reduced. PMID:19590998
Campbell, Brittany E; Miller, Dini M
2017-03-15
Standard toxicity evaluations of insecticides against insect pests are primarily conducted on adult insects. Evaluations are based on a dose-response or concentration-response curve, where mortality increases as the dose or concentration of an insecticide is increased. Standard lethal concentration (LC50) and lethal dose (LD50) tests that result in 50% mortality of a test population can be challenging for evaluating toxicity of insecticides against non-adult insect life stages, such as eggs and early instar or nymphal stages. However, this information is essential for understanding insecticide efficacy in all bed bug life stages, which affects control and treatment efforts. This protocol uses a standard dipping bioassay modified for bed bug eggs and a contact insecticidal assay for treating nymphal first instars. These assays produce a concentration-response curve to further quantify LC50 values for insecticide evaluations.
Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.
2011-01-01
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742
Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak.
Bornholdt, Zachary A; Turner, Hannah L; Murin, Charles D; Li, Wen; Sok, Devin; Souders, Colby A; Piper, Ashley E; Goff, Arthur; Shamblin, Joshua D; Wollen, Suzanne E; Sprague, Thomas R; Fusco, Marnie L; Pommert, Kathleen B J; Cavacini, Lisa A; Smith, Heidi L; Klempner, Mark; Reimann, Keith A; Krauland, Eric; Gerngross, Tillman U; Wittrup, Karl D; Saphire, Erica Ollmann; Burton, Dennis R; Glass, Pamela J; Ward, Andrew B; Walker, Laura M
2016-03-04
Antibodies targeting the Ebola virus surface glycoprotein (EBOV GP) are implicated in protection against lethal disease, but the characteristics of the human antibody response to EBOV GP remain poorly understood. We isolated and characterized 349 GP-specific monoclonal antibodies (mAbs) from the peripheral B cells of a convalescent donor who survived the 2014 EBOV Zaire outbreak. Remarkably, 77% of the mAbs neutralize live EBOV, and several mAbs exhibit unprecedented potency. Structures of selected mAbs in complex with GP reveal a site of vulnerability located in the GP stalk region proximal to the viral membrane. Neutralizing antibodies targeting this site show potent therapeutic efficacy against lethal EBOV challenge in mice. The results provide a framework for the design of new EBOV vaccine candidates and immunotherapies. Copyright © 2016, American Association for the Advancement of Science.
Vaccines. An Ebola whole-virus vaccine is protective in nonhuman primates.
Marzi, Andrea; Halfmann, Peter; Hill-Batorski, Lindsay; Feldmann, Friederike; Shupert, W Lesley; Neumann, Gabriele; Feldmann, Heinz; Kawaoka, Yoshihiro
2015-04-24
Zaire ebolavirus is the causative agent of the current outbreak of hemorrhagic fever disease in West Africa. Previously, we showed that a whole Ebola virus (EBOV) vaccine based on a replication-defective EBOV (EBOVΔVP30) protects immunized mice and guinea pigs against lethal challenge with rodent-adapted EBOV. Here, we demonstrate that EBOVΔVP30 protects nonhuman primates against lethal infection with EBOV. Although EBOVΔVP30 is replication-incompetent, we additionally inactivated the vaccine with hydrogen peroxide; the chemically inactivated vaccine remained antigenic and protective in nonhuman primates. EBOVΔVP30 thus represents a safe, efficacious, whole-EBOV vaccine candidate that differs from other EBOV vaccine platforms in that it presents all viral proteins and the viral RNA to the host immune system, which might contribute to protective immune responses. Copyright © 2015, American Association for the Advancement of Science.
Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun
2017-01-01
Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella Newport lethal challenge. All of the mice in the three vaccine-immunized groups survived the lethal Salmonella Typhimurium challenge. In contrast, SLT26 (pCZ11) and SLT27 (pCZ11) conferred full protection against lethal Salmonella Newport challenge, but SLT25 (pCZ11) provided only 50% heterologous protection. Thus, we developed two novel Salmonella bivalent vaccines, SLT26 (pCZ11) and SLT27 (pCZ11), suggesting that the delivery of a heterologous O-antigen in attenuated Salmonella strains is a prospective approach for developing Salmonella vaccines with broad serovar coverage. PMID:28929089
Garg, Rajni; Kaur, Manpreet; Saxena, Ankur; Prasad, Rajendra; Bhatnagar, Rakesh
2017-05-01
Rabies is a serious concern world-wide. Despite availability of rabies vaccines for long; their efficacy, safety, availability and cost effectiveness has been a tremendous issue. This calls for improvement of rabies vaccination strategies. DNA vaccination has immense potential in this regard. The DNA vaccine pgp.LAMP-1 conferred 60% protection to BALB/c mice against 20 LD 50 rabies challenge virus standard (CVS) strain challenge. Upon supplementation with Emulsigen-D, the vaccine formulation conferred complete protection against lethal challenge. To assess the feasibility of this vaccine formulation for human use, it was tested along with other FDA approved adjuvants, namely, Alum, Immuvac, Montanide ISA720 VG. Enhanced immune response correlated with high IgG antibody titer, Th2 biased response with a high level of rabies virus neutralizing antibodies (RVNAs) and IgG1/IgG2a ratio >1, observed upon alum supplementation of the rabies DNA vaccine. The total IgG antibody titer was 2IU/ml and total RVNA titer was observed to be 4IU/ml which is eight times higher than the minimum protective titer recommended by WHO. Furthermore, it conferred 80% protection against challenge with 50 LD 50 of the rabies CVS strain, conducted in compliance with the potency test for rabies recommended by the National Institutes of Health (NIH), USA. Previously, we have established pre-clinical safety of this vaccine as per the guidelines of Schedule Y, FDA as well as The European Agency for evaluation of Medicinal Products. The vaccine showed no observable toxicity at the site of injection as well as at systemic level in Wistar rats when administered with 10X recommended dose. Therefore, supplementation of rabies DNA vaccine, pgp.LAMP-1 with alum would lead to development of a non-toxic, efficacious, stable and affordable vaccine that can be used to combat high numbers of fatal rabies infections tormenting developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Warren, Travis K; Whitehouse, Chris A; Wells, Jay; Welch, Lisa; Charleston, Jay S; Heald, Alison; Nichols, Donald K; Mattix, Marc E; Palacios, Gustavo; Kugleman, Jeffrey R; Iversen, Patrick L; Bavari, Sina
2016-02-01
Marburg virus (MARV) is an Ebola-like virus in the family Filovirdae that causes sporadic outbreaks of severe hemorrhagic fever with a case fatality rate as high as 90%. AVI-7288, a positively charged antisense phosphorodiamidate morpholino oligomer (PMOplus) targeting the viral nucleoprotein gene, was evaluated as a potential therapeutic intervention for MARV infection following delayed treatment of 1, 24, 48, and 96 h post-infection (PI) in a nonhuman primate lethal challenge model. A total of 30 cynomolgus macaques were divided into 5 groups of 6 and infected with 1,830 plaque forming units of MARV subcutaneously. AVI-7288 was administered by bolus infusion daily for 14 days at 15 mg/kg body weight. Survival was the primary endpoint of the study. While none (0 of 6) of the saline group survived, 83-100% of infected monkeys survived when treatment was initiated 1, 24, 48, or 96 h post-infection (PI). The antisense treatment also reduced serum viremia and inflammatory cytokines in all treatment groups compared to vehicle controls. The antibody immune response to virus was preserved and tissue viral antigen was cleared in AVI-7288 treated animals. These data show that AVI-7288 protects NHPs against an otherwise lethal MARV infection when treatment is initiated up to 96 h PI.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs that has significant economic consequences for swine breeding. The control of African Swine Fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines...
1986-09-18
systemically with doses of reaction) were sharply reduced. Histo- naltrexone or naloxone and subsequently logically, the infiltration of the dermis...challenged with a lethal dose of antigen. with polymorphonuclear (Arthus reaction) Both naloxone and naltrexone were found and mononuclear cells (delayed...for Integrative Biomedical Research, Eb- roendocrine cell type present in low num- matingen, Switzerland) reported on the bers in the spleen, lymph
Targeting Siah2 as Novel Therapy for Metastatic Prostate Cancer
2017-12-01
unlimited. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official...challenge (Wyatt and Gleave, 2015). PCa initially responds to the first line androgen deprivation therapy (ADT) or androgen receptor ( AR ) pathway...inhibition (ARPI) but eventually develops into lethal castration resistance prostate cancer (CRPC, Loriot et al., 2012). The most recognized AR -negative
Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye; Kang, Sang-Moo
2017-10-01
Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination.
Park, Eun Hye; Song, Byung Min; Yum, Jung; Kim, Ji An; Oh, Seung Kyoo; Kim, Hyun Soo; Cho, Gil Jae
2014-01-01
Abstract Outbreaks of the highly pathogenic H5N1 virus in poultry and humans are ongoing. Vaccination is an efficient method for prevention of H5N1 infection. Using chickens and ducks, we assessed the efficacy of a vaccine comprising H5N1 hemagglutinin (HA) protein produced in a baculovirus expression system. The immunized chickens and ducks were protected against lethal infection by H5N1 in an antigen dose-dependent manner. Complete protection against homologous challenge and partial protection against heterologous challenge were achieved in chickens immunized with 5 μg HA protein and in ducks immunized with 10 μg HA protein. The IgG antibody subtype was mainly detected in the sera and tissues, including the lungs. The neuraminidase (NA) inhibition assay was negative in immunized chickens and ducks. Our results indicated that the expressed HA protein by baculovirus was immunogenic to both chickens and ducks, and the immunized chickens and ducks were protected from the lethal infections of highly pathogenic H5N1 influenza virus, though ducks required more HA protein than chickens to be protected. Also, baculovirus HA-vaccinated poultry can be differentiated from infected poultry by NA inhibition assay. PMID:25211640
Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utsumi, H.; Elkind, M.M.
1983-11-01
A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less
Yuan, Qifeng; Li, Lin; Pian, Yaya; Hao, Huaijie; Zheng, Yuling; Zang, Yating; Jiang, Hua; Jiang, Yongqiang
2016-04-01
Staphylococcus enterotoxin B (SEB) is a superantigen that can induce massive activation of T cells with specific Vβ and inflammatory cytokine cascades, which mediate shock. To date, no SEB vaccine has been developed for preventing toxic shock syndrome (TSS). Here, we evaluated the therapeutic effect of a fusion protein human serum albumin-Vβ (HSA-Vβ) on TSS induced by SEB. Compared with Vβ, the preparation of HSA-Vβ was much easier to handle owing to its solubility. Affinity testing showed that HSA-Vβ had high affinity for SEB. In vitro results showed that HSA-Vβ could effectively inhibit interferon (IFN)-γ and tumor necrosis factor (TNF)-α secretion by human peripheral blood mononuclear cells. Moreover, in vivo, HSA-Vβ reduced IFN-γ and TNF-α levels in the serum and protected mice from SEB lethal challenge when administered simultaneously with SEB or 30 min after SEB. In summary, we simplified the preparation of Vβ by fusion with HSA, creating the HSA-Vβ protein, which effectively inhibited cytokine production and protected mice from lethal challenge with SEB. These data indicated that HSA-Vβ may represent a novel therapeutic strategy for the treatment of SEB-induced TSS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atzingen, Marina V; Gonçales, Amane P; de Morais, Zenaide M; Araújo, Eduardo R; De Brito, Thales; Vasconcellos, Silvio A; Nascimento, Ana L T O
2010-09-01
Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira. The whole-genome sequence of Leptospira interrogans serovar Copenhageni together with bioinformatic tools allow us to search for novel antigen candidates suitable for improved vaccines against leptospirosis. This study focused on three genes encoding conserved hypothetical proteins predicted to be exported to the outer membrane. The genes were amplified by PCR from six predominant pathogenic serovars in Brazil. The genes were cloned and expressed in Escherichia coli strain BL21-SI using the expression vector pDEST17. The recombinant proteins tagged with N-terminal 6xHis were purified by metal-charged chromatography. The proteins were recognized by antibodies present in sera from hamsters that were experimentally infected. Immunization of hamsters followed by challenge with a lethal dose of a virulent strain of Leptospira showed that the recombinant protein rLIC12730 afforded statistically significant protection to animals (44 %), followed by rLIC10494 (40 %) and rLIC12922 (30 %). Immunization with these proteins produced an increase in antibody titres during subsequent boosters, suggesting the involvement of a T-helper 2 response. Although more studies are needed, these data suggest that rLIC12730 and rLIC10494 are promising candidates for a multivalent vaccine for the prevention of leptospirosis.
Chichester, Jessica A; Manceva, Slobodanka D; Rhee, Amy; Coffin, Megan V; Musiychuk, Konstantin; Mett, Vadim; Shamloul, Moneim; Norikane, Joey; Streatfield, Stephen J; Yusibov, Vidadi
2013-03-01
The potential use of Bacillus anthracis as a bioterrorism weapon threatens the security of populations globally, requiring the immediate availability of safe, efficient and easily delivered anthrax vaccine for mass vaccination. Extensive research efforts have been directed toward the development of recombinant subunit vaccines based on protective antigen (PA), the principal virulence factor of B. anthracis. Among the emerging technologies for the production of these vaccine antigens is our launch vector-based plant transient expression system. Using this system, we have successfully engineered, expressed, purified and characterized full-length PA (pp-PA83) in Nicotiana benthamiana plants using agroinfiltration. This plant-produced antigen elicited high toxin neutralizing antibody titers in mice and rabbits after two vaccine administrations with Alhydrogel. In addition, immunization with this vaccine candidate protected 100% of rabbits from a lethal aerosolized B. anthracis challenge. The vaccine effects were dose-dependent and required the presence of Alhydrogel adjuvant. In addition, the vaccine antigen formulated with Alhydrogel was stable and retained immunogenicity after two-week storage at 4°C, the conditions intended for clinical use. These results support the testing of this vaccine candidate in human volunteers and the utility of our plant expression system for the production of a recombinant anthrax vaccine.
Martinez-Becerra, Francisco J.; Chen, Xiaotong; Dickenson, Nicholas E.; Choudhari, Shyamal P.; Harrison, Kelly; Clements, John D.; Picking, William D.; Van De Verg, Lillian L.; Walker, Richard I.
2013-01-01
Shigellosis is an important disease in the developing world, where about 90 million people become infected with Shigella spp. each year. We previously demonstrated that the type three secretion apparatus (T3SA) proteins IpaB and IpaD are protective antigens in the mouse lethal pulmonary model. In order to simplify vaccine formulation and process development, we have evaluated a vaccine design that incorporates both of these previously tested Shigella antigens into a single polypeptide chain. To determine if this fusion protein (DB fusion) retains the antigenic and protective capacities of IpaB and IpaD, we immunized mice with the DB fusion and compared the immune response to that elicited by the IpaB/IpaD combination vaccine. Purification of the DB fusion required coexpression with IpgC, the IpaB chaperone, and after purification it maintained the highly α-helical characteristics of IpaB and IpaD. The DB fusion also induced comparable immune responses and retained the ability to protect mice against Shigella flexneri and S. sonnei in the lethal pulmonary challenge. It also offered limited protection against S. dysenteriae challenge. Our results show the feasibility of generating a protective Shigella vaccine comprised of the DB fusion. PMID:24060976
Feng, Chunlai; Tan, Mingming; Sun, Wenkui; Shi, Yi; Xing, Zheng
2015-09-01
The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mohabati Mobarez, Ashraf; Ahmadrajabi, Roya; Khoramabadi, Nima; Salmanian, Ali-Hatef
2017-01-01
To investigate the immunoprotective effects of the recombinant type A flagellin (FLA), the flaA gene of Legionella pneumophila serogroup 1 strain Paris was cloned into pET28a(+). Recombinant FLA (rFLA) was overexpressed in E. coli BL21 (DE3) and purified by Ni2+ exchange chromatography. Female BALB/c aged 6-8 weeks were immunized with 20 μg of rFLA. Nonimmunized mice along with mice inoculated with a sublethal dose of live L. pneumophila intravenously were considered as negative and positive controls, respectively. A significant serum antibody response was observed in female BALB/c mice immunized with rFLA. Production of IFN-γ and IL-12, and TNF-α in the serum and the splenocyte cultures, and antigen-specific splenocyte proliferation suggested a strong innate and adaptive cell-mediated immunity response in rFLA-immunized mice. Intravenous lethal challenge with L. pneumophila serogroup 1 (strain Paris) showed that 60% of mice immunized with rFLA survived in a 10-day follow-up survey. These results show that rFLA from L. pneumophila can elicit strong innate and adaptive immune responses and suggest the possibility of a long-term immunity against lethal challenge with L. pneumophila. © 2017 S. Karger AG, Basel.
Immunization studies with attenuated strains of Bacillus anthracis.
Ivins, B E; Ezzell, J W; Jemski, J; Hedlund, K W; Ristroph, J D; Leppla, S H
1986-01-01
Live, attenuated strains of Bacillus anthracis lacking either the capsule plasmid pXO2, the toxin plasmid pXO1, or both were tested for their efficacy as vaccines against intravenous challenge with anthrax toxin in Fischer 344 rats and against aerosol or intramuscular challenge with virulent anthrax spores in Hartley guinea pigs. Animals immunized with toxigenic, nonencapsulated (pXO1+, pXO2-) strains survived toxin and spore challenge and demonstrated postimmunization antibody titers to the three components of anthrax toxin (protective antigen, lethal factor, and edema factor). Immunization with two nontoxigenic, encapsulated (pXO1-, pXO2+), Pasteur vaccine strains neither provided protection nor elicited titers to any of the toxin components. Therefore, to immunize successfully against anthrax toxin or spore challenge, attenuated, live strains of B. anthracis must produce the toxin components specified by the pXO1 plasmid. PMID:3084383
Lavender, Heather; Jagnow, Jennifer J; Clegg, Steven
2005-06-01
Type 3 fimbriae are expressed by most strains of Klebsiella pneumoniae and facilitate adherence to the basement membrane of human respiratory tissues. The ability of these appendages to stimulate a protective immune response in vivo has not been investigated. A murine model of acute pneumonia was used to determine whether the production of type 3 fimbria-specific antibodies correlated with protection against infection by K. pneumoniae. Purified fimbriae from several strains were used to immunize mice prior to challenge with a virulent strain. The immunized mice produced high titers of specific antibody and this was associated with protection against challenge with a low dose of bacteria that was lethal in unimmunized animals. However, challenge with a high number of bacteria resulted in no protection against infection.
Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Sakamoto, Ryuichi; Takikawa, Noriyasu; Lin, Zhifeng; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi
2009-08-20
An influenza vaccine was prepared from inactivated whole particles of the non-pathogenic strain A/duck/Hokkaido/Vac-1/04 (H5N1) virus using an oil adjuvant containing anhydromannitol-octadecenoate-ether (AMOE). The vaccine was injected intramuscularly into five 4-week-old chickens, and 138 weeks after vaccination, they were challenged intranasally with 100 times 50% chicken lethal dose of the highly pathogenic avian influenza (HPAI) virus A/chicken/Yamaguchi/7/04 (H5N1). All 5 chickens survived without exhibiting clinical signs of influenza, although 2 days post-challenge, 3 vaccinated chickens shed limited titres of viruses in laryngopharyngeal swabs.
Magazani, Edmond K.; Garin, Daniel; Muyembe, Jean-Jacques T.; Bentahir, Mostafa; Gala, Jean-Luc
2014-01-01
Background In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders. Objective The goal of the study was therefore to use MPX and chickenpox outbreaks in Democratic Republic of Congo (DRC) as a test case for establishing a rapid and specific diagnosis in affected remote areas. Methods In 2008 and 2009, successive outbreaks of presumed MPX skin rash were reported in Bena Tshiadi, Yangala and Ndesha healthcare districts of the West Kasai province (DRC). Specimens consisting of liquid vesicle dried on filter papers or crusted scabs from healing patients were sampled by first responders. A field analytical facility was deployed nearby in order to carry out a real-time PCR (qPCR) assay using genus consensus primers, consensus orthopoxvirus (OPV) and smallpox-specific probes spanning over the 14 kD fusion protein encoding gene. A PCR-restriction fragment length polymorphism was used on-site as backup method to confirm the presence of monkeypox virus (MPXV) in samples. To complete the differential diagnosis of skin rash, chickenpox was tested in parallel using a commercial qPCR assay. In a post-deployment step, a MPXV-specific pyrosequencing was carried out on all biotinylated amplicons generated on-site in order to confirm the on-site results. Results Whereas MPXV proved to be the agent causing the rash illness outbreak in the Bena Tshiadi, VZV was the causative agent of the disease in Yangala and Ndesha districts. In addition, each on-site result was later confirmed by MPXV-specific pyrosequencing analysis without any discrepancy. Conclusion This experience of rapid on-site dual use DNA-based differential diagnosis of rash illnesses demonstrates the potential of combining tests specifically identifying bioterrorism agents and agents causing natural outbreaks. This opens the way to rapid on-site DNA-based identification of a broad spectrum of causative agents in remote areas. PMID:24841633
Gileva, Irina P; Nepomnyashchikh, Tatiana S; Antonets, Denis V; Lebedev, Leonid R; Kochneva, Galina V; Grazhdantseva, Antonina V; Shchelkunov, Sergei N
2006-11-01
Tumor necrosis factor (TNF), a potent proinflammatory and antiviral cytokine, is a critical extracellular immune regulator targeted by poxviruses through the activity of virus-encoded family of TNF-binding proteins (CrmB, CrmC, CrmD, and CrmE). The only TNF-binding protein from variola virus (VARV), the causative agent of smallpox, infecting exclusively humans, is CrmB. Here we have aligned the amino acid sequences of CrmB proteins from 10 VARV, 14 cowpox virus (CPXV), and 22 monkeypox virus (MPXV) strains. Sequence analyses demonstrated a high homology of these proteins. The regions homologous to cd00185 domain of the TNF receptor family, determining the specificity of ligand-receptor binding, were found in the sequences of CrmB proteins. In addition, a comparative analysis of the C-terminal SECRET domain sequences of CrmB proteins was performed. The differences in the amino acid sequences of these domains characteristic of each particular orthopoxvirus species were detected. It was assumed that the species-specific distinctions between the CrmB proteins might underlie the differences in these physicochemical and biological properties. The individual recombinant proteins VARV-CrmB, MPXV-CrmB, and CPXV-CrmB were synthesized in a baculovirus expression system in insect cells and isolated. Purified VARV-CrmB was detectable as a dimer with a molecular weight of 90 kDa, while MPXV- and CPXV-CrmBs, as monomers when fractioned by non-reducing SDS-PAGE. The CrmB proteins of VARV, MPXV, and CPXV differed in the efficiencies of inhibition of the cytotoxic effects of human, mouse, or rabbit TNFs in L929 mouse fibroblast cell line. Testing of CrmBs in the experimental model of LPS-induced shock using SPF BALB/c mice detected a pronounced protective effect of VARV-CrmB. Thus, our data demonstrated the difference in anti-TNF activities of VARV-, MPXV-, and CPXV-CrmBs and efficiency of VARV-CrmB rather than CPXV- or MPXV-CrmBs against LPS-induced mortality in mice.
Ma, Ji-Hong; Yang, Fu-Ru; Yu, Hai; Zhou, Yan-Jun; Li, Guo-Xin; Huang, Meng; Wen, Feng; Tong, Guangzhi
2013-07-09
Vaccination is considered as the most effective preventive method to control influenza. The hallmark of influenza virus is the remarkable variability of its major surface glycoproteins, HA and NA, which allows the virus to evade existing anti-influenza immunity in the target population. So it is necessary to develop a novel vaccine to control animal influenza virus. Also we know that the ectodomain of influenza matrix protein 2 (M2e) is highly conserved in animal influenza A viruses, so a vaccine based on the M2e could avoid several drawbacks of the traditional vaccines. In this study we designed a novel tetra-branched multiple antigenic peptide (MAP) based vaccine, which was constructed by fusing four copies of M2e to one copy of foreign T helper (Th) cell epitope, and then investigated its immune responses. Our results show that the M2e-MAP induced strong M2e-specific IgG antibody,which responses following 2 doses immunization in the presence of Freunds' adjuvant. M2e-MAP vaccination limited viral replication substantially. Also it could attenuate histopathological damage in the lungs of challenged mice and counteracted weight loss. M2e-MAP-based vaccine protected immunized mice against the lethal challenge with PR8 virus. Based on these findings, M2e-MAP-based vaccine seemed to provide useful information for the research of M2e-based influenza vaccine. Also it show huge potential to study vaccines for other similarly viruses.
Stich, Norbert; Model, Nina; Samstag, Aysen; Gruener, Corina S.; Wolf, Hermann M.; Eibl, Martha M.
2014-01-01
Toxic shock syndrome (TSS) results from the host’s overwhelming inflammatory response and cytokine storm mainly due to superantigens (SAgs). There is no effective specific therapy. Application of immunoglobulins has been shown to improve the outcome of the disease and to neutralize SAgs both in vivo and in vitro. However, in most experiments that have been performed, antiserum was either pre-incubated with SAg, or both were applied simultaneously. To mirror more closely the clinical situation, we applied a multiple dose (over five days) lethal challenge in a rabbit model. Treatment with toxic shock syndrome toxin 1 (TSST-1) neutralizing antibody was fully protective, even when administered late in the course of the challenge. Kinetic studies on the effect of superantigen toxins are scarce. We performed in vitro kinetic studies by neutralizing the toxin with antibodies at well-defined time points. T-cell activation was determined by assessing T-cell proliferation (3H-thymidine incorporation), determination of IL-2 release in the cell supernatant (ELISA), and IL-2 gene activation (real-time PCR (RT-PCR)). Here we show that T-cell activation occurs continuously. The application of TSST-1 neutralizing antiserum reduced IL-2 and TNFα release into the cell supernatant, even if added at later time points. Interference with the prolonged stimulation of proinflammatory cytokines is likely to be in vivo relevant, as postexposure treatment protected rabbits against the multiple dose lethal SAg challenge. Our results shed new light on the treatment of TSS by specific antibodies even at late stages of exposure. PMID:24887085
Liu, Ye V.; Massare, Michael J.; Barnard, Dale L.; Kort, Thomas; Nathan, Margret; Wang, Lei; Smith, Gale
2011-01-01
SARS-CoV was the cause of the global pandemic in 2003 that infected over 8000 people in 8 months. Vaccines against SARS are still not available. We developed a novel method to produce high levels of a recombinant SARS virus-like particles (VLPs) vaccine containing the SARS spike (S) protein and the influenza M1 protein using the baculovirus insect cell expression system. These chimeric SARS VLPs have a similar size and morphology to the wild type SARS-CoV. We tested the immunogenicity and protective efficacy of purified chimeric SARS VLPs and full length SARS S protein vaccines in a mouse lethal challenge model. The SARS VLP vaccine, containing 0.8 μg of SARS S protein, completely protected mice from death when administered intramuscular (IM) or intranasal (IN) routes in the absence of an adjuvant. Likewise, the SARS VLP vaccine, containing 4 μg of S protein without adjuvant, reduced lung virus titer to below detectable level, protected mice from weight loss, and elicited a high level of neutralizing antibodies against SARS-CoV. Sf9 cell-produced full length purified SARS S protein was also an effective vaccine against SARS-CoV but only when co-administered IM with aluminum hydroxide. SARS-CoV VLPs are highly immunogenic and induce neutralizing antibodies and provide protection against lethal challenge. Sf9 cell-based VLP vaccines are a potential tool to provide protection against novel pandemic agents. PMID:21762752
Stich, Norbert; Model, Nina; Samstag, Aysen; Gruener, Corina S; Wolf, Hermann M; Eibl, Martha M
2014-05-30
Toxic shock syndrome (TSS) results from the host's overwhelming inflammatory response and cytokine storm mainly due to superantigens (SAgs). There is no effective specific therapy. Application of immunoglobulins has been shown to improve the outcome of the disease and to neutralize SAgs both in vivo and in vitro. However, in most experiments that have been performed, antiserum was either pre-incubated with SAg, or both were applied simultaneously. To mirror more closely the clinical situation, we applied a multiple dose (over five days) lethal challenge in a rabbit model. Treatment with toxic shock syndrome toxin 1 (TSST-1) neutralizing antibody was fully protective, even when administered late in the course of the challenge. Kinetic studies on the effect of superantigen toxins are scarce. We performed in vitro kinetic studies by neutralizing the toxin with antibodies at well-defined time points. T-cell activation was determined by assessing T-cell proliferation (3H-thymidine incorporation), determination of IL-2 release in the cell supernatant (ELISA), and IL-2 gene activation (real-time PCR (RT-PCR)). Here we show that T-cell activation occurs continuously. The application of TSST-1 neutralizing antiserum reduced IL-2 and TNFα release into the cell supernatant, even if added at later time points. Interference with the prolonged stimulation of proinflammatory cytokines is likely to be in vivo relevant, as postexposure treatment protected rabbits against the multiple dose lethal SAg challenge. Our results shed new light on the treatment of TSS by specific antibodies even at late stages of exposure.
Itoh, Yasushi; Yoshida, Reiko; Shichinohe, Shintaro; Higuchi, Megumi; Ishigaki, Hirohito; Nakayama, Misako; Pham, Van Loi; Ishida, Hideaki; Kitano, Mitsutaka; Arikata, Masahiko; Kitagawa, Naoko; Mitsuishi, Yachiyo; Ogasawara, Kazumasa; Tsuchiya, Hideaki; Hiono, Takahiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ito, Mutsumi; Quynh Mai, Le; Kawaoka, Yoshihiro; Miyamoto, Hiroko; Ishijima, Mari; Igarashi, Manabu; Suzuki, Yasuhiko; Takada, Ayato
2014-06-01
Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Diane E.; Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA; Hoover, Benjamin
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6more » syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor activity of protease-activated anthrax toxins were evaluated. • All anthrax toxin variants exhibited potent systemic anti-tumor activity in mice. • A dual MMP/uPA-activated anthrax toxin displayed a superior safety profile. • Clinical development of a dual MMP/uPA-activated anthrax toxin is feasible.« less
Dorandeu, Frederic; Baille, Valerie; Mikler, John; Testylier, Guy; Lallement, Guy; Sawyer, Thomas; Carpentier, Pierre
2007-05-20
Soman poisoning is known to induce full-blown tonic-clonic seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Previous studies in guinea-pigs have shown that racemic ketamine (KET), with atropine sulfate (AS), is very effective in preventing death, stopping seizures and protecting sensitive brain areas when given up to 1h after a supra-lethal challenge of soman. The active ketamine isomer, S(+) ketamine (S-KET), is more potent than the racemic mixture and it also induces less side-effects. To confirm the efficacy of KET and to evaluate the potential of S-KET for delayed medical treatment of soman-induced SE, we studied different S-KET dose regimens using the same paradigm used with KET. Guinea-pigs received pyridostigmine (26 microg/kg, IM) 30min before soman (62 microg/kg, 2 LD(50), IM), followed by therapy consisting of atropine methyl nitrate (AMN) (4 mg/kg, IM) 1min following soman exposure. S-KET, with AS (10mg/kg), was then administered IM at different times after the onset of seizures, starting at 1h post-soman exposure. The protective efficacy of S-KET proved to be comparable to KET against lethality and SRBD, but at doses two to three times lower. As with KET, delaying treatment by 2h post-poisoning greatly reduced efficacy. Conditions that may have led to an increased S-KET brain concentration (increased doses or number of injections, adjunct treatment with the oxime HI-6) did not prove to be beneficial. In summary, these observations confirm that ketamine, either racemic or S-KET, in association with AS and possibly other drugs, could be highly effective in the delayed treatment of severe soman intoxication.
Karau, Melissa J; Tilahun, Mulualem E; Krogman, Ashton; Osborne, Barbara A; Goldsby, Richard A; David, Chella S; Mandrekar, Jayawant N; Patel, Robin; Rajagopalan, Govindarajan
2017-10-03
Drugs such as linezolid that inhibit bacterial protein synthesis may be beneficial in treating infections caused by toxigenic Staphylococcus aureus. As protein synthesis inhibitors have no effect on preformed toxins, neutralization of pathogenic exotoxins with anti-toxin antibodies may be beneficial in conjunction with antibacterial therapy. Herein, we evaluated the efficacy of human-mouse chimeric high-affinity neutralizing anti-staphylococcal enterotoxin B (SEB) antibodies in the treatment of experimental pneumonia caused by SEB-producing S. aureus. Since HLA class II transgenic mice mount a stronger systemic immune response following challenge with SEB and are more susceptible to SEB-induced lethal toxic shock than conventional mice strains, HLA-DR3 transgenic mice were used. Lethal pneumonia caused by SEB-producing S. aureus in HLA-DR3 transgenic mice was characterized by robust T cell activation and elevated systemic levels of several pro-inflammatory cytokines and chemokines. Prophylactic administration of a single dose of linezolid 30 min prior to the onset of infection attenuated the systemic inflammatory response and protected from mortality whereas linezolid administered 60 min after the onset of infection failed to confer significant protection. Human-mouse chimeric high-affinity neutralizing anti-SEB antibodies alone, but not polyclonal human IgG, mitigated this response and protected from death when administered immediately after initiation of infection. Further, anti-SEB antibodies as well as intact polyclonal human IgG, but not its Fab or Fc fragments, protected from lethal pneumonia when followed with linezolid therapy 60 min later. In conclusion, neutralization of superantigens with high-affinity antibodies may have beneficial effects in pneumonia.
Zahn, Roland; Gillisen, Gert; Roos, Anna; Koning, Marina; van der Helm, Esmeralda; Spek, Dirk; Weijtens, Mo; Grazia Pau, Maria; Radošević, Katarina; Weverling, Gerrit Jan; Custers, Jerome; Vellinga, Jort; Schuitemaker, Hanneke; Goudsmit, Jaap; Rodríguez, Ariane
2012-01-01
Filoviruses cause sporadic but highly lethal outbreaks of hemorrhagic fever in Africa in the human population. Currently, no drug or vaccine is available for treatment or prevention. A previous study with a vaccine candidate based on the low seroprevalent adenoviruses 26 and 35 (Ad26 and Ad35) was shown to provide protection against homologous Ebola Zaire challenge in non human primates (NHP) if applied in a prime-boost regimen. Here we have aimed to expand this principle to construct and evaluate Ad26 and Ad35 vectors for development of a vaccine to provide universal filovirus protection against all highly lethal strains that have caused major outbreaks in the past. We have therefore performed a phylogenetic analysis of filovirus glycoproteins to select the glycoproteins from two Ebola species (Ebola Zaire and Ebola Sudan/Gulu,), two Marburg strains (Marburg Angola and Marburg Ravn) and added the more distant non-lethal Ebola Ivory Coast species for broadest coverage. Ad26 and Ad35 vectors expressing these five filovirus glycoproteins were evaluated to induce a potent cellular and humoral immune response in mice. All adenoviral vectors induced a humoral immune response after single vaccination in a dose dependent manner that was cross-reactive within the Ebola and Marburg lineages. In addition, both strain-specific as well as cross-reactive T cell responses could be detected. A heterologous Ad26–Ad35 prime-boost regime enhanced mainly the humoral and to a lower extend the cellular immune response against the transgene. Combination of the five selected filovirus glycoproteins in one multivalent vaccine potentially elicits protective immunity in man against all major filovirus strains that have caused lethal outbreaks in the last 20 years. PMID:23236343
2010-09-01
or VX. Guinea pigs chronically instrumented for concurrent recordings of EEG, cardiorespiratory activities , diaphragm and skeletal muscle EMG were... activities , or any debilitating effects. The animals were asymptomatic within 30 min following therapy and survived the agent challenge 24 hr later. In...For a thorough efficacy evaluation, the animals were chronically instrumented to permit concurrent recordings of central nervous system activity
Development of a High-Content Orthopoxvirus Infectivity and Neutralization Assays
Gates, Irina; Olson, Victoria; Smith, Scott; Patel, Nishi; Damon, Inger; Karem, Kevin
2015-01-01
Currently, a number of assays measure Orthopoxvirus neutralization with serum from individuals, vaccinated against smallpox. In addition to the traditional plaque reduction neutralization test (PRNT), newer higher throughput assays are based on neutralization of recombinant vaccinia virus, expressing reporter genes such as β-galactosidase or green fluorescent protein. These methods could not be used to evaluate neutralization of variola virus, since genetic manipulations of this virus are prohibited by international agreements. Currently, PRNT is the assay of choice to measure neutralization of variola virus. However, PRNT assays are time consuming, labor intensive, and require considerable volume of serum sample for testing. Here, we describe the development of a high-throughput, cell-based imaging assay that can be used to measure neutralization, and characterize replication kinetics of various Orthopoxviruses, including variola, vaccinia, monkeypox, and cowpox. PMID:26426117
da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping
2017-01-01
ABSTRACT The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. PMID:28148801
), 26th Marine Expeditionary Unit (MEU), practice non-lethal control techniques during a non-lethal Skip to main content (Press Enter). Toggle navigation Non-Lethal Weapons Program Search Search JNLWP: Search Search JNLWP: Search Non-Lethal Weapons Program U.S. Department of Defense Non-Lethal
[Bladder tumor lethality. Results in the autonomous community of Rioja between 1975-1991].
Fernández Fernández, A; Gil Fabra, J; Fernández Ruíz, M; Angulo Castellanos, M G; Blanco Martín, E; Otero Mauricio, G
1998-01-01
Between 1975-1991, a total of 557 cases of bladder carcinoma were identified in the Autonomous Community of La Rioja (CAR) which were followed up to December 1994. The overall lethality was 21.9%. 492 cases with 22.35% lethality were identified in males. In females, however, there was 65 cases with 18.46% lethality. The comparison of males and females lethality resulted in p = 0.525. Lethality between cases diagnosed within each 5-year period analyzed is: 1975-1981: 177 cases, lethality 23.72%. 1982-1986: 168 cases, lethality 30.95%. 1987-1991: 212 cases, lethality 13.20%. Between the first and the second 5-year periods, p = 0.132; between the first and third 5-year periods p = 0.007 and between the second and third 5-year periods p < 0.000. Bladder tumours accounts in CAR for a 22.35% lethality. Lethality is higher in males that in females but the difference is not statistically significant. In the last 5-year period assessed, 1987-1991, a reduction of lethality from bladder neoplasms has been documented.
Hayasaka, D; Goto, A; Yoshii, K; Mizutani, T; Kariwa, H; Takashima, I
2001-09-14
To evaluate the efficacy of the European TBE vaccine in east-Siberian and far-eastern regions of Russia, we examined the immune responses of the vaccine against recent TBE virus Siberian (Irkutsk) and far-eastern (Khabarovsk and Vladivostok) isolates. The sera of vaccinated humans showed efficient neutralizing antibody titers (> or =20) against Siberian and far-eastern strains. To evaluate the efficacy of the vaccine in vivo, mice were vaccinated and challenged with lethal doses of the viruses. All vaccinated mice survived each virus challenge. These results suggest that the European vaccine can prevent the TBE virus infection in east-Siberian and far-eastern regions of Russia.
Godo, Shigeo; Kawazoe, Yu; Ozaki, Hiroshi; Fujita, Motoo; Kudo, Daisuke; Nomura, Ryosuke; Shimokawa, Hiroaki; Kushimoto, Shigeki
2017-10-01
Thyroid storm is a life-threatening disorder that remains a therapeutic challenge. Although β-blockers are the mainstay for treatment, their use can be challenging in cases complicated by rapid atrial fibrillation and decompensated heart failure. We present a case of thyroid storm-associated atrial fibrillation and decompensated heart failure complicated by gastrointestinal dysfunction secondary to diffuse peritonitis that was successfully managed by a switching therapy, in which the continuous intravenous administration of landiolol was changed to bisoprolol via transdermal patch, in the acute phase treatment. This switching therapy may offer a promising therapeutic option for this potentially lethal disorder.
Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S
2012-11-01
We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.
Newman, Zachary L; Printz, Morton P; Liu, Shihui; Crown, Devorah; Breen, Laura; Miller-Randolph, Sharmina; Flodman, Pamela; Leppla, Stephen H; Moayeri, Mahtab
2010-05-20
Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1.
Acquisition Challenges of a Lethal Virus
2014-10-01
March 23, 2014. Since then it has spread to Sierra Leone and Liberia . As of July 3, 2014, WHO reported 779 clini- cal cases of Ebola virus disease...Health Organization team responding to an Ebola virus outbreak. It’s 1995. “The Hot Zone” tops best-seller lists, and millions of people the world...over are fixated on the threat of incurable “hot” hemorrhagic fever viruses like Ebola . Gruesome depictions of melting skin and oozing blood fill
NASA Technical Reports Server (NTRS)
Ainsworth, E. J.; Afzal, S. M. J.; Crouse, D. A.; Hanson, W. R.; Fry, R. J. M.
1989-01-01
Early and late murine tissue responses to single or fractionated low doses of heavy charged particles, fission-spectrum neutrons or gamma rays are considered. Damage to the hematopoietic system is emphasized, but results on acute lethality, host response to challenge with transplanted leukemia cells and life-shortening are presented. Recent studies on protection against early and late effects by aminothiols, prostaglandins, and other compounds are discussed.
Review of the Burden of Esophageal Cancer in Malaysia.
Siti-Azrin, Ab Hamid; Wan-Nor-Asyikeen, Wan Adnan; Norsa'adah, Bachok
2016-01-01
Esophageal cancer is one of the top leading causes of cancer-related deaths in Malaysia. To date, neither the prevalence nor incidence of esophageal cancer nationally have been recorded. Esophageal cancer remains a major and lethal health problem even if it is not common in Malaysia. The late presentation of esophageal cancer makes it a difficult and challenging medical problem. Therefore, more governmental and non-governmental organizations of Malaysia should emphasize primary and secondary prevention strategies.
NASA Technical Reports Server (NTRS)
Lett, J. T.; Peters, E. L.
1992-01-01
Until recently, OH radicals formed in bulk nuclear water were believed to be the major causes of DNA damage that results in cell death, especially for sparsely ionizing radiations. That hypothesis has now been challenged, if not refuted. Lethal genomic DNA damage is determined mainly by energy deposition in deoxyribonucleoproteins, and their hydration shells, and charge (energy) transfer processes within those structures.
Epithelial Plasticity in Castration-Resistant Prostate Cancer: Biology of the Lethal Phenotype
2014-07-01
Mechanisms in the Cervical Spine. Journal of Biomechanics. 2000; 33: 191-7. 3. Armstrong AJ, Eisenberger M. The risk of clinical fractures after...Prostate Cancer Challenge Awards and Mazzone PCF grant mechanism (High Impact Award). He is a reviewer for numerous oncology and medical journals, which...2013;8:e63466. (26) Sun F, Chen HG, Li W, et al. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of
2008-02-01
responses in the hantavirus cardiopulmonary syndrome. J. Infect. Dis. 182:43–48. 3. Butler, J. C., and C. J. Peters. 1994. Hantaviruses and hantavirus ...November 2007 Hantavirus pulmonary syndrome (HPS) is a highly pathogenic disease (40% case fatality rate) carried by rodents chronically infected with...certain viruses within the genus Hantavirus of the family Bunyaviridae. The primary mode of transmission to humans is thought to be inhalation of excreta
Ko, Eun-Ju; Lee, Young-Tae; Lee, Youri; Kim, Ki-Hye
2017-01-01
Monophosphoryl lipid A (MPL) and oligodeoxynucleotide CpG are toll-like receptor (TLR) 4 and 9 agonist, respectively. Here, we investigated the effects of MPL, CpG, and combination adjuvants on stimulating in vitro dendritic cells (DCs), in vivo innate and adaptive immune responses, and protective efficacy of influenza vaccination. Combination of MPL and CpG was found to exhibit distinct effects on stimulating DCs in vitro to secrete IL-12p70 and tumor necrosis factor (TNF)-α and proliferate allogeneic CD8 T cells. Prime immunization of mice with inactivated split influenza vaccine in the presence of low dose MPL+CpG adjuvants increased the induction of virus-specific IgG and IgG2a isotype antibodies. MPL and CpG adjuvants contribute to improving the efficacy of prime influenza vaccination against lethal influenza challenge as determined by body weight monitoring, lung function, viral titers, and histology. A combination of MPL and CpG adjuvants was effective in improving vaccine efficacy as well as in reducing inflammatory immune responses locally and in inducing cellular immune responses upon lethal influenza virus challenge. This study demonstrates unique adjuvant effects of MPL, CpG, and combination adjuvants on modulating innate and adaptive immune responses to influenza prime vaccination. PMID:29093654
Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing
2017-01-01
Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.
2014-01-01
Background Enterovirus 71 (EV71) is the etiologic agent of hand-foot-and-mouth disease (HFMD) in the Asia-Pacific region, Many strategies have been applied to develop EV71 vaccines but no vaccines are currently available. Mucosal immunization of the VP1, a major immunogenic capsid protein of EV71, may be an alternative way to prevent EV71 infection. Results In this study, mucosal immunogenicity and protect function of recombinant VP1 protein (rVP1) in formulation with chitosan were tested and assessed in female ICR mouse model. The results showed that the oral immunization with rVP1 induced VP1-specific IgA antibodies in intestine, feces, vagina, and the respiratory tract and serum-specific IgG and neutralization antibodies in vaccinated mice. Splenocytes from rVP1-immunized mice induced high levels of Th1 (cytokine IFN-γ), Th2 (cytokine IL-4) and Th3 (cytokine TGF-β) type immune responses after stimulation. Moreover, rVP1-immunized mother mice conferred protection (survival rate up to 30%) on neonatal mice against a lethal challenge of 103 plaque-forming units (PFU) EV71. Conclusions These data indicated that oral immunization with rVP1 in formulation with chitosan was effective in inducing broad-spectrum immune responses and might be a promising subunit vaccine candidate for preventing EV71 infection. PMID:24885121
Tate, Michelle D; Ong, James D H; Dowling, Jennifer K; McAuley, Julie L; Robertson, Avril B; Latz, Eicke; Drummond, Grant R; Cooper, Matthew A; Hertzog, Paul J; Mansell, Ashley
2016-06-10
The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity.
Tate, Michelle D.; Ong, James D. H.; Dowling, Jennifer K.; McAuley, Julie L.; Robertson, Avril B.; Latz, Eicke; Drummond, Grant R.; Cooper, Matthew A.; Hertzog, Paul J.; Mansell, Ashley
2016-01-01
The inflammasome NLRP3 is activated by pathogen associated molecular patterns (PAMPs) during infection, including RNA and proteins from influenza A virus (IAV). However, chronic activation by danger associated molecular patterns (DAMPs) can be deleterious to the host. We show that blocking NLRP3 activation can be either protective or detrimental at different stages of lethal influenza A virus (IAV). Administration of the specific NLRP3 inhibitor MCC950 to mice from one day following IAV challenge resulted in hypersusceptibility to lethality. In contrast, delaying treatment with MCC950 until the height of disease (a more likely clinical scenario) significantly protected mice from severe and highly virulent IAV-induced disease. These findings identify for the first time that NLRP3 plays a detrimental role later in infection, contributing to IAV pathogenesis through increased cytokine production and lung cellular infiltrates. These studies also provide the first evidence identifying NLRP3 inhibition as a novel therapeutic target to reduce IAV disease severity. PMID:27283237
The case for intrauterine stem cell transplantation.
Mattar, Citra N; Biswas, Arijit; Choolani, Mahesh; Chan, Jerry K Y
2012-10-01
The clinical burden imposed by the collective group of monogenic disorders demands novel therapies that are effective at achieving phenotypic cure early in the disease process before the development of permanent organ damage. This is important for lethal diseases and also for non-perinatally lethal conditions that are characterised by severe disability with little prospect of postnatal cure. Where postnatal treatments are limited to palliative options, intrauterine stem-cell therapies may offer the potential to arrest pathogenesis in the early undamaged fetus. Intrauterine stem-cell transplantation has been attempted for a variety of diseases, but has only been successful in immune deficiency states in the presence of a competitive advantage for donor cells. This disappointing clinical record requires preclinical investigations into strategies that improve donor cell engraftment, including optimising the donor cell source and manipulating the microenvironment to facilitate homing. This chapter aims to outline the current challenges of intrauterine stem-cell therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms*
GALLI, STEPHEN J.; STARKL, PHILIPP; MARICHAL, THOMAS; TSAI, MINDY
2017-01-01
Mast cells and immunoglobulin E (IgE) antibodies are thought to promote health by contributing to host responses to certain parasites, but other beneficial functions have remained obscure. Venoms provoke innate inflammatory responses and pathology reflecting the activities of the contained toxins. Venoms also can induce allergic sensitization and development of venom-specific IgE antibodies, which can predispose some subjects to exhibit anaphylaxis upon subsequent exposure to the relevant venom. We found that innate functions of mast cells, including degradation of venom toxins by mast cell–derived proteases, enhanced survival in mice injected with venoms from the honeybee, two species of scorpion, three species of poisonous snakes, or the Gila monster. We also found that mice injected with sub-lethal amounts of honeybee or Russell’s viper venom exhibited enhanced survival after subsequent challenge with potentially lethal amounts of that venom, and that IgE antibodies, FcεRI, and probably mast cells contributed to such acquired resistance. PMID:28790503
Two-mAb Cocktail Protects Macaques Against The Makona Variant of Ebola Virus
Qiu, Xiangguo; Audet, Jonathan; Lv, Ming; He, Shihua; Wong, Gary; Wei, Haiyan; Luo, Longlong; Fernando, Lisa; Kroeker, Andrea; Bovendo, Hugues Fausther; Bello, Alexander; Li, Feng; Ye, Pei; Jacobs, Michael; Ippolito, Giuseppe; Saphire, Erica Ollmann; Bi, Shengli; Shen, Beifen; Gao, George F; Zeitlin, Larry; Feng, Jiannan; Zhang, Boyan; Kobinger, Gary P.
2018-01-01
The 2014–15 Ebola virus (EBOV) outbreak in West Africa highlighted the urgent need for specific therapeutic interventions for infected patients. The human-mouse chimeric monoclonal antibody (mAb) cocktail ZMapp™, previously shown to be efficacious in EBOV (variant Kikwit) lethally infected nonhuman primates (NHPs) when administration was initiated up to 5 days, was used in some patients during the outbreak. Here we show that a two-antibody cocktail, MIL77E, is fully protective in NHPs when administered at 50 mg/kg 3 days after challenge with a lethal dose of EBOV, variant Makona, the virus responsible for the ongoing 2014–15 outbreak, while a similar formulation of ZMapp™ protected 2 of 3 NHPs. The chimeric MIL77E mAb cocktail is produced in engineered CHO cells and is based on mAbs c13C6 and c2G4 from ZMapp™. The use of only 2 antibodies in MIL77E opens the door to a pan-ebolavirus cocktail. PMID:26962157
Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites
Rondeau, Gary; Sánchez-Bayo, Francisco; Tennekes, Henk A.; Decourtye, Axel; Ramírez-Romero, Ricardo; Desneux, Nicolas
2014-01-01
Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t1.7 for ants, from t1.6 to t5 for honeybees, and from t1.46 to t2.9 for termites. We present a simple toxicological model that can explain t2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μg/kg would be lethal to a large proportion of bees nearing the end of their life. PMID:24993452
Molecular determinants for a cardiovascular collapse in anthrax
Brojatsch, Jurgen; Casadevall, Arturo; Goldman, David L.
2015-01-01
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multiorgan failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax. PMID:24389148
Nguyen, D Tien; Ludlow, Martin; van Amerongen, Geert; de Vries, Rory D; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; Duprex, W Paul; de Swart, Rik L
2012-07-20
Inactivated paramyxovirus vaccines have been associated with hypersensitivity responses upon challenge infection. For measles and canine distemper virus (CDV) safe and effective live-attenuated virus vaccines are available, but for human respiratory syncytial virus and human metapneumovirus development of such vaccines has proven difficult. We recently identified three synthetic bacterial lipopeptides that enhance paramyxovirus infections in vitro, and hypothesized these could be used as adjuvants to promote immune responses induced by live-attenuated paramyxovirus vaccines. Here, we tested this hypothesis using a CDV vaccination and challenge model in ferrets. Three groups of six animals were intra-nasally vaccinated with recombinant (r) CDV(5804P)L(CCEGFPC) in the presence or absence of the infection-enhancing lipopeptides Pam3CSK4 or PHCSK4. The recombinant CDV vaccine virus had previously been described to be over-attenuated in ferrets. A group of six animals was mock-vaccinated as control. Six weeks after vaccination all animals were challenged with a lethal dose of rCDV strain Snyder-Hill expressing the red fluorescent protein dTomato. Unexpectedly, intra-nasal vaccination of ferrets with rCDV(5804P)L(CCEGFPC) in the absence of lipopeptides resulted in good immune responses and protection against lethal challenge infection. However, in animals vaccinated with lipopeptide-adjuvanted virus significantly higher vaccine virus loads were detected in nasopharyngeal lavages and peripheral blood mononuclear cells. In addition, these animals developed significantly higher CDV neutralizing antibody titers compared to animals vaccinated with non-adjuvanted vaccine. This study demonstrates that the synthetic cationic lipopeptides Pam3CSK4 and PHCSK4 not only enhance paramyxovirus infection in vitro, but also in vivo. Given the observed enhancement of immunogenicity their potential as adjuvants for other live-attenuated paramyxovirus vaccines should be considered. Copyright © 2012 Elsevier Ltd. All rights reserved.
Laranja, Joseph Leopoldo Q; Ludevese-Pascual, Gladys L; Amar, Edgar C; Sorgeloos, Patrick; Bossier, Peter; De Schryver, Peter
2014-10-10
Low larval survival resulting from suboptimal culture conditions and luminous vibriosis poses a major problem for the larviculture of penaeid shrimp. In this study, a poly-β-hydroxybutyrate (PHB) accumulating mixed bacterial culture (mBC; 48.5% PHB on cell dry weight) and two PHB accumulating bacterial isolates, Bacillus sp. JL47 (54.7% PHB on cell dry weight) and Bacillus sp. JL1 (45.5% PHB on cell dry weight), were obtained from a Philippine shrimp culture pond and investigated for their capacity to improve growth, survival and robustness of Penaeus monodon postlarvae (PL). Shrimp PL1 and shrimp PL30 were provided with the PHB containing bacterial cultures in the feed for 30 days followed by, respectively, a challenge with pathogenic Vibrio campbellii and exposure to a lethal dose of ammonia. Prior to the pathogenic challenge or ammonia stress, growth and survival were higher for shrimp receiving the PHB accumulating bacteria as compared to shrimp receiving diets without bacterial additions. After exposure to the pathogenic challenge the shrimp fed PHB accumulating bacteria showed a higher survival as compared to non-treated shrimp, suggesting an increase in robustness for the shrimp. Similar effects were observed when shrimp PL30 were provided with the PHB accumulating bacterial cultures during a challenge with pathogenic V. campbellii through the water. The survival of shrimp exposed to lethal ammonia stress showed no significant difference between PHB accumulating bacteria-fed shrimp and non-PHB treated shrimp. The data illustrate that bacilli capable of accumulating PHB can provide beneficial effects to P. monodon post-larvae during culture in terms of growth performance, survival and resistance against pathogenic infection and ammonia stress. Further investigations are required to verify the PHB effect of the bacterial cultures on the shrimp. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent
2012-07-24
Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.
Sublethal effects of iridovirus disease in a mosquito.
Marina, Carlos F; Arredondo-Jiménez, Juan I; Castillo, Alfredo; Williams, Trevor
1999-05-01
Recognition of the importance of debilitating effects of insect virus diseases is currently growing. Commonly observed effects of sublethal infection at the individual level include extended development times, reduced pupal and adult weights, and lowered fecundity. However, for the most part, sublethal infections are assumed to be present in survivors of an inoculum challenge, rather than demonstrated to be present by microscopy or molecular techniques. Invertebrate iridescent viruses are dsDNA viruses capable of causing disease with symptoms obvious to the naked eye, a "patent" infection, that is lethal. Furthermore, inapparent "covert" infections may occur that are non-lethal and which can only be detected using bioassay or molecular techniques. In this study, replication of Invertebrate iridescent virus 6 in Aedes aegypti larvae was demonstrated in the absence of patent disease. A sensitive insect bioassay (using Galleria mellonella) allowed the detection of covert infections, which were more common than patent infections. A concentration-response relationship was detected for the incidence of patent infections. Covert infections were up to 2 orders of magnitude commoner than patent infections, but the prevalence of covert infections did not appear to be related to virus inoculum concentration. Exposure of larvae to virus inoculum resulted in extended juvenile development times. A reduction in the mean and an increase in the variability of fecundity and adult progeny production was observed in females exposed to an inoculum challenge, although formal analysis was not possible. Males appeared capable of passing virus to uninfected females during the mating process. Covertly infected females were smaller and had shorter lifespans than control or virus-challenged females. A conservative estimate for the reduction in the net reproductive rate (R 0 ) of such insects was calculated at slightly more than 20% relative to controls.
The direct anti-MRSA effect of emodin via damaging cell membrane.
Liu, Ming; Peng, Wei; Qin, Rongxin; Yan, Zifei; Cen, Yanyan; Zheng, Xinchuan; Pan, Xichun; Jiang, Weiwei; Li, Bin; Li, Xiaoli; Zhou, Hong
2015-09-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important bacterium for nosocomial infection. Only a few antibiotics can be effective against MRSA. Therefore, searching for new drugs against MRSA is important. Herein, anti-MRSA activities of emodin and its mechanisms were investigated. Firstly, in vitro antimicrobial activity was investigated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-growth curve, and multipassage resistance testing was performed. Secondly, protection of emodin on mice survival and blood bacterial load in mice challenged with lethal or sublethal dose of MRSA were investigated. Subsequently, the influences of emodin on the bacterial morphology, messenger RNA (mRNA) expressions related to cell wall synthesis and lysis, β-lactamase activity, drug accumulation, membrane fluidity, and integrity were performed to investigate its mechanisms. Lastly, in vitro cytotoxicity assay were performed using the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) method. The results showed MICs and MBCs of emodin against MRSA252 and 36 clinical MRSA strains were among 2-8 and 4-32 μg/mL, respectively. There was no MIC increase for emodin during 20 passages. In vivo, emodin dose-dependently protected mice challenged with lethal dose of MRSA and decreased bacterial load in mice challenged with sublethal dose of MRSA. Morphology observation showed emodin might disrupt cell wall and membrane of MRSA. Although emodin had no influence on genes related to cell wall synthesis and lysis as well as β-lactamase activity and drug accumulation, emodin reduced membrane fluidity and disrupted membrane integrity. Based on the fact that emodin had no significant cytotoxicity against mammalian cells, it could be further investigated as a membrane-damage bactericide against MRSA in the future.
Wilhelm, Christina M.; Snider, Thomas H.; Babin, Michael C.; Jett, David A.; Platoff, Gennady E.; Yeung, David T.
2014-01-01
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U.S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. Unfortunately, 2-PAM Cl does not offer sufficient protection across the range of OP threat agents, and there is some question as to whether it is the most effective oxime compound available. The objective of the present study is to identify an oxime antidote, under standardized and comparable conditions, that offers protection at the FDA approved human equivalent dose (HED) of 2-PAM Cl against tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), and VX, and the pesticides paraoxon, chlorpyrifos oxon, and phorate oxon. Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl2, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 hours post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman’s method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes. PMID:25448441
Kaur, Ravinder; Chen, Shan; Arévalo, Maria T; Xu, Qingfu; Chen, Yanping; Zeng, Mingtao
2012-03-01
Francisella tularensis, a category A bioterrorism agent, is a highly infectious organism that is passed on via skin contact and inhalation routes. A live attenuated vaccine strain (LVS) has been developed, but it has not been licensed for public use by the FDA due to safety concerns. Thus, there exists a need for a safer and improved vaccine. In this study, we have constructed a replication-incompetent adenovirus, Ad/opt-Tul4, carrying a codon-optimized gene for expression of a membrane protein, Tul4, of F. tularensis LVS. Its ability to protect against lethal challenge and its immunogenicity were evaluated in a murine model. An intramuscular injection of a single dose (1 × 10(7) PFU) of Ad/opt-Tul4 elicited a robust Tul4-specific antibody response. Assays suggest a Th1-driven response. A single dose elicited 20% protection against challenge with 100 × 50% lethal dose (LD(50)) F. tularensis LVS; two additional booster shots resulted in 60% protection. In comparison, three doses of 5 μg recombinant Tul4 protein did not elicit significant protection against challenge. Therefore, the Ad/opt-Tul4 vaccine was more effective than the protein vaccine, and protection was dose dependent. Compared to LVS, the protection rate is lower, but an adenovirus-vectored vaccine may be more attractive due to its enhanced safety profile and mucosal route of delivery. Furthermore, simple genetic modification of the vaccine may potentially produce antibodies protective against a fully virulent strain of F. tularensis. Our data support the development and further research of an adenovirus-vectored vaccine against Tul4 of F. tularensis LVS.
Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax.
Glinert, Itai; Bar-David, Elad; Sittner, Assa; Weiss, Shay; Schlomovitz, Josef; Ben-Shmuel, Amir; Mechaly, Adva; Altboum, Zeev; Kobiler, David; Levy, Haim
2016-08-01
Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bennett, R S; Gresko, A K; Nelson, J T; Murphy, B R; Whitehead, S S
2012-01-01
La Crosse virus (LACV) and Jamestown Canyon virus (JCV), family Bunyaviridae, are mosquito-borne viruses that are endemic in North America and recognized as etiologic agents of encephalitis in humans. Both viruses belong to the California encephalitis virus serogroup, which causes 70 to 100 cases of encephalitis a year. As a first step in creating live attenuated viral vaccine candidates for this serogroup, we have generated a recombinant LACV expressing the attachment/fusion glycoproteins of JCV. The JCV/LACV chimeric virus contains full-length S and L segments derived from LACV. For the M segment, the open reading frame (ORF) of LACV is replaced with that derived from JCV and is flanked by the untranslated regions of LACV. The resulting chimeric virus retained the same robust growth kinetics in tissue culture as observed for either parent virus, and the virus remains highly infectious and immunogenic in mice. Although both LACV and JCV are highly neurovirulent in 21 day-old mice, with 50% lethal dose (LD₅₀) values of 0.1 and 0.5 log₁₀ PFU, respectively, chimeric JCV/LACV is highly attenuated and does not cause disease even after intracerebral inoculation of 10³ PFU. Parenteral vaccination of mice with 10¹ or 10³ PFU of JCV/LACV protected against lethal challenge with LACV, JCV, and Tahyna virus (TAHV). The chimeric virus was infectious and immunogenic in rhesus monkeys and induced neutralizing antibodies to JCV, LACV, and TAHV. When vaccinated monkeys were challenged with JCV, they were protected against the development of viremia. Generation of highly attenuated yet immunogenic chimeric bunyaviruses could be an efficient general method for development of vaccines effective against these pathogenic viruses.
O'Donnell, Vivian; Holinka, Lauren G; Krug, Peter W; Gladue, Douglas P; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R; Borca, Manuel V
2015-08-01
African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 10(6) 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 10(4) HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (10(2) to 10(3) HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 10(2) HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 10(3) conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection in pigs but only against homologous virus challenges. Here we produced a recombinant ASFV lacking virulence-associated gene 9GL in an attempt to produce a vaccine against virulent ASFV-G, a highly virulent virus isolate detected in the Caucasus region in 2007 and now spreading though the Caucasus region and Eastern Europe. Deletion of 9GL, unlike with other ASFV isolates, did not attenuate completely ASFV-G. However, when delivered once at low dosages, recombinant ASFV-G-Δ9GL induces protection in swine against parental ASFV-G. The protection against ASFV-G is highly effective after 28 days postvaccination, whereas at 21 days postvaccination, animals survived the lethal challenge but showed signs of ASF. Here we report the design and development of an experimental vaccine that induces protection against virulent ASFV-G. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
O'Donnell, Vivian; Holinka, Lauren G.; Krug, Peter W.; Gladue, Douglas P.; Carlson, Jolene; Sanford, Brenton; Alfano, Marialexia; Kramer, Edward; Lu, Zhiqiang; Arzt, Jonathan; Reese, Bo; Carrillo, Consuelo; Risatti, Guillermo R.
2015-01-01
ABSTRACT African swine fever virus (ASFV) is the etiological agent of an often lethal disease of domestic pigs. Disease control strategies have been hampered by the unavailability of vaccines against ASFV. Since its introduction in the Republic of Georgia, a highly virulent virus, ASFV Georgia 2007 (ASFV-G), has caused an epizootic that spread rapidly into Eastern European countries. Currently no vaccines are available or under development to control ASFV-G. In the past, genetically modified ASFVs harboring deletions of virulence-associated genes have proven attenuated in swine, inducing protective immunity against challenge with homologous parental viruses. Deletion of the gene 9GL (open reading frame [ORF] B119L) in highly virulent ASFV Malawi-Lil-20/1 produced an attenuated phenotype even when administered to pigs at 106 50% hemadsorption doses (HAD50). Here we report the construction of a genetically modified ASFV-G strain (ASFV-G-Δ9GLv) harboring a deletion of the 9GL (B119L) gene. Like Malawi-Lil-20/1-Δ9GL, ASFV-G-Δ9GL showed limited replication in primary swine macrophages. However, intramuscular inoculation of swine with 104 HAD50 of ASFV-G-Δ9GL produced a virulent phenotype that, unlike Malawi-Lil-20/1-Δ9GL, induced a lethal disease in swine like parental ASFV-G. Interestingly, lower doses (102 to 103 HAD50) of ASFV-G-Δ9GL did not induce a virulent phenotype in swine and when challenged protected pigs against disease. A dose of 102 HAD50 of ASFV-G-Δ9GLv conferred partial protection when pigs were challenged at either 21 or 28 days postinfection (dpi). An ASFV-G-Δ9GL HAD50 of 103 conferred partial and complete protection at 21 and 28 dpi, respectively. The information provided here adds to our recent report on the first attempts toward experimental vaccines against ASFV-G. IMPORTANCE The main problem for controlling ASF is the lack of vaccines. Studies on ASFV virulence lead to the production of genetically modified attenuated viruses that induce protection in pigs but only against homologous virus challenges. Here we produced a recombinant ASFV lacking virulence-associated gene 9GL in an attempt to produce a vaccine against virulent ASFV-G, a highly virulent virus isolate detected in the Caucasus region in 2007 and now spreading though the Caucasus region and Eastern Europe. Deletion of 9GL, unlike with other ASFV isolates, did not attenuate completely ASFV-G. However, when delivered once at low dosages, recombinant ASFV-G-Δ9GL induces protection in swine against parental ASFV-G. The protection against ASFV-G is highly effective after 28 days postvaccination, whereas at 21 days postvaccination, animals survived the lethal challenge but showed signs of ASF. Here we report the design and development of an experimental vaccine that induces protection against virulent ASFV-G. PMID:26063424
Lima-Filho, José V; Patriota, Joyce M; Silva, Ayrles F B; Filho, Nicodemos T; Oliveira, Raquel S B; Alencar, Nylane M N; Ramos, Márcio V
2010-06-16
The latex of Calotropis procera has been used in traditional medicine to treat different inflammatory diseases. The anti-inflammatory activity of latex proteins (LP) has been well documented using different inflammatory models. In this work the anti-inflammatory protein fraction was evaluated in a true inflammatory process by inducing a lethal experimental infection in the murine model caused by Salmonella enterica Subsp. enterica serovar Typhimurium. Experimental Swiss mice were given 0.2 ml of LP (30 or 60 mg/kg) by the intraperitoneal route 24 h before or after lethal challenge (0.2 ml) containing 10(6) CFU/ml of Salmonella Typhimurium using the same route of administration. All the control animals succumbed to infection within 6 days. When given before bacterial inoculums LP prevented the death of mice, which remained in observation until day 28. Even, LP-treated animals exhibited only discrete signs of infection which disappeared latter. LP fraction was also protective when given orally or by subcutaneous route. Histopathological examination revealed that necrosis and inflammatory infiltrates were similar in both the experimental and control groups on days 1 and 5 after infection. LP activity did not clear Salmonella Typhimurium, which was still present in the spleen at approximately 10(4) cells/g of organ 28 days after challenge. However, no bacteria were detected in the liver at this stage. LP did not inhibit bacterial growth in culture medium at all. In the early stages of infection bacteria population was similar in organs and in the peritoneal fluid but drastically reduced in blood. Titration of TNF-alpha in serum revealed no differences between experimental and control groups on days 1 and 5 days after infection while IL-12 was only discretely diminished in serum of experimental animals on day 5. Moreover, cultured macrophages treated with LP and stimulated by LPS released significantly less IL-1beta. LP-treated mice did not succumb to septic shock when submitted to a lethal infection. LP did not exhibit in vitro bactericidal activity. It is thought that protection of LP-treated mice against Salmonella Typhimurium possibly involves down-regulation of pro-inflammatory cytokines (other than TNF-alpha). LP inhibited IL-1beta release in cultured macrophages and discretely reduced IL-12 in serum of animals given LP. Results reported here support the folk use of latex to treat skin infections by topic application. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Thakkar, Vidhi D; Cox, Robert M; Sawatsky, Bevan; da Fontoura Budaszewski, Renata; Sourimant, Julien; Wabbel, Katrin; Makhsous, Negar; Greninger, Alexander L; von Messling, Veronika; Plemper, Richard K
2018-04-15
The paramyxovirus replication machinery comprises the viral large (L) protein and phosphoprotein (P-protein) in addition to the nucleocapsid (N) protein, which encapsidates the single-stranded RNA genome. Common to paramyxovirus N proteins is a C-terminal tail (Ntail). The mechanistic role and relevance for virus replication of the structurally disordered central Ntail section are unknown. Focusing initially on members of the Morbillivirus genus, a series of measles virus (MeV) and canine distemper virus (CDV) N proteins were generated with internal deletions in the unstructured tail section. N proteins with large tail truncations remained bioactive in mono- and polycistronic minireplicon assays and supported efficient replication of recombinant viruses. Bioactivity of Ntail mutants extended to N proteins derived from highly pathogenic Nipah virus. To probe an effect of Ntail truncations on viral pathogenesis, recombinant CDVs were analyzed in a lethal CDV/ferret model of morbillivirus disease. The recombinant viruses displayed different stages of attenuation ranging from ameliorated clinical symptoms to complete survival of infected animals, depending on the molecular nature of the Ntail truncation. Reinfection of surviving animals with pathogenic CDV revealed robust protection against a lethal challenge. The highly attenuated virus was genetically stable after ex vivo passaging and recovery from infected animals. Mechanistically, gradual viral attenuation coincided with stepwise altered viral transcriptase activity in infected cells. These results identify the central Ntail section as a determinant for viral pathogenesis and establish a novel platform to engineer gradual virus attenuation for next-generation paramyxovirus vaccine design. IMPORTANCE Investigating the role of the paramyxovirus N protein tail domain (Ntail) in virus replication, we demonstrated in this study that the structurally disordered central Ntail region is a determinant for viral pathogenesis. We show that internal deletions in this Ntail region of up to 55 amino acids in length are compatible with efficient replication of recombinant viruses in cell culture but result in gradual viral attenuation in a lethal canine distemper virus (CDV)/ferret model. Mechanistically, we demonstrate a role of the intact Ntail region in the regulation of viral transcriptase activity. Recombinant viruses with Ntail truncations induce protective immunity against lethal challenge of ferrets with pathogenic CDV. This identification of the unstructured central Ntail domain as a nonessential paramyxovirus pathogenesis factor establishes a foundation for harnessing Ntail truncations for vaccine engineering against emerging and reemerging members of the paramyxovirus family. Copyright © 2018 American Society for Microbiology.
Suppression of Poxvirus Replication by Resveratrol.
Cao, Shuai; Realegeno, Susan; Pant, Anil; Satheshkumar, Panayampalli S; Yang, Zhilong
2017-01-01
Poxviruses continue to cause serious diseases even after eradication of the historically deadly infectious human disease, smallpox. Poxviruses are currently being developed as vaccine vectors and cancer therapeutic agents. Resveratrol is a natural polyphenol stilbenoid found in plants that has been shown to inhibit or enhance replication of a number of viruses, but the effect of resveratrol on poxvirus replication is unknown. In the present study, we found that resveratrol dramatically suppressed the replication of vaccinia virus (VACV), the prototypic member of poxviruses, in various cell types. Resveratrol also significantly reduced the replication of monkeypox virus, a zoonotic virus that is endemic in Western and Central Africa and causes human mortality. The inhibitory effect of resveratrol on poxviruses is independent of VACV N1 protein, a potential resveratrol binding target. Further experiments demonstrated that resveratrol had little effect on VACV early gene expression, while it suppressed VACV DNA synthesis, and subsequently post-replicative gene expression.
Zoonotic viral diseases and the frontier of early diagnosis, control and prevention.
Heeney, J L
2006-11-01
Public awareness of the human health risks of zoonotic infections has grown in recent years. Currently, concern of H5N1 flu transmission from migratory bird populations has increased with foci of fatal human cases. This comes on the heels of other major zoonotic viral epidemics in the last decade. These include other acute emerging or re-emerging viral diseases such as severe acute respiratory syndrome (SARS), West-Nile virus, Ebola virus, monkeypox, as well as the more inapparent insidious slow viral and prion diseases. Virus infections with zoonotic potential can become serious killers once they are able to establish the necessary adaptations for efficient human-to-human transmission under circumstances sufficient to reach epidemic proportions. The monitoring and early diagnosis of these potential risks are overlapping frontiers of human and veterinary medicine. Here, current viral zoonotics and evolving threats are reviewed.
Garver, Kyle A; LaPatra, Scott E; Kurath, Gael
2005-04-06
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 pg doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Grace L., E-mail: chengra@niaid.nih.go; Lamirande, Elaine W., E-mail: elamirande@niaid.nih.go; Jin Hong, E-mail: jinh@medimmune.co
We studied the attenuation, immunogenicity and efficacy of the cold-adapted A/Ann Arbor/6/60 (AA ca) (H2N2) virus in mice and ferrets to evaluate its use in the event of an H2 influenza pandemic. The AA ca virus was restricted in replication in the respiratory tract of mice and ferrets. In mice, 2 doses of vaccine elicited a > 4-fold rise in hemagglutination-inhibition (HAI) titer and resulted in complete inhibition of viral replication following lethal homologous wild-type virus challenge. In ferrets, a single dose of the vaccine elicited a > 4-fold rise in HAI titer and conferred complete protection against homologous wild-typemore » virus challenge in the upper respiratory tract. In both mice and ferrets, the AA ca virus provided significant protection from challenge with heterologous H2 virus challenge in the respiratory tract. The AA ca vaccine is safe, immunogenic, and efficacious against homologous and heterologous challenge in mice and ferrets, supporting the evaluation of this vaccine in clinical trials.« less
Garver, K.A.; LaPatra, S.E.; Kurath, G.
2005-01-01
The level of protective immunity was determined for Chinook Oncorhynchus tshawytscha and sockeye/kokanee salmon (anadromous and landlocked) O. nerka following intramuscular vaccination with a DNA vaccine against the aquatic rhabdovirus, infectious hematopoietic necrosis virus (IHNV). A DNA vaccine containing the glycoprotein gene of IHNV protected Chinook and sockeye/kokanee salmon against waterborne or injection challenge with IHNV, and relative percent survival (RPS) values of 23 to 86% were obtained under a variety of lethal challenge conditions. Although this is significant protection, it is less than RPS values obtained in previous studies with rainbow trout (O. mykiss). In addition to the variability in the severity of the challenge and inherent host susceptibility differences, it appears that use of a cross-genogroup challenge virus strain may lead to reduced efficacy of the DNA vaccine. Neutralizing antibody titers were detected in both Chinook and sockeye that had been vaccinated with 1.0 and 0.1 ??g doses of the DNA vaccine, and vaccinated fish responded to viral challenges with higher antibody titers than mock-vaccinated control fish. ?? Inter-Research 2005.
USDA-ARS?s Scientific Manuscript database
The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...
2007-01-01
mortality but did not provide sterile immunity. RESUMEN. La vacunación del cuervo Americano (Corvus brachyrhynchos) con vacuna de ADN proporciona...casi 100% fatal en el cuervo Americano (Corvus brachyrhynchos). Evaluamos cuatro formulaciones de vacunas en cuervos Americanos, incluyendo una vacuna de...ADN, una vacuna de ADN con adyuvante, ambas aplicadas por la vı́a intramuscular, una vacuna de ADN microencapsulada aplicada por la vı́a oral, y una
Zhou, Fengmin; Goodsell, Amanda; Uematsu, Yasushi; Vajdy, Michael
2009-04-01
Seasonal influenza virus infections cause considerable morbidity and mortality in the world, and there is a serious threat of a pandemic influenza with the potential to cause millions of deaths. Therefore, practical influenza vaccines and vaccination strategies that can confer protection against intranasal infection with influenza viruses are needed. In this study, we demonstrate that using LTK63, a nontoxic mutant of the heat-labile toxin from Escherichia coli, as an adjuvant for both mucosal and systemic immunizations, systemic (intramuscular) immunization or combinations of mucosal (intranasal) and intramuscular immunizations protected mice against intranasal challenge with a lethal dose of live influenza virus at 3.5 months after the second immunization.
[Hypophosphatasia: Clinical manifestations, diagnostic recommendations and therapeutic options].
Martos-Moreno, Gabriel A; Calzada, Joan; Couce, María L; Argente, Jesús
2018-06-01
Hypophosphatasia is a very rare bone metabolism disorder caused by a deficiency in alkaline phosphatase activity, due to mutations in the ALPL gene. Its clinical hallmark is the impairment of skeletal and teeth mineralisation, although extra-skeletal manifestations are frequent. Its phenotypic spectrum is widely variable from a subtype with exclusive odontological impairment (odontohypophosphatasia) to five subtypes with systemic involvement, classified according to the age at the onset of the first symptoms (four of them in the paediatric age range: perinatal lethal, perinatal benign, infant and childhood hypophosphatasia). Those subtypes of hypophosphatasia with an earliest onset usually involve a worse prognosis, due to the risk of developing potentially lethal complications, such as seizures or severe respiratory insufficiency, secondary to rib cage malformations. Due to the extremely low prevalence of the severe forms of hypophosphatasia, its clinical variability and overlapping phenotypic features with several more prevalent conditions, the diagnosis of hypophosphatasia in the clinical setting is challenging. However, its potential lethality and impact on the patient's quality of life, along with the recent availability of an enzyme replacement therapy, increases the relevance of the early and accurate identification of patients affected with hypophosphatasia. On the basis of published evidence and clinical experience, this article suggests an algorithm with practical recommendations for the differential diagnosis of childhood hypophosphatasia, as well as an updated review of current therapeutic options. Copyright © 2017 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Szanto, Katalin; Galfalvy, Hanga; Vanyukov, Polina M; Keilp, John G; Dombrovski, Alexandre Y
Clinical heterogeneity is a key challenge to understanding suicidal risk, as different pathways to suicidal behavior are likely to exist. We aimed to identify such pathways by uncovering latent classes of late-life depression cases and relating them to prior and future suicidal behavior. Data were collected from June 2010 to September 2015. In this longitudinal study we examined distinct associations of clinical and cognitive/decision-making factors with suicidal behavior in 194 older (50+ years) nondemented, depressed patients; 57 nonpsychiatric healthy controls provided benchmark data. The DSM-IV was used to establish diagnostic criteria. We identified multivariate patterns of risk factors, defining clusters based on personality traits, perceived social support, cognitive performance, and decision-making in an analysis blinded to participants' history of suicidal behavior. We validated these clusters using past and prospective suicidal ideation and behavior. Of 5 clusters identified, 3 were associated with high risk for suicidal behavior: (1) cognitive deficits, dysfunctional personality, low social support, high willingness to delay future rewards, and overrepresentation of high-lethality attempters; (2) high-personality pathology (ie, low self-esteem), minimal or no cognitive deficits, and overrepresentation of low-lethality attempters and ideators; (3) cognitive deficits, inability to delay future rewards, and similar distribution of high- and low-lethality attempters. There were significant between-cluster differences in number (P < .001) and lethality (P = .002) of past suicide attempts and in the likelihood of future suicide attempts (P = .010, 30 attempts by 22 patients, 2 fatal) and emergency psychiatric hospitalizations to prevent suicide (P = .005, 31 participants). Three pathways to suicidal behavior in older patients were found, marked by (1) very high levels of cognitive and dispositional risk factors suggesting a dementia prodrome, (2) dysfunctional personality traits, and (3) impulsive decision-making and cognitive deficits. © Copyright 2018 Physicians Postgraduate Press, Inc.
A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge
Phoolcharoen, Waranyoo; Dye, John M.; Kilbourne, Jacquelyn; Piensook, Khanrat; Pratt, William D.; Arntzen, Charles J.; Chen, Qiang; Mason, Hugh S.; Herbst-Kralovetz, Melissa M.
2011-01-01
Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen–antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD50 of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures. PMID:22143779
De Filette, Marina; Soehle, Silke; Ulbert, Sebastian; Richner, Justin; Diamond, Michael S.; Sinigaglia, Alessandro; Barzon, Luisa; Roels, Stefan; Lisziewicz, Julianna; Lorincz, Orsolya; Sanders, Niek N.
2014-01-01
West Nile virus (WNV) is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI) covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime – boost regime) with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical). In parallel a heterologous boost with purified recombinant WNV envelope (E) protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection. PMID:24503579
Wang, Wenling; Li, Renqing; Deng, Yao; Lu, Ning; Chen, Hong; Meng, Xin; Wang, Wen; Wang, Xiuping; Yan, Kexia; Qi, Xiangrong; Zhang, Xiangmin; Xin, Wei; Lu, Zhenhua; Li, Xueren; Bian, Tao; Gao, Yingying; Tan, Wenjie
2015-01-01
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics. PMID:25834017
Wang, Wenling; Li, Renqing; Deng, Yao; Lu, Ning; Chen, Hong; Meng, Xin; Wang, Wen; Wang, Xiuping; Yan, Kexia; Qi, Xiangrong; Zhang, Xiangmin; Xin, Wei; Lu, Zhenhua; Li, Xueren; Bian, Tao; Gao, Yingying; Tan, Wenjie; Ruan, Li
2015-06-01
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Konduru, Krishnamurthy; Bradfute, Steven B.; Jacques, Jerome; Manangeeswaran, Mohanraj; Nakamura, Siham; Morshed, Sufi; Wood, Steven C.; Bavari, Sina
2011-01-01
Ebola virus is a Filoviridae that causes hemorrhagic fever in humans and induces high morbidity and mortality rates. Filoviruses are classified as "Category A bioterrorism agents", and currently there are no licensed therapeutics or vaccines to treat and prevent infection. The Filovirus glycoprotein (GP) is sufficient to protect individuals against infection, and several vaccines based on GP are under development including recombinant adenovirus, parainfluenza virus, Venezuelan equine encephalitis virus, vesicular stomatitis virus (VSV) and virus-like particles. Here we describe the development of a GP Fc fusion protein as a vaccine candidate. We expressed the extracellular domain of the Zaire Ebola virus (ZEBOV) GP fused to the Fc fragment of human IgG1 (ZEBOVGP-Fc) in mammalian cells and showed that GP undergoes the complex furin cleavage and processing observed in the native membrane-bound GP. Mice immunized with ZEBOVGP-Fc developed T-cell immunity against ZEBOV GP and neutralizing antibodies against replication-competent VSV-G deleted recombinant VSV containing ZEBOV GP. The ZEBOVGP-Fc vaccinated mice were protected against challenge with a lethal dose of ZEBOV. These results show that vaccination with the ZEBOVGP-Fc fusion protein alone without the need of a viral vector or assembly into virus-like particles is sufficient to induce protective immunity against ZEBOV in mice. Our data suggested that Filovirus GP Fc fusion proteins could be developed as a simple, safe, efficacious, and cost effective vaccine against Filovirus infection for human use. PMID:21329775
Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan
2011-09-09
Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.
da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika
2017-04-15
The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received recombinant rabies viruses carrying only the CDV attachment protein according to the same immunization scheme died. Irrespective of the CDV antigens used, all animals developed protective titers against rabies virus, illustrating that a bivalent rabies virus-based vaccine against CDV induces protective immune responses against both pathogens. Copyright © 2017 American Society for Microbiology.
Issues surrounding lethal injection as a means of capital punishment.
Romanelli, Frank; Whisman, Tyler; Fink, Joseph L
2008-12-01
Lethal injection as a method of state-sanctioned capital punishment was initially proposed in the United States in 1977 and used for the first time in 1982. Most lethal injection protocols use a sequential drug combination of sodium thiopental, pancuronium bromide, and potassium chloride. Lethal injection was originally introduced as a more humane form of execution compared with existing mechanical methods such as electrocution, toxic gassing, hanging, or firing squad. Lethal injection has not, however, been without controversy. Several states are considering whether lethal injection meets constitutional scrutiny forbidding cruel and unusual punishment. Recently in the case of Ralph Baze and Thomas C. Bowling, Petitioners, v John D. Rees, Commissioner, Kentucky Department of Corrections et al, the United States Supreme Court upheld the constitutionality of the lethal injection protocol as carried out in the Commonwealth of Kentucky. Most of the debate has surrounded the dosing and procedures used in lethal injection and whether the drug combinations and measures for administering the drugs truly produce a timely, pain-free, and fail-safe death. Many have also raised issues regarding the "medicalization" of execution and the ethics of health care professionals' participation in any part of the lethal injection process. As a result of all these issues, the future of lethal injection as a means of execution in the United States is under significant scrutiny. Outcomes of ongoing legislative and judicial reviews might result in cessation of lethal injection in totality or in alterations involving specific drug combinations or administration procedures.
EVALUATING THE PREDICTIVE VALIDITY OF SUICIDAL INTENT AND MEDICAL LETHALITY IN YOUTH
Sapyta, Jeffrey; Goldston, David B.; Erkanli, Alaattin; Daniel, Stephanie S.; Heilbron, Nicole; Mayfield, Andrew; Treadway, S. Lyn
2012-01-01
Objectives To examine whether suicidal intent and medical lethality of past suicide attempts are predictive of future attempts, the association between intent and lethality, and the consistency of these characteristics across repeated attempts among youth. Method Suicide attempts in a 15-year prospective study of 180 formerly psychiatrically hospitalized adolescents (Mage at hospitalization = 14.83; 51% female; 80% Caucasian) were characterized using the Subjective Intent Rating Scale and Lethality of Attempt Rating Scale. Anderson-Gill recurrent events survival models and generalized estimating equations were used to assess predictive validity. Generalized linear models were used to examine stability of characteristics across attempts. Results Neither intent nor lethality from the most recent attempt predicted future attempts. The highest level of intent and most severe lethality of attempts during the follow-up predicted subsequent attempts, but the degree to which highest intent and most severe lethality contributed to prediction after considering methods of suicide attempts, past number of attempts, or psychiatric diagnoses was mixed. Across successive attempts, there was little consistency in reported characteristics. Intent and lethality were related to each other only for attempts occurring in early adulthood. Conclusions Highest intent and lethality were better predictors of future attempts than intent and lethality of the most recent attempt. However, these characteristics should only be considered as predictors within the context of other factors. For youth, clinicians should not infer true intent from the lethality of attempts, nor assume that characteristics of future suicide attempts will be similar to previous attempts. PMID:22250854
Lethality of Rendang packaged in multilayer retortable pouch with sterilization process
NASA Astrophysics Data System (ADS)
Praharasti, A. S.; Kusumaningrum, A.; Frediansyah, A.; Nurhikmat, A.; Khasanah, Y.; Suprapedi
2017-01-01
Retort Pouch had become a choice to preserve foods nowadays, besides the used of the can. Both had their own advantages, and Retort Pouch became more popular for the reason of cheaper and easier to recycle. General Method usually used to estimate the lethality of commercial heat sterilization process. Lethality value wa s used for evaluating the efficacy of the thermal process. This study aimed to find whether different layers of pouch materials affect the lethality value and to find differences lethality in two types of multilayer retort pouch, PET/Aluminum Foil/Nylon/RCPP and PET/Nylon/Modified Aluminum/CPP. The result showed that the different layer arrangement was resulted different Sterilization Value (SV). PET/Nylon/Modified Aluminum/CPP had better heat penetration, implied by the higher value of lethality. PET/Nylon/Modified Aluminum/CPP had the lethality value of 6,24 minutes, whereas the lethality value of PET/Aluminum Foil/Nylon/RCPP was 3,54 minutes.
Dissolving polymer microneedle patches for influenza vaccination.
Sullivan, Sean P; Koutsonanos, Dimitrios G; Del Pilar Martin, Maria; Lee, Jeong Woo; Zarnitsyn, Vladimir; Choi, Seong-O; Murthy, Niren; Compans, Richard W; Skountzou, Ioanna; Prausnitz, Mark R
2010-08-01
Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin's antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a new technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage.
Dowall, Stuart D; Graham, Victoria A; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W; Hewson, Roger
2016-01-01
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge.
Dowall, Stuart D.; Graham, Victoria A.; Rayner, Emma; Hunter, Laura; Watson, Robert; Taylor, Irene; Rule, Antony; Carroll, Miles W.; Hewson, Roger
2016-01-01
Crimean-Congo Haemorrhagic Fever (CCHF) is a severe tick-borne disease, endemic in many countries in Africa, the Middle East, Eastern Europe and Asia. There is no approved vaccine currently available against CCHF. The most promising candidate, which has previously been shown to confer protection in the small animal model, is a modified Vaccinia Ankara virus vector expressing the CCHF viral glycoprotein (MVA-GP). It has been shown that MVA-GP induces both humoral and cellular immunogenicity. In the present study, sera and T-lymphocytes were passively and adoptively transferred into recipient mice prior to challenge with CCHF virus. Results demonstrated that mediators from both arms of the immune system were required to demonstrate protective effects against lethal challenge. PMID:27272940
Antiviral Effect of Pyran Against Systemic Infection of Mice with Herpes Simplex Virus Type 2
McCord, Ronald S.; Breinig, Mary K.; Morahan, Page S.
1976-01-01
The immunomodulator pyran markedly protected 5-week-old mice from lethal intravenous infection with herpes simplex virus type 2. The 50% lethal dose was increased almost 100-fold in pyran-treated mice as compared with controls. Although the protection was not as marked in older mice (10 and 16 weeks old), there was a significant increase in mean survival time. When the pathogenesis of herpesvirus disease was monitored in control and drug-treated mice, the effect of pyran was most evident in the spinal cord, where virus was recovered from 20 of 25 control mice and from only 6 of 25 pyran-treated mice. There was also a significant reduction in the titer of virus present, and virus appeared later in the spinal cord of pyran-treated mice than in control mice. The protective effect of pyran was observed only when the drug was administered 24 h before viral challenge, was seen after both intraperitoneal and intravenous injection, and was not due to direct inactivation of the virus. PMID:185945
A yeast gene essential for regulation of spindle pole duplication.
Baum, P; Yip, C; Goetsch, L; Byers, B
1988-01-01
In eucaryotic cells, duplication of spindle poles must be coordinated with other cell cycle functions. We report here the identification in Saccharomyces cerevisiae of a temperature-sensitive lethal mutation, esp1, that deregulates spindle pole duplication. Mutant cells transferred to the nonpermissive temperature became unable to continue DNA synthesis and cell division but displayed repeated duplication of their spindle pole bodies. Although entry into this state after transient challenge by the nonpermissive temperature was largely lethal, rare survivors were recovered and found to have become increased in ploidy. If the mutant cells were held in G0 or G1 during exposure to the elevated temperature, they remained viable and maintained normal numbers of spindle poles. These results suggest dual regulation of spindle pole duplication, including a mechanism that promotes duplication as cells enter the division cycle and a negative regulatory mechanism, controlled by ESP1, that limits duplication to a single occurrence in each cell division cycle. Tetrad analysis has revealed that ESP1 resides at a previously undescribed locus on the right arm of chromosome VII. Images PMID:3072479
Ruwona, Tinashe B; Xu, Haiyue; Li, Junwei; Diaz-Arévalo, Diana; Kumar, Amit; Zeng, Mingtao; Cui, Zhengrong
2016-05-03
Botulinum neurotoxin (BoNT) is a lethal neurotoxin, for which there is currently not an approved vaccine. Recent efforts in developing vaccine candidates against botulism have been directed at the heavy chain fragment of BoNT, because antibodies against this region have been shown to prevent BoNT from binding to its receptor and thus to nerve cell surface, offering protection against BoNT intoxication. In the present study, it was shown that immunization with plasmid DNA that encodes the 50 KDa C-terminal fragment of the heavy chain of BoNT serotype C (i.e., BoNT/C-Hc50) and is carried by cationic poly (lactic-co-glycolic) acid (PLGA) nanoparticles induces stronger BoNT/C-specific antibody responses, as compared to immunization with the plasmid alone. Importantly, the antibodies have BoNT/C-neutralizing activity, protecting the immunized mice from a lethal dose of BoNT/C challenge. A plasmid DNA vaccine encoding the Hc50 fragments of BoNT serotypes that cause human botulism may represent a viable vaccine candidate for protecting against botulinum neurotoxin intoxication.
Sedlik, C.; Saron, M.-F.; Sarraseca, J.; Casal, I.; Leclerc, C.
1997-01-01
To develop a strategy that promotes efficient antiviral immunity, hybrid virus-like particles (VLP) were prepared by self-assembly of the modified porcine parvovirus VP2 capsid protein carrying a CD8+ T cell epitope from the lymphocytic choriomeningitis virus nucleoprotein. Immunization of mice with these hybrid pseudoparticles, without adjuvant, induced strong cytotoxic T lymphocyte (CTL) responses against both peptide-coated- or virus-infected-target cells. This CD8+ class I-restricted cytotoxic activity persisted in vivo for at least 9 months. Furthermore, the hybrid parvovirus-like particles were able to induce a complete protection of mice against a lethal lymphocytic choriomeningitis virus infection. To our knowledge, this study represents the first demonstration that hybrid nonreplicative VLP carrying a single viral CTL epitope can induce protection against a viral lethal challenge, in the absence of any adjuvant. These recombinant particles containing a single type of protein are easily produced by the baculovirus expression system and, therefore, represent a promising and safe strategy to induce strong CTL responses for the elimination of virus-infected cells. PMID:9207121
Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.
2013-01-01
There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036
Diaz, Fernando M; Knipe, David M
2016-01-15
Viral vaccines have traditionally protected against disease, but for viruses that establish latent infection, it is desirable for the vaccine to reduce infection to reduce latent infection and reactivation. While seroconversion has been used in clinical trials of herpes simplex virus (HSV) vaccines to measure protection from infection, this has not been modeled in animal infection systems. To measure the ability of a genital herpes vaccine candidate to protect against various aspects of infection, we established a non-lethal murine model of genital HSV-2 infection, an ELISA assay to measure antibodies specific for infected cell protein 8 (ICP8), and a very sensitive qPCR assay. Using these assays, we observed that immunization with HSV-2 dl5-29 virus reduced disease, viral shedding, seroconversion, and latent infection by the HSV-2 challenge virus. Therefore, it may be feasible to obtain protection against genital disease, seroconversion and latent infection by immunization, even if sterilizing immunity is not achieved. Copyright © 2015 Elsevier Inc. All rights reserved.
Gillard, Geoffrey O.; Bivas-Benita, Maytal; Hovav, Avi-Hai; Grandpre, Lauren E.; Panas, Michael W.; Seaman, Michael S.; Haynes, Barton F.; Letvin, Norman L.
2011-01-01
While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance. PMID:21829360
Soloff, Paul; White, Richard; Diwadkar, Vaibhav A
2014-06-30
Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Journey of Harmless Bullet: The Perioperative Care of Penetrating Cardiac Injury
Abou-Leila, Ahmad; Voronov, Gennadiy
2017-01-01
Traumatic injuries to the heart contribute significantly to trauma are associated with high mortality. Cardiac gunshot wounds (GSW) are considered more lethal compared to other injuries and present several unique challenges to the anesthesia management and perioperative care. We are reporting a rare case of a trauma victim who survived a GSW to the heart. We will discuss the perioperative care of penetrating cardiac injuries, the role of the anesthesia team in resuscitation, safe anesthesia induction, cardiopulmonary bypass management, and the essential role of intraoperative transesophageal echocardiogram imaging. PMID:28928592
2006-06-15
because its suppression should lead to a nearly total loss of all RNA synthesis , but also because of the absence of similar proteins in mammalian cells...protects mice from fulminant hepatitis. Nat Med 2003; 9:347–51. 12. Ge Q, Filip L, Bai A, Nguyen T, Eisen HN, Chen J. Inhibition of influenza virus...human beta interferon gene in simian cells defective in interferon synthesis . Mol Cell Biol 1986; 6:2279–83. 21. Spann KM, Tran KC, Collins PL
NASA Astrophysics Data System (ADS)
Shinar, J.; Shinar, R.
The chapter describes the development, advantages, challenges, and potential of an emerging, compact photoluminescence-based sensing platform for chemical and biological analytes, including multiple analytes. In this platform, the excitation source is an array of organic light-emitting device (OLED) pixels that is structurally integrated with the sensing component. Steps towards advanced integration with additionally a thin-film-based photodetector are also described. The performance of the OLED-based sensing platform is examined for gas-phase and dissolved oxygen, glucose, lactate, ethanol, hydrazine, and anthrax lethal factor.
In vivo screening of candidate pretreatment compounds against cyanide using mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiser, R.C.; Olson, C.T.; Menton, R.G.
1993-05-13
An in vivo screening procedure was established at Battelle's Medical Research and Evaluation Facility (MREF) to evaluate the efficacy of candidate pretreatment compounds in mice challenged with the blood agent, sodium cyanide (NaCN). Male albino mice of ICR outbred stock weighing between 22.5 and 27.5 g are challenged by intramuscular (i.m.) injection, at a volume of 0.5 mL/kg, of a dose of NaCN twice the LD50 of untreated mice as determined on that day of testing. Candidate drugs are tested at fractions of their LD50 or their limit of solubility in the most optimum vehicle and given intraperitoneally (i.p.) tomore » separate groups of mice at either 60 or 15 min prior to NaCN challenge. Sodium thiosulfate (1000 mg/kg)/sodium nitrite (100 mg/kg) controls are injected i.p. only at 60 min prior to challenge. A test compound is deemed effective if, at any of three concentrations tested, or at either pretreatment time, it is statistically more efficacious in preventing lethality than is a negative control substance (candidate compound vehicle).« less
Airpower’s Emasculation? -- Non-lethal Weapons in Joint Urban Operations
2005-02-14
Lethal, Subdue the Enemy Without Killing,” 14, US Military Non-Lethal Weapons, 10 November 1997, <http://www.geocities.com/ Area51 /Shadowlands/6583...37 “Non-Lethal, Subdue the Enemy Without Killing,” 10-11, US Military Non-Lethal Weapons, 10 November 1997, <http://www.geocities.com/ Area51 ... Area51 /Shadowlands/6583/project035.html> [15 December 2004]. 42 “US Plans for Use of Gas in Iraq,” The Sunshine Project, 7 February 2003, <http
Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A
2014-04-01
Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.
Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice.
Marzi, Andrea; Emanuel, Jackson; Callison, Julie; McNally, Kristin L; Arndt, Nicolette; Chadinha, Spencer; Martellaro, Cynthia; Rosenke, Rebecca; Scott, Dana P; Safronetz, David; Whitehead, Stephen S; Best, Sonja M; Feldmann, Heinz
2018-01-01
The common small animal disease models for Zika virus (ZIKV) are mice lacking the interferon responses, but infection of interferon receptor α/β knock out (IFNAR -/- ) mice is not uniformly lethal particularly in older animals. Here we sought to advance this model in regard to lethality for future countermeasure efficacy testing against more recent ZIKV strains from the Asian lineage, preferably the American sublineage. We first infected IFNAR -/- mice subcutaneously with the contemporary ZIKV-Paraiba strain resulting in predominantly neurological disease with ~50% lethality. Infection with ZIKV-Paraiba by different routes established a uniformly lethal model only in young mice (4-week old) upon intraperitoneal infection. However, intraperitoneal inoculation of ZIKV-French Polynesia resulted in uniform lethality in older IFNAR -/- mice (10-12-weeks old). In conclusion, we have established uniformly lethal mouse disease models for efficacy testing of antivirals and vaccines against recent ZIKV strains representing the Asian lineage.
28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...
28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...
28 CFR 552.25 - Use of less-than-lethal weapons, including chemical agents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Use of less-than-lethal weapons... Use of less-than-lethal weapons, including chemical agents. (a) The Warden may authorize the use of less-than-lethal weapons, including those containing chemical agents, only when the situation is such...
Meseda, Clement A.; Campbell, Joseph; Kumar, Arunima; Garcia, Alonzo D.; Merchlinsky, Michael; Weir, Jerry P.
2013-01-01
Antibodies to both infectious forms of vaccinia virus, the mature virion (MV) and the enveloped virion (EV), as well as cell-mediated immune response appear to be important for protection against smallpox. EV virus particles, although more labile and less numerous than MV, are important for dissemination and spread of virus in infected hosts and thus important in virus pathogenesis. The importance of the EV A33 and B5 proteins for vaccine induced immunity and protection in a murine intranasal challenge model was evaluated by deletion of both the A33R and B5R genes in a vaccine-derived strain of vaccinia virus. Deletion of either A33R or B5R resulted in viruses with a small plaque phenotype and reduced virus yields, as reported previously, whereas deletion of both EV protein-encoding genes resulted in a virus that formed small infection foci that were detectable and quantifiable only by immunostaining and an even more dramatic decrease in total virus yield in cell culture. Deletion of B5R, either as a single gene knockout or in the double EV gene knockout virus, resulted in a loss of EV neutralizing activity, but all EV gene knockout viruses still induced a robust neutralizing activity against the vaccinia MV form of the virus. The effect of elimination of A33 and/or B5 on the protection afforded by vaccination was evaluated by intranasal challenge with a lethal dose of either vaccinia virus WR or IHD-J, a strain of vaccinia virus that produces relatively higher amounts of EV virus. The results from multiple experiments, using a range of vaccination doses and virus challenge doses, and using mortality, morbidity, and virus dissemination as endpoints, indicate that the absence of A33 and B5 have little effect on the ability of a vaccinia vaccine virus to provide protection against a lethal intranasal challenge in a mouse model. PMID:23785523
Yu, Xiuling; Zhou, Zhi; Cao, Zhen; Wu, Jiajun; Zhang, Zhongqiu; Xu, Baiwan; Wang, Chuanbin; Hu, Dongmei; Deng, Xiaoyu; Han, Wei; Gu, Xiaoxue; Zhang, Shuo; Li, Xiaoxia; Wang, Baoyue; Zhai, Xinyan; Tian, Kegong
2015-05-01
The safety and efficacy of the JXA1-R vaccine, an attenuated strain of highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV), were examined using an intramuscular challenge model in piglets. The JXA1-R vaccine was obtained by passing HP-PRRSV JXA1 through Marc-145 cells (82nd passage). Genomic sequence comparisons showed that strain JXA1-R and its parental strain, JXA1, differ by 47 amino acids, and most of these differences are scattered throughout the PRRSV genome. Four-week-old PRRSV-free piglets were inoculated intramuscularly with JXA1-R vaccine (10(3.0), 10(4.0), 10(5.0), 10(6.0), and 10(7.0) 50% tissue culture infective doses [TCID50]/ml for groups 1 to 5, respectively) and then challenged intramuscularly with the 5th passage virus of JXA1 virus (JXA1-F5, 3 ml × 10(4.5) TCID50/ml) 28 days after inoculation. The humoral immune response, swine growth, clinical signs, and differential organ lesions were monitored. The results showed that all vaccinated piglets had a perceptible humoral immune response to vaccination after day 7, which then promptly increased, almost reaching the maximum sample/positive (S/P) ratio value at 28 days postimmunization. Viremia detection indicated that the viral replication levels of the challenge virus in the immunized groups (immunization doses ≥10(4.0)/ml) were significantly lower than that of the virus-challenged unvaccinated control group. Piglets in groups 2 to 5 were effectively protected against lethal HP-PRRSV infection and did not show any obvious changes in body temperature or clinical signs of disease at any point during the experiment. However, two of five piglets in group 1 showed mild pathological lesions and transitory high fever. These results suggest that JXA1-R (TCID50/ml ≥10(4.0)) is sufficiently attenuated and can provide effective protection against the lethal wild-type HP-PRRSV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Scott, Bobby R.
2009-01-01
This paper provides theoretical health-risk-assessment tools that are designed to facilitate planning for and managing radiological terrorism incidents that involve ingestion exposure to bone-seeking radionuclides (e.g., radiostrontium nuclides). The focus is on evaluating lethality risk avoidance (RAV; i.e., the decrease in risk) that is associated with radionuclide decorporation countermeasures employed to remove ingested bone-seeking beta and/or gamma-emitting radionuclides from the body. To illustrate the application of tools presented, hypothetical radiostrontium decorporation scenarios were considered that involved evaluating the hematopoietic-mode-lethality RAV. For evaluating the efficacy of specific decorporation countermeasures, the lethality risk avoidance proportion (RAP; which is the RAV divided by the total lethality risk in the absence of protective countermeasures) is introduced. The lethality RAP is expected to be a useful tool for designing optimal radionuclide decorporation schemes and for identifying green, yellow and red dose-rate zones. For the green zone, essentially all of the lethality risk is expected to be avoided (RAP = 1) as a consequence of the radionuclide decorporation scheme used. For the yellow zone, some but not all of the lethality risk is expected to be avoided. For the red zone, none of the lethality risk (which equals 1) is expected to be avoided. PMID:20011652
KEAP1-dependent synthetic lethality induced by AKT and TXNRD1 inhibitors in lung cancer
Dai, Bingbing; Yoo, Suk-Yuong; Bartholomeusz, Geoffrey; Graham, Ryan A.; Majidi, Mourad; Yan, Shaoyu; Meng, Jieru; Ji, Lin; Coombes, Kevin; Minna, John D.; Fang, Bingliang; Roth, Jack A.
2013-01-01
Intrinsic resistance to agents targeting phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the major challenges in cancer treatment with such agents. The objective of this study is to identify the genes or pathways that can be targeted to overcome the resistance of non-small cell lung cancer to the AKT inhibitor, MK2206, which is currently being evaluated in phase I and II clinical trials. Using a genome-wide small interfering RNA (siRNA) library screening and biological characterization we identified that inhibition of Thioredoxin Reductase-1 (TXNRD1), one of the key anti-oxidant enzymes, with siRNAs or its inhibitor, Auranofin, sensitized non-small cell lung cancer cells to MK2206 treatment in vitro and in vivo. We found that simultaneous inhibition of TXNRD1 and AKT pathways induced robust reactive oxygen species (ROS) production, which was involved in c-Jun N-terminal Kinase (JNK, MAPK8) activation and cell apoptosis. Furthermore we found that the synthetic lethality interaction between the TXNRD1 and AKT pathways occurred through the KEAP1/NRF2 cellular antioxidant pathway. Lastly, we found that synthetic lethality induced by TXNRD1 and AKT inhibitors relied on wild type KEAP1 function. Our study indicates that targeting the interaction between AKT and TXNRD1 antioxidant pathways with MK2206 and Auranofin, a FDA approved drug, is a rational strategy to treat lung cancer and that KEAP1 mutation status may offer a predicative biomarker for such combination approaches. PMID:23824739
Silveira, Eduardo L. V.; Claser, Carla; Haolla, Filipe A. B.; Zanella, Luiz G.; Rodrigues, Mauricio M.
2008-01-01
Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease. PMID:18579696
Silveira, Eduardo L V; Claser, Carla; Haolla, Filipe A B; Zanella, Luiz G; Rodrigues, Mauricio M
2008-08-01
Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.
Williams, Katherine L.; Harris, Eva; Alvine, Travis D.; Henderson, Thomas; Schiltz, James; Nilles, Matthew L.; Bradley, David S.
2017-01-01
Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY. PMID:28686617
Huang, Xiumei; Dong, Ying; Bey, Erik A; Kilgore, Jessica A; Bair, Joseph S; Li, Long-Shan; Patel, Malina; Parkinson, Elizabeth I; Wang, Yiguang; Williams, Noelle S; Gao, Jinming; Hergenrother, Paul J; Boothman, David A
2012-06-15
Agents, such as β-lapachone, that target the redox enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1), to induce programmed necrosis in solid tumors have shown great promise, but more potent tumor-selective compounds are needed. Here, we report that deoxynyboquinone kills a wide spectrum of cancer cells in an NQO1-dependent manner with greater potency than β-lapachone. Deoxynyboquinone lethality relies on NQO1-dependent futile redox cycling that consumes oxygen and generates extensive reactive oxygen species (ROS). Elevated ROS levels cause extensive DNA lesions, PARP1 hyperactivation, and severe NAD+ /ATP depletion that stimulate Ca2+ -dependent programmed necrosis, unique to this new class of NQO1 "bioactivated" drugs. Short-term exposure of NQO1+ cells to deoxynyboquinone was sufficient to trigger cell death, although genetically matched NQO1- cells were unaffected. Moreover, siRNA-mediated NQO1 or PARP1 knockdown spared NQO1+ cells from short-term lethality. Pretreatment of cells with BAPTA-AM (a cytosolic Ca2+ chelator) or catalase (enzymatic H2O2 scavenger) was sufficient to rescue deoxynyboquinone-induced lethality, as noted with β-lapachone. Investigations in vivo showed equivalent antitumor efficacy of deoxynyboquinone to β-lapachone, but at a 6-fold greater potency. PARP1 hyperactivation and dramatic ATP loss were noted in the tumor, but not in the associated normal lung tissue. Our findings offer preclinical proof-of-concept for deoxynyboquinone as a potent chemotherapeutic agent for treatment of a wide spectrum of therapeutically challenging solid tumors, such as pancreatic and lung cancers.
Antibiotics induce redox-related physiological alterations as part of their lethality
Dwyer, Daniel J.; Belenky, Peter A.; Yang, Jason H.; MacDonald, I. Cody; Martell, Jeffrey D.; Takahashi, Noriko; Chan, Clement T. Y.; Lobritz, Michael A.; Braff, Dana; Schwarz, Eric G.; Ye, Jonathan D.; Pati, Mekhala; Vercruysse, Maarten; Ralifo, Paul S.; Allison, Kyle R.; Khalil, Ahmad S.; Ting, Alice Y.; Walker, Graham C.; Collins, James J.
2014-01-01
Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part by inducing production of damaging reactive species. This notion has been supported by many groups but has been challenged recently. Here we robustly test the hypothesis using biochemical, enzymatic, and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular H2O2 sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species to demonstrate that antibiotics broadly induce redox stress. Subsequent gene-expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supraphysiological levels of H2O2. We next developed a method to quantify cellular respiration dynamically and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that overexpression of catalase or DNA mismatch repair enzyme, MutS, and antioxidant pretreatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions but could be enhanced by exposure to molecular oxygen or by the addition of alternative electron acceptors, indicating that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that, downstream of their target-specific interactions, bactericidal antibiotics induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. PMID:24803433
A lethal model of disseminated dengue virus type 1 infection in AG129 mice.
Milligan, Gregg N; Sarathy, Vanessa V; White, Mellodee M; Greenberg, M Banks; Campbell, Gerald A; Pyles, Richard B; Barrett, Alan D T; Bourne, Nigel
2017-10-01
The mosquito-borne disease dengue is caused by four serologically and genetically related flaviviruses termed DENV-1 to DENV-4. Dengue is a global public health concern, with both the geographical range and burden of disease increasing rapidly. Clinically, dengue ranges from a relatively mild self-limiting illness to a severe life-threatening and sometimes fatal disease. Infection with one DENV serotype produces life-long homotypic immunity, but incomplete and short-term heterotypic protection. The development of small-animal models that recapitulate the characteristics of the disseminated disease seen clinically has been difficult, slowing the development of vaccines and therapeutics. The AG129 mouse (deficient in interferon alpha/beta and gamma receptor signalling) has proven to be valuable for this purpose, with the development of models of disseminated DENV-2,-3 and -4 disease. Recently, a DENV-1 AG129 model was described, but it requires antibody-dependent enhancement (ADE) to produce lethality. Here we describe a new AG129 model utilizing a non-mouse-adapted DENV-1 strain, West Pacific 74, that does not require ADE to induce lethal disease. Following high-titre intraperitoneal challenge, animals experience a virus infection with dissemination to multiple visceral tissues, including the liver, spleen and intestine. The animals also become thrombocytopenic, but vascular leakage is less prominent than in AG129 models with other DENV serotypes. Taken together, our studies demonstrate that this model is an important addition to dengue research, particularly for understanding the pathological basis of the disease between DENV serotypes and allowing the full spectrum of activity to test comparisons for putative vaccines and antivirals.
Fink, Ashley L; Williams, Katherine L; Harris, Eva; Alvine, Travis D; Henderson, Thomas; Schiltz, James; Nilles, Matthew L; Bradley, David S
2017-07-01
Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are severe disease manifestations that can occur following sequential infection with different dengue virus serotypes (DENV1-4). At present, there are no licensed therapies to treat DENV-induced disease. DHF and DSS are thought to be mediated by serotype cross-reactive antibodies that facilitate antibody-dependent enhancement (ADE) by binding to viral antigens and then Fcγ receptors (FcγR) on target myeloid cells. Using genetically engineered DENV-specific antibodies, it has been shown that the interaction between the Fc portion of serotype cross-reactive antibodies and FcγR is required to induce ADE. Additionally, it was demonstrated that these antibodies were as neutralizing as their non-modified variants, were incapable of inducing ADE, and were therapeutic following a lethal, antibody-enhanced infection. Therefore, we hypothesized that avian IgY, which do not interact with mammalian FcγR, would provide a novel therapy for DENV-induced disease. We demonstrate here that goose-derived anti-DENV2 IgY neutralized DENV2 and did not induce ADE in vitro. Anti-DENV2 IgY was also protective in vivo when administered 24 hours following a lethal DENV2 infection. We were also able to demonstrate via epitope mapping that both full-length and alternatively spliced anti-DENV2 IgY recognized different epitopes, including epitopes that have not been previously identified. These observations provide evidence for the potential therapeutic applications of goose-derived anti-DENV2 IgY.
Shiomi, K; Yamaguchi, S; Kikuchi, T; Yamamori, K; Matsui, T
1992-12-01
The shore crab (Hemigrapsus sanguineus) is highly resistant to tetrodotoxin (TTX) although it contains no detectable amount of TTX (less than 5 MU/g, where 1 MU is defined as the amount of TTX killing a 20 g mouse in 30 min). Its body fluid was examined for neutralizing effects against the lethal activity of TTX. When the mixture of the body fluid and TTX was injected i.p. into mice, the lethal activity of TTX was significantly reduced; 1 ml of the body fluid was evaluated to neutralize 3.6-4.0 MU of TTX. Higher neutralizing activity (7.2-12.5 MU/ml of the body fluid) was exhibited by i.v. administration of the body fluid into mice before or after i.p. challenge of TTX. The lethal effect of paralytic shellfish poisons was not counteracted by the body fluid. Analysis by gel filtration on Sepharose 6B revealed that the body fluid contained TTX-binding high mol. wt substances (> 2,000,000) responsible for the neutralizing activity of the body fluid against TTX, which accounts for the high resistibility of the crab to TTX. When the crude toxin extracted from the liver of puffer (Takifugu niphobles) was mixed with the body fluid and chromatographed on Sepharose 6B, almost pure TTX was obtained from the fractions containing the TTX-binding high mol. wt substances, suggesting that the TTX-binding high mol. wt substances could be useful in purification of TTX from biological samples.
Lee, Benjamin C; Mayer, Chad L; Leibowitz, Caitlin S; Stearns-Kurosawa, D J; Kurosawa, Shinichiro
2013-08-01
Enterohemorrhagic Escherichia coli (EHEC) produce ribosome-inactivating Shiga toxins (Stx1, Stx2) responsible for development of hemolytic uremic syndrome (HUS) and acute kidney injury (AKI). Some patients show complement activation during EHEC infection, raising the possibility of therapeutic targeting of complement for relief. Our juvenile nonhuman primate (Papio baboons) models of endotoxin-free Stx challenge exhibit full spectrum HUS, including thrombocytopenia, hemolytic anemia, and AKI with glomerular thrombotic microangiopathy. There were no significant increases in soluble terminal complement complex (C5b-9) levels after challenge with lethal Stx1 (n = 6) or Stx2 (n = 5) in plasma samples from T0 to euthanasia at 49.5 to 128 hours post-challenge. d-dimer and cell injury markers (HMGB1, histones) confirmed coagulopathy and cell injury. Thus, complement activation is not required for the development of thrombotic microangiopathy and HUS induced by EHEC Shiga toxins in these preclinical models, and benefits or risks of complement inhibition should be studied further for this infection.
Dowall, Stuart D; Bosworth, Andrew; Rayner, Emma; Taylor, Irene; Landon, John; Cameron, Ian; Coxon, Ruth; Al Abdulla, Ibrahim; Graham, Victoria A; Hall, Graham; Kobinger, Gary; Hewson, Roger; Carroll, Miles W
2016-07-28
Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. An ovine polyclonal antibody therapy has been developed against EBOV, named EBOTAb. When tested in the stringent guinea pig model of EBOV disease, EBOTAb has been shown to confer protection at levels of 83.3%, 50% and 33.3% when treatment was first started on days 3, 4 and 5 post-challenge, respectively. These timepoints of when EBOTAb treatment was initiated correspond to when levels of EBOV are detectable in the circulation and thus mimic when treatment would likely be initiated in human infection. The effects of EBOTAb were compared with those of a monoclonal antibody cocktail, ZMapp, when delivered on day 3 post-challenge. Results showed ZMapp to confer complete protection against lethal EBOV challenge in the guinea pig model at this timepoint. The data reported demonstrate that EBOTAb is an effective treatment against EBOV disease, even when delivered late after infection.
Liao, Chih-Ming; Huang, Chienjin; Hsuan, Shih-Ling; Chen, Zeng-Weng; Lee, Wei-Cheng; Liu, Cheng-I; Winton, James R.; Chien, Maw-Sheng
2006-01-01
Three short fragments of recombinant subunit Pasteurella multocida toxin (rsPMT) were constructed for evaluation as candidate vaccines against progressive atrophic rhinitis (PAR) of swine. PMT-specific antibody secreting cells and evidence of cellular immunity were detected in rsPMT-immunized pigs following authentic PMT challenge or homologous antigen booster. Piglets immunized with rsPMT fragments containing either the N-terminal or the C-terminal portions of PMT developed high titers of neutralizing antibodies. Pregnant sows immunized with rsPMT had higher levels of maternal antibodies in their colostrum than did those immunized with a conventional PAR-toxoid vaccine. Offspring from rsPMT vaccinated sows had better survival after challenge with a five-fold lethal dose of authentic PMT and had better growth performance after challenge with a sublethal dose of toxin. Our findings indicate these non-toxic rsPMT proteins are attractive candidates for development of a subunit vaccine against PAR in pigs.
Trestman, Robert L
2014-09-01
Restricting a person's liberty presents society with many inherent ethical challenges. The historical purposes of confinement have included punishment, penitence, containment, rehabilitation, and habilitation. While the purposes are indeed complex, multifaceted, and at times ambiguous or contradictory, the fact of incarceration intrinsically creates many ethical challenges for psychiatrists working in correctional settings. Role definition of a psychiatrist may be ambiguous, with potential tensions between forensic and therapeutic demands. Privacy may be limited or absent and confidentiality may be compromised. Patient autonomy may be threatened to address real or perceived security concerns. Care delivery may actually have harmful consequences in court cases for pretrial detainees or lethal consequences for those under a death sentence. An absence of data and targeted research hampers the development of evidence-based care delivery for the disenfranchised, understudied, and disproportionately ill prisoner population. In this review paper, I discuss a few of the challenges and dilemmas routinely faced and present a series of questions. Where feasible, proposed resolutions are offered.
Wilson, Jason R; Belser, Jessica A; DaSilva, Juliana; Guo, Zhu; Sun, Xiangjie; Gansebom, Shane; Bai, Yaohui; Stark, Thomas J; Chang, Jessie; Carney, Paul; Levine, Min Z; Barnes, John; Stevens, James; Maines, Taronna R; Tumpey, Terrence M; York, Ian A
2017-11-01
The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection. Published by Elsevier Inc.
Lethal acrodysgenital dwarfism: a severe lethal condition resembling Smith-Lemli-Opitz syndrome.
Merrer, M L; Briard, M L; Girard, S; Mulliez, N; Moraine, C; Imbert, M C
1988-01-01
We report eight cases of a lethal association of failure to thrive, facial dysmorphism, ambiguous genitalia, syndactyly, postaxial polydactyly, and internal developmental anomalies (Hirschsprung's disease, cardiac and renal malformation). This syndrome is likely to be autosomal recessive and resembles Smith-Lemli-Opitz (SLO) syndrome. However, the lethality, the common occurrence of polydactyly, and the sexual ambiguity distinguishes this condition from SLO syndrome. A review of published reports supports the separate classification of this syndrome for which we propose the name lethal acrodysgenital dwarfism. Images PMID:2831368
Li, Yan; Cui, Xizhong; Xu, Wanying; Ohanjanian, Lernik; Sampath-Kumar, Hanish; Suffredini, Dante; Moayeri, Mahtab; Leppla, Stephen; Fitz, Yvonne
2016-01-01
We showed previously that Bacillus anthracis edema toxin (ET), comprised of protective antigen (PA) and edema factor (EF), inhibits phenylephrine (PE)-induced contraction in rat aortic rings and these effects are diminished in endothelial-denuded rings. Therefore, employing rat aortic ring and in vivo models, we tested the hypothesis that nitric oxide (NO) contributes to ET's arterial effects. Compared with rings challenged with PA alone, ET (PA + EF) reduced PE-stimulated maximal contractile force (MCF) and increased the PE concentration producing 50% MCF (EC50) (P < 0.0001). Compared with placebo, l-nitro-arginine methyl-ester (l-NAME), an NO synthase (NOS) inhibitor, reduced ET's effects on MCF and EC50 in patterns that approached or were significant (P = 0.06 and 0.03, respectively). In animals challenged with 24-h ET infusions, l-NAME (0.5 or 1.0 mg·kg−1·h−1) coadministration increased survival to 17 of 28 animals (60.7%) compared with 4 of 27 (14.8%) given placebo (P = 0.01). Animals receiving l-NAME but no ET all survived. Compared with PBS challenge, ET increased NO levels at 24 h and l-NAME decreased these increases (P < 0.0001). ET infusion decreased mean arterial blood pressure (MAP) in placebo and l-NAME-treated animals (P < 0.0001) but l-NAME reduced decreases in MAP with ET from 9 to 24 h (P = 0.03 for the time interaction). S-methyl-l-thiocitrulline, a selective neuronal NOS inhibitor, had effects in rings and, at a high dose in vivo models, comparable to l-NAME, whereas N′-[3-(aminomethyl)benzyl]-acetimidamide, a selective inducible NOS inhibitor, did not. NO production contributes to ET's arterial relaxant, hypotensive, and lethal effects in the rat. PMID:27448553
Immunoprotective properties of recombinant LigA and LigB in a hamster model of acute leptospirosis
Lourdault, Kristel; Matsunaga, James; Haake, David A.
2017-01-01
Leptospirosis is the most widespread zoonosis and is considered a major public health problem worldwide. Currently, there is no widely available vaccine against leptospirosis for use in humans. A purified, recombinant subunit vaccine that includes the last six immunoglobulin-like (Ig-like) domains of the leptospiral protein LigA (LigA7’-13) protects against lethal infection but not renal colonization after challenge by Leptospira interrogans. In this study, we examined whether the addition of the first seven Ig-like domains of LigB (LigB0-7) to LigA7’-13, can enhance immune protection and confer sterilizing immunity in the Golden Syrian hamster model of acute leptospirosis. Hamsters were subcutaneously immunized with soluble, recombinant LigA7’-13, LigB0-7, or a combination of LigA7’-13 and LigB0-7 in Freund’s adjuvant. Immunization with Lig proteins generated a strong humoral immune response with high titers of IgG that recognized homologous protein, and cross-reacted with the heterologous protein as assessed by ELISA. LigA7’-13 alone, or in combination with LigB0-7, protected all hamsters from intraperitoneal challenge with a lethal dose of L. interrogans serovar Copenhageni strain Fiocruz L1-130. However, bacteria were recovered from the kidneys of all animals. Of eight animals immunized with LigB0-7, only three survived Leptospira challenge, one of which lacked renal colonization and had antibodies to native LigB by immunoblot. In addition, sera from two of the three LigB0-7 immunized survivors cross-reacted with LigA11-13, a region of LigA that is sufficient for protection. In summary, we confirmed that LigA7’-13 protects hamsters from death but not infection, and immunization with LigB0-7, either alone or in combination with LigA7’-13, did not confer sterilizing immunity. PMID:28704385
Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen; Curtiss, Roy
2012-10-01
We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.
Xin, Wei; Wanda, Soo-Young; Zhang, Xiangmin; Santander, Javier; Scarpellini, Giorgio; Ellis, Karen; Alamuri, Praveen
2012-01-01
We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd+-DadB+ plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd+ and DadB+ plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF+ counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 109 CFU of χ9760 (carrying Asd+-PspA and DadB+-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD50s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD50s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd+-PspA) and χ11026 (DadB+-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines. PMID:22868499
Shahzad, Mirza Imran; Naeem, Khalid; Mukhtar, Muhammad; Khanum, Azra
2008-01-01
Our studies were aimed at developing a vaccination strategy that could provide protection against highly pathogenic avian influenza virus (AIV), H7N3 or its variants outbreaks. A purified viral stock of highly pathogenic H7N3 isolate was lysed to isolate viral proteins by electrophresing on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by their elution from gel through trituration in phosphate buffered saline (PBS). Overall, five isolated viral polypeptides/proteins upon characterization were used to prepare hyperimmune monovalent serum against respective polypeptides independently and a mixture of all five in poultry birds, and specificity confirmation of each antiserum through dot blot and Western blotting. Antiserum generated from various group birds was pooled and evaluated in 2-week old broiler chicken, for its protection against viral challenge. To evaluate in-vivo protection of each antiserum against viral challenges, six groups of 2-week old broiler chicken were injected with antiserum and a seventh control group received normal saline. Each group was exposed to purified highly pathogenic AIV H7N3 strain at a dose 105 embryo lethal dose (ELD50). We observed that nucleoprotein (NP) antiserum significantly protected birds from viral infection induced morbidity, mortality and lowered viral shedding compared with antiserum from individual viral proteins or mixed polypeptides/proteins inclusive of NP component. The capability of individual viral polypeptide specific antisera to protect against viral challenges in decreasing order was nucleoprotein (NP) > hemagglutinin (HA) > neuraminidase (NA) > viral proteins mix > viral polymerase (PM) > non-structural proteins (NS). Our data provide proof of concept for potential utilization of passive immunization in protecting poultry industry during infection outbreaks. Furthermore conserved nature of avian NP makes it an ideal candidate to produce antiserum protective against viral infection. PMID:19040734
Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching
2011-05-01
Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria.
Zhang, Shimin; Feng, Shaw-Huey; Li, Bingjie; Kim, Hyung-Yong; Rodriguez, Joe; Tsai, Shien; Lo, Shyh-Ching
2011-01-01
Our laboratory has developed more than a hundred mouse monoclonal antibodies (MAbs) against Burkholderia pseudomallei and Burkholderia mallei. These antibodies have been categorized into different groups based on their specificities and the biochemical natures of their target antigens. The current study first examined the bactericidal activities of a number of these MAbs by an in vitro opsonic assay. Then, the in vivo protective efficacy of selected MAbs was evaluated using BALB/c mice challenged intranasally with a lethal dose of the bacteria. The opsonic assay using dimethyl sulfoxide-treated human HL-60 cells as phagocytes revealed that 19 out of 47 tested MAbs (40%) have prominent bactericidal activities against B. pseudomallei and/or B. mallei. Interestingly, all MAbs with strong opsonic activities are those with specificity against either the capsular polysaccharides (PS) or the lipopolysaccharides (LPS) of the bacteria. On the other hand, none of the MAbs reacting to bacterial proteins or glycoproteins showed prominent bactericidal activity. Further study revealed that the antigenic epitopes on either the capsular PS or LPS molecules were readily available for binding in intact bacteria, while the epitopes on proteins/glycoproteins were less accessible to the MAbs. Our in vivo study showed that four MAbs reactive to either the capsular PS or LPS were highly effective in protecting mice against lethal bacterial challenge. The result is compatible with that of our in vitro study. The MAbs with the highest protective efficacy are those reactive to either the capsular PS or LPS of the Burkholderia bacteria. PMID:21450976
Wang, Yimin; Yuan, Jin; Cong, Xin; Qin, Hua-Yang; Wang, Chun-Hua; Li, Yongfeng; Li, Su; Luo, Yuzi; Sun, Yuan; Qiu, Hua-Ji
2015-10-01
Classical swine fever (CSF) is an economically important infectious disease of pigs caused by classical swine fever virus (CSFV). Pseudorabies (PR), which is caused by pseudorabies virus (PRV), is another important infectious disease of pigs and other animals. Coinfections of pigs with PRV and CSFV occur occasionally in the field. The modified live vaccine Bartha-K61 strain has played an important role in the control of PR in many countries, including China. Since late 2011, however, increasing PR outbreaks caused by an emerging PRV variant have been reported in Bartha-K61-vaccinated swine populations on many farms in China. Previously, we generated a gE/gI-deleted PRV (rPRVTJ-delgE) based on this PRV variant, which was shown to be safe and can provide rapid and complete protection against lethal challenge with the PRV variant in pigs. Here, we generated a new recombinant PRV variant expressing the E2 gene of CSFV (rPRVTJ-delgE/gI-E2) and evaluated its immunogenicity and efficacy in pigs. The results showed that rPRVTJ-delgE/gI-E2 was safe for pigs, induced detectable anti-PRV and anti-CSFV neutralizing antibodies, and provided complete protection against the lethal challenge with either the PRV TJ strain or the CSFV Shimen strain. The data indicate that rPRVTJ-delgE/gI-E2 is a promising candidate bivalent vaccine against PRV and CSFV coinfections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Requirement for Serratia marcescens Cytolysin in a Murine Model of Hemorrhagic Pneumonia
González-Juarbe, Norberto; Mares, Chris A.; Hinojosa, Cecilia A.; Medina, Jorge L.; Cantwell, Angelene; Dube, Peter H.; Bergman, Molly A.
2014-01-01
Serratia marcescens, a member of the carbapenem-resistant Enterobacteriaceae, is an important emerging pathogen that causes a wide variety of nosocomial infections, spreads rapidly within hospitals, and has a systemic mortality rate of ≤41%. Despite multiple clinical descriptions of S. marcescens nosocomial pneumonia, little is known regarding the mechanisms of bacterial pathogenesis and the host immune response. To address this gap, we developed an oropharyngeal aspiration model of lethal and sublethal S. marcescens pneumonia in BALB/c mice and extensively characterized the latter. Lethal challenge (>4.0 × 106 CFU) was characterized by fulminate hemorrhagic pneumonia with rapid loss of lung function and death. Mice challenged with a sublethal dose (<2.0 × 106 CFU) rapidly lost weight, had diminished lung compliance, experienced lung hemorrhage, and responded to the infection with extensive neutrophil infiltration and histopathological changes in tissue architecture. Neutrophil extracellular trap formation and the expression of inflammatory cytokines occurred early after infection. Mice depleted of neutrophils were exquisitely susceptible to an otherwise nonlethal inoculum, thereby demonstrating the requirement for neutrophils in host protection. Mutation of the genes encoding the cytolysin ShlA and its transporter ShlB resulted in attenuated S. marcescens strains that failed to cause profound weight loss, extended illness, hemorrhage, and prolonged lung pathology in mice. This study describes a model of S. marcescens pneumonia that mimics known clinical features of human illness, identifies neutrophils and the toxin ShlA as a key factors important for defense and infection, respectively, and provides a solid foundation for future studies of novel therapeutics for this important opportunistic pathogen. PMID:25422267
Suicide Lethality: A Concept Analysis.
DeBastiani, Summer; De Santis, Joseph P
2018-02-01
Suicide is a significant health problem internationally. Those who complete suicide may have different behaviors and risk factors than those who attempt a non-fatal suicide. The purpose of this article is to analyze the concept of suicide lethality and propose a clear definition of the concept through the identification of antecedents, attributes, and consequences. A literature search for articles published in the English language between 1970 and 2016 was conducted using MEDLINE, the Cochrane Library, Pubmed, Psychlit, Ovid, PsycINFO, and Proquest. The bibliographies of all included studies were also reviewed to identify additional relevant citations. A concept analysis was conducted on the literature findings using six stages of Walker and Avant's method. The concept analysis differentiated between suicide, lethality, suicidal behavior, and suicide lethality. Presence of a suicide plan or a written suicide note was not found to be associated with the majority of completed suicides included in the definition of suicide lethality. There are a few scales that measure the lethality of a suicide attempt, but none that attempt to measure the concept of suicide lethality as described in this analysis. Clarifying the concept of suicide lethality encourages awareness of the possibility of different suicidal behaviors associated with different suicide outcomes and will inform the development of future nursing interventions. A clearer definition of the concept of suicide lethality will guide clinical practice, research, and policy development aimed at suicide prevention.
Matt Hansen; A. Steven Munson; Darren C. Blackford; David Wakarchuk; Scott Baggett
2016-01-01
We tested lethal trap trees and repellent semiochemicals as area treatments to protect host trees from spruce beetle (Dendroctonus rufipennis Kirby) attacks. Lethal trap tree treatments ("spray treatment") combined a spruce beetle bait with carbaryl treatment of the baited spruce. Repellent treatments ("spray-repellentâ) combined a baited lethal...
Gregory, Stephen H.; Chen, Wilbur H.; Mott, Stephanie; Palardy, John E.; Parejo, Nicholas A.; Heninger, Sara; Anderson, Christine A.; Artenstein, Andrew W.; Opal, Steven M.; Cross, Alan S.
2010-01-01
Francisella tularensis is a category A select agent. J5dLPS/OMP is a novel vaccine construct consisting of detoxified, O-polysaccharide side chain-deficient, lipopolysaccharide non-covalently complexed with the outer membrane protein of N. meningitidis group B. Immunization elicits hightiter polyclonal antibodies specific for the highly-conserved epitopes expressed within the glycolipid core that constitutes gram-negative bacteria (e.g., F. tularensis). Mice immunized intranasally with J5dLPS/OMP exhibited protective immunity to intratracheal challenge with the live vaccine strain, as well as the highly-virulent SchuS4 strain, of F. tularensis. The efficacy of J5dLPS/OMP vaccine suggests its potential utility in immunizing the general population against several different gram-negative select agents concurrently. PMID:20170768
Amemiya, Kei; Meyers, Jennifer L; Trevino, Sylvia R; Chanh, Tran C; Norris, Sarah L; Waag, David M
2006-02-27
We evaluated the effect of interleukin (IL)-12 on the immune response to Burkholderia mallei in BALB/c mice. Mice were vaccinated with non-viable B. mallei cells with or without IL-12. There was a seven- to nine-fold increase in IgG2a levels, and a significant increase in the proliferative response and interferon (IFN)-gamma production by splenocytes from mice that received B. mallei and IL-12. We saw an increase in survivors in the groups of mice that received B. mallei and IL-12 when challenged, compared to mice that received only B. mallei or IL-12. The results suggest that IL-12 can enhance the Th1-like immune response to B. mallei and mediate limited protection from a lethal challenge.
Anderson, D.P.; Nelson, J.R.
1974-01-01
Rainbow trout (Salmo gairdneri) fed 1.0 mg Hagerman redmouth bacterin per fish for 2 wk had no detectable specific, circulating, agglutinating antibody. In fish given a single subcutaneous inoculation of 1.0 mg of bacterin per fish, antibody was present from 3 wk later until 3 mo later, when the final sample was taken. Median lethal doses at various intervals after the bacterins were administered indicated that the inoculated fish could withstand a greater challenge by subcutaneous inoculation of the virulent bacteria than the orally immunized fish. The fish fed the vaccine lost their protection within 6 wk, whereas the inoculated fish had high levels of protection through 3 mo. The degree of protection was also confirmed by a "natural" exposure challenge.
[Prognostic value of the lethal triad among patients with multiple trauma].
González Balverde, María; Ramírez Lizardo, Ernesto J; Cardona Muñoz, Ernesto G; Totsuka Sutto, Sylvia E; García Benavides, Leonel
2013-11-01
Patients who have suffered multiple traumatic injuries, have a serious risk for death. Hypothermia, acidosis and coagulopathy are three complications in these patients, whose presence is known as lethal triad and indicates bad prognosis. To determine if the lethal triad in multiple trauma patients is associated with higher mortality and Injury Score Severity (ISS). One hundred multiple trauma patients aged 26 to 56 years (90 males), admitted to an emergency room, were studied. Body temperature, prothrombin time, partial thromboplastin time, platelet count and blood gases were determined on admission. Twenty six patients had the lethal triad and 15% died in the emergency room within the first 6 hours. No death was recorded among the 74 patients without the lethal triad. The mean ISS among patients with and without the lethal triad was 31.7 and 25.6, respectively (p < 0.05). The presence of the lethal triad among patients with multiple trauma is associated with a higher mortality and ISS.